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Abstract

This paper presents a fully automated object extraction system — Omini. A distinct feature of Omini
is the suite of algorithms and the automatically learned information extraction rules for discovering
and extracting objects from dynamic Web pages or static Web pages that contain multiple object
instances. We evaluated the system using more than 2,000 Web pages over 40 sites. It achieves 100%
precision (returns only correct objects) and excellent recall (between 93% and 98%, with very few
significant objects left out). The object boundary identification algorithms are fast, about 0.1 second

per page with a simple optimization.



1 Introduction

The amount of information on the web is growing at an astonishing speed. Search engines and browsers
have become ubiquitous tools for accessing and finding information on the Web. Not surprisingly, the
explosive growth of the Web has made information search and extraction a harder problem than ever.
As of February 1999 [15], the publicly indexable web (static pages) contains about 800 million pages. No
search engine indexes more than one sixth of the indexable web. Furthermore, search engines may not
index new or modified (static) pages for months. To make the matter even worse, not only the number
of static web pages increases approximately 15% per month, the number of dynamic pages generated by
programs (i.e., the web pages behind the forms) has been growing exponentially. The huge and rapidly

growing number of dynamic pages forms an invisible Web, out of the reach of search engines.

To address the search problem over dynamic pages, several domain-specific information integration
portal services have emerged, such as excite’s jango and cnet.com. These integration services offer an
uniformed access to heterogeneous collections of dynamic pages using the wrapper technology [5]. A
wrapper is an end-to-end computer program that performs two tasks. First it transforms a search request
at the aggregation server to a search request at the remote information source provided by a content
provider. Second, it converts the search result returned by the content provider into a normalized format
for summarization and aggregation processing at the integration server. Most wrappers so far have
been developed and maintained by semi-automatic wrapper generation systems [1, 2, 5, 14, 16, 10, 18].
Common techniques used for constructing wrapper programs often require embedding programmers’
understanding of the specific presentation layout or specific contents of the Web pages. This turns out
to be labor intensive and error-prone, especially for the web sites that are frequently changing their
information presence on the Web. As a result, most of the information integration services do not scale.
They have a hard time to effectively incorporate additional or new content providers into their existing

integration access framework.

This paper presents a fully automated object extraction system — Omini. A distinct feature of Omini
is the suite of algorithms and the automatically learned information extraction rules for discovering and
extracting objects from dynamic Web pages or static Web pages that contain multiple data objects. The
Omini system has been tested over more than 150 web sites by both end users and a wrapper generation
system XWRAPEIite [20], developed at Georgia Tech. Our algorithms for automatically learning object
extraction rules are fast. The entire process is O(n), where n is the size (length in characters) of an
input Web page. Our approach for extracting objects from Web pages using the automatically learned
extraction rules is effective. We conducted a series of experiments over 2000 Web pages from 50 web
sites, the results were consistent and satisfying, attaining recall ratio in the range of 93% to 98% and

precision ratios 100% on all the sites we examined.

There are several research projects that have addressed the problem of information extraction from Web
documents. To our knowledge, all approaches proposed so far discover and extract objects using either

a manual approach or a semi-automatic approach. For example, [3, 10] discover object boundaries



manually. They first examine the documents and find the HTML tags that separate the objects of
interest, and then write a program to separate the object regions. [1, 2,5, 7, 12, 13, 14, 18, 19] separate
object regions with some degree of automation. These approaches rely primarily on the use of syntactic
knowledge, such as specific HTML tags, to identify object boundaries. They differ from each other
in the degree of automation introduced in the data extraction process. In comparison, the approach
developed Embley and his colleagues at BYU [7] has relatively higher degree of automation, although
two out of five heuristics (ontology heuristic and identifiable tag heuristic) are based on pre-determined
knowledge about the Web pages being extracted. As reported in [7], the ontology heuristic plays a
critical role in achieving the high accuracy of their extraction approach, but it relies completely on
human knowledge about the Web site and costly to develop (it takes about 2-man weeks to develop an
ontology heuristic for a given web site [7]). Furthermore, they are error-prone with respect to changes

in the content and presentation of the Web sites.

The Omini approach differs from these existing proposals in two distinct ways. First, Omini performs
object extraction in two consecutive processes, object-rich subtree extraction and object separator
extraction. Each process considerably reduces the number of possibilities considered in the next process.
The goal of the object-rich subtree extraction is to locate the objects of interest in a page, while the goal
of the object separator extraction is to find the object separator tag that can effectively separate objects.
Second and most importantly, both extraction processes are fully automated. A set of heuristics and
a mechanism to combine them have been developed for both subtree extraction and object separator

extraction process.

Before explaining the details of our approach, we would like to note that fully automated approach to
information extraction from Web pages is just one of the challenges in building a scalable and reliable
information search and aggregation service for the Web. Other important problems include resolving
semantic heterogeneity among different information content providers, efficient query planning and
fusion for gathering and integrating the requested information from different Web sites, and intelligent

caching of retrieved data. The focus of this paper is solely on automated information extraction.

The rest of the paper proceeds as follows. We briefly review a set of preliminary concepts in Section 2.
We introduce the Omini system architecture in Section 3. Then we describe the object-rich subtree ex-
traction algorithms in Section 4 and the object separator extraction algorithms in Section 5. Section 6
describes a combined algorithm that unifies the five independent object extraction algorithms. Sec-
tion 6.2 reports the experiments and demonstrates the effectiveness of our object extraction approach
through an analysis of our experimental results. We conclude the paper with a summary and an outline

of future work in Section 7.



2 Preliminaries

2.1 Well-Formed Web Document

The web documents considered in this paper are HI'ML or XML documents. A web document consists
of text and tags. A tagin a web document is marked by a tag name and an optional list of tag attributes
enclosed in a pair of opening and closing brackets “<” and “>”. Text is a sequence of characters in
between two tags. By HI'ML [8] and XML [21] specification standard, most of tags in a Web document
appear in pairs. A tag whose name does not start with a forward slash (i.e., “/”) is called a start tag;
otherwise it is called an end lag and the name of an end tag is the name of its corresponding start tag

proceeded by “/”. A web document is said to be well-formed if it satisfies the following conditions:

e There are no opening or closing brackets, < and >, in the text of the document that are not tags.

Instead, these characters, when used in the text of a document, are encoded as &lt; and &gt;.
e All tags must be paired; namely every start tag has a corresponding end tag.
e All attribute values in a tag must be quoted (e.g. <a href="www.w3c.org” >).

e All tags which do not normally have end-tags (such as <IMG>, <HR>, and <BR>) are immedi-
ately followed by a corresponding end tag. For example: < BR> will be denoted by < BR></BR>.

e Pairs of tags must be nested inside one another without overlapping. For example, the document
fragment " <a> ... <b>...</a> ... </b>" is not well formed. The correct nesting for this example
fragment is "<a> ... <b>...</b> ... </a>"7.

Documents that are not well formed can be converted to well-formed documents. We refer to such
a transformation as document normalization. HTML Tidy [17] is a well-known Internet tool for

transforming an arbitrary HI'ML document into a well formed one.

2.2 Tree Representation of Web Documents

A well-formed web document can be modeled as a tag tree. All the internal nodes of a tag tree are tag
nodes and all leaf nodes are content nodes (numbers, strings, or other data types such as encoded MIME
types). A tag node denotes the part of the web document identified by a start tag and its corresponding
end tag and all characters in-between. A tag node is labeled by the name of the start tag. A leaf node
denotes the content data (text) between a start tag and its corresponding end tag or between an end
tag and the next start tag in a web document. A leaf node is labeled by its content. An example tag
node in an HTML document is < Title> Home Page </ Title>, where < Title> is the name of the tag

node and the text string Home Page is a leaf node.

Definition 1 (Tag Tree)
A tag tree of a document D is defined as a directed tree T = (V, E) where V. = Vp U Ve, Vr is a finite



set of tag nodes and V¢ is a finite set of content nodes; 2 C (V X V), representing the directed edges.
T satisfies the following conditions: V(u,v) € E,(v,u) ¢ E;Yu € V, (u,u) ¢ E; andVu € Vg, Av eV
such that (u,v) € E.

For any node u € V, we use the predicate parent(u) to refer to the parent node of u. parent(u) =
{w|lw € V,(w,u) € F}. The root node of a tree T is the only node which does not have a parent
node. Similarly, for any node v € V, we use children(u) to refer to the set of child nodes of u.
children(u) = {w|w € V, (u,w) € E}. This definition says that a node w is a child node of u if and
only if there exists an edge (u,w) € E.

Definition 2 (path: =—*)
Let T = (V, E) be the tag tree for a web document D. There is a path from node v € V to node v € V,
denoted by w =" wv, if and only if one of the following conditions is satisfied:

(i) w=v
(ii) (u,v)eF
(i) Ju eV, v #uand v #v, s.t. u="*u" and v ="* v.

If w =" v, then u is called an ancestor of v and we say that node v is reachable from node u.

There is a path from the root node to every other node in the tree. For a given node, the path expression
from the root of the tree to the node can uniquely identify the node. Therefore, in subsequent sections

we sometimes use such a path expression to refer to the node.

Consider Figure 1. The path from the root node HTML to the Title node goes through the Head node.
It can be expressed as HI'M L =—>* Title. An alternative method to represent a path is to use the dot
notation. For example, the expression HTML[1].Head[1].Title[1] can also be used to describe the path
from the HI'ML node to the Title node in Figure 1. The numbers in the brackets after each node denotes
the order of the child in the tag tree. Similarly, the path from HTML to Body is HTML[1].Body[2].

Definition 3 (Subtree)
Let T = (V, E) be the tag tree for a web document D, and T' = (V', E') is called a subtree of T anchored

at node u, denoted as subtree(u), if and only if the following conditions hold:

e V'CV, andVv e Viv# u, if u=—"* v then v € V';

o F'CFE, andVv eV v#uvg Ve, Jw eV w#v, and (v,w) € E'

For a tag tree 7 = (V, E), the total number of subtrees is |V| — 1. We call a subtree anchored at node
w a minimal subtree with property P, if it is the smallest subtree that has the property P, namely
there is no other subtree, say subtree(w),w € V, which satisfies both the property P and the condition

© =" w (u is an ancestor of w).
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Figure 1: Tree Representation for Library Of Congress search results page.

Definition 4 (Minimal Subtree with Property P)

Let T = (V, E) be the tag tree for a web document, and subtree(u) = (V', E') be a subtree of T anchored
at node u. We call subtree(u) a minimal subtree with property P, denoted as subtree(u, P), if and only
if Vo € V,v # u, if subtree(v) has the property P, then v =" u holds.

Consider Figure 1, there are two subtrees that contain all of the hr nodes, the subtree anchored at
HTML and the subtree anchored at Body. The subtree anchored at Body, as shown in Figure 2, is the

minimal subtree that contains all of the Ar nodes.
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Figure 2: Minimal Subtree from Figure 1

In addition to the notion of subtree and minimal subtree, the following concepts are used frequently in

the subsequent sections to describe the Omini object extraction algorithms.

e fanout(u): For any node u € V, we use fanout(u) to denote the cardinality of the set of children
of u. fanout(u) = ||children(u)| if v € Vr and fanout(u) =0 if u € V.

e nodeSize(u): For any node u € V, if u € V¢, i.e., u is a leaf node, then nodeSize(u) denotes the

content size in bytes of node u. Otherwise, u is a tag node, i.e., u € Vy and fanout(u) > 0. We



define nodeSize(u) to be the sum of the node sizes of all the leaf nodes reachable from node u,
i.e. nodeSize(u) = 3, cohitdren(u) (ROdeSTzE(V;)).
o subtreeSize(u): For any node u € V, we define the size of the subtree anchored at node u to be

the node size of u. le., sublreeSize(u) = nodeSize(u).

e tagCount(u): For any node u € V, if u € V¢ is a leaf node, then tagCount(u) = 1. Otherwise,
u € Vr is a tag node and tagCount(u) = 143, conitdren(u) (tagCount(v;)). tagCount(u) refers to

the total number of tag nodes of which u is an ancestor.

3 System Architecture

Figure 3 shows the Omini system architecture. A user or an application may submit a URL to the
Omini system to initiate the object extraction process. The results returned by the Omini is a list
of objects extracted from the given web page. The Omini object extraction process consists of three

phases.
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Figure 3: Omini System Architecture

Phase 1: Preparing a web document for extraction

The phase one is dedicated to preparing the web document for extraction. It takes a URL from an
end-user or an application, and performs the following three tasks: First, the Web page specified by the
URL will be fetched from a remote site. Second, the fetched page will be cleaned using the syntactic



normalization algorithm, which transforms the given web page into a well-formed web document. Third,
the well-formed web document will be converted into a tag tree representation based on the nested
structure of start and end tags. Due to the space restriction, the tag tree construction algorithm is

omitted here. Readers may refer to our technical report [4] for detail.

Phase 2: Locating objects of interest in a Web page
The phase 2 process is divided into two consecutive steps: object-rich subtree extraction and object
separator extraction. The former locates the minimal subtree that contains all the objects of interest

in a page. The latter finds the object separator tags that can effectively separate objects.

Step 1: Object-rich sublree extraction

Web pages are designed for human browsing. In addition to the primary content regions, many web
pages often contain other information such as advertisements, navigation links, and so on. Therefore,
given a web document D, the first task in the object discovery phase is to identify which part of the
document is the primary content region. Let T be the tag tree of the document D, then the task
of locating the primary content region is reduced to the problem of locating the subtree of T° which
contains all the objects of interest. We call this task the Object-rich subtree Discovery. Obviously, there
may be more than one subtree that contain all the objects of interest. The main goal of the object-rich
subtree discovery is to locate the minimal subtree of T" which contains all the objects of interest.In the
first prototype of Omini, three individual subtree discovery rules and a method to combine them have
been implemented. To choose the correct subtree we compare the fanout, the content size, or the tag

count of all the subtrees in a given Web document (see Section 4 for further detail).

Step 2: Objecl separator extraclion

Once the primary content region is found, the next task is to decide how to separate data objects
from each other, and from any other information in the web page. We refer to this task as the Object
separator discovery. One goal of the object separator discovery is to develop a method that can fully
automate the process of discovering the correct object separator, which will effectively separate objects
in the primary content region and extract the objects of interest. To achieve this objective, we develop a
set of individual algorithms, each of which can independently identify a ranked list of object separators,
and provide a mechanism to combine these independent algorithms into a methodical approach for the

object separator discovery.

Phase 3: Extracting objects of interest in a page

The phase 3 consists of two tasks: Candidate Object Construction and Object Extraction Refinement.

Candidate object conslructlion is the process of extracting objects from the raw text data of the web
document using the object separator tag identified in Phase 2. After the object separator tag is chosen
the objects need to be extracted from the components of the chosen subtree. Sometimes the separator
tag sits between objects, and other times it is the root of the object or a part of the object. Occasionally,

an object may be broken down into two or more pieces by the chosen separator.



Object Extraclion Refinement is the process of eliminating candidate objects that do not conform to
the set of minimum criteria, which are derived by the object extraction process and satisfied by most
of extracted objects. More concretely, in the process of constructing the objects, extraneous objects
such as list headers or footers may be extracted occasionally. The object extraction refinement step will
remove those objects that are structurally not of the same type as the majority of objects, such as an
object that is missing a common set of tags, or that has too many unique tags. Also if the object is too

small or too large it will be removed as well.

4 Heuristics for Object-rich Subtree Extraction

Finding the minimal subtree that contains all the objects of similar structure is critical to the accuracy
of the object separator heuristics. It is observed that Web documents have many different types and
different layout representations. It is impossible to find a single minimal subtree algorithm that works
for all kinds of web documents. In the first prototype of the Omini, we implement three minimal subtree
algorithms: the highest fanout, the greatest size and size increase, and the highest tag count. We also
provide a mechanism to combine them into a compound method for extracting the minimal object-rich

subtree.

4.1 The Highest Fan-out Subtrees (HF)

This heuristic ranks all subtrees of a given document by their fan-outs and choose the highest fan-out
subtree as the minimal subtree. The HF heuristic was introduced in [7]. The entire information extrac-
tion process described in [7] relies on the assumption that “in @ Web document of multiple records of
interest, the subtree of T whose root has the highest fan-out should contain the records’. This heuristic
works well for web pages that have almost no advertisement or designated navigational region. Unfor-
tunately, many useful web sites today provide more than just the search result objects. For example,
most e-commerce sites want to provide brand-recognition as well as a consistent and highly evolved
look-and-feel for their web sites. These web pages are likely to contain a lot of navigational aids and
other page elements that are not directly related with the content of the query results. In such cases,
the highest count heuristics does poorly. This is particularly true when the number of navigational links

is larger than the maximum number of query results displayed on a single page.

4.2 The Greatest Size Increase (GSI) Subtrees

The GSI heuristic ranks all of the subtrees by examining the content size of different subtrees. Obviously,
any ancestor of a node is either equal or larger than the node itself. Thus, when one subtree is the
ancestor of the other subtree, we rank them by the increase in size from the average size of the child nodes

of the subtree to the size of the subtree. This is calculated by dividing the node size by the node fanout



and subtracting the result from the original node size. The GSI heuristic is motivated by the following
observations. First, when the highest fan-out heuristic fails, it usually fails on navigation menus in web
pages; navigation menus usually contain only links and the descriptive link names. Relatively speaking,
the data objects returned from a search are much larger than navigation links. Second, a single data
object will be relatively smaller in size than the complete set of objects. Third, a subtree that contains
the set of data objects of interest may not have the highest fanout but will have a much larger size or

size increase relative to its children than most subtrees.
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Figure 4: Canoe.com Search Result http://www.canoe.com — on July 2, 2000

Consider the web document in Figure 4 and its tag tree in Figure 5. The objects that we are interested
in extracting from this example Web document is obviously the search results, namely the twelve news
items marked by the twelve tables at the right side of the tree. By applying the GSI heuristic, the
highest ranked subtree is the subtree anchored at the tag node H1T M L[1].body[2].form[4]. Obviously
it is the minimal subtree that contains all the news objects of interest. However, by applying the HF
heuristic, the subtree anchored at the tag node H1T'M L[1].body|2]. form[4].table[5].tr[1].td[2]. font[1] will

be the chosen minimal subtree even though it does not contain any news objects of interest.

The GSI heuristic captures those subtrees that may not have the highest fanout, but have larger size

and larger difference in size between the root node of the subtree and each of its child nodes.
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Figure 5: Tag Tree for Canoe.com, Figure 4

4.3 The Largest Tag Count Subtrees (LTC)

The LTC heuristic is motivated by the observation that data objects typically contain several mark-up
tags and a subtree of the highest fan-out may not necessarily have the highest tag counts (see the
example for HF in Figure 5). This heuristic implies that the more tags that are in a particular subtree,
the more likely it will contain the data objects. However, there is one exception: when comparing a
subtree anchored at node u with another subtree anchored at an ancestor of u, the ancestor will always
have more tags. In that case we look at all the child nodes of the two subtrees. The subtree that has
the highest appearance count of a child node tag will be ranked higher than the other subtree. For
example, comparing the two subtrees HT M L[1].Body[2] and HT M L[1].Body|2].form[4] in Figure 5.
The child tag form in the subtree HT M L[1]. Body[2] has the highest appearance count of 2. The child
tag table in the subtree HT'M L[1].Body[2].form[4] has the highest appearance count of 13. Thus, the
LTC algorithm ranks the subtree HT'M L[1].Body|[2]. form[4] higher.

The LTC algorithm works in two steps: For a given tag tree, in the first step we ranks all the subtrees in
ascending order by the total number of tags they have. In the second step we walk down the ranked list,

and re-examine those subtrees that have ancestor relationship. For each subtree in the ranked list, say

11



T;, we compare it with every other subtree, say 7}, in the list. If 7; — 77, i.e., they have an ancestor
relationship, then we find the highest appearance count of the child node for both 7; and 7;. If the
highest appearance count of the child node from 7 is greater than the highest appearance count of the
child node from 73, then T; and T} will exchange their ranking positions in the ranked list. Otherwise
T; will be compared with the next subtree after 7; in the ranked list. The process continues until all

the subtrees are re-examined.

Recall the web document in Figure 4 and its tag tree in Figure 5. Table 1 lists the top five ranked
subtrees obtained by applying HF, GSI, and LTC separately to the tag tree (Figure 5) of this example
document. The GSI and LTC heuristics ranks the correct minimal subtree as its number one choice,
whereas the subtree that the HF heuristic ranks the highest does not contain the news objects of interest

even though it has the highest fanout.

Rank Subtrees by HF GSI LTC
1 HTM L[1].body[2]. form[4]. HTM L[1].body[2]. form[4] | HTM L[1].body[2]. form[4]
table[5].tr[1].td[2]. font[1]
2 HTM L[1].body[2]. form[4] HTM L[1].body[2] HTM L[1].body[2]. form[4].
table[5].tr[1].td[2]. font[1]
3 HTM L[1].body[2] HTM L[1].body[2]. form[2]. | HT M L[1].body[2]. form[4].
table[1].tr[1].td[2] table[5].tr[1]
4 HTM L[1].body[2]. form[4]. HTM L[1].body|[2]. form][4]. HTM L[1].body[2]
table[5].tr[1].td[1] form[19].table[1].tr[1].td[2]
5 HTM L[1].body[2]. form[4].table[10]. | HTM L[1].body[2]. form[2] | HTM L[1].body[2]. form[2]
tr[1].td[2].table[1].tr[1].td[2]. font[1]

Table 1: Comparing HF, GSI, and LTC on canoe.com tag tree in Figure 5

4.4 The Compound Algorithm for Locating the minimal subtree

We have discussed three individual subtree algorithms. Each of the individual heuristics ranks subtrees
independently by a single metric: fanout, size increase, or tag count. The idea of combining these three
independent algorithms is to treat each metric as a separate dimension in a multi-dimensional space,
and ranks subtrees by their multi-dimensional volume. Such a combination has several advantages.
Subtrees with a low fanout, few tags, or a small size will have a smaller volume comparing to those that
have more tags and a larger size. Similarly, the higher fanout subtree is ranked higher only when it also
has a relatively larger size and a higher tag count. For example, subtrees which have a large number
of navigation links but no content, such as a navigation menu, will be ranked low, while subtrees that
have a few objects containing several tags and text, such as product descriptions, will obtain a higher
ranking. Due to the space limitation, we omit the detailed algorithm for subtree extraction and the

experimental results in this paper. Readers may refer to our technical report [4] for further detail.
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5 Heuristics for Object Separator Extraction

After the object-rich subtree extraction process, the problem of extracting the object separator tag in
a web page is reduced to the problem of finding the right object separator tag in the chosen minimal
subtree. The problem can be addressed in two steps. First we need to decide which tags in the chosen
minimal subtree should be considered as candidate object separator tags. Second, we need a method
to identify the right object separator tag from the set of candidate tags, which will effectively separate
all the objects.

There are several ways of choosing the object separator tags. One may consider every node in the chosen
subtree as a candidate tag or just the child nodes of the chosen subtree as the candidate tags. Based
on the semantics of the minimal object-rich subtree, it is sufficient to consider only the child nodes in

the chosen subtree as the candidate separator tags.

In the first prototype of Omini, five separator tag identification heuristics are supported, covering a wide
range of possible mechanisms for discovering object separators. Each of the five heuristics independently
ranks the candidate tags. The standard deviation heuristic (SD) and the repeating pattern heuristic
(RP) were first proposed in [7]. The SD heuristic ranks the candidate tags based on the standard
deviation of sizes between two tags. The RP heuristic ranks the candidate tags based on the difference
between the counts of a pair of tags and the counts of a single tag. The partial path heuristic (PP)
and the sibling tag heuristic (SB) are introduced in Omini. The former is motivated by the observation
that the multiple instances of the same object type often have the same tag structure. The latter is
based on the observation that the objects identified by highest count sibling pairs are more likely to be
of the same object type than the highest count single tags. The identifiable path separator heuristic
(IPS) is an extension of the IT (Identifiable Tag) heuristic proposed in [7]. Instead of using the same
list of pre-determined and ranked candidate tags for every tag tree, a different list is used based on the

subtree that is chosen.

In the subsequent sections we describe each of the five individual heuristics first and then we discuss the
method to best combine the rankings of these five heuristics for selecting the correct object separator

tag.

5.1 Standard Deviation Heuristic (SD)

The SD heuristic measures the standard deviation in the distance (in terms of the number of characters)
between two consecutive occurrences of a candidate tag, and then ranks the list of candidate tags in
ascending order by their standard deviation. It is motivated by the observation that the multiple

instances of the same object type in a web document are typically about the same size.

Consider the tag tree for the Library of Congress web page shown in Figure 1. From the subtree extrac-

tion step, the subtree anchored at the node HTML[1].Body[2] is the chosen minimal subtree as shown

13



in Figure 2. Among the set of child node tags, some tags have much higher counts than the others do.
For example, the tag hr appears twenty-one times, the tag a appears twenty-one times, and the tag pre
occurs twenty times. We refer to these tags as the highest count tags. The standard deviation in dis-
tance is calculated between two consecutive occurrences of hr tag, between two consecutive occurrences

of pre tag, between two consecutive occurrences of a tag, and so on.

n o 2
Given a candidate tag 7', the standard deviation for 1" is calculated as o (1) = w [11], where

n is the number of occurrences of the tag 1" (i.e., the appearance count of the tag 7), ¢; is the size of the

subtree anchored at the 7t*

appearance of the tag T, and p = %ﬁ' is the average distance between
any two consecutive occurrences of the tag 7. The SD algorithm first computes the average distance
for each of the candidate tags that appeared more than one in terms of their subtree sizes. Then the
square of the difference between the average distance and each appearance of the tag is summed. The
variance is calculated by dividing the sum by the number of appearances of the given candidate tag
as child node. The standard deviation is determined by taking the square root of the variance. After
obtaining the standard deviation for all the candidate tags, a ranking is produced with the lowest SD

tag at the top of the list and the highest DD tag at the lowest end of the list.

Table 2 shows the top three candidate tags by applying the SD algorithm to the library of congress
example in Figure 2. It ranks the candidate tags in ascending order by the standard deviation in

distance, with the smallest standard deviation first.

The algorithm for ranking the candidate tags using the SD heuristic is omitted here due to space

restriction. Readers who are interested in further detail may refer to our technical report [4].

Rank | Tag | Standard Deviation
1 hr 114
2 pre 117
3 a 122

Table 2: Standard Deviation for tags from the minimal subtree in Figure 2

5.2 Repeating Pattern Heuristic (RP)

The RP heuristic chooses the object separators by counting the number of occurrences of all pairs of
candidate tags that have no text in between. It computes the absolute value of the difference between
the count for a pair of tags and the count for each of the two paired tags alone and then ranks the
candidate tags in ascending order by this absolute value. The intuition behind this heuristic is that a
single tag may be used to mean many things, but a pattern of two or more tags is more likely to mean
just one thing. When there is no such pairs of tags in the chosen subtree, the RP heuristic produces an
empty list of candidate tags. It simply means that the RP heuristic has no answer about which of the

candidate tags is the object separator tag.

14



Tag Pair | Pair Count | Difference

table, tr 13 0

img, br 2 0
map, table 1 0
form, table 1 0

br, img 1 1

br, table 1 1

Table 3: Repeating tag ranking for minimal subtree from Figure 5

Consider the subtree HT'M L[1]. Body[2]. form[4] in Figure 5. Table 3 shows a ranked list of all tag pairs

in descending order by the pair counts and the difference between the pair count and the tag count.

5.3 Identifiable Path Separator Tag heuristic (IPS)

The IPS heuristic ranks the candidate tags of the chosen subtree according to the list of system-supplied
IPS tags. The IPS tags are those tags that are identified by the system as the most commonly used
object separator tags for different types of subtrees in Web documents. The idea behind this heuristic is
the following. First we observe that Web documents, generated either by hand or by authoring tools or
by server programs, often consist of multiple presentation layouts within a single page, each is defined
by some specific type of HTML tags. For example, a web page may contain a table marked by table
tag table, a list marked by the list tag ul or ol, and a paragraph marked by the tag p. Second, each such
a presentation layout tends to use regular structure. For example, a table tends to use the row tag tr
and the column tag td to define rows and columns of the table; and a list tends to use the list item tag
li to define the list structure. Therefore, for each presentation layout (i.e., a subtree type), there are a

few tags that are used consistently for separating objects within the subtree.

Based on these observations and the Web documents we have tested, we create a list of object separator
tags for each type of subtrees as shown in Table 4.The full list of object separators is composed of all

the identified tags for each type of subtree listed in Table 4, with duplicates removed.

Subtree Tag List
body table,p,hr,ul,li,blockquote,div,pre,b,a
table tr,b
form table,p,dl
td table,hr,dt li,p,tr,font
dl dt,dd
form table,p,dl
ol li
ul li
blockquote P

Table 4: A Table of Object Separator Tags

15



% of time used as

Tag object separator
tr 34

table 18
P
li
hr
dt

ul

—_
o

pre

font
dl
div
dd
blockquote
b

a

RN NN NN O O Co

Table 5: Object separator probability

The next step is to determine the rankings of these commonly used object separator tags. Table 5 lists
the distribution of all object separator tags we observed in our tests of 50 web sites with over 2000 web
pages. Based on the experimental results over the testing web sites, we produce the following ranking
of the full list of IPS tags. We refer to such an ordered list as I PS List:

{tr,table,p,li,hr,dt,ul,pre, font,dl,div,dd, blockquote,b,a,span,td,br,hf,h3,h2,h1,strong,em,i}.

For tags of the same rank, the order is arbitrary.

5.4 Sibling Tag Heuristic (SB)

The SB heuristic counts pairs of tags that are immediate siblings in the minimal subtree, and ranks
all pairs of tags in descending order by the number of occurrences of the pair. For those pairs of tags
that have equal occurrence, the ranking follows the order of their appearances in the Web document.
For example, in the fragment <p><a> ... </a><b> ... </b><c> ... </c></p>, the sibling pairs are
(a,b) and (b,c) and each occurs only once. Table 6 ranks sibling pairs from the Library of Congress tag
tree in Figure 1 and Canoe.com tag tree in Figure 5. The first tag of the highest ranked pair is chosen
as the object separator. In Figure 1 the (hr,pre) tag pair appears before the (pre,a), and thus it ranks
higher.

The sibling tag heuristic is motivated by the observation that given a minimal subtree, the object
separator tag is expected to appear as many times as there are objects. However, in some cases there
are other tags that occur more often than any object separator tag. In these web pages the highest count
tag may not be the correct object separator, especially when the highest count tag appears irregularly.

Instead, the SB heuristic looks at sibling tags for repetition of pairs of tags, such as the <hr><pre>
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Canoe.com Library of Congress
Rank pair count pair count
1 table,table 11 hr,pre 20
2 img,br 2 pre,a 20
3 brimg 1 a,hr 20
4 br,table 1 hi1, 1
5 table,map 1 1,hr 1
6 map,table 1 hr,a 1
7 table,form 1 a, br 1
8 br,form 1
9 form,p 1

Table 6: Tag ranking for SB heuristic on Figure 5 and 1

pattern in the Library of Congress search results in Figure 1 or the <table><table> pattern in the
canoe.com page in Figure 5. In both cases, patterns, which contain the object separator tag, should

appear much more frequently than any other patterns.

5.5 Partial Path Heuristic (PP)

The PP heuristic lists all paths from a candidate node to any other node, which is reachable from this
candidate node, in the chosen subtree, and counts the number of occurrences of each identical path.
The list of candidate tags is ranked in descending order first by the count of all the identified paths
and then the length of the paths. If two paths have an equal count, then the longer path will rank
higher than the shorter one because it indicates more structure. Interesting to note is that if there are
no paths with a length more than one, such as in Figure 1, this heuristic reduces to simply choosing
the tag with the highest count. The main idea behind this heuristic is motivated by the observation
that the multiple instances of the same object type often have the same tag structure. Table 7 lists all
of the partial paths for the example web document in Figure 5. The PP rankings for this example web
page and the Library of Congress page in Figure 1 are given in Table 8.

Path count Path count
table.tr.td 26 table.tr.td.table.tr 12
table.tr.td.table.tr.td.font.b 24 table.tr.td.table 12
table.tr.td.table.tr.td.font.br 24 table.tr.td.img 12
table.tr.td.table.tr.td. 24 table.tr.td.br 3
table.tr 13 table.tr.td.a 3
table 13 form.table.tr.td.input 2
table.tr.td.table.tr.td.font.b.a 12 form.table.tr.td 2
table.tr.td.table.tr.td.font 12 img 2
table.tr.td.table.tr.td.img 12 br 2

Table 7: Partial paths and their count from the minimal subtree in Figure 5
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Canoe.com Library of Congress
Rank | tag | count | tag count
1 table 26 hr 21
2 form 2 a 21
3 img 2 pre 20
4 br 2 form 8

Table 8: Tag ranking from partial path rankings for Figure 5 and Figure 1

6 Determining the Correct Object Separator Tag:
The Combined Algorithm

6.1 Performance Measures of Individual Heuristics

We have discussed each individual heuristic and its algorithm to produce a ranked list of candidate tags.
Each of the five individual algorithms works independently towards the same goal — finding the right
object separator from the set of candidate tags. As a result, each heuristic chooses the highest ranked
tag as the object “correct” separator. However, as we observed from the discussions in the previous
sections, these five heuristics may not always agree on their highest ranked choice. To understand the
performance of these individual heuristics on different types of web pages, we conducted a series of
experiments over 500 web pages from 15 different web sites (see Table 9). An empirical probability
distribution for the success rate of each individual heuristic is listed in Table 10. For each heuristic, we
first calculated the number of times the heuristic chose a correct object separator tag at a particular
rank. Then for each web site, we calculated the success rate of the given heuristic by normalizing the
number of times the correct separator tag is chosen by the number of pages tested over a particular
web site. The success rate for each heuristic over the 15 web sites (shown in Table 10) was calculated

by averaging the normalized numbers from each web site.

6.2 The Combined Algorithm and Its Performance

An obvious way to improve the accuracy of finding a correct object separator in a web document is to
consider the best way of combining these independent heuristics. A well-known approach for combining
evidences from two or more independent observations is to use the basic laws of probability [11]: Let
P(A) be the probability associated with the result of applying heuristic A over a web document, and
P(B) be the probability associated with the result of applying heuristic B over the same web document.
The formula P(AUB) = P(A)+ P(B) — P(AN B) will produce the compound probability P(AU B) for
locating a correct object separator tagin this web document. For example, if the probability factors that
a tag tr is an object separator in a web document are 78%, 63%, and 85%, then the compound probability
for tag tr is 89% (78% 4 63% + 85% — T8% X 63% — 78% X 85% — 63% X 85% + 78% x 63% x 85% = 89%).
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Website Date
agents.umbc.edu July 2000
www.alphabetstreet.infront.co.uk March 2000
www.alphaworks.ibm.com/ March 2000
WWW.amazon.com December 1999
WWW.aw.com December 1999
www.bookpool.com March 2000
cbc.ca/consumers/ March 2000
www.chapters.com March 2000
www.google.com March 2000
www.hotbot.com March 2000
www.ibm.com /developer/java March 2000
www.kingbooks.com March 2000
www.loc.gov March 2000
www.rubylane.com March 2000
www.signpost.org March 2000

Table 9: Test Web Site List

Heuristic | Rank 1 2 3 4 5
SD 0.78 0.18 | 0.10 | 0.00 | 0.00
RP 0.73 0.13 | 0.00 | 0.00 | 0.00
IPS 0.40 0.46 | 0.13 | 0.07 | 0.00
PP 0.85 0.06 | 0.02 | 0.00 | 0.00
SB 0.63 0.17 | 0.12 | 0.06 | 0.03

Table 10: Probability rankings for object separator heuristics

To combine the five individual heuristics, there are 26 possible combinations (3_7_, C'(5,i) — 6 = 26) in
addition to the trivial case of none and the five individual heuristics. We take two steps to determine
which of the combinations produces the best overall result: First, for each combination, we computed
the compound probability for each candidate tag in every web document from our test set, based on
the probability distribution of each heuristic. Then we determine the success rate for each of the 26
combinations. Given a combination C; (¢ = 1,...,26), let n be the number of Web documents in our
experiments and D; (j = 1,...,n) denote the jth document being tested. For each document D;, if
there are M tags that have the high compound probability and only H of the M tags are correct object
separator tags, then the success rate of the combination C; for D;, denoted by success(C;, D(j))7 is
H/M. Thus, the success rate for the combination C; over all the experimental web documents can be
calculated by the formula (377, success(C;, Dj))/n. Table 11 lists the results of all combinations. To
conveniently represent a combination, each heuristic is abbreviated by a one letter acronym: HC by H,
SD by S, RP by R, IPS by I, PP by P, and SB by B. Thus, RSIPB stands for the combination of
the RP, SD, IPS, PP, and SB heuristics. Based on the set of testing web documents, the combination
of all five heuristics performs the best. Our algorithm for object separator tag extraction is developed

based on this observation. Due to the space restriction, readers who are interested in algorithmic details
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may refer to our technical report [4].

Combo | Success | Combo | Success | Combo | Success
IB 0.61 RB 0.73 RI 0.75
RS 0.78 SI 0.78 SB 0.78
RIB 0.80 RSB 0.84 SIB 0.84

RPB 0.85 RP 0.85 SP 0.85
IPB 0.85 1P 0.85 PB 0.85
RSI 0.86 RIPB 0.86 RIP 0.86
RSP 0.88 SIPB 0.89 SIP 0.89
SPB 0.89 RSIP 0.92 RSIB 0.92
RSPB 0.92 RSIPB 0.98

Table 11: Success rates for heuristic combinations on test data

In this section we report our experiment setup and the experimental results for validation of our ap-
proach. We also report the experimental results conducted for a comparison of our approach with the
BYU’s approach [7].

6.3 Experimental Setup

To run our experiments, we downloaded and cached web pages from 50 different Web sites.To automati-
cally retrieve the pages we first generated a random list of 100 words from the standard Unix dictionary.
Then we fed each word into a search form at each of the 50 web sites. After retrieving the pages we
discarded those pages which returned no results. For the static web pages which do not have a search
interface, such as agents.umbc.edu, a manual approach is used to load the pages to the local storage.
All experiments were carried out on the local version of the pages so as not to overload web sites and

to be able to obtain consistent results over time.

For each web site, example pages were manually examined to determine the path of the minimal subtree
as well as all possible separator tags. The results of the algorithms were compared with the actual

separator tags; the rank that the algorithms choose for a particular separator is recorded for each web
page.

The success rate of an algorithm is calculated in two steps. First, for each web site we calculate the
percentage of the downloaded pages in which the highest ranked tag of the algorithm is the correct
separator tag. These percentages are then averaged over the collection of web sites to determine the

success rate for individual heuristics and their combinations.

6.4 Validation Tests

We have discussed the combined algorithm for object extraction and our experimental approach to

determining the best combination in Section 6. To further validate the effectiveness and quality of

20



the Omini approach to object extraction, we ran the algorithms over 1,500 web pages from 25 web
sites listed in Table 12. These 25 web sites cover a broad range of application domains and a good
variety of web documents. For each of the 1,500 documents, we applied the five heuristics and the
combination of the five RSIPB. Table 13 lists the experimental results. Even though four out of five
individual heuristics did not reach a success rate higher than 90%, the combination of the five attained
94% success rate. The experimental results indicate that, while the heuristics are not extremely stable,

it is beneficial to combine them.

Website Date
WWW.amazon.com March 2000
www.amazon.com (ZShops) March 2000
www.bn.com March 2000
www.bookbuyer.com March 2000
www.borders.com March 2000
WWW.canoe.com March 2000
www.codysbooks.com March 2000
www.ebay.com March 2000
www.etoys.com March 2000
www.excite.com March 2000
www.fatbrain.com March 2000
www.gameCenter.com March 2000
www.gamelan.com March 2000
www.goto.com March 2000
www.ibm.com March 2000
www.ibm.com/developer/xml | March 2000
www.msn.com/auctions March 2000
www.powells.com March 2000
www.quote.com March 2000
www.thestar.org March 2000
WWW.Vancouversun.com March 2000
www.vnunet.com March 2000
WWW.wine.com March 2000
www.yahoo.com March 2000
www.yahoo.com/auctions March 2000

Table 12: Experimental Web Site List

Heuristic | Rank 1 2 3 4 5
SD 0.77 0.15 | 0.06 | 0.05 | 0.00
RP 0.77 0.10 | 0.07 | 0.02 | 0.00
IPS 0.88 0.08 | 0.07 | 0.00 | 0.00
PP 0.93 0.05 | 0.00 | 0.00 | 0.00
SB 0.71 0.13 | 0.06 | 0.07 | 0.04

RSIPB 0.94 0.05 | 0.02 | 0.01 | 0.00

Table 13: Probability rankings for object separator heuristics on experimental data
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6.5 Recall and Precision

Success rate is not the only measure of quality for object separator identification algorithms. We also
use recall and precision to judge how well our algorithms perform. Recall is the percentage of positive
instances of the target concept (in our case the object separator tag) that are correctly identified.
Precision is the percentage of extractions made that are correct. Both of these numbers are defined
in terms of false positives (FP), false negatives (FN), and true positives (TP). Recall = TPI—]—% and
Precision = TPZ—%' A true positive is an instance where an object separator exists and it is correctly
identified by the algorithms. A false negative is an instance where the object separator exists but is not
found by the algorithms. A false positive is an instance where the object separator does not exist, but

a tag is mistakenly identified as an object separator.

Heuristic | Success | Precision | Recall
SD 0.78 1.00 0.78
RP 0.73 0.84 0.73
IPS 0.71 0.82 0.71
PP 0.85 0.92 0.85
SB 0.62 0.89 0.62
RSIPB 0.98 1.00 0.98

Table 14: Probability rankings for object separator heuristics on test data

Heuristic | Success | Precision | Recall
SD 0.77 1.00 0.77
RP 0.77 0.97 0.77
IPS 0.88 0.94 0.88
PP 0.93 1.00 0.93
SB 0.71 0.97 0.71
RSIPB 0.94 1.00 0.94

Table 15: Probability rankings for object separator heuristics on experimental data

A careful examination of the algorithms shows that not every page will have an object separator chosen.
For example, both RP and IPS reject tags that occur below a given threshold. If the only tags that

exist in the chosen subtree occur fewer times than the threshold, then neither heuristic will be able to

choose a tag.

6.6 Performance

We have collected performance data on how quickly the algorithms are able to extract data objects
from target web pages. We have measured the execution time of the algorithms over the fifteen test

web sites, as well as the twenty-five validation web sites. For each web page the algorithms were run
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ten times over the page. Tables 16 and 17 show the average of the resulting times.

We measured performance from two different methods of extracting objects. In the first method, we
used the algorithms described above to discover the minimal subtree and the object separator. Since
the structure of websites does not change often, it may be worthwhile to store rules that allow the
subtree and object separator to be immediately chosen, rather than discovering them every time data is
extracted from a page at the web site. In the second method, we used cached rules that were discovered

for each web-site to find the minimal subtree and object separator tag.

Web Site Read | Parse | Choose Object Combine | Construct
File Page | Subtree | Separator | Heuristics Objects Total

Test 8.54 95.85 32.77 64.85 0.31 0.08 203.38
Experimental | 13.21 | 130.96 46.21 58.08 0.25 0.21 248.96
Combined 11.57 | 118.62 41.49 60.46 0.27 0.16 242.59

Table 16: Execution time in milliseconds for object extraction from web sites

Web Site Read | Parse Choose Construct | Total
File Page | Subtree Objects

Test 9.38 92.54 7.77 3.15 112.31
Experimental | 12.84 | 121.72 6.76 3.76 144.68
Combined 11.66 | 111.74 7.11 3.55 133.61

Table 17: Execution time in milliseconds for object extraction with rules from various web sites

Tables 16 and 17 show that by remembering simple rules, the execution time can be nearly halved.
While the reading in and parsing the data still takes roughly similar amounts of time, the phases of
choosing the minimal subtree, choosing the object separator and constructing the objects is an order
of magnitude faster. When the rules are used, the time taken to extract the objects is essentially the

same as the time it takes to read and parse the web page.

6.7 Experimental Comparison with the BYU’s approach

The Omini object extraction approach was motivated by several research results reported in the litera-
ture [16, 9, 7]. Among these reported research results, the work done by Embley and his colleagues at
BYU [7] inspires us the most. For example, we adopt two of the five data extraction heuristics from [7],
namely the SD and RP heuristics, without any change. Our IPS heuristic is an evolution of their
identifiable tag (I'T) heuristic. I'T chooses tags based on a predefined list of common object separators.
We found this to be inflexible when a larger variety of web sites are considered. Therefore, instead of
using the same list of candidate separators for all kinds of web sites, we use different lists depending

on the type of the tag node at which the minimal subtree is anchored. This allows us, for example,
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to list the tag tr first for tables, li first for lists, table for body tags, and so on. Our IPS heuristic has
much higher extensibility and scalability with respect to the fast evolution of the Web. We did not
include the highest count (HC) heuristic, which ranks tags based the number of times they appear.
Through several experiments we found that the success rate for the HC heuristic is not as desirable as
one would expect. First, the HC this heuristic was not a part of any of the most successful heuristic
combinations; Second, those combinations that include the HC heuristics were often less successful in
choosing a correct object separator than the same combination without the HC heuristic. Finally, the
PP heuristic is extension of the HC heuristic that behaves exactly the same as HC on certain classes of
web sites (such as the Library of Congress page in Figure 1). We also rejected their proposed ontology
match heuristic. This heuristic relies on knowing about the domain of a web site and having a detailed
ontology for that domain. An example of such ontology is to use a specific word or phrase that is known
to appear only once in every object of interest. As reported in [7], developing the ontology for a domain
takes about 2 man-weeks of work. The goal of the Omini project is to develop a fully automated object
extraction system. We believe that a fully automated approach is the best way to develop a scalable
system as the Web grows, and especially as the number of domains and the specificity of each domain
increases. While the OM heuristic reportedly works well in [7, 6], the required human intervention

makes this heuristic unsuited to our approach.

For the sake of performance comparison, we have implemented all of the heuristics in [7] except for the
ontology based heuristic. We conducted a set of experiments over a wide variety of web pages. There
are some cases where the approach in [7] performs well. In those cases our heuristics perform at least
as well, if not better. However, there are some cases where the four heuristics in [7] perform poorly; for
example, on the sites listed in Table 18, their heuristics only achieved a success rate of only 59%. In

these cases our heuristics still perform very well, with a 93% success rate.

Website Date
www.bookpool.com | March 2000
www.ebay.com March 2000
www.goto.com March 2000
www.powells.com March 2000

www.signpost.org | March 2000

Table 18: Example Web Sites

For the web sites listed in Table 9, which we used for testing and training in Section 6, the BYU’s
approach [7] only works well for some web sites. As a result, their algorithms are less accurate than the
Omini approach over the same collection of the web documents. Table 20 lists the success rates for their
individual heuristics and the combinations of their heuristics over our test data. The heuristics HC,
IT, RP, SD are abbreviated H, T, R, and S respectively. In comparison, the combined heuristic in [7]

attained a success rate of 86% while the combined algorithm in Omini achieves 98% (recall Table 11).
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Embley Extended
Heuristic | Success | Heuristic | Success
RP 19 RP 19
SD 23 SD 23
1T 40 IPS 76
HC 40 SB 56

PP 78
HTRS 59 RSIPB 93

Table 19: Success rates for different heuristics and combinations on comparison web sites in Table 18

Heuristic Rank 1 2 3 4 5
HC 0.79 0.13 | 0.14 | 0.00 | 0.00
IT 0.46 0.33 | 0.20 | 0.06 | 0.00
RP 0.73 0.13 | 0.00 | 0.00 | 0.00
SD 0.78 0.18 | 0.10 | 0.00 | 0.00

Combination | Rank 1 2 3 4 5
HT 0.79 0.00 | 0.20 | 0.07 | 0.00
HR 0.79 0.20 | 0.07 | 0.00 | 0.00
HS 0.79 0.07 | 0.20 | 0.00 | 0.00
TR 0.85 0.01 | 0.20 | 0.00 | 0.00
TS 0.78 0.01 | 0.27 | 0.00 | 0.00
RS 0.78 0.15 | 0.13 | 0.00 | 0.00
HTR 0.86 0.00 | 0.20 | 0.00 | 0.00
HTS 0.84 0.01 | 0.09 | 0.11 | 0.00
HRS 0.86 0.00 | 0.20 | 0.00 | 0.00
TRS 0.84 0.08 | 0.13 | 0.00 | 0.00
HTRS 0.86 0.04 | 0.15 | 0.01 | 0.00

Table 20: Experimental Results for the heuristics and their combination proposed in [7]
7 Conclusion

We have presented Omini, a fully automated object extraction system for Web pages. Omini performs
object extraction in three phases. First, Omini parses and normalizes a web page into a tree structure.
Second, Omini employs a set of subtree extraction rules to extract the minimal subtree that contains all
the objects of interest. Third, the concrete object boundaries are identified and then objects themselves
are extracted from the subtree. The main contribution of the paper is the fully automated object

boundary identification algorithms described in Sections 5 and Section 6.

We tested and evaluated Omini in a series of experiments (Section 6.2) using more than 1,500 documents
from 25 Web sites (primarily electronic commerce sites). The experimental evaluation consists of three
parts. First, the result of Omini analysis is visually inspected for the identification of false negatives
(correct objects that were left out) and false positives (incorrect objects included in the result). Omini

results show an accumulated precision of 100% (only correct objects are returned) and an accumulated
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recall between 93% and 98% (very few actual objects left out). Second, we replicated BYU’s system [7]
without the ontology heuristic (the human-dependent component). Omini results compare favorably to
the BYU information extraction system. Finally, the Omini execution overhead is measured and the
typical web page processing takes about 0.2 seconds. Furthermore, if the subtree and object separator
discovery rules are cached, then the overhead is dominated by the fetching and parsing of web pages
(about 0.1 seconds).

Fully automated object extraction is an important and necessary component in the construction of
scalable and reliable next-generation information search and aggregation services on the Web. We
plan to demonstrate the usefulness of Omini by combining it with a wrapper generation system (e.g.,
the XWRAP Elite [20]) to automate the wrapper generation and evolution process. Other potential
future research directions include the automation of evaluation process and incorporation of feedback-
based refinement of object extraction, as well as the integration with query optimization and semantic

interoperability software systems.
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A Web Site List

The list of websites used in testing and verifying the object separator discovery algorithms presented in
this paper are in Tables 9 and 12. Cached pages from these websites are available from the authors for

validation and other development work.

B Full web site list

27



Website

Date

agents.umbc.edu

July 2000

www.alphabetstreet.infront.co.uk

March 2000

www.alphaworks.ibm.com/

March 2000

WWwWWwW.amazon.com

December 1999

WWWw.aw.com

December 1999

www.bookpool.com

March 2000

cbc.ca/consumers/

March 2000

www.chapters.com

March 2000

www.google.com

March 2000

www.hotbot.com

March 2000

www.ibm.com/developer/java

March 2000

www.kingbooks.com

March 2000

www.loc.gov

March 2000

www.rubylane.com

March 2000

www.signpost.org

March 2000

Table 21: Test Web Site List

Website

Date

WWWwW.alnazon.coin

March 2000

www.amazon.com (ZShops)

March 2000

www.bn.com

March 2000

www.bookbuyer.com

March 2000

www.borders.com

March 2000

Www.Canoe.com

March 2000

www.codysbooks.com

March 2000

www.ebay.com

March 2000

www.etoys.com

March 2000

www.excite.com

March 2000

www.fatbrain.com

March 2000

www.gameCenter.com

March 2000

www.gamelan.com

March 2000

www.goto.com

March 2000

www.lbm.com

March 2000

www.ibm.com/developer/xml

March 2000

www.msn.com/auctions

March 2000

www.powells.com

March 2000

www.quote.com

March 2000

www.thestar.org

March 2000

Www.vancouversun.coimn

March 2000

www.vnunet.com

March 2000

WWW.wine.com

March 2000

www.yahoo.com

March 2000

www.yahoo.com/auctions

March 2000

Table 22: Experimental Web Site List
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Website Date Page Count
agents.umbc.edu July 2000 1
www.alphabetstreet.infront.co.uk March 2000 30
www.alphaworks.ibm.com March 2000 30
WWW.amazon.com December 1999 929
WWW.amazon.com March 2000 73
www.amazon.com (ZShops) March 2000 76
www.amazon.com (ZBooks) March 2000 24
WWW.aw.com March 2000 9
www.bn.com March 2000 83
www.bookbuyer.com March 2000 82
www.bookpool.com March 2000 4
www.borders.com March 2000 88
WWW.canoe.com March 2000 100
www.canoe.com (web search) March 2000 100
cbc.ca/consumers/ March 2000 43
www.chapters.com March 2000 100
www.cnet.com (game search) March 2000 99
www.cnet.com (articles) March 2000 100
www.cnet.com (web search) March 2000 100
www.codysbooks.com March 2000 100
www.ebay.com March 2000 93
www.etoys.com March 2000 36
www.excite.com March 2000 100
www.fatbrain.com March 2000 71
www.gameCenter.com March 2000 6
www.gamelan.com March 2000 53
www.google.com March 2000 100
www.goto.com March 2000 100
www.hotbot.com March 2000 27
www.ibm.com March 2000 65
www.ibm.com/developer/xml March 2000 72
www.ibm.com/developer/java March 2000 34
www.redbooks.ibm.com March 2000 41
www.kingbooks.com March 2000 69
www.loc.gov March 2000 84
www.lycos.com March 2000 100
auctions.msn.com March 2000 1
www.powells.com March 2000 84
www.quote.com March 2000 1
www.rubylane.com March 2000 1
www.sfgate.com March 2000 35
www.signpost.org March 2000 55
www.thestar.org March 2000 1
WWW.Vancouversun.com March 2000 18
www.vnunet.com March 2000 81
WWW.wine.com March 2000 20
auctions.yahoo.com March 2000 1
www.yahoo.com March 2000 96

Table 23: All cached Web Sites
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