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SUMMARY 

 

The host response toward biomaterial component of tissue-engineered devices has been 

extensively investigated by exploring the potential inflammatory response of the host upon 

contact with biomaterials.  Due to a biomaterial adjuvant effect, questions are raised to 

understand a role of biomaterials, which has been shown to modulate the host response.  

Specifically, it has been shown that the adjuvanticity of biomaterials affects the maturation of 

dendritic cells (DCs), professional antigen presenting cells (APCs) central to controlling immune 

response (Bennewitz and Babensee, 2005; Yoshida and Babensee, 2004).  Dendritic cells have 

been also recognized as the key regulator of the balance between tolerance and immunity and as 

determinant for pathogenesis of the autoimmune disease such as rheumatoid arthritis (RA) 

(Waalen et al., 1986; Pettit and Thomas, 1999). 

The objective of this research was to understand the response of DCs to different 

biomaterials upon contact and identify biomaterials suitable for use in tissue engineering 

constructs for RA applications.  Upon maturation, DCs move to the secondary lymph organs to 

present the antigenic peptides to T cells so that the adaptive immune response is initiated 

(Banchereau and Steinman, 1998).  Thus, DC maturation is essential to T cell activation which 

might induce T cell tolerance or T cell immunity (Lanzavecchia and Sallusto, 2001).  Based on 

these facts, phenotype changes of DCs have been extensively investigated with their effects on T 

cell mediated immunity combined with directing immunogenicity (Schnurr et al., 2001; Hunter et 

al., 2007) or tolerogenicity (Gao et al., 1999; Mahnke et al., 2003; Banerjee et al., 2006) for 

immunotherapeutic applications. 

It was hypothesized that DCs respond with differential levels of maturation upon contact 



 

 xv

with different biomaterials and, further, these DCs treated with different biomaterials induce 

differential phenotype and polarization of autologous T cells upon co-culture of DCs and T cells, 

with elucidation of the differential integration effects of biomaterials in the RA knee joint of 

rabbits, wherein DCs and T cells are seriously involved in its pathophysiology.   

Following initial characterization of five different biomaterials including four natural 

biomaterials [alginate, hyaluronic acid (HA), chitosan, and agarose] and one synthetic 

biomaterials [Poly(lactic-co-glycolic acid) (PLGA, 75:25)], treatment of immature DCs (iDCs) 

with these different biomaterials was performed to observe the effects of inherently different 

features of biomaterials on human monocyte-derived DC maturation in vitro.  Differential levels 

of functional DC maturation were observed depending on the type of biomaterial in 2-

dimensional (2-D) films used to treat iDCs using the variety of immunobiological functional 

assessment which includes DC morphologies in cytospin, surface marker (MHC class II or co-

stimulatory molecules) expression, allostimulatory ability in a mixed lymphocyte reaction, and 

pro-inflammatory cytokine release.  Of the biomaterials tested, PLGA or chitosan films 

supported higher levels of DC maturation, as compared to iDCs.  Alginate films supported 

moderate levels of DC maturation.  Agarose films did not support DC maturation whereas HA 

films inhibited DC maturation.  As another measure of functional impact of different biomaterial 

films on DC phenotype changes, endocytic ability and CD44 expression of DCs were evaluated 

upon DC treatment with these different biomaterial films.  Only agarose film induced endocytic 

ability of DC in level similar to iDCs, as expected from the previous observation that agarose did 

not support DC maturation, while all other biomaterial films did in levels statistically less than 

iDCs.  Unexpectedly, HA film in cross-linked form induced endocytic ability and CD44 

expression in levels statistically less than iDCs, even though HA film inhibited DC maturation in 

the previous examinations and CD44 has been well known as a potent receptor expressed on DCs 
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to mediate DC cluster, migration, and maturation upon interaction with the hyaluronan 

components in the extracellular matrix (ECM).  To test effects of biomaterial grade such as 

research or clinical grade, we also examine the clinical grade biomaterials commercially available, 

compared to the research grade which is mainly studied in the present study.  As a result, DC 

responses to clinical grade biomaterial films were indistinguishable from their responses to the 

research grade biomaterial films. 

In addition to biomaterials in 2-D film form, biomaterial scaffolds in 3-dimensional (3-D) 

porous form have also been assessed for their effect on changes of DC phenotypes.  Extended 

from the previous result of opposite effects of their 2-D film form on phenotypical changes in DC 

maturation, PLGA or agarose 3-D scaffold has been used to treat DCs, and effects of DC 

treatment with these biomaterial scaffolds were assessed with phenotypical changes of DCs.  

Similarly to the results observed in the previous study using different 2-D biomaterial films, DC 

phenotypes were differentially modulated by PLGA or agarose scaffolds in porous 3-D form.  In 

the assessments of DC morphologies in confocal microscopy, surface marker (MHC class II or 

co-stimulatory molecules) expression, and allostimulatory ability in a mixed lymphocyte reaction, 

PLGA scaffold induced DC maturation in significantly higher levels of phenotypical changes of 

DCs, as compared to iDCs, while DCs treated with agarose scaffolds had similar phenotypes to 

iDCs.  For twelve different cytokines/chemokines measured in this study, it has been found that 

both of PLGA and agarose scaffold modulates chemokines, pro-, or anti-inflammatory cytokines 

in differential levels upon contact of DCs with biomaterial scaffolds; unexpectedly, agarose 

scaffold induced interleukin (IL)-15 (pro-inflammatory cytokine) and monocyte chemotactic 

peptide (MCP)-1 (chemokine), while PLGA scaffold induced interleukin (IL)-10 (anti-

inflammatory cytokine) in levels higher than the other biomaterial scaffold.  Especially, in case 

of IL-15, MCP-1, interleukin (IL)-1 receptor antagonist, and interleukin (IL)-16, PLGA scaffold 
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induced in levels significantly lower than negative control of iDCs.  Overall, PLGA scaffold 

trends to induce pro-inflammatory cytokines and chemokines, whereas agarose scaffold does to 

induce anti-inflammatory cytokines. 

Extended from the biomaterial effects on phenotypical changes of DC maturation, DCs 

treated with different biomaterial films were assessed for their functional impacts in regulating 

autologous T cell phenotype and polarization.  The effect of five different biomaterial films on 

directing the activation of CD8+ cytotoxic T cells or CD4+ helper T cells (also 

CD4+CD25+FoxP3+ cells) and the T helper type 1 (Th1) or T helper type 2 (Th2) polarizations 

was assessed upon in vitro interactions between DCs and autologous T cells.  When autologous 

T cells were co-cultured with DCs treated with biomaterial film/antigen (ovalbumin, OVA) 

combinations, different biomaterial films induced differential levels of T cell marker (CD4, CD8, 

CD25, CD69) expressions, as well as differential cytokine profiles [interferon (IFN)-γ, interleukin 

(IL)-12p70, interleukin (IL)-10, interleukin (IL)-4] in the polarization of T helper types.  

Dendritic cells treated with agarose films induced CD4+CD25+FoxP3+ (T regulatory cells) 

expression on autologous T cells at level similar to iDCs and interleukin (IL)-10 release at higher 

levels whereas PLGA film treatment induced release of IFN-γ at higher levels, as compared to 

DC treatment with other biomaterial films, in the DC-T co-culture system.  Interestingly, when 

DCs were treated with the different biomaterial films, profiles of released cytokines were 

influenced by the presence of antigen or autologous T cells. 

Based on these in vitro results, to further understand the influence of RA environment to 

different biomaterials and to identify biomaterial useful for tissue engineering in the RA situation, 

integration of inherently different biomaterials (PLGA and agarose) was assessed upon 

implantation of them into the knee joint of antigen-induced arthritis (AIA) rabbit.  Upon RA 

induction combined with biomaterial implantation or sham operation into the right knee joint, the 



 

 xviii

knee swelling size and total leukocyte concentration in the right knee remarkably increased, 

compared to the untreated left knees, and these increased levels in the right knee consistently 

went through the end point of Day 36.  However, total leukocyte concentrations in the peripheral 

blood or in the joint lavage of the left knees (untreated control) were observed in differential 

levels depending on the biomaterial implant, possibly due to the systemic circulation of the 

peripheral blood.  Furthermore, cartilage and bone healing progression was differentially 

observed in the osteochondral defect of the knee joint of RA-induced rabbit, depending on type of 

biomaterial scaffold implanted into the defect. 

Collectively, these results demonstrate the multifunctional impacts of inherently different 

biomaterials on in vitro immunomodulation of phenotype and polarization of DCs and autologous 

T cells.  Furthermore, taken together with these immunomodulatory impacts of biomaterials, in 

vivo effects of different biomaterial scaffolds on RA environment shown in this study can suggest 

the criteria of selection and design of biomaterials for orthopedic tissue engineering, which may 

ultimately be best integrated into the diseased cartilage and bone. 
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CHAPTER 1 

INTRODUCTION 

 

Rheumatoid arthritis (RA) is a chronic systemic autoimmune inflammatory disorder that 

predominantly affects the synovial tissue (ST) of joints, leading to cartilage and bone erosion and 

subsequent joint destruction (Pettit and Thomas, 1999; Bresnihan, 1999).  Damaged cartilage 

has a limited capacity for self-repair after cartilage failure of arthritis, and joint surface defects 

that exceed a critical size heal poorly and usually lead to osteoarthritis (O'Driscoll, 1998).  

Tissue engineering has been recognized as a promising alternative for cartilage reconstruction and 

regeneration, providing a relatively simple procedure and long-term drug-free remission.  

Rheumatoid arthritis is believed to be caused by a combination of genetic, environmental, and 

hormonal factors but the exact mechanism of the autoimmunity initiation is not yet clear.  

However, among various inflammatory and immune cells involved in RA, dendritic cells (DCs) 

have been proposed to play a central role in the initiation and perpetuation of RA by presentation 

of arthritogenic antigen to autoreactive T cells (Waalen et al., 1986; Pettit and Thomas, 1999; 

Santiago-Schwarz et al., 2001; Radstake et al., 2005).  Dendritic cells bridge the innate and 

adaptive immune response as a professional antigen presenting cell (APC) of the immune system.  

As such, upon maturation, DCs express high levels of major histocompatibility antigens and co-

stimulatory molecules, and interact with T cells for antigen presentation as shown in Figure 1-1.  

In this way, DCs stimulate T cells in the inflamed RA synovial tissue and are thought to be 

directly involved in the generation of destructive autoimmune responses (Thomas, 1998; Thomas 

et al., 1999).  Dendritic cells have also been proposed to be matured upon biomaterial contact 

which then functions as an adjuvant to boost an adaptive immune response (Babensee et al., 
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1998; Yoshida and Babensee, 2004; Babensee and Paranjpe, 2005; Matzelle and Babensee, 2004).  

Accordingly, biomaterials combined in the tissue-engineered constructs for RA is required to be 

tolerated by the associated intense inflammatory and immune environment.   

The objective of this research was to understand DC response towards different 

biomaterials and further correlate those responses with the integration of different 

biomaterials implanted into RA joints of rabbit.  In particular, DC maturation was assessed 

upon contact with inherently different biomaterials and the immunomodulation of these 

biomaterials was tested in biologically induced RA circumstance of rabbit model.  It was 

hypothesized that DCs respond with different levels of phenotypical changes in their 

maturation to different biomaterials used to treat immature DCs (iDCs), and the effects of 

biomaterials on its integration in RA environment is elucidated through biomaterial 

implantation into the RA knee joint of a rabbit.  Adjuvant effects of biomaterials in different 

chemistries or different physical forms have been extensively studied (Hunter, 2002; Newman et 

al., 1998b; Newman et al., 2002; Bennewitz and Babensee, 2005).  In addition, these adjuvant 

effects associated with phenotypical changes in DC maturation have been recently studied 

(Yoshida and Babensee, 2004; Little et al., 2004).  The exact mechanism behind DC maturation 

by biomaterials, however, is not fully elucidated.  Furthermore, from a tissue engineering view 

point, immunomodulatory effects of biomaterials was not well characterized using in vivo model 

of autoimmune disease wherein DCs are heavily involved.  Because control of DC phenotype is 

central to immunomodulation ability effect of biomaterials, as well as play the critical role in RA 

pathophysiology as described earlier, DC response towards biomaterials should be well 

understood and further controlled for the biomaterial selection in the cartilage tissue engineering 

of RA. 
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To address the above central hypothesis, three specific aims were pursued. 

 

Specific aim 1: Demonstrate that DC phenotype is differentially induced depending on the 

type of biomaterials used in orthopedic tissue engineering (in vitro study).  

The working hypothesis for this aim was that DC maturation is differentially affected 

depending on different biomaterials in 2-dimensional (2-D) film forms, which include Poly(lactic-

co-glycolic acid) (PLGA, 75:25), chitosan, hyaluronic acid (HA), alginate, and agarose, used to 

treat the DCs.  For this aim, iDCs were derived from peripheral human blood mononuclear cells 

in vitro, and treated with these biomaterial films, and resultant DC phenotype assessed by 

examining DC morphologies, surface marker expression, allostimulatory ability, transcription 

factor activation, cytokine release, and endocytic ability. Biomaterial film surfaces were 

characterized using X-ray photoelectron spectroscopy (XPS).  To test effects of biomaterial 

grade such as research or clinical grade, the clinical grade 2-D biomaterial films were also 

prepared, when the polymer is commercially available, and examined as far as their effect on DC 

maturation, as compared to the research grade.  In addition, to understand DC response towards 

expanded surface area (larger surface area to volume ratio than 2-D film) in porous scaffold, 

biomaterial scaffolds in 3-dimensional (3-D) porous form have been examined for their effect on 

resultant DC phenotypes.  Such porous scaffold are also routinely used in tissue engineering.  

Based on the opposite effects of their 2-D film form on phenotypical changes in DC maturation, 

PLGA or agarose 3-D scaffold were used to treat DCs, and effects of DC treatment with these 

biomaterial scaffolds were assessed as far as resultant phenotypical changes of DCs. 
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Specific aim 2: Demonstrate that phenotype and polarization of autologous T cells are 

differentially induced by DCs treated with different type of biomaterials (in vitro study). 

The working hypothesis for this aim was that different biomaterials (2-D) direct 

phenotype and polarization of autologous T cells upon co-culture of these T cells with DCs pre-

treated with biomaterials.  To extend biomaterial effects on DCs to an adaptive immunity, 

autologous T cells were obtained from the identical donor from whom DCs were obtained, and 

then, co-cultured with DCs treated with five different biomaterial films used in the Specific aim 1.  

The effect of different biomaterial films on directing the activation of CD8+ cytotoxic T cells or 

CD4+ helper T cells (also CD4+CD25+FoxP3+ cells) and the T helper type 1 (Th1) or T helper 

type 2 (Th2) polarization was assessed upon in vitro interactions between DCs and autologous T 

cells, using the measurement of T cell surface marker expressions and cytokine release into 

supernatant, as well as intracellular marker expression, to provide information of 

immunomodulatory effects of biomaterials on immunogenicity or tolerogenicity in T cell-

mediated immunity.   

 

 

 

 

 

 

 

 

 



 

 5

 

Specific aim 3: Correlate DC maturation upon treatment with different biomaterials with 

integration of biomaterials implanted into the RA joint of rabbit (in vivo study). 

To understand the influence of RA environment to different biomaterials and to identify 

biomaterial useful for tissue engineering in the RA situation, integration of inherently different 

biomaterials (PLGA and agarose) based on their effects on DC phenotype, was assessed upon 

their implantation into the knee joint of rabbit with induced RA.  The working hypothesis was 

that a selected biomaterial that does not support in vitro DC maturation will demonstrate 

effective integration and acceptance in the rabbit RA joint.  After rabbits were immunized by 

subcutaneous injection of antigen (OVA)/adjuvant (CFA) (Day 0) and boosted by subcutaneous 

injection of antigen (OVA)/adjuvant (IFA) (Day 14), RA was induced in the right knee by intra-

articular injection of angiten (OVA) (Day 21) and then, biomaterial scaffolds were implanted into 

this right knee joint with induced RA (Day 22).  The left knee remained untreated as the within-

animal control.  The host response to implanted biomaterial scaffolds in the rabbit RA joint was 

assessed by examining joint swelling, total leukocyte concentration in the joint lavage or the 

peripheral blood, differential leukocyte profiles in the joint lavage, measurement of systemic and 

joint lavage TNF-α levels, histology of the knee joints, and micro-CT analysis for measurement 

of cartilage destruction. 

Collectively, studies herein are a step forward understanding the effect of inherently 

different features of biomaterials on DC phenotype to suggest new selection and design criteria 

for biomaterials to be used in the combination products such as tissue engineering or vaccine 

delivery where immune responses are of consequence.  Results presented here provide novel 

approaches for identification of multifunctional impacts of biomaterials on immunomodulating 

DC response and further T cell-mediated adaptive immunity.  Especially, because resultant 
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impacts of biomaterials are central to the modulation of the host response to biomaterials, these 

studies imply that biomaterials possibly can be utilized in immunotherapy application. 

 

 
Figure 1-1: Schematic representation of dendritic cell phenotype changes and T cell-
mediated adaptive immunity. 
It is hypothesized that DC phenotype changes in differential levels upon DC treatment with 
different biomaterials and these biomaterial treatments of DCs further affect T cell phenotype and 
polarization upon co-culture of DCs and T cells. 
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CHAPTER 2 

RESEARCH SIGNIFICANCE 

 

Rheumatoid arthritis is a chronic autoimmune disease and it is estimated that more than 

1% of the United States population suffers from this disease.  Despite of continuous efforts 

through collaborations of medicine and engineering, the etiology of arthritis still remains unclear 

(Robbins et al., 2003; Wang and Yu, 2004; Tetik et al., 2004; Tsokos and Tsokos, 2003).  Tissue 

engineering has emerged as a promising method for cartilage reconstruction and regeneration, 

providing a minimally invasive, and long-term drug-free remissive therapeutic procedure for 

osteoarthritis patients (Galois et al., 2005; Chang et al., 2006; Jorgensen et al., 2004).  Its 

potential in restoring tissue in rheumatoid arthritic patients remains to be defined.  However the 

host response against the biomaterial component or device is still a major concern on the 

achievement of tissue restoration (Babensee et al., 1998).  Dendritic cells have been proposed to 

play a central role not only in the initiation and perpetuation of RA (Waalen et al., 1986; Pettit 

and Thomas, 1999; Santiago-Schwarz et al., 2001; Radstake et al., 2005), but also in host immune 

response against biomaterials, associated with the adjuvant effects (Babensee et al., 1998).  In 

particular, APCs such as DCs and macrophages are thought to play the central role of the adjuvant 

effect, which mediate any of the following mechanisms: increasing cellular infiltration, 

inflammation, and trafficking of APCs to the injection site; upregulating co-stimulatory molecules 

or MHC expression to induce the activation of APCs; enhancing antigen presentation; or inducing 

cytokine release for indirect effects (Cox and Coulter, 1997; Singh and O'Hagan, 1999).  In 

addtion, the adjuvant effects of the polymeric biomaterials have been extensively investigated 

(Singh and O'Hagan, 1999; Hunter, 2002) and further, these effects of polymeric biomaterials 

suggested as new idea for immunomodulating combination products in tissue engineering or 
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vaccine delivery (Ertl et al., 1996; Seferian and Martinez, 2000; Jaganathan et al., 2004; Matzelle 

and Babensee, 2004; Yoshida and Babensee, 2004; Bennewitz and Babensee, 2005; Babensee and 

Paranjpe, 2005).  However, the mechanism behind the immunomodulatory effects of 

biomaterials on DCs has not been fully elucidated.  The major goal of this research is to identify 

multifunctional impacts of biomaterials on immunomodulating DC response and further T cell-

mediated adaptive immunity to ultimately correlate these in vitro responses of DCs and/or T cells 

with the biomaterial effect or integration in induced RA animal models.   

The significance of this research is three-fold.  First through this work, it fully 

characterizes the immunological functions imparted to DC through their treatment with 

biomaterial films or scaffolds, the later which is particularly relevant to tissue engineering.  

Secondly, it demonstrates the novel concept of non-pharmacological immunomodulatory 

potential of biomaterials to polarize T-cell mediated adaptive immunity towards immunogenicity 

or tolerance, as desired for a particular application.  The proposed research is further significant 

as it aims to inform biomaterial design and selection criteria for biomaterials to be used as a 

platform for tissue engineering approaches for amelioration of orthopedic tissue due to RA by 

assessing the host response and integration of biomaterial scaffolds implanted into rabbit joints 

with induced RA.  Hence, this research demonstrates the application of an innovative 

combination of biomaterial implantation into an osteochondral defect in rabbits with induced RA 

as a clinically relevant model in which to test biomaterials for orthopedic applications in a 

diseased joint to more closely approximate the actual application. 
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CHAPTER 3 

LITERATURE REVIEW 

 
Immunology of RA and role of dendritic cells 

Pathophysiology of RA 

Rheumatoid arthritis is generally believed to be caused by a combination of genetic, 

environmental, and hormonal factors but the exact mechanism of the autoimmunity initiation is 

not yet clearly understood due to its complicated etiology.  Even though tremendous efforts have 

been extensively made on the immunological mechanisms, which show a massive influx of T 

cells, B cells, and fibroblast-like synoviocytes, macrophages, and dendritic cells (DCs) in the 

synovial tissue, the pathophysiological pathways of RA remain unclear, similar to most other 

autoimmune diseases (Bresnihan and Tak, 1999; Miossec, 1995; Weyand and Goronzy, 1997).   

As featured on the symptomatic studies, RA is characterized by marked swelling and 

inflammation. Immune cell infiltration into both the synovial fluid (SF) and synovial tissue (ST) 

accompanies this inflammation, associated with the proliferation of resident ST cells and 

angiogenesis.  Formation of the destructive tissue front or pannus occurs as the ST extends over 

cartilage and bone.  The majority of the cartilage destruction and bone erosion occurs at the 

junction with pannus (Bresnihan, 1999; Pettit and Thomas, 1999).  For some unknown reasons, 

the arthritogenic auto-antigens are presented to CD4+ T cells, inducing the auto-reactive CD4+ T 

cells and auto-reactive B cells which produce auto-antibodies against self (Sheriff et al., 2004).  

These activated B cells have been proved to play a critical role in disease persistence.  In 

addition to these autoimmune processes, macrophages and neutrophils infiltrating into the ST, 

accompanied by complicated interactions with lymphocytes, resident osteoclast, and synoviocytes, 

initiate the cartilage and bone destruction followed by pannus formation and angiogenesis (Pay et 
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al., 2006; Malemud, 2007; Sweeney and Firestein, 2004).  In the course of the disease, 

associated with the pannus formation and destruction processes, the massive influx of various 

cells above infiltrates into the ST and accumulates at the junction of the pannus and cartilage. 

These cells secrete, as the primary source, the pivotal pro-inflammatory cytokines of TNF-α, IL-

1β, IL-1, IL-6, IL-17, IL-18, and IL-15.  Other than these cytokines, expression of monokine 

induced by interferon-γ (Mig), growth-related oncogene-α (GRO-α) chemokines, and other 

angiogenic molecules has been also detected in the synovial resident cells and in inflammatory 

cells to a level proportional to extent of leukocyte infiltration in RA afflicted joints (Cinelli et al., 

2006; Jeong et al., 2004).  The pro-inflammatory cytokines subsequently activate signal 

transduction pathways and transcription factors, which, in turn, control the transcription of 

cytokines.  In addition, TNF-α, IL-1, and IL-6 are also known to induce an osteoclast 

development and function, cartilage destruction, and synovial hyperplasia. As such, the pro-

inflammatory cytokines play a critical role in the perpetuation of RA (Radstake et al., 2005; 

Zwerina et al., 2005).  Toll-like receptor (TLR) -2 and TLR-4 are also involved in the induction 

of vascular endothelial growth factor (VEGF), IL-6, IL-8, TNF-α, and macrophage migration 

inhibitory factor (MIF), so that they play a critical role in the amplification or perpetuation of the 

inflammatory loop of human RA (Popa et al., 2006; Sacre et al., 2007; Cho et al., 2007).  

 

Clinical treatments of RA 

For these reasons, unless the symptoms sufficiently is to indicate surgical treatment such 

as total knee replacement, conventional treatment is anti-cytokine therapies to block cytokines 

released from the autoimmune environment to relieve the symptoms of RA.  For instance, 

Enbrel (a generic drug name of Etanercept) is one of the most popular drugs for the RA patient, 

which is a recombinant soluble form of human TNF-α receptor fusion protein.  Once the Enbrel 



 

 11

is injected subcutaneously into the RA patient, it would inhibit the signal pathway between TNF-

α and TNF-α receptor by blocking TNF-α binding.  Another representative drug is Anakinra 

which is a recombinant non-glycosylated form of human IL-1 receptor antagonist.  Anakinra 

injected into the patient would block IL-1 receptor of the patient, inducing the inhibition of signal 

pathway between IL-1 and IL-1 receptor.  It is still, however, unclear why blocking a certain 

cytokine is efficacious for some patients whereas not for others who need a multiple treatment 

(e.g., TNF and IL-1 blockade), even though they have a similar level of RA symptoms.  

Moreover, this anticytokine therapy should be frequently (e.g., twice weekly) injected into the 

patients for long time duration and is limited to those with minor RA symptoms.  Even though 

most parts of the pathophysiology system of RA are unclear, it has been clearly identified that the 

genetic predisposition, which is associated with the MHC class II molecules, is significantly 

related with RA patients of certain ethnic groups (Winchester, 1981).  Together with this, the 

activation of auto-reactive T and B cells described above indicates that the adaptive immune 

system is critically involved in the pathophysiology of RA.  Recently, although questions still 

remain to be answered, suppressive mechanisms of T regulatory cells and/or cytokine, IL-10, in 

the disease course of human RA patients has been partially explained, thereby suggesting 

potential benefit of therapies based on adaptive immunity in RA patients (Jonuleit et al., 2000; 

Appel et al., 2004; Valencia et al., 2006). 

 

Dendritic cells in RA pathophysiology 

It has been proposed that DCs play a central role in the initiation and perpetuation of RA 

by presentation of arthritogenic antigen to auto-reactive T cells.  Briefly, differentiated DCs have 

been reported to be enriched in the ST of active RA joints and these differentiated DCs are 

generally found interdigitating in perivascular lymphoid aggregates, likely being derived from 
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peripheral blood precursors.  Thus DCs are optimally located for the presentation of 

arthritogenic antigen to T cells and the regulation of B cells in RA ST.  For instance, numerous 

chemokines, such as macrophage inflammatory protein (MIP)-1α, monocyte chemotactic protein 

(MCP)-1 and regulated on activation normal T cell expressed and secreted (RANTES), have been 

also observed as strong evidence for the DCs recruited, together with participation of other 

leukocytes in this inflammatory site, into RA ST (Thomas, 1998; Jeong et al., 2004; Sallusto and 

Lanzavecchia, 1999; Thomas et al., 1999).  Recently, DCs have been demonstrated with their 

effects on controlling lymphocyte (T and B cell) activation associated with pro-inflammatory 

cytokine releases in RA pathophysiology using RA patients (Anolik et al., 2008) or in vivo RA 

murine model (Jung et al., 2007). 

 

Rheumatoid Arthritis (RA) and tissue engineering 

General facts of rheumatoid arthritis 

Arthritis is a general term which describes inflammation in joints.  Rheumatoid arthritis 

is a chronic systemic autoimmune inflammatory disorder that predominantly affects the synovial 

tissue (ST) of joints, leading to cartilage and bone erosion and subsequent joint destruction.  

Rheumatoid arthritis occurs in joints on both sides of the body (such as both of hands, wrists or 

knees).  This symmetry of symptoms helps distinguish RA from other types of arthritis.  In 

addition to affecting the joints, RA may occasionally affect the skin, eyes, lungs, heart, blood, 

nerves, or kidneys too (Cieza and Stucki, 2005). It has been reported that more than 1% of the 

United States population suffer from RA and it is three times more common in female than male.  

It usually occurs in people between the ages of 20 to 50 (Cieza and Stucki, 2005; Bansback et al., 

2005; Lebwohl et al., 2005).  Since the exact pathophysiological pathways unfortunately remain 

unclear in autoimmune disease such as rheumatoid arthritis (RA), most therapeutic procedures are 



 

 13

currently focused on temporary remission of symptoms in the absence of controlling the origin of 

problem and preventing recurrence (Tetik et al., 2004; Robbins et al., 2003; Wang and Yu, 2004; 

Tsokos and Tsokos, 2003).  Damaged cartilage has a limited capacity for self-repair after 

cartilage failure of arthritis and joint surface defects that exceed a critical size heal poorly and 

usually lead to osteoarthritis.  Treating chondral lesions or cartilage defects is still a challenge 

for orthopedic surgeons and sports medicine physicians (Tetik et al., 2004). 

 

Conventional therapeutic methods employed for RA 

Pharmacologic therapies and surgical treatments are currently employed to treat arthritis 

patients.  Conventional pharmacologic therapies for the treatment include non-steroidal anti-

inflammatory drugs, immunosuppressive agents, corticosteroids, and disease-modifying drugs 

(Robbins et al., 2003).  These therapies often reduce joint inflammation and provide relief from 

pain, but are ineffective in preventing the destruction of bone and cartilage or restoring joint 

function.  Moreover, anti-inflammatory drugs and potent immunosuppressive molecules can 

lead to undesirable side effects (Arend and Dayer, 1995; Brennan et al., 1989; Elliott et al., 1993; 

Dayer and Fenner, 1992; Wooley et al., 1993).  Whilst pharmacologic methods only treat the 

symptoms, the underlying causes with the retention of inflamed tissue remain and clinical 

methods of surgical treatments can be utilized to reduce a risk of side effects or recurrences of 

disease for long-term solutions including modifying or extracting inflamed area out of patient’s 

knee.  These surgical treatments being currently applied or considered include representative 

categories such as total knee replacement, unicompartmental knee replacement, 

viscosupplementation, autologous chondrocyte implantation, chondral shaving with debridement, 

abrasion arthroplasty, subchondral drilling, microfracturing of the subchondral plate, 

transplantation of periosteal, and perichondral or osteochondral autografts (Wang and Yu, 2004; 
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Chen et al., 1999; Smith et al., 2005).  In most cases, surgical methods temporarily relieve 

symptoms and induce an initial hyaline-like repair, however the repair tissue eventually 

degenerates to fibrocartilage and the symptoms return.  None of the currently available methods 

can predictably restore a durable articular surface for long term.  Moreover some cases such as 

knee replacements are still associated with harshly complicated procedures, high cost, and limited 

movements of patients (Buckwalter and Mankin, 1998; Hunziker, 2002). 

 

Tissue engineering as a new therapeutic method 

Tissue engineering has been recognized as a promising alternative for cartilage 

reconstruction and regeneration, providing a relatively simple procedure and long-term drug-free 

remission.  In conjunction with great possibilities of minimally invasive and less complicated 

procedures for patients, cartilage tissue engineering has been motivated by the need of replace 

lost or damaged tissue with an already structurally and mechanically functional implant that can 

be created in vitro using chondrocytes or chondroprogenitor cells in combination with 

biomaterials (Suh and Matthew, 2000; Cancedda et al., 2003; Zhang et al., 2005; Kuo et al., 2006).  

Including the cartilage tissue engineering, the tissue engineering in regenerative medicine has 

been generally considered as the newest research field for investigating repair and regeneration of 

organs and tissues using the natural signaling pathways and components of the organism such as 

stem cells and growth factors.  Cells harvested from donor tissues can be expanded in culture, 

associated with synthetic or natural biomaterials specifically designed for each tissue.  

According to this, any tissue can be virtually repaired under properly designed conditions.  For 

application of tissue engineering constructs in humans, skin and epidermis have been widely dealt 

with for the therapeutic interest but interest is shifting to other pathological situations such as the 

reconstruction and repair of bone and cartilage (Potten and Booth, 2002; Cancedda et al., 2003).  
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Studies on development of more efficient methods in cartilage tissue engineering have been 

recently extended to use of embryonic stem chondrogenic differentiation (Anderson et al., 2004), 

injectable hydrogel based tissue engineered constructs (Tan et al., 2009), gene therapy for 

delivery of various biofactors (Venkatesan et al., 2004), signaling molecules (Indrawattana et al., 

2004), and dynamic bioreactors (Concaro et al., 2009). 

 
Dendritic cells 

Immature dendritic cells and antigen capture 

Dendritic cells are generally found in most tissues, solid organs, and blood as immature 

sentinel cells that are continually sampling the environment for self and non-self antigens.  Once 

they detect and capture the antigens, they would go under processing of internalization such as 

endocytosis and then, of antigen degradation, followed by antigen presentation to specific 

lymphocytes for further immune responses.  Thus, DCs are usually called professional antigen 

presenting cells (APCs) which also include macrophages and B cells, bridging between innate 

and adaptive immune responses (Sallusto et al., 1995; Banchereau and Steinman, 1998).  For 

example, extracellular antigens captured by APCs are processed to be presented by major 

histocompatibility complex (MHC) of APC to, through T cell receptors (TCRs), the helper T cell 

(Th) and then, the activated Th secreted cytokines that regulate B cell activation, initiating 

humoral responses(Banchereau and Steinman, 1998).  Dendritic cells recognize pathogens 

through conserved structures, uniquely characteristic of pathogens, through their cognate binding 

receptors resulting in their maturation such that they become efficient antigen presenting cells 

(Janeway and Medzhitov, 1998).  To detect pathogens, DCs use a variety of receptors, including 

pattern recognition receptors (PRRs) such as the Toll-like receptor (TLR) family, which recognize 

pathogen-associated molecular patterns (PAMPs) such as bacterial Lipopolysaccharide (LPS), 
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non-methylated oligonucleotides (CpG), and viral double-stranded RNA (Medzhitov, 2000).  In 

addition, PRRs expressed on DCs also include C-type lectin receptors (CLRs) such as mannose 

receptor (Sallusto et al., 1995), DEC205 (Kato et al., 1998), and dendritic cell-specific 

intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) that bind to carbohydrate-

conjugated molecules (Geijtenbeek et al., 2000), and scavenger receptors that are involved in 

internalization of polyanionic ligand (Peiser et al., 2002). 

 

Maturation of DCs and migration to secondary lymphoid organs 

Immature DCs mature upon encountering pathogens and/or numerous endogenous 

stimuli including TNF-α, IL-1, CD40L, and heat shock protein (HSP), referred to as ‘danger 

signals’(Matzinger, 1994).  Dendritic cells upon maturation migrate via the afferent lymphatics 

to draining lymph node (LN) to present the previously internalized and processed antigens in 

context of MHC class molecules for T cells and B cells for their activation (Matzinger, 1994; 

Banchereau and Steinman, 1998).  During this maturation process, DCs show differentiated 

phenotypes with increased up-regulation of peptide-loaded MHC class I and II molecules for 

efficient antigen presentation and higher levels of co-stimulatory molecules of CD40, CD80 (B7-

1), CD86 (B7-2) to facilitate communications with T cells (Sallusto et al., 1995; Banchereau and 

Steinman, 1998) as well as DC marker of CD83 (Tsuji et al., 2000), and morphologically showing 

dendritic processes.  These dramatic conformational changes are accompanied by an increased 

secretion of pro-inflammatory mediators such as cytokines (TNF-α, IL-6, and IL-12) and 

chemokines and expression of chemokine receptors such as CCR-7 (Bell et al., 1999; Mellman 

and Steinman, 2001).  Translocation (activation) of transcription factor family of NFκB from the 

cytosol to the nucleus is also a representative intracellular change essential for DC maturation 

(Rescigno et al., 1998; Yoshimura et al., 2001). 
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Innate and adaptive immune response 

The innate immunity is the front line of the host defense system against various 

pathogens through a non-specific and rapid response achieved mainly by phagocytes or 

complement activation.  Adaptive immunity is slowly generated following the innate immune 

response based on specific and memorized response against antigens, owing to the wide 

repertoire of the clonal T cell receptors (Medzhitov and Janeway, 1997).  Upon an invasion of 

pathogens, tissue-resident phagocytic cells (e.g., macrophages) or heat-labile plasma proteins 

(e.g., complement) recognize pathogens and lead to an inflammatory response resulting in 

proteolytic enzyme release, opsonization, and phagocytosis of those pathogens. During this innate 

immune response, the pathogens are recognized by PRRs expressed on APCs such as DCs or 

macrophages.  Once the pathogens are recognized particularly by iDCs in the innate immunity, 

DCs mature and then, activate lymphocytes such as naïve T and B cells to initiate the adaptive 

immune response towards the pathogen – delivered antigen.  Upon systematic communication 

between mature DCs and naïve lymphocytes at lymph nodes, these naïve lymphocytes become 

differentiated to effector cells such as helper T or cytotoxic T cells and plasma cells (mature B 

cells) through specifically encoded and clonally expanded receptors such as T cell receptors 

(TCRs) and immunoglobulin family (Ig) on activated T cells and B cells, respectively.  These 

effector cells subsequently lead the adaptive immunity to eradicate pathogens and some of them 

become memory T and B cells to facilitate a faster response against identical antigens in future 

(Medzhitov and Janeway, 1997; Janeway and Medzhitov, 1998; Janeway et al., 2004). 

 

Adjuvant 

 Adjuvants have been employed to improve the immune response by increasing the 
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immunogenicity, incorporated with antigens in vaccines, since the early of 1920s (Cox and 

Coulter, 1997).  Aluminum hydroxide, aluminum phosphate, and calcium phosphate are the 

mineral salt-based adjuvants widely accepted in human and veterinary vaccines since 1930s due 

to their excellent safety records.  Complete freund’s adjuvant comprised of oil emulsion and 

killed bacteria is another representative adjuvant widely used but is limited to animal use due to 

its toxicity to human.  Lastly, the immunostimulatory adjuvants such as cytokines (IL-2 and IL-

12) have been also widely recognized in the clinical use for their natural sources (Cox and Coulter, 

1997; Singh and O'Hagan, 1999; Hunter, 2002).  Since the TLR was discovered in drosophila, 

studies on TLR and its ligands have been expedited and it has been found that ligands of TLRs 

include many of the evolutionarily conserved molecules such as LPS, lipoproteins, lipopeptides, 

flagellin, double-stranded RNA, unmethylated CpG islands as well as various other forms of 

DNA and RNA released by bacteria and viruses.  Moreover, most natural adjuvants employed 

are lipid-related materials which originate from those bacteria and viruses.  For these reasons, 

TLRs have been considered to essentially act as adjuvant receptors and sustain the molecular 

basis of adjuvant activity.  Further, developments of natural adjuvant have been focused on the 

identification of specific receptors, such as TLRs, on APCs, which are thought to provide a link 

between the innate and adaptive immune responses (Medzhitov et al., 1997).  Even though the 

exact mechanisms of adjuvant action are still only poorly understood so that the new design or 

application of the adjuvants largely depends on the empirical facts, APCs such as DCs and 

macrophages are thought to play the central role of the adjuvant effect, which mediate any of the 

following mechanisms: increasing cellular infiltration, inflammation, and trafficking of APCs to 

the injection site; upregulating co-stimulatory molecules or MHC expression to induce the 

activation of APCs; enhancing antigen presentation; or inducing cytokine release for indirect 

effects (Cox and Coulter, 1997; Singh and O'Hagan, 1999). 
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 Based on the typical feature supporting the immunogenicity, the adjuvant effects of the 

polymeric biomaterials have been extensively investigated.  For instance, particulate adjuvants, 

including polymeric microparticles, are internalized by APCs, thereby activating them, inducing 

an immune response to associated antigens (Singh and O'Hagan, 1999).  Particulate adjuvants 

also enhance the immune response by creating a depot of antigen at the site of injection to 

prolong exposure (Hunter, 2002).  More recently, nano- or microparticles endocytosed by DCs 

have been shown with their differential effects on T cell stimulation depending on their different 

sizes (Koike et al., 2008; Tran and Shen, 2009), as well as on DC or macrophage phenotypes 

through inflammasome activation depending on their different inherencies (Martinon et al., 2006; 

Sharp et al., 2009).  These effects of polymeric biomaterials suggested as new idea for 

immunomodulating combination products in tissue engineering or vaccine delivery (Ertl et al., 

1996; Seferian and Martinez, 2000; Jaganathan et al., 2004; Matzelle and Babensee, 2004; 

Yoshida and Babensee, 2004; Bennewitz and Babensee, 2005; Babensee and Paranjpe, 2005). 

 
 
Biomaterials in tissue engineering and dendritic cells 

General facts of biomaterials in tissue engineering 

A biomaterial is generally defined as ‘a nonviable material used in a medical device, 

intended to interact with biological systems’ (Williams, 1987).  To support the functionality of 

the tissue engineered construct, which facilitates specific proliferation and differentiation of cells 

in optimized conditions, biomaterials for scaffolds should ideally have following characteristics: 

porous enough for cell growth and transport of nutrients and metabolic waste; bioresorbable with 

controllable degradation; proper surface chemistry for cell attachment, proliferation, and 

differentiation; suitable mechanical properties; reproducible and processable in variety of shapes 

and sizes as needed; and biocompatible through whole procedure of the tissue regeneration (Kim 
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et al., 2000; Hutmacher et al., 2001).  Due to the processability, high ratio of physical stability to 

weight, and controllable degradability and resorbability, biomaterials used for the tissue 

engineering are, in most cases, polymer-based materials and not ceramic or metallic materials 

(Ratner et al., 2004).  According to its origin, they are basically classified as natural polymers or 

synthetic polymers (Ratner et al., 2004; Li and Tuan, 2005; Hutmacher et al., 2001; Kim et al., 

2000).  Protein- or polysaccharide-based natural polymers have the potential advantage of 

biocompatible features due to their origin but difficulties in reproduction and purification from 

the nature or poor mechanical properties remain as obstacles to their use.  Synthetic polymers 

can be reproduced with well controlled physical properties, such as degradation, resorption, 

microstructure, and surface chemistry in a large scale.  However, synthetic biomaterials are still 

considered as less biocompatible compared to natural biomaterials because of the absence of the 

intrinsic biological properties (Kim et al., 2000; Ratner and Bryant, 2004).  Collagen and fibrin 

are representative protein-based polymers while alginate, agarose, hyaluronic acid, and chitosan 

are most widely investigated polysaccharide-based polymers in tissue engineering.  For 

synthetic biomaterials, poly(lactic-co-glycolic acid) (PLGA) and poly(ε-caprolactone) (PCL) are 

most popular in tissue engineering applications (Hunziker, 2002; Hutmacher et al., 2001; Kim et 

al., 2000; Ratner and Bryant, 2004).  In particular, synthetic biomaterials has been intensively 

studied with their multifunctional impacts on tissue engineering-based regeneration therapy; 

biomaterials can modulate microenvironments by delivering biosignaling molecules such as 

growth factor or gene, as well as fostering the formation of new extracellular matrix and tissue 

ingrowth (Tabata, 2009). 

 

Dendritic cell response to biomaterials upon contact 

However, implantation of a foreign material causes a host response towards the foreign 
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entity, which is akin to a nonspecific innate immune response.  Thus the selection of a foreign 

material and the associated host response are critical to the successful application of tissue 

engineering (Anderson, 2001; Ratner and Bryant, 2004).  Among biomaterial characteristics 

necessary for tissue engineered constructs, biocompatibility is of critical importance in a scaffold 

to endure that the implant and/or its degradation products do not elicit an innate or inflammatory 

immune response.  Based on the role of DCs in RA as described earlier, DCs response towards 

biomaterials should be well understood and controlled for the biomaterial selection in the 

cartilage tissue engineering of RA, and for situations with combination products where adaptive 

immune responses are of consequence. 

 The adjuvant such as CFA has been shown to induce maturation of DCs by induction of 

pro-inflammatory cytokine secretion such as IL-12 and upregulation of MHC and co-stimulatory 

molecules (Tsuji et al., 2000).  Extended from similarities to these maturation patterns of DCs, 

biomaterial-associated adjuvant effects of DCs have been shown in various situations.  

Copolymers of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(propylene glycol) 

have shown the adjuvant effects increased in proportion to the fraction of the hydrophobic block 

in the copolymers (Newman et al., 1998b; Hunter, 2002).  For the internalization activity of DCs, 

particulate forms of PLGA, polystyrene, and latex have been investigated and the phagocytosed 

PLGA and poly(β-amino ester) microspheres showed an adjuvant effects in DCs to maturation by 

inducing phenotypical changes such as upregulation of co-stimulatory molecules of CD80, CD86, 

and CD40 (Newman et al., 2002; Yoshida and Babensee, 2004; Bennewitz and Babensee, 2005; 

Little et al., 2004).  Recently, differential levels of DC maturation upon treatment with different 

biomaterial films have been observed, showing that PLGA or chitosan films induced the 

maturation of DCs while agarose, alginate, or hyaluronic acid exhibited moderate or less matured 

DCs compared to the negative control of iDCs (Yoshida and Babensee, 2004; Babensee and 
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Paranjpe, 2005; Yoshida and Babensee, 2006).  The exact mechanisms involved in this DC 

maturation by biomaterials, however, is not yet fully elucidated.  But it is likely that possible 

factors are hydrophobicity (or hydrophilicity) of biomaterials and adsorption of complement or 

other proteins to biomaterials, which are recognized by PRRs of DCs to function in a synergetic 

manner to control an immune response to associated antigens (Reddy et al., 2006).  Recently, 

adhesive substrates coated with different proteins, on which DCs were cultured, have been shown 

with their functional impacts on modulation of pro- and anti-inflammatory cytokine releases from 

DCs, which further showed correlation with allogenic T cell proliferation and polarization 

(Acharya et al., 2008). 

 

Biomaterials in combination products 

 As mentioned above, the biomaterial component in the tissue engineered constructs is 

needed to serve not only as a scaffold but also as a guide for cells to viable functions such as 

growth, differentiation, tissue regeneration, and vascularization in association with the growth 

factors.  Host immune responses are, therefore, to be minimized and/or controlled for successful 

tissue regeneration, whereas the biomaterial component in the vaccine systems is required to 

enhance the host immune response by acting as an adjuvant.  Previously, we have shown that 

differential levels of DC maturation were observed upon DC treatments with different 

biomaterials used in combination products (Yoshida and Babensee, 2004; 2006; Babensee and 

Paranjpe, 2005), which suggests that biomaterials can modulate the host immune response based 

on their inherent physiochemical properties, associated with low or high adjuvant effects.  Thus 

better understanding of the mechanisms involved in these effects of biomaterials would suggest 

ideal strategies for the future applications of combination products.  For instance, it may be 

possible to control graft rejection by optimal utilization of biomaterial components in tissue 
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engineered constructs.  Furthermore, such understanding can provide strong direction for the 

improvement of vaccines and adjuvants, and for development of tolerogenic therapeutics for 

autoimmune diseases, allergy and transplantation (Reddy et al., 2006; Babensee et al., 1998; 

Singh and O'Hagan, 1999). 

 

Poly(lactic-co-glycolic acid) 

Poly(lactic-co-glycolic acid) (PLGA) is one of most popular synthetic polymers 

frequently employed for the scaffolds in tissue engineering (Li and Tuan, 2005).  As a polyester 

composed of variable molar ratios of lactic and glycolic acid, PLGA has been recognized for an 

hydrophobic biomaterial showing good biocompatibility because its degradation products are 

biocompatible (Ignatius and Claes, 1996).  Hydrolysis rate of PLGA can be controlled by its 

geometric size, molar ratio of lactic to glycolic acid, or polymer molecular weight (Hutchinson 

and Furr, 1987; Eldridge et al., 1991).  However, the immune response supported by PLGA has 

been used as an adjuvant inducing immunogenicity for the delivery of vaccines (Ertl et al., 1996), 

often in the form of microparticles, possibly due to the phagocytosis effects of APCs (Ohagan et 

al., 1993).  Cell-mediated immune response has also been elicited using micro- and 

nanoparticles of PLGA (Newman et al., 1998a).  More recently, it has been shown that the 

adjuvant effects associated with PLGA in the enhancement of the humoral immune response to 

associated antigen (Matzelle and Babensee, 2004; Bennewitz and Babensee, 2005) can be 

attributed to a maturation of DCs upon in vitro treatment with PLGA microparticles or films 

(Yoshida and Babensee, 2004; Babensee and Paranjpe, 2005).  As a synthetic polymer which is 

most frequently employed in vaccine delivery or tissue engineering applications, understanding of 

PLGA effect on host response is essential to the development of biomaterials for use in 

combination products. 
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Chitosan 

Chitosan is a biomaterial of natural polysaccharides having carbohydrate units which are 

mainly composed of glucosamine with a high cationic charge density (Chandy and Sharma, 1990; 

Tangpasuthadol et al., 2003; Li and Tuan, 2005).  Chitosan has been previously employed as 

biomaterials for scaffolds in the tissue engineering (Hutmacher et al., 2001; Hunziker, 2002), but 

it has also been reported for its adjuvant activities such that it stimulates T and B cells (Seferian 

and Martinez, 2000) and modulates nitric oxide release by macrophages (Hwang et al., 2000; 

Peluso et al., 1994).  Chitosan consists of N-acetyl-D-glucosamine units (GlcNAc), which can 

interact with macrophage mannose receptor for mannose- and GlcNAc-glycoproteins (Warr, 

1980; Hitchen et al., 1998), inducing brisk inflammatory responses (Hidaka et al., 1999; Feng et 

al., 2004; Crompton et al., 2006).  Moreover, using the murine macrophages, it has been recently 

reported that chitin or chitosan is directly recognized by the macrophage mannose receptor and 

this receptor-mediated stimulation induces an expression of MHC class I and II molecules, and 

macrophage inflammatory protein (MIP)-2 as well as a release of TNF-α and IL-1β (Feng et al., 

2004; Mori et al., 2005).  The mannose receptor is a representative C-type lectin which is one 

family of PRRs, expressed on both macrophages and DCs and its specificities of ligand and 

function are identical for both cell types (Figdor et al., 2002). 

 

Alginate 

Alginate is the most frequently employed biomaterials for cell immobilization due to 

their abundance, easy gelling properties and apparent biocompatibility (de Vos et al., 2006).    

Alginate molecules are linear block copolymers of mannuronic acids and guluronic acids with a 

variation in composition and sequential arrangements.  Due to its hydrophilic nature, alginate 
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has been employed as a hydrogel, which is beneficial to minimize the protein adsorption and cell 

adhesion.  Furthermore, the soft and elastic features of the gel reduce the frictional irritation to 

surrounding tissue (de Vos et al., 2002).  However, secretion of IL-1, IL-6, and TNF-α has been 

induced upon treatment of human monocyte-derived macrophages with the poly-mannuronic acid 

obtained from alginates (Otterlei et al., 1991) and CD14 expressed on the macrophages has been 

reported for its critical role in binding to the mannuronic acid and stimulating the macrophages to 

release those cytokines (Espevik et al., 1993).  Furthermore, the alginate with higher content of 

mannuronic acid has been found to be more immunogenic than that with higher content of 

guluronic acid, showing more antibodies (to feta porcine islet microencapsulated in alginate) 

produced when the alginate was transplanted in vivo (Kulseng et al., 1999).  More recently, the 

alginate with a high content of mannuronic acid induced TNF-α secretion from murine 

macrophages (Orive et al., 2005) and TLR-2 and TLR-4 in association with CD14 have been 

reported for their critical roles in inducing secretions of IL-1α, IL-1β, IL-6, and TNF-α from 

human macrophages and murine macrophages (Flo et al., 2002; Iwamoto et al., 2005). 

 

Hyaluronic acid 

Hyaluronic acid is a negatively charged high molecular weight glycosaminoglycan, 

which is ubiquitously distributed throughout our body as a physiological component of the 

cartilage extra cellular matrix (ECM).  For instance, high molecular weight HA, exactly in a 

hydrogel form, plays a critical role as a lubricant in the joints.  As such, HA is a polysaccharide 

composed of repeating glucuronic acid and N-acetylglucosamine showing remarkable 

hydrophilicity; for example, HA is much more hydrophilic than PLGA (85:15) such that HA 

showed the water contact angle decreased by around 50% from that of PLGA (Lee and Lee, 

2006) and well known for binding huge amount of water by around 1000-fold of its own weight.  
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Hydrogel form of HA with high molecular weight is an ideal matrix to support articular cartilages 

(Li and Tuan, 2005).  However, soluble fragments of HA have been shown to support DC 

maturation (Yang et al., 2002a; Termeer et al., 2000), whereas high molecular weight HA 

fragments (6,000 kDa) induced a decreased level of TNF-α secretion, by specifically inhibiting 

TLR-2 signaling, from murine macrophages transfected with human TLR-2, as compared to the 

low molecular weight HA fragments (200 kDa) (Scheibner et al., 2006). 

 

Agarose 

Agarose is a polysaccharide containing repeated disaccharides of L- and D-galactose 

(repeating β-D-galactopyranosyl and 3,6-anhydro-α-L-galactopyranosyl units) derived from 

natural seaweeds (Hunziker, 2002), showing very hydrophilic nature due to high content of 

hydroxyl (OH) end groups.  A hydrogel of agarose is thermoreversibly formed by hydrogen 

bonds, facilitated by alignment of the agarobiose molecules (Shoichet et al., 1996).  Agarose has 

been employed as a food ingredient stabilizer and a biomaterial for tissue engineering (Benya and 

Shaffer, 1982; Sun et al., 1986).  Furthermore, its biocompatibility has been well known such 

that its hydrogel form is frequently employed especially in the cartilage tissue engineering for 

controlling the chondrogenesis (Fukumoto et al., 2003; Huang et al., 2004) and that it elicited 

minimal humoral and cellular responses in vivo (Starke et al., 1987; Rahfoth et al., 1998).  

Differently from chitosan and alginate, agarose does not have a specific carbohydrate 

composition which is recognized by the PRRs expressed on DCs.  Possibly due to this reason, 

minimal DC maturation has been elicited upon DC treatment with agarose microparticles or films 

(Yoshida and Babensee, 2006; Babensee and Paranjpe, 2005). 
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Summary 

Despite tremendous efforts extensively made on the immunological mechanisms, which 

show a massive influx of T cells, B cells, and fibroblast-like synoviocytes, macrophages, and 

dendritic cells (DCs) in the synovial tissue, the pathophysiological pathways of RA remain 

unclear.  Dendritic cells have been recognized to play a central role not only in the initiation and 

perpetuation of RA, but also in host immune response against biomaterials, associated with the 

adjuvant effects.  Since tissue engineering has been recognized as a promising alternative for 

cartilage reconstruction and regeneration, cartilage tissue engineering has been motivated by the 

need of replace lost or damaged tissue with an already structurally and mechanically functional 

implant in combination with biomaterials.  However the host immune response against the 

biomaterial component or device is still a major concern on the achievement of tissue restoration.  

Because DCs are thought to play the central role of the adjuvant effect, identification of 

multifunctional impacts of biomaterials on immunomodulating DC response and further T cell-

mediated adaptive immunity is essential to understand the link between these in vitro biomaterial 

effects and in vivo effects on integration in induced RA animal models. 
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CHAPTER 4† 

DIFFERENTIAL FUNCTIONAL EFFECTS OF BIOMATERIALS ON 
DENDRITIC CELL MATURATION. PART 1. EFFECTS OF BIOMATERIALS IN 

2-DIMENSIONAL FILM FORM 

 

INTRODUCTION: 

Identical biomaterials are often used as carriers in combination products where the 

desired effect on the immune response, due to a biomaterial adjuvant effect, to an associated 

immunogenic biological component is opposite.  In the tissue engineering application, immune 

responses should be minimized, whereas the vaccine strategy aims to enhance the protective 

immune response.  We have previously shown that PLGA acts as an adjuvant in enhancing 

humoral response against a co-delivered model antigen (Matzelle and Babensee, 2004; Bennewitz 

and Babensee, 2005), and that maturation of human peripheral blood-derived DCs (Yoshida and 

Babensee, 2004) and murine bone marrow-derived DCs (Yoshida et al., 2007) is induced in 

different extents depending on different forms (film or microparticle) of PLGA.  We have also 

shown that different biomaterials induce different degrees of DC maturation, suggesting the 

immunomodulating capacities possible by inherently different features of biomaterials (Yoshida 

and Babensee, 2006; Babensee and Paranjpe, 2005).  The exact mechanisms involved in this DC 

maturation by biomaterials, however, is not yet fully elucidated.  Biomaterial properties such as 

hydrophobicity/hydrophilicity direct protein adsorption to and complement activation on the 

biomaterial surface with these ligands recognized by pattern recognition receptors (PRRs) of DCs 

to function in a synergistic manner to control an immune response to associated antigens (Reddy 

et al., 2006).  In this study, the functional immunological DC response to a variety of 

                                            
† A manuscript prepared from this Chapter 4, titled as ‘Differential functional eEffects of biomaterials on 

dendritic cell maturation’, is to be submitted to Biomaterials. 
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biomaterials commonly used in combination products as vaccine delivery vehicles or tissue 

engineered scaffolds was assessed.  The biomaterials used in this study included PLGA as a 

synthetic polymer and chitosan, alginate, hyaluronic acid (HA), and agarose as natural 

polysaccharide polymers (Li and Tuan, 2005; Hutmacher et al., 2001; Hunziker, 2002), which 

have been frequently used as scaffolds or hydrogels for tissue engineering applications (Li and 

Tuan, 2005; Hutmacher et al., 2001; Hunziker, 2002; Fragonas et al., 2000; Fukumoto et al., 

2003; Huang et al., 2004; Mauck et al., 2000).  Herein we extend our previous studies to further 

characterize the effect of different biomaterials on the maturation and functional immunological 

effects of DC using a variety of immunobiological assays.  To test effects of biomaterial grade 

such as research or clinical grade, we also examine the clinical grade biomaterials commercially 

available, compared to the research grade which is mainly studied in the present study.  In this 

way, we were able to identify biomaterials which support DC maturation and those biomaterials 

that did not.  These studies are a step forward understanding the effect of inherently different 

features of biomaterials to suggest new selection and design criteria for biomaterials to be used in 

the combination products such as tissue engineering or vaccine delivery where immune responses 

are of consequence. 

 
METHODS: 

Preparation of biomaterial films 

All biomaterial films were prepared freshly for each experimental procedure.  

Preparation methods of all biomaterial films were adapted or modified from previously described 

methods as noted for each biomaterial.  As commercially available, films of clinical grade 

biomaterials were prepared in addition to films of research grade biomaterials.  Specifically, for 

this study, the biomaterial films tested included PLGA (clinical grade), chitosan (research and 
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clinical grade), alginate (research and clinical grade), HA (research and clinical grade), and 

agarose (research grade) (sources noted in film preparation methods described forthwith).   

Briefly, poly(DL-lactic-co-glycolic acid) (PLGA) (clinical grade with ester terminated; 

molar ratio: 75:25, inherent viscosity: 0.70 dL/g in trichloromethane, 100,000 MW; Birmingham 

Polymers, Birmingham, AL) was dissolved in 20% w/v in dichloromethane (DCM) overnight at 

room temperature and poured into the Teflon dish of 50 mm diameter (Cole-Parmer) in the 

chemical fume hood (Mikos et al., 1994).  Upon evaporation of the solvent and drying (36-48 

hours), PLGA films were punched of an appropriate size, and washed for 1 hour in ddH2O 

changing ddH2O every 15 min.  Chitosan (research grade; high molecular weight: 400,000 MW, 

degree of deacetylation: ≥ 75%, Fluka, Milwaukee, WI) was dissolved in 1% w/v chitosan in 

glacial acetic acid (2% v/v in ddH2O) (Fisher Scientific) for 24 hours at room temperature and 

then, poured into the Teflon dish of 50 mm diameter in the chemical fume hood.  Upon 

evaporation of the solvent and drying (36-48 hours), chitosan films were then cross-linked by 

immersion in 20% (v/v) sodium sulfate (Sigma) in ddH2O (2 hours) and washed by ddH2O (20 

min), followed by immersion in 1 M NaOH (Sigma, 30 min) to neutralize the surface and washed 

with ddH2O (20 min).(Lahiji et al., 2000)  Chitosan films were punched of an appropriate size, 

and finally washed for 20 min in ddH2O.  Alginate (research grade; 80,000 MW; mannuronic 

acid content: ≥ 50%; primarily anhydro-β-D-mannuronic acid residues with 1-4 linkage; Sigma) 

was dissolved to a concentration of 3% w/v alginate in ddH2O for 24 hours at 4˚C and then, 

poured into the Teflon dish of 50 mm diameter in the tissue culture laminar flow hood.  Upon 

drying (36-48 hours), alginate films were cross-linked by immersion in 5% w/v calcium chloride 

(Sigma) in 40% aqueous ethanol for 48 hours and washed with ddH2O for 10 min (Papas et al., 

1999).  Alginate films were punched of an appropriate size, and washed for 30 min in ddH2O 

changing water every 10 min.  Hyaluronic acid (research grade; 800,000 MW; sodium salt from 
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Streptococcus equi, BioChemika, Fluka) was dissolved to a concentration of 4% w/v HA in 

ddH2O for 24 hours at 4˚C and then, poured into the Teflon dish of 50 mm diameter in the tissue 

culture laminar flow hood.  Upon drying (36-48 hours), HA films were cross-linked by 

immersion in 50 mM water soluble carbodiimide (Sigma) in 72% aqueous ethanol for 24 hours 

and washed by ddH2O for 10 min (Tomihata and Ikada, 1997).  Hyaluronic acid films were 

punched of an appropriate size, and washed for 30 min in ddH2O changing water every 10 min.  

Agarose (research grade; type V; high gelling; gel strength of ≥ 800 g/cm2 at 1.0 %; Sigma; 

molecular weight is not known) was dissolved in ddH2O to a concentration of 3% w/v by heating 

using a microwave until boiling and visible homogeneity was reached (Tun et al., 1996).  

Agarose films were prepared by dispensing 1 ml of this agarose solution into a well of a 6-well 

tissue culture plate (Corning), and allowed to solidify at a temperature of 4˚C for at least 30 min, 

and brought back to room temperature for another 30 min prior to use in treating iDCs.  All 

biomaterial films were UV-sterilized for 30 min per surface in the tissue culture hood prior to use 

in DC cultures. 

Endotoxin contents of biomaterial films were determined using a chromogenic Limulus 

Amebocyte Lysate assay (QCL-1000 Chromogenic LAL Endpoint Assay, Cambrex, Walkersville, 

MD).  Endotoxin assays were performed on a smaller piece of film (4.5 mm in diameter), which 

had undergone the same washing and sterilization procedures as films used to treat DCs.  The 

smaller film pieces were suspended in endotoxin-free water and endotoxin assay performed.  

Standards in tissue culture treated polystyrene wells and sample wells of different biomaterials 

were treated with endotoxin-free water.  Limulus amebocyte lysate was added in the presence of 

biomaterial and incubated for 10 min at 37˚C.  Chromogenic substrate (Ac-Ile-Glu-Ala-Arg-

pNA) was added to each well and incubated for 6 min.  Glacial acetic acid (25% v/v) (J.T. Baker, 

Philipsburg, NJ) was added as a stop solution and the mixture was transferred into flat-bottom 
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microplate and the absorbance was measured at 405 nm.  Endotoxin content in the samples was 

read off standards generated from endotoxin standards, from the manufacturer’s kit.  Each 

sample was run in triplicate for quantification.  The effective endotoxin content (EU/ml) of 4.5 

mm-diameter films of PLGA (clinical grade) was 0.011±0.007, of chitosan (research grade) 

0.0007±0.0001, of alginate (research grade) 0.035±0.006, of HA (research grade) 0.004±0.003, 

and of agarose (research grade) 0.037±0.006.  Previous study has shown that minimum E. Coli 

endotoxin concentration of 100 EU/ml was required for DC maturation (Jotwani et al., 2003).  

For the clinical grade biomaterial films, chitosan (clinical grade; Protasan UPB 80/500, 

500,000 MW, degree of acetylation: 80-89%, NovaMatrix, FMC Biopolymer, Sandvika, Norway) 

and HA (clinical grade; 770,000 MW; sodium hyaluronate in European Pharmacopoeia (EP) 

grade, sodium salt from Streptococcus equi, Genzyme Biosurgery, Cambridge, MA) materials 

were processed using the identical methods described above for the research grade, whereas 

alginate (clinical grade; 100,000 MW; mannuronic acid content: ≥ 50%, sodium alginate, Pronova 

UP LVM, NovaMatrix, FMC Biopolymer, Sandvika, Norway) material were processed using the 

method described above except that the starting alginate concentration was 3.5% w/v in ddH2O.  

The effective endotoxin content (EU/ml) of 4.5 mm-diameter films of chitosan (clinical grade) 

was 0.0025±0.0024, of HA (clinical grade) 0.0012±0.0002, and of alginate (clinical grade) 

0.0997±0.0198.  Through the study, except for PLGA which was only available as clinical grade 

and agarose which was only available as research grade, the material used was research grade 

unless specified as clinical grade. 

 

X-ray photoelectron spectroscopy (XPS) 

To examine the chemistry changes of biomaterial surfaces associated with film 

processing, low resolution XPS survey scans were obtained for raw polymeric materials, films 
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before cross-linking and films after cross-linking and atomic percentages determined and 

compared.  Theoretical values were determined based on known chemical structures.  A 

surface Science Laboratories X-100 spectrometer (Surface Science Laboratories, Mountain View, 

CA) with monochromatized A1 Kα X rays using 1486.6 eV was used at a fixed take-off angle of 

55º.  The XPS instrument is housed at Georgia Institute of Technology Microelectronic Research 

Center.  Raw polymeric material samples were prepared by placing the material directly on a 

normal aluminum foils without any adhesive and then, these foils containing samples were placed 

on the sample stage.  Biomaterial films (10 mm × 10 mm) selected from a region of uniform 

thickness which had been washed using the endotoxin-free water (LAL reagent water, Cambrex) 

and dried in the tissue culture hood were directly placed on the sample stage for analysis.  All 

samples for XPS were kept in the vacuum desiccator, at least for 24 hours, before analysis.  

Biomaterial samples were placed under a nickel mesh, and 5 eV flood gun was used to assist with 

the compensation for differential charging.  Atomic percentages of elements were derived from 

low resolution spectra.  High resolution C1s spectra were obtained and resolved using curve 

fitting routines provided by the manufacturer, and the binding energy scale was adjusted to place 

the hydrocarbon peak at 284.6 eV.  

 

Dendritic cell culture 

Peripheral human blood was collected from donors with informed consent using heparin 

(333 U/ml blood) (Baxter Healthcare Corporation, Deerfield, IL) as the anticoagulant.  This 

procedure was performed at the Student Health Center Phlebotomy laboratory, in accordance with 

the protocol (#H05012) of Institutional Review Board (IRB) of Georgia Institute of Technology.  

Dendritic cells were derived from human peripheral blood mononuclear cells (PBMCs) using a 

previously described method with some modifications (Romani et al., 1996).  Briefly, as shown 



 

 34

in Figure 4-1, after the blood collected from the donor, PBMCs were isolated by differential 

centrifugation using the lymphocyte separation medium (Cellgro MediaTech).  The PBMCs 

were collected and washed in phosphate buffer saline (PBS), and red blood cells were lysed with 

buffer [155 mM NH4Cl, 10 mM KHCO3 (both from Sigma), 0.1 mM EDTA (Gibco)], and 

remaining cells washed again twice with PBS.  Resulting PBMCs were resuspended at a 

concentration of 5 × 106 cells/ml in the DC media, which was prepared by filter-sterilizing RPMI-

1640 containing 25mM HEPES [4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid)] and L-

glutamine (Gibco, Grand Island, NY), supplemented with 10% (v/v) heat inactivated fetal bovine 

serum (FBS, Cellgro MediaTech) and 100U/mL Penicillin/Streptomycin (Cellgro MediaTech).  

Cells were plated in a volume of 10ml/plate in a 100 × 20 mm tissue culture plate (Primaria, BD 

Falcon) and incubated for 2 hours in the incubator with 95% relative humidity and 5% CO2 at 

37˚C to select for adherent monocytes.  After the incubation, plates were washed at least three 

times using warm, fresh DC media to remove non-adherent cells.  The adherent cells were 

supplied with 10 mL of fresh, pre-warmed DC media supplemented with granulocyte macrophage 

colony-stimulating factor (GM-CSF) (1000 U/mL) and interleukin-4 (IL-4) (800 U/mL) (both 

from Peprotech, Rocky Hill, NJ) for 5 days.  On day 5 of culture, loosely adherent and non-

adherent cells containing iDCs were harvested by centrifugation for 10 min at 1100 rpm and 

plated at 1.5 x 106 cells/well in 3 mL/well in DC media supplemented with GM-CSF and IL-4 

into 6-well tissue culture plate for various treatments.  For DC treatment with biomaterials, 

biomaterial films were placed into wells of 6-well plate with autoclave-sterilized gaskets (cut 

from peroxide-cured silicone tubing) (Cole-Parmer) to secure the films and the iDC suspension 

was applied into each well.  Wells for the negative control of iDC remained untreated while 

wells for the positive control of mature DC (mDC) involved addition of 1 ㎍/ml of 

lipopolysaccharide (LPS) (E. coli 055:B5; Sigma).  For each experiment, all biomaterials and 
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controls were included as treatments to allow for comparisons between treatments and to controls.  

DCs were treated with biomaterial films in an atmosphere of 95% relative humidity and 5% CO2 

at 37˚C for 24 hours (or 5 hours for NF-κB assay) and then, cells or media were analyzed as 

described below.  As a gasket control, DCs were cultured in the presence of gaskets and their 

phenotype assessed as described below.  

To justify that the non-/loosely-adherent DCs are representative for analyses of DC 

phenotype changes upon DC treatments in this study, numbers of non-/loosely-adherent DCs and 

adherent DCs have been counted using the Coulter counter (Coulter Multisizer III, Beckman 

Coulter, Fullerton, CA) and DC maturation marker expressions (CD40, CD80, CD86, CD83, 

HLA-DQ, and HLA-DR) for each DC fraction above have also been tested with 5,000 events per 

sample using the flow cytometer (BDLSR, Beckton Dickinson) for DCs obtained from 3 donors.  

After 24 hours of DC treatment with biomaterial films or controls, non-/loosely-adherent DC 

fraction was gently collected using a pipette and then, adherent DC fraction was removed from 

the culture dishes of controls or biomaterial films using the pre-warmed cell dissociation solution 

(CDS) (Sigma).  As a result of cell counting by size, the control of iDC or mDC showed 84 ± 

15% or 71 ± 15% of non-/loosely adherent DC population in total DCs (sum of those two 

fractions) present in the cell culture wells, respectively.  The biomaterial treatments with PLGA, 

chitosan, alginate, HA or agarose resulted in 37 ± 15%, 65 ± 13%, 71 ± 1%, 86 ± 3%, or 86 ± 9% 

of that, respectively.  All maturation marker expressions of the adherent DC fraction of all 

controls or biomaterial treatments did not show any significantly different values of geometric 

mean fluorescence intensity (gMFI) compare to those of the non-/loosely-adherent DC fraction, 

except the HLA-DQ expression of adherent DCs treated with hyaluronic acid film, which 

exhibited significantly higher gMFI than that of non-/loosely-adherent DCs on the hyaluronic 

acid film (data not shown).  On the other hand, it has been reported that the non-adherent iDCs 



 

 36

can be differentiated to macrophages upon adhesion on the bottom of culture dish wells (Lutz et 

al., 1999).  Moreover, non-/loosely-adherent DCs are generally employed for the 

immunotherapeutic researches on the migratory blood-resident DCs (Banchereau et al., 2000; 

Moldenhauer et al., 2003).  For all DC treatments, except the treatment with PLGA, non-

/loosely-adherent cells make up more than 65% mean value in total DCs present in each well of 

treatment.  Therefore, the non-/loosely-adherent DC fraction was collected and examined in 

different immunobiological assays throughout this study. 

 

Figure 4-1: Schematic representation of the in vitro experimental procedure of DC culture 
and treatment with biomaterials. 
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Cell morphology 

Dendritic cell morphology was examined throughout the culture duration by phase 

contrast microscopy.  On day 6, DCs were processed for Cytospin preparations as described 

previously (Yoshida and Babensee, 2004) (Cytospin Cytocentrifuge, Thermo Shandon, Pittsburgh, 

PA) and stained with Hematology Stain (Astral Diagnostics, West Deptford, NJ) for light 

microscopy examination using an Axiovert 135 microscope (Zeiss, Jena, Germany) and imaged 

using Image-Pro Plus (v.5) software (Media Cybernetics, Inc., Bethesda, MD).  A representative 

image was selected from 6 different Cytospin preparations from 6 separate experiments. 

 

Cell surface marker expression 

The levels of surface marker expression were monitored after 24 hours of treatment with 

biomaterial films, by flow cytometry as per methods described in the literature (Yoshida and 

Babensee, 2004) and compared to controls.  Non-/loosely-adherent cells containing DCs for 

iDCs, mDCs, or DCs treated with different biomaterial films were collected by centrifugation at 

1100 rpm for 10 min and suspended in Hank’s HEPES buffer (120 mM NaCl, 10 mM KCl, 10 

mM MgCl2, 10 mM glucose, 30 mM HEPES) (all from Sigma) containing 1% (v/v) human serum 

albumin (HSA) (Calbiochem, Darmstadt, Germany) and 1.5 mM CaCl2 (Sigma).  Cells were 

stained with saturating concentrations of fluorescently conjugated mouse anti-human monoclonal 

antibodies against CD 40 (clone B-B20; IgG1κ), CD80 (clone BB1; IgMκ), CD86 (clone BU63; 

IgG1κ) (all from Southern Biotechnology Associates, Birmingham, AL), CD83 (clone HB15a; 

IgG2b) (IO Test Immunotech, Marseille, France), HLA-DQ (clone TU169; IgG2aκ), HLA-DR 

(clone TU36; IgG2aκ), CD32 (clone 3D3; IgG1κ), CD206 (clone 19.2; IgG1κ), CD44 (clone 515; 

IgG1κ), or Annexin V (recombinant purified protein) (all from BD Pharmingen) for 1 hour at 4˚C 
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in the dark, filtered using 40 μm cell strainer (Becton Dickinson, Franklin Lake, NJ) and then, 

analyzed immediately with 5,000 events per sample using a BDLSR flow cytometer (Becton 

Dickinson).  Only propidium iodide (PI) (fluorescent vital dye) (BD Pharmingen) was applied 

into the sample tube less than a minute before scanning in the flow cytometer.  Data was 

obtained together with the negative control of autofluorescence per sample and then, analyzed 

using WinMDI 2.8 (Scripps Research Institute, La Jolla, CA).  

 

Mixed lymphocyte reaction (MLR) 

Allostimulatory capacity of DCs to induce T cell proliferation upon DC treatment with 

different biomaterials was assessed as per methods in the literature (Yoshida and Babensee, 2004), 

using an allogeneic mixed lymphocyte reaction (MLR).  After 24 hours of DC treatment with 

biomaterial films, allogenic T cells were isolated from PBMCs by negative selection using Pan T-

cell magnetic isolation (Miltenyi Biotech, Auburn, CA) according to the manufacturer’s protocols.  

These cells were used as responder cells. The T cells were resuspended in RPMI-1640 with 25 

mM HEPES and L-glutamine (Gibco BRL, Carlsbad, CA) with 100 U/ml penicillin/streptomycin 

(Cellgro) and heat-inactivated filter-sterilized (0.22 μm) 10% (v/v) human AB serum 

(Biowhittaker, Walkersville, MD)(complete RPMI-10 media) and plated at a concentration of 105 

cells/well in a 96-well flat-bottomed plate (Corning) in triplicate per treatment groups or controls.  

Dendritic cells treated with biomaterial films or controls were resuspended at 1.6 × 105 cells/ml, 

and treated with 25 ㎍/ml mitomycin C (Sigma) for 30 min to prevent their proliferation.  Upon 

extensive washing with complete RPMI-10 media, DCs were resuspended in complete RPMI-10 

media and added to responder cells in triplicate at graded DC-T cell ratios.  Cells were co-

cultured for 4 days at 37 °C, with the addition of 10 μΜ 5-bromo-2-deoxyuridine (BrdU) for the 

last 24 hours of culture.  Dendritic cell-induced T-cell proliferation was measured using BrdU 
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colorimetric cell proliferation ELISA (Roche Applied Science, Indianapolis, IN) according to the 

manufacturer’s directions. 

 

Pro-inflammatory cytokine release  

The amount of pro-inflammatory cytokines, tumor necrosis factor-α or interleukin-6 

(TNF-α or IL-6) produced by DCs in the cell culture supernatant after the treatments with 

biomaterials, normalized to DNA amount, present in the cell culture supernatants were analyzed 

by ELISAs (R&D systems) according to manufacturer’s directions.  After 24 hours of DC 

treatment with biomaterial films or controls, non-/loosely-adherent DC fraction and cell culture 

supernatants were collected together and then, cleared by centrifugation for 10 minutes at 1,100 

rpm.  These cleared supernatants were stored at -20˚C until analysis.  Non-/loosely-adherent 

DC fraction was gently collected using a pipette after centrifuge described above and then, 

adherent DC fraction was removed from the culture dishes of controls or biomaterial films using 

the pre-warmed cell dissociation solution (CDS) (Sigma).  These non-/loosely-adherent DC and 

adherent DC fractions were combined together per control or treatment and then, DNA 

quantification was analyzed for whole cell population per each control or treatment group using 

picoGreen dsDNA quantification kit (Invitrogen) per manufacturer’s directions.  Amounts of 

TNF–α or IL-6 were presented normalized against total DNA amounts for each treatment group. 

 

Preparation of DC nuclear extract and measurement of activity of nuclear factor κB (NFκB) 

family of transcription factors 

Nuclear extracts from DCs treated with biomaterial films for 5 or 24 hours were prepared 

using TransFactor Extraction kit (Becton Dickinson Clontech, Palo Alto, CA) according to 

manufacturer’s directions.  In detail, DCs treated with biomaterial films were collected and 
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washed twice with ice cold PBS (pH 7.5) by centrifugation at 450×g for 5 min at 4˚C.  The cell 

pellet was resuspended in lysis buffer containing protease inhibitors and allowed to incubate for 

15 min on ice.  After the incubation, the suspension was centrifuged, and the particulate fraction 

was resuspended in lysis buffer.  Cells were disrupted by forcing the suspension through a 27-

gauge needle.  The resulting suspension was centrifuged at 11,000×g for 20 min at 4˚C. The 

supernatant and the pellet from this centrifugation were considered as cytosolic and nuclear 

fractions, respectively.  The pellet containing the cell nuclei was resuspended in an extraction 

buffer, and nuclear membrane disrupted by forcing the suspension through a 27-gauge needle.  

The suspension was centrifuged at 21,000×g for 5 min at 4˚C, and the supernatant from this 

centrifugation was considered to be the nuclear extract, transferred to a new chilled tube, and 

stored at -80˚C until analysis.  Activities of the p50 subunit of NF-κB family of nuclear 

transcription factor were assessed using TransFactor NF-κB Family kit (Becton Dickinson 

Clontech), an ELISA-based method of detecting transcription factor activities, per manufacturer’s 

protocol.  In brief, nuclear extracts were incubated for 60 min in a well pre-coated with 

consensus binding sequence.  Upon washing, the primary antibody corresponding to the p50 

subunit of NF-κB family was added, and allowed to incubate for 60 min.  The plate was washed 

and incubated for additional 30 min with the secondary antibody.  Binding was detected by the 

addition of tetramethylbenzidine (TMB) substrate and measured by colorimetric development at 

655 nm. 

 

Endocytic ability 

Endocytic ability of DCs upon DC treatment with different biomaterials was assessed as 

per methods in the literature (Piemonti et al., 1999).  Briefly, on Day 6, non-/loosely-adherent 

cells containing DCs for iDCs, mDCs, or DCs treated with different biomaterial films were 
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collected by centrifugation at 1100 rpm for 10 min and then, resuspended 500 μl of fresh DC 

media by 2×105 cells/ml.  Pre-warmed FITC-dextran (dextran labeled with fluorescein 

isothiocyanate; 40,000 MW; Sigma) solution (0.01 mg/ml in DC media) was added with 50 μl 

into each 500 μl of DC suspension prepared.  After mixed gently by pipetting, each FITC-

dextran/DC tube was incubated in the dark at 37°C for 45 minutes and then, cells were washed 

using PBS (pH 7.2) twice by centrifuging at 300× g for 10 minutes.  After washing steps, cells 

were resuspended in the identical buffer previously used in the flow cytometer for the surface 

marker expression and then, scanned with 5,000 events per sample in the flow cytometer.  Data 

was obtained together with the negative control of autofluorescence per sample and then, 

analyzed using WinMDI 2.8 (Scripps Research Institute, La Jolla, CA).  

 

Statistical analysis 

For statistical analysis, one sided Student t-test was used to compare mDCs or each 

sample group to iDCs (negative control) in pairs.  To observe significant differences between 

mDCs and all sample groups in pairs, the general liner model of two-way ANOVA in pairwise 

was used for a mixed model with repeated measure.  For all statistical methods, the Minitab 

software (Version 14, State College, PA) was used.  If not indicated, p-value less than or equal to 

0.05 was considered to be significant. 

 
RESULTS: 

Characterization of surfaces of biomaterial films 

X-ray photoelectron spectroscopy was used to analyze the surface chemistry (30 nm 

depth from the surface) of the biomaterial films used here.  Atomic percentages of C, N, O, Na, 

Ca, and Cl or chemical (C1s) bond percentages associated with the different biomaterial films 
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were obtained from scans at low resolution (Table 1) or high resolution (Table 2), respectively.  

Alginate films showed residual calcium and chloride with 1.9±0.1 and 1.4±0.1 in atomic 

percentage (%), respectively.  The other biomaterial films did not show an elemental 

composition which deviates from that expected based on raw materials and films before cross-

liking procedure.  Upon cross-linking or film forming procedure, all biomaterial films showed 

increased compositions of carbon, showing decreased values of O/C or N/C as shown in Table 1, 

compared to theoretical or raw material values.  Upon cross-linking or final film formation of all 

biomaterial films, percentages of C-H, C-C, or C-N bonds increased, whereas C-O, O-C-O, or 

O=C-O bonds decreased, as compared to theoretical or raw material values (Table 2). 

 

Table 1: Low resolution XPS survey scans of biomaterial film surfaces used for DC 
treatment. More than five measurements for each sample were averaged (mean±SD). Ratios of 
O/C or N/C were obtained only using mean value of each atomic percentage. 

Samples                 Atomic percent (%)                    Ratios 

 C N O Na Ca Cl  O/C N/C 

PLGA (75:25) (theoretical) 55.6  44.4     0.80  

PLGA (raw material) 68.4±1.9  31.6±1.2     0.46  

PLGA (film) 64.3±2.1  35.7±1.1     0.56  

Chitosan (theoretical) 54.5 9.1 36.4     0.67 0.17 

Chitosan (raw material) 59.1±1.9 10.4±0.2 30.5±1.1     0.52 0.18 

Chitosan (film before X-link) 70.1±2.3 4.1±0.1 25.8±0.3     0.37 0.06 

Chitosan (film after X-link) 69.0±1.7 3.9±0.1 27.1±0.2     0.39 0.06 

Alginate (theoretical) 44.5  48.1 7.4    1.08  

Alginate (raw material) 47.9±1.5  36.3±0.3 15.8±0.3    0.76  

Alginate (film before X-link) 63.8±1.1  28.9±0.1 7.3±0.1    0.45  

Alginate (film after X-link) 67.5±0.7  29.2±0.1  
1.9 

±0.1 

1.4 

±0.1 
 0.43  

HA (theoretical) 51.9 3.7 40.7 3.7    0.78 0.07 

HA (raw material) 52.8±0.9 1.9±0.1 37.1±1.3 8.2±0.2    0.70 0.04 

HA (film before X-link) 59.2±2.1 3.5±0.2 32.3±0.7 5.0±0.1    0.55 0.06 
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Table 1 continued          

HA (film after X-link) 57.8±0.4 9.8±0.2 29.6±0.5 2.8±0.0    0.51 0.17 

Agarose (theoretical) 55.8  44.2     0.79  

Agarose (raw material) 61.3±2.0  38.7±0.9     0.63  

Agarose (film) 64.2±0.7  35.8±0.1     0.56  

 

 

Table 2: High resolution XPS scans of biomaterial film surfaces used for DC treatment. 
More than five measurements for each sample were averaged (mean±SD). 

Samples Chemical (C1s) bond percentage (%) 

 C-H or C-C C-N C-O 
O-C-O or 

O=C-O 
O=C-OH 

PLGA (75:25) (theoretical) 25  37.5 37.5  

PLGA (raw material) 25.6±0.3  37.3±0.3 37.1±1.1  

PLGA (film) 29.0±0.5  35.5±0.9 35.5±0.7  

Chitosan (theoretical) 3.2 23.4 57.8 15.6  

Chitosan (raw material) 7.1±0.1 23.2±0.9 55.1±0.6 14.6±0.2  

Chitosan (film before X-link) 7.7±0.2 29.6±0.4 52.4±0.7 10.3±0.7  

Chitosan (film after X-link) 9.1±0.3 32.6±0.3 46.3±0.6 12.0±0.1  

Alginate (theoretical) 0.0  66.7 25.0 8.3 

Alginate (raw material) 
11.9±0.4 

(adsorbed) 
 68.6±2.0 11.9±0.1 7.6±0.2 

Alginate (film before X-link) 
5.2±0.5 

(adsorbed) 
 44.1±0.4 32.8±0.3 17.9±0.5 

Alginate (film after X-link) 
7.7±0.5 

(adsorbed) 
 46.4±0.5 26.5±0.9 19.4±0.2 

HA (theoretical) 7.1 7.1 64.3 21.5  

HA (raw material) 11.6±0.3 7.0±0.2 59.3±1.3 22.1±0.4  

HA (film before X-link) 11.7±0.2 13.3±0.1 61.0±1.1 14.0±0.2  

HA (film after X-link) 13.0±0.2 13.4±0.2 60.6±0.7 13.0±0.7  

Agarose (theoretical) 0.0  83.3 16.7  

Agarose (raw material) 
8.6±0.1 

(adsorbed) 
 76.5±1.1 14.9±0.5  

Agarose (film) 
10.5±0.2 

(adsorbed) 
 76.1±1.9 13.4±0.2  
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Dendritic cells treated with PLGA or chitosan films show morphologies similar to mature DCs 

Dendritic cells were treated with different biomaterial films and their morphologies were 

compared with iDCs and mDCs, in cytospins (Figure 4-2).  Dendritic cells were collected after 

24 hours of treatment with biomaterial films and stained with Giemsa.  As shown, DCs treated 

with PLGA or chitosan films exhibited dendritic processes similar to mDCs, whereas DCs treated 

with agarose, alginate or HA films exhibited a morphology similar to iDCs without such 

processes.  Dendritic cells treated with the clinical grade biomaterial films also showed 

morphologies very similar to DCs treated with the respective research grade films (Figure A4, 

APPENDIX). 

 

 

Figure 4-2: Dendritic cell treated with PLGA or chitosan films possess cell morphologies 
similar to mDC induced with LPS treatment. 
DCs derived from peripheral blood monocytes in the presence of GM-CSF and IL-4, treated with 
PLGA or chitosan films showed similar morphology to that of mDCs, with the presence of 
dendritic processes. The morphology of DCs treated with agarose, alginate, or hyaluronic acid 
films was similar to untreated iDCs. Original magnification: 40×. 
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Dendritic cells treated with PLGA or chitosan film express higher levels of co-stimulatory and 

MHC class II molecules than iDCs, whereas DCs treated with HA film express lower levels 

To measure DC maturation upon 24 hour treatment with different biomaterial films, DCs 

treated with biomaterial films were analyzed by flow cytometry for their surface expression of co-

stimulatory and MHC class II molecules.  As shown in the representative flow cytometry 

histograms (Figure 4-3), focusing on the molecules of CD80, CD86, and HLA-DQ, DCs treated 

with PLGA or chitosan films also resulted in a higher expression levels, compared to iDCs, 

similar to mDCs.  However, DCs treated with alginate or agarose films resulted in an expression 

level similar to iDCs.  Interestingly, DCs treated with HA film resulted in a shift in the 

histogram to the left, indicating a lower level of expression of CD80, CD86, HLA-DQ, and HLA-

DR molecules.  The histograms of surface molecule expressions of DCs treated with the clinical 

grade films also showed shift patterns very similar to those of DCs treated with research grade 

films (data not shown). 

As shown in Figure 4-4a, geometric mean fluorescent intensities of each treatment for 

each donor have been normalized by ratios to iDCs to obtain relative values of maturation over 

the negative control of iDCs.  For all surface molecules, DC maturation upon treatment with 

LPS induced higher levels of expression compared to iDCs.   For surface molecules of CD80, 

CD86, CD83, and HLA-DQ, DCs treated with PLGA or chitosan films resulted in significantly 

higher levels of molecule expression compared to iDCs.  Treatment of DCs with alginate films 

resulted in significantly higher levels in molecules of CD83, CD86, and HLA-DQ, as compared 

to iDCs.  However, DCs treated with agarose films did not show a significant difference in 

expression of all surface molecules except for CD83, as compared to iDCs.  Interestingly, DCs 

treated with HA films resulted in significantly lower levels of CD40, CD80, CD86, and HLA-DR 
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expression as compared to iDCs.  As shown with brackets, significantly different gMFIs among 

biomaterial treatments were observed for CD80, CD86 and HLA-DR.  The clinical grade 

biomaterials induced different extents of specific marker expression on DCs compared to the 

research grade biomaterials (Figure 4-4b).  The clinical grade alginate induced CD80 or CD86 

expression on DCs in significantly higher level or similar than iDCs, respectively.  Chitosan 

(CD80), alginate (CD80), or HA (CD80 or CD83) in the clinical grade resulted in significantly 

lower level than the positive control of mDC previously used in the examination of the research 

grade biomaterials.  The clinical grade chitosan did not exhibit significantly different level of 

CD86 compared to the clinical grade HA.  For HLA-DQ expression, clinical grade chitosan or 

alginate induced expression level similar to iDCs, whereas clinical grade HA did in level lower 

than iDCs.  However, the overall trends of biomaterial-induced expression of CD40, CD80, 

CD86, or CD83, normalized to the corresponding iDC controls, are similar for both clinical and 

research grade biomaterials. 
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Figure 4-3: Flow cytometry histograms for expression of co-stimulatory molecules, CD40, 
CD80, CD86, the maturation marker, CD83, and MHC class II molecules, HLA-DQ and 
HLA-DR in differential levels depending on DCs treated with different biomaterials. 
This experiment was performed in 3 replicates from 6 independent experiments with different 
donors (18 runs in total) and similar results were obtained through all 18 runs. Representative 
histograms are shown here. Black histograms are unstained samples and red histograms are 
monoclonal antibodies. 
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(a) 

 

 

(b) 

 
Figure 4-4: Dendritic cells treated with PLGA or chitosan film induced CD 86 expression in 
levels significantly higher than iDCs or other biomaterial treatments. 
Geometric mean fluorescence intensity (gMFI) of flow cytometry analysis on co-stimulatory and 
MHC class II molecules for DCs treated with research grade biomaterial films (a) and clinical 
grade biomaterial films (b). Ratios to the iDCs are shown with mean±SD, n=6 donors [3 
replicates from 6 independent experiments with different donors (18 runs in total)] (a) and n=6 
donors [single run from 6 independent experiments with different donors (6 runs in total)] (b). 

★: p ≤ 0.05, compared to iDCs and higher than iDCs; ☆: p ≤ 0.05, compared to iDCs and lower 
than iDC; Brackets: p ≤ 0.05, statistically different between two biomaterial treatments; ‘┴’ 
indicates ‘or’. 
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Dendritic cells treated with PLGA or chitosan films support allostimulatory T cell proliferation 

while treatment with HA films does not  

Allostimulatory capacities of DCs treated with the different biomaterial films were 

assessed using an MLR as compared to the controls (Figure 4-5).  Mature DCs supported a high 

level of T cell proliferation as compared to iDCs.  Dendritic cells treated with PLGA or chitosan 

films supported T cell proliferation to a higher extent than iDCs, whereas DC treated with HA 

films, supported lower levels of T cell proliferation than iDCs, actually inhibiting T cell 

proliferation.  In the case of the 1:6.25 DCs : T cells ratio, levels of allostimulatory T cell 

proliferation showed significant differences among all biomaterial treatments of DCs.  For 

example, DCs treated with PLGA or chitosan films resulted in significantly higher levels of 

allostimulatory T cell proliferation than DCs treated with alginate, HA, or agarose films.  The 

allostimulatory capacity of DCs treated with the clinical grade films also resulted in patterns very 

similar to those of DCs treated with the research grade films (Figure A2, APPENDIX). 

 

 
Figure 4-5: Allostimulatory capacities in Mixed Lymphocyte Reaction (MLR) in differential 
levels depending on DCs treated with different biomaterial films.  
Dendritic cells treated with PLGA support allogeneic T cell proliferation much like mDCs, 
whereas DCs treated with HA actually inhibit.  Ratios to the iDCs are shown with mean±SD, 

n=6 donors (6 independent experiments with different donors). ★: p ≤ 0.05, compared to iDCs 
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and higher than iDC; ☆: p ≤ 0.05, compared to iDCs and lower than iDC; Brackets: p ≤ 0.05, 
statistically different between two biomaterial treatments; ‘ ┴ ’ indicates ‘or’. 

 

Dendritic cells treated with PLGA, chitosan, or alginate films secreted significantly higher levels 

of pro-inflammatory cytokines as compared to iDCs, whereas DCs treated with HA films secreted 

significantly lower levels 

Pro-inflammatory cytokine (TNF-α and IL-6) release into the supernatant was measured 

using ELISA to assess phenotypical changes in DC maturation upon DC treatment with 

biomaterial films.  Mature DCs secreted high levels of the autocrine maturation stimulus, TNF-α, 

as compared to iDCs (Figure 4-6a).  Similarly, DCs treated with PLGA, chitosan or alginate 

films secreted significantly higher levels of TNF-α as compared to iDCs.  Dendritic cells treated 

with chitosan films released the highest average of levels of TNF-α and also showed significantly 

higher levels as compared to all other biomaterial treatments.  However, DCs treated with 

agarose films did not secrete levels of TNF-α that were significantly different from iDCs, whereas 

DCs treated with HA films released significantly lower levels of TNF-α as compared to iDCs.  

Similar to the results of for TNF-α release, DCs treated with PLGA, chitosan or alginate films 

also secreted in significantly higher levels of IL-6 release as compared to iDCs.  However, DCs 

treated with agarose films did not secrete levels of IL-6 that were significantly different from 

iDCs.  Again, DCs treated with HA films released significantly lower levels of IL-6 as compared 

to iDCs.  No significant difference was observed among all biomaterial treatments for IL-6 

release (Figure 4-6b). 
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(a) 

 

 

(b) 

 
Figure 4-6: Differential levels of tumor necrosis factor (TNF) – α (a) and Interleukin -6 (IL-
6) (b) in differential levels upon DC treatment with biomaterial films.  
Dendritic cells treated with PLGA, chitosan, or alginate release pro-inflammatory cytokines in 
levels significantly higher than iDCs, whereas DCs treated with HA did in levels significantly less 
than iDCs.  Only agarose induced both cytokines in level similar to iDCs.  TNF-α or IL-6 
released from each treatment group for each donor was normalized to total DNA amount and then, 
ratios to the iDCs are shown with mean±SD, n=6 donors (6 independent experiments with 

different donors). ★: p ≤ 0.05, compared to iDCs and higher than iDC; ☆: p ≤ 0.05, compared 
to iDCs and lower than iDC; Brackets: p ≤ 0.05, statistically different between two biomaterial 
treatments. 

 

Activation of NF-κB transcription factor, subunit of p50, do not show significantly different levels 

among DCs treated with PLGA, chitosan, alginate, or agarose films 
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To measure activation of NF-κB transcription factor subunit p50, upon DC treatment with 

different biomaterial films, nuclear extracts were prepared for DCs treated with different 

biomaterial films for 5 or 24 hours and levels of p50, were determined as compared to the 

controls (Figure 4-7).  The p50 subunit of NF-κB was selected for analysis of DC responses to 

biomaterials since it was expressed at a high level and most responsive to treatments as 

determined previously (Yoshida and Babensee, 2006).  Mature DCs exhibited significantly 

higher activation levels of p50 subunit of NF-κB at both 5 and 24 hours of time points, compared 

to iDCs.  In addition, DCs treated with alginate films for 5 hours or DCs treated with agarose 

films for 24 hours showed significantly lower or higher levels of activated p50 compared to iDCs, 

respectively.  However, no significant difference in levels of activated p50 was observed for the 

DCs treated with the other biomaterial films as compared to iDCs.  Activation of subunit p50 

also was not induced in significantly differential levels among DCs treated with PLGA, chitosan, 

alginate, or agarose films.  The levels of p50 were undetectable from DCs treated with HA films.  

Assessing the effect of time, the levels of p50 increased from 5 to 24 hours for mDCs or DCs 

treated with alginate films.  

 

 

Figure 4-7: Activation of NF-κB (subunit of p50) upon DC treatment with biomaterials as a 
function of time (5 and 24 hours).  
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For both time points, all biomaterial treatments do not show significant difference each other.  
While no significantly different level was observed between treatments, agarose induced 
significantly higher level than iDCs after 24 hours and alginate induced significantly higher level 
after 24 hours compared to that after 5 hours. Dendritic cells treated with HA exhibited in levels 
that are not detectable for both time points. Ratios to the iDCs are shown with mean±SD, n=6 

donors (6 independent experiments with different donors). ★: p ≤ 0.05, compared to iDCs and 
higher than iDC; ☆: p ≤ 0.05, compared to iDCs and lower than iDC. For statistical comparisons 
between 5 and 24 hours within a same treatment, one-sided Student t-test was also used. Brackets: 
p ≤ 0.05, statistically different between 5 and 24 hours of biomaterial treatments for a same 
treatment; N.D.: not detectable. 

 

DCs treated with PLGA, chitosan, alginate, or HA films underwent apoptosis at a level 

significantly higher than iDCs, whereas DCs treated with agarose films were similar to iDCs 

 Apoptosis or necrosis of DCs upon 24 hour treatment with different biomaterial films 

was measured using flow cytometry analysis of DCs stained with Annexin V (apoptosis) and 

propidium iodide (PI) (necrosis).  Mature DCs and DCs treated with PLGA films showed 

significantly higher staining levels of Annexin V, whereas DCs treated with agarose films does 

not show significantly different level, as compared to iDCs (Figure 4-8).  Unexpectedly, DC 

treatment with HA films induced significantly higher levels of apoptosis compared to iDCs and 

DC treatment with chitosan, alginate, or HA films induced significantly higher levels of apoptosis 

than mDCs or DCs treated with agarose films.  Only alginate films induced DC necrosis in 

levels significantly higher than iDCs while mDCs or other biomaterial treatments did not induce 

significantly different levels of necrosis in DCs as compared to iDCs.  The staining levels of 

Annexin V and PI of DCs treated with clinical grade biomaterial films also showed very similar 

results as for DCs treated with research grade films (Figure A3, APPENDIX). 
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Figure 4-8: Geometric mean fluorescence intensity (gMFI) of flow cytometry analysis of 
Annexin V and propidium iodide (PI) expression in differential levels upon DCs treated 
with different biomaterial films.  
Dendritic cells treated with PLGA, chitosan, or alginate exhibited Annexin V expressions in 
higher levels than iDC. However, DCs treated with HA unexpectedly exhibited Annexin V 
expression in higher level than iDCs. Only agarose induced levels similar to iDCs for both 
Annexin V and PI. Ratios to the iDCs are shown with mean±SD, n=9 donors (9 independent 

experiments with different donors).★: p ≤ 0.05, compared to iDCs and higher than iDC; ☆: p ≤ 
0.05, compared to iDCs and lower than iDC; Brackets: p ≤ 0.05, statistically different between 
two biomaterial treatments. 

 

Dendritic cells treated with agarose films showed endocytic ability in level similar to that of iDCs 

while all other biomaterial films induced levels significantly less than iDCs 

To measure the endocytic ability of DCs upon treatment with different biomaterial films, 

DCs treated with biomaterial films were co-incubated with FITC-conjugated dextran and then, 

the intensity of FITC uptaken by DCs was measured using flow cytometry.  In accordance with 

the documented result that lower levels of endocytic activity are associated with DC maturation 

(Schnurr et al., 2001), the studies here showed that mDC, or DCs treated with PLGA or chitosan 

films induced significantly lower levels of endocytic ability while the endocytic activity of DCs 
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treated with was not significantly affected, as compared to iDCs (Figure 4-9).  Treatment of DCs 

with agarose films actually induced a higher level of endocytic ability than observed for mDCs 

and DCs treated with all other biomaterials films except for alginate.  Similarly, treatment of 

DCs with alginate films induced a higher level of endocytic ability than observed for mDCs and 

DCs treated with all other biomaterials films except for agarose.  However, DC treatment with 

HA films unexpectedly induced endocytic ability that was at a significantly lower level than for 

iDCs, or DCs treated with alginate or agarose films. 

 

 
Figure 4-9: Geometric mean fluorescence intensity (gMFI) of flow cytometry analysis of 
FITC-dextran uptake by DCs in differential levels upon DCs treated with different 
biomaterial films. 
Dendritic cells treated with PLGA, chitosan, or alginate which induced DC maturation 
significantly higher than iDCs exhibited endocytic ability significantly less than iDCs. 
Unexpectedly, HA induced the endocytic ability significantly less than iDC. Only agarose 
induced the endocytic ability similar to iDCs. Ratios to the iDCs are shown with mean±SD, n=6 

donors (6 independent experiments with different donors). ★: p ≤ 0.05, compared to iDCs and 
higher than iDCs; ☆: p ≤ 0.05, compared to iDCs and lower than iDCs; Brackets: p ≤ 0.05, 
statistically different between two biomaterial treatments. 

 

Dendritic cells treated with HA films induced lower levels of expression of endocytic and 

migration receptors  
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 To provide explanation of the functional changes in DC phenotype upon treatment with 

different biomaterial films, expression levels of endocytic receptors, CD32 (Fcγ Type II) and 

CD206 (mannose receptor) and migration receptors, CD44, were examined by flow cytometry 

(Figure 4-10).  Both CD32 and CD206 expression on DCs upon treatment with different 

biomaterial films showed patterns in accordance with those of the endocytic ability shown in 

Figure 4-9.  Even though the CD44 is well known for receptor specific to the hyaluronan 

component in the extracellular matrix (ECM) for migration of DCs, the HA films in this study 

induced significantly lower level of expression than iDCs or DCs treated with other biomaterial 

films.  For instance, mDCs or DCs treated with PLGA films expressed CD44 in significantly 

higher levels than DCs treated with alginate, HA, or agarose films while DCs treated with 

chitosan films expressed significantly higher levels only compared to DCs treated with HA films. 

 

 
Figure 4-10: Geometric mean fluorescence intensity (gMFI) of flow cytometry analysis of 
CD32, CD206, and CD44 expression in differential levels upon DCs treated with different 
biomaterial films.  
As expected from the measurement of endocytic ability, only agarose induced CD32 or CD206 
expression levels higher than or similar to iDCs, whereas other all biomaterial treatments induced 
those lower than iDCs. Unexpectedly, DCs treated with HA exhibited CD 44 expression level 
significantly lower than iDCs even though CD44 is specific to hyaluronan component in ECM. 
Ratios to the iDCs are shown with mean±SD, n=6 donors (6 independent experiments with 
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different donors). ★: p ≤ 0.05, compared to iDCs and higher than iDC; ☆: p ≤ 0.05, compared 
to iDCs and lower than iDC; Brackets: p ≤ 0.05, statistically different between two biomaterial 
treatments. 

 

DISCUSSION: 

The purpose of this research was to assess the differential effects on DC maturation of 

different biomaterials used in combination products, particularly focusing on immunobiological 

functional assessment of differentially treated DCs.  Results indicate that PLGA or chitosan 

films supported higher levels of DC maturation as compared to iDCs as shown in Figure 4-11.  

Agarose or alginate film supported moderate levels of DC maturation while DC maturation was 

inhibited by HA film which is cross-linked and insolublized.  Unexpectedly, PLGA or chitosan, 

while supporting DC maturation, did not induce significantly higher levels of the transcription 

factor, NF-κB (subunit of p50) activation as compared to iDCs.  Hyaluronic acid (HA) film 

(cross-linked and insolublized form) interestingly induced lower expression of CD44, higher 

apoptosis level, and lower endocytic ability of DCs, as compared to iDCs. 

 
Figure 4-11: Schematic representation of effects of biomaterials in 2-dimensional film forms 
on human monocyte-derived DCs. Agarose or alginate film supported moderate levels of DC 
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maturation while DC maturation was inhibited by HA film which is cross-linked and insolublized. 

 

Since the surface chemistry of a biomaterial can be a strong director of cellular 

interactions and the expected chemistry can be modulated due to biomaterial processing 

conditions, the chemical compositions of all biomaterial film surfaces were determined by XPS.  

The film processing induced a change in surface chemistry of the biomaterials as indicated by 

increasing amounts of carbon upon film formation and cross-linking procedure while those of 

oxygen decreased, compared to the theoretical values (Table 1 and 2).  It is estimated that 

unknown contaminants were introduced (e.g. hydrocarbons) or gas (e.g., CO2) were adsorbed 

from the environment during the film forming process (Tam et al., 2005).  It is also estimated 

that the hydrophilic sites of biomaterial molecules were rearranged towards the inside of 

biomaterial films due to the gradient of evaporation rate of distilled water or solvents during the 

film formation (Bu et al., 2002).  After the cross-linking procedure, only alginate films showed 

introduction of chlorine (1.4±0.1%) presumably due to residual CaCl2 cross-linking reagent on 

the film surface.  However, XPS low resolution spectra for all other biomaterial films did not 

indicated presence of residual cross-linking agents on their surface. 

Dendritic cell follows a similar linage (derived from the monocyte) as macrophage and 

both cell types have been known to up-regulate similar sets of genes in response to pathogens, as 

such they share similarity on more than 96% of basal gene expression (Foti et al., 2006).  

Macrophages easily interact with proteins adsorbed on the hydrophobic surface of biomaterials 

such that many studies on effects of macrophages on immune responses have been performed on 

macrophages adherent to surfaces of biomaterials (Collier and Anderson, 2002; Shen and Horbett, 

2001; Shen et al., 2004; Nathan, 1987). 

The adhesion stability of protein adsorbed on different surface chemistries with different 
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hydrophobicities has been shown with the highest level on the hydrophobic surface followed by 

the next highest one on the cationic surface (e.g., hydrophobic surface > cationic surface > neutral 

surface > anionic surface) under the physiological pH (Fraaye et al., 1986; Brash, 1983; Young et 

al., 1988).  Among all biomaterials examined in this study, PLGA has been recognized for an 

hydrophobic biomaterial showing good biocompatibility because its degradation products are 

biocompatible (Ignatius and Claes, 1996).  However, PLGA has also been used as an adjuvant 

inducing immunogenicity for the delivery of vaccines (Ertl et al., 1996), often in the form of 

microparticles, due to the phagocytosis effects (Ohagan et al., 1993).  In addition, chitosan is 

another hydrophobic biomaterial of natural polysaccharides having carbohydrate units which are 

mainly composed of glucosamine with a high cationic charge density (Chandy and Sharma, 1990; 

Tangpasuthadol et al., 2003; Li and Tuan, 2005).  After 24 hour-treatment of DCs with 

biomaterial films, non-/loosely-adherent DC portion collected from PLGA film was observed 

with the least amount of 37±15% among all biomaterial films used in this study, followed by the 

next least one of 65±13% obtained from chitosan film as mentioned earlier in the method section.  

Furthermore, CD44, a functional marker expressed on DCs for migration also was induced by 

PLGA or chitosan films in significantly higher levels than iDCs.  These indicate that, during 24 

hour-treatment of DCs with these films, protein adsorption on these biomaterial films and 

consequent adhesion of cells to those protein adsorbed might be induced in higher levels 

compared to other biomaterial films or iDC control. 

Overall, these two biomaterial films induced DC phenotypical changes in DC maturation 

in significantly higher levels compared to the negative control of iDCs for most assessments.  

Moreover, PLGA was found, in the absence of carbohydrate unit recognizable by PRRs on DCs, 

as the most potent stimulus (among all biomaterial examined herein) induced DC maturation in 

levels similar to the positive control of mDCs in the most examinations performed in this study.  
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Taken together, even though non-/loosely-adherent DCs were mainly examined herein, 

hydrophobicity or cationic charges of PLGA or chitosan film employed here might be involved in 

induction of DC maturation, at least, in various assessments performed in this study. 

Dendritic cells showed upregulation in CD86 expression only when treated directly with 

biomaterials (Yoshida and Babensee, 2004).  This indicates that DC maturation or 

allostimulatory capacity of DC can be partially caused by certain interactions between DCs and 

proteins adsorbed on biomaterial surfaces even though DCs are loosely adherent to protein-coated 

biomaterial surfaces.  Dendritic cells recognize pathogens through conserved structures, 

uniquely characteristic of microbial pathogens, through their cognate binding receptors resulting 

in their maturation such that they become efficient antigen presenting cells (Janeway and 

Medzhitov, 1998).  Considering these critical roles of the receptors in DC response against 

foreign bodies, PRRs of DC might play a key role in the interaction between DCs and 

biomaterials. 

Chitosan consists of N-acetyl-D-glucosamine units (GlcNAc), which can interact with 

macrophage mannose receptor for mannose- and GlcNAc-glycoproteins (Warr, 1980; Hitchen et 

al., 1998), inducing brisk inflammatory responses (Hidaka et al., 1999; Feng et al., 2004; 

Crompton et al., 2006).  Chitin (acetylated chitosan) also induced accumulation of innate 

immune cells such as eosinophils and basophils and mediated alternative macrophage activation, 

independently with tissue specificity of mice (Reese et al., 2007). 

 Moreover, using the murine macrophages, it has been recently reported that chitin or 

chitosan is directly recognized by the macrophage mannose receptor and this receptor-mediated 

stimulation induces an expression of MHC class I and II molecules, and macrophage 

inflammatory protein (MIP)-2 as well as a release of TNF-α and IL-1β (Feng et al., 2004; Mori et 

al., 2005).  The mannose receptor is a representative C-type lectin which is one family of PRRs, 
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expressed on both macrophages and DCs and its specificities of ligand and function are identical 

for both cell types (Figdor et al., 2002).  The chitosan film tested in this study supported DC 

maturation especially in terms of pro-inflammatory cytokine (TNF-α and IL-6) secretion wherein 

it showed the highest average values amongst the biomaterials.  Thus, it is conceivable that DC 

maturation may be controlled by hydrophobicity of biomaterial surfaces and/or inherent 

chemistries of biomaterials, which can be recognized by specific receptors such as PRRs 

expressed on DCs. 

Alginate molecules are linear block copolymers of mannuronic acids and guluronic acids 

with a variation in composition and sequential arrangements.  Due to its hydrophilic nature, 

alginate has been employed as a hydrogel, which is beneficial to minimize the protein adsorption 

and cell adhesion (de Vos et al., 2002).  Also, microencapsulation technique using alginate has 

been proposed for immunoisolation of transplanted islet from the host immune responses (Weber 

et al., 1999; Black et al., 2006).  However, secretion of IL-1, IL-6, and TNF-α has been induced 

upon treatment of human monocyte-derived macrophages with the poly-mannuronic acid 

obtained from alginates (Otterlei et al., 1991) and CD14 expressed on the macrophages has been 

reported for its critical role in binding to the mannuronic acid and stimulating the macrophages to 

release those cytokines (Espevik et al., 1993).  More recently, TLR-2 and TLR-4 in association 

with CD14 have been reported for their critical roles in inducing secretion of IL-1α, IL-1β, IL-6, 

and TNF-α from human macrophages or murine macrophages in contact with mannuronic acid 

polymers or alginates (Flo et al., 2002; Iwamoto et al., 2005; Orive et al., 2005).  In accordance 

with these, in the present study herein, alginate with a high content of mannuronic acid induced a 

secretion of TNF-α and IL-6 by DCs in levels significantly higher than iDCs.  Thus, it is also 

conceivable that the alginate with a high content of mannuronic acid may interact with the TLRs, 

associated with CD14, expressed on human DCs, to modulate their function. 
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In contrast to chitosan and alginate, agarose does not have a specific carbohydrate 

composition which is recognized by the PRRs expressed on DCs and elicited minimal DC 

maturation in the system used here.  Due to its non-inflammatory feature, agarose has been 

employed in the agarose gel immunodiffusion (AGID) assay for the serological infection 

diagnosis (Kustritz, 2000) or used as a plate in assessment of chemokinetic behavior of 

inflammatory lung macrophages (Newtonnash et al., 1990).  For most assessments of DC 

maturation in this study, agarose films induced DC maturation in levels statistically similar to 

iDCs.  However, for measurement of activation of transcription factor NF-κB, subunit of p50, 

DC treatment with agarose films induced significantly higher levels compared to iDCs after 24 

hours’ treatment of iDCs with agarose films.  As suggested by our previous studies (Yoshida and 

Babensee, 2006), twenty four hours of treatment may be too long to observe NF-κB activation of 

DCs treated with hydrophobic PLGA because it may possibly have already peaked and declined.  

However, as shown in Figure 4-7, DC treatment with PLGA or agarose films induced lower levels 

of activation of the subunit of p50 at the time point of 5 hours and higher levels at the time point 

of 24 hours, thereby showing a same trend of increasing levels overtime.  Furthermore, DC 

treated with PLGA films did not induced significantly higher levels of p50 than DC treatment 

with agarose films at both time points.  

Agarose is composed of repeating β-D-galactopyranosyl and 3,6-anhydro-α-L-

galactopyranosyl units that show very hydrophilic nature due to high content of hydroxyl (OH) 

end groups.  The content of water is estimated as 97% (3% of agarose) after the film formation, 

assuming the water content at dissolving the agarose retained but exact determinations are not 

possible (Yoshida and Babensee, 2006).  Consistently, the lack of maturation effect observed for 

DCs treated with agarose films was not surprising, given its hydrophilicity and presumably low 

protein adsorption and/or the absence of the carbohydrate component recognizable by DC PRRs 
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that result in an consistent but opposite basis for explaining the mechanism of DC response as 

compared to treatment with PLGA or chitosan films as discussed above. 

Interestingly, DC treatment with HA films induced significantly lower levels of DC 

maturation than iDCs, actually suppressing the DC maturation for all assessments in the present 

study herein.  Hyaluronic acid is a negatively charged high molecular weight glycosaminoglycan, 

which is ubiquitously distributed throughout our body.  For instance, high molecular weight HA, 

exactly in a hydrogel form, plays a critical role as a lubricant in the joints.  As such, HA is very 

hydrophilic taking up water to 1000-fold of its own weight.  In the present study, HA film was 

cross-linked for treatment of DCs.  After cross-linked, compared to other biomaterial films used 

here, HA film showed the highest ratio of swelling with water, expanding by 2~3 fold of the size 

of its dried film, and had very slippery surfaces after swelled with water.  Actually, soluble 

fragments of HA have been reported to support DC maturation (Termeer et al., 2000; Yang et al., 

2002a).  However, high molecular weight HA fragments (6,000 kDa) induced a decreased level 

of TNF-α secretion, by specifically inhibiting TLR-2 signaling, from murine macrophages 

transfected with human TLR-2, as compared to the low molecular weight HA fragments (200 

kDa) (Scheibner et al., 2006).  It has also been reported that hydrophilic and anionic surfaces of 

biomaterials promote an increased anti-inflammatory response and decreased pro-inflammatory 

response by dictating selective cytokine production by human monocytes and macrophages 

(Brodbeck et al., 2002) or mouse macrophages (Ademovic et al., 2006).  Surface chemistries of 

biomaterials can determine properties such as conformation of adsorbed proteins on biomaterials 

and dictate activation of macrophage and neutrophils, associated with cytokines secreted 

depending on biomaterials.  In accordance with this, treatment of DCs with the negatively 

charged and hydrophilic surfaces of cross-linked HA films in the present study actually inhibited 

human DC maturation for all assessments performed here, contrary to DC treatment with 
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positively-charged chitosan films.  However, except for non-detectable levels of the activation of 

p50 for DCs treated with HA films were not significantly different among all biomaterial 

treatments for each time course of 5 or 24 hours as shown in Figure 4-7. 

Currently in our laboratory, efforts are being made to assess NF-κB activation in TLR4-

expressing HEK293 cells upon treatments with PLGA or agarose films for 5 or 24 hours.  And, 

in TLR4-expressing HEK293s, PLGA or agarose film treatments do not activate NF-κB at 5 or 24 

hours while LPS treatment activates NF-κB at both time points (T.H. Rogers and J.E. Babensee, 

unpublished observations).  These results collectively support independency of NF-κB 

activation from DC maturation mechanisms as suggested previously (Ouaaz et al., 2002; Zeyda et 

al., 2005).  These also indicate, to further understand DC maturation upon treatment with 

different biomaterials, that it might be needed to assess other signal pathways such as 

transcription factor AP-1 for additional mechanisms behind the induced DC maturation and the 

time courses of the activation of these transcription factors in response to biomaterials. 

Apoptosis of DCs was unexpectedly induced in higher levels, as compared to iDCs, by 

treatment with HA films in this study while most of all other measurements revealed, upon DC 

treatment with HA films, DC maturation levels were even lower than iDCs.  Endocytic ability of 

DCs treated with HA films also unexpectedly resulted in levels that were lower than for iDCs.  

Antigen presentation by DCs to antigen-specific T cells is a successive step to antigen uptake and 

migration of DCs.  CD32 (Fcγ Type II) or CD206 (mannose receptor) are well known for their 

important roles of mediating endocytosis by DCs and it has been reported that these receptors on 

iDCs or dexamethasone-treated DCs were necessary for higher efficiency in antigen uptake, 

which is up-regulated more than for mDCs or DCs treated with ultraviolet B radiation (Piemonti 

et al., 1999; Sallusto et al., 1995; Mizuno et al., 2004).  CD44 has been well known as a potent 

receptor expressed on DCs to mediate DC cluster, migration, and maturation upon interaction 
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with the hyaluronan components in the ECM (Weiss et al., 1997; Termeer et al., 2001).  This 

receptor has been extensively studied in vitro or in vivo with interactions of soluble fragments of 

low molecular weight HA (≤ 200,000 Da) that enhanced DC clustering, migration and/or 

maturation (Weiss et al., 1997; Termeer et al., 2000; Termeer et al., 2001; Do et al., 2004).  

Particularly, interaction of CD44 with intermediate-sized HA (MW ~ 200,000 Da) has been 

reported to induce apoptosis of DCs through nitric oxide (NO) production by DCs when tumor 

cells were involved (Yang et al., 2002b).  Also, it has been suggested that endocytosis by 

Langerhans cell-like DCs were deeply related with an increased migration activity of these DCs 

(Mizuno et al., 2004). 

However, in the present study, DCs treated with HA films expressed lower levels of 

CD44, higher apoptosis level, and lower endocytic ability than iDCs and were associated with 

levels of DC maturation which were less than iDCs.  It is conceivable that insolublized (cross-

linked) film forms processed with high molecular weight (≥ 800,000 MW) HA in this study might 

induce these peculiar effects on DCs as seen in CD44 expression, endocytic ability, and apoptosis 

that would direct DC behaviors in immune responses.  Interestingly, patterns of CD44 

expression were very similar to those of co-stimulatory molecule expression (Figure 4-4) or MLR 

(Figure 4-5) results as far as differential DC maturation upon DC treatment with different 

biomaterial films.  Thus, these features induced by HA films in this study are expected to 

provide a therapeutic tool of HA film-mediated immunosuppression, associated with apoptosis of 

immune cells, in disease situations (Pope, 2002; You et al., 2008) which will require in vivo 

validation. 

The extents of marker expression were different between the research grade and clinical 

grade biomaterials as shown in Figure 4-4.  Upon DC activation and TCR engagement by 

peptide-MHC class II molecules such as HLA-DQ or HLA-DR, co-stimulatory surface molecules 
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on DCs increase in their expression levels to effectively stimulate T cells.  For instance, B7 

family molecules of CD80 and CD86 are expressed on DCs and interact with CD28 expressed on 

T cells while CD40 expressed on DCs does with CD40 ligand (CD40L) on T cells.  At the same 

time, CD83, specific marker for DC maturation, is also expressed on DCs depending on 

maturation extent.  So, it is conceivable that difference between the research and clinical grades 

(e.g., purification in the biomaterial processing) might affect differential expression of specific 

markers on DCs with differential maturation extents in the context of biomaterial treatment.  

However, in consideration of overall results of DC treatment with the clinical grade biomaterials 

as shown in Appendix (examination of cytospin, MLR, or annexin V/PI staining upon DC 

treatment with the clinical grade biomaterials) as well as surface marker expressions, DC 

responses to the clinical grade biomaterials were indistinguishable from their responses to the 

research grade biomaterials.  Five different biomaterials commonly used and relevant to 

combination products such as tissue engineered constructs or vaccine delivery systems were used 

to fully characterize DC immunological phenotype upon treatment with these biomaterials.  

Different biomaterials had differential effects on DC maturation wherein PLGA or chitosan films 

induced DC maturation, alginate or agarose films did not and HA films inhibited DC maturation.  

The biomaterial films used herein have different chemistries and properties among them but it 

was not possible to elucidate the specific key biomaterial property(ies) that have resulted in these 

observed differential effects on DC maturation.  More controlled systems for varying 

biomaterial properties in a controlled manner are more amenable to elucidating critical 

biomaterial properties for controlling DC response with the view to directing immune responses 

(Yang et al., 2008; Kohn et al., 2007). 

The strength of the study described herein is the assessment and comparison of DC 

responses to biomaterials so widely and commonly used in combination products.  An 
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understanding of DC maturation as predictive of a biomaterial adjuvant effect can suggest 

selection or design criteria for biomaterials in applications of tissue engineering or vaccine/drug 

delivery with associated immune responses.  For example, ex vivo culture and adoptive transfer 

regimes in which DCs would be treated with PLGA films or HA films would be useful potentially 

inducing cancer immunity or tolerance, respectively. 
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CHAPTER 5† 

DIFFERENTIAL FUNCTIONAL EFFECTS OF BIOMATERIALS ON 
DENDRITIC CELL MATURATION. PART 2. EFFECTS OF BIOMATERIALS IN 

3-DIMENSIONAL SCAFFOLD FORM 

 

INTRODUCTION: 

Since tissue engineering has been recognized as a promising alternative for restoring 

damaged or diseased tissues (Freed et al., 1999; Freed et al., 1993; Temenoff and Mikos, 2000; 

Timmins et al., 2007), 3-D scaffolds in porous form have been extensively developed for 

requirement in tissue engineering to support cellular adherence and delivery as well as to 

facilitate the transport of nutrients and metabolic wastes, thereby fostering the formation of new 

extracellular matrix and tissue ingrowth (Agrawal and Ray, 2001; Hu et al., 2002; Wang et al., 

2008).  When biomaterials are selected or designed for use in tissue engineered combination 

products as scaffolds/carriers, consideration of the biomaterial-adjuvant effect should be taken 

into account to minimize any enhancement of an adaptive immune response to the associated 

biological component (Bennewitz and Babensee, 2005; Ertl et al., 1996; Li and Tuan, 2005).  

Clearly from a tissue engineering point of view, immune responses are to be minimized or all 

together avoided while DNA or protein-based vaccines seek to initiate and enhance a protective 

immune response. 

Adjuvants function in enhancing an immune response by interacting with antigen 

presenting cells, most notably, DCs during an innate immune response, to induce their maturation 

such that they become efficient at presenting antigen for effective stimulation of T cells for an 

adaptive immune response (Cox and Coulter, 1997; Singh and O'Hagan, 1999). 

                                            
† A manuscript prepared from this Chapter 5, titled as ‘In vitro control of dendritic cell phenotypes in 3-

dimensional scaffolds for tissue engineering’, is to be submitted to Biomaterials. 
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Functional changes associated with DC maturation include acquiring enhanced expression 

of major histocompatibility (MHC) class I and II molecules and co-stimulatory molecules, with 

the effect of increased stimulation of T cell proliferation in an allostimulatory mixed lymphocyte 

reaction (MLR), DC morphologies and release of immunomodulatory cytokines (Banchereau and 

Steinman, 1998; Matzinger, 1994; Sallusto et al., 1995; Tsuji et al., 2000; Mellman and Steinman, 

2001).  Dendritic cells have also been proposed to be modulated in their maturation levels upon 

contact with different biomaterials in 2-dimensional film form (Yoshida and Babensee, 2004; 

Babensee and Paranjpe, 2005; Park and Babensee, 2009).  Upon interaction between DCs and T 

cells, the resultant immunity can be polarized toward either T helper (Th) type 1 or T helper (Th) 

type 2 depending on the various cytokines released from DCs or T cells (Moser and Murphy, 

2000; Kapsenberg, 2003).  In this way, the adaptive immunity can be modulated into 

immunogenicity or tolerogenicity (Lanzavecchia and Sallusto, 2001; Sakaguchi, 2005). 

Three-dimensional scaffold form has been frequently employed in the studies of tissue 

engineering or drug delivery due to their exceptional properties of supporting tissue regeneration 

combined with controllable degradation by physical and/or chemical treatment.  Furthermore, 

efforts have been recently made to develop a strategy for localization or migration of immune 

cells using biomaterial scaffolds, to control adaptive immunity more effectively (Stachowiak and 

Irvine, 2008; Suematsu and Watanabe, 2004; Okamoto et al., 2007).  However, effects of 

different biomaterials in 3-D scaffold form on human monocyte-derived DCs have not been fully 

understood yet, which should be of great worth as preliminary examinations that are believed to 

provide valuable information correlated with immunomodulatory effects of 3-D porous scaffolds 

of these biomaterials in future in vivo applications. 

Herein, using 3-D scaffolds processed from two inherently different biomaterials (PLGA 

or agarose) that showed opposite effects of their film form on DC maturation or autologous T cell 
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phenotype and polarization (in the Chapter 6), we extend our previous studies (in the Chapter 4) 

to characterize the effect of contact with 3-D porous scaffolds on the maturation of human 

monocyte-derived DC using a variety of assays.  We also examined the release of cytokines and 

chemokines that have been recognized as their important roles in host response of the general 

pathology upon in vitro contact of DCs with biomaterial scaffolds.  Dendritic cells treated with 

PLGA scaffolds support high levels of DC maturation in phenotypical changes while treatment 

with agarose scaffolds results in a DC phenotype similar to the negative control of iDCs.  

Interestingly, in vitro releases of various cytokines and chemokines important for general 

pathology were observed in levels modulated upon DC treatment with different biomaterial 

scaffolds.  An understanding of the mechanism behind effects of the 3-D biomaterial scaffolds 

on DC phenotypical changes is expected to suggest new selection and design criteria for 

biomaterial scaffolds to be used in immunotherapy and tissue engineering. 

 

METHODS: 

Preparation of biomaterial 3-D porous scaffolds 

The biomaterials used for scaffolds include poly(DL-lactic-co-glycolic acid) (PLGA) and 

agarose.  All biomaterial scaffolds were prepared freshly for every experimental procedure.  

Preparation methods of all biomaterial scaffolds were adapted or modified from the previously 

described methods; PLGA scaffolds were prepared by salt-polymer casting particulate-leaching 

technique with NaCl at the leachable component (Mikos et al., 1994) and agarose scaffolds 

prepared by inverted colloidal crystal templating method using polystyrene beads as leachable 

component (Lee et al., 2006).  Briefly, poly(DL-lactic-co-glycolic acid) (PLGA) (ester 

terminated; molar ratio: 75:25, inherent viscosity: 0.70 dL/g in trichloromethane, 100,000 MW; 

Birmingham Polymers, Birmingham, AL) was dissolved with 8.3% w/v in dichloromethane 
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(DCM) overnight at room temperature.  Then, this PLGA/DCM solution was poured over 4.5 g 

NaCl (90-125 μm) in a Teflon dish of 50 mm diameter (Cole-Parmer) in the chemical fume hood.  

After complete mixing PLGA/DCM solution and salts using paper clip, evaporation of the solvent 

(DCM) and drying were performed in the chemical fume hood for 36-48 hours followed by 

leaching salts in ddH2O using shaker for 2 days changing water 3 times.  After leaching salts, 

scaffolds were dried in the tissue culture hood for 24 hours, and freeze-dried overnight.  For 

agarose scaffolds, polystyrene beads with 100 (±1.5%)μm (particle counter size standards, Duke 

Scientific, Palo Alto, CA) were washed 3 times using isopropanol (Sigma), and sonicated in 

isopropanol for 20 minutes followed by evaporation of isopropanol in the oven at 60ºC overnight.  

Then, polystyrene beads in Teflon beaker were sintered in the oven at 120ºC for 4 hours, and the 

crystal templates were prepared.  Agarose (type V; high gelling; gel strength of ≥ 800 g/cm2 at 

1.0%; Sigma; molecular weight is not known) was dissolved in ddH2O to a concentration of 3% 

w/v by heating using a microwave until boiling and visible homogeneity was reached.  Agarose 

solution was applied into the Teflon beaker having polystyrene bead template, and the beaker 

spun at 2,000 rpm for 3 minutes.  After solidification of agarose hydrogel at room temperature, 

polystyrene beads were leached in tetrahydrofuran (THF) (Sigma) using shaker for 2 days 

changing THF 3 times in the chemical fume hood, followed by rinsing agarose scaffolds in 

ddH2O for 30 minutes (3 times) using shaker in the chemical fume hood.  Prepared scaffolds of 

PLGA and agarose were moved into the tissue culture hood, and punched of an appropriate size, 

immersed into 70% EtOH for 30 minutes, and washed for 1 hour in endotoxin free water (LAL 

reagent water, Lonza, Walkersville, MD) changing water every 15 min.  All scaffolds were UV-

sterilized for 30 min per surface of top and bottom in the tissue culture hood prior to use in DC 

cultures.  Endotoxin contents of biomaterial scaffolds were determined using a chromogenic 

Limulus Amebocyte Lysate assay (QCL-1000 Chromogenic LAL Endpoint Assay, Cambrex, 



 

 72

Walkersville, MD).  Endotoxin assays were performed on a smaller piece of scaffold (1.5 mm in 

thickness and 4.5 mm in diameter), which had undergone the same washing and sterilization 

procedures as scaffolds used to treat DCs.  The scaffold pieces were suspended in endotoxin-

free water and endotoxin assay performed.  Standards in tissue culture treated polystyrene wells 

and sample wells of different biomaterials were treated with endotoxin-free water.  Limulus 

amebocyte lysate was added in the presence of biomaterial and incubated for 10 min at 37˚C.  

Chromogenic substrate (Ac-Ile-Glu-Ala-Arg-pNA) was added to each well and incubated for 6 

min.  Glacial acetic acid (25% v/v) (J.T. Baker) was added as a stop solution and the mixture 

was transferred into flat-bottom microplate and the absorbance was measured at 405 nm.  

Endotoxin content in the samples was read off standards generated from endotoxin standards, 

from the manufacturer’s kit.  Each sample was run in triplicate for quantification.  The 

effective endotoxin content (EU/ml) of 1.5 mm-thickness and 4.5 mm-diameter scaffold of PLGA 

was 0.036±0.015 and of agarose was 0.134±0.019.  Previous study has shown that minimum E. 

Coli endotoxin concentration of 100 EU/ml was required for DC maturation (Jotwani et al., 2003).  

 

Dendritic cell culture 

Peripheral human blood was collected from donors with informed consent using heparin 

(333 U/ml blood) (Baxter Healthcare Corporation, Deerfield, IL) as the anticoagulant.  This 

procedure was performed at the Student Health Center Phlebotomy laboratory, in accordance 

with the protocol (#H05012) of Institutional Review Board (IRB) of Georgia Institute of 

Technology.  Dendritic cells were derived from human peripheral blood mononuclear cells 

(PBMCs) using a previously described method with some modifications (Romani et al., 1996).  

Briefly, after the blood collected from the donor, PBMCs were isolated by differential 

centrifugation using the lymphocyte separation medium (Cellgro).  The PBMCs were collected 
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and washed in phosphate buffer saline (PBS), and red blood cells were lysed with buffer [155 

mM NH4Cl, 10 mM KHCO3 (both from Sigma), 0.1 mM EDTA (Gibco)], and remaining cells 

washed again twice with PBS.  Resulting PBMCs were resuspended at a concentration of 5 × 

106 cells/ml in the DC media, which was prepared by filter-sterilizing RPMI-1640 containing 

25mM HEPES [4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid)] and L-glutamine (Gibco, 

Grand Island, NY), supplemented with 10% (v/v) heat inactivated fetal bovine serum (FBS, 

Cellgro MediaTech) and 100U/mL Penicillin/Streptomycin (Cellgro MediaTech).  Cells were 

plated in a volume of 10ml/plate in a 100 × 20 mm tissue culture plate (Primaria, Falcon) and 

incubated for 2 hours in the incubator with 95% relative humidity and 5% CO2 at 37˚C to select 

for adherent monocytes.  After the incubation, plates were washed at least three times using 

warm, fresh DC media to remove non-adherent cells.  The adherent cells were supplied with 10 

mL of fresh, pre-warmed DC media supplemented with granulocyte macrophage colony-

stimulating factor (GM-CSF) (1000 U/ mL) and interleukin-4 (IL-4) (800 U/ mL) (both from 

Peprotech, Rocky Hill, NJ) for 5 days.  On day 5 of culture, loosely adherent and non-adherent 

cells containing iDCs were harvested by centrifugation for 10 min at 1100 rpm and plated at 1.5 x 

106 cells/well in 3 mL/well in DC media supplemented with GM-CSF and IL-4 into 6-well tissue 

culture plate for various treatments.  For DC treatment with biomaterial scaffolds, PLGA or 

agarose scaffolds were placed into wells of 6-well plate with sterilized gaskets (Cole-Parmer) to 

secure the scaffolds and the iDC suspension was applied into each well.  Wells for the negative 

control of iDC remained untreated while wells for the positive control of mature DC (mDC) 

involved addition of 1 ㎍/ml of lipopolysaccharide (LPS) (E. coli 055:B5; Sigma).  For each 

experiment, all scaffolds and controls were included as treatments to allow for comparisons 

between treatments and controls.  DCs were treated with biomaterial scaffolds in an atmosphere 

of 95% relative humidity and 5% CO2 at 37˚C for 24 hours and then, cells or media were 
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analyzed as described below.  Based on the justification made in the Chapter 4, all assessments 

of cells in this study, except morphologies by confocal microscopy, have been performed using 

non-/loosely-adherent cells for DCs for iDCs, mDCs, or DCs treated with different biomaterial 

scaffolds.  

After 24 hours of DC culture on biomaterial scaffolds or controls, non-/loosely-adherent 

DC fraction was gently collected using a pipette and then, adherent DC fraction was removed 

from the culture dishes of controls or biomaterial scaffolds using the pre-warmed cell dissociation 

solution (CDS) (Sigma).  As a result of cell counting by size, the control of iDC or mDC showed 

80 ± 12% or 72 ± 12% of non-/loosely adherent DC population in total DCs (sum of those two 

fractions) present in the cell culture wells, respectively.  The treatments with PLGA or agarose 

scaffold resulted in 29 ± 13% or 65 ± 11% of that, respectively. 

 

Cell surface marker expression 

The levels of surface marker expression were monitored after 24 hours of treatment with 

biomaterial scaffolds, by flow cytometry as per methods described in the literature (Yoshida and 

Babensee, 2004) and compared to controls.  Non-/loosely-adherent cells containing DCs for 

iDCs, mDCs, or DCs treated with different biomaterial scaffolds were collected by centrifugation 

at 1100 rpm for 10 min and suspended in Hank’s HEPES buffer (120 mM NaCl, 10 mM KCl, 10 

mM MgCl2, 10 mM glucose, 30 mM HEPES) (all from Sigma) containing 1% (v/v) human serum 

albumin (HSA) (Calbiochem, Darmstadt, Germany) and 1.5 mM CaCl2 (Sigma).  Cells were 

stained with saturating concentrations of fluorescently conjugated mouse anti-human 

monocloncal antibodies against CD 40 (clone B-B20; IgG1κ), CD80 (clone BB1; IgMκ), CD86 

(clone BU63; IgG1κ) (all from Southern Biotechnology Associates, Birmingham, AL), CD83 

(clone HB15a; IgG2b) (IO Test Immunotech, Marseille, France), HLA-DQ (clone TU169; 
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IgG2aκ), HLA-DR (clone TU36; IgG2aκ), CD44 (clone 515; IgG1κ), or Annexin V (recombinant 

purified protein) (all from BD Pharmingen) for 1 hour at 4˚C in the dark, filtered using 40 μm cell 

strainer (Becton Dickinson, Franklin Lake, NJ) and then, analyzed immediately with 5,000 events 

per sample using a BDLSR flow cytometer (Becton Dickinson).  Only propidium iodide (PI) 

(fluorescent vital dye) (BD Pharmingen) was applied into the sample tube less than a minute 

before scanning in the flow cytometer.  Data was obtained together with the negative control of 

autofluorescence per sample and then, analyzed using FLOWJO version 7.2.5 (Tree Star, Inc. 

Ashland, OR). 

 

Mixed lymphocyte reaction (MLR) 

Allostimulatory capacity of DCs to induce T cell proliferation upon DC treatment with 

different biomaterial scaffolds was assessed as per methods in the literature (Yoshida and 

Babensee, 2004), using an allogeneic mixed lymphocyte reaction (MLR).  After 24 hours of DC 

treatment with biomaterial films, allogenic T cells were isolated from PBMCs by negative 

selection using Pan T-cell magnetic isolation (Miltenyi Biotech, Auburn, CA) according to the 

manufacturer’s protocols.  These cells were used as responder cells. The T cells were 

resuspended in RPMI-1640 with 25 mM HEPES and L-glutamine (Gibco BRL, Carlsbad, CA) 

with 100 U/ml penicillin/streptomycin (Cellgro) and heat-inactivated filter-sterilized (0.22 μm) 

10% (v/v) human AB serum (Biowhittaker, Walkersville, MD)(complete RPMI-10 media) and 

plated at a concentration of 105 cells/well in a 96-well flat-bottomed plate (Corning) in triplicate 

per treatment groups or controls.  Dendritic cells treated with biomaterial scaffolds or controls 

were resuspended at 1.6 × 105 cells/ml, and treated with 25 ㎍/ml mitomycin C (Sigma) for 30 

min to prevent their proliferation.  Upon extensive washing with complete RPMI-10 media, DCs 

were resuspended in complete RPMI-10 media and added to responder cells in triplicate at graded 
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DC:T cell ratios.  Cells were co-cultured for 4 days at 37 °C, with the addition of 10 μΜ 5-

bromo-2-deoxyuridine (BrdU) for the last 24 hours of culture.  Dendritic cell-induced T-cell 

proliferation was measured using BrdU colorimetric cell proliferation ELISA (Roche Applied 

Science, Indianapolis, IN) according to the manufacturer’s directions. 

 

Cytokine and chemokine release 

 The amount of pro-inflammatory cytokine, interleukin-6 (IL-6) produced by DCs in the 

cell culture supernatant after the treatments with biomaterial scaffolds, normalized to DNA 

amount present in the cell culture supernatants were analyzed by ELISAs (R&D systems) 

according to manufacturer’s directions.  In addition, the amount of pro-inflammatory cytokines 

[tumor necrosis factor-α (TNF-α), IL-1β, IL-15, IL-18], chemokines [growth-regulated oncogene-

α (GRO-α), macrophage inflammatory protein-1α (MIP-1α), monocyte chemotactic protein-1 

(MCP-1), IL-8], and anti-inflammatory cytokines [IL-1 receptor antagonist (IL-1ra), IL-10, IL-

16] produced by DCs in the cell culture supernatant after the treatments with biomaterial 

scaffolds, normalized to DNA amount present in the cell culture supernatants were analyzed by 

Bio-Plex sets for human cytokine assays (Bio-Rad, Hercules, CA) according to manufacturer’s 

directions. 

After 24 hours of DC treatment with biomaterial scaffolds or controls, non-/loosely-

adherent DC fraction and cell culture supernatants were collected together and then, cleared by 

centrifugation for 10 minutes at 1,100 rpm.  These cleared supernatants were stored at -20˚C 

until analysis.  Non-/loosely-adherent DC fraction was gently collected using a pipette after 

centrifuge described above and then, adherent DC fraction was removed from the culture dishes 

of controls or biomaterial scaffolds using the pre-warmed cell dissociation solution (CDS) 

(Sigma).  These non-/loosely-adherent DC and adherent DC fractions were combined together 
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per control or treatment and then, DNA quantification was analyzed for whole cell population per 

each control or treatment group using picoGreen dsDNA quantification kit (Invitrogen) per 

manufacturer’s directions.  Amounts of cytokines or chemokines were presented normalized 

against total DNA amounts for each treatment group. 

 

Morphologies of cell or scaffold by confocal microscope or scanning electron microscope (SEM) 

Dendritic cell morphology and distribution into the porous structures of scaffolds were 

examined using Zeiss LSM/NLO 510 Confocal/Multi-Photon Microscope (Zeiss) after cells were 

stained with Calcein AM (Sigma).  On day 6, after 24 hour-treatment with biomaterial scaffolds, 

cell culture media in the well of treatment with scaffolds were aspirated without disturbing cells 

contacting with scaffolds and then, cells were stained with Calcein AM (1 μΜ) added into wells 

having cells/scaffolds for 1 hour at room temperature in the dark.  To obtain morphologies of 

control DCs, non-/loosely-adherent fraction of iDCs or mDCs resuspended in PBS were also 

stained with Calcein AM.  Upon 1 hour-incubation at room temperature for staining, 6-well 

plates having control cells or cells/scaffolds immersed in Calcein AM solution were examined 

using confocal microscopy wherein cell morphologies at horizontal layers along depth of 

scaffolds or distribution in a cross-sectional view were examined after samples were placed on a 

circular slide glass with a holder.  For imaging the porous structure of scaffolds without cells, 

agarose scaffold was cut using a razor and then, the cross-section was observed by auto-

fluorescence of agarose hydrogel using the same confocal microscope above, whereas, after 

frozen in liquid nitrogen, PLGA scaffold was fractured and then, the gold-sputtered cross-section 

was observed using SEM (S-800, Hitachi, Japan) at 10 kV electron beam radiation. 

 

Statistical analysis 
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For statistical analysis, one sided Student t-test was used to compare mDCs or each 

sample group to iDCs (negative control) in pairs.  To observe significant differences between 

mDCs and all sample groups in pairs, the general liner model of two-way ANOVA in pairwise 

was used for a mixed model with repeated measure.  For all statistical methods, the Minitab 

software (Version 14, State College, PA) was used.  If not indicated, p-value less than or equal 

to 0.05 was considered to be significant. 

 

RESULTS: 

Porous structure of agarose scaffold was well patterned while that of PLGA was irregular. 

Morphology of scaffolds used in the study was examined using confocal microscope for 

agarose or SEM for PLGA scaffold (Figure 5-1).  Agarose scaffolds showed well-patterned 

pores combined with interconnected pores that are seen as small black circles inside each of 

bigger pores consistent with the benefits of the crystal templating technique (Figure 5-1b).  As 

expected, the bigger pores of agarose scaffold have approximately 100 μm of diameter almost 

same as the size of leachable component (polystyrene beads).  However, PLGA scaffold showed 

an irregular and non-homogeneous pore structure (Figure 5-1a).  Also, pore sizes of PLGA 

scaffold vary as much as leachable component (NaCl) sizes range from 90 to 125 μm.  

           (a)                          (b) 
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Figure 5-1: PLGA and agarose scaffolds exhibited different morphologies of cross-section.  
While PLGA showed irregular and non-homogeneous pore structure (a), agarose scaffold showed 
well-patterned pores combined with interconnected pores that are seen as small black circles 
inside each of bigger pores (b). All pictures show the cross-section of scaffolds used in this study 
and the PLGA scaffold was observed using SEM (a) while the agarose scaffold was observed 
using a multiphoton confocal microscope (autofluorescence) (b). White scale bars in all images 

indicate 50 μm. 

 

DC treatment with PLGA scaffolds induced activated DC morphologies on the surface or in the 

porous structure of scaffold however, better distribution of DCs into the 3-D porous structure 

was obtained for the agarose scaffold. 

Dendritic cells were treated with different biomaterial scaffolds in 3-D porous form and 

their morphologies were compared with iDCs and mDCs as visualized by the cytoplasmic cell 

viability stain, Calcein (upon intracellular enzymatic cleavage of Calcein AM) and confocal 

microscopy (Figure 5-2).  The DC/scaffold construct was incubated with Calcein AM solution 

after aspirating DC media in each well of the well plate without disturbing the DC/scaffold 

construct.  Both scaffolds showed most concentrated live cell population at the top surface, on 

which cells were cultured for one day, and density of live cells decreased along the depth toward 

the bottom of scaffold (Figure 5-2a and 5-2b).  However, DCs were unexpectedly not distributed 

very well into PLGA scaffold along the depth, whereas DCs were well distributed into the depth 

of agarose scaffolds.  Morphologies of live cells in contact with scaffolds were also examined 

for cells on the top surface or at the depth of 100±10 μm from the top surface of scaffolds 

(Figure 5-2e, 5-2f, 5-2g, 5-2h).  For each biomaterial scaffold, cells exhibited very similar 

morphologies both on the top surface and at 100±10 μm depth.  DC treatment with PLGA 

scaffolds induced activated DC morphologies with extensive dendritic processes (Figure 5-2e and 

5-2g) similar to mDCs (Figure 5-2d), whereas DC treatment with agarose scaffolds resulted in 
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rounded morphologies (Figure 5-2f and 5-2h) similar to iDCs (Figure 5-2c). 

 

 
Figure 5-2: Schematic representations (view of top surface and cross-section of scaffolds) of 
cell distributions into 3-D porous scaffolds and cell morphologies of control DCs or upon 
DC treatment with scaffolds.  
Morphologies of live cells contacting on the top surface or at the depth of 100±10 μm from the 
top surface of scaffolds exhibited differential morphologies upon DCs treated with different 
biomaterial 3-D scaffolds. Similarly to the results obtained from DCs treated with 2-D 
biomaterial films in the Chapter 4, DCs treated with PLGA scaffolds induced activated DC 
morphology with extensive dendritic processes, whereas DC treatment with agarose scaffolds 
resulted in rounded morphology similar to iDCs. Unexpectedly, DCs were not distributed very 
well into PLGA scaffold along the depth, whereas DCs were well distributed into the depth of 
agarose scaffold. All confocal images were obtained on Day 6 (after 24 hour-treatment of DCs 
with biomaterial scaffolds). (a) & (b) depth distribution of cells (cross-sectional view of 
scaffolds) in PLGA & agarose scaffolds, respectively; double-sided arrow indicates an entire 
thickness of each scaffold observed in cross-section (5x). (c) iDCs & (d) mDCs suspended in PBS 
on glass slides (100x; white scale bars indicate 20 μm). (e) & (f) DCs distributed on the top 
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surface of PLGA & agarose scaffolds, respectively (100x; white scale bars indicate 20 μm). (g) & 
(h) DCs distributed at the depth of 100±10 μm from the top surface of PLGA & agarose scaffolds, 
respectively (100x; white scale bars indicate 20 μm). 

 

Dendritic cells treated with PLGA scaffold express higher levels of co-stimulatory, MHC class II 

molecules, and CD44 than iDCs, whereas DCs treated with agarose scaffold express similar level 

with iDCs 

To measure DC maturation upon 24 hour-treatment with different biomaterial scaffolds, 

DCs treated with scaffolds were analyzed by flow cytometry for their surface expression of co-

stimulatory and MHC class II molecules.  As shown in Figure 5-3, DCs treated with PLGA 

scaffold resulted in higher expression levels of CD40, CD80, and CD86, compared to iDCs, 

similar to mDCs.  In addition, only DC treatment with PGLA scaffolds induced HLA-DR 

expression at higher levels compare to iDCs while mDCs or DCs treated with agarose scaffolds 

expressed this surface molecule at levels similar to iDCs.  Dendritic cells treated with agarose 

scaffolds expressed all surface molecules examined in levels similar to iDCs except for CD40 

which resulted in significantly lower levels of expression than iDCs.  Interestingly, these 

patterns of molecule expressions on DCs treated with PLGA or agarose scaffolds are very similar 

to those of DCs treated with PLGA or agarose films, respectively, in the Chapter 4. 

In addition, to further examine functional DC phenotype changes upon DC treatment 

with different biomaterial scaffolds, expression of the DC receptor, CD44, which is associated 

with migration of DCs, was measured using the flow cytometry.  Dendritic cells treated with 

PLGA scaffold expressed CD44 at significantly higher levels compared to iDCs, similar to the 

levels for mDCs.  However, differently from the significantly higher levels of CD44 expression 

on DCs treated with agarose in the film form as compared to iDCs shown in the Chapter 4, DCs 

treated with agarose here in the scaffold form, expressed CD44 levels that is not significantly 
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different from iDCs. 

 

 

Figure 5-3: Geometric mean fluorescence intensity (gMFI) of flow cytometry analysis on co-
stimulatory, MHC class II, and other functional (DC migration) molecules of CD44 on DCs 
treated with biomaterial scaffolds (PLGA or agarose). 
Similarly to the results obtained from DCs treated with 2-D biomaterial films in the Chapter 4, 
PLGA scaffold induced significantly higher levels of maturation marker or CD44 expression 
compared to iDCs, whereas agarose scaffold induced expression levels of these markers at levels 
similar to iDCs. Ratios to the iDCs are shown with mean±SD, n=6 donors (6 independent 

experiments with different donors). ★: p ≤ 0.05, compared to iDCs and higher than iDC; ☆: p ≤ 
0.05, compared to iDCs and lower than iDC; Brackets: p ≤ 0.05, statistically different between 
two biomaterial treatments. 

 

Dendritic cells treated with PLGA scaffold support the allostimulatory T cell proliferation 

Allostimulatory capacities of DCs treated with the different biomaterial scaffolds were 

assessed using an MLR as compared to the controls (Figure 5-4).  Mature DCs supported a high 

level of T cell proliferation as compared to iDCs.  For all ratios of DCs:T cells, DCs treated with 

PLGA scaffolds supported allostimulatory T cell proliferation to a significantly higher extent than 

iDCs, similar to mDCs, whereas DC treated with agarose scaffolds supported T cell proliferation 

in levels similar to iDCs.  The DC:T cell ratios of 1:6.25 or 1:12.5 induced significant difference 
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between DCs treated with agarose scaffold and mDCs or DCs treated with PLGA scaffold while 

more T cells (1:25) did not.  Interestingly, the allostimulatory capacity of DCs treated with 

PLGA or agarose scaffolds also resulted in patterns very similar to those of DCs treated with 

PLGA or agarose films for different DC:T cell ratios in the Chapter 4. 

 

 

Figure 5-4: Allostimulatory capacities in Mixed Lymphocyte Reaction (MLR) in differential 
levels upon DCs treated with biomaterial scaffolds (PLGA or agarose).  
Similarly to the results obtained from DCs treated with 2-D biomaterial films in the Chapter 4, 
DC treatment with PLGA scaffolds supported allogeneic T cell proliferation at levels 
significantly higher than iDCs, whereas treatment with agarose scaffolds resulted T cell 
proliferation levels similar to iDCs. Ratios to the iDCs are shown with mean±SD, n=6 donors (6 

independent experiments with different donors). ★: p ≤ 0.05, compared to iDCs and higher than 
iDC; ☆: p ≤ 0.05, compared to iDCs and lower than iDC; Brackets: p ≤ 0.05, statistically 
different between two biomaterial treatments. 

 

Level of pro-inflammatory or anti-inflammatory cytokines and chemokines were modulated 

depending on different biomaterial scaffolds used to treat DC in vitro. 

Pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-15, IL-18), chemokines (GRO-α, 

MIP-1α, MCP-1, IL-8), and anti-inflammatory cytokines (IL-1ra, IL-10, IL-16) release into the 

supernatant were measured using ELISA or Bio-Plex to assess in vitro effect of biomaterial 3-D 

porous scaffolds on DC phenotype.  Most pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-
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18) were released in significantly higher levels by DCs treated with PLGA scaffolds compared to 

treatment with agarose scaffolds (Figure 5-5a).  However, one anomaly was the release of the 

pro-inflammatory cytokine, IL-15, which was released at significantly higher levels for DCs 

treated with agarose scaffolds as compared to treatment with PLGA scaffolds.  Dendritic cells 

treated with PLGA scaffold secreted chemokines of GRO-α, MIP-1α, and IL-8 at levels 

significantly higher than for DCs treated with agarose scaffolds (Figure 5-5b).  Again, there was 

one anomaly wherein MCP-1 was released at significantly higher levels for DCs treated with 

agarose scaffolds as compared to treatment with PLGA scaffolds.  As far as release of anti-

inflammatory cytokines, DCs treated with agarose scaffolds secreted significantly higher levels of 

IL-1ra and IL-16 as compared to mDC or DCs treated with PLGA scaffolds (Figure 5-5c).  

However for the release of the anti-inflammatory cytokine, IL-10, its release was greater for 

mDCs or DCs treated PLGA scaffolds as compared to the levels for DCs treated with agarose 

scaffolds (Figure 5-5c). 

 

 

(a) 
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(b) 

 

 

(c) 

 
Figure 5-5: Differential levels of pro-inflammatory cytokine (a), chemokine (b), & anti-
inflammatory cytokine (c) release upon DC treatment with biomaterial scaffolds (PLGA or 
agarose).  
Release of cytokines or chemokines tested in this study was differentially modulated depending 
on the type of scaffold used to treat DCs. Most pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, 
IL-18) were released at significantly higher levels by DCs treated with PLGA scaffold as 
compared to DCs treated with agarose scaffolds.  Most anti-inflammatory cytokines (IL-1ra, IL-
16) were released at significantly higher levels by DCs treated with agarose scaffolds as 
compared to DCs treated with PLGA scaffolds. There were a couple of anomalies however.  
Cytokines or chemokines from each treatment group for each donor was normalized to DNA 
amount and then, ratios to the iDCs are shown with mean±SD, n=6 donors (6 independent 

experiments with different donors). ★: p ≤ 0.05, compared to iDCs and higher than iDC; ☆: p ≤ 
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0.05, compared to iDCs and lower than iDC; Brackets: p ≤ 0.05, statistically different between 
two biomaterial treatments. 

 

DISCUSSION: 

The purpose of this research was to assess the differential effects of DC treatment with 3-D 

porous biomaterial scaffolds prepared from different biomaterials on resultant DC phenotype.  

Similar to the results observed in the Chapter 4 using different 2-D biomaterial films, DC 

phenotypes were differentially modulated by treatment with PLGA or agarose scaffolds in porous 

3-D form as shown in Figure 5-6.  For instance, PLGA scaffold induced DC maturation at 

significantly higher levels of phenotypical changes of DCs in most assessments, as compared to 

iDCs, while DCs treated with agarose scaffolds demonstrated similar phenotypes to iDCs as 

shown in Figure 5-2, 5-3, and 5-4. 

 
Figure 5-6: Schematic representation of effects of biomaterials in 3-dimensional scaffold 
forms on human monocyte-derived DCs. 
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Morphologies of live cells contacting with biomaterial scaffolds have been examined 

along the depth from the top surface using multiphoton confocal microscope as shown in Figure 

5-2.  Due to transparency of agarose scaffolds, live cells could be observed within these 

scaffolds to a depth of approximately 700 μm from the top surface (data not shown for depth 

deeper than 100 μm from the top surface), whereas opaque PLGA scaffolds resulted in 100±10 

μm depth as the deepest level possible for imaging live cells from the top surface.  At various 

depths at which observations were made (at increments of 100 μm-depth) even to a depth of 

approximately 700 μm from the top surface of agarose scaffolds, DCs exhibited a morphology 

similar to iDCs suspended in PBS, as observed using confocal imaging (Figure 5-2c, 5-2f, and 5-

2h).  DCs on the top surface or within depths of 100±10 μm within PLGA scaffolds exhibited a 

morphology similar to mDCs with dendritic processes (Figure 5-2d, 5-2e, and 5-2g). 

CD44 has been well known as a potent receptor expressed on DCs to mediate DC 

clustering, migration, and maturation upon interaction with the hyaluronan components in the 

ECM (Weiss et al., 1997; Termeer et al., 2001).  In accordance with the previous result of CD44 

expression on DCs treated with PLGA or agarose films in the Chapter 4, DC treatment with 

PLGA scaffolds induced significantly higher expression of CD44 as compared to iDCs, whereas 

treatment of DCs with agarose scaffolds resulted in expression levels similar to iDCs (Figure 5-3).  

These results indicate that, during 24 hour-treatment of DCs with these scaffolds, protein 

adsorption on these biomaterial scaffolds and consequent adhesion of cells to those adsorbed 

protein may be induced in higher levels for PLGA scaffolds (hydrophobic surface) compared to 

agarose scaffolds (hydrophilic surface) or the negative control of iDC.  However, PLGA 

scaffold unexpectedly exhibited poor distribution of live cells at the cross-section along the depth 

as shown in Figure 5-2a; most cells observed in the cross-section of PLGA scaffold were 

concentrated at the top surface, where they were placed for treatment on Day 5.  As seen in 
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Figure 5-1, condition of porous structures likely plays a significant role in the resultant cell 

distribution into the scaffolds.  PLGA scaffolds used in this study were prepared using the 

conventional method of salt-polymer casting particular-leaching technique with NaCl at the 

leachable component (Mikos et al., 1994).  This method has been widely accepted for its very 

straightforward and simple technique but, due to discontinuous porogen particles irregular or non-

homogeneous pore structure has been observed necessitating development of modifications to the 

method to improve pore interconnectivity (Thomson et al., 1995; Hou et al., 2003; Murphy et al., 

2002; Lee et al., 2004; Reignier and Huneault, 2006).  Even though, more effective migration of 

DCs would have been expected into PLGA scaffolds based on their respective higher expression 

of CD44 (Figure 5-3), this was not observed, likely due to the non-homogeneity and poor 

interconnectivity of pores in these scaffolds as well as a role for CD44 of supporting cell-cell 

interaction during cell clustering.  In contrast, DCs were able to penetrate deep within the porous 

agarose scaffolds (Figure 5-2b) likely due to the well-patterned, -interconnected pores of these 

scaffolds (Stachowiak and Irvine, 2008; Lee et al., 2006).  Auto-fluorescence image of agarose 

scaffold showed very consistent diameter size (20 ~ 30 μm) of interconnected channels between 

pores.  Taking into account that size of DCs in this study ranged 10~20 μm (by the coulter 

counter), the size of interconnected channels in agarose scaffolds should be big enough for DC’s 

moving through it without hindrance.  Hence, DC penetration into these agarose scaffolds was 

effective in spite of a low level of expression of an important migration receptor, CD44, on these 

DCs.  Another factor which appears to have influenced DC migration into the scaffolds is the 

hydrophilic nature of agarose increasing internal wettability of the scaffold, facilitating cell 

migration in response to chemoattractants (Stachowiak and Irvine, 2008) and cell viability due to 

preferential cell-cell interactions rather than cell-scaffold interactions (Glicklis et al., 2000).  In 

addition, it should be further examined how these distribution of live cells correlate with 



 

 89

apoptosis or necrosis of cells, upon treatment with different biomaterial scaffold. 

As same as the study in the Chapter 4, wherein 2-D biomaterial films were used to treat 

DCs, non-/loosely-adherent cell fraction from each well of DC treatment with biomaterial 

scaffold was used for examination of phenotypical changes.  As mentioned earlier in the method 

section, DC treatment with biomaterial scaffold of PLGA or agarose showed 29 ± 13% or 65 ± 

11% of non-/loosely adherent DC population in the total DCs (including adherent cells) present in 

the cell culture wells, respectively.  Compared to this fraction from 2-D biomaterial films, which 

showed 37 ± 15% or 86 ± 9% for PLGA or agarose film, respectively, in the Chapter 4, the 

percentage of non-/loosely adherent DCs was lower for cells recovered from scaffolds, likely, due 

to the inability to recover those cells which had penetrated into the porous scaffolds.  However, 

even though agarose scaffold showed better distribution of cells into 3-D porous structure 

compared to PLGA scaffold, more than 60% of the cells in the culture well were non-/loosely-

adherent.  Moreover, as shown in Figure 5-2, 5-3, and 5-4, this non-/loosely-adherent fraction 

for PLGA or agarose scaffold also showed phenotypical changes very similar to those obtained 

for DCs treated with PLGA or agarose in 2-D film form in the Chapter 4.  This result suggests 

that porous agarose scaffolds would induce less of a host response even for situations of high 

surface area of a porous scaffold. 

Cytokines and chemokines examined herein include pro-inflammatory cytokines, 

chemokines, and anti-inflammatory cytokines as shown in Figure 5-5, which have been 

extensively studied for their roles in directing immune responses (Asquith and McInnes, 2007; 

Klimiuk et al., 1999; Cho et al., 2008; McInnes and Liew, 2005; Thomas et al., 1999; Lebre et al., 

2008; Rudolph and Woods, 2005; Baslund et al., 2005). 

In the Chapter 4, DCs treated with PLGA film resulted in higher levels of TNF-α and IL-

6 releases compared to iDCs while DCs treated with agarose films did so at levels similar to iDCs.  
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Hence, it would be expected that treatment of DCs with PLGA scaffolds would induce release of 

pro-inflammatory cytokines at levels higher than for iDCs.  Furthermore, it would be expected 

that treatment of DCs with agarose scaffolds would induce release of pro-inflammatory cytokines 

at levels similar to iDCs or induce release of anti-inflammatory cytokines at higher or similar 

levels compared to iDCs.  In general, this was the situation observed except for a few anomalies 

such as the high level of pro-inflammatory IL-15 and MCP-1 released upon agarose scaffold 

treatment of DCs and high level of the anti-inflammatory IL-10 release upon PLGA scaffold 

treatment of DCs. 

Interestingly, results of IL-15 and IL-10 are possibly correlated with the results obtained 

from the study in the Chapter 6 wherein autologous T cells were co-cultured with DCs treated 

with different biomaterial films in the absence or presence of a model antigen, ovalbumin (OVA), 

and then, T cell marker expressions and cytokine releases were assessed.  As will be seen in 

Chapter 6, the T helper type I (Th1) cytokine, IL-12p70, was released from DCs at levels higher 

than iDCs when DCs were treated with PLGA film in the absence of OVA antigen, whereas this 

cytokine was released at levels similar to iDCs when DCs were treated with agarose film in the 

absence of OVA antigen.  However, when DCs were treated with biomaterial films and (in the 

presence of) OVA antigen, PLGA film induced this cytokine at levels similar to iDCs, whereas 

agarose film treatment induced levels of release higher than iDCs.  In addition, when these DCs 

were treated with agarose and OVA antigen and then, co-cultured with autologous T cells, this 

cytokine was released from DC-T co-culture wells at levels higher than most other biomaterial 

films including PLGA film.  Avice et al. have found that IL-15 activates monocytes to release 

IL-12 and induces T cell activation by synergizing with IL-12 (Avice et al., 1998).  This 

proposed co-dependence between IL-12 and IL-15 may explain, at least in part, why DC 

treatment with agarose scaffolds induced expression of only IL-15, of pro-inflammatory cytokine 
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group, at levels higher than for iDCs, or DCs treated with PLGA scaffolds. 

Again, in the Chapter 6 for co-culture of autologous T cells with DCs treated with 

different biomaterial films, the positive control of mDCs or DCs treated with chitosan film 

(independently from the presence of antigen OVA) released T helper type II (Th2) cytokine of 

IL-10 in levels higher than iDCs, whereas DCs treated with agarose film and OVA antigen did at 

levels lower than or similar to those for iDCs.  However, once these DCs, treated with agarose 

film (independent of the presence of OVA antigen) were co-cultured with autologous T cells, this 

cytokine was released from DC-T co-culture wells at levels higher than for most other biomaterial 

film treatments of DCs including PLGA film treatment.  In the study presented herein, there was 

no model antigen or T cells involved and IL-10 was released from mDCs or DCs treated with 

PLGA scaffold at levels higher than for iDCs, whereas DCs treated with agarose scaffold released 

this cytokine at levels similar to that of iDCs.  However, the actual circumstance of disease such 

as RA has antigens and autologous T cells together with antigen presenting cells (APCs) such as 

DCs.  Thus, it may be expected that agarose scaffold would induce IL-10 release in the disease 

circumstance wherein a certain antigen is involved.  This indicates, considering additional anti-

inflammatory cytokines of IL-1ra and IL-16 induced by agarose scaffold (Fig. 5-5c), that effects 

of agarose scaffold on suppression of inflammatory or immune response might be maximized in 

an actual disease circumstance. 

Dendritic cell follows a similar linage (derived from the monocyte) as macrophage and 

both cell types have been known to up-regulate similar sets of genes in response to pathogens 

since they share similarity of more than 96% of their basal gene expression (Foti et al., 2006).  

Different chemistries (e.g., hydrophilicity/hydrophobicity or charge) of biomaterial surfaces have 

been extensively studied in vitro or in vivo to understand how they affect cytokine or chemokine 

release from monocytes/macrophages adherent on biomaterial surfaces (Jones et al., 2007; Chang 
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et al., 2008; Schutte et al., 2009a; Schutte et al., 2009b).  They found that different surface 

chemistries dictate different cytokine or chemokine release from monocyte/macrophage, possibly 

associated with differential conditions of protein adsorbed on biomaterials that do not have any 

carbohydrate composition recognizable by the pattern recognition receptors (PRRs) expressed on 

DCs.  Both PLGA and agarose scaffold used herein also do not have carbohydrates recognizable 

by the PRRs on DCs but they induced DC phenotypes differentially between them.  Thus, all 

results observed in this study should be related with, at least, the apparent differences between 

these biomaterials; PLGA scaffold is hydrophobic/degradable while agarose scaffold is 

hydrophilic/non-degradable.  However, further studies are certainly needed to fully understand 

interactions between PLGA or agarose scaffold and immune cells including DCs, particularly 

focusing on use of these biomaterial scaffolds for multifunctional tools for specific 

immunotherapy or tissue engineering.   

Acute immune response has been reported to positively affect vascularization (Kyriakides 

et al., 1999), thereby suggesting that controlling immune response such as pro-inflammatory 

cytokine release might be beneficial to tissue remodeling (Chan and Mooney, 2008; Tsiridis et al., 

2007; Mountziaris and Mikos, 2008).  For instance, agarose scaffold induced a marked release 

of MCP-1 (chemokine) at level higher than iDCs or DCs treated with PLGA scaffold in this study 

(Fig. 5-5b).  This chemokine is well known for its critical role in angiogenesis in a certain 

disease or in wound healing associated with angiogenesis, resulting in enhancing the disease 

progress (Rudolph and Woods, 2005).  In this way, controlling cytokine or chemokine release 

by properties of different biomaterial scaffolds may play a further role in fostering the formation 

of new extracellular matrix and tissue growth.  In addition, from another viewpoint of 

immunotherapy for inducing secondary immune responses using artificial lymphoid organ, efforts 

have been made to develop a strategy for localization or migration of immune cells (lymphocytes 
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and DCs) using biocompatible scaffolds implanted closely to a target site, thereby directing 

adaptive immunity more effectively than remote strategies of vaccination or injection of soluble 

protein such as cytokines (Suematsu and Watanabe, 2004; Okamoto et al., 2007; Stachowiak and 

Irvine, 2008).  Therefore, elucidating multifunctional effects of different biomaterial scaffolds in 

vitro or in vivo on changes of DC phenotypes are expected to provide a guidance to design 

biomaterial scaffolds in applications of immunotherapy, various tissue engineering, or a 

combination of immunotherapy and tissue engineering. 
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CHAPTER 6† 

PHENOTYPE AND POLARIZATION OF AUTOLOGOUS T CELLS BY 
BIOMATERIAL-TREATED DENDRITIC CELLS 

 

INTRODUCTION: 

Biomaterials are used as scaffolds and carriers of biologics in combination products.  As 

such, due to the innate immune response towards the biomaterial component, they have the 

potential to modulate the adaptive immune response towards the biological component due to a 

biomaterial adjuvant effect (Zhao and Leong, 1996).  In the tissue engineering applications, 

those immune responses should be minimized or all together avoided, whereas the strategy for 

DNA- or protein-based vaccines aims to enhance the protective immune responses.  The 

question arises whether biomaterials can be used to modulate, either inhibiting (inducing 

tolerance) or enhancing adaptive immune responses towards a biological component, by affecting 

T cell responses. 

Dendritic cells (DCs) are the most effective professional antigen-presenting cells (APCs) 

that have a potential role in initiating T-cell mediated immunity (Banchereau and Steinman, 

1998).  Pathogenic motifs, “pathogen associated molecular patterns” (PAMPs), are recognized 

by DCs using the cognate binding receptors of pattern recognition receptors (PRRs) such as toll-

like receptors (TLRs) on DCs (Aderem and Ulevitch, 2000).  The most significant consequence 

of TLR ligation is an intracellular signaling cascade leading to activation of the transcription 

factor, nuclear factor-κB (NF-κB), which regulates genes involved in pro-inflammatory responses 

and maturation of DCs (Zhang and Ghosh, 2001; Medzhitov et al., 1997).  Upon their 

maturation, DCs bridge the innate immune response with the adaptive immune response by 

                                            
† A manuscript prepared from this Chapter 6, titles as ‘Phenotype and polarization of autologous T cells by 

biomaterial-treated dendritic cells’, is to be submitted to Journal of Immunotherapy. 



 

 95

stimulating T lymphocytes.  In this way, the biomaterial component in a combination product 

can act as an adjuvant in intensifying the host immune response to an immunogenic biological 

component, associated with the stimulation of APCs through induction of an innate immune 

response, recruiting antigen presenting cells, and inducing their activation (Babensee et al., 1998; 

Singh and O'Hagan, 1999). 

To test these hypotheses, in vivo adjuvant effects of the polymeric biomaterials have been 

extensively investigated.  For instance, particulate adjuvants, including polymeric microparticles, 

induced or enhanced an immune response in association with APCs and antigens, creating the 

depot effects that prolonged an exposure of antigens (Singh and O'Hagan, 1999; Hunter, 2002; 

Matzelle and Babensee, 2004; Yoshida and Babensee, 2004; Bennewitz and Babensee, 2005).  

In vitro effects of biomaterials on DC maturation have also been studied using inherently 

different biomaterials or biomaterials in different forms and differential levels of DC maturation 

were observed with phenotypical changes of DCs depending on the type of biomaterials used to 

treat the iDCs (Chapter 4) (Yoshida and Babensee, 2004; 2006; Babensee and Paranjpe, 2005)  

Upon maturation, DCs move to the secondary lymph organs to present the antigenic 

peptides to T cells so that the adaptive immune response is initiated (Banchereau and Steinman, 

1998).  Thus DC maturation is essential to T cell activation which might induce to T cell 

tolerance or T cell immunity (Lanzavecchia and Sallusto, 2001).  Dendritic cells can control the 

adaptive immune response by processing and consequently presenting the exogenously 

introduced antigens in the context of major histocompatibility complex (MHC) molecules for 

activation of naïve T cells; the antigenic peptide-MHC class II compartments elicit CD4+ T cell 

responses while the antigenic peptide-MHC class I compartments induced by the cross-

presentation elicit CD8+ T cell responses (Kalinski et al., 1999; Lanzavecchia and Sallusto, 2001).  

In addition, upon interaction between DCs and T cells, the resultant immunity can be polarized 
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toward either T helper (Th) type 1 (cellular response) or T helper (Th) type 2 (humoral response) 

depending on the cytokines such as interferon (IFN)-γ/interleukin (IL)-12 or IL-10/IL-4, 

respectively, released from DCs or T cells (Moser and Murphy, 2000; Kapsenberg, 2003).  In 

this way, the adaptive immunity can be modulated into immunogenicity by IL-12 or IFN-γ, or 

tolerogenicity by IL-10 or CD4+CD25+ T cells combined with forkhead box P3+ (FoxP3+) 

expression, which is a transcriptional regulator and specific marker of natural T regulatory cells 

(Sakaguchi, 2005; Lanzavecchia and Sallusto, 2001). 

Based on these facts, DCs have been extensively investigated with their effects on T cell 

mediated immunity for immunotherapeutic applications.  Dendritic cells generated in CD40-

deficiency in vitro released IL-10 (immunosuppressive and regulatory Th2 cytokine), but not IL-

12 (Th1 cytokine) and prevented allograft rejection in the murine model (Gao et al., 1999).  In 

an in vitro model, T cells specific for pancreatic carcinoma cells were generated by lysate-pulsed 

DCs and, upon co-culture of these DCs and T cells, the lysate-pulsed DCs induced IL-12 and 

IFN-γ indicating a Th1 immune response (Schnurr et al., 2001).  In another instance, CD40-

stimulated human DCs displayed a mature phenotypes and released IL-12 in high levels, 

consequently promoting a specific anti-tumor T cell response (Hunter et al., 2007).  

Autoantigen-pulsed DCs induced CD4+CD25+ regulatory T cells (Mahnke et al., 2003), and 

cytokine-treated DCs induced expansion of FoxP3high T regulatory cells (Banerjee et al., 2006), 

suggesting that immunosuppressive effects might be induced.  These studies suggest impressive 

directions to possibly utilize the cytokine profiles and the resultant immune response elicited via 

T cells, combined with Th1/Th2 polarizations and CD4+, CD8+, CD25+, and/or FoxP3+ T cell 

responses, so that these regulated T cell responses may provide means of immunity for cancer 

therapy, immunosuppression in autoimmunity, or tolerance of tissue engineered grafts. 

Biomaterial effects on T cell immunity through associated adjuvant effects, have been 
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demonstrated wherein poly(lactic-co-glycolic acid) (PLGA) scaffolds or microparticles, upon 

incorporation of a model antigen, OVA, acted as adjuvant in enhancing a predominately Th2-

dependent humoral immune response (Matzelle and Babensee, 2004; Bennewitz and Babensee, 

2005).  We have also previously shown that PLGA microparticles with adsorbed OVA were 

able to elicit a delayed type hypersensitivity (DTH) reaction in mice, which is a Th1-dependent 

response (Yoshida and Babensee, 2004).  However, in these in vivo studies performed, only a 

single type of biomaterial was tested and the disparity between inducing Th1 or Th2 polarization 

was not addressed due to limited number of cytokine examined to determine the nature of the Th 

response (polarization), as well as different forms of antigen or modes of antigen co-delivery used 

in the studies.  

To understand the in vitro effects of inherently different biomaterials on DC-directed 

autologous T cell phenotype and polarization, DCs were treated with different biomaterial films 

in the presence or absence of a model antigen, OVA, and co-cultured with autologous T cells.  

Resultant T cell phenotype and polarization were determined by assessing T cell surface marker 

expression and profile of cytokines released.  The biomaterials used in this study included 

PLGA, chitosan, alginate, hyaluronic acid (HA), and agarose that were used in the previous study 

(Chapter 4) for on their effects on DC maturation.  In this study, differential autologous T cell 

phenotypes and polarization were observed as directed by differentially biomaterial-treated DCs 

(with associated OVA).  Briefly, mature DCs (mDCs) or DCs treated with PLGA, or chitosan 

induced polarization to a Th1 phenotype of autologous T cells while DCs treated with alginate or 

agarose induced both of Th1 (IL-12p70) and Th2 (IL-10) polarizations, simultaneously.  Upon 

DC treatment with antigen, CD4 expression levels of co-cultured T cells were modulated by 

biomaterial films used to treat DC, whereas CD8 expressions were not changed for all biomaterial 

films as compared to the untreated CD3+ T cells.  Agarose film induced CD4+CD25+FoxP3+ T 
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cells upon DC treatment with antigen (at level similar to iDCs) as compared to the untreated 

CD3+ T cells, whereas the other biomaterial films induced only CD25 or CD69 expression.  

Therefore, we could demonstrate multifunctional effects of DCs treated with different biomaterial 

films on autologous T cell mediated immunity, thereby elucidating the potential T cell activation 

or polarization in the adaptive immune response, which can be expected when those biomaterials 

are introduced in vivo in combination products. 

 
METHODS: 

Preparation of biomaterial films  

All biomaterial films were freshly prepared for each experimental procedure.  

Preparation methods of all biomaterial films were adapted or modified from the previously 

described methods.  Briefly, poly(DL-lactic-co-glycolic acid) (PLGA) (ester terminated; molar 

ratio: 75:25, inherent viscosity: 0.70 dL/g in trichloromethane, 100,000 MW; Birmingham 

Polymers, Birmingham, AL) was dissolved in 20% w/v in dichloromethane (DCM) overnight at 

room temperature and poured into the Teflon dish of 50 mm diameter (Cole-Parmer) in the 

chemical fume hood (Mikos et al., 1994).  Upon evaporation of the solvent and drying (36-48 

hours), PLGA films were punched of an appropriate size, and washed for 1 hour in ddH2O 

changing ddH2O every 15 min.  Chitosan (high molecular weight: 400,000 MW, degree of 

deacetylation: ≥ 75%, Fluka, Milwaukee, WI) was dissolved with 1% w/v chitosan in glacial 

acetic acid (2% v/v in ddH2O) (Fisher Scientific) for 24 hours at room temperature and then, 

poured into the Teflon dish of 50 mm diameter in the chemical fume hood.  Upon evaporation of 

the solvent and drying (36-48 hours), chitosan films were then cross-linked by immersion in 20% 

(v/v) sodium sulfate (Sigma) in ddH2O (2 hours) and washed by ddH2O (20 min), followed by 

immersion in 1 M NaOH (Sigma, 30 min) to neutralize the surface and washed with ddH2O (20 
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min).(Lahiji et al., 2000)  Chitosan films were punched of an appropriate size, and finally 

washed for 20 min in ddH2O.  Alginate (80,000 MW; mannuronic acid content: ≥ 50%; 

primarily anhydro-β-D-mannuronic acid residues with 1-4 linkage; Sigma) was dissolved to a 

concentration of 3% w/v alginate in ddH2O for 24 hours at 4˚C and then, poured into the Teflon 

dish of 50 mm diameter in the tissue culture laminar flow hood.  Upon drying (36-48 hours), 

alginate films were cross-linked by immersion in 5% w/v calcium chloride (Sigma) in 40% 

aqueous ethanol for 48 hours and washed with ddH2O for 10 min.(Papas et al., 1999)  Alginate 

films were punched of an appropriate size, and washed for 30 min in ddH2O changing water 

every 10 min.  Hyaluronic acid (800,000 MW; sodium salt from Streptococcus equi, 

BioChemika, Fluka) was dissolved to a concentration of 4% w/v HA in ddH2O for 24 hours at 

4˚C and then, poured into the Teflon dish of 50 mm diameter in the tissue culture laminar flow 

hood.  Upon drying (36-48 hours), HA films were cross-linked by immersion in 50 mM water 

soluble carbodiimide (Sigma) in 72% aqueous ethanol for 24 hours and washed by ddH2O for 10 

min (Tomihata and Ikada, 1997).  Hyaluronic acid films were punched of an appropriate size, 

and washed for 30 min in ddH2O changing water every 10 min.  Agarose (type V; high gelling; 

gel strength of ≥ 800 g/cm2 at 1.0 %; Sigma; molecular weight is not known) was dissolved in 

ddH2O to a concentration of 3% w/v by heating using a microwave until boiling and visible 

homogeneity was reached (Tun et al., 1996).  Agarose films were prepared by dispensing 1 ml 

of this agarose solution into a well of a 6-well tissue culture plate (Corning), and allowed to 

solidify at a temperature of 4˚C for at least 30 min, and brought back to room temperature for 

another 30 min prior to culture with iDCs.  All biomaterial films were UV-sterilized for 30 min 

per surface in the tissue culture hood prior to use in DC cultures.  Endotoxin contents of 

biomaterial films were determined using a chromogenic Limulus Amebocyte Lysate assay (QCL-

1000 Chromogenic LAL Endpoint Assay, Cambrex, Walkersville, MD).  Endotoxin assays were 
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performed on a smaller piece of film (4.5 mm in diameter), which had undergone the same 

washing and sterilization procedures as films used to treat DCs.  The smaller film pieces were 

suspended in endotoxin-free water and endotoxin assay performed.  Standards in tissue culture 

treated polystyrene wells and sample wells of different biomaterials were treated with endotoxin-

free water.  Limulus amebocyte lysate was added in the presence of biomaterial and incubated 

for 10 min at 37˚C.  Chromogenic substrate (Ac-Ile-Glu-Ala-Arg-pNA) was added to each well 

and incubated for 6 min.  Glacial acetic acid (25% v/v) (J.T. Baker) was added as a stop solution 

and the mixture was transferred into flat-bottom microplate and the absorbance was measured at 

405 nm.  Endotoxin content in the samples was read off standards generated from endotoxin 

standards, from the manufacturer’s kit.  Each sample was run in triplicate for quantification.  

The effective endotoxin content (EU/ml) of 4.5 mm-diameter films of PLGA was 0.011±0.007, of 

chitosan 0.0007±0.0001, of alginate 0.035±0.006, of HA 0.004±0.003, and of agarose 

0.037±0.006.  Previous study has shown that minimum E. Coli endotoxin concentration of 100 

EU/ml was required for DC maturation (Jotwani et al., 2003). 

 

Dendritic cell culture 

Peripheral human blood was collected from donors with informed consent using heparin 

(333 U/ml blood) (Baxter Healthcare Corporation, Deerfield, IL) as the anticoagulant.  This 

procedure was performed at the Student Health Center Phlebotomy laboratory, in accordance 

with the protocol (#H05012) of Institutional Review Board (IRB) of Georgia Institute of 

Technology.  Dendritic cells were derived from human peripheral blood mononuclear cells 

(PBMCs) using a previously described method with some modifications (Romani et al., 1996).  

Briefly, after the blood collected from the donor, PBMCs were isolated by differential 

centrifugation using the lymphocyte separation medium (Cellgro MediaTech).  The PBMCs 
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were collected and washed in phosphate buffer saline (PBS), and red blood cells were lysed with 

buffer [155 mM NH4Cl, 10 mM KHCO3 (both from Sigma), 0.1 mM EDTA (Invitrogen, 

Carlsbad, CA)], and remaining cells washed again twice with PBS.  Resulting PBMCs were 

resuspended at a concentration of 5 × 106 cells/ml in the DC media, which was prepared by filter-

sterilizing RPMI-1640 containing 25mM HEPES [4-(2-hydroxyethyl)piperazine-1-ethanesulfonic 

acid)] and L-glutamine (Invitrogen), supplemented with 10% (v/v) heat inactivated fetal bovine 

serum (FBS, Cellgro MediaTech) and 100U/mL Penicillin/Streptomycin (Cellgro MediaTech).  

Cells were plated in a volume of 10ml/plate in a 100 × 20 mm tissue culture plate (Primaria, BD 

Falcon) and incubated for 2 hours in the incubator with 95% relative humidity and 5% CO2 at 

37˚C to select for adherent monocytes.  After the incubation, plates were washed at least three 

times using warm, fresh DC media to remove non-adherent cells.  The adherent cells were 

supplied with 10 mL of fresh, pre-warmed DC media supplemented with granulocyte macrophage 

colony-stimulating factor (GM-CSF) (1000 U/ mL) and interleukin-4 (IL-4) (800 U/ mL) (both 

from Peprotech, Rocky Hill, NJ) for 5 days.  On Day 5 of culture, loosely adherent and non-

adherent cells containing iDCs were harvested by centrifugation for 10 min at 1100 rpm and 

plated at 1.5 x 106 cells/well in 3 mL/well in DC media supplemented with GM-CSF and IL-4 

into 6-well tissue culture plate for DC treatment with different biomaterial films.  During this 

Day 5 procedure, biomaterial films were placed into wells of 6-well plate with sterilized gaskets 

(cut from peroxidized silicone tubing) (Cole-Parmer) to secure the films and the iDC suspension 

was applied into each well.  Wells for the negative control of iDC remained untreated while 

wells for the positive control of mDC involved addition of 1 ㎍/ml of lipopolysaccharide (LPS) 

(E. coli 055:B5; Sigma).  For each experiment, all biomaterial films and controls were included 

as treatments to allow for comparisons between treatments and to controls.   

In some experiments, DCs were treated with biomaterial films as described above except 
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that the model antigen, ovalbumin (OVA) (Grade VII, Sigma), was added to DC media at a 

concentration of 150 μg/mL.  Immature DCs and mDCs were also suspended in DC media 

containing OVA as appropriate controls.  Dendritic cells were treated with biomaterial films in 

the presence or absence of OVA in an atmosphere of 95% relative humidity and 5% CO2 at 37˚C 

for 24 hours and then, on Day 6, DCs or supernatants were collected for the co-culture with 

autologous T cells or cytokine analysis, respectively.  

For whole duration through Day 14, on which day T cells were collected or supernatants 

were saved for analysis of T cell markers or cytokines, respectively, the DC treatment with 

different biomaterial films for 24 hours were achieved twice at different time points on Day 6 and 

Day 12 for 1st co-culture with T cells (initiation of co-culture) and 2nd co-culture (additional 

stimulation toward the identical T cells), respectively (Fig. 6-1a and 6-1b).  Following the 

justifications described in the Chapter 4, the non-/loosely-adherent DC populations were also 

used for the co-culture with T cells in this study. 

(a) 
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(b) 

 
Figure 6-1: Schematic representation of the study procedure (Fig. 6-1a) & time line (Fig. 6-
1b). During 14 days, the study has been performed based on three main procedures as 
shown by color-coded blocks. 

    : 1st blood collection and DC treatment with biomaterial films (with or without OVA) 
    : 2nd blood collection and collection of non-adherent mononuclear cells (nMNC) and  

        DC treatment with biomaterial films (with or without OVA) 
    : Co-culture (DC & T) procedure       

 

Autologous T cell preparation 

A preparation method of autologous T cells was adapted with some modifications, from 

the previously described methods (Schnurr et al., 2001; Pockaj et al., 2004; Shilyansky et al., 

2007).  On the day of blood collection from the donors, PBMCs were incubated for 2 hours for 

selecting the adherent mononuclear cells as described above.  After this 2 hour-incubation for 
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the plastic adherence, the adherent cells on the culture dish were used for generation of DCs as 

described above.  At the same time, non-adherent mononuclear cells (nMNCs) collected and 

used for the autologous T cell population after straining nMNCs using a cell strainer with 40 μm 

pore size (Becton Dickinson, San Jose, CA).  Purity of these strained nMNCs was confirmed by 

staining for CD3 using a fluorescently conjugated mouse anti-human monoclonal antibodies 

against CD3 (clone HIT3a; IgG2aκ) (BD Pharmingen) with 10,000 events per donor on a BDLSR 

flow cytometer (Becton Dickinson).  For the nMNCs, the percentage of CD3+ T cells was 

75±5% (n=6 different donors). 

 

Co-culture of DCs and autologous T cells 

A whole procedure of the co-culture of DCs and autologous T cells was adapted or 

modified from the previously described methods (Schnurr et al., 2001; Pockaj et al., 2004; 

Shilyansky et al., 2007).  Briefly, from an identical donor, blood was collected twice at two 

different time points for two separate DC treatments with the different biomaterial films and a 

single collection of nMNCs (autologous T cell population) as shown in Figure 6-1a and 6-1b.  

On Day 0, the first blood collection was made from a donor and the adherent mononuclear cells 

have been cultured for 5 days to generate iDCs as described above, followed by DC treatment 

with different biomaterial films for 24 hours for Day 5 procedure.  On Day 6, the second blood 

collection was made from the identical donor and then, processed for generation of 2nd set of 

DCs to be treated with biomaterial films as described above.  At the same time, the nMNCs 

were also collected for the autologous T cell population for co-culture with the 1st DC culture.  

On the same day (Day 6), these autologous nMNCs and the first set of DCs treated with 

biomaterial film/OVA or only with biomaterial films for 24 hours were co-cultured after non-

/loosely-adherent DCs were collected from treatment with biomaterial films and washed twice 



 

 105

using PBS (pH 7.2) by centrifugation at 1100 rpm for 10 min.  The ratio of DCs and nMNCs 

(1:6.25) in the co-culture was adapted from that of the mixed lymphocyte reaction (MLR) in the 

previous study (Chapter 4) (Yoshida and Babensee, 2004; Park and Babensee, 2009) because the 

ratio showed most explicit results among different biomaterial films.  Using this ratio, DCs and 

T cells were resuspended at concentration of 5 × 104 cells/ml and 3.125 × 105 cells/ml, 

respectively, together in the complete RPMI-10 media (the co-culture media), which was 

prepared RPMI-1640 with 25 mM HEPES and L-glutamine (Gibco BRL, Carlsbad, CA) with 100 

U/ml penicillin/streptomycin (Cellgro) and heat-inactivated filter-sterilized (0.22 μm) 10% (v/v) 

human AB serum (Biowhittaker, Walkersville, MD).  These suspension of DCs and nMNCs 

were plated into the 96-well flat-bottomed plate (Corning) (200 μl/well) with the addition of the 

cytokines of IL-2 (10 units/ml) and IL-7 (5ng/ml) (both from Peprotech).  For the negative 

control of the co-culture system, only nMNCs were cultured using the same concentration of the 

nMNCs in the co-culture wells.  At the same time, this negative control (only nMNCs) was 

partially treated with transforming growth factor (TGF)-β (5ng/ml) (Peprotech) to induce FoxP3 

expression as a positive control for FoxP3 measurement upon DCs-T cell co-culture (Tran et al., 

2007). 

After 3 days (on Day 9), the complete RPMI-10 media was changed with fresh media by 

50% (100 μl) per well of the 96-well plate and the cytokines of IL-2 (25 units/ml), IL-7 (10 

ng/ml) and TGF-β (5ng/ml) (the later only for the control wells of FoxP3 measurement) were 

added into each well of the co-culture.  

On Day 11, the 2nd set of DCs generated from the second blood collection on Day 6 as 

described above were treated with freshly prepared biomaterial films and then, after 24 hours (on 

Day 12), non-/loosely-adherent DCs were collected and washed twice as above.  On the same 

day (Day 12), the complete RPMI-10 media was changed with fresh media by 50% (100 μl) one 
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more time and the cytokines of IL-2 (25 units/ml) and IL-7 (10 ng/ml) were added together with 

those collected 2nd DC set above at a concentration of 5 × 104 cells/ml (5 × 103 cells/well of 96-

well plate).  This addition of DCs was for the 2nd stimulation of T cells.  As before, TGF-β 

(5ng/ml) was also added into the control wells (only nMNCs) of FoxP3 measurement.  After 2 

days (on Day 14), the whole procedure was finalized by collecting all cells for examination of T 

cell marker or FoxP3 expression and supernatant collected for analysis of cytokine profiles. 

Due to the limited cell numbers obtained from each donor, this 14 day-procedure of DC-

T cell co-culture for FoxP3 measurement was separately performed using another 6 donors 

different from the 6 donors used for the 14 day-procedure of DC-T cell co-culture for T cell 

marker expressions and cytokine release. 

 

Samples and controls 

The present study herein has different controls depending on the time points or treatments 

with biomaterial films or OVA as shown in Table 3.  Briefly, before mixed with nMNCs, DCs 

were treated with biomaterial film/OVA or only with biomaterial films for 24 hours and collected 

on Day 6 for the 1st DC set and on Day 12 for the 2nd DC set.  From Day 6 to Day 14, in the 

96-well plate for the co-culture system, 4 different groups were used; Group 1 was for the co-

culture of T cells and DCs treated with biomaterial film/OVA, Group 2 for the co-culture of T 

cells and DCs treated with biomaterial films (without OVA), Group 3 only DCs treated with 

biomaterial film/OVA, and Group 4 only DCs treated with biomaterial films (without OVA).  

The Group 3 and 4 had only DCs collected after treated with biomaterial films with or without 

OVA in the DC media followed by resuspending in the complete RPMI-10 media and then, these 

wells for only DCs were cultured with the identical cell concentration of DCs, addition of 

cytokines, changing media, and the additional DC for 2nd stimulation on Day 12 as same as done 
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for the co-culture wells.  Each of the groups had iDC, mDC, and DCs treated with different 

biomaterial films. 

 

Table 3: Samples and controls in 4 different groups used in the Chapter 6.  
Immature DCs were treated with biomaterial/OVA or only biomaterial for 24 hours and then, 
only DCs collected from the culture wells including biomaterials and/or OVA. These isolated 
DCs were then used for co-culture with autologous T cells from Day 6. On Day 12, another DCs 
(2nd DC set from 2nd blood collection) were added into culture wells for each DC in all 4 groups 
to stimulate autologous T cells. In addition to 4 groups above, only T cells (control) were cultured 
from Day 6 to Day 14.  Arrow indicates that DCs were isolated and then, transferred to 96-well 
plates including T cell culture media. 
 

From Day 6 to Day 14 

 iDC treatment with 

biomaterial/OVA or only biomaterial 

for 24 hours 

(1st DC set for Day 5 to Day 6 or 2nd 

DC set for Day 11 to Day 12) 

 From Day 6 to Day 14 

     

 iDC treatment with OVA  

 iDC treatment with LPS/OVA  

 iDC treatment with PLGA/OVA  

 iDC treatment with Chitosan/OVA  

 iDC treatment with Alginate/OVA  

 iDC treatment with HA/OVA  

Group 1 

(each DC + T cells) 

 iDC treatment with Agarose/OVA  

Group 3 

(each DC only) 

     

 iDC untreated  

 iDC treatment with only LPS  

 iDC treatment with only PLGA  

 iDC treatment with only Chitosan  

 iDC treatment with only Alginate  

 iDC treatment with only HA  

Group 2 

(each DC + T cells) 

 iDC treatment with only Agarose  

Group 4 

(each DC only) 
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T cell surface marker expressions 

The levels of T cell surface marker expression was determined for T cells following co-

culture with differentially treated DCs since Day 6, by flow cytometry, as previously described 

(Yoshida and Babensee, 2004) and compared to controls.  Whole cell population from the each 

co-culture well was collected by centrifugation at 300 ×g for 10 min and suspended in Hank’s 

HEPES buffer (120 mM NaCl, 10 mM KCl, 10 mM MgCl2, 10 mM glucose, 30 mM HEPES) (all 

from Sigma) containing 1% (v/v) human serum albumin (HSA) (Calbiochem, Darmstadt, 

Germany) and 1.5 mM CaCl2 (Sigma).  Cells were stained with saturating concentrations of 

fluorescently conjugated mouse anti-human monoclonal antibodies against CD3 (clone HIT3a; 

IgG2aκ), CD4 (clone L200; IgG1κ), CD8 (clone RPA-T8; IgG1κ), CD25 (clone M-A251; IgG1κ), 

CD69 (clone FN50; IgG1κ) (all from BD Pharmingen) for 1 hour at 4˚C in the dark, filtered using 

40 μm cell strainer (Becton Dickinson, Franklin Lake, NJ) and then, analyzed immediately with 

10,000 events per sample using a BDLSR flow cytometer (Becton Dickinson).  Data was 

obtained together with the negative control of autofluorescence per sample and then, analyzed 

using FLOWJO version 7.2.5 (Tree Star, Inc. Ashland, OR). 

 

FoxP3 expression 

From the overall observations in the Chapter 4, 5 and this Chapter, PLGA induced 

immunogenic response of DC maturation or IFN-γ release from co-culture of T cells and DCs 

treated with PLGA, whereas agarose induced tolerogenic response of no effect on DC maturation 

much like iDCs or CD4+CD25+ T cell induction from co-culture of T cells and DCs treated with 

agarose.  For this reason, measurement of FoxP3 expressions on T cells upon co-culture with 

DCs treated with biomaterial films with these most distinct effects was followed up for a 

confirmatory marker of regulatory T cells, FoxP3 expression.  The levels of FoxP3 expression 
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was determined for T cells following co-culture with DCs treated with PLGA or agarose since 

Day 6, by flow cytometry, using the FITC anti-human FoxP3 Staining Kit (eBioscience, San 

Diego, CA).  Rat IgG2aκ FITC (eBioscience) was used as isotype control.  Whole cell 

population from the each co-culture well was collected by centrifugation at 300 ×g for 10 min and 

then, cells were fixed and permeabilized using a fixation/permeabilization kit according to the 

manufacturer’s protocol.  Cells were stained with FoxP3 (clone PCH101; IgG2aκ) or the Isotype 

control together with CD3, CD4, and CD25 (same as above) to gate CD4+CD25+ T cells from 

CD3+ population.  After staining procedure, cells were filtered using 40 μm cell strainer (Becton 

Dickinson) and then, analyzed immediately with 10,000 events per sample using a BDLSR flow 

cytometer (Becton Dickinson).  Data was obtained together with the negative control of 

autofluorescence per sample and then, analyzed using FLOWJO version 7.2.5 (Tree Star). 

 

Cytokine release 

The amount of cytokines, IFN-γ, IL-12p70, IL-10, and IL-4 produced by DCs or T cells 

in the treatment of DCs (with biomaterial films with and without OVA) or in the co-culture of 

differentially-treated DCs and T cells were analyzed by Cytometric Bead Array (CBA) Human 

Inflammation Kit (BD Pharmingen) according to manufacturer’s directions.  Cell culture 

supernatants were cleared by centrifugation for 10 minutes at 400 ×g and stored at -20˚C until 

analysis.  Each cytokine amount was normalized to the respective total DNA quantified using a 

picoGreen dsDNA quantification kit (Invitrogen) per manufacturer’s directions.  The CBA 

analysis was performed using the flow cytometry and then, data analyzed using FLOWJO version 

7.2.5. 

 

Statistical analysis 
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For statistical analysis, one sided Student t-test was used to compare sample group to 

appropriate control group in pairs.  To observe significant differences between all sample groups 

in pairs, the general liner model of two-way ANOVA in pairwise was used for a mixed model 

with repeated measure.  For all statistical methods, the Minitab software (Version 14, State 

College, PA) was used.  If not indicated, p-value less than or equal to 0.05 was considered to be 

significant. 

 

RESULTS: 

T cell marker and FoxP3 expression 

To measure differential effects of different biomaterial films treated with DCs on 

autologous T cell-mediated immunity, expression levels of T cell markers (CD4, CD8, CD25, 

CD69) were examined after autologous T cells were co-cultured with DCs treated with different 

biomaterial films (with and without OVA). 

Upon DCs treatment with different biomaterial films in the presence of the model antigen, 

OVA, autologous CD3+ T cells co-cultured with these DCs exhibited differential expression of T 

cell markers depending on the type of biomaterial films used to treat the DCs as shown in Figure -

6-2, 6-3, and 6-4.  However, no significant difference was observed in autologous T cell marker 

expression upon co-culture with DCs treated with biomaterial films in the absence of exogenous 

OVA (Figure A5, APPENDIX). 

When DCs were treated with biomaterial films in the presence of OVA, CD4 expression 

levels showed significant differences between T cells co-cultured with DCs treated with different 

biomaterial films.  T cells co-cultured with DCs treated with agarose films in the presence of 

OVA, exhibited significantly higher levels of CD4 expression compared to other all biomaterial 

films as shown in Figure 6-2.  Interestingly, DC treated with HA films in the presence of OVA 
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induced significantly lower levels of CD4 expression on T cells compared to the negative control 

of untreated CD3+ T cells, actually inhibiting CD4+ T cell response.  However, CD8 expression 

levels of T cells for DC treated with all biomaterial films in the presence of OVA did not show 

any significant differences compared to the negative control of untreated CD3+ T cells or other 

biomaterial films. 

Dendritic cells treated with PLGA, chitosan, alginate, or agarose films in the presence of 

OVA antigen, induced significantly higher levels of CD25 expressions compared to the negative 

control of untreated CD3+ T cells.  Dendritic cell treated with agarose films in the presence of 

OVA induced significantly higher levels of CD25 expression compared to DC treated with PLGA 

films or HA films in the presence of OVA while DC treated with alginate films in the presence of 

OVA did only when compared to DCs treated with HA films in the presence of OVA.  Except 

for iDC treated with OVA, DC treated with any of the biomaterial films in the presence of OVA 

induced significantly higher levels of CD69 expressions on the T cells compare to the negative 

control but no significant difference between biomaterial film treatments was observed.   

To assess effects of DC treatment with biomaterial films in the presence of OVA on the 

double positive staining for T cell marker expressions, the representative quadrant dot plots from 

one donor (out of total 6 donors) and the percentage numbers of the double positive quadrant 

were averaged for all 6 donors and shown in Figure 6-3 and 6-4, respectively.  As shown, CD4+ 

quadrant percentages for T cells changed depending on different biomaterial films/OVA while 

CD8+ quadrant percentages did not change appreciably shown in the column of CD4 and CD8 

dot plots (Fig. 6-3).  However, DC treatment with alginate film/OVA or agarose film/OVA 

induced significantly higher levels of the double positive of CD4+CD8+, similar to iDC (no 

OVA), mDC (no OVA), iDC/OVA, or mDC/OVA, as compared to the negative control of 

untreated CD3+ T cells, whereas treatment with the other biomaterial films (PLGA, chitosan, or 
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HA film)/OVA induced levels similar to the negative control of untreated CD3+ T cells (Fig. 6-4).  

Treatment of DCs with agarose film/OVA induced significantly higher levels of CD4+CD25+ 

expression in T cells compared to mDC/OVA, or DC treatment with PLGA film/OVA, chitosan 

film/OVA, or HA film/OVA.  Whereas co-culture of T cells with iDC (no OVA), mDC (no 

OVA), iDC/OVA, or DCs treated with alginate film/OVA induced significantly higher levels of 

CD4+CD25+ expression in T cells only compared to the negative control of untreated CD3+ T 

cells (Fig. 6-4).  Interestingly, even though DC treatment with PLGA film/OVA or chitosan 

film/OVA induced significantly higher levels of single CD25+ or CD69+ expression in co-

cultured T cells compared to the negative control of untreated CD3+ T cells (Fig. 6-2), they did 

not induce significant differences in the CD4+CD25+ double positive expression levels in T cells 

compared to the negative control however, significant differences were observed for 

CD4+CD69+ double positive expression levels (Fig. 6-4). 

When DCs were treated with PLGA/OVA or agarose/OVA, autologous T cells co-

cultured with these DCs showed differential levels of FoxP3 expressions (Fig. 6-5).  Confirming 

results of CD4+CD25+ quadrant in dot plots differentially induced depending on DC treatment 

with PLGA or agarose as shown in Figure 6-3, iDCs or agarose-treated DCs induced higher 

percentages of CD4+CD25+ population upon co-culture with autologous T cells, compared to 

mDCs or PLGA-treated DCs (Fig. 6-5a).  Histograms gated only within the CD4+CD25+ 

population in each of these quadrant dot plots in Figure 6-5a exhibited differential shifts of 

isotype or FoxP3 expressions.  Immature DCs or DCs treated with agarose resulted in a shift in 

the histogram to the right for FoxP3 and to the left for the isotope, compared to mDCs or PLGA 

(Fig. 6-5b).  For statistical comparisons of this FoxP3 expression, gMFI of isotype staining was 

subtracted from that of FoxP3 staining for T cells co-cultured with each of iDCs, mDCs, or DC 

treated with PLGA or agarose and then, the final values (gMFI difference) was normalized by 
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untreated CD3+ MNCs.  As a result, T cells co-cultured with iDCs or agarose-treated DCs 

exhibited significantly higher levels of FoxP3 expression than untreated CD3+ T cells and T cells 

co-cultured with mDCs or PLGA-treated DCs, while T cells treated with TGF-β [a specific 

inducer of FoxP3 expression (Tran et al., 2007)] exhibited the value significantly higher only 

compared to untreated CD3+ T cells (Fig. 6-5c) (quadrant dot plot and histogram of MNCs 

treated with TGF-β are not shown here).  However, T cells co-cultured with mDCs or PLGA-

treated DCs did not exhibit levels significantly different from untreated CD3+ T cells for FoxP3 

expression. 

 

 
Figure 6-2: Geometric mean fluorescence intensity (gMFI) of CD4, CD8, CD25, & CD69 
expression for autologous CD3+ T cells in differential levels upon co-culture with DCs 
treated with different biomaterial films and OVA antigen. 
Agarose induced CD4 or CD25 expression in higher levels than other biomaterial treatments, 
whereas HA induced suppression of CD4 expression compared to untreated CD3+ T cells.  
Ratios to the untreated CD3+ MNCs are shown with mean±SD, n=6 donors (6 independent 

experiments with different donors). ★: p ≤ 0.05, compared to control and higher than control; 
☆: p ≤ 0.05, compared to control and lower than control; Brackets: p ≤ 0.05, statistically different 
between two T cells for DC treatment with different biomaterial films. 
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Figure 6-3: Representative quadrant dot plots for autologous T (CD3+) cell markers after 
co-culture with DCs treated with different biomaterial films and OVA antigen.  
Representative plots for one donor were selected from all 6 donors. Different biomaterials 
directed various T cell markers expressions in differential levels upon co-culture of T cells and 
DCs treated with biomaterials. In particular, agarose and alginate induced higher quadrant 
percentages in double positive of CD4+CD25+ or CD4+CD69+ compared to other biomaterial 
treatments. Y-axis for all plots indicates CD4 expression while X-axis for all plots in each column 
indicates CD8, CD25, or CD69 expressions as shown. Numbers shown together with the cross in 
each plot indicate the percentage of dots for each quadrant. 

 

 

 
Figure 6-4: Percentage numbers in double positive quadrant dot plots of CD4 & CD8, CD4 
& CD25, CD4 & CD69 expression on autologous CD3+ T cells upon co-culture with DCs 
treated with different biomaterial films and OVA antigen. Different biomaterials induced 
differential levels of CD4+CD25 or CD4+CD69+ expression on T cells upon co-culture with 
DCs treated with biomaterials. 
As seen in the quadrant dot plots in Figure 6-3, T cells co-cultured with DCs treated with agarose 
exhibited CD4+CD25+ or CD4+CD69+ in statistically higher levels than other biomaterials, 
whereas T cells co-cultured with DCs treated with alginate did not exhibit statistically difference 
compared to other biomaterials. Ratios to the untreated CD3+ MNCs are shown with mean±SD, 

n=6 donors (6 independent experiments with different donors). ★: p ≤ 0.05, compared to control 
and higher than control; ☆: p ≤ 0.05, compared to control and lower than control; Brackets: p ≤ 
0.05, statistically different between two T cells for DCs treated with different biomaterial films.  

 



 

 116

 

Figure 6-5: Foxp3 expressions on autologous CD3+ T cells upon co-culture with DCs treated 
with different biomaterial films (PLGA or agarose) and OVA antigen. 
Representative plots for one donor were selected from all 6 donors. PLGA or agarose directed 
FoxP3 expressions in differential levels upon co-culture of T cells and DCs treated with 
biomaterials. Agarose treatment of DCs maintained FoxP3 expression on co-cultured T cells 
gated from CD4+CD25+ population at level similar to iDCs whereas a decrease in expression 
was induced by PLGA-treated DCs or mDCs. Y-axis for all plots indicates CD25 expression 
while X-axis for all plots indicates CD4 expression as shown (Fig. 6-5a). Numbers shown in each 
quadrant indicate the percentage of events for each quadrant. Representative histograms (from all 
6 donors) for Foxp3 expressions on CD4+CD25+ T cells gated from the quadrant dot plots above 
(Fig. 6-5b). Geometric mean fluorescence intensity (gMFI) of Foxp3 expressions on 
CD4+CD25+ T cells gated above (Fig. 6-5c). TGF MNC indicates MNCs treated with TGF-β to 
induce Foxp3+ from CD4+ T cells. gMFIs of the isotype were subtracted from gMFIs of FoxP3 

per control or treatment and then, ratios to the untreated CD3+ MNCs are shown with mean±SD, 
n=6 donors (6 independent experiments with different donors). ★: p ≤ 0.05, statistically higher 
than control (=1); ☆: p ≤ 0.05, statistically lower than control (=1); Bracket: p ≤ 0.05, 
statistically different between two T cells for DC treatments with different biomaterial films.  
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Cytokine releases in Th1/Th2 polarization 

As another measurement of differential effects of different biomaterial film treatments of 

DCs on autologous T cell-mediated immunity, cytokine release profiles for Th1/Th2 polarization 

were determined in the supernatants of DCs treated with biomaterial films (with and without 

OVA antigen) without co-cultured autologous T cells or co-culture of these differentially treated 

DCs with autologous T cells. 

Dendritic cells treated with different biomaterial films in the presence or absence of OVA 

resulted in differential cytokine profiles depending on the biomaterials used to treat the DCs 

(Figure 6-6).  In addition, co-culture of these differentially-treated DCs with autologous T cells 

resulted in differential levels of cytokine release into the supernatant collected on Day 14, 

independent of whether OVA antigen was added to DCs treatment with biomaterials (Fig. 6-7).  

This was contrary to the results for induced T cell marker expression that only showed 

significantly different levels depending on biomaterial used to treat the DCs if OVA was present.   

As shown in Figure 6-6, before co-culture with autologous T cells, DCs treated with 

different biomaterial films in the presence or absence of OVA released significantly different 

levels of some cytokines depending on the type of biomaterial used.  For IFN-γ or IL-4 release, 

mDCs or DCs treated with most biomaterial films did not exhibit significantly different levels of 

release from iDCs.  However, DCs treated with agarose films (in the absence of OVA) induced 

significantly lower levels of IFN-γ release compared to iDCs (Fig. 6-6a).  Dendritic cells treated 

with agarose films [in the presence (Fig. 6-6b) or absence of OVA (Fig. 6-6a)] resulted in levels 

of IL-4 release that were significantly lower than iDCs.  Mature DCs or DCs treated with PLGA, 

or chitosan films released IL-12p70 in significantly higher levels compared to iDCs while only 

mDCs induced significantly higher levels of IL-10 compared to iDCs, when DCs were treated 
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with biomaterial films only, in the absence of OVA (Fig. 6-6a).  Interestingly, the profiles of 

release for IL-12p70 and IL-10, depending on the biomaterial treatment of the DCs, were 

different when DCs were treated with biomaterial films in the presence of OVA antigen as shown 

in Figure 6-5b.  For DC treatment with biomaterial films in the presence of OVA, only DCs 

treated with agarose films induced significantly higher levels of IL-12p70 release, whereas mDCs 

or DCs treated with PLGA or chitosan films did not show any significant difference in levels of 

IL-12p70 release, as compared to iDCs (Fig. 6-6b).  For IL-10, mDCs or DCs treated with 

chitosan films (in the presence of OVA) released significantly higher levels than iDCs while DCs 

treated with agarose films (in the presence of OVA) induced significantly lower levels, as 

compared to iDCs (Fig. 6-6b). 

As mentioned earlier in the Materials and Methods section, for the negative controls of 

the co-culture procedures from Day 6 to Day 14, a half of DCs from treatments with each 

biomaterial film, which were collected on Day 6 (supernatants from these DCs were discussed 

above for cytokine profiles as shown in Figure 6-6), were washed twice and then, kept cultured 

without T cells through Day 14 in the same condition as with the DC-T co-culture system while 

the other half was used for the co-culture with autologous T cells.  Interestingly, for the control 

culture of DCs without added autologous T cells, the cytokine profiles were the same at day 14 

(Figure A6, APPENDIX) as they were at Day 6 (Fig. 6-6) in the presence or absence of OVA 

antigen. 

For cytokine profiles in the co-culture supernatant saved on Day 14, to compare DC 

treated with different biomaterial films obtained from different donors, data were normalized by 

cytokine levels of only DCs (negative control) for DCs treated with each biomaterial film after 

subtracting those of only T cells (negative control) from those of the actual co-culture of DCs and 

T cells (Fig. 6-7).  As shown in Figure 6-7, once T cells were co-cultured with DCs treated 
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different biomaterials in the presence or absence of OVA (Fig. 6-7), the profiles of released 

cytokines changed significantly from those of DCs treated with biomaterial films (Fig. 6-6) or 

only DCs culture (negative control) (Figure A6, APPENDIX).  Upon co-culture with T cells, 

mDCs or DCs treated with PLGA films [with (Fig. 6-7b) and without (Fig. 6-7a) OVA] induced 

IFN-γ release at a significantly higher level compared to iDCs or DCs treated with the other 

biomaterial films.   

In the absence of OVA antigen during DC treatment with biomaterial films, only the 

alginate film treatment of the DCs, then co-cultured with the T cells, induced IL-12p70 release in 

significantly higher levels as compared to co-cultures with DCs treated with most other 

biomaterial films (Fig. 6-7a), whereas mDCs or DCs treated with PLGA or chitosan film released 

IL-12p70 at significantly higher levels compared to iDCs before the co-culture with T cells (Fig. 

6-6a).  However, in the presence of OVA antigen during DC treatment with biomaterial films, 

only DCs treated with agarose films, then co-cultured with the T cells, induced significantly 

higher levels of IL-12p70 release as compared to co-cultures with iDCs or DCs treated with most 

other biomaterial films from Day 6 (Fig. 6-6b) through Day 14 (Fig. 6-7b). 

Dendritic cells treated with alginate or agarose films (in the absence of OVA) co-cultured 

with T cells resulted in significantly higher levels of IL-10 release as compared to co-cultures 

with DCs treated with most of the other biomaterials (Fig. 6-7a), whereas only mDCs released IL-

10 in significantly higher levels than iDCs on Day 6 before co-cultured with T cells (Fig. 6-6a).  

Interestingly, DCs treated with agarose films in the presence of OVA secreted IL-10 at 

significantly lower levels than iDCs on Day 6 before co-cultured with T cells (Fig. 6-6b) but, 

upon co-culture with T cells, significantly higher levels of IL-10 release were observed as 

compared to co-cultures with DCs treated with most of the other biomaterial films (Fig. 6-7b). 

Treatment of DCs with any of the biomaterial films did not induce IL-4 release in the co-
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cultures with T cells that were significantly different between treatment groups in the presence or 

absence of OVA (Fig. 6-7).  This was in spite of the fact that DCs treated with agarose films 

alone induced significantly lower levels of IL-4 release as compared to iDCs on Day 6 before co-

culture with T cells (Fig. 6-6). 

 

 
Figure 6-6: Geometric mean fluorescence intensity (gMFI) of cytometric bead array (CBA) 
for interferon (IFN)-gamma, IL-12p70, IL-10, IL-4 release for DCs treated with different 
biomaterial films without (Fig. 6-6a) or with (Fig. 6-6b) OVA antigen after 24 hour-
treatment of DCs with biomaterial films with or without antigen. 
Cytokines were measured using the supernatant saved on Day 6 (after 24 hour-treatment of DCs 
with biomaterial films with or without antigen). Th1 or Th2 cytokines were modulated in 
differential levels upon DC treatment with different biomaterials and/or model antigen, OVA. IL-
12p70 was released in higher levels upon DC treatment with LPS, PLGA or chitosan in the 
absence of OVA, whereas IL-12p70 was released in higher levels upon DC treatment with 
agarose in the presence of OVA, as compared to iDCs. Ratios to the iDCs are shown with 

mean±SD, n=6 donors (6 independent experiments with different donors). ★: p ≤ 0.05, 
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compared to iDCs and higher than iDC; ☆: p ≤ 0.05, compared to iDCs and lower than iDC; 
Brackets: p ≤ 0.05, statistically different between two T cells for DCs treated with different 
biomaterial films.  

 

 
Figure 6-7: Geometric mean fluorescence intensity (gMFI) of cytometric bead array (CBA) 
for interferon (IFN)-gamma, IL-12p70, IL-10, IL-4 releases upon co-culture of auto T cells 
and DCs treated with different biomaterial films without (Fig. 6-7a) or with (Fig. 6-7b) OVA 
antigen after 8 days of DC-T co-culture.  
Cytokines were measured using the supernatant saved on Day 14 (after 8 days of DC-T co-
culture). Th1 or Th2 cytokines were modulated in differential levels upon co-culture of 
autologous T cells and DCs treated with different biomaterials and/or model antigen, OVA.  
PLGA or agarose induced IFN-γ or IL-10 release, respectively, in higher levels compared to other 
biomaterials independently from the presence of antigen, OVA. However, focusing on DC 
treatment with alginate, IL-12p70 or IL-10 release was modulated in differential levels depending 
on treatment with antigen, OVA, compared to other biomaterial treatments. To compare DC 
treatments with different biomaterial films obtained from different donors, data were normalized 
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by each negative control (only DC treated with each biomaterial film) after subtracting only 
MNCs control from the actual co-culture of DCs and MNCs. Normalized ratios are shown with 
mean±SD, n=6 donors (6 independent experiments with different donors). Brackets: p ≤ 0.05, 
statistically different between two DCs treated with different biomaterial films.  

 

DISCUSSION: 

The purpose of this research was to assess the indirect effects of different biomaterials in 

differential levels of autologous T cell mediated immunity, through direct effects of the different 

biomaterials on DC phenotype.  In this way, we are assessing the ability of differentially 

biomaterial-treated DCs to non-pharmacologically drive T cell responses.  Clearly the results 

show that the phenotype of autologous T cells can be differentially modulated in co-cultures with 

DC treated with different biomaterials.  Furthermore, Th1/Th2 polarization of the cytokine 

profiles was possible through biomaterial-treated DCs using the model antigen (OVA) and/or the 

co-culture of those biomaterial-treated DCs and autologous T cells as shown in Figure 6-8. 

 
Figure 6-8: Schematic representation of autologous T cell phenotype and polarization 
directed by DCs treated with different biomaterials. 
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In the Chapter 4, the efforts of a large variety of immunobiological assays have been used 

to understand the mechanism behind DC phenotypical changes when DCs are treated with 

different biomaterial films.  As results, differential levels of DC maturation have been observed 

depending on the type of biomaterial films used to treat the DCs, possibly associated with the 

inherently different chemistries of those biomaterials that are used.  Based on these facts 

together with the previous results (Yoshida and Babensee, 2006; Babensee and Paranjpe, 2005; 

Park and Babensee, 2009), showing the DC phenotypical changes in differential levels depending 

on the type biomaterial used to treat the DCs, it was hypothesized that different biomaterial films 

would indirectly affect autologous T cell activations and polarizations through direct effects on 

DCs.  

When DCs were treated with biomaterial films in the presence of the antigen (OVA), 

autologous T cells co-cultured with these DCs showed significantly differential levels of 

expression, at least, for CD4 and CD25 among DC treatments with biomaterial films as shown in 

Figure 6-2, whereas expressions for each of all T cell markers (CD4, CD8, CD25, CD69) among 

DC treatments with biomaterial films were not induced at differential levels when DCs were 

treated with biomaterial films in the absence of OVA (Figure A5, APPENDIX).  These indicate 

that DCs treated only with biomaterial films, in the absence of co-delivered antigen, might be not 

sufficiently activated to induce differential T cell marker expression.  Similar results have also 

been reported showing that DC exposure to an actual pathogen component is necessary to 

promote T helper responses (Sporri and Sousa, 2005).  With the addition of OVA to DC 

treatment with biomaterial films, the CD4+ T cell response were affected by DCs treated with 

different biomaterial films, whereas the CD8+ T cell response was not affected as shown in 

Figure 6-2.  It is conceivable that the system of DC treatment with biomaterial films and 
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subsequent co-culture with autologous T cells more effectively promotes CD4+ T cell responses 

than CD8+ T cell responses, the later of which would depend on cross-presentation of 

extracellular antigen component (Lanzavecchia and Sallusto, 2001). 

Expression of CD4 or CD25 on co-cultured autologous T cells were modulated by 

biomaterial films used to treat the DCs as compared to controls of iDCs, mDCs, or a control of 

untreated CD3+ T cells.  This indicates that biomaterial films might play an important role in 

controlling T cell responses in the presence of the antigen, possibly extended from the differential 

levels of endocytic ability of DCs treated with different biomaterial films.  Enhanced endocytic 

ability of DCs in treatment with LPS is transient so that, after around 1 hour of LPS treatment, the 

endocytic ability kept down over time (West et al., 2004).  However, in the Chapter 4, after 24 

hours of DC treatment with biomaterial films, DCs isolated from treatment with agarose films 

maintained an endocytic capacity similar to the level for iDCs which was reduced with 

maturation of DCs or DC treatment with the other biomaterial films such as PLGA.  In this 

study, DCs were treated with biomaterial films in the presence of OVA antigen for 24 hours, and 

then, DCs were isolated from biomaterial films and OVA antigen prior to co-culture with T cells.  

Possibly related with those previous findings, differential endocytic abilities during the 24 hours 

of DC treatment with biomaterial films in the presence of OVA may partially explain why iDCs 

or DCs treated with agarose film induced significantly different levels of CD4 expression of 

autologous T cells compared to mDCs or other DCs, given the well-known role of peptide-MHC 

class II complexes derived from the antigen (OVA) in promoting CD4+ T cell responses.  

The α chain of IL-2 receptor, CD25, has been widely accepted for an activation marker of 

T cells whose expression level of T cells (along with another T cell activation marker, CD69) is 

up-regulated by mature or activated DCs (Stegel et al., 2006; Chan et al., 2007).  In addition, 

CD80 and CD86 expressed on DCs were shown to have a critical role in providing important 
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signals for CD25 expression on CD4+ T cells (Coyle and Gutierrez-Ramos, 2001).  As seen in 

Figure 6-2, except for T cells co-cultured with DCs treated with HA film, T cell expression of 

CD25 in co-cultures with DCs treated with the other biomaterials were significantly higher as 

compared to the control of untreated CD3+ T cells.  In the previous studies, up-regulations of 

co-stimulatory molecules, DC maturation marker, and MHC class II molecules (CD40, CD80, 

CD86, CD83, HLA-DQ, or HLA-DR) on DCs in differential levels were induced by DC 

treatment with different biomaterial films (Chpater 4) (Yoshida and Babensee, 2006; Babensee 

and Paranjpe, 2005; Park and Babensee, 2009).  These findings emphasize that surface 

molecules up-regulated when DCs were treated with biomaterial films possibly affected CD25+ T 

cell responses in the co-cultures presented herein.  As shown in Figures 6-3 and 6-4, expression 

of double positive of CD4+CD25 T cells were induced in significantly higher levels for T cells 

co-cultured with control DCs (iDC, mDC, or iDCs treated with OVA) and DCs treated with 

alginate or agarose films; most notably for agarose treatment (Fig. 6-4).  It has been reported 

that repetitive stimulation of naïve T cells with iDCs or in vivo targeting of iDCs with specific 

antibody-antigen complexes induced CD4+CD25+ T cell activation (Jonuleit et al., 2000; 

Mahnke et al., 2003) and iDCs pulsed with alloantigen efficiently enhanced the number of 

CD4+CD25+FoxP3+ T regulatory cells (Marguti et al., 2009).  Moreover, human volunteers 

vaccinated with iDCs exhibited induction of IL-10-producing T cells (Dhodapkar and Steinman, 

2002).  Interestingly, the CD25+ T cell population was found to suppress IL-2 production and 

CD4+ T cell responses (Mahnke et al., 2003).  Despite higher expression levels of CD25 on T 

cells in co-cultures with DCs treated with agarose films (compared to untreated CD3+ T cells or 

DCs treated with the other biomaterial films), DCs treated with agarose films were also 

associated with higher levels of CD4+ T cell responses (Fig. 6-2) and CD4+CD25+FoxP3+ T cell 

responses (Figs. 6-3, 6-4, and 6-5).  Thus, taken together with endocytic abilities and surface 
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molecule up-regulation as demonstrated in the Chapter 4, DC treatment with agarose films is a 

strong inducer of CD4+CD25+FoxP3+ T cell responses to a greater extent than iDCs. 

Interestingly, expression of double positive of CD4+CD69+ by T cells in co-culture with 

DCs treated with agarose films was higher that for T cells co-cultured with DCs treated with 

alginate or HA films (Fig. 6-4), similar to the results of CD4+CD25+ expressions as shown in 

Figure 6-3 and 6-4.  However, it has been found that co-stimulatory molecule of CD80 or CD86 

up-regulated on DCs was not required for stimulation of CD69+ T cell response (Rothoeft et al., 

2006).  This indicates that, even though CD25 and CD69 are considered together as activation 

markers on T cells, phenotypical changes (e.g., co-stimulatory molecule expressions) when DCs 

were treated with different biomaterial films may affect T cell responses through 

different/independent mechanisms affecting CD25 and CD69 expression. 

Dendritic cells treated with HA films induced significantly lower levels of CD4 

expression on co-cultured T cells as compared to the negative control of untreated CD3+ T cells 

as well as significantly lower levels of CD25 expression compared to T cells in co-culture with 

DC treated with alginate or agarose films (Fig. 6-2).  When CD44 surface molecules on DCs 

were blocked with anti-CD44 antibodies, proliferation of CD4+ T cells co-cultured with those 

DCs was inhibited (Termeer et al., 2003).  Thus this result may be correlated with the previous 

results from phenotypical changes of DCs treated with HA film, which exhibited significantly 

lower levels of CD44 expression as compared to iDCs, even though the CD44 marker is specific 

to hyaluronan component, possibly due to the high molecular weight HA in cross-linked and 

insolublized forms in the Chapter 4 and present study. 

It was only possible to observe differential levels of T cell marker expression in co-

cultures with biomaterial treated DCs if OVA was added to the treatments.  However, DCs 

treated with different biomaterial films in the presence or absence of OVA resulted in differential 
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cytokine profiles depending on the biomaterials used to treat the DCs for DC alone (Fig. 6-6) or 

upon co-culture with T cells (Fig. 6-7).  These indicate that DCs treated with biomaterial films 

might indirectly affect differential levels of cytokine releases in the co-culture of T cells and DCs 

more intensively than T cell marker expressions.  In the absence of the antigen, DCs treated with 

PLGA or chitosan film secreted IL-12p70 at significantly higher levels than iDCs while mDCs 

released IL-12p70 and IL-10 at significantly higher levels than iDCs or DC treated with some 

other biomaterial films as shown in Figure 6-6a.  IL-12p70, a heterodimeric and bioactive form 

of IL-12, is well known for immunogenic Th1 cytokine, along with IFN-γ (Gautier et al., 2005).  

In some in vitro studies, DCs treated together with antigens (tumor lysates or OVA) and an 

immunogenic protein [keyhole limpet hemocyanin (KLH) or a CD40 ligand] secreted IL-12 or 

IL-12p70 at significant higher levels than the negative control DCs, associated with upregulation 

of CD80, CD86, CD83, or MHC class II molecules (Schnurr et al., 2001; Hunter et al., 2007).  

IL-10 is well known as a regulatory and immunosuppressive cytokine in Th2 response and DCs 

treated with dexamethasone or CD40-deficient DCs have been reported to release IL-10 

associated with upregulation of CD80, CD86, CD83, or MHC class II molecules or endocytic 

ability at levels similar to the negative control DCs (Gao et al., 1999; Xia et al., 2005).  However, 

as shown in Figure 6-6b, if DCs were treated with biomaterial films in the presence of OVA, 

cytokine profiles changed showing that only DCs treated with agarose films in the presence of 

OVA released IL-12p70 at significantly higher levels than iDCs while, together with mDCs, DCs 

treated with chitosan films released IL-10 at significantly higher levels than iDCs.  Considering 

that only DCs treated with agarose films showed endocytic ability at high levels similar to iDCs 

in the Chapter 4, these results may indicate that IL-12p70 secretion from the DCs examined here 

was more potently affected by antigen-processing through formation of peptide-MHC complexes 

than other phenotypical changes such as co-stimulatory molecule expression on DCs.  In 
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addition, DCs treated with chitosan films can modulate their intracellular pathway to secret IL-10 

in the presence of co-delivered antigen.  Interestingly, DC maturation with LPS induced 

significantly higher levels of IL-12p70 release (in the absence OVA) and IL-10 (independently of 

the presence of OVA) than iDCs, as shown in Figure 6-6.  In accordance with these results, 

LPS-treated DCs have been found to release significantly higher levels of IL-12p70 and IL-10, 

compared to the negative control DCs (Chan et al., 2007; Stax et al., 2008), even though this DC 

maturation induced by LPS is usually accompanied with phenotypical changes such as 

upregulation of co-stimulatory molecules to high levels of expression.  Thus it is conceivable 

that LPS is a strong inducer of IL-10 release by DCs independently of antigen presence, possibly 

associated with TLR-4 pathway rather than other co-stimulatory molecules on DCs.   

For the control culture of DCs without added autologous T cells, the cytokine profiles 

were the same at day 14 (Figure A6, APPENDIX) as they were at Day 6 (Figure 6-6) in the 

presence or presence of OVA antigen.  These results indicate that, even though DCs were 

isolated from biomaterial films and extracellular OVA antigen after the 24 hour-culture, they 

continued to secrete the same cytokines at almost the same levels under the wholly changed 

culture conditions for 8 days.   

As seen in Figure 6-7, once autologous T cells were co-cultured with biomaterial-treated 

DCs in the presence of OVA, the cytokine profiles were changed from those of the control 

cultures of DCs without T cells shown in Figure 6-6.  First of all, the co-culture of T cells and 

mDCs or DCs treated with PLGA films induced significantly higher levels of IFN-γ compared to 

iDCs or DCs treated with other biomaterial films, in both absence and presence of the antigen.  

These indicate that the resultant patterns of IFN-γ including statistical differences between DC 

treatments with biomaterial films were independent with the introduction of OVA antigen to DCs.  

IFN-γ is also known as immunogenic cytokines representative for Th1 response and has been 
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recently accepted for immunotherapeutic tool targeting tumors (Whiteside and Odoux, 2004).  It 

has been reported that autogeneic or allogeneic T cells stimulated by DCs treated with CD40 

ligand, adjuvant such as aluminum hydroxide, LPS, or KLH induced significantly high levels of 

IFN-γ production, combined with DC maturation phenotypes such as increased upregulation of 

co-stimulatory molecules or decreased endocytic ability (Schnurr et al., 2001; Stax et al., 2008; 

Hunter et al., 2007; Sokolovska et al., 2007).  In the Chapter 4, mDCs or DCs treated with 

PLGA films also showed phenotypical changes with increased up-regulation of co-stimulatory 

molecules and DC maturation markers, and decreased endocytic ability.  However, as shown in 

Figure 6-7, mDCs or DCs treated with PLGA films did not induced IL-12p70 in co-cultures with 

T cells at significantly different levels compared to the negative control of iDCs.  Production of 

IFN-γ in co-cultures of T cells with mDCs or DCs treated with PLGA films appeared to suppress 

IL-12p70 production in the absence of the antigen as shown in Figure 6-6 and 6-7.  These results 

are different from what is typically seen in that IFN-γ and IL-12 (p40 or p70) are supportive each 

other in the inducing the immunogenicity of DCs and T cells (Gautier et al., 2005; Fujii et al., 

2005; Grauer et al., 2007).  However, it has also been reported that, if inflammatory mediators 

induced DC maturation by showing peptide-MHC complex expressions and upregulation of co-

stimulatory molecules without IL-12 release, these DCs did not induce CD4+ T cell 

differentiation (Sporri and Sousa, 2005).  This might partially explain why mDC and DCs 

treated with PLGA, chitosan, or alginate film did not induce differential levels of CD4+ 

expression in co-cultured T cells (Fig. 6-2), associated with IL-12p70 release from DCs treated 

with these biomaterial films (Fig. 6-6b) or associated with co-cultures of T cells and DCs treated 

with these biomaterial films (Fig. 6-7b) without differential levels in the presence of the antigen. 

Unexpectedly, co-cultures of T cells with DCs treated with alginate or agarose films 

induced significantly increased levels of IL-12p70 and IL-10 release at the same time as shown in 
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Figure 6-7; alginate film induced significantly higher levels of IL-12p70 and IL-10 release at the 

same time compared to some other biomaterial films in the absence of the antigen, whereas 

agarose film did the same in the presence of the antigen.  Treatment of DCs with agarose films 

resulted in higher levels of IL-10 release in co-cultures with T cells as compared to the other 

biomaterial films both in the absence and presence of OVA.  This suggests that DC treatment 

with agarose films is a strong inducer of IL-10 in co-cultures with autologous T cells.  Presicce 

et al.(Presicce et al., 2008) recently found that mannose receptors (MR) on surface of human 

monocyte-derived DCs partially mediated stimulatory activity of KLH on DC phenotype changes.  

In their study, both IL-12 and IL-10 were secreted from DCs treated with KLH in significantly 

higher levels than the negative control DCs, combined with upregulation of CD40, CD80, CD86, 

CD83, or HLA-DR.  However, once MRs were blocked by monoclonal antibodies, DCs treated 

with KLH released IL-12 and IL-10 at significantly decreased levels and the capacity of these 

DCs for allogeneic T cell proliferation also decreased in association with decreased upregulation 

of  CD40, CD80, CD86, CD83, or HLA-DR, compared to DCs treated with KLH without 

monoclonal anti-MR antibody treatment.  In the Chapter 4, DC treatment with alginate films 

resulted in lower levels of endocytic ability and expression of CD32 (Fcγ Type II) and CD206 

(MR) as compared to iDCs while agarose had the opposite effect.  Thus receptors related with 

endocytosis of DCs or peptide-MHC complexes expressed on the surface of DCs might, at least, 

partially dictate release of both IL-12p70 and IL-10 upon DC-T cell contact through the 

immunological synapse. 

As a major factor in driving the Th2 subset, IL-4 is known to be produced by Th2 

lymphocytes, mast cells, or eosinophils (Nelms et al., 1999).  Actually, recombinant human IL-4 

has been employed in the present study during DC culture to suppress macrophage activation but 

other specific effects of IL-4 on DC culture remain unclear (Yao et al., 2005).  Interestingly, as 
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shown in Figure 6-6, only DCs treated with agarose films exhibited significantly lower levels of 

IL-4 release than iDCs and DCs treated with the other biomaterial films.  However, after co-

culture of agarose-treated DCs with T cells levels of IL-4 release were similar to the negative 

control and all other biomaterials treatments with and without OVA (Fig. 6-7).  This indicates 

that DC treatment with agarose films induced IL-4 release in a certain amount more than DC 

treatment with other biomaterial films upon DC-T cell contact.  Similarly, DCs treated with LF 

15-0195, an immunosuppressive reagent which induced decreased upregulations of CD40, CD86, 

and MHC II, resulted in increasing levels of IL-4 release along with increasing amount of LF 15-

0195 for DC treatment in the co-culture with allogeneic T cells (Popov et al., 2006). 

It has been generally accepted that, in the procedure of T cell mediated immunity, if DCs 

present the signal 1 (peptide-MHC complexes) without the signal 2 (co-stimulatory molecule up-

regulations), this leads to anergy which is a critical pathway to tolerogenic response (Cunningham 

and Lafferty, 1977; Lenschow et al., 1996).  Thus, given that DC treatment with agarose films 

induced endocytic ability or co-stimulatory molecule expressions in levels very similar to those of 

the negative control, iDCs as shown in the Chapter 4, it might not be a surprising observation that 

DCs treated with agarose films induced T cell CD4+CD25+FoxP3+ expression in levels very 

similar to iDCs (Fig. 6-5).  However, upon DC treatment with agarose film in the presence of 

OVA antigen as well as in co-culture with T cells as shown in Figures 6-6 and 6-7, IL-12p70 or 

IL-10 release was modulated in significantly higher levels than iDCs and/or DCs treated with 

other biomaterial films.  This indicates that agarose might be a potential inducer of 

tolerogenicity to a greater extent than iDCs.  In addition to the possible involvement of LPS 

treatment of DCs and TLR-4 signaling pathway in IL-12p70 and IL-10 induction as mentioned 

earlier, Ghosh et al.(Ghosh et al., 2006) recently reported the demographic picture of individual 

TLR (TLRs 2–9)-driven profiles of various cytokines and chemokines using human PBMCs 
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(cells including DCs, B cells, and T cells were cultured together with agonist for T cell receptor 

(TCR) or each of all TLRs and then, cytokines and chemokines in the supernatant were 

examined).  Using this autologous system, they found that TLR8 or TLR7/8 seemed to induce 

maximal Th1 (IL-12 and IFN-γ) or Th2 (IL-4) cytokines, respectively, among all TLRs examined, 

whereas almost all TLRs were simultaneously involved in IL-10 (Th2 cytokine) induction.  

Interestingly, TCR activated by agonists including anti-CD28 (ligand for CD80 or CD86 on DCs) 

induce most potent impact only on IFN-γ induction, compared to all other agonists for all TLRs.  

These all suggest that, to understand more detailed mechanisms behind indirect effects of 

biomaterial films on autologous T cell mediated immunity through phenotypical changes of DCs, 

future works might need to be performed focused on signaling pathways or engagements of PRRs 

(such as TLRs) or TCRs on DCs or T cells, respectively, depending on different biomaterial films 

or antigen presentation through peptide-MHC complexes during DC-T cell contact through 

immunological synapse. 

Overall, the experiments presented herein support the premise that different DC 

phenotypes directed by different biomaterial films and/or the model antigen (OVA) control helper 

T- helper cell polarizations.  First of all, T cell markers and cytokine profiles in Th1/Th2 

polarizations were, at least, partially modulated depending on DC treatment with different 

biomaterial films and/or antigen, or co-culture with autologous T cells.  The representative Th1 

cytokine, IFN-γ was induced by mDCs or DCs treated with PLGA films at significantly higher 

levels compared to negative control and DCs treated with other biomaterial films when co-

cultured with T cells.  Treatment with agarose films was the only biomaterial which induced the 

release of IL-10 upon co-culture of DCs and T cells in association with induction of regulatory, 

CD4+CD25+FoxP3+ T cell activation.  This is strong evidence indicating agarose is an inducer 

of immunosuppressive effects in the T cell mediated immunity.  Taken together, DC 
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phenotypical changes, such as increased up-regulations of CD40, CD80, CD86, CD83, and HLA-

DQ and low endocytic ability of mDCs or DCs treated with PLGA films as shown in the previous 

study, appeared to induce a Th1 response, whilst expression levels of these molecules and high 

endocytic ability similar to iDCs obtained for DCs treated with agarose films appeared to induce 

an immunosuppressive Th2 response. 

In this study, we have demonstrated multifunctional effects of DCs treated with different 

biomaterial films on autologous T cell mediated immunity, thereby elucidating the potential T 

cell activation or polarization in the adaptive immune response, which can be expected when 

those biomaterials are introduced in vivo in combination products.  This understanding of T cell 

activation or polarization associated with DC maturation when DCs are treated with biomaterial 

films is expected to provide key information on selection of biomaterials in the combination 

products for tissue engineering or vaccine delivery, further expanding the application into the 

immunotherapeutic tools.  For instance, PLGA might be useful for anti-cancer (immunogenic) 

therapy through the Th1 polarization induced, whereas agarose might be beneficial to obtain an 

immunosuppressive (tolerogenic) effect on autoimmune disease such as rheumatoid arthritis 

through the Th2 polarization and CD4+CD25+FoxP3+ autologous T regulatory cell induction.   
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CHAPTER 7† 

DIFFERENTAIL INTEGRATION OF BIOMATERIALS IMPLANTED INTO THE 
KNEE JOINT OF RHEUMATOID ARTHRITIS-INDUCED RABBIT 

 

INTRODUCTION: 

Rheumatoid arthritis (RA) is generally believed to be caused by a combination of genetic, 

environmental, and hormonal factors but the exact mechanism of the autoimmunity initiation is 

not yet clearly answered due to its complicated etiology.  Even though tremendous efforts have 

been made on the immunological mechanisms, which show a massive influx of T cells, B cells, 

and fibroblast-like synoviocytes, macrophages, and dendritic cells (DCs) in the synovial tissue, 

the pathophysiological pathways of RA remain unclear, like as most of the other autoimmune 

diseases (Bresnihan and Tak, 1999; Miossec, 1995; Weyand and Goronzy, 1997).  In the course 

of the disease, associated with the pannus formation and destruction processes, the massive influx 

of various cells above infiltrates into the synovial tissue (ST) and accumulates at the junction of 

the pannus and cartilage.  The pro-inflammatory cytokines such as tumor necrosis factor (TNF)-

α, interleukin (IL)-1, and IL-6 subsequently activate signal transduction pathways and 

transcription factors, which, in turn, control the transcription of cytokines. 

To treat arthritis patients. various anti-inflammatory drugs have been employed for 

pharmacologic therapies (Robbins et al., 2003).  However, these drugs should be frequently 

injected into the patients for long time duration and is limited to treatment of those with minor 

RA symptoms.  Moreover, these drugs are not only ineffective at preventing the destruction of 

bone and cartilage or restoring joint function, but also can lead to undesirable side effects (Arend 

and Dayer, 1995; Brennan et al., 1989; Elliott et al., 1993; Dayer and Fenner, 1992; Wooley et al., 

1993). 
                                            
† A manuscript will be prepared from this Chapter 7 upon completion of data analysis. 
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As another clinical method for RA patients, surgical treatments have also utilized to 

reduce a risk of side effects by extracting inflamed area out of patient’s knee.  However, such 

surgical treatments still have problems of limited restoration of a durable articular surface for 

long term.  Moreover such surgical procedures for the knee are associated with harshly 

complicated procedures, high cost, and limited movements of patients (Buckwalter and Mankin, 

1998; Hunziker, 2002). 

Tissue engineering has been recognized as a promising alternative for cartilage 

reconstruction and regeneration, providing a relatively simple procedure and long-term drug-free 

remission.  In conjunction with great possibilities of minimally invasive and less complicated 

procedures for patients, cartilage tissue engineering has been motivated by the need of replace 

lost or damaged tissue with an already structurally and mechanically functional implant that can 

be created in vitro using chondrocytes or chondroprogenitor cells in combination with 

biomaterials (Suh and Matthew, 2000; Cancedda et al., 2003; Zhang et al., 2005; Kuo et al., 

2006).  However the host immune response against the biomaterial component or device is still a 

major concern on the achievement of tissue restoration (Babensee et al., 1998). 

Dendritic cells have been proposed to play a central role not only in the initiation and 

perpetuation of RA (Waalen et al., 1986; Pettit and Thomas, 1999; Santiago-Schwarz et al., 2001; 

Radstake et al., 2005), but also in host immune response against biomaterials, associated with the 

adjuvant effects (Babensee et al., 1998).  Adjuvant effects associated with biomaterials in vivo 

(Matzelle and Babensee, 2004; Babensee and Paranjpe, 2005; Yoshida and Babensee, 2004; 

Bennewitz and Babensee, 2005) and human monocyte-derived DC maturation upon treatment 

with biomaterials in vitro (Babensee and Paranjpe, 2005; Yoshida and Babensee, 2004; 2006; 

Yoshida et al., 2007) have been previously demonstrated.  Following these basic studies to 

understand biomaterial effect on phenotypical changes in DC maturation, five inherently different 
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biomaterials in 2-dimensional (2-D) form were used to treat DCs and these different biomaterials 

induced differential levels of phenotypical changes in DC maturation as shown in the Chapter 4.  

Furthermore, when DC treated with these different biomaterials in 2-D form were co-cultured 

with autologous T cells, phenotype and polarization of co-cultured T cells were differentially 

induced depending on different biomaterials as shown in the Chapter 6.  Interestingly, among 

different biomaterials tested, PLGA and agarose exhibited opposite results: PLGA induced 

phenotypical changes of DC maturation in higher levels much like the positive control of LPS-

treated DCs, whereas agarose treatment of DCs resulted in a phenotype very similar to the 

negative control of iDCs.  Also, PLGA treated DCs induced a T helper type-1 (Th1) phenotype 

of co-cultured autologous T cells for immunogenicity while DCs treated with agarose induced a T 

helper type-2 (Th2) phenotype of co-cultured autologous T cells for tolerogenicity.  Recently, as 

shown in the Chapter 5, these PLGA and agarose in 3-dimensional (3-D) scaffold in porous form 

have been used to treat DCs and induced DC maturation with phenotype changes in levels very 

similar to those obtained from DC treatment with those in 2-D film form above. 

 To understand the influence of RA environment to different biomaterials and to identify 

biomaterial useful for tissue engineering in the RA situation, integration of inherently different 

biomaterials (PLGA and agarose) based on their effects on DC phenotype, was assessed upon 

their implantation into the knee joint of rabbit with induced RA.  Upon RA induction and 

biomaterial implantation, the knee swelling size and total leukocyte concentration of the right 

knee joints remarkably increased, compared to the untreated left knees.  However, total 

leukocyte concentration in the peripheral blood or in the joint lavage of the left knees (untreated 

control) were observed in differential levels depending on the biomaterial implants.  

Furthermore, the profile of leukocytes in the knee with induced RA (right knee) was 

predominately granulocytes (eosinophils and neutrophils) while the contralateral untreated left 
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knee shown a distinctly different profile of leukocytes wherein a more balanced proportion of 

granulocytes and monocytes was observed. 

 
METHODS: 

Preparation of biomaterial scaffolds in porous form  

The biomaterials used for scaffolds include poly(DL-lactic-co-glycolic acid) (PLGA) 

and agarose.  All biomaterial scaffolds were prepared freshly for implanting procedure.  

Preparation methods of all biomaterial scaffolds were adapted or modified from the previously 

described methods (Chapter 5); PLGA scaffolds were prepared by salt-polymer casting 

particulate-leaching technique with NaCl at the leachable component (Mikos et al., 1994) and 

agarose scaffolds prepared by inverted colloidal crystal templating method using polystyrene 

beads as leachable component (Lee et al., 2006).  Briefly, poly(DL-lactic-co-glycolic acid) 

(PLGA) (ester terminated; molar ratio: 75:25, inherent viscosity: 0.70 dL/g in trichloromethane; 

100,000 MW; Birmingham Polymers, Birmingham, AL) was dissolved with 8.3% w/v in 

dichloromethane (DCM) overnight at room temperature.  Then, this PLGA/DCM solution was 

poured over 16 g NaCl (90-125 μm) in a Teflon dish of 50 mm diameter and 24 mm depth 

(BrandTech, Essex, CT) in the chemical fume hood.  After complete mixing PLGA/DCM 

solution and salt using paper clip, the Teflon dish was gently shaken on the vortex for 20 ~ 30 

minutes in the chemical fume hood, to facilitate homogeneous distribution of salts and expedite 

initial evaporation of solvent (DCM).  Then, final evaporation of the DCM and drying were 

performed without shaking in the chemical fume hood for 36-48 hours followed by leaching salt 

in ddH2O using a shaker for 2 days changing water 3 times.  Scaffolds were then air-dried in the 

tissue culture hood for 24 hours, and freeze-dried overnight.  For agarose scaffolds, polystyrene 

beads with 100 (±1.5%) μm (particle counter size standards, Duke Scientific, Palo Alto, CA) 
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were washed 3 times using isopropanol (Sigma), and sonicated in isopropanol for 20 minutes 

followed by evaporation of isopropanol in the oven at 60ºC overnight.  Then, polystyrene beads 

in Teflon beaker were sintered in the oven at 120ºC for 4 hours, and the crystal templates were 

prepared.  Agarose (type V; high gelling; gel strength of ≥ 800 g/cm2 at 1.0 %; Sigma; molecular 

weight is not known) was dissolved in ddH2O to a concentration of 10% w/v by heating using a 

microwave until boiling and visible homogeneity was reached.  Agarose solution was applied 

into the Teflon beaker having polystyrene bead template, and the beaker spun at 2,000 rpm for 3 

minutes.  After solidification of agarose hydrogel at room temperature, polystyrene beads were 

leached in tetrahydrofuran (THF) (Sigma) using shaker for 2 days changing THF 3 times in the 

chemical fume hood, followed by rinsing agarose scaffolds in ddH2O for 30 minutes (3 times) 

using shaker in the chemical fume hood.  Prepared scaffolds of PLGA and agarose were moved 

into the tissue culture hood, and punched of an size of 3.5 mm diameter and 4 mm length 

(cylindrical form), immersed into 70% EtOH for 30 minutes, and washed for 1 hour in endotoxin 

free water (LAL reagent water, Lonza, Walkersville, MD) changing water every 15 min.  All 

scaffolds were UV-sterilized for 30 min per surface of top, bottom, and side in the tissue culture 

hood prior to use in implantation.  Endotoxin content of biomaterial scaffolds was determined 

using a chromogenic Limulus Amebocyte Lysate assay (QCL-1000 Chromogenic LAL Endpoint 

Assay, Cambrex, Walkersville, MD).  Endotoxin assays were performed on a smaller piece of 

scaffold (1.5 mm in thickness and 4.5 mm in diameter), which had undergone the same washing 

and sterilization procedures as scaffolds used for implantation.  The scaffold pieces were 

suspended in endotoxin-free water and endotoxin assay performed.  Standards in tissue culture 

treated polystyrene wells and sample wells of different biomaterials were treated with endotoxin-

free water.  Limulus amebocyte lysate was added in the presence of biomaterial and incubated 

for 10 min at 37˚C.  Chromogenic substrate (Ac-Ile-Glu-Ala-Arg-pNA) was added to each well 
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and incubated for 6 min.  Glacial acetic acid (25% v/v) (J.T. Baker) was added as a stop solution 

and the mixture was transferred into flat-bottom microplate and the absorbance was measured at 

405 nm.  Endotoxin content in the samples was read off standards generated from endotoxin 

standards, from the manufacturer’s kit.  Each sample was run in triplicate for quantification.  

The effective endotoxin content (EU/ml) of 1.5 mm-thickness and 4.5 mm-diameter scaffold of 

PLGA was 0.036±0.015 and agarose 0.134±0.019.  Previous study has shown that minimum E. 

Coli endotoxin concentration of 100 EU/ml was required for DC maturation (Jotwani et al., 2003). 

 

Establishment of antigen-induced arthritis (AIA) 

Arthritis (AIA) was induced in rabbits as previously described (Storgard et al., 1999) 

and approved by Georgia Institute of Technology Institutional Animal Care and Use Committee 

(no. A08053).  Briefly, as shown in Figure 7-1, 7-2a & 7-2b, male New Zealand White rabbits 

(3 kg; Myrtle’s Rabbitry, Thomson Station, TN) were immunized on Day 0 in multiple 

subcutaneous sites with a total of 1 ml OVA (Sigma, 20 mg/ml) in 1:1 dilution of PBS and 

Freund’s complete adjuvant (CFA, Sigma), and boosted 2 weeks later in multiple subcutaneous 

sites (Day 14) with 0.6 ml OVA (Sigma, 20 mg/ml) in 1:1 dilution of PBS and Freund’s 

incomplete adjuvant (IFA, Sigma).  Arthritis was induced 1 week later (Day 21) by intra-

articular injection of 0.5 ml OVA/PBS (20 mg/ml) into the knee joint of anesthetized rabbits. 
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Figure 7-1: Time line of the rabbit study presented herein. This time line shows the 
procedure for the model combined together with RA induction and biomaterial 
implantation.  
Survival anesthetizations were performed on Day 22, 25, 29, and 36 (the end point) for surgery or 
procedures. *(J.L) indicates the joint lavage procedure on scheduled time points of Day 25, 29, 
and 36. 

 

Biomaterial scaffold implantation into rabbit knee joints 

After 24 hours (Day 22) of arthritis induction above (Figure 7-1), aseptic survival 

surgery was performed on the knee joint of rabbits for implantation of biomaterial scaffold 

(Figure 7-2d & 7-2e).  Under general anesthesia using 2% isoflurane, the lateral parapatellar 

incision was made and the patellar was dislocated.  After the articular surface of the distal femur 

was exposed, a single osteochondral defect (3.2 mm diameter and 4 mm depth) was created in the 

trochlea groove using nitrogen-powered hand drill (Hall Powerpro, Conmed, Utica, NY).  Then, 

PLGA or agarose scaffold was fitted into the defect, producing a fit flush with the articular 

surface.  The patellar was relocated so that the patella glides over that fit flush to secure 

biomaterial scaffold in the defect (Kang et al., 1991) and then, the joint capsule and skin were 

closed by interrupted intradermal suturing using absorbable 5-0 suture and subcuticular suturing 

using absorbable 3-0 suture, respectively (both from Ethicon, Somerville, NJ).  For the negative 

control of biomaterial implantation, one group was sham-operated without biomaterial 

implantation. 

 

Treatment and control of rabbits 

This in vivo research presented herein is composed of two different studies as shown in 

Table 4.  Because this rabbit model combined together AIA induction and biomaterial 

implantation into the knee joint which has not been performed previously by us or others, to learn 
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techniques for rabbit handling and surgery as well as feasibility for this model, a pilot study was 

performed first and then, a full (experimental) study was performed incorporating points learned 

during the pilot study.  Arthritis was induced for all rabbits, except the group of only PLGA 

implantation in the pilot study, by intra-articular injection of OVA/PBS as described above only 

into the knee joint of right hind limb per rabbit and biomaterial implantation or sham operation 

was also performed only into the same knee joint, whereas the left knee joint per rabbit was left 

untreated for the within-animal control.  Only the control group of RA was not performed with 

surgical procedure as shown in Table 4. 

 

Table 4. Rabbit groups and treatments 
Study Group identification code Treatment Rabbit number 

RA RA induction only 2 
RAPL RA induction and PLGA implantation 2 Pilot study 
PL PLGA implantation only 2 
RA RA induction only 3 
RAAG RA induction and agarose implantation 3 
RAPL RA induction and PLGA implantation 3 Full study 

RASH RA induction and sham operation 3 

 

Measurement of joint swelling 

Joint swelling was measured using an electronic digital caliper (Control Company, 

Friendswood, TX) on Days 21, 22, 25, 29, and 36 (endpoint).  The degree of joint swelling was 

calculated as swelling ratio, determined as joint size of the AIA and/or biomaterial implanted 

right knee divided by that of the contralateral untreated left knee. 

 

Joint lavage and peripheral blood collection 

 On Days 25, 29, and 36 (endpoint), joint fluid from knee joints of both hind limbs per 

rabbit was lavaged by injection of 1 ml Gey’s balanced salt solution (GBSS, Sigma) containing 5 

U/ml heparin (Heparin Sodium Injection, 10,000 USP unit/ml, Abraxis, Schaumburg, IL) through 
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the patellar tendon.  After manipulation of the joint to allow for ample mixing of joint fluid, 

using the same needle but another syringe pre-loaded with 50 μl of heparin, 250 ~ 300 μl joint 

fluid was aspirated per knee joint and then, kept on ice until cell analysis.  At the same time of 

joint lavage, peripheral blood was also collected by piercing the central artery of rabbit ear using 

needle (BD vacutainer, Franklin Lakes, NJ).  A single collection of blood was made per rabbit 

for each time of collection; 2 ml of blood was collected into a sampling tube pre-inserted with 

500 μl of heparin for future cell analysis, whereas 1 ml of blood was collected into an empty tube 

for serum preparation for cytokine content analysis.  Blood sample for cell analysis (2 ml with 

heparin) was gently shaken on a hemotology mixer, for a minimum of 2 hours to prevent blood 

clotting and then, kept on ice until cell analysis.  The other blood sample (1 ml without heparin) 

for serum preparation was left at room temperature, for at least 3 hours to induce appropriate 

clotting until spinning for serum collection.  After blood was clotted, the tube containing this 

blood for serum was spun at 12,000 rpm for 5 minutes and then, clear part at the top of sample 

was collected and saved at -20ºC until protein analysis. 

 

Assessment of joint lavage sample 

After collecting the joint fluid, the original sample was shaken by vortex and then, 200 

μl was taken per knee joint sample and transferred into another tube.  This 200 μl was spun at 

1,100 rpm for 10 minutes to save supernatant for future TNF-α analysis and the supernatant was 

kept at -20 ºC until analysis.  The cell pellet was resuspended in 1000 μl PBS for the right knee 

or 250 μl PBS for the left knee, and 10 μl of this cell suspension per sample was taken for total 

leukocyte concentration using the coulter cell counter (Multisizer 2, Beckman Coulter, Fullerton, 

CA) and then, cells with 7 ~ 20 μm size were counted as leukocytes according to the 

literature.(Manning et al., 1994)  At the same time, 200 μl of this cell suspension in PBS was 
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taken and processed for Cytospin preparations as described previously (Yoshida and Babensee, 

2004) (Cytospin Cytocentrifuge, Thermo Shandon, Pittsburgh, PA) and stained with Hematology 

Stain (Astral Diagnostics, West Deptford, NJ).   Using this cytospin slide prepared, differential 

leukocyte counting was performed using light microscopy examination with an Axiovert 135 

microscope (Zeiss, Jena, Germany).  Due to unexpected difficulty of visual differentiation 

between neutrophil and eosinophil in rabbit blood, leukocytes were differentially counted as 

granulocytes (neutrophil + eosinophil), lymphocyte, and monocyte by percentages in total 100 ~ 

300 cells per cytospin slide.  For this differential leukocyte profiles, one cytospin slide was 

prepared per leg so that one rabbit had two slides for each of the right and left knee.  In addition, 

a representative cell morphology using cytospin slide was selected from 3 rabbits per group using 

Image-Pro Plus (v.5) software (Media Cybernetics, Inc., Bethesda, MD). 

 

Assessment of peripheral blood sample 

For blood samples, 2 ml of blood mixed with heparin was shaken by vortex and then, 10 

μl of this blood was added into a tube having 990 μl of red blood cell lysis buffer for total 

leukocyte concentration, whereas 100 μl was added into a tube having 900 μl of red blood cell 

lysis buffer for differential leukocyte counting using cytospin.  These blood samples mixed with 

lysis buffer were incubated at 37 ºC for 20 minutes and then, processed with total leukocyte 

concentration and differential leukocyte profile as same as above.  After blood was clotted, 1 ml 

of blood collected for serum collection was spun at 12,000 rpm for 5 minutes and then, clear 

portion at the top was collected and kept at -20 ºC until future TNF-α analysis. 

 

Histology and micro-CT analysis on rabbit knee joints 

At Day 36 of the end point, intact knee joints (both hind limbs per rabbit) were harvested 
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by cutting at the femoral and tibial diaphyses from all rabbits.  One rabbit out of three rabbits 

per group was used for the histology analysis while two rabbits were used for the micro-CT 

analysis.  For histology procedure, whole intact knee joints were fixed in 10% formalin and 

decalcified in 10% formic acid for 21 days in each of formalin and formic acid changing formalin 

or formic acid 3 times.  The decalcified joints were embedded in paraffin and sections were 

prepared in 5 μm thickness.  Sections were stained for cellularity with hematoxylin and eosin 

(H&E) and for proteoglycan content with safranin-O (fast green used as a counterstain).  

Focusing on the position of the osteochondral defect for the biomaterial implant or sham 

operation, one sagittal section of this defect per knee joint was selected (a sagittal plane at 

500±50 μm away from the center of biomaterial/defect for all rabbits), and then, samples from all 

rabbits were compared for morphologies of cells and tissues including cartilage or synovial 

tissues from femur, tibia, and joint cavity adjacent to the defect position.  A section for the RA-

induced rabbit without the defect was prepared by sectioning the sagittal plane with a position 

corresponding to that of other knee joints with biomaterial/defect. 

For micro-CT procedure, the distal femur of each knee joint was exposed by removing 

all skin and tissues except cartilage, bone and biomaterial implant, and these samples were fixed 

in 10% formalin for 3 days (Figure 7-2e).  Then, these samples were incubated for 18 hours with 

40% Hexabrix (contrast agent)/60% PBS at 37ºC.  Femora of all samples were consistently 

secured such that the exposed surface of the defect was as close to perpendicular to the vertical 

axis of the micro-CT scanning tube (30 mm diameter).  However, perfect alignment was not 

possible due to defect placement, femoral length, and tube diameter, therefore the z-axis of the 

defect was not equivalent to the z-axis of scanning.  The scanning tube, containing PBS at the 

bottom, was sealed with parafilm to prevent dehydration during scanning.  All scanning was 

performed in air using a μCT 40 (Scanco Medical, Bruttisellen, Switzerland) at a voxel size of 30 
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μm, E = 45 kVp, I = 177 μA, 200 ms integration time, and approximately 45 min acquisition time.  

Approximately 360 slices (4.3 mm) of each distal femur were scanned.  After scanning, the 

reconstructed 2D axial slices were resectioned coronally for easier identification of the tissue 

formed around and on top of the defect or biomaterial implant.  For defect femora, a volume of 

interest (VOI) was defined to include approximately 1mm (wherever possible) of surrounding 

cartilage on all sides of the defect as well as the superficial region of the defect to a depth that 

was level with the subchondral bone.  For femora with no defects, a similar VOI was defined 

using relative bony and cartilaginous landmarks.  Similar to the histology analysis, the defect 

and surrounding tissues including cartilage and bone were selected for images in the coronal and 

sagittal view.  Additionally, to quantify average thickness and average attenuation changes, 

these parameters were calculated for the defect VOIs and normalized by contralateral control 

VOIs then compared between groups. 

 

Statistical analysis 

For statistical analysis, a two-way pairwise ANOVA utilizing a mixed model with 

repeated measure was used to determine statistical significance.  For all statistical methods, the 

GraphPad (Version 5, La Jolla, CA) was used.  If not indicated, p-value less than or equal to 

0.05 was considered to be significant. 

 

RESULTS: 

RA induction, biomaterial implantation, and the knee joint swelling  

On Day 22 (24 hours after the intra-articular injection of OVA), remarkable swelling of 

the right knee joint was observed compared to the untreated left knee joint as shown in Figure 7-

2c and the swelling ratios of the right knee joint to the untreated left knee were shown in Figure 
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7-3 and 7-6.  When the knee joint was opened for surgical procedure for biomaterial 

implantation on Day 22, inflamed tissues were observed (red color tissues) from the right knee 

joint as shown in Figure 7-2d and biomaterial implantation was performed fitting the implant 

flush with the joint. 
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Figure 7-2: Representative pictures for the experimental procedure of the in vivo rabbit 
study.  
(a) Subcutaneous injection for immunization (Day 0) or boost (Day 14). (b) Intra-articular 
injection of OVA/PBS for RA induction into the right knee after shaving hair (Day 21). (c) After 
24 hours, intra-articular injection of OVA/PBS into the right knee induced remarkable swelling 
compared to the untreated left knee. (d) PLGA implantation was performed into the trochlea 
groove and inflamed tissue. (e) The femoral condyles dissected at the end point (Day 36) and 
biomaterial implanted position. 

 

Results of the pilot study – joint swelling 

As a result of the pilot study, wherein two rabbit were examined for each group of RA 

induction (RA), RA induction combined with PLGA implantation (RAPL), and PLGA 

implantation without RA induction (PL), upon RA induction, the right knees induced remarkable 

swelling as shown in Figure 7-2c above and the swelling ratio of the right knee to the untreated 

left knee peaked on Day 22 (Figure 7-3).  However, the ratio decreased over time and did not 

show specific difference compared to only PLGA implantation especially on Day 29 and 36. 

 



 

 148

 
Figure 7-3: Joint swelling ratio of the right knee to the untreated left knee per rabbit in the 
pilot study.  
The swelling ratios of rabbit with RA induction exhibited remarkable increase on Day 22 (24 
hours after the RA induction by intra-articular injection). However, ratios from all rabbits did not 
show specific difference each other especially on Day 29 and 36. Ratios are shown as mean±SEM, 
n=2 rabbits. 

 

Results of the pilot study – total leukocyte concentration in the joint lavage 

Upon RA induction and/or PLGA implantation into the right knee, total leukocyte 

concentration increased in level much higher than the left knee and these patterns were 

maintained through the study (Figure 7-4).  The total leukocyte concentrations in the lavage of 

joints with PLGA implantation without induced RA were lowest as compared to the other 

treatment groups with induced RA.  However, the number of leukocytes for all treatments 

decreased over time.   



 

 149

 
Figure 7-4: Total leukocyte concentration in the joint lavage fluid harvested from right or 
left knees in the pilot study.  
Upon RA induction with or without PLGA scaffold implantation into the right knee, total 
leukocyte concentrations increased in harvested joint lavage fluids at a level much higher than in 
the left knee and these patterns were maintained through the study. However, the number of 
leukocytes for all treatments decreased over time. Due to unexpected problem with the coulter 
counting machine, it was impossible to obtain data on Day 25. Leukocyte numbers are shown as 
mean±SEM, n=2 rabbits. 

 

Results of the pilot study – differential leukocyte profiles in the joint lavage fluid 

Upon RA induction with or without PLGA scaffold implantation into the right knee, 

granulocyte percentages were present at a higher level than lymphocytes or monocytes in the 

right knees (Figure 7-5).  For the contralateral left knee control the proportions of granulocytes 

and monocytes were more equal.  In most cases, the percentages of lymphocytes were the lowest 

of the leukocyte types for all knee joints.  Interestingly, on Day 36, both knees of rabbits having 

implanted PLGA scaffolds exhibited higher levels of monocytes compared granulocytes or 
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lymphocytes.  

 

 

Figure 7-5: Differential leukocyte profiles in joint lavage fluid harvested from right or left 
knees in the pilot study.  
Upon RA induction with or without PLGA scaffold implantation into the right knee, granulocyte 
percentages were present at level higher than lymphocytes or monocytes in the right knees, 
whereas the proportions of granulocytes and monocytes were more equal for the contralateral left 
knee control. Interestingly, on Day 36, both knees of rabbits having implanted PLGA scaffolds 
exhibited higher levels of monocytes compared granulocytes or lymphocytes. The differential 
leukocyte profile for Day 25 for all treatments and for the left knee of rabbit with only PLGA 

implant (PL-L*) on Day 29 was not obtained due to unexpected clotting problem of the lavage 
samples. Percentages of cell types per knee joint are shown as mean±SEM, n=2 rabbits. 

 

From this pilot study, information valuable for next full study was obtained.  First of all, 

feasibility of this rabbit model was confirmed by showing remarkable swelling of knee joints 

upon RA induction.  In addition, various techniques useful for experimental procedures were 

acquired.  For instance, rabbit handling, subcutaneous injection under physical restraint of rabbit, 

anesthetization of rabbit, and surgery techniques for appropriate implantation of biomaterials 
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were learned.  For procedure of sample collections during the study, techniques for joint lavage 

and optimum dilution of this joint lavage for cell counting and cytospin were also learned.  

These all acquired techniques were subsequently applied to the full study. 

 

Results of the full study – joint swelling 

Similarly to the results of the pilot study, after 24 hours of RA induction, the joint 

swelling ratios of the right knee to the untreated left knee for all rabbits were remarkably 

increased on Day 22 and were maintained over time throughout the study duration without 

significant differences with other treatments, except for the groups of agarose scaffold 

implantation or sham operation on Day 29 (Figure 7-6).  Agarose scaffold implantation into the 

RA joint induced average values of swelling ratio levels which were lower than joints with PLGA 

scaffold implantation or sham operation.  Especially on Day 29, joints with implanted agarose 

scaffolds exhibited significantly lower swelling rations as compared to the sham operated joints.  

In addition, separate statistical analysis on joint swelling in the right and the left knee without 

ratio of the right to the left knee showed that only the left knee size of agarose-implanted rabbit 

was significantly different from that of sham-operated rabbit on Day 29 (these separate graphs are 

not shown here).  This might affect the significant difference in the normalized data (ratio of the 

right to the left knee) on Day 29 as shown in Figure 7-6. 
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Figure 7-6: In the full study, the joint swelling ratios of the right knee to the untreated left 
knee per rabbit were remarkably increased on Day 22 and were maintained throughout the 
study duration without significant differences with other treatments, except for the groups 
of agarose scaffold implantation or sham operation on Day 29. 
Agarose scaffold implantation into the RA joint induced average values of swelling ratio levels 
which were lower than joints with PLGA scaffold implantation or sham operation. Especially on 
Day 29, joints with implanted agarose scaffolds exhibited significantly lower swelling rations as 

compared to the sham operated joints. Ratios are shown as mean±SEM, n=3 rabbits.  *: p ≤ 0.05, 
compared pairwise among all treatments and statistically different between two treatments. 

 

Results of the full study – total leukocyte concentration in the joint lavage 

After RA induction and biomaterial scaffold implantation in the full study, the total 

leukocyte concentrations in the right knee joint were consistently higher than the untreated left 

knee for all treatment groups for the duration of the study (Figure 7-7).  While the right knees of 

all treatments or control did not show any statistically different total leukocyte concentration 

amongst each other, at early time points, PLGA scaffold implantation into RA joints showed a 

trend of higher total leukocyte concentration.  This observation was associated with the 

statistically higher number of total leukocytes in the left knee of rabbits with implanted PLGA 

scaffolds with induced RA as compared to all other treatments or control at all time points.  All 



 

 153

treatments and control rabbit maintained the trends through the study duration, but the numbers of 

total leukocytes decreased over time. 

 

Figure 7-7: In the full study, the total leukocyte concentrations in the joint lavage fluid 
harvested from right or left knees.  
After RA induction and biomaterial scaffold implantation in the full study, the total leukocyte 
concentrations in the right knee joint were consistently higher than the untreated left knee for all 
treatment groups for the duration of the study.  While all treatments and control rabbit 
maintained the trends through the study duration, the numbers of total leukocytes decreased over 
time. Interestingly, at all time points, statistically higher number of total leukocytes in the left 
knee of rabbits with implanted PLGA scaffolds with induced RA was observed as compared to all 
other treatments or control. Leukocyte numbers are shown as mean±SEM, n=3 rabbits. Brackets: 
p ≤ 0.05, compared pairwise among all treatments and statistically different between two 
treatments. 

 

Results of the full study – differential leukocyte profiles in the joint lavage fluid 
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Upon RA induction and implantation of biomaterial scaffolds in the full study, 

granulocyte percentages were present at a higher level than lymphocytes or monocytes in the 

right knees for the duration of the study (Figure 7-8).  For the right knee, on Day 25, sham-

operated rabbits exhibited granulocyte percentages at levels significantly higher than for other 

treatments or control, whereas monocyte percentages of sham-operated rabbits were observed at 

levels significantly lower than for other treatments or control.  Percentages of granulocytes or 

monocytes in the untreated left knees of all rabbits were very similar amongst each other on Day 

25. However, from Day 29 onwards, there was a change towards higher percentages of 

monocytes compared to granulocytes for RA-induced rabbits with implanted PLGA scaffolds or 

sham operations.  Finally, joint lavages of the left knee of RA-induced rabbits with implanted 

agarose scaffolds demonstrated percentages of monocytes that were significantly higher than 

granulocytes, on Day 36. 
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Figure 7-8: In the full study, upon RA induction and implantation of biomaterial scaffolds, 
granulocyte percentages were present at a higher level than lymphocytes or monocytes in 
the right knees for the duration of the study. 
Percentages of granulocytes or monocytes in the untreated left knees of all rabbits were very 
similar amongst each other on Day 25.. However, from Day 29 onwards, there was a change 
towards higher percentages of monocytes compared to granulocytes for RA-induced rabbits with 
implanted PLGA scaffolds or sham operations.. Percentages of cell types per knee joint are shown 
as mean±SEM, n=3 rabbits. Black brackets: p ≤ 0.05, compared pairwise among all treatments 
and statistically different between two treatments; Red brackets: p ≤ 0.05, compared pairwise 
among all cell types within a single treatment or control, and statistically different between two 
cell types. For both knees of all rabbits at all time points, difference between lymphocytes and 
granulocytes or monocytes is significant, and only for the right knees of all rabbits at all time 
points, difference between granulocytes and monocytes is significant. Brackets for these 
differences are not shown. 

 

Results of the full study – total leukocyte concentration in the peripheral blood 

Upon RA induction, total leukocyte concentrations in the peripheral blood were 

measured at the same time point as collection of the joint lavage.  The total leukocyte 

concentrations in the peripheral blood were observed at differential levels depending on 

biomaterial scaffold implantation in the RA knee joint (Figure 7-9).  On Day 25 and 36, total 

leukocyte concentrations in rabbit peripheral blood were not significantly different each other for 

all rabbit groups.  However, on Day 29, RA-induced rabbits with implanted PLGA scaffolds 

showed significantly higher total peripheral blood leukocyte concentrations, similar to the RA-

only rabbits, as compared to RA-induced rabbits with implanted agarose scaffolds or sham-

operated rabbits. 
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Figure 7-9: The total leukocyte concentrations in the peripheral blood were observed at 
differential levels depending on biomaterial implantation in the RA knee joint. 
After RA induction, total leukocyte concentrations in the peripheral blood were measured at the 
same time point as collection of the joint lavage. On Day 25 and 36, total leukocyte 
concentrations in rabbit peripheral blood were not significantly different each other for all rabbit 
groups.  However, on Day 29, RA-induced rabbits with implanted PLGA scaffolds showed 
significantly higher total peripheral blood leukocyte concentrations, similar to the RA-only 
rabbits, as compared to RA-induced rabbits with implanted agarose scaffolds or sham-operated 
rabbits. Leukocyte numbers are shown as mean±SEM, n=3 rabbits. Brackets: p ≤ 0.05, compared 
pairwise among all treatments and statistically different between two treatments. 

 

Results of the full study – histology and micro-CT analysis 

To investigate morphological changes of cartilage or bone tissue and degradation of 

cartilage upon biomaterial implantation into the RA-induced knee joints, histology and micro-CT 

analysis were performed on the right and left knee joints of all rabbits.  First of all, as seen in the 

attenuation numbers in Table 5, the control group of RA-induced rabbits exhibited higher value 

of x-ray attenuation in the right knee compared to the left knee.  This indicates that the RA 

induction in the right knee might have proteoglycan content less than the untreated left knee, 

possibly correlated with thinner cartilage weakly stained with safranin-O (red) in the right knee as 

compared to the untreated left knee for only RA-induced rabbit as shown in the histology (Figure 

7-11).  Similar to this control group of RA-induced rabbits, biomaterial implanted rabbits or 

sham-operated rabbits also showed x-ray attenuation at higher levels in the right knee than the 
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untreated left knee.  However, x-ray attenuations for both right and left knees and normalized 

cartilage thickness (Figure 7-10) obtained from biomaterial implanted rabbits or sham-operated 

rabbits were observed at levels similar amongst them.  In line with these attenuation numbers 

and cartilage thickness (a top layer in green color per each image) shown in the micro-CT images 

(Figure 7-10), safranin-O staining in the histological analysis (Figure 7-11) showed that cartilage 

thicknesses of the biomaterial implanted or sham operated (right) knee have cartilage thicknesses 

thinner than those of the untreated left knees.  Histological images showed that RA induction 

into the right knee induced lots of inflammatory cell infiltration (especially into the synovial 

tissue) and biomaterials are well integrated into the osteochondral defect.  Interestingly, agarose-

implanted rabbit exhibited cartilage layer healed over the defect while PLGA-implanted rabbit or 

sham-operated rabbit did not.  In addition, sham-operated or agarose-implanted rabbit showed 

healing procedure of bone tissue into the osteochondral defect to higher extent than PLGA-

implanted rabbit. 

 

Table 5. X-ray attenuation values obtained from the micro-CT analysis on rabbit groups. 
Two different rabbits per treatment or control group were examined on both hind limbs. Higher 
value indicates less content of proteoglycan in the cartilage layer examined using the micro-CT 
scanning (Palmer et al., 2006). Right or left indicates the right knee joint or the left knee joint, 
respectively. R/L is a ratio of x-ray attenuation value of the right knee joint to that of the left knee 
joint. 

RA RAAG RAPL RASH  

Right Left R/L Right Left R/L Right Left R/L Right Left R/L 

Rabbit 1 2.50 1.98 1.26 2.39 2.09 1.14 2.65 2.20 1.20 2.71 1.92 1.41 

Rabbit 2 2.17 1.95 1.11 2.39 1.97 1.21 2.58 1.96 1.32 2.32 1.97 1.18 
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Figure 7-10: Representative micro-CT images of rabbit knee joints in treatment or control 
group. 
After incubation of femoral condyle samples with the contrast agent (Hexabrix), samples were 
scanned using the micro-CT and then, the coronal or sagittal image was obtained per knee joint in 
differential colors depending on the contrast agent distribution into each sample. Red color 
indicates higher x-ray attenuation combined with higher contrast agent content (lower 
proteoglycan content) while green color does lower x-ray attenuation combined with lower 
contrast agent content (higher proteoglycan content). Images are shown by coronal or sagittal 
view in column and by treatment or control group in row. For instance, the coronal images of the 
right knee of biomaterial-implanted or sham-operated rabbit show the biomaterial scaffold or 
osteochondral defect in the middle. The cartilage thickness per knee joint was obtained as 
described in the Method section and the ratio (normalized cartilage thickness) of the thickness of 
the right knee joint to that of the left knee joint was averaged for two different rabbits per group. 
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Figure 7-11: Representative images of histological analysis on rabbit knee joints in 
treatment or control group. 
For the control group of RA, images (a-d) are shown with only cartilage and bone together with 
synovial tissue adjacent to the position corresponding to the biomaterial implantation or the 
osteochondral defect in other treatment group of rabbit: (a) and (b) are the right knee joint and the 
left knee joint, respectively, in H&E staining. (c) and (d) are the right knee joint and the left knee 
joint, respectively, in safranin-O/fast green staining. For the biomaterial-implanted or sham-
operated groups, images are shown with biomaterial implantation site or the defect, in addition to 
the cartilage, bone, and synovial tissues adjacent to the biomaterial implantation or the defect. 
Red bracket indicates the original defect region. Higher magnification images are also shown 
together with the whole defect image. (e-p) images of agarose-implanted group of RAAG: (e) and 
(f) are adjacent tissue in the right knee joint and the left knee joint, respectively, in H&E staining. 
(g) and (h) are adjacent tissues in the right knee joint and the left knee joint, respectively, in 
safranin-O/fast green staining. (i) the whole agarose-implanted site/defect region in H&E staining. 
(j, k, l) images in H&E staining magnified from (i). (m) the whole agarose-implanted site/defect 
region in safranin-O/fast green staining. (n, o, p) images in safranin-O/fast green staining 
magnified from (m). (q-ab) images of PLGA-implanted group of RAPL: (q) and (r) are adjacent 
tissues in the right knee joint and the left knee joint, respectively, in H&E staining. (s) and (t) are 
adjacent tissues in the right knee joint and the left knee joint, respectively, in safranin-O/fast 
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green staining. (u) the whole PLGA-implanted site/defect region in H&E staining. (v, w, x) 
images in H&E staining magnified from (u). (y) the whole agarose-implanted site/defect region in 
safranin-O/fast green staining. (z, aa, ab) images in safranin-O/fast green staining magnifined 
from (y). (ac-an) images of sham-operated group of RASH: (ac) and (ad) are adjacent tissues in 
the right knee joint and the left knee joint, respectively, in H&E staining. (ae) and (af) are 
adjacent tissues in the right knee joint and the left knee joint, respectively, in safranin-O/fast 
green staining. (ag) the whole sham-operated defect region in H&E staining. (ah, ai, aj) images in 
H&E staining magnified from (ag). (ak) the whole sham-operated defect region in safranin-O/fast 
green staining. (al, am, an) images in safranin-O/fast green staining magnified from (ak). B: bone, 
ST: synovial tissue, CT: cartilage, SC: biomaterial scaffold. Both-sided arrow in white color 
indicates the cartilage thickness determined by the safranin-O staining. 
 

 

Figure 7-11: Representative images of histological analysis on rabbit knee joints in 
treatment or control group. (continued) 
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Figure 7-11: Representative images of histological analysis on rabbit knee joints in 
treatment or control group. (continued) 
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Figure 7-11: Representative images of histological analysis on rabbit knee joints in 
treatment or control group. (continued) 
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Figure 7-11: Representative images of histological analysis on rabbit knee joints in 
treatment or control group. (continued) 
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Figure 7-11: Representative images of histological analysis on rabbit knee joints in 
treatment or control group. (continued) 
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DISCUSSION: 

The rabbit model developed herein combined together an AIA model for RA induction 

and biomaterial implantation into the knee joint that had not previously been studied.  For this 

reason, the pilot study was necessary, above all things, to demonstrate feasibility of the model.  

First of all, the weight changes of all rabbits in the pilot study were observed within 15% of 

weight loss, which was the maximum loss for the decision to euthanize rabbits.  In addition, 

expertise in rabbit handling, surgical procedure, biomaterial implantation, and sample collection 

by joint lavage were acquired through the pilot study.  Collectively, findings of joint swelling, 

total leukocyte concentration (joint lavage), and differential leukocyte profile (joint lavage) in the 

pilot study confirmed that the model is acceptable and feasible for the experimental procedure to 

understand effects of biomaterial implantation into the RA knee joints. 

The purpose of this research was to assess the effects of different biomaterials in 3-D 

scaffold porous form implanted into rabbit knee joints with induced RA.  In this way, we 

assessed the integration of 3-D scaffold prepared from inherently different biomaterials scaffolds 

of PLGA or agarose, upon implantation into the knee joint of RA-induced rabbit.  Clearly, 

different biomaterials implanted into the RA knee joint exerted effects to different levels 

especially in the contra-lateral untreated left knee joint or the systemic circulation of peripheral 

blood.  

In the previous in vitro studies, the efforts of a large variety of immunobiological assays 

have been used to understand the mechanism behind DC phenotypical changes when DCs are 

treated with different biomaterial films or scaffolds.  As a result, differential levels of DC 

maturation have been observed depending on the type of biomaterials used to treat the DCs, 

possibly associated with the inherently different chemistries of those biomaterials that are used.  

Based on these facts together with the previous results, taking into account that DCs play a 
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central role not only in the initiation and perpetuation of RA, but also in host response against 

biomaterials, associated with the adjuvant effect, it was hypothesized that different biomaterial 

scaffolds would exhibit an integration and acceptance to differential levels in the RA environment. 

These biomaterial implantation studies into rabbit joints with induced RA would hence provide a 

basis for biomaterial selection on which to build a biomaterial/tissue engineering strategy for 

treatment of diseased RA joints which may include incorporation of further immunomodulatory 

molecules and certainly the cells to form the new tissue. 

Most noticeable observation in this study is that upon RA induction combined with 

biomaterial implantation or sham operation into the right knee joint, the knee swelling size and 

total leukocyte concentration in the right knee remarkably increased, compared to the untreated 

left knees, and these increased levels in the right knee consistently went throughout the study 

duration (Day 36).  Unexpectedly, while the left knee of RA-induced rabbits with implanted 

PLGA scaffolds exhibited total leukocyte concentrations at levels that were significantly higher 

than all other treatments or control, this trend was not yet statistically significant with the number 

of animals tested to date.  However, total leukocyte concentrations in the peripheral blood or in 

the joint lavage of the left knees were observed at differential levels depending on the biomaterial 

implant; PLGA scaffold implantation induced total leukocyte concentrations in the peripheral 

blood that were at a significantly higher level that for either agarose scaffold implanted or sham 

operated joints on Day 29.  Furthermore, the left knee of RA-induced rabbits with implanted 

PLGA scaffolds exhibited significantly higher levels of total leukocyte concentration in the joint 

lavage as compared to those of rabbits with RA induction only, or sham operation through all 

time points. 

Results of the differential leukocyte profiles in the joint lavages of the right knees of 

rabbits with induced RA with or without implanted biomaterial scaffolds as shown in Figure 7-8 
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are in line with the fact that synovial fluid of RA patients is heavily infiltrated with leukocytes 

that are predominantly composed of neutrophils (Pillinger and Abramson, 1995).  Also, the 

percentages of granulocyte, lymphocyte, and monocyte composition observed in this study are 

very close to those reported in the literature wherein the rabbit AIA model was used (Kashiwagi 

et al., 2002).  The granulocyte, which is combined together as neutrophils and eosinophils in this 

study, exhibited at least 80% in the total leukocytes counted for the right knees of all rabbits with 

induced RA, through this study duration.   

In the previous in vitro studies in the Chapter 4 and 5, after 24 hours of DC treatment 

with different biomaterial 2-D films or 3-D scaffolds, CD44 expression on DCs and TNF-α 

release into supernatant from DCs were measured.  For all cases, DC treatment with PLGA 

films or scaffolds induced CD44 expression or TNF-α release at levels significantly higher than 

DCs treated with agarose films or scaffolds, or for the negative control of iDCs.  However, DCs 

treated with agarose films or scaffolds induced levels of these markers/cytokine release that were  

similar to the negative control of iDCs or significantly lower than observed for PLGA treated 

DCs.  As an adhesion molecule facilitating the rolling of leukocytes by binding to the 

endothelium-expressed hyaluronan at sites of inflammation (Pure and Cuff, 2001), CD44 

blocking procedure using specific anti-CD44 monoclonal antibody treatment induced in vivo anti-

inflammatory effects in RA animal models (Mikecz et al., 1995; Mikecz et al., 1999).  More 

recently, intravenous injection of anti-CD44 monoclonal antibody effectively suppressed 

leukocyte recruitment (rolling and adhesion) to the site of inflammation of murine RA model, 

also showing depletion of neutrophils in the peripheral blood (Hutas et al., 2008). 

In the systemic circulation of peripheral blood, TNF-α has been accepted as the most 

important cytokine, among pro-inflammatory cytokines, involved in the RA pathophysiology and 

as a potent primer of neutrophils, the systemic effect of TNF-α on the neutrophil degradative 
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cascade observed from the bloodstream to the inflammatory site in RA disease pathogenesis has 

been significantly evaluated by highlighting various examples that blocking TNF-α activity 

down-regulating the neutrophil activation pathways (Edwards and Hallett, 1997)  In addition, it 

has been reported that, upon induction of RA, rabbit model induced increase of leukocyte number 

in the peripheral blood and these leukocytes in the peripheral blood released higher levels of 

TNF-α compared to the level in the peripheral blood before RA induction (Kashiwagi et al., 

2002).  For human RA patients, Enbrel (a generic drug name of Etanercept) is one of the most 

popular drugs, which is a recombinant soluble form of human TNF-α receptor fusion protein.  

Enbrel is typically injected subcutaneously in a distance from the actual inflammatory site of the 

patient and then, it systemically inhibits the signaling pathway between TNF-α and TNF-α 

receptor by blocking TNF-α binding, thereby inducing suppression of inflammation at the RA site.  

Moreover, based on the clinical fact that symmetry is a remarkable feature of RA, the contra-

lateral response to a unilateral inflammatory stimulus has been examined, and distal bilateral 

degeneration of articular cartilage was observed by a neurogenic mechanism (through nerve 

network) and/or a systemic circulation (Decaris et al., 1999).  This indicates that untreated 

control knee might have been underestimated with its inflammation contra-laterally induced by 

intra-articular stimulus into the other knee within a single host (Shenker et al., 2003). 

Thus, in association with the effect of non-biological materials on leukocyte activation 

within the systemic circulation (Hammerschmidt et al., 1980; Jacob et al., 1980) and our previous 

in vitro results for CD44 and TNF-α described above, it is conceivable that the systemic 

circulation of the peripheral blood possibly explains, at least partially, the mechanism behind 

which PLGA implantation into RA joint induced higher number of total leukocytes in the 

peripheral blood on Day 29 and in the left knee joints (untreated) throughout the study duration. 

In the Chapter 6, autologous T cells were examined with their phenotype and polarization 
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upon co-culture of these T cells and DCs treated with different biomaterial films.  Dendritic cells 

treated with agarose films (together with model antigen, OVA) induced CD4+CD25+FoxP3+ (T 

regulatory cells) expression on autologous T cells at level similar to iDCs and IL-10 release at 

higher levels whereas PLGA film treatment (together with model antigen, OVA) induced release 

of IFN-γ at higher levels, as compared to DC treatment with other biomaterial films, in the DC-T 

co-culture system.  As a result of in vivo study using RA rabbit model wherein DCs also should 

be exposed to antigen and T cells, not all examinations shown here seem to be clearly correlated 

with the results observed in the previous in vitro T cell study.  However, mechanism behind 

changes of blood total leukocyte concentration and total or differential leukocyte profile in the 

left knee joint lavage, which was possibly induced by contra-lateral effects associated with a 

systemic circulation, might be explained using the immunogenicity of PLGA observed from in 

vitro T cell study above.   

To further understand the morphological changes of cells and tissues in cartilage and 

bone upon RA induction and biomaterial implantation/sham operation into the rabbit knee joint, 

micro-CT and histology analysis were also performed.  Even though the cartilage thicknesses (a 

top layer in green color per each image) shown in the micro-CT images (Figure 7-10) seem 

similar between the right and left knees of only RA-induced rabbit,  these rabbit knees exhibited 

higher value of x-ray attenuation in the right knee compared to the left knee.  This indicates that 

the RA induction in the right knee might have proteoglycan content less than the untreated left 

knee, based on the fact that x-ray attenuation is a strong indicator of density of sulfated 

glycosaminoglycans (sGAGs) that are attached to the PG backbone (Palmer et al., 2006).  In the 

histological analysis using safranin-O staining as shown in Figure 7-11, the RA-induced rabbits 

showed thinner cartilage layer which is weakly stained with safranin-O (red) in the RA-induced 

right knee compared to the untreated left knee.  Collectively, these possibly indicate that RA 
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induction into the right knee might have cartilage destruction to a higher extent than the untreated 

left knee.  The micro-CT images in coronal and sagittal view of the right knees showed that the 

agarose-implanted and sham-operated osteochondral defects are very similar to each other by 

showing red and yellow color pattern, whereas the PLGA-implanted defect did almost only green 

color.  Interestingly, from the histological analysis, the agarose-implanted rabbit exhibited 

healing procedure of bone tissue into the defect much like the sham-operated rabbit, whereas the 

PLGA-implanted rabbit did not.  So, this differential healing procedure between biomaterial 

scaffolds might partially explain the reason why the agarose-implanted and sham-operated 

defects showed those red and yellow color patterns similar to each other from the micro-CT 

images.  However, it still needs to be clarified if these differential images in the micro-CT 

analysis are also ascribed to the differential interaction between the contrast agent (Hexabrix) and 

the hydrophilic (agarose) or hydrophobic (PLGA) biomaterials.  As a result of histological 

examination, compared to the untreated left knee joints, thinner cartilages combined with poor 

safranin-O staining were found in the right knee joints from all rabbits (Figure 7-11).  Old-age 

degenerated human cartilage (Bae et al., 2003) and healed cartilage layer of sham-operated 

osteochondral defect in normal rabbit joint (Frenkel et al., 2005) exhibited poor staining with 

safranin-O due to degeneration/degradation associated with fibrillation in the cartilage layer.  

Therefore, it is conceivable that degradation of cartilage might be induced in the biomaterial-

implanted or sham-operated right knee joint in this study, possibly due to the combination of RA 

induction and biomaterial implantation or sham operation.  Demineralized bone matrix (Gao et 

al., 2004) and collagen- or hyaluronan-based scaffold (Frenkel et al., 2005) has been employed to 

examine their effect on osteochondral defect repair upon implantation of these scaffold into the 

rabbit joints, and cartilage and bone were nicely healed in these studies.  However, the studies in 

these literatures were performed using a normal rabbit without arthritis-induced circumstance into 
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the knee joint.  Thus, it is not clear yet if the healing procedure observed for biomaterial-

implanted knee joint in the present study is a typical healing process of cartilage and bone when a 

biomaterial scaffold is involved into the defect, due to the RA circumstance combined with 

biomaterial scaffold implantation.  For this reason, an additional study using rabbits with 

biomaterial implantation or sham operation without RA induction should be performed as 

following step to further understand how RA circumstance affect cartilage repair and healing 

procedure into the biomaterial-implanted or sham-operated knee joint.  Overall, biomaterial 

implantation into pre-existing severe disease situation accomplished a novel and challenging, 

clinically relevant model.  However, effects of PLGA observed above, which were possibly 

induced by contra-lateral effects associated with a systemic circulation, motivated an additional 

follow-up study using increase number of rabbits to more clearly explain the immunogenicity of 

PLGA into in vivo condition. 

Even though statistical significance was not reached with the limited number of rabbits 

used to date, the right knee of PLGA implanted rabbits showed a certain trend of higher levels of 

total leukocyte concentration compared to all other treatments or control through all time points.  

This indicates that an additional study with increase of rabbit number needs to be performed in 

order to get further information about statistical significance for this trend.  In addition, for the 

differential leukocyte profile, while the right knee consistently exhibited predominant percentages 

of granulocytes for all treatments or control through all time points, the untreated left knee 

exhibited almost equal percentages between granulocyte and monocyte on Day 25, and then, on 

Day 29 and Day 36, the left knees with PLGA, agarose, or sham operation showed changes of 

percentages by increasing monocyte proportions.  However, due to absence of naïve rabbit 

group in this study, it can not be clearly explained if these trends observed from the untreated left 

knees are correlated with the systemic circulation from the right knees.  For this reason, the 
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naïve rabbit group should be added forthwith. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 

Since tissue engineering has been recognized as a promising alternative for 

reconstruction and regeneration of diseased or damaged tissues, accompanied with a relatively 

simple procedure and long-term drug-free remission method, understanding host response to 

biomaterial which is combined with a tissue-engineered structure is central to design the tissue 

engineering with specific purpose.  This thesis research contributed to the biomaterial 

development by demonstrating differential effects of different biomaterials frequently employed 

in tissue engineering field, focusing on phenotypical changes in DC maturation.  In addition, the 

in vitro protocol for examination of biomaterial effects on T cell-mediated adaptive immunity was 

developed, demonstrating differential immunomodulatory impacts resulted upon co-culture of T 

cells and DCs treated with biomaterials.  Following these in vitro steps, a new in vivo model 

with a specific disease of RA wherein DCs play a critical role in RA pathophysiology was 

developed to test immunomodulatory effects of biomaterials in the actual disease condition. 

To obtain information essential to controlling of host response using biomaterials, five 

different biomaterials commonly used and relevant to combination products such as tissue 

engineered constructs or vaccine delivery systems were used to fully characterize DC and 

autologous T cell with immunological phenotypes upon DC treatment with these biomaterials.  

Furthermore, the framework of this thesis research was extended to an in vivo model to correlate 

all in vitro observations in the research. 

However, to further understand mechanism behind the big picture of immunomodulatory 

strategies via control of DC phenotypes and ensuing T cell-mediated adaptive immunity in host 

response to biomaterials, several key areas may be investigated in future studies. 
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While the research procedures in this thesis were summarized by correlating in vitro 

biomaterial effects on DC and T cell phenotypes with in vivo biomaterial effects on RA 

circumstance, more detailed characterization of DC phenotypes and further developed method 

would be of benefit.  For instance, hyaluronic acid (HA) film interestingly induced lower 

expression of CD44, as compared to iDCs, whereas HA overall inhibited DC maturation (Chapter 

4).  Surprisingly, even though CD44 has been well known as a potent receptor expressed on DCs 

to mediate DC clustering, migration, and maturation upon interaction with the hyaluronan 

components in the ECM (Weiss et al., 1997; Termeer et al., 2001), CD44 expression levels on 

DCs were induced by treatment with HA film even significantly lower than iDCs in this thesis 

research, possibly due to insolublized (cross-linked) film form and/or high molecular weight. (≥ 

800,000 MW).  Hyaluronic acid film also induced higher apoptosis level (Annexin V level) and 

lower endocytic ability than iDCs (Chapter 4).  Furthermore, dendritic cells treated with HA 

films induced significantly lower levels of CD4 expression on co-cultured autologous T cells as 

compared to the negative control of untreated CD3+ T cells as well as significantly lower levels 

of CD25 expression compared to T cells in co-culture with DC treated with alginate or agarose 

films (Chapter 6).  However, it can not be clearly answered only using these molecular weight 

and cross-linked condition of HA films tested in this thesis research. 

From a view point of DC maturation associated with biomaterials other than HA film in 

this thesis research, patterns of CD44 expression were very similar to those of co-stimulatory 

molecule expression or MLR results as far as differential DC maturation upon DC treatment with 

different biomaterial films (Chapter 4).  Dendritic cells showed upregulation in CD86 expression 

only when treated directly with biomaterials (Yoshida and Babensee, 2004) and PLGA or chitosan 

films induced CD44 expression on DCs in significantly higher levels than iDCs (Chapter 4).  

Moreover, PLGA was found, in the absence of carbohydrate unit recognizable by PRRs on DCs, 
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as the most potent stimulus (among all biomaterial examined herein) induced DC maturation in 

levels similar to the positive control of mDCs in the most examinations performed in this thesis 

(Chapter 4 and 5).  These results indicate that, during 24 hour-treatment of DCs with these films, 

protein adsorption on these biomaterial films and consequent adhesion of cells to those protein 

adsorbed might be induced in higher levels compared to other biomaterial films or iDC control.  

In other words, CD44 might be deeply involved in DC maturation and consequent T cell 

activation in adaptive immunity. 

Particularly, interaction of CD44 with intermediate-sized HA (MW ~ 200,000 Da) has 

been reported to induce apoptosis of DCs through nitric oxide (NO) production by DCs when 

tumor cells were involved (Yang et al., 2002b).  High molecular weight HA fragments (6,000 

kDa) induced a decreased level of TNF-α secretion, by specifically inhibiting TLR-2 signaling, 

from murine macrophages transfected with human TLR-2, as compared to the low molecular 

weight HA fragments (200 kDa) (Scheibner et al., 2006). 

Therefore, understanding of the exact role of CD44 associated with relationship between 

CD44 and hyaluronic acid might be critical step forward to control of DC phenotypes and host 

response.  These future procedures may be performed using a few specific methods.  For 

instance, to understand how CD44 and HA film used in this thesis research interact each other, 

the hyaluronan component in ECM and HA film may be compared each other using 

physicochemical and immunobiological assessments.  If the molecular weight and/or cross-

linking density of HA films are differentially modulated and then, effects of these changes of HA 

films on DCs are compared to those of hyaluronan component in ECM, it would be of importance 

in better understanding effect of HA film on DC maturation or apoptosis.  In addition, if CD44 

and/or TLR2 pathway are blocked for DCs and then, these DCs are treated with HA film, it also 

would be of benefit for better understanding effect of HA film on DC maturation. 
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In the study using biomaterial scaffolds (Chapter 5 and 7), PLGA and agarose were 

selected for scaffolds used in the experimental procedures, because the cross-linked HA was too 

brittle to be formed in 3-D porous scaffold.  However, through all in vitro investigations in this 

thesis research, HA film exhibited multifunctional impacts on controlling DC phenotypes by 

effectively suppressing DC maturation or T cell activation, as well as inducing of decreased 

endocytic ability or increased apoptosis of DCs.  Therefore, if it is feasible, application of 3-D 

porous scaffold form of HA into the in vitro or in vivo experimental procedure would be of great 

to elucidate the mechanisms of HA-controlled DC and T cell phenotypes as well as further host 

response in tissue engineering.  For instance, the chemically modified HA, Hyaff (Grigolo et al., 

2002) may be utilized in vitro and in vivo study as long as it shows inherency identical to the 

cross-linked HA film used in this thesis research. 

In this way, a more in-depth investigation of all HA-related features described above 

including CD44 behavior may be potential to understand key points in controlling DC phenotypes.  

In addition, from another viewpoint of immunotherapy for inducing secondary immune responses 

using artificial lymphoid organ, it would be of great interest to develop a strategy for localization 

or migration of immune cells (lymphocytes and DCs) using biocompatible scaffolds such as HA 

scaffold (Suematsu and Watanabe, 2004; Okamoto et al., 2007; Stachowiak and Irvine, 2008).  

Therefore, elucidating multifunctional effects of biomaterial scaffolds in vitro or in vivo on 

changes of DC phenotypes are expected to provide a guidance to design biomaterial scaffolds in 

applications of immunotherapy, various tissue engineering, or a combination of immunotherapy 

and tissue engineering. 

Most noticeable observation in this entire thesis work was immunomodulating impacts of 

PLGA and agarose, which was shown in the range from DCs to T cell-mediated adaptive 

immunity.  As shown in the Chapter 4, 5 and 6, PLGA induced immunogenicity whereas 
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agarose did tolerogenicity in vitro.  Using in vivo animal model, various effects of different 

biomaterials on host immune response, especially on T cell-mediated adaptive immunity, have 

been extensively investigated upon implantation, injection, or administration of them into animal 

model.  For instance, zinc-chitosan particles (adjuvant) combined with specific proteins 

(antigen) immunized by intraperitoneal injection were effective in sensitizing mice and guinea pig 

for antigen specific delayed type hypersensitivity (DTH), also resulting in stimulation of T and B 

lymphocytes (Seferian and Martinez, 2000).  Upon subcutaneous injection, alginate 

hydrogel/DC constructs induced a large number of antigen-specific T cell trafficking towards the 

alginate matrix (Hori et al., 2008).  Most recently, using a cage implant model of rat, three 

different biomaterials of Elasthane 80A, silicone rubber, and polyethylene terephthalate (PET) 

have been examined with their effects on differential activation of T cell subsets (Rodriguez et al., 

2008).  As a result, these different biomaterials induced T cell subsets (CD4+, CD8+, 

CD4+CD25+) in differential levels only upon the primary implantation.  Similar to these 

examinations, another approach to studying the further multifunctional impacts of different 

biomaterials may be to transfer biomaterials into in vivo animal models to particularly understand 

their effects on T cell-mediated adaptive immunity. 

In a view point of immunotherapy, a wide spectrum of immunobiological interactions 

between DCs and T cells has been extensively examined by adoptive transfer of DCs into in vivo 

animal models.  For instance, ovalbumin peptide-pulsed DCs were transferred into mice and 

these DCs induced great expansion of antigen-specific T cells, as well as antigen-specific Th1 

response, resulting in antitumor immunity (Lambert et al., 2001).  Dendritic cells only capable 

of viral antigen presentation were expanded with their population in mice and upon adoptive 

transfer of these DCs into recipient mice, induced strong T cell responses, thereby accelerating 

viral clearance (Bedoui et al., 2009).  Adoptive transfer of DCs previously treated with GM-CSF 
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into naïve mice demonstrated an expansion of FoxP3+ T cells and a significant delay in type-1 

diabetes (Cheatem et al., 2009).  Most recently, Hori et al. reported that when the alginate 

hydrogel (named as vaccination node) containing activated DCs was subcutaneously injected into 

mice, this combination of alginate and DCs attracted both host DCs and T cells to the site of 

injection more than a week in vivo, also showing that part of inoculated DCs trafficked to the 

draining lymph nodes (Hori et al., 2008). 

In the conventional therapeutic methods in DC-based immunotherapy, various drugs (e.g., 

dexamethasone, glucocorticoid, retinoid) or mRNA transfection have been widely accepted to 

modulate differential DC phenotypes, thereby further mediating differential T cell response (Xia 

et al., 2005; Toebak et al., 2008; Noonan et al., 2008).  However, anti-inflammatory drugs or 

mRNA transfection can lead to undesirable side effects or non-specific host response, frequently 

combined with complications in preparation of DC or host treatment (Arend and Dayer, 1995; 

Brennan et al., 1989; Elliott et al., 1993; Dayer and Fenner, 1992; Wooley et al., 1993; Nestle et 

al., 2005).  However, DC treatment with biomaterials in this thesis research is extremely simple 

without any complication, showing how easily purified DC can be isolated from biomaterials 

after 24 hour treatment.  In this way, it may be worthwhile to assess the ability of differentially 

biomaterial-treated DCs to non-pharmacologically drive T cell polarization. 

Another potential of DC treatment with biomaterials was that even though DCs were 

isolated from biomaterial films and extracellular OVA antigen after the 24 hour-treatment, they 

continued to secrete the same cytokines in almost the same levels under the wholly changed 

culture conditions for 8 days (the Chapter 6 and Figure A6, APPENDIX).  Therefore, based on 

results observed from immunomodulatory capacities of biomaterials (PLGA or agarose) in 

association with simple procedure of DC treatment with biomaterials, in vivo studies to 

understand ensuing adaptive immune response upon adoptive transfer of biomaterial-treated DCs 
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may be of great importance to further pursue this approach in the determination of role of 

biomaterials in non-pharmacological immunotherapy. 

In the in vivo study using RA rabbit model (Chapter 7), the full study was performed 

using only 3 rabbits per treatment or control group.  From the view point of typical statistics on 

fields of medicine or biomedical engineering, three rabbits are obviously not enough to 

substantiate effects of biomaterials implanted into the RA knee joints of rabbits.  For this reason, 

another set of this full study has been always considered in the following step.  However, a few 

interesting results were observed from the full study in the Chapter 7 and these results 

additionally motivate us to repeat another full study or increase treatment or control group.  For 

instance, even though not statistically clear, the right knee of rabbits with implanted PLGA 

scaffolds with induced RA showed a certain trend of higher levels of total leukocyte 

concentration compared to all other treatments or control through all time points.  This indicates 

that an additional study may be of importance to get statistical significance for this trend.  In 

addition, we could find that additional studies using naïve rabbit group or biomaterial 

implantation or sham operation into the normal knee joint without RA needs to be performed to 

further understand effect of biomaterial implantation and/or RA induction on the knee joint of 

rabbit.  In fact, TNF-α concentration in the joint lavage or peripheral blood collected from 

rabbits were measured using ELISA technique to understand effect of biomaterial implantation 

into the RA knee joint of rabbit on the pro-inflammatory cytokine concentration.  However, joint 

lavage or blood samples from all rabbits in this study unexpectedly exhibited TNF-α 

concentration at levels below the detection limit of the ELISA assay for all time points of sample 

collection (Day 25, 29, and 36).  So, joint lavage or blood sample might need to be collected 

earlier than the time point of Day 25 (e.g., Day 22 or Day 23 after Day 21 for RA induction or 

Day 22 for biomaterial implantation) to obtain the cytokine level enough to detect using ELISA 
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technique.  Lastly, for RA induction into the rabbit knee joint, a different model of RA induction 

such as LPS-induced arthritis rabbit model might be of great interest to obtain variety of useful 

data to compare effects of different biomaterials. 

The micro-CT analysis was very useful to understand effects of biomaterial implantation 

into the RA-induced knee joint on the cartilage degradation.  However, the VOI of all defect 

femora scanned in this study was defined to include approximately 1 mm (wherever possible) of 

surrounding cartilage.  For instance, the x-ray attenuation values obtained in this study were 

averaged for the entire circular region (approximately 5.2 mm of diameter) of the cartilage 

including the top area of biomaterial/defect (3.2 mm of diameter) at the center.  So, these values 

of the attenuation might not provide accurate information of degradation of cartilage adjacent to 

the biomaterial/defect possibly due to differential interactions between the contrast agent and 

different biomaterials as well as the absence of cartilage layer at the top of biomaterial/defect as 

seen in the histology results of the PLGA-implanted or sham-operated knee joint.  Therefore, in 

future work, the top area of the biomaterial/defect at the center of the entire circular region would 

be cut off and the remaining doughnut-shaped construct would be analyzed for the attenuation 

values.  This analysis is of great interest to further understand how RA and the biomaterial 

implantation affect the real cartilage adjacent to the defect. 

The ultimate goal of this thesis research is to suggest selection or design criteria of 

biomaterials for RA tissue engineering for human patients.  However, in the Chapter 4, 5, and 6, 

all in vitro experimental procedures were performed using DCs derived from healthy donors.  

These DCs might not be enough to fully understand in vitro functional impacts of biomaterials in 

case the future application of biomaterials for RA disease is targeted, possibly due to 

pathophysiological complications of RA patient, which is not clearly explained yet (Waalen et al., 

1986; Pettit and Thomas, 1999; Santiago-Schwarz et al., 2001).  For this reason, if feasible, in 
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vitro use of DCs derived from RA patients for treatments with biomaterials would be essential to 

obtain information directly connected to ex vivo or in vivo tests in future. 

The study presented herein begins to address differential levels of host response 

associated with different biomaterials with distinct, inherently different physicochemical features.  

The strength of the study in this thesis is the assessment and comparison of DC and T cell 

responses to biomaterials so widely and commonly used in combination products.  An 

understanding of DC maturation as predictive of a biomaterial adjuvant effect can suggest 

selection or design criteria for biomaterials in applications of tissue engineering or vaccine/drug 

delivery with associated immune responses.  Furthermore, elucidating the physicochemical 

properties of biomaterials and correlating these in vitro effects on DC and T cell phenotype 

changes with their in vivo adjuvant effects in animal studies are expected to provide guidelines for 

design and selection criteria for biomaterials in the combination products where immunological 

responses are of consequence, as well as immunotherapeutic intervention is accompanied by 

immunomodulatory impacts of biomaterials. 

 

 

 

 

 

 

 

 

 

 



 

 182

APPENDIX 

 

A.1  Water content of biomaterial films 

To assess effects of water content (hydrogelation) of the biomaterial films on in vitro 

phenotypical changes in DC maturation, water content of all biomaterial films were measured 

upon incubation of biomaterial films under the condition same as DC treatment with biomaterials.  

Briefly, all biomaterial films prepared with a size identical to those used in DC treatment as 

described in the Chapter 4, and then, biomaterial films were fully immersed in ddH2O, followed 

by incubation of films at 37ºC for 24 hours.  After this 24 hour incubation, excessive water on 

both surfaces of each biomaterial film was quickly absorbed by the filter paper and the weight of 

fully swollen biomaterial film was measured.  After this weight measurement, biomaterial films 

were freeze-dried for 6 days and then, the weight of this freeze-dried film was measured.  This 

weight of freeze-dried film was subtracted from the weight of fully swollen films and then, 

percentages of this difference (from the subtraction) out of the freeze-dried weight was 

considered as the water content (%) (Figure A1). 

 

 
Figure A1: Water content (%) in fully swollen biomaterial films.  
mean±SD, n=5 
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Based on the definition of the hydrogel which is at least 20% (w/w) water in its dried 

weight (Peppas and Mikos, 1986), except PLGA, all biomaterial films used in this thesis research 

can be considered as hydrogel.  As mentioned in the Chapter 4, chitosan is another hydrophobic 

biomaterial of natural polysaccharides having carbohydrate units which are mainly composed of 

glucosamine with a high cationic charge density (Chandy and Sharma, 1990; Tangpasuthadol et 

al., 2003; Li and Tuan, 2005).  In addition, the adhesion stability of protein adsorbed on different 

surface chemistries with different hydrophobicities has been shown with the highest level on the 

hydrophobic surface followed by the next highest one on the cationic surface (e.g., hydrophobic 

surface > cationic surface > neutral surface > anionic surface) under the physiological pH (Fraaye 

et al., 1986; Brash, 1983; Young et al., 1988).  Accordingly, after 24 hour-treatment of DCs with 

biomaterial films, non-/loosely-adherent DC portion collected from PLGA film was observed 

with the least amount of 37±15% among all biomaterial films used in this study, followed by the 

next least one of 65±13% obtained from chitosan film (Chapter 4). 

Considering the overall observations from in vitro experimental procedures in the 

Chapter 4, it seems that biomaterial with higher capacity of water uptake induces less DC 

maturation.  However, the water content of chitosan film is observed in level higher than that of 

alginate film, similar to that of HA film.  Collectively, it is conceivable that phenotypical 

changes in DC maturation are modulated by surface properties rather than other properties such 

as capability of water uptake. 
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A.2  Differential functional effects of clinical grade biomaterials on DC maturation 

As described above in the Chapter 4, to test effects of biomaterial grade such as research 

or clinical grade, the clinical grade 2-D biomaterial films were also prepared, and examined with 

their effect on DC maturation, compared to the research grade which is mainly studied in the 

present study.  In addition to the maturation marker expression result shown in the Chapter 4, 

MLR, Annexin V/PI, and DC morphologies in cytospins upon DC treatment with these clinical 

grade biomaterial have been performed (Figure A2, A3, and A4) as described in the method 

section in the Chapter 4.  As same as the maturation marker expression, these additional 

examinations also resulted in levels or patterns very similar to those of the research grade 

biomaterials, thereby confirming that dendritic cell responses to clinical grade biomaterials were 

indistinguishable from their responses to the research grade biomaterials. 

 

 
Figure A2: Allostimulatory capacities in Mixed Lymphocyte Reaction (MLR) in differential 
levels upon DCs treated with the clinical grade biomaterial films. 
Similarly to the results obtained from DCs treated with the research grade biomaterial films in the 
Chapter 4, PLGA supported allogeneic T cell proliferation in levels significantly higher than 
iDCs, whereas HA suppressed those especially in the ratio of DCs : T cells in 1 : 6.25. Ratios to 
the iDCs are shown with mean±SD, n=6 donors (6 independent experiments with different 

donors). ★: p ≤ 0.05, compared to iDCs and higher than iDC; ☆: p ≤ 0.05, compared to iDCs 
and lower than iDC; Brackets: p ≤ 0.05, statistically different between two biomaterial treatments. 
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Figure A3: Geometric mean fluorescence intensity (gMFI) of flow cytometry analysis of 
Annexin V and propidium iodide (PI) expression in differential levels upon DCs treated 
with different biomaterial films in the clinical grade.  
Dendritic cells treated with PLGA, chitosan, or alginate exhibited Annexin V expressions in 
higher levels than iDC. However, DCs treated with HA unexpectedly exhibited Annexin V 
expression in higher level than iDCs. Ratios to the iDCs are shown with mean±SD, n=6 donors (6 

independent experiments with different donors). ★: p ≤ 0.05, compared to iDCs and higher than 
iDC; ☆: p ≤ 0.05, compared to iDCs and lower than iDC; Brackets: p ≤ 0.05, statistically 
different between two biomaterial treatments. 

 

 

 

Figure A4: Dendritic cells treated with PLGA or chitosan films in the clinical grade possess 
cell morphologies similar to mDC induced with LPS treatment. 
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DCs derived from peripheral blood monocytes in the presence of GM-CSF and IL-4, treated with 
PLGA or chitosan films in the clinical grade showed similar morphology to that of mDCs, with 
the presence of dendritic processes, whereas the clinical grade alginate or HA exhibited 
morphologies similar to iDCs. Original magnification: 40×. 
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A.3  Differential functional effects of biomaterials on autologous T cell marker expressions 
when DCs are treated with biomaterials in the absence of model antigen, OVA. 

As described above in the Chapter 6, to understand effects of biomaterials on autologous 

T cell marker expressions upon co-culture of T cells and DCs treated with different biomaterials, 

in the beginning of this investigation, DCs were treated with biomaterials in the absence of model 

antigen, OVA.  Experimental procedure was identical to description in the method section of the 

Chapter 6, except use of model antigen, OVA when DCs were treated with biomaterials.  As a 

result shown in Figure A5, expressions for each of all T cell markers (CD4, CD8, CD25, CD69) 

among DC treatments with biomaterial films were not induced at differential levels when DCs 

were treated with biomaterial films in the absence of OVA.  These indicate that DCs treated 

only with biomaterial films, in the absence of co-delivered antigen, might be not sufficiently 

activated to induce differential T cell marker expression.  Similar results have also been reported 

showing that DC exposure to an actual pathogen component is necessary to promote T helper 

responses (Sporri and Sousa, 2005). 

 

 
Figure A5: Geometric mean fluorescence intensity (gMFI) for each marker expression of 
CD4, CD8, CD25, & CD69 for autologous CD3+ T cells without differential levels between 
treatments upon co-culture with DCs treated with different biomaterial films in the absence 
of OVA antigen. 
No marker was induced in differential levels compared between treatments. Ratios to the 
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untreated CD3+ MNCs are shown with mean±SD, n=6 donors (6 independent experiments with 

different donors). ★: p ≤ 0.05, compared to control and higher than control; ☆: p ≤ 0.05, 
compared to control and lower than control. 
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A.4  Differential functional effects of biomaterials on cytokine secretion from DCs in 
almost the same levels even after DCs were isolated from biomaterials. 

As mentioned above in the Chapter 6, for the negative controls of the co-culture 

procedures from Day 6 to Day 14, a half of DCs from treatments with each biomaterial film, 

which were collected on Day 6 (supernatants from these DCs were discussed above for cytokine 

profiles as shown in Figure 6-6), were washed twice and then, kept cultured without T cells 

through Day 14 in the same condition with the DC-T co-culture system while the other half was 

used for the co-culture with autologous T cells.  Interestingly, for the control culture of DCs 

without added autologous T cells, the cytokine profiles were the same at day 14 (Figure A6) as 

they were at Day 6 (Fig. 6-6) in the presence or absence of OVA antigen.  These results indicate 

that, even though DCs were isolated from biomaterial films and extracellular OVA antigen after 

the 24 hour-culture, they continued to secrete the same cytokines in almost the same levels under 

the wholly changed culture conditions for 8 days. 
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Figure A6: Geometric mean fluorescence intensity (gMFI) of cytometric bead array (CBA) 
for interferon (IFN)-gamma, IL-12p70, IL-10, IL-4 release for DCs treated with different 
biomaterial films without (Fig. A6a) or with (Fig. A6b) OVA antigen.  
Cytokines were measured using the supernatant saved on Day 14 (after 8 days since DCs were 
treated with biomaterial films with or without antigen and then, isolated from biomaterials and 
extracellular antigen). As compared to the cytokine results shown in Figure 6-6, Th1 or Th2 
cytokines were modulated in differential levels very similar to those released in Day 6. 
Ratios to the iDCs are shown with mean±SD, n=6 donors (6 independent experiments with 

different donors). ★: p ≤ 0.05, compared to iDCs and higher than iDC; ☆: p ≤ 0.05, compared 
to iDCs and lower than iDC; Brackets: p ≤ 0.05, statistically different between two T cells for 
DCs treated with different biomaterial films.  
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