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SUMMARY 

A three-dimensional numerical solution of the time-

dependent, incompressible Navier-Stokes equations based on 

an integro-differential formulation of these equations is 

developed. With this formulation it is possible to obtain 

the complete solution in the entire flow field while 

restricting the actual computational field to the region of 

significant vorticity magnitude at each time. This allows a 

considerable reduction in the computer storage required, 

since only the field points having significant vorticity at 

any time need be stored at that time, and calculations are 

actually performed only at those points at that time. The 

computational field thus expands in time. The specification 

of conditions at infinity is unnecessary in the present for

mulation, these conditions being contained implicitly, so 

that it is not necessary to artificially locate "infinity" 

at the boundaries of a finite computational field. The 

solution is obtained on a field that is, in effect, infinite. 

The solution uses the vorticity and velocity as depen

dent variables, the former being calculated at each time 

from an explicit difference equation, and the latter being 

subsequently calculated from a summation over the vorticity 

distribution. The method is thus explicit, and the time 

step and Reynolds number must be kept within a certain sta

bility region. The stability criteria are determined from a 
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linearized stability analysis, and a general comparison of 

the von Neumann and matrix methods of stability analysis is 

given, the two methods being shown to be equivalent for 

mixed initial value-boundary value problems. 

The validity of the numerical solution is established 

by comparison of the results with the exact solution for the 

time-dependent, one-dimensional flow over a suddenly 

accelerated infinite flat plate moving parallel to itself at 

constant velocity, and by comparison of surface pressure and 

drag coefficients with experimental results and with the 

results of other numerical solutions for the two-dimensional 

flow about a circular cylinder. A discussion and comparison 

of the results of other numerical solutions for this case is 

also given. The accurate determination of surface pressures 

and drag coefficients by the present solution and all other 

numerical solutions is shown to be restricted to small 

Reynolds numbers unless very small grid spacing is used in 

the vicinity of the surface. The larger scale wake phenomena, 

however, may be obtained at much higher Reynolds numbers. 

Periodic vortex shedding and the formation of a vortex street, 

as exhibited by the solution, are presented and are shown to 

be suppressed in the solution by the addition of a splitter 

plate behind the cylinder. 

The numerical solution is applied to the flow field of 

an infinite jet in a cross-flow and to the flow field of a 

jet issuing perpendicularly froir. an infinite plane wall into 
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a cross-flow parallel to the wall. The former case is two-

dimensional, in the sense of having a direction of invari-

ance, but with three variable vorticity and velocity compo

nents. The latter case is fully three-dimensional. Solu

tions are given for this case for two types of starts: (1) 

the start from the opening of the jet exit, and (2) the 

start from a cylindrical discontinuity standing on the jet 

exit, separating the jet and cross-flow. 

A three-dimensional nonlinear numerical instability 

that results from a coupling of a velocity component and the 

vorticity components in the plane perpendicular to the 

velocity component is detected and analyzed in detail. The 

time development of the three-dimensional flow from both of 

the above types of starts is presented in the form of vor

ticity and velocity profiles and vector plots and is dis

cussed in detail. The numerical method shows the deflection 

and deformation of the jet into the expected kidney shape, a 

recirculation within the jet in the form of counter-rotating 

vortices, and entrainment of the cross-flow into the rear of 

the jet. The method also shows the low pressure region 

behind the jet to be expected from experimental results, the 

emission of a vortex ring from the jet exit, and vorticity 

waves propagating up the jet from the exit. The effects and 

appropriate values of several numerical parameters involved 

in the solution are determined from comparisons of the 

results for various cases. 
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A vortex lattice potential flow model of the jet in 

cross-wind is also developed and evaluated. This model con

sists of a lattice of straight vortex segments forming a 

series of rings with connecting columns. The lattice deforms 

as time passes according to the velocities induced on itself 

by the vortex segments forming the lattice. Although the 

lattice deforms into the expected kidney shape and is 

deflected downstream by the cross-wind, the model is shown 

to be incapable of producing the viscous wall pressure dis

tribution about the jet. 
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vector length of vortex segment 

matrix used in Appendices G and H, defined 
above Equation (H-8) 
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(a) . pressure 
(b). eigenvalve index used in Appendix G, 

defined by Equation (G-7) 

(a), eigenvalve index used in Appendix G, 
defined by Equation (G-8) 
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position vectors of ends of vortex segment 
in vortex lattice model (Figure 55) 
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from ends thereof to the point of velocity 
calculation in vortex lattice model (Figure 
55) 

angle from front stagnation point of cylin
der 

(a), constant used in Appendix G, defined by 
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(a) . density 
(b) . spectral radius of matrix A used in 

Appendix H 

angle of source element x'-axis from x-axis 
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truncation error 
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surface 
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be 
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I value subscript i at front stagnation point 
o on cylinder 

refers to position in y-direction,defined as 
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sub-solution when affixed to velocity 
or vorticity 

(b) . value of subscript j at maximum extent of 
field from origin in y-direction in 
Appendix H 



XXXIX 

J value of subscript j at front stagnation 
point on cylinder 

k (a), refers to position in z-direction, 
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tion from origin 

(b) . Fourier expansion component index in 
Appendix H 

(c). eigenvalue and eigenvector index in 
Appendix H 

m (a) . indicates number of boundary cell in 
numerical solution 

(b) . indicates number of vortex column in 
vortex lattice model 

min refers to minimum value 

n refers to time value, defined as number of 
time steps from start 

o (a), refers to limit of integration in 
Equation (IV-10) 

(b) . indicates potential flow velocity 
when affixed to velocity 

object indicates integral in image field in vortex 
lattice solution 

p (a), value of subscript i as summational 
variable 

(b) . eigenvalue index used in Appendix G, 
defined by Equation (G-7) 

P refers to infinite plate sub-solution 

plane indicates surface integration on infinite 
plane boundary 

q (a), value of subscript j as summational 
variable 

(b) . eigenvalue index used in Appendix G, 
defined by Equation (G-8) 

r v a l u e o f s u b s c r i p t k a s summational variable 

s (a), indicates surface value of velocity 
(b) . indicates stagnation point value of 

pressure 

x indicates component in x-direction 
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indicates component in z-direction 

indicates limit: approached from negative 
side 

indicates limit approached from positive 
side 

refers to value 0° from negative of cross-
flow direction 

refers to value. 90 from negative of cross-
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refers to image field in Appendix L in vor
tex lattice model 

(a) . indicates value at infinite distance 
from the jet, jet exit, or solid cylin
der, as the case may be 

(b). indicates surface integration over sur
face at infinite distance from jet, jet 
exit, or solid cylinder, as the case 
may be, when affixed to integral 

refers to time value, defined as number of 
time steps from start 

indicates matrix transpose 

(a). indicates variable of integration when 
affixed to position vector or coordinate 

(b). refers to prime sub-solution when 
affixed to velocity or vorticity 

(c). refers to coordinate system in source 
triangle as used and defined in 
Appendix N 

indicates variable of integration 

order of magnitude 

real part 

imaginary part 
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x 

derivative normal to surface 

vector del operator 

Laplacian operator 

vector 

matrix 

vector cross product 

vector dot product 

magnitude 

natural matrix norm 

Notes: 

1. Subscripts and superscripts that form integral parts of a 
symbol are not identified separately. 

2. Nondimensionalization is used without change of symbol 
when noted in each chapter or appendix. All quantities 
are nondimensionalized with respect to the mesh width h, 
the cross-flow velocity V , and the cross-flow dynamic 

i ? c 
pressure -T-PVC e x c e P t a s specifically noted in the above 
list of symbols or in the location concerned. All quan
tities used in the figures are nondimensionalized accord
ingly. 



CHAPTER I 

INTRODUCTION 

The problem of the incompressible jet issuing from a 

wall into a cross-flow parallel to the wall is of signifi

cance in several areas of engineering, ranging from STOL/ 

VTOL aircraft design to pollution control. The problem 

involves considerable interaction between the jet and the 

cross-flow, the jet being deformed and deflected backward by 

the cross-flow, and some of the cross-flow being entrained 

into the rear of the jet. The result is the formation of a 

low pressure region on the wall behind the jet. The nonline-

arity of the Navier-Stokes equations makes an analytical 

solution in this case, as in many others of interest, highly 

improbable. Furthermore, the three-dimensionality of the 

problem requires computer memory storage and computation time 

much too large for practical solution by the difference equa

tion algorithms that have been applied successfully in two-

dimensional problems. 

Attention, therefore, has been directed either to sim

plified models of the flow, constructed of line vortices and/ 

or other distributed singularities {l-10}*, or to the semi-

empirical prediction of various characteristics of the flow, 

^Numbers enclosed in these brackets 
listed under Literature Cited. 

refer to references 
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such as the deflected jet path and mass entrainment, using 

experimental data and a number of simplifying assumptions 

{10-19]". Both of these approaches have yielded results of 

value, in that certain effects of the flow can be predicted 

with some degree of accuracy if enough experimental data is 

available. However, since neither is based directly on the 

differential equations of motion, it is not to be expected 

that either is capable of refinement to the extent as to pre 

diet the fine details and development of the complete flow. 

The present investigation encompasses the development 

and evaluation of the following: 

(a) a numerical solution for the flow, based on an integro-

differential form of the Navier-Stokes equations, formu

lated to minimize the computer storage required, 

(b) a vortex lattice potential flow model of the flow. 

The scope of the first of these is much broader than 

that of the second, and a far greater portion of the total 

effort naturally was concentrated on the numerical solution. 

The numerical solution proved to be capable of predicting th 

wall pressure distribution to be expected from experimental 

results, while the potential flow model did not. The import 

ance of the numerical solution in the formulation used 

extends beyond the present problem in that this approach 

brings three-dimensional numerical solutions of the Navier-

Stokes equations on large fields at least into the realm of 

possibility. 
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Related Work - Numerical Solution 

The range of numerical solutions of the Navier-Stokes 

equations has been expanding quite rapidly in the last few 

years but still is confined to two-dimensional or axi-

symmetric flows, with only a few exceptions. In two 

dimensions, calculations for flow fields with boundaries 

coinciding with the coordinate lines of some curvilinear 

system are well advanced and now quite numerous. 

The time-dependent and/or steady two-dimensional flow 

about rectangular bodies {20-23}, circular cylinders {24-36}, 

oblate spheroids {37}, elliptic cylinders {36}, and finite 

flat plates {36, 38, 39}, as well as the axi-symmetric flow 

about spheres {40}, has been considered in various Reynolds 

number ranges. Numerical solutions for the two-dimensional 

internal flow in straight channels {4l}, slant {42} and step 

{43} diffusers, channels with rectangular or curved bends 

{44}, square cavities {43, 45, 46}, and the axi-symmetric 

flow in curved channels with swirl {47} and in circular cavi

ties {48} have also been developed. Finally, solutions for 

free flows such as the two-dimensional free jet {49}, the 

axi-symmetric impinging jet {50}, the emerging vortex ring 

{5l}, and the many varied two-dimensional free surface and 

multi-fluid flows treated by the group at Los Alamos 

Scientific Laboratories in the past several years {52-56} 

and others {57} have been presented. 
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Three-dimensional solutions, however, have been at a 

premium and have been confined primarily to free convection 

heat transfer {58, 76, 77}, where the velocities are very 

small and coarse grids can be used. Other examples are the 

Taylor vortex instability in the flow between concentric 

rotating cylinders {59, 60} and the flow in a very short 

section of a square pipe {6l}. One type of three-dimensional 

solution {60} uses a Fourier expansion in one coordinate, 

with only a single term retained, and thus might not truly 

be classed as three-dimensional. 

Of the time-dependent solutions presented for various 

flow geometries all but a few {23, 24, 33, 39, 51, 58, 61} 

have been explicit in time. In two cases {23, 24} reductions 

in computer time of as much as 95% of that required by ordi

nary Gauss-Seidel iteration were achieved by the theoretical 

determination of the optimum acceleration parameter for the 

particular equations involved. 

Stability problems are always encountered in the 

explicit methods at high Reynolds numbers, and some 

researchers {26, 30, 36, 42, 43, 50} have used one-sided up

stream space differences in order to reach higher Reynolds 

numbers. However, one-sided differences introduce a numeri

cal viscosity through their larger truncation error as com

pared with central differences, yet it is precisely in the 

higher Reynolds number range, where the physical diffusion is 

reduced, that the errors thus introduced become most serious. 
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This can be reduced by using higher-order one-sided differ

ences {42} or iterating the complete solution at each time 

step {36}, thus achieving the accuracy of central differ

ences but with better stability. 

Most solutions have been based on forms of the Navier-

Stokes equations not involving the pressure as a primary 

variable, and the vorticity-stream function form has been 

the most widely used, the few exceptions being the use of a 

vorticity-velocity form {25, 49} and, in three-dimensions, 

the vorticity-vector potential form {58}. In many of these 

the pressure is calculated subsequently by a line integral 

of the original Navier-Stokes equations {27-30, 32-35, 37, 

38, 40, 47}, but a few have used the Poisson equation for the 

pressure obtained from the divergence of the Navier-Stokes 

equations {20, 40}. The Los Alamos group {52-56} and a few 

others {26, 45, 57} have used the original Navier-Stokes 

equations simultaneously with the Poisson equation for the 

pressure. The use of the Poisson equation for the pressure, 

however, is questionable, for the boundary conditions for the 

pressure are at best ambiguous, but must be specified on the 

entire boundary since the equation is elliptic. The solution, 

therefore, cannot be guaranteed to be properly posed. This 

is merely a reflection of the fact that the pressure should 

be considered a function linking the simultaneous differen

tial equations, rather than a primary variable, in the solu

tion of the equations. 
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Boundary conditions are always a problem in represent

ing infinite flow fields on finite grids, and various methods 

of specification have been proposed. The most commonly used 

boundary conditions at "infinity" have been simply uniform 

flow with zero vorticity {23, 24, 27, 29, 30, 32, 33, 35, 36, 

37, 40}, although others have attempted to better represent 

the true condition of infinity by using as}rmptotic expansions 

at the boundary with iteration {28, 31, 38, 57}. The latter, 

however, is apparently equivalent in accuracy to the former 

applied farther out {38}. 

A wider variation in the downstream boundary condi

tions is evident, with most researchers using zero streamwise 

gradients {26, 30, 43, 47, 52, 53, 55, 57}, but others using 

extrapolation {22}, one-sided differences {42}, periodic 

upstream and downstream boundaries {20, 21, 6l}, zero vor

ticity {23, 50}, or specified profiles {44}. Several differ

ent specifications of the boundary conditions on the body 

surface have also been employed. Two methods are most common 

for vorticity: the use of central differences on the 

boundary with the values at virtual points inside the wall 

determined from the no-slip condition {20, 21, 27, 28, 38, 

42-46, 48}, and higher-order one-sided differences on the 

boundary {23, 24, 25, 33, 37s 40, 58, 6l}. In two cases {23, 

58} these specifications have been compared and the latter 

found to be less perturbing to the solution. In cases where 
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the point at which a tangential velocity was evaluated did 

not fall on a boundary line, reflective boundary conditions 

have been used {52, 53, 55}. 

There is always the question of accuracy of a numeri

cal solution, and there is no guarantee that the nonlinear 

difference system converges to the solution of the differen

tial equations, rather than to that of some other differen

tial equations, even when the solution is stable. Unfortu

nately analogous experimental situations are not always 

attainable, and detailed results are not always available 

for comparison. Some results have, however, compared fairly 

well with drag and surface pressure data for circular cylin

ders {27, 28, 30, 32, 33, 34, 40}. These solutions and 

results are discussed more fully in Chapter IV in connection 

with those of the present solution. 

There are two principal limiting factors in numerical 

solutions—computer time and storage capacity, there being 

no doubt that accuracy can be achieved in the absence of 

these two limits. The goal then is to develop methods which 

possess the greatest economy in time and storage. The 

integro-differential formulation used in the present effort 

allows significant reduction in the storage required, especi

ally in three-dimensions, and thereby makes three-dimensional 

numerical solutions on large fields practical. This storage 

economy is achieved by taking advantage of the particular 
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nature of the Navier-Stokes equations, i.e., the tendency of 

large velocity gradients to occur only in relatively small 

regions of the flow for small values of the viscosity. All 

of the three-dimensional numerical solutions of the Navier-

Stokes equations reported have been restricted to small flow 

fields. The present formulation, however, allows the con

sideration of fields of meaningful size. 

Of the two-dimensional solutions reported, those of 

Payne {49} for the plane jet and Whitehead {51} for the 

emerging vortex ring are applied to flow situations most 

similar to those considered in the present effort. Neither 

of these problems, however, involves a cross-wind, and the 

latter involves a time-dependent jet exit velocity which 

eventually vanishes. The numerical formulation of Payne {25, 

49} bears some surface resemblance to the present formula

tion, but is fundamentally different, being based on the use 

of discrete line vortices and their images in any solid sur

faces present, rather than on the integro-differential formu

lation of the governing equation. It is thus necessary in 

the formulation of Payne that the image points in any curved 

solid surfaces be located, a requirement that is difficult to 

fulfill for general surfaces. It is not clear how such use 

of vortices and images could be extended to three-dimensional 

solutions. These two solutions do, however, provide certain 

comparisons with the present results as noted in Chapter VI. 
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Related Work—Vortex Lattice Model 

Various approximate methods have been proposed for 

the determination of the deflected jet path, all based in 

some way on average or integral momentum-force balances. 

The most simplistic of these simply add the jet and cross-

wind mean velocity vectors {ll} or stream functions {12}. 

Others are based on a balance between the drag perpendicular 

to the jet axis and the centrifugal force of the jet {13-15}. 

Some slightly more sophisticated methods attempt also the 

prediction of the jet axial velocity variation and entrain-

ment by application of the integral momentum equations to 

control volumes containing the jet {lO, 16, 17, 18}. All of 

these methods require a considerable amount of empirical 

data. In addition all of the quantities assumed constant 

in the various methods must, of course, be determined empiri

cally. Still another approach considers the jet deflection 

as due to inelastic collision {l9}. 

The heavy dependence on empirical data and the numer

ous assumptions make some of these methods little more than 

curve-fits of experimental data for the jet path, axial 

velocity, and entrainment. Furthermore none of the fits has 

been shown to be universal enough to give reliable predictions 

in all ranges of the data. Such approaches, therefore, are 

of limited value in the prediction of the properties of the 

jet in a cross flow. 
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Most recent attempts have been directed toward the 

representation of the jet by distributed singularities of 

various types. Several two-dimensional or quasi-two-

dimensional representations have been considered {l, 2, 10} 

which consider the jet to be undeflected {l, 2} or use 

singularities confined to the plane formed by the jet axis 

and the cross-wind •[ 10 ]• . 

The representation of the jet: and wake by an elliptic 

cylinder with an afterbody, the dimensions of which are 

determined to fit the wall pressure distribution, gives fairly 

good agreement with the experimental wall pressure distribu

tion outside the region directly behind the jet. The inclu

sion of a sink in the afterbody {2} to take account of the 

entrainment gives even better agreement with experimental 

results. The use of a plane lattice of straight vortex seg

ments located on the plane formed by the jet axis and the 

cross-wind velocity {10} does not give very close agreement 

with the experimental wall pressures. A similar approach is 

the use of two-dimensional doublets placed on the empirical 

jet path {10 } with the strengths varying along the path in 

such a way as to cause the jet cross-section parallel to the 

wall to change from a circle through a series of ellipses, 

with a line of two-dimensional sinks of pre-determined 

strengths located on the major axes of the ellipses. This 

representation attempts to take some account of both the jet 

deflection and the entrainment. 
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Several three-dimensional singularity distributions 

have also been proposed {3-9}, the simplest of which uses 

two vortex lines with a sink line half-way between, the 

three lines having a common tangent plane at each point {3}. 

A rather extensive model designed to represent not only the 

jet but also adjoining three-dimensional bodies such as 

wings, nacelles, fans, and the like,, by a three-dimensional 

distribution of sources and doublets has also been developed 

4,5}, Here the solid surfaces are covered with quadri

lateral source panels, fan inlets are covered by quadri

lateral doublet panels, and the jet is represented by a 

fixed tube of pre-determined geometry covered by quadri

lateral doublet panels and placed on the empirical jet path. 

Bound and trailing vortices are added to the wing to allow 

lifting forces. This method is the best available for at 

least approximate calculation of the aerodynamic coefficients 

for complicated three-dimensional fan-in-wing combinations. 

However, its accuracy still leaves much to be desired because 

of the fact that the jet itself is not too well represented. 

The entire jet geometry is pre-determined from empirical 

data and kept very nearly cylindrical. 

A similar but less complete approach uses only bound 

and trailing vortices to represent a wing of zero thickness, 

and a three-dimensional lattice of straight vortex segments 

of predetermined geometry placed on the empirical jet path 
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to represent the jet {6}. Yet another variation uses spe

cified normal velocity on the surface of the jet tube and 

includes trailing vortices from the jet {l}. 

None of the above methods allows for the deformation 

of the jet cross-section into the characteristic "kidney" 

shape. Some attempts at this are in progress. One proposal 

is a stack of two-dimensional vortex rings, each of which 

deforms under its own influence as time progresses {8}, those 

farther from the jet exit having been deforming for a longer 

time. This model, however, takes no account of the mutual 

influence of the rings, nor does it allow them to rotate 

about an axis perpendicular to the jet axis and cross-wind. 

Another proposal is the use of a three-dimensional lattice 

of short unconnected vortex segments which move under their 

mutual influence \9\. This, however, suffers from violation 

of Kelvin's theorems {73, Chapter 9}. 

In the above-mentioned work several researchers have 

included three-dimensional vortex lattices in their models 

{4 — 9} . However, in most of these the lattice is of fixed 

geometry and is kept in a predetermined configuration rather 

than being left free to determine its own configuration |4-

7}. The lattice in these cases cannot represent the true jet 

but only serves to supply some influences of the jet on asso

ciated bodies. In another case only vortex rings, with no 

connecting column vortices, have been used {8}. Here the 



13 

rings are allowed to deform, but only under their individual, 

not mutual influences. The last work cited {9j is most simi

lar to the model of this proposal. The use of discrete vor

tex elements, however, makes that model differ significantly 

from the model investigated here. 



CHAPTER II 

INTEGRO-DIFFERENTIAL FORMULATION 

Mathematical Formulation 

Incompressible fluid motion is governed by the Navier 

Stokes equation with constant density and fluid properties 

9~ 1 2 
-g-jr + (v • V)v = - -Vp + vV v (1) 

together with the continuity equation 

V • v - 0 (2) 

The pressure may be eliminated as a dependent vari

able by taking the curl of Equation (1) and introducing the 

vorticity as a dependent variable (Appendix A ) . The system 

of differential equations governing the motion is then 

903 2 
T 1 = ? X (v x u) + v V u (3) 
dt ~ ~ 

V x v = a) (4) 

V • v = 0 (5) 

The last two equations together imply the equation 

(Appendix A) 

V2v = - V x a) (6) 
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and, as is shown in Appendix A, the solution of this equa

tion subject to given boundary conditions and specified vor-

ticity distribution and the solution of the simultaneous 

equations (4) and (5) subject to the same boundary condi

tions and vorticity distribution are both unique and, there

fore, identical. It then follows that the solution of the 

differential system defined by Equations (3), (4), and (5) 

can be obtained by solving the differential system composed 

of Equations (3) and (6). 

The second of these equations, being a Poisson equa

tion, can be expressed in integral representation by Green's 

Theorem (Appendix B ) : * 

v(r) = 

+ 

4-rr 

1 
47T 

3y 

an (r' - r) n 

r - r 

V x OJ 

r ' - ~r~ 

+ 
r' - rl 3 

v] dS 

dv (7) 

where the integrations are over r!, with v, u), and the nor

mal to the surface n being functions thereof. The volume 

integral is over the entire flow field, and the surface inte

gral is over the boundary thereof. This equation expresses 

the velocity in the field as a function of the normal deriva

tive of the velocity on the surface, the velocity itself on 

the surface and the vorticity distribution in the field. 

^Dependence on time is understood throughout this chapter. 
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Formulation with a Porous Infinite Plane Boundary 

Green's Theorem also implies the following integral 

relation for a point r outside the flow field (Appendix B ) : 

[TT7 

3v 

"JhT 
r - r 

(r» - r) . n 
+ —tt j^- v] dS + 

r - r 

V X W 

r - r 
dv = 0 (8) 

For any problem involving an infinite plane boundary, porous 

or impervious, Equation (8) can be used to eliminate the 

term involving the derivative normal to that boundary from 

the surface integral of Equation (7). Referring to Figure 1, 

for every point r in the flow field define an image point R 

beyond the plane boundary: 

R = r - 2(k • r) k (9) 

where k is the unit vector perpendicular to the plane 

boundary, directed into the flow field. 

Combination of Equations (7) and (8), with r in Equa

tion (8) replaced by R, yields the following replacement for 

Equation (7), the integrals over the surface at infinity 

having vanished (Appendix B ) : 

v(r) = 
k • r 

TTT 

v dS 

r - r 

4 TT t _ rf - R ) (y x w) d v (10) 
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Here, from Equation (9), 

rT - Rl = [|r? - r * + 4(k • r) (k 
1/2 

rf)] (ID 

The surface integral is now over only the plane boundary, 

but the volume integral is still over the entire flow field. 

The only requirement that has been imposed to secure the 

vanishing of the surface integrals over the boundary at 

infinity is that the derivative of the velocity normal to 

that boundary be non-zero only over a finite portion of the 

boundary and/or over a portion of finite vertical extent 

above the plane boundary. This certainly will be the case 

at any finite time after the start of the flow. 

Using the properties of the particular function 

| J1 ~rj employed here, the volume integral of Equation (10) 

can be expressed in a form not requiring the derivative of 

the vorticity (Appendix B ) . The final integro-differential 

system to be solved is then 

dW 2 

^— = V x ( v x 0)) + vV co 
d t <~ "* ~ ~ 

( 1 2 ) 

v ( r ) = 
2TT 

' V dS 

r ' - r 

4TT 

r - r 

r ' - r 

r ' - R 

r T - R 
•) x wdv ( 1 3 ) 

where the surface velocity V is specified by the boundary 
mm 5 
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conditions. The boundary conditions at infinity are con

tained implicitly in the formulation so that no further 

specification is necessary. 

Formulation with a Finite Closed Solid Boundary 

As shown in Appendix B, the normal gradient of the 

velocity on the surface of a body of any shape can be writ

ten in terms of the surface vorticity: 

9v 

Jn co x n 

Also in Appendix B it is shown that, with this expression for 
9v 
-g-̂-, the surface integral of Equation (7) can be combined with 

the volume integral (specifying v = 0 on the body surface), 

so that Equation (7) may be rewritten as 

v(r) = V + ~- ( 
r - r 

r' - r l 3 
) X 0)dV (14) 

Here the conditions at infinity have been taken to be zero 

vorticity and uniform velocity? The integro-differential 

system to be solved in this case then is 

8w 2 

•7T71 = V X ( V X 03) + VV 0) 
0 t r- ~ ~ 

(15) 

v ( r ) = V + ~r~ (-
r - r 

\ _ 
) x todv (16) 

where V i s t h e un i fo rm v e l o c i t y a t an i n f i n i t e d i s t a n c e 

from t h e body. 

^Specifically, the vor t i c i ty must approach zero at leas t as fast as 
the inverse square of the radius . 
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Reduction of Volume Integrals in One and Two Dimensions 

As shown in Appendix B, the volume integral of Equa

tion (16) may be reduced to a surface integral for two-

dimensional solutions by carrying out the integration over 

the direction of invariance. In two-dimensional problems 

then Equation (16) is replaced by the equation 

rT - r 
v(r) = V + ̂ r- (• ) x wdS (17) 

where the surface integral extends over the entire two-

dimensional flow field. 

Also in Appendix B it is shown that the volume inte

gral of Equation (13) may be reduced to a line integral for 

one-dimensional solutions by performing the integration in 

the plane of invariance. Therefore, in one-dimensional 

problems Equation (13) is replaced by the equation 

u(z) = V^ + /ndz' 
o 

(18) 

Numerical Solution in the 

Integro-Differential Formulation 

Computation Procedure 

The explicit numerical solution consists of a two-part 

procedure at each time step: (a) first the new vorticity is 

calculated at the new time from the parabolic (in time) 
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differential equation, and (b) then the new velocity is cal

culated from the appropriate integral over the new vorticity 

distribution. Now only those field points with non-zero 

vorticity need be considered in the calculation of the 

velocity from the integral over the vorticity distribution, 

since the integrand is zero where the vorticity is zero. 

Furthermore, with the space derivatives in the differential 

equation for the vorticity expressed as three-point central 

differences, the vorticity can change at each time step only 

at, or adjacent to, points that already have non-zero vorti

city at that time. Therefore, the velocity is required for 

the actual calculation only at points having non-zero vorti

city. This then means that the solution in the entire flow 

field can be obtained while actually performing calculations 

only in the region of non-zero vorticity at each time. 

Therefore, only the points with non-zero vorticity at a given 

time need be stored at that time, rather than all the field 

points as would be required if the numerical solution were 

based on the differential formulation. 

It should be noted that all of the information con

tained in the differential system, Equations (1) and (2), is 

also contained in the integro-differential system, Equations 

(12) and (13) or Equations (15) and (16). In particular, the 

effect of the boundary conditions at infinity, i.e., the free 

stream, have not been lost, but are contained implicitly in 
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the integro-differential formulation. In fact, the finite 

numerical calculation field in the integro-differential for

mulation is, in effect, infinite, and the necessity of locat 

ing "infinity" at a finite distance, as is required in numer 

ical methods based on the differential formulation, is 

avoided. The restriction of the field of actual computation 

to the region of non-zero vorticity at each time is not an 

approximation in itself. 

This formulation thus takes advantage of the particu

lar nature of the Navier-Stokes equations, i.e., their ten

dency to produce solutions having large gradients, and hence 

vorticity, over relatively small regions of the flow field 

for fluids of small viscosity. This property of the equa

tions is a distinct impediment to numerical solution of the 

differential system, but is exploited to advantage in the 

numerical solution of the integro-differential system, with 

considerable savings in computer storage. 

In the numerical solution the flow field is divided 

into elementary cells (which are cubes, squares, or simply 

line segments in three, two, and one dimensional flow prob

lems, respectively), each of which is centered on a point of 

a rectangular grid of constant mesh width. For purposes of 

identification the following definitions are introduced: 

vortex cell—a cell centered on a point having non

zero vorticity, 
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border cell—a cell centered on a point having zero 

vorticity, but being adjacent to a vor

tex cell, 

boundary cell—a cell containing a portion of a solid 

surface boundary, 

aggregate of vortex cells—the group of all the vor

tex cells in the flow field. 

At each time step the new vorticity of each vortex 

cell is calculated from the finite difference representation 

of the differential equation, Equation (3). New vorticity 

is also calculated for each border cell from the same equa

tion. If the sum of the magnitude of the vorticity of a bor

der cell and that of any vortex cell adjacent to the border 

cell in question exceeds a specified value, the border cell 

is reclassified as a vortex cell. If not, the vorticity cal

culated for the border cell is instead distributed evenly 

among the adjacent vortex cells, and the border cell remains 

a border cell. The velocity is then calculated in each cur

rent vortex cell from the integral over the vorticity distri

bution in the aggregate of vortex cells. Values of vorticity 

and velocity are stored only for the vortex cells. The cell 

cataloging procedure necessary to implement the economy in 

storage requirements is described in Appendix C, and typical 

comparisons with the storage requirements of the differential 

formulation are also given therein. 
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Computer Time Required (UNIVAC 1108 Computer) 

The computer time required increases as time pro

gresses since the computational field becomes larger at each 

time step as more vortex cells are added. The computer time 

is also strongly dependent on the influence range beyond 

which vorticity is neglected in the velocity calculation, 

since the velocity calculation accounts for the majority of 

the computation time required at each time step. For the 

longest two-dimensional run made, the solution required 

about 7.5 minutes per time step with 3408 vortex cells and 

an influence range of 24 cells. In that case the aggregate 

of vortex cells extended 40 cells normal to the cross-flow 

and 140 cells parallel to the cross-flow. However, since the 

region of non-zero vorticity, i.e., the aggregate of vortex 

cells, is only a small portion of the entire flow field, the 

same solution using a differential formulation would have 

required, conservatively, an 80 x 280 rectangular field con

taining some 22,400 points as opposed to the 3400 required in 

the present case. Comparison of time required by the present 

solution with that of a solution based on differential formu

lation in this case should therefore assume that about seven 

times as many points would be required with the differential 

formulat ion. 

In the longest three-dimensional run made, the solu

tion required about 13.8 minutes per time step with 2256 
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vortex cells and an influence range of 12 cells. The aggre

gate of vortex cells in this case extended 13 cells above 

the plane boundary and 24 cells both normal and parallel to 

the cross-flow. The same solution with differential formu

lation thus would have required at least a 20 x 50 x 50 

field with 50,000 points, or about twenty times the number 

of points required in the present solution. It should be 

noted also that these estimates of the size of the field 

required with the differential formulation are conservative, 

assuming as they do that the infinity conditions can be 

imposed at distances about half the extent of the region of 

non-zero vorticity from the edge of that region. 

The large computer time required by the evaluation of 

the velocity from the integral over the vorticity field makes 

the numerical method based on the integro-differential formu

lation, however, non-competitive with methods based on dif

ferential formulation in two-dimensional problems. (The cal

culation of the velocity at each point truly requires a sum

mation over all other points having non-zero vorticity, 

though only those points within a certain distance are actu

ally included.) This arises from the fact that the integral 

solution of Poisson's equation is equivalent, in finite 

methods, to inverting a matrix having as many elements as 

there are calculation points in the field. The differential 

solution of Poisson's equation, however, is equivalent, in 
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finite methods, to solving the matrix equation by iteration 

rather than by inversion. For matrices of any appreciable 

size, iterative methods of solution, especially with con

vergence acceleration, are much more efficient than matrix 

inversion. 

There is another point, however, for the field 

involved in the integro-differential method, including as it 

does only the points with non-zero vorticity at any time, is 

smaller than that necessary for differential methods. (The 

above-mentioned restriction of the summation to points withi 

a certain distance of the point in question reduces the size 

still farther.) The latter must, of course, include at all 

times the entire field ever to be used at any time. There

fore, the matrix to be inverted in the integro-differential 

method is smaller than the matrix to be solved by iteration 

in the differential methods. There is, then, a cross-over 

point, the integro-differential method being faster at the 

earlier time steps than the differential. The situation is 

reversed, however, as the computational field of the integro 

differential method increases with time and the matrix being 

inverted becomes larger. Though always smaller than the 

matrix of fixed size that is solved iteratively in the dif

ferential methods, the matrix of the integro-differential 

method eventually requires more time for inversion than is 

required for iterative solution of the larger matrix of the 

differential methods. 
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It would seem that the velocity calculation could be 

done more efficiently if the geometry factors involved were 

calculated only once and read from storage as needed. This, 

of course, is true if the retrieval from storage can be done 

faster than the needed values can be calculated. Such, how

ever, is not the case with magnetic tape storage, the only 

alternative available in the present effort. Calculations 

showed that tape storage of the geometry factors in blocks 

small enough to be kept in core with the rest of the program, 

i.e., of the order of the field size, offers no time savings 

in the present case. Disc storage, however, has retrieval 

time faster by several orders Df magnitude than tape storage 

and would allow a considerable savings in computer time. 

Even if the retrieval from storage required no time 

at all, a cross-over point would still exist in comparison 

with differential methods. The storing of the geometry fac

tors amounts to storing the inverse of the matrix rather 

than recalculating it at each time. However, with very 

large matrices the number of calculations necessary just to 

perform the matrix multiplication with the inverse exceeds 

that involved in the iterative solution of the matrix. Thus, 

although speed could be gained with the use of more rapid 

data retrieval storage, the differential methods would still 

eventually become faster as time progressed, the cross-over 

point being postponed to a later time. 
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In three dimensions, however, the integro-differen-

tial method is superior in speed at the present state of the 

art. The primary reason for this is that the significant 

storage reduction achieved by the integro-differential 

method allows three-dimensional problems of large field size 

to be considered without the use of any low-speed storage, 

i.e., completely in the high-speed core. This is a result, 

of course, of confining the calculation to the region of 

non-zero vorticity at any time., The addition of the third 

dimension causes the field required for the differential 

methods to become so large that the solution can no longer 

be kept in core, but must be read from the low-speed storage 

at each iteration. The same retrieval time discussed above, 

but even larger here due to the large field, then must be 

considered in these methods at each iteration. 

In addition the relative field matrix size advantage 

of the integro-differential method over that of the differ

ential is increased by an order of magnitude in three 

dimensions, as compared with two dimensions. The point at 

which the inversion of the smaller matrix requires more cal

culations than the iterative solution of the larger matrix 

is thus postponed to much larger times in three-dimensional 

problems. 

The result of both these factors then is a significant 

speed advantage of the integro-differential method in three 
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dimensions at the present time—witness the dearth of dif

ferential method solutions in three dimensions that have 

been presented. 

Applications Developed 

This numerical method based on the integro-differen-

tial formulation is applied first to the time-dependent, one-

dimensional flow over a suddenly accelerated infinite plane 

wall (Chapter III) for comparison with an exact solution of 

the Navier-Stokes equations. The method is then applied to 

the time-dependent, two-dimensional flow about an infinite 

solid cylinder with its axis normal to the cross-flow (Chap

ter IV) for comparison with experimental data and the results 

of other numerical methods. The comparisons made in these 

two chapters serve to establish the validity of the numerical 

method before application to the jet in cross-wind. 

The time-dependent, three-dimensional jet in cross-

wind (Chapter VI) is treated with two different types of 

initial conditions. In the first case, the flow is con

sidered to start from the opening of the jet exit. The 

initial velocity distribution for this case is the super

position of a uniform flow parallel to the wall and the 

velocity induced by a uniform source distribution on the jet 

exit (Figure 2a). With this type of start the jet penetrates 

more deeply into the cross-flow, while being deflected back

ward, as time passes until a steady state is reached 
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(Figure 2a). 

The initial vorticity distribution for this case then 

is simply a plane sheet of vorticity on the wall, resulting 

from the satisfaction of the no-slip condition at the wall 

(Figure 2b). Since this sheet of vorticity extends to 

infinity in the two directions parallel to the wall, the 

region of non-zero vorticity is already of infinite extent 

at the start, so that the number of vortex cells is infinite 

from the start. However, the solution at an infinite dis

tance parallel to the wall from the jet exit at all times is 

simply that of the one-dimensional flow above an infinite 

plane wall. This is simply the solution developed in Chapter 

III superposed with a uniform flow parallel and opposite in 

direction to the velocity of the infinite plane. This one-

dimensional solution thus supplies the conditions at infinity 

at all times for the complete three-dimensional solution for 

the jet in cross-wind with this type of start. 

Therefore, the difference between the complete solu

tion and this one-dimensional solution is a three-dimensional 

solution having zero vorticity at infinity, and thus having 

only a finite region of non-zero vorticity at any finite 

time. The initial vorticity distribution for this latter 

solution is then a circular plane sheet of finite extent on 

the wall surrounding the jet exit, resulting from the appli

cation of the no-slip condition to the velocity induced 
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parallel to the wall by the uniform source distribution on 

the jet exit (Figure 2c). The complete numerical solution 

is therefore obtained with this type start by performing 

simultaneously the one-dimensional solution of Chapter III 

and a three-dimensional solution (Chapter VI) having a 

finite extent of non-zero vorticity. 

The other case treated is that: in which the flow is 

considered to start from the dissolving of a hypothetical 

pipe standing on the jet exit, separating an interior uni

form vertical flow of infinite vertical extent from the 

exterior potential cross-flow about the pipe normal to its 

axis (Figure 3a). In this case the jet penetrates without 

deformation to infinity normal to the wall at the start. As 

time passes, the jet is deformed and deflected backward, the 

portion at infinity above the wall remaining normal to the 

wall as its vertical velocity is reduced to zero (Figure 3a) 

Each type of start leads eventually to the same steady state 

The initial vorticity distribution in this case is a 

plane sheet of vorticity on the wall, resulting from the 

satisfaction of the no-slip condition at the wall, and a 

cylindrical sheet of vorticity standing on the jet exit, 

resulting from the velocity discontinuity created at the dis 

solution of the pipe (Figure 3 "b) . Now both of these sheets 

of vorticity are of infinite extent, the plane sheet extend

ing to infinity normal to the wall. However, the solution 
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at an infinite distance parallel to the wall from the jet 

exit is again that of the one-dimensional flow above an 

infinite plane wall. Also, the solution at infinite verti

cal distance above the wall is that corresponding to the 

dissipation of an infinite column of fluid by the cross-flow 

(with no variation along the column), the column having been 

located over the jet exit at the start and having had at 

that time the uniform vertical velocity of the above-

mentioned flow inside the hypothetical pipe (Figure 4 ) . As 

time passes, the column is deformed and displaced backward 

by the cross-flow, and the vertical velocity is gradually 

dissipated (Figure 4 ) . At infinite time this solution is 

reduced to that of the undisturbed uniform cross-flow, with 

no vertical velocity. This is a time-dependent, two-

dimensional problem (but with three variable components of 

velocity and vorticity) and is developed in Chapter V for use 

in the solution with this type start as described below. The 

solution of Chapter V thus supplies the conditions at 

infinity normal to the wall in this case. 

The sum of the solutions developed in Chapters III and 

V supplies all of the infinity conditions for the complete 

three-dimensional solution in this case. The difference 

between the complete solution in this case and this combina

tion of solutions then is a three-dimensional solution having 

zero vorticity at infinity, and thus having only a finite 
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region of non-zero vorticity at any finite time. The 

initial vorticity distribution for this latter solution is 

then a plane sheet of finite extent on the wall surrounding 

the jet exit, resulting from the application of the no-slip 

condition to the velocity induced parallel to the wall by 

the doublet distribution on the jet exit diameter that, with 

the uniform cross flow, forms a closed streamline correspond

ing to the jet exit curve, e. g ,, , a single doublet at the cen

ter of a circular exit (Figure 3c). The complete numerical 

solution is therefore obtained in this case by performing 

simultaneously the one-dimensional solution of Chapter III, 

the two-dimensional solution of Chapter V, and a three-dimen

sional solution (Chapter VI) having a finite extent of non

zero vort icity. 



CHAPTER III 

NUMERICAL SOLUTION FOR THE 

FLOW ABOVE A SUDDENLY ACCELERATED INFINITE FLAT PLATE 

In this chapter the numerical method is applied to 

the time-dependent, one-dimensional flow above a suddenly 

accelerated infinite plane moving parallel to itself at 

constant velocity. This solution was developed for two pur

poses: to provide a test of the numerical method against an 

exact solution and to provide a sub-solution for use in 

developing the three-dimensional solution for the jet in 

cross-wind in Chapter VI. 

Numerical Formulation 

Vorticity-Velocity Solution 

The one-dimensional solution for the flow above an 

infinite flat plate moving parallel to itself in an otherwise 

quiescent fluid is determined by the nondimensional equations 

(Chapter II) 

In = _L JLH m* 
at R a 2 v } 

c 9z 

u(z, t) = 1 + /n(zf, t) dz' (2) 
o 

*A11 quantities in this chapter are nondimensionalized as 
noted in the Nomenclature. 



34 

where the cell Reynolds number R is based on the constant 
J c 

plate velocity. The boundary condition is 

u(0, t) = 1 

and the initial condition is 

n(z, 0) = { 
1 , 2 = 0 

0 , z > 0 

which correspond to the initial solution 

u(z, 0) = { 
1 , z = 0 

0 , z > 0 

The numerical approximation of Equation (1) is, using 

a two-point forward time difference and three-point central 

space differences (Appendix D ) , 

n+1 t . „AtN n At, n n . 
nk • ( 1 " 2X ) nk + R-(nk+l + Ifc-l' 

c 

(3) 

in the straight explicit form, or 

n+1 

Al 
R 

h 
At 

Al 
1 R 

n —1 . c / n n N , . N 
^ 7k I At,(nk+l + nk-l> (4) 

(2 R } 
c 

in the Dufort-Frankel form. Here the superscript and sub-

n _ script refer to time and space, respectively: r|, = n(z, , t ) 
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The integral of Equation (2) is approximated by the summa

tion 

un
k = i + Y n? (5) 

r *1 

Boundary Conditions and Initial Conditions 

Since 

lim u (z , t) == 0 

Equation (2) implies that 

n(z, t) d z = - 1 

o 

so that, from Equation (5), 

7 n_i = - 1 , a l l n 
t - i k 

But, in the straight explicit formulation, 

r n n v n 
I ^k = n l + I n k 

k = l k X k = 2 k 

n - 1 A t . n - 1 * n - 1 . n - 1 n , v r n ~ J - / i t , n - i _ n - 1 , n - l x n 

- nx + J [nk + r(nk+1 - 2nk + n^)] 
k=2 c 

where Equation (3) has been used to express r|, in terms of 
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the previous values for the summation. Then, 

OQ 
r n n v n-1 'At r r n-1 n-1 _ n n-1 

I nk = n, + _ h t + s-I I nk - n - iJ nk 
k=l k=2 c k=2 k=2 

n-1 n-1 V n —J. , n —x, 
+ 2 n k + n-L ] 

k=:2 

n-1 n-1 At, n-1 n-1 n , r n-l v,n-l At, n-1 n-lN 

n1 + J nk - n + ̂ - ( ^ - n2 ) 
k=l c 

Then, since it is required above that 

v n v n-1 
^^k * I \ 

k=l k=l 

it must be that 

_ n n-1 . At, n-1 n-lN 

o = n, - n± + j - ^ - n2 ) 
C 

But from Equation (3) applied on the boundary, 

n ,A nAt.N n-1 , At, n-1 , n-1. 

n i • ( 1 - 2ir )ni + x (n2 + % > 
c c 

These last two equations are both satisfied if the vorticity 

at the virtual point below the boundary is defined to be 

equal to the value on the boundary: 

n = n, 
o 1 
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This requirement then satisfies the conservation of vorticity 

that is implied by Equation (2), and the boundary condition 

on the velocity is implicit in this equation. 

The proper representation of the boundary condition 

is thus achieved by the specification of a value of vorticity 

at a virtual point one cell width below the boundary, this 

value being taken equal to that on the boundary (z.. = 0) : 

n = n-i 

o 1 

The initial conditions are simply 

n° = o , k ?« l 

Computation Procedure 

At each successive time step new values of the vorti

city are calculated from Equation (3) or (4), depending on 

formulation being used, and new velocity values are then 

obtainable from Equation (5). Only those cells with non

zero vorticity, i.e., vortex cells,* and one border cell* 

need be included in the calculation, for only in these cells 

can the vorticity change at a given time step. If the 

*Vortex cells and border cells are defined in Chapter JI. 
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magnitude of the newly calculated vorticity in the border 

cell (which had zero vorticity at the previous time) is suf

ficiently large, the border cell is reclassified as a vortex 

cell and the extent of non-zero vorticity is thus increased 

by one cell. Otherwise, the extent of non-zero vorticity 

remains unchanged, and the vorticity of the border cell in 

question remains zero. Two criteria for making this deter

mination were examined: 

(1) The vorticity field is extended if the magnitude 

of the vorticity calculated for the border cell 

exceeds a specified minimum, w . Otherwise this 
m 

vorticity is added to that of the topmost vortex 

cell. 
(2) The vorticity field is extended if the sum of the 

magnitude of the vorticity calculated for the bor 

der cell and that of the topmost vortex cell 

exceeds a specified minimum, CO . Otherwise this 
m 

vorticity is added to that of the topmost vortex 

cell. 

Thus no vorticity is ever lost from the field. (The simple 

discarding of the vorticity calculated for the border cell 

in the event of no reclassification results in vorticity 

flowing out of the field of computation, so that the viscous 

effects of the wall are eventually obliterated.) These two 

schemes amount to a spacial averaging, whereby the total 
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vorticity present is not altered, but the distribution at 

the outer edge of the field is averaged over adjacent 

points in the field, 

Comparison With Exact Solution 

From the comparisons given in Figure 5* it is clear 

that the solution using the above minimum vorticity scheme 

//l does not converge as the time step is reduced at constant 

cell size. The solution with scheme #2, however, does con

verge to the exact solution of Equations (1) and (2), {67, 

Chapter 5 ) , as is demonstrated in Figure 6. 

The effect at large times of the minimum vorticity, 

co , is shown in Figures 7 and 8 for the two schemes. Com-m 

parison of Figures 7 and 8 shows that both schemes are 

accurate with a minimum vorticity of 0.001. Scheme #1, 

however, shows a much more rapid loss of accuracy as the 

minumum vorticity is increased. The accuracy with each 

scheme naturally deteriorates in time with a large minimum 

vorticity, since the error thus introduced is cumulative. 

With larger values of the minimum vorticity the transition 

of a border cell to a vortex cell becomes less likely, so 

that the vorticity tends to be artificiaJ.ly confined and its 

spread away from the wall is inhibited. 

^Parameters used in all results presented are given in 
Table 4. 
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The lack of convergence with a decrease in time step 

that results with scheme #1 is reflected in the loss of 

accuracy as time progresses that is evident in Figure 9a. 

Scheme #2, however, suffers no such loss (Figure 9b). 



CHAPTER IV 

NUMERICAL SOLUTION FOR THE FLOW ABOUT 

A TWO-DIMENSIONAL SOLID CYLINDER 

In this chapter the numerical method is applied to 

the time-dependent, two-dimensional flow normal to the axis 

of an infinite solid circular cylinder with and without a 

rear splitter plate. This solution was developed to provide 

a comparison of the results of the numerical method for the 

surface pressure distribution, the pressure, friction, and 

total drag coefficients, the length of the standing vortices 

behind the cylinder, and the vortex shedding frequency with 

those of other numerical methods and with experimental data. 

Since the purpose of this comparison was to verify the 

method to be applied to the three-dimensional jet in cross-

wind, for which cartesian coordinates are appropriate, a 

cartesian system was used also for this comparison, even 

though cylindrical coordinates are, of course, more appropri 

ate to the analysis of the flow about a circular cylinder. 

In the jet in cross-wind problem, the portion of the jet nea 

the exit is essentially cylindrical, so that the cartesian 

coordinate system, used must be capable of treating essenti

ally cylindrical geometries as well as geometries that are 

predominantly rectangular. 
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Numerical Formulation 

Vorticity-Velocity Solution 

The two-dimensional solution for the flow of an 

unbounded free stream about a cylinder with its axis perpen

dicular to the free stream is determined by the equations 

(Chapter II) 

9co 

Jt = V x (v x oo) + vV w (1 ) 

v = V + iz-
~°o 2lT J J 

( r f - r ) 
x a) (r f ) dS ( 2 ) 

- r 

where the integral is over the entire two-dimensional region 

exterior to the cylinder, and V is the uniform velocity at 
-^oo -' 

an infinite distance from the cylinder. After nondimension-

alization with respect to the free stream velocity V and the 
J 00 

cell size h, Equations (1) and (2) become, for the coordinate 

system shown in Figure 10, 

IS. - _ 
9t ^ (uC) - I (vO + i- A + ^ ) 

3y R 2 2 
c 8x 8y 

(3) 

= -1 + 
2-ffJ 

cy' - y) L - O L L ^ I ^ d x , d y , 
(xf - x) + cy' - y) 

(4a) 

*Hereafter all quantities in this chapter are nondimension-
alized as noted in the Nomenclature. 



43 

v = -2TT 
OLLJ^X) C (x'y y') d x, d y, ( 4 b ) 

<x» - x) Z + (yT - y r 

Voo h 

with the cell Reynolds number defined as R = , and all 

quantities in Equations (3) and (4) taken as dimensionless. 

With the space derivatives replaced by three-point 

central differences and the time derivative by a two-point 

forward difference, Equation (3) is approximated (Appendix 

D) by the difference equation, 

n + 1 fA 4AtN n At r e x.n 
5i,j " (1 - R~> ?i,J " T» a»ttl,] ^ > i - l . J 

At r n _L f ^ \ n / >-\n i J fit. n n 

+ ( v O i > j + 1 - C v C ) 1 > J f c l ] + i - I C 1 + 1 > : , + C i . i . j 

+ c n + r11 ] 
H . J + l ^ i , j - l J 

( 5 ) 

in the straight explicit form, or by the difference equation, 

(Appendix D) 

n+1 

1 -̂ 1 2 -̂ 1 c 
1 , oAt 

+ 2 — 
2 R 

cj 

n -1 
At 
2 

ur ri + "AtT [ ( u C ) i+i , j - ( U C ) I - I , J 
2 R 

+ ( v O , i . j « - < ^ > ; . i - i ' + 

At 
R 

te" , + c? 1 + o A t ) L ^ i + l , j ^ i - l . j 
2 ZR 

c 

+ <S.J+i + Z.^ (6) 
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in the Dufort-Frankel form. Here At is the (nondimensional) 

time step, and the subscripts and superscripts refer to 

space and time coordinates, respectively: 

n £7 . = C(x. , y . , t ) 
*i,j i* 'J n' 

The integrals of Equation (4) are approximated 

numerically by 

n 
u . 
i »J • - i + ^ I 2TT I — 

p q (x 

(P,q)?i(i.j) P 

( y
q ' y i } 5P.Q 
2 2 

x .) + (y - y .) 
i q J 

(7a) 

i»J 
= - — J 2TT 

( * > - » i > 'p>q 

(p,q)^(i,j) 

(K - X t ) (yq - y j) 
(7b) 

The summations need be taken only over those points having 

C ^ 0. A square grid is used, and the cells are squares 
p »q 

of unit width centered on the grid points as shown in 

Figure 11. The velocities are evaluated at the centers of 

the square cells. 

Surface Pressure 

The pressure on the cylinder surface is calculated 

from the Navier-Stokes equations, which in two dimensions and 

nondimensional form are 

9u 9u 3u 
IT- + uir— + v-~— 
at dx dy 

I <LP_ + JL(K 
2 dx R \ 2 

c dx 

3 2 
u + 9 u ) (8a) 

3y" 
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dv . dv 1 dp dv dv , dv 
dt dx dy 

2 2 
1 , d v 9 v. 

2 By ' R * 2 . 2 ; 

c dx dy 

(8b) 

where the pressure is nondimenslonalized with respect to the 

1 2 
free stream dynamic pressure, -pV . Using the continuity 

equation and definition of vorticity, Equation (8) may be 

rewritten as 

1 _d£ 
2 dx 

L_ K 1 9(u2 + v2) _du 
R dy ~ 2 dx V^ dt 
c 

(9a) 

1 l£ J_ IS. 1 d(u 2 + v 2 ) jhr 
2 dy R dx ' 2 9y ' u^ ~" dt 

(9b) 

The line integrals of Equation (9) in the x and y 

directions, respectively, are 

x 

p(x,y) - p(xQ,y) = 2 

x 

, 1 d_£ r d u N , 
(- r 17 + vC " 3r} dx 

c J 

(V2(x,y) - V 2(x.y)] 
o 

(10a) 

p(x,y) - p(x,yQ) / 1 A? >- ^v\ i 2' (I- 91 " UC - 37 ) dy 

- [V2(x,y) - V2(x,yQ)] (10b) 

Equation (10a) applied between the forwardmost point of the 

cylinder and a point at an infinite distance upstream of the 

cylinder yields the stagnation point pressure coefficient: 
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x 

(CP)S - Ps - P„ " 2] (- f || + vC - f*) dx + 1 (11) 
oo 

This may be rewritten 

< C " > 9 " L + iT Ty j ? d x + 21TF J udx 

X X 

- 2 v^dx (12) 

x 

Then with (x ,y ) for the coordinates of the stag-
o o 

nation point, the numerical approximation of Equation (12), 

using trapezoidal integration and central differences for 

both derivatives, is 

( C < = 1 + R 

IAJ 

. L 4 ^ I , J +1 * ^ , C i , J + 1 ; 

C 0 0 1 = 1 + 1 ' O 

- < & . J - 1 + I <!LJ-1>J 
o ' o 1 = 1 + 1 o 

O 

oo oo 

+ ( I u - 2 u i j ) 

i = I +1 1 , J o i - I +1 ' o 
O O 

- 2 .1 + 1
 v l ; J

 ? i , l ( 1 3 ) 

1 = 1 + 1 O O 
O 

Here the summations involving vorticity extend only as far 

upstream as the extent of non-zero vorticity. The summation 
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over the x-velocity extends; sufficiently beyond the region 

of non-zero vorticity for the velocity to be negligibly dif 

ferent from the undisturbed value of -1. 

The pressure coefficient around the surface of the 

cylinder is calculated from Equation (10) applied around the 

layer of boundary cells,* with the velocity taken as zero in 

the boundary cells. Again using trapezoidal integration, 

with one-sided differences for the derivatives, these 

become, in the first quadrant, 

± > j P i + l j j Rc ^ i . J + l M + l . 3 + 1 g i , J ^ + 1 , J 

C
P i , = S. . i + R ( C i + l , J + C i + l , j - l ' C i , j " C i , j - 1 } 

- 1 - » j - L > J - L L 

(14b 

with similar expressions in the other quadrants. Here the 

first two vorticity values in the parentheses are values in 

the layer of cells adjacent to the boundary cells, and the 

last two values are those in the boundary cells. The pro^ 

cedure is similar in the other quadrants, 

Drag Coefficients 

The pressure drag coefficient is calculated from the 

pressure coefficient according to the expression 

P 
(15 

*Boundary cells are defined in Chapter II. 
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where D is the cylinder diameter, n is the unit outward nor

mal to the surface, and the integral is taken around the 

cylinder surface. This is approximated numerically by the 

summation 

p m rm rm 
(16) 

where the summation is over all the boundary cells, and A 
P 

is the y-projection of the portion of the surface curve lying 

in each boundary cell, the rear boundary cells having nega

tive values (Figure 12). The friction drag coefficient is 

calculated according to 

« . , - * • £dx (17) 

which is approximated numerically as 

:Dr
 : DR £ CmAf (18) 

c m m 

with Af the x-projection of the. portion of the surface curve 

contained in each boundary cell as is indicated in Figure 12 

as well, 

Computation Procedure* 

At each time step new values of the vorticity are 

^Reference to Equation (6) assumes the use of the Dufort-
Frankel form. In the straight explicit form, Equation (6) 
is replaced by Equation (5) . 
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calculated for each vortex cell*and each border cell* from 

Equation (6). In this equation the vorticity is taken as 

zero at all points not corresponding to vortex cells. If 

the sum of the magnitude of the vorticity calculated for a 

border cell and that of any adjacent vortex cell is greater 

than the specified minimum vorticity, a) , then the border 
m 

cell is reclassified as a vortex cell. Otherwise the vor

ticity calculated for the border cell is distributed evenly 

among the adjacent vortex cells, so that no vorticity is 

ever simply discarded. 

The current set of vortex cells, including those 

added at the current time step, is then cataloged and a new 

t set of border cells surrounding the aggregate of vortex 

cells is created. Finally, the velocity components are cal

culated for each vortex cell from Equation (7), with the 

summation being taken only over those vortex cells within a 

prescribed range, r , of the cell in question. This process 
° m 

is repeated at each succeeding time step for the duration 

of the calculations. 

Initial Conditions 

The cells through which the curve defining the sur

face of the cylinder passes, designated as boundary cells, 

*Vortex cells and border cells are defined in Chapter II. 

f The aggregate of vortex cells is defined in Chapter II. 
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are the only cells having non-zero vorticity at the start 

and, therefore, constitute the initial aggregate of vortex 

cells (Figure 12). The initial vorticity in each of these 

cells is calculated from the relation between circulation 

and vorticity: 

r = (i v • ai = U • as 

Since initially the irrotational potential velocity solution 

prevails, the initial circulation and also the initial vorti

city (the cell area being unity) of each boundary cell is 

equal to the line integral of the potential velocity over 

that portion of the cylinder surface curve that lies within 

the cell (Figure 12). Equation (7) would then reproduce, at 

the start, the potential velocity solution, to within the 

error involved in the discretization, at all points exterior 

to the cylinder, the summation being taken over the boundary 

cells. 

The fact that a portion of each boundary cell lies 

within the cylinder might seem somewhat unreal. However, the 

definition of cells containing vorticity is merely a device 

used to represent the integrals of Equation (4) numerically. 

In the strictest sense neither this solution nor any other 

numerical solution is meant to represent the flow field on a 

scale smaller than the mesh size. The precise placement of 

the cells is, therefore, not particularly important as long 

as the boundary conditions can be adapted to the particular 
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placement used and are well represented. The current scheme 

was chosen in preference to alternatives that would place 

initial vorticity in cells lying entirely in regions actually 

having no vorticity at the start, i.e., not containing any 

of the surface curve so that the surface vorticity is not 

confined well enough to the surface region. 

Boundary Conditions 

By far the greatest problem in applying the present 

scheme, based as it is on a rectangular coordinate system, 

to the flow about curved solid bodies is the proper represen

tation of the boundary conditions. The normal component of 

the velocity on the boundary, as well as the tangential com

ponent, is a problem here, since the usual device of speci

fying a constant stream function on the boundary as a bound

ary condition, and thereby guaranteeing a zero normal compo

nent, is not available. It should be emphasized again that 

vorticity images in the boundary are not employed in the pre

sent solution and are therefore not available for guarantee

ing a zero normal velocity component. 

The representation of the boundary conditions is then 

even more critical in the present integro-differential 

approach, for since the velocity is calculated from an inte

gral over the vorticity distribution throughout the entire 

field, the velocity boundary conditions are entirely implicit, 

i.e., neither the normal nor the tangential velocity compo

nent can be forced to be zero on the boundary; the vorticity 
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distribution must be such as to produce zero values of velo

city on the boundary through the integrals of Equation (4). 

The vorticity in the fluid adjacent to the boundary, i.e., 

in the boundary cells, is especially critical to the main

tenance of zero normal velocity on the boundary, since these 

cells contain the highest vorticity in the field and that 

most recently generated at the boundary. It is in these 

cells, however, that the convection and diffusion are most 

difficult to represent with this rectangular approximation 

to a curved boundary. A total of fifteen different boundary 

treatments were evaluated in the present study, and the 

results are discussed in Appendix E where the reasons for 

the scheme chosen are given, 

Results and Comparisons with 

Other Numerical Solutions* 

Survey of Other Numerical Solutions 

The two-dimensional flow about a circular cylinder has 

been the subject of much numerical effort in the past several 

years {24-35}. (Two of these references are recalculations 

using older solutions: {31} uses the older solution of 

Kawaguti {35 } , and {34}uses the solution of Payne {25}.) 

Most of the solutions presented are very similar in basic 

*The convergence of the solution and the effects of the vari
ous parameters involved are discussed in Appendix F. 
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numerical approach but differ in regard to the type of matrix 

solution employed, the treatment of boundary conditions, the 

method of drag calculation, and other such details. All of 

the recent solutions, both steady and time-dependent, are 

formulated using an expanding circular grid, so that the 

radial mesh size decreases as the surface of the cylinder is 

approached. Only one solution {30} differs at all from this 

grid structure, through the joining of the expanding circular 

grid with a rectangular grid at large radius. All except one 

{34} use the stream function and vorticity as dependent vari

ables, the exception replacing the stream function with the 

velocity components. Most solutions also use the non-

conservative form of the vorticity equation with central dif

ferences. The conservative form is used in two solutions, 

however, in one case with central differences {34} and in one 

case with streamwise one-sided differences {30}. 

Of the time-dependent solutions, only that of Dey {24} 

and that of Son and Hanratty {33} are implicit in time. The 

latter, however, is not completely implicit, because the 

stream function and vorticity are evaluated by separate 

matrix solutions, rather than simultaneously. This means 

that the calculation of the vorticity at the current time 

step involves the values of the stream function at the previ

ous time step, not the current values. This solution also 

assumes symmetry about the center line. Dey's solution, 
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which employs an optimized acceleration of the convergence 

of the matrix iterative solution for both the vorticity and 

the stream function developed and applied in rectangular 

coordinates by the present author {23}, is completely impli

cit. Here, as in the present author's solution for the flow 

about rectangular bodies, the vorticity at the current time 

step at each point depends on the adjacent values of both 

the vorticity and the stream function at the current time 

step. Similarly the strean function at the current time 

step at each point depends on the adjacent values of the 

stream function and the coincident value of the vorticity, 

both at the current time step. 

That the completely implicit time-dependent solution 

approaches more closely the solution of the nonlinear differ 

ential equations is evidenced bythe fact that none of the 

explicit solutions has been able to achieve vortex shedding 

without forcing the shedding to start by external perturba

tion. This is the case for the explicit: solution of Fromm 

{21} for the flow about a rectangular body as well. However 

in the completely implicit solution of Dey for the circular 

cylinder, and in that of the present author for rectangular 

bodies, shedding begins and the vortex street is formed with 

out the necessity of external disturbance of the solution. 

This is most likely due to the fact that the difference equa 

tion representation of the nonlinearity of the differential 

equation is superior in the completely implicit solution, 



55 

since there the nonlinear terms are evaluated at the current 

time step, rather than at the previous step as in the expli

cit methods. The formation of the vortices and subsequent 

shedding and vortex street creation are all effects of the 

nonlinear terms, since these phenomena disappear when the 

linear terms dominate at low Reynolds number, and therefore 

would be expected to reflect the accuracy with which the non-

linearity of the differential equation is represented in the 

difference equation. It is probably for this reason that 

explicit methods must be perturbed to shed. 

Surface Pressure and Drag Coefficients 

Results of Other Solutions, Drag determinations have 

been made in most solutions by calculating the surface pres

sures from the line integral of the Navier-Stokes equations, 

the exceptions making the determination from the Blasius 

drag equation applied around a circuit enclosing the cylinder 

{28} or from momentum considerations {34}. Three solutions 

{27, 28, 31} employ an extrapolation to infinite outer bound

ary in an attempt to remove the "wall" effect on the drag 

coefficient introduced by the necessity of using a finite 

field of calculation. The results of the various solutions 

are compared in Figure 13, which includes also experimental 

data and the results of the present solution. The values 

given here for the time-dependent solutions are taken at sup

posedly large enough times for the change in time to be 

negligible, 
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Since the surface pressure is dependent on the deriva

tive of vorticity normal to the surface, the accuracy of the 

surface pressure is no better than that with which the bound

ary layer is represented by the solution. It is possible for 

a numerical solution to give a quite good representation of 

the large-scale phenomena of the wake, including the vortex 

shedding and street formation, and still give very inaccurate 

surface pressure and drag because of poor representation of 

the small-scale details of the boundary layer. For this 

reason the drag predicted by all numerical solutions at a 

fixed radial mesh size becomes less accurate as the Reynolds 

number* increases and the boundary layer thickness decreases. 

This tendency is exhibited in Figure 13a by all the 

solutions given in which a constant radial mesh size was used. 

(The field size and the ratio of mesh size at the cylinder 

surface to the cylinder radius are given for each solution in 

Table 1.) Also in two solutions in which the mesh size was 

reduced as the Reynolds number increased {27, 33}, the reduc

tion was insufficient and the points again fall below the 

experimental curve at the higher Reynolds numbers in Figure 

13a. 

The only solution to maintain accuracy in the surface 

pressure, and hence drag, at Reynolds number above 60 is that 

^Throughout this chapter the Reynolds number referred to is 
the cylinder Reynolds number based on the cylinder diameter. 
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of Thoman and Szewczyk {30}, in which the mesh size was set 

at a certain fraction of the steady-state boundary layer 

thickness at the forward stagnation point, as predicted by 

boundary layer theory, at each Reynolds number. This relat

ing of the mesh size to the expected boundary layer thickness 

allowed successful drag prediction even at Reynolds number of 

40,000, but required an extremely small mesh at such values, 

of course. 

Hamielec and Raal {27} show a strong effect of the 

extent of the field, the drag coefficient tending to decrease 

as the radius of the outer boundary, where the flow is taken 

as uniform, increases. The drag coefficients given in Figure 

13a for Reynolds numbers of 50 and 100 from this solution 

were obtained with significantly smaller computational fields 

than those used for Reynolds numbers of 30 and below. (The 

field for Reynolds number of 30 was five times as large.) 

Even with the extrapolation employed, the values at these 

two highest Reynolds numbers lie above the curve established 

by their values for Reynolds number of 30 and below. It is 

probable then that the values presented for Reynolds numbers 

of 50 and 100 are too high, and that lower values would have 

been obtained had the field been larger. The agreement of 

the point at Reynolds number of 50 with the experimental 

curve in Figure 13a thus is deceptive, for both it and the 

point at Reynolds number of 100 should probably be lower, 
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conforming to the trend of the points for Reynolds number of 

30 and below. 

In the solution of Takami and Keller {28} a semi-

empirical asymptotic formula relating the stream function 

and the vorticity on the outer boundary to the drag coeffi

cient is used in an iterative procedure to provide boundary 

conditions for these dependent variables on the outer bound

ary. This results in much less variation with the position 

of the outer boundary, but the variation that does remain is 

somewhat erratic. Furthermore, with this device the accuracy 

of the solution is dependent on the validity of the asympto

tic formula, which, of course, varies with the Reynolds num

ber. The evaluation of the drag from the Blasius contour 

integral used in this solution leads to variations with the 

contour chosen, which tend to increase and become erratic as 

the Reynolds number or the mesh size increases. Here also a 

much smaller field was used at the higher Reynolds numbers 

(30-60). The drag coefficient, however, is shown to decrease 

as the outer boundary recedes at higher Reynolds number, the 

rate of decrease increasing with the Reynolds number. This 

fact, together with the somewhat erratic positioning of the 

points for this solution in Figure 13a, suggests that the 

drag given at Reynolds number of 30 and above, where only one 

value of the outer radius was considered, may be too high as 

a result of wall effect. 
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The very small field used by Takaisi {31} gave appar

ent agreement with the experimental curve. However, in view 

of the findings of the above authors in regard to the effect 

of field size, Takaisi's results would probably have been 

lower had a larger field been used. 

The field size used by Thoman and Szewczyk {30} was 

comparable to that used in the above two solutions at the 

higher Reynolds numbers, but the mesh size was considerably 

smaller. Their drag results thus could also be a bit high 

due to wall effect but, even allowing for such error, the 

improvement with the smaller mesh size is apparent. 

Jain and Rao {29} used a field larger by an order of 

magnitude, but terminated their calculations at a much 

earlier time at Reynolds number of 200. Their true value of 

drag at this Reynolds number thus would be expected to be 

lower than indicated. The earlier work of Kawaguti and Jain 

{32}, which differs from that cited immediately above only 

by the imposition of symmetry about the center line, was ter 

minated at even earlier times. 

The solution of Son and Hanratty {33}, for which both 

the field size and the final time were adequate, probably 

shows the truest trend in the absence of wall effect and 

transient effects of all these solutions at the higher 

Reynolds numbersfor the mesh sizes used. It thus appears 

that a cell Reynolds number (based on the mesh width at the 
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cylinder surface) of about 3 is the maximum for which accu

rate calculation of surface pressure and drag can be obtained. 

In summary, at the low Reynolds numbers, when the bound

ary layer is thick, all the solutions agree quite closely 

with each other and with the experimental curve. What vari

ation there is is within the range caused by differences in 

time-step and time of evaluation in the time-dependent cases 

and differences in the treatment of the boundary at infinity 

in all cases. At higher Reynolds numbers, however, it is 

necessary to reduce the mesh size considerably, or else all 

solutions predict drag that is too low. This is evident from 

the results actually given in Figure 13a for the various solu

tions, but would be evident to an even greater extent were 

the effects of too small a field and insufficient approach to 

the steady-state removed. 

Present Results.* The agreement of the present 

results in Figure 13 with the pressure, friction, and total 

drag coefficients predicted by other numerical solutions and 

by experimental results is good for Reynolds numbers less 

than 10, corresponding to a cell Reynolds number of 0.833 for 

the cell size used. Table 1 shows the cell Reynolds numbers 

(based on the mesh size at the cylinder surface for expanding 

grids) used in the other numerical solutions cited to be 

*The parameters used in all the results presented in each 
figure are given in Table 4. 
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comparable to this value in most cases. Except for the solu

tion of Jain and Rao {29} the cell Reynolds numbers used were 

about five or less. In the present case the angularity of 

the boundary requires a somewhat smaller cell Reynolds num

ber for accuracy. 

The above-mentioned Reynolds number effects are more 

pronounced in the present solution because of the angular 

representation of the curved boundary of the cylinder. (This 

angularity of the boundary is, of course, not inherent in the 

integro-differential formulation but resulted from the desire 

to use cartesian coordinates throughout.) Better accuracy at 

the higher Reynolds numbers could, of course, be obtained in 

the present case with a smaller cell size, as is illustrated 

in the time development results cited below. The excessive 

computer time required, however, was not justifiable, since 

the purpose of consideration of the circular cylinder was 

only to verify the numerical approach and not to analyze the 

cylinder itself. The results obtained demonstrate that the 

drag prediction of the present method is accurate for a cell 

Reynolds number of unity or less even with the rectangular 

representation of the circular boundary. 

The time development of the pressure and friction drag 

coefficients of the present solution is shown in Figure 14. 

With the larger cell size the initial development is much 

more rapid than that of other solutions because of the 
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angularity of the boundary. With the smaller cell size, how 

ever, the initial fall of the pressure coefficient to a mini 

mum and the subsequent rise are in agreement with the predic 

tion of Thoman and Szewczyk {30}, who show the minimum at 

Reynolds number 200 to be reached at about time t = 13, and 

that of Ingham (34), who gives the minimum at about time t = 

11 for Reynolds number 100. The angularity of the boundary 

is much reduced at the smaller step size given here, and the 

details of the viscous layer at the surface are much better 

represented as a result. The effect on the friction drag 

coefficient is much less pronounced, since it depends on the 

value of the vorticity rather than the derivative thereof. 

The surface pressure distribution is compared with 

that predicted by other solutions and with experimental 

values in Figure 15. The large kinks in the curve at the 

very low Reynolds number of 2 are a result of the large 

truncation error in the Laplacian at such a Reynolds number. 

The same effect causes the friction drag to be a bit high 

(Figure 13c). Considering the angularity of the boundary 

used, the general shape and level of the curves show satis

factory agreement at the lower Reynolds numbers with the pre 

dictions of solutions using cylindrical coordinates. From 

Figure 15b, the tendency of the pressure decrease on the for 

ward portion of the cylinder predicted by numerical results 

to be less rapid than that observed experimentally is shared 

by other solutions as well. 
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Length of Standing Vortices 

Results of Other Solutions. The results of the vari

ous solutions for the length of the vortices behind the 

cylinder are compared in Figure 16 with the results of the 

present solution and with experimental data. The length of 

the standing vortices behind the cylinder is even more 

dependent on the field size than is the drag. The prediction 

of Takami and Keller {28} is probably too short as a result 

of too small a field. (The experimental prediction of 

Taneda {63} is also influenced by wall effect, of course.) 

The length predicted by the time-dependent solution of 

Kawaguti and Jain {32} approaches the steady-state prediction 

of Hamielec and Raal {27} at Reynolds number of 30, the 

fields being large in both solutions. The close approach of 

the solution of Thoman and Szewczyk {30}, with a smaller 

field, to these solutions is probably the tendency of the 

streamwise differencing used in the former to lengthen the 

vortices. This is also suggested by the fact that this 

solution is later in leveling off than that of Kawaguti and 

Jain. The solution of Jain and Rao {29} and that of Son and 

Hanratty {33 }, all approach a value above that predicted by 

Takami and Keller. A comparison of these with results of 

the present solution is given below. 

Present Results• (The aft extent of the standing 

vortices was determined in the present solution by locating 
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on the centerline the point on either side of which the 

velocity vectors were oppositely directed.) The present 

solution gives a better prediction of the length of the vor

tices than it does for the drag at higher Reynolds numbers 

because the former is a result of much larger scale phenomena 

and not as dependent on conditions at the surface. The pre

sent results for Reynolds number of 36 agree with the results 

of other numerical solutions and appear to approach closely 

the steady-state experimental values which are also given 

for comparison in Figure 16. 

Development of Vortex Street 

Cylinder Only. The development of a vortex street 

behind the circular cylinder is shown in Figure 17.* The 

flow was perturbed at T = 10.67 and again at T = 12.00, the 

vorticity on the centerline behind the cylinder being 

increased in magnitude by a factor of 100 in each instance. 

At the first perturbation the vorticity on the centerline was 

so near zero that the perturbation had little visible effect 

on the flow pattern (Figure 17b). However, it did serve to 

cause the vorticity on the centerline to begin to increase, 

so that the second perturbation was effective (Figure 17c) 

and caused the shedding to begin. 

* T h e scale factors for the vector plots are given in Table 5. 
The magnitude of a vector is indicated by the length of the 
stem of the arrow, the size of the arrowheads being the same 
throughout. Spurious lines on the plots are the result of 
plo11er error . 
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The first vortex is shed from the top at T = 14.67 

and rapidly disappears after that time (Figures 17d-17g). 

Meanwhile, the bottom vortex grows and moves rearward, and a 

new vortex is formed at the top (Figure 17h). This new vor

tex then grows and moves rearward, and the bottom vortex is 

shed at T = 20.67 (Figure 17 1). 

The pressure coefficients at the points 0° and 90° 

from the negative of the free stream direction on the cylin

der and the pressure drag are given in Figure 18. Here the 

vortex shedding is evident from the waveforms assumed, 

especially at the 90° point. The peaks of the wave (both 

upper and lower) correspond to the moment of shedding. Shed

ding from the top is thus accompanied by an increase in the 

pressure at the top of the cylinder, while shedding from the 

bottom results in a decrease in pressure at the top of the 

cylinder. 

The effect of the perturbation was to launch the flow 

rather abruptly into the shedding mode, and the pressure 

waveform at the 90° point is quite well formed from the 

moment of its sudden appearance after the second perturba

tion. The pressure at the 0° point requires more time to 

assume its final waveform, since the flow at this point is 

little influenced by the flow behind the cylinder until the 

street becomes more developed. The drag also has not assumed 

its final form, but does exhibit the increase to be expected 

upon formation of the street, 
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An unperturbed case was also run as a control and the 

results are given by the dashed lines in Figure 18. It is 

clear that the shedding was not about to start without the 

perturbation. 

The Strouhal number calculated from the shedding fre

quency as indicated by the pressure at the 90° point is 0.17 

which, for this cylinder Reynolds number of 120, agrees well 

with experimental results {67, Chapter 2}. 

The shed vortices, and hence the developing vortex 

street, are visible behind the cylinder when the velocity 

vectors are plotted in a coordinate system moving with the 

velocity of the vortices (83% of the remote fluid velocity 

{23}) as shown in Figure 19. 

Cylinder with Splitter Plate. The wake development 

with a splitter plate, of length two cylinder diameters, 

extending from the rear of the cylinder is shown in Figure 

20. Here perturbations of the same type discussed above were 

introduced at T = 9.67 and T = 11.33. The disordered flow 

resulting from these perturbations is evident in Figures 20f 

and 20h. However, in both instances the flow recovers and 

assumes its standing vortex form, with no tendency to shed. 

The lack of shedding is evident also in the pressure 

and drag coefficients given in Figure 21 and compared with 

the results without the splitter plate. The disturbances 

introduced by the perturbations are evident but are smoothed 
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in time, and a steady state is being approached. 

The fact that the drag with the splitter plate is 

larger than that without from the beginning is a numerical 

effect and has no physical meaning. As shown in Figure 13a 

the drag predicted by the solution with the cell size 

employed is too low at this high a cylinder Reynolds number 

as a result of the inadequate representation of the thin 

boundary layer. The splitter plate, however, causes the 

boundary layer to thicken in the region near the 180° point 

on the cylinder. Therefore the ratio of cell size to bound 

ary layer thickness is decreased in this region, and the no 

mal gradient of the vorticity, and hence the pressure, are 

better represented in this region with the splitter plate 

than without. This results in lower pressures in the rear 

of the cylinder with the splitter plate and hence larger 

drag. (The pressures in the rear of the cylinder both with 

and without the splitter plate are too high as a result of 

the large cell size/boundary layer thickness ratio.) The 

point then is that with the splitter plate the drag coeffi

cient is calculated more accurately and hence is increased 

relative to the value calculated without the splitter plate 

In both cases the drag is still too low at this Reynolds 

number with this cell size. 



CHAPTER V 

NUMERICAL SOLUTION FOR THE 

INFINITE JET IN CROSS-WIND 

In this chapter the numerical method is applied to the 

time-dependent, two-dimensional infinite jet in cross-wind. 

This is a two-dimensional problem in the sense of there being 

a direction of invariance (along the jet axis). There are, 

however, three variable components of both the velocity and 

the vorticity. This problem represents the flow field 

infinitely above the jet exit when the flow is started from 

the dissolution of a hypothetical pipe separating an interior 

uniform jet flow from an exterior potential cross-flow as 

discussed in Chapter II. It may be visualized at the start 

as an infinitely long column of vertically moving fluid sur

rounded by a cross-flow normal to the axis of the column 

(Figure 4). As time passes the discontinuity is dissipated 

and the column is swept backward, mixing with the cross-flow, 

so that the vertical velocity is spread out and eventually 

reduced to zero. 

This solution was developed to provide a sub-solution 

for use in developing the three-dimensional solution for the 

jet in cross-wind starting from a cylindrical discontinuity 

in Chapter VI. However, the solution proved to be of con

siderable interest in itself, revealing a nonlinear 
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instability arising from a coupling of the vertical velocity 

and the horizontal vorticity. This instability is discussed 

in datail in a later section. 

Numerical Formulation 

Vorticity-Velocity Solution 

The flow of an unbounded cross-wind about an infinite 

jet with its axis perpendicular to the cross-wind is governed 

by the same vector equations of motion given in connection 

with the problem of the two-dimensional cylinder (Chapter II) 

9co o 
-7-r = V x (v x si) + VV & 
d t ~ ~ o. 

v = V + — 
(r' -- r) 

x oa(r') dS 

(1) 

(2) 

but with the surface integral now extending over the entire 

field, there being no boundaries. 

This flow is two-dimensional in the sense that there 

are no variations in one direction. The velocity in that 

direction, however, is not zero and varies in both time and 

the other two space directions. Physically this solution 

represents the smoothing out of the cylindrical discontinuity 

between a flow inside an infinite cylinder, parallel to its 

axis (with constant velocity across the cylinder), and the 

two-dimensional potential flow of an unbounded cross-wind 

about the cylinder, perpendicular to its axis. There are 
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thus no boundary conditions involved, the conditions at 

infinity being contained implicitly in the integro-

differential formulation. 

Again with non-dimensionalization with respect to the 

cross-wind velocity and the cell size, Equations (1) and (2) 

become, for the coordinate system shown in Figure 22, 

i i = _ i (u n - vC) + —("MF + &-^) 
3t 3y ' R \ 2 T 2} 

c 9x By 

( 3 a ) * 

IB = _ _i. (UTI - v5) + -i-C-^5 + - ^ ) 
3t 3x ^ v w R \ 2 + . 2} 

c 3x 9y 

( 3 b ) 

| f - £ (we - u,) - £ (vC - wn) + 

2 2 

J, cri + ilix 
R \ 2 h . 2 ; 

c 3x 9y 

( 3 c ) 

and 

u = - 1 + U[ (Y'-y)^^^2 d x . d y . 
2TT I / f \ 2 , / f ^ 2 

J J ( x - x ) + (y - y) 

( 4 a ) 

v = - 2 77 

( x f - x ) g ( x ' » y ' ) 

(x« - x ) 2 + ( y * - y ) 2 
d x ' d y ' ( 4 b ) 

w m iffCx' - x)nCx', y!_)_^,(xl-z_zlll2LL^l)dx> d y . 
27TJJ / I _ \ ^ - . / t >, 2 

( 4 c ) 
( x ' - x ) + ( y 1 - y ) 

*Rereafter all quantities in this chapter are nondimension-
alized as noted in the Nomenclature. 
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All quantities in these equations are dimensionless, and the 

cell Reynolds number is based on the cross-wind velocity: 

V h 
R = -£-
c V 

With the space derivatives replaced by three-point 

central differences and the time derivative by a two-point 

forward difference, Equations (3) are approximated (Appendix 

D) by the difference equations, 

r n + l t 4At N rn At r t „ >.Nn , r N n , 
5 i s j

 = ( 1 ~ r^ij + ~ 2 - [ ( u n - v « i , i + i ~ ( u n - v ^ i , j - i ] 

+ A t r r n + ^n ^n n , 
+ R c

L H + i , j + H - i , j + n , j + i H , j - i J (5a ) 

r^n+1 / i 4AtXY,n At r . _ . n , ,_\n , 
Vj = ( 1 " I7 ) n i , j " ~ [ ( u n ~ v"±+l,j " ( u i n ' v S ) i - l , j ] 

, At r n n n n n 
+ i;[Tli+i,j + n i - i , j + n i , j + i + ^ i . j - i 1 (5b) 

i . a 
= ( i - ^AtN -11 

R n* + M K W 5 -» c ) ? - (we - u o ^ . j 

Q 
(vc - wn) 1 > j + 1 + (v t - " n ) ^ . ^ ] 

At r n n n n + R L 5 i + l , j + C i - l , j M , j + 1 M , j - l J ( 5 c ) 

in the straight explicit form, or by the difference 

equations, 
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in the Dufort-Frankel form. Eere At is the (nondimensional) 
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time step, and the subscripts and superscripts refer to the 

space and time coordinates, respectively: £. . = £(x.,y.,t ) , 
i, J i J n 

etc . 

The integrals of Equation (4) are approximated num

erically by 

u
n = _ i + _L y y - q I y i K p , q ( 7 a ) 

P q Cx -• x ) + (y - y ) 
( P , q ) * ( i , j > P q 3 

i U - x . K 
V i , J = " 2^ I I " Vr-^-—2 < 7 b > 

CPWV'"*' + ( ^ " V 

-, (x - x . ) n n - (y - y . ) £ n 

^ = -h i i ^-r^^rf—^ (7c) 

The summations extend over all points having non-zero vorti-

city. The square grid and cell configuration are the same 

as those used in the two-dimensional cylinder solution and 

are shown in Figure 11. Again the velocities are evaluated 

at the center of each cell. 

Computation Procedure 

The computation procedure is the same as that 

described in Chapter IV for the two-dimensional cylinder, 

except that no solid surface vortices are involved 

in this application, 
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Both of the two criteria discussed in Chapter II for 

the creation of a new vortex cell* from a border cell*—(1) 

the magnitude of the vorticity calculated for a border cell 

exceeding the specified minimum vorticity, w , and (2) the 
m 

sum of the magnitude of the vorticity calculated for a bor

der cell and that of any adjacent vortex cell exceeding the 

specified minimum vorticity, to —were evaluated and found to 

be only negligibly different at the practical total times 

and time steps actually used. In the one-dimensional 

results of Chapter II, however, the second of these criteria 

was superior at very long times or very small time steps. 

Since the velocity in the one-dimensional solution is calcu

lated from a line integral, the vorticity of each cell in 

that case represents an infinite plane of vorticity. How

ever, the vorticity of a cell in the two-dimensional solution 

represents only an infinite column of vorticity, and in three 

dimensions a cell represents only a finite cube of vorticity. 

Therefore, the spacial averaging of vorticity accomplished 

by the distinction between vortex and border cells is progres 

sively less critical in two and three dimensions, and the two 

minimum vorticity schemes discussed above are progressively 

less different. Some latitude may be taken, therefore, in 

the choice of scheme to be used. 

*Vortex cells and border cells are defined in Chapter II. 
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Initial Conditions 

Only those cells through which the curve defining the 

initial discontinuity between the jet and cross-wind passes 

have non-zero vorticity at the start. This initial aggre

gate* of vortex cells is set up exactly as described in 

Chapter IV for the two-dimensional cylinder, these initial 

cells being the same as the "boundary cells" in that case 

(Figure 12). The initial value of the z-component of vorti

city in these cells is the same as that calculated for the 

two dimensional cylinder. 

The initial values of the x and y components of vor

ticity are also determined from the circulation, but an addi 

tional consideration is neceissary because of the variation 

of vorticity in these directions. The volume integral of 

Equation (11-16), from which the integral of Equation (2) 

was obtained by integration over the z-direction, would be 

represented numerically by a summation over cubes of unit 

width, just as the surface integral is represented by a sum

mation over squares of unit width. If the product of the 

vorticity, w, in a unit cube and the volume of the cube, 

unity, is to represent the effect of a portion of length, 1, 

of a vortex line of circulation, T, (as should be the case 

from the Biot-Savart relation {73, Chapter 18}) then the 

*The aggregate of vortex cells is defined in Chapter II. 
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relation (oo) (1) = (T) (1) must hold. The components of 

vorticity then are £ = T i • 1 and 1 = F j • 1. This calcu

lation is illustrated in Figure 2.3. The circulation is the 

line integral of the velocity around the circuit shown and 

is thus equal to the z-component of the velocity, the cell 

width being unity. The x and y components of vorticity in 

the initial cells thus are equal to the product of the jet 

velocity and the projections in the x and y directions, 

respectively, of the portion of the discontinuity curve con

tained in each cell. 

Equation (7) would then reproduce, at the start, the 

potential solution for the flow about the cylindrical dis

continuity curve for the x and y velocity components, and 

the jet velocity for the z-component within the discontinuity 

curve, with zero z-component elsewhere. This is to within 

the limit of the discretization, of course, and is shown in 

Figure 24.* 

The lack of boundaries eliminates the problems encoun

tered in the two-dimensional cylinder solution in relation 

to the representation of a curved boundary by rectangular 

segments. Here the initial discontinuity curve is so repre

sented, but this introduces only some perturbation at the 

*The scale factors for the vector plots are given in Table 5. 
The magnitude of a vector is indicated by the length of the 
stem of the arrow, the size of the arrowheads being the same 
throughout. Spurious lines on the plots are the result of 
plotter error. 
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start, since the discontinuity is smoothed out as time 

passes. All cells contain fluid exclusively in this 

applicat ion. 

Stability 

As shown in Appendix G the stability requirements, 

based on a linearized stability analysis of Equations (5) 

and (6), are 

(a) straight explicit: 

At < |~ -/-4- - 1 if R < 2 — R / _.2 c — 
c / R 
/ c 

At < — - if R > 2 
— R c — 

c 

(8) 

(b) Dufort-Frankel: 

111 At i f R < 2 
c — 

R 
c i f R 

c 
> 2 t < i f R 

c 
> 2 

A*-* 
i f R 

c 
2 A*-* 

(9) 

These limits are shown in Figures 25 and 26, respectively, 

for a comparison with the results of computer experimentation 

The determination of stability or instability was made in 

most cases from observation of the velocity vector plots. 

Other determinations were based on whether or not the vorti-

city components were amplified in time. Borderline cases in 

which no definite determination could be made are indicated. 
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Straight Explicit Formulation 

Referring to Figure 25, for cell Reynolds number below 

1.5 the actual stability of the nonlinear straight explicit 

algorithm follows very closely the linearized prediction of 

Equation (8). The boundary of the stable region is sharp in 

this range of Reynolds numbers,* as illustrated by the velo

city vector plots at the same Reynolds number but different 

time steps in Figure 27. Comparison of Figure 27b and 

Fugure 78a gives an even sharper definition of the boundary, 

the time steps here being the same but with different 

Reynolds numbers. The stability boundary becomes less dis

tinct as the Reynolds number increases. The high peak in the 

stable region predicted by the linearized analysis is not 

attained, but the actual stable region does exhibit a lower 

and more broad maximum around a Reynolds number of 3.25 and 

extends above the linearized boundary. The stability bound

ary becomes very indistinct, approaches and possibly falls 

below the linearized prediction as the Reynolds number 

increases further. 

The early disorder evident in Figure 28 is due to a 

nonlinear instability resulting from a coupling between the 

throughout this chapter the Reynolds number referred to is 
the cell Reynolds number bs.sed on the cell width and the 
cross-wind velocity. 

t Parameters used in all results presented are given in Table 
4. 
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vertical velocity and the horizontal vorticity through the 

convective terms of Equation (5). This nonlinear coupling 

is a three-dimensional process and does not occur in com

pletely two-dimensional flow, i.e., flows with zero velocity 

in the direction of invariance, since then only one component 

of vorticity is non-zero. This instability is localized in 

regions of large gradients of vertical velocity and, being so 

localized, is more apt to produce a lasting perturbation of 

the solution than a divergence, although the latter is also 

possible. This perturbation is evident in Figure 28b. The 

solution here was quite stable with no amplification of vor

ticity. However, the solution is rendered meaningless by 

the large perturbation generated by this nonlinear insta

bility at the start. This nonlinear instability is analyzed 

in some detail in Appendix J where its time development and 

response to various parameters are given. 

Dufort-Frankel Formulation 

Figure 26 shows that the stability boundary of the 

actual nonlinear algorithm in the Dufort-Frankel formulation 

deviates markedly from the linearized prediction at low cell 

Reynolds number, the nonlinear solution having a finite time 

step limit even at Reynolds number below 2. As the Reynolds 

number increases above 2 the actual stability boundary 

crosses above the linearized pi'ediction, and a stable region 

above the linearized boundary occurs. The stability boundary 
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then approaches the linearized prediction 

number increases further. 

The finite stability limit on the 

Reynolds number is due to the same nonline 

equations described above, for the convect 

Dufort-Frankel and the straight explicit f 

only by their coefficients and not in form 

Frankel formulation, however, removes the 

which arises from the diffusional terms, a 

number below 2, so that the time step may 

this Reynolds number range to the point wh 

tion of vorticity by the nonlinear mechani 

even the strong diffusion to overcome. In 

explicit formulation diffusional instabili 

ence in this range of Reynolds number at t 

that at which the nonlinear disturbance be 

Since the damping due to diffusion decreas 

number increases, the nonlinear instabilit 

cause of divergence at all Reynolds number 

Frankel formulation. 

Results and Discuss ion* 

The time development of the solution is shown in 

*The convergence of the solution and the effects of the vari 
ous parameters involved in the solution are discussed in 
Appendix F. 

as the Reynolds 

time step at low 

ar coupling of the 

ive terms in the 

ormulations differ 

The Dufort-

linear instability 

t cell Reynolds 

be increased in 

ere the amplifica-

sm is too great fo 

the straight 

ty leads to diverg 

ime steps below 

comes appreciable. 

es as the Reynolds 

y is the primary 

s in the Dufort-
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Figures 29 and 30 for two different gradual starts,* the 

cases being otherwise the same. With the more rapid of the 

two starts, the nonlinear disturbance discussed in Appendix 

J results in significant residual perturbation even though 

the disturbance is damped and the solution is stable. The 

nonlinear disturbance causes the jet boundary, as indicated 

by the circuit of maximum horizontal vorticity magnitude, to 

become pinched in, as it were, in the forward portion so 

that the jet cross-section develops into a distinctive "Y" 

shape. This "Y" shape of the jet is evident in the perspec

tive view of the vertical velocity as well. 

With the more gradual start the initial gradients are 

sufficiently reduced before the onset of significant convec

tion that the nonlinear disturbance is much less effective. 

The jet cross-section now develops into more of the expected 

"kidney" shape {79}, the effect of the disturbance being 

reduced to the tendency of the cross-section to be somewhat 

pointed in front. With a smaller cell size (Figure 31) the 

jet cross-section is much smoother. Similarly a reduction 

in the jet velocity also results in a smoother jet cross-

section (Figure 32). Both of the latter figures exhibit the 

distinctive kidney shape that has been observed in experi

mental investigation. 

*As discussed in Appendix J, the gradual start consists of 
doubling the velocities at each time step until the final 
value is reached. 
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The nonlinear disturbance is more pronounced for an 

elliptic jet with its major axis parallel to the cross-wind 

(Figure 33) than for a circular jet of the same diameter as 

the minor axis of the ellipse (Figure 29). Again the jet 

boundary tends to become pinched in, and two vertical velo

city maxima are evident. Again a more gradual start elimi

nates most of the perturbation (Figure 34). Finally, the 

solution for an elliptic jet with the major axis perpendicu

lar to the cross-wind is shown in Figure 35. The kidney-

shaped cross-section is clearly evident in this case. 



CHAPTER VI 

NUMERICAL SOLUTION FOR TEE THREE-DIMENSIONAL 

JET IN CROSS-WIND 

In this chapter the numerical method is applied to 

the time-dependent, three-dimensional jet in cross-wind, 

using two different types of initial conditions: the start 

from the opening of the jet exit and the start from the dis 

solution of a hypothetical pipe standing on the jet exit, 

separating a uniform vertical flow of infinite vertical 

extent from the potential cross-flow about the pipe normal 

to its axis. (These two starts are discussed in more detai 

at the end of Chapter II.) In the first of these cases the 

jet penetrates more deeply into the field as time passes, 

there having been no penetration at the start. In the 

second case the jet penetrates to infinity above the wall a 

the start, but the vertical flow far above the wall is grad 

ally dissipated, so that the penetration decreases as time 

passes. Both starts should lead eventually to the same 

steady state with finite penetration. 

Numerical Formulation 

Start from a Cylindrical Discontinuity 

The three-dimensional flow field of a jet issuing pe 

pendicularly from an infinite solid plane wall into a cross 
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wind parallel to the wall and bounded only by the wall is 

governed by the equations of motion (Chapter II) 

903 2 

TTT = V X (V X GO) + VV OJ 
0 t ~ ~ ~ ~ 

v ( r ) = 

+ 

2TT 

V 

r - r 
dS 

4 7T 

r - r r ' - R 

r - r r ' - R 
x u)d\> 

(1 ) 

( 2 ) 

where R = r - 2(k • r)k. The surface integral is taken over 

the plane boundary, and the volume integral is taken over the 

entire flow field above the plane boundary. The boundary 

conditions on the boundary plane are, for the coordinate sys

tem shown in Figure 36, 

v(x, y, 0, t) = 
0 , f(x, y) > 0 

kV , f (x, y) < 0 
(3) 

where kV. is the constant uniform jet exit velocity, and 
~ J 

f(x, y) = 0 is the equation of the jet exit curve. The con

ditions at infinity are implicit in the integro-differential 

formulation: the cross-flow velocity at an infinite distance 

above the plane boundary is both constant and uniform. 

Here the flow is taken to start from a cylindrical 

discontinuity perpendicular to the plane boundary and stand

ing on the jet exit curve. The flow within the cylinder is 
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uniform and parallel to its axis, and the exterior flow is 

the two-dimensional potential flow of an unbounded stream 

about the cylinder, perpendicular to its axis. The initial 

conditions then are, with the vorticity evaluated from two-

point, one-sided differences, 

w(x, y, z, 0) = 

I 

0 , f(x, y) t 0 

!|v k x e(x, y) + |e(x, y) x V Q ( X , y) , 

f(x, y) = 0 
1 

0 , z > 0 

+ 
~ k x V Q (x, y ) , z = 0 (4) 

which correspond to 

kV. , f(x, y) < 0 
~ J 

v(x, y, z, 0) = V Q , f(x, y) > 0, z > 0 

0 ,f(x, y ) > 0 , z = 0 

(5) 

Here h is the cell width, e(x, y) is the outward unit normal 

to the jet exit curve, 

e(x, y) 
Vf(x, y) 

Vf (x, y) I 

and V (x, y) is the velocity field of the two-dimensional 

potential flow of a constant uniform free stream, with 
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velocity -iV , about a cylinder having the shape of the jet 

exit, perpendicular to the axis of the cylinder. Thus 

lim 
2 2 

x + y -+< 

Vo(x, y) = - iVc 

In Equation (4) the terms —V. k x e and -r-e x V repre-

sent, respectively, the vorticity generated on the cylindri

cal discontinuity by the jet inside and by the cross-flow 

outside. The term rk x V represents the vorticity generated 
n ~ ~o 

by the cross-flow on the plane boundary to satisfy the no-

slip condition. All three of these terms have non-zero 

values at infinity, since both the jet and plane boundary are 

of infinite extent, so that the initial aggregate of vortex 

cells* would be infinite. 

This however, is avoided by writing the solution as 

the sum of three solutions: 

v(x, y, z, t) = v (z, t) + v (x, y, t) + vx (x, y, z, t) 
~P ~J 

w(x, y, z, t) = U) (z, t) + u),(x, y, t) + w?(x, y, z, t) 
C6) 

where v , co is the solution for the flow above an impervi-
~P ~P 

ous infinite flat plate moving parallel to itself with a 

velocity equal in magnitude, but opposite in direction, to 

the cross-flow velocity. Also, v , w, is the solution for 
~ J ~ J 

*Vortex cells and 
in Chapter IT. 

the aggregate of vortex cells are defined 
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an infinite jet in cross-wind with no wall present. These 

two solutions supply the conditions approached at infinite 

distances parallel and perpendicular, respectively, to the 

plane boundary by the complete solution. Thus 

lim 03(x, y, z, t) = to (z, t) 
2 2 x 4- y ->°o 

P 

Then 

lim to(x , y , z , t) Wj(x, y, t) 

lim 
2 2 J. 2-*c x + y + z -*c 

0)' (x, y , z , t) = 0 

and the extent of non-zero values of to' is finite. 

Infinite Plate Sub-Solution. The boundary conditions 

for the first of these solutions are given by 

v (0, t) = iV ~p N ~ c (7) 

and the initial conditions by 

( ° . z > 0 

03 (z, 0) 
~p - -k x iV , z = 0 

h~ ~ c 

(8) 

where V is the magnitude of the constant cross-flow velocity 

of the complete solution at an infinite distance above the 

plane boundary. These initial conditions correspond to 
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v (z, 0) = 
~p 

0 , z > 0 

IV , z = 0 
- c 

(9) 

This problem is one-dimensional and has an exact 

solution. However, in the interest of consistency, this 

was also done numerically in the integro-differential formu

lation as discussed in Chapter II. 

Infinite Jet in Cross-Wind Sub-Solution. The second 

of these solutions has no boundaries and therefore no bound

ary conditions. (The condition that the velocity approach 

at infinity that of the undisturbed constant cross-flow of 

the complete solution, 

im v (x , y , t) 
-. -̂  »J 

= - iV 
2 2 

x + y ->°° 

is contained implicitly in the integro-differential formula

tion for this solution.) The initial conditions are 

U) 

f 0 , f(x, y) i 0 
(x, y, 0) = (10) 

-V.k x e(x, y) + -e(x, y) x V (x, y ) , 
h 1 - ~ h~ ~° 

f(x, y) = 0 

which correspond to 

Vj(x, y, 0) = Vo(x, y) + 
0 , f(x, y) > 0 

kVj, f(x, y) < 0 
(ID 

This solution is two-dimensional and is discussed in Chapter V 
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Prime Sub-Solution. The boundary conditions for the 

remaining solution are, from Equation (6), 

vf(x, y, 0, t) = v(x, y, 0, t) - v (0, t) - v (x, y, t) 
~ ~ ~p ~J 

0 , f(x, y) > 0 

kV , f(x, y) < 0 
- iV - v (x, y, t) (12) 

and are thus time-dependent., Similarly the initial condi

tions are 

UJT(X, y, z, 0) = GJ(X, y, z, 0) - fci (z, 0) - 0) (x, y, 0) 

0, z > 0 
(13) 

£k x [V (x, y) + iV ] , z = 0 
n~ ~o ~ c 

The equations of motion for this solution are obtained 

by substitution of Equation (6) into Equations (1) and (2). 

Thus, from Equation (1) 

+ •> T :£ + 
9t 3t 

— - = V x [ ( v ^ + v_ + v ' ) x (oj + OJT + t o ' ) ] dt ~ ~p ~J ~p ~J 

But 

+ V(V 2OJ + V2wT + V2co') ~p ~ J 

—£- = Vx (v x oo ) + vV u> 9t ~ ~p ~p ~p 

9OJ 2 

-^— = Vx (v T x OJ T ) + v V 05, 
d t ~ "-•J -v J ~ J 
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so that 

9co' 
,2 i 7— = V X (VT X 0)') + V? (1)' + V X [V X W T + V T X (J0 

t ~ ~ ~ ~ ~p .̂J ~J 1̂ 

+ (V + V_) X 03' + V' X (03 + 0)T)] (14) 
~p ~J ~ .. ^p -.J 

Equation (2), being linear, is unchanged in form 

v f ( r ) = 
k • r f r V f 

~ s 
2TT 

dS 

r - r 

r r 
+ 4 TT 

r - r r ' - R 1 

r ' - R 

x cof dv ( 1 5 ) 

The velocity in the integrand of the surface integral is 

that given by the boundary conditions in Equation 12. 

The three-dimensional, time-dependent solution of 

Equations (1) and (2), subject to the boundary conditions 

given by Equation (3) and the initial conditions given by 

Equation (4), is thus obtained by adding the one-dimensional 

solution of Chapter II and the two-dimensional solution of 

Chapter V to the three-dimensional solution of Equations (14) 

and (15), subject to the boundary conditions given by Equa

tion (12) and the initial conditions given by Equation (13). 

With nondim(nsionalization with respect to the cross-

wind velocity V and the cell width h, Equation (14) becomes 
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H f 9c 

9t 9y 

9C 
9z + R~~ c 

liii + i l i : + lis: 
2 2 2 

9x^ 9y 9z 

( 1 6 a ) * 

9Ti f 9C 9C 
x 

9t 9z 9x 
'- + * 

c 

2 2 2 
3 n1 , 9 n' 9 nT 

2 2 2 
9x 9y 3z 

( 1 6 b ) 

9C? 9C. 

9t 9x ay Rc 

2 2 2 

IXL + iiti + .ait: 
. 2 2 2 
9x 3y 9z 

( 1 6 c ) 

w h e r e 

C - v x a ) T + v _ x o 3 + ( v + v ) x u ) T + v ' x (w + OJT) ~p ~J -.J ~p ~p ~J « ~p ~J 

o r 

C = v ' r 
X ^ 

C = w ' £ ' 
y 

w ' n ' wTn^ + v T r T w T n' + v ' c T - w f ( n n + n j ) 

( 1 7 a ) 
J p ' J 1 3 " J ' ' " *-J '" v 'p 'J 

" U ' ^ ~ V J + " J ' ' ' " ( U P + U J > C ' + " ^ - u S j 
( 1 7 b ) 

c = u 'n 
z 

- V ' 5 ' + % ^ J + ( U
P

 + u J ) n ' " V J 5 ' + u ' <"» + ° j> 

- V5 ( 1 7 c ) 

H e r e 

v = i u , OJ = i n ~p ~ p ' ~p ~ "p 

! j = l U j + J V J + ! W J ' i?J = i ^ J + J > J + ^ J 

Similarly, Equation (15) becomes 

*Rereafter in this chapter all quantities are nondimension-
alized as noted in the Nomenclature. 
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u f = -

,fl + u j ( x ' , y ' ) 

2TT 
d x ' d y 

4 TT 

Ry' - y ) c ! ( x ' , y ' , z ' ) - ( z ' - z ) n , C x ' , y ' , 2 ' ) ^ , d y , d z , 

4 TT 

f(yT - Z 2 J J I * 1 I i l i * ' ) = J [ J L ! + z ) n t ( x ' ? y ' , Z ' ) d x , d y , d z , 
' 3 

( 1 8 a ) 

v = - TT 

v T C x ' , y ! ) 
u „ i . x ' d y 

4TT 
( z ' - z ) g ' ( x ' , y ' , z j ) - ( x T - x ) C ' ( x ' , y ' , s _ L I d x » d y « d z » 

-L 
4TT 

f ( z ' + z ) $ ' ( x ' , y ' ^ ^ J L - Z ( x 1 - * ) E ; ' ( X ' , y ' , » ' ) ^ » ^ d x ' d y ' d z 

( 1 8 b ) 

w ' = -
2TT 

r w ^ x ^ y<_) - V r e ( x ' , ^ ) d x > d y , 

+ 4 TT 

r ( x ' - x ) n ' ( x ' , y ' , z ' ) - ( y ' - y ) E ' ( x ' , y ' a Z ' ) J J J A , J M , 

4TT 
f , . . - . . - , . . , T . . - , - , r - ^ v - , T . , . • . „ . . , . , . • 

( 1 8 c ) 

w h e r e 

9 9 9 3 / 2 
F x E [ ( x f - x ) Z + ( y ' - y ) z + z f c ] ' 

F 2 E [ ( x ' - x ) 2 + ( y ' - y ) 2 + C.z ' - z ) 2 ] 3 / 2 

F 3 E I ( V - x ) 2 + Cy' - y ) 2 + ( V + z ) 2 j 3 / 2 
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e(x\ y1) = 
0 , f(x1, yf) > 0 

[ 1 , f (x' , y') < 0 

Here the primes denoting the variables of integration are 

not to be confused with those referring to the prime solu

tion (v' , 0)'). All quantities in these equations are dimen-

sionless, and the cell Reynolds number is based on the cross-

flow velocity: 

V h 

With the space derivatives replaced by three-point 

central differences and the time derivatives by a two-point 

forward difference, Equations (16) are approximated (Appendix 

D) by the following difference equations, the primes now 

being understood: 

5i,j,k " ( 1 " 6R "i.J.k 

+ 2 ̂ Vi.J + l.k (Vi,j-l,k " (Vi,J,k+l 

+ (Vi,J,k-l] 

At_ r r n p n n r n 
+ R c

L 4 + l , j , k M - l , . j , k H , j 4 - l , k H , j - l , k 

+ ? i , j , k + l + ^ i , j , k - l ] ( 1 9 a ) 
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^ n + l /-. . A t . n A t r , _ Nn , _ N n 
n i , j , k - <x " % \ i , * + T » V i l j | W ' ( c x > i f J f k . i 

- (C ) ? . , . 1 + (C ) n
 1 . . ] z i + l , j , k z i - l , j , k J 

+ R c
[ T 1 i + l , j , k + V l , j , k + n i , j + l , k + n i , j - l , k 

' i , j , k + l T ' i , j , k - l J ( 1 9 b ) 

^ \ k = " - ^ . j . f c + T N v ^ x . j . * - ( V i - i . 3 . k 

- (c ) n . , - , + (c )< , . . ] 
x I , j + 1 ,k x ' I , j - 1 , k J 

. A t r r n -i- r n J. r n a. r11 

R^ i + l , j , k i ~ l , j , k i , j + l , k i , j - l , k 

+ cn + cn 

i , j , k + l i , j , k - l 
( 1 9 c ) 

in straight explicit form. Here At is the (nondimensional) 

time step, and the subscripts and superscripts refer to the 

n 
space and time coordinates, respectively: £. 

i» J >k 

?(xi' yj' Zk> V -

The integrals of Equation (18) are approximated 

numerically by 
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i>J , k 

Z. i + ( u T r 
2TT I I 

p q 

+ i y y y ( yg ' yl )gP.<».r I ( z r I z k K , q , r 
Am- L L L j? 4TT 

p q r 
(P , q , r ) ^ ( i , j , k ) 

-, ( y - y , ) C - (z + z, )n 

4 7 1 ^ ^ ^ F 0 

P q r 3 
( p , q , r ) ^ ( i , j , k ) 

( 2 0 a ) 

v 
n _ k Y V 
i , j , k 2TT *• ^ 

J P * SL 

p q 

A IT £i " ^j 

( Z . k p , g , r U - x , ) c 1 p ? q 
4 TT 

p q r 
(p , q , r ) ^ ( i , j , k ) 

1 
4TT 

(z + z J ^ - (x 
j I I L_ is p > q > r p 

.n x . ) C 
_ i p ? q > r 

p q r 
( p , q , r ) ^ ( i , j , k ) ( 2 0 b ) 

z1 ( w T ) n - V B 
w

n
 = k y y ^LP_j_g r p y q 
i , j , k 2TT ^ £ F 

p q 1 

.. (x - x . )r\ - (y - y . ) £ 
+ - 1 . y £ £ p. i - p ? q ? r _9 J p ? q ?

r 
4TT 

p q r 
( p , q , r ) ^ ( i , j , k ) 

F , 2 

i (x - x . ) n - ( y - y . ) C 
y y y _ _ 2 i ' p , g , r w g ^ j s p , g , r 

ATT L L L "P 
4TT 

p q r 
(p , q , r ) ^ ( i , j , k ) 

( 2 0 c ) 

w h e r e now 
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Fi = f < x p - x i > 2 + % - V2 + 4 ' 3 / 2 

F2 = [(Xp - x . ) 2 + (yq - y . ) 2 + (Zr - z k )
2 ] 3 / 2 

F3 H [(x - x . ) 2 + (y - y j ) 2
 + (zr + z k )

2 ] 3 / 2 

0 , (x , y ) not on iet exit 
p' >q 

p>q 
1 f (x , y ) on jet exit 

The summations extend over all points having non-zero vor-

ticity. 

The above relations for the velocity apply for z, ^ 0 

On the boundary plane the velocity is given by the boundary 

conditions from Equation (12), so that Equation (20) is 

replaced by 

n 
u . . 1 - 1 - ( " J ' - , j 

(21a) 

n 
v . . 1 (21b) 

n 
w. ... 

1 , 3 f l 
V e. , 
r i,j 

(21c) 

From the initial conditions given by Equation (13) 

the initial aggregate of vortex cells consists of a layer of 

finite extent, one cell in thickness, lying on the boundary 

plane. The lateral extent of this layer is determined by 
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the minimum vorticity, u) , below which cells are considered 
J m 

to have zero vorticity. Initial surface vorticity at 

greater distances from the exit is neglected. 

Surface Pressure Coefficient. The pressure on the 

plane boundary is calculated from the line integral of the 

Navier-Stokes equations. On the boundary plane the velocity 

components parallel to the plane are zero, and the normal 

component is also zero, except on the jet exit where the nor

mal derivatives of the velocity are zero. The convective 

terms therefore vanish on the boundary plane, and the Navier-

Stokes equations may be written (with pressure nondimen-

sionalized relative to the remote cross-flow dynamic pres

sure) as 

l n 1 „2 

i? = R~V i R 
V x oi ( 2 2 ) 

T h e n 

_3E _ JL m 
3x R 3z 

( 2 3 ) 

s i n c e 

2 2 
1 L =: 9 v _ d u 
9y 9 x 9 y 

= 0 

ay 

on the boundary plane. 

Then, from the integral of Equation (23) 

K 

P(x, y, o, t) - Poo = ̂ - -£ 
c 

ri (x\ y, z , t)dx' (24) 
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where the derivative is evaluated at z = 0. This integral 

is approximated using two-point, one-sided differences and 

trapezoidal numerical integration as 

n 
p i , j , i " p ' 

2 r 1 , n n N 

v / n n . (25) 

where the vorticity used is that of the prime solution above, 

since — = 0 at z = 0 for the one and two-dimensional solu-
dZ 

tions above. The summations then actually extend only over 

the prime vortex cells, rather than to infinity as in the 

continuous case. 

Start from the Opening of the Jet Exit 

The initial conditions for the start from the opening 

of the jet exit are given by 

LO(X, y, z, 0) = 

+ 

0 , z > 0 

±k x Vo(x, y, 0) T-k x iV 
h~ ^ c 

z = 0 

f 0 , f(x, y) i 0, z = 0 

[ -V k x e(x, y) , f(x, y) = 0, z = oj 

(26) 

where V (x, y, 0) here is the potential velocity distribution 

on the boundary plane induced by a uniform source distribu

tion on the jet exit with strength equal to the jet exit 
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velocity. As before, -iV is the constant cross-flow, and 
~ c 

e(x, y) is the outward unit normal to the jet exit curve. 

These conditions correspond to an initial velocity distribu

tion given by 

V (x, y, z) - iV , z > 0 
~o ~ c 

v(x, y, z, 0) = kV 

0 

, f(x, y) < 0, z = 0 (27) 

, f(x, y) > 0, z = 0 

In these relations the velocity induced by the source dis 

tribution on the jet exit is given by {73, Chapter 11} 

V = 
~o 

V. 
_J. 
2TT 

r r r 

r - r 

-dS (28) 

Again the extent of non-zero vorticity on the boundary 

plane is infinite, so that the solution is advantageously 

broken into two parts: (a) the one-dimensional solution for 

the flow over an infinite solid plate, parallel to the plate, 

with constant velocity at an infinite distance from the 

plate equal to that of the cross-flow, and (b) the difference 

between the complete solution and the above solution. Thus 

the complete solution is written 

v(x, y, z, t) = v (z, t) + v'(x, y, z, t) 

(0(x, y, z, t) = m (z, t) + W'(x, y, z, t) 

(29) 
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where v , to represent solution (a) above, and vf,o)' solution ~p ~p r ' ~ ~ 

(b). The former thus supplies the conditions approached by 

the complete solution at infinite laterial distances at each 

time : 

lim co(x, y, z, t) = oi (z, t) 
2 ? ~ ~P 

x + y -*<*> 

Then, as before, 

lim 
2 2 2 

x + y + z -*-°° 

LO' (x, y, z, t) = 0 

and the extent of non-zero values of to1 is finite in the 

prime solution. 

Infinite Plate Sub-Solution. The solution w ,v used ~P ~P 

here is simply that of the same notation used with the start 

from the cylindrical discontinuity discussed above, but with 

the constant velocity, -iV , added to the latter. The 
' ~ c 

boundary is thus at rest in the present usage, the remote 

fluid being in motion with velocity -iV . 
° J ~ c 

Prime Sub-Solution. The boundary conditions for the 

prime solution are, from Equation (29), 

vf(x, y, 0, t) = v(x, y, 0, t) - v (0,t) 
~ ~ ~ F 

0 , f(x, y) > 0 

kV , f(x, y) < 0 

(30) 
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and are not time-dependent in this case. Similarly the 

initial conditions are 

<A)'(X, y, z, 0) = (0(x, y, z, 0) - m (z, 0) 

0 , z > 0 

-k x V (x, y, 0 ) , z = 0 

0 , f(x, y) + 0, z = 0 

~ ^ k x e(x, y ) , f(x, y) = 0, z = 0 

(31) 

The equations of motion and their numerical approxi

mations are the same as those given above for the start from 

the cylindrical discontinuity, except that all variables 

subscripted "J" are omitted, and the surface integrals of 

Equations (18a) and (18b) and the double summations of Equa

tions (20a) and (20b) are also omitted. Similarly Equations 

(21a) and (21b) are omitted, the velocity parallel to the 

boundary being zero on the boundary in the present case. The 

pressure calculation is unchanged and is performed in the 

same manner described above. 

Computation Procedure 

With each type of start the vorticities of the sub-

solutions, other than the prime sub-solution, are evaluated 

first at each new time from the appropriate parabolic differ

ence equation. (The infinite plate sub-solution and the 
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infinite jet in cross-wind sub-solution are independent of 

each other, as well as of the prime sub-solution, so that 

the order in which these two sub-solutions are evaluated is 

immaterial.) The velocity of these sub-solutions is then 

evaluated from the appropriate integral over the respective 

vorticity. The calculation procedures for the infinite jet 

in cross-wind sub-solution and the infinite plate sub-solu

tion are the same as those given in Chapter V and Chapter II, 

respect ively, 

Finally, using these results, the vorticity of the 

prime sub-solution is evaluated from the appropriate para

bolic difference equation, and the velocity of this sub-

solution is then evaluated from the integral over this vor

ticity distribution. (The restriction of the field of inte

gration over the vorticity distribution for the velocity 

calculation to a specified range from the point of evalua

tion is also used for the prime solution.) The sub-solutions 

are then added to produce the complete solution at the 

current time. 

In view of the negligible differences between the 

results with the two minimum vorticity schemes for the two-

dimensional solutions at the total times actually reached, 

the scheme requiring the fewer calculations was chosen for 

use in three dimensions. Thus a border cell* is changed to a 

*Border cells and vortex cells are defined in Ch_aptar II. 
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vortex cell* if the magnitude of the vorticity calculated 

for the border cell exceeds the specified minimum vorticity, 

w . Otherwise this vorticity is distributed evenly among 
m 
the adjacent vortex cells. 

In order to reduce the computer time required, border 

cells beyond a specified radius rf from the jet exit axis 

are not allowed to change to vortex cells, their vorticity 

being distributed evenly among the adjacent vortex cells. 

This radius was taken as three or four exit radii, as indi

cated in the results presented. This restriction affects 

primarily the spread of prime vorticity on and just above 

the plane boundary, since in the total times considered the 

spread of vorticity above the plane boundary was largely 

confined within this range by the minimum vorticity criterion 

for creation of a vortex cell from a border cell. The spe

cification of this maximum limit for the spread of prime vor

ticity causes the rectangularit)r of the edge of the vorticity 

field evidentnear the plane boundary in some of the vector 

plots. 

Since the boundary here is plane, the difficulty of 

boundary condition representation encountered with the circu

lar cylinder does not arise, and no special treatment of the 

equations for evaluation in the boundary cells is necessary. 

*Border cells and vortex cells are defined in Chapter II. 

f Boundary cells are defined in Chapter II. 
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The values of all terms at virtual points inside the boundary 

are taken as equal to the corresponding surface value at the 

point of calculation. The surface values are calculated 

from the appropriate boundary conditions given in the preced

ing discussion. 

Since the nonlinear instability discussed in Chapter V 

eliminates much of the advantage of the Dufort-Frankel formu

lation, the simpler straight: explicit formulation was used 

exclusively for the three-dimensional solution. 

Results and Discussion 

Results were obtained for circular jets with velocity 

ratios of 8 and 4 with cross-flow Reynolds numbers of 12 and 

6 (based on the jet exit diameter). Profiles of vorticity 

and velocity are presented and analyzed in Appendix K for 

velocity ratio of 8 and Reynolds number of 12 for each type 

of start. A number of interactions among various components 

of vorticity and velocity were noted and are analyzed in 

detail in this appendix. The emission of a vortex ring from 

the jet exit in the case of the start from the opening of the 

exit is evident in these profiles, as are vorticity waves 

propagating up the jet from the exit with both types of start 

The time development of these upward propagating vorticity 

waves is discussed in some detail in Appendix K and the 

effects of various parameters thereon are presented, 



105 

Vorticity and Velocity 

Vorticity and velocity vectors for the start from the 

opening of the jet exit are shown in Figures 37-42.* (Here 

vectors are shown only for prime vortex cells, i.e., cells 

having non-zero vorticity in the prime solution. This was 

done simply to economize the plotter time required and does 

not imply that the flow is uniform outside the regions 

shown.) Figures 37 and 38 give the horizontal (parallel to 

the boundary plane) vectors, and Figures 39 and 40 give the 

vertical vectors. In addition Figures 41 and 42 show the 

velocity vectors in planes through the center of the jet 

exit, perpendicular and parallel, respectively, to the 

remote cross-flow. It should be realized that the upstream 

(relative to the cross-flow) inclination of the vectors in 

the latter figure simply reflects the forward flow of the 

recirculation within the jet and does not imply that the 

overall jet is so inclined, 

The development and upward convection of the vortex 

ring emitted at the exit at the start that is- characterized 

by the vorticity and outward velocity peaks in Figures 89, 

*The scale factors for the vector plots are given in Table 5 
The magnitude of a vector is indicated by the length of the 
stem of the arrow, the size of the arrowheads being the 
same throughout. Spurious lines on the plots are the 
result of plotter error. Parameters used in all results 
presented are given in Table 4. 
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91, and 92, discussed in Appendix K, is evident upon close 

inspection of the vectors. In particular, the strong outward 

inclination of the velocity vectors in Figures 37 and 41 

occurs just above the vortex ring, and there follows a fairly 

abrupt shift in inclination beneath the ring. 

The recirculation within the jet, characterized by the 

forward horizontal velocity peaks in Figure 91, discussed in 

Appendix K, that develops at the later times is quite evident 

in the vector plots. This recirculation is retarded near the 

jet exit because of the boundary condition there, and dies 

out in the upper portion of the jet. 

The vorticity and velocity vectors for the start from 

the cylindrical discontinuity standing on the jet exit are 

shown in Figures 43-48. The progress of the above-mentioned 

vorticity waves up the jet is quite evident, particularly in 

Figures 47 and 48. In this case the magnitude of the hori

zontal velocity within the jet is much smaller than that 

encountered with the other type of start and the rather com

plicated horizontal velocity patterns within the jet thus 

involve primarily velocity of very small magnitude. It 

should be recalled that the arrowheads of the vectors are all 

of the same size, the magnitude of the vector being indicated 

only by the length of the shaft. The pattern shifts from 

simple recirculation within the jet, involving two counter-

rotating vortices, to a pattern involving four vortices—two 
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of which are the extensions of the two mentioned above, but 

displaced to the rear, and two additional counter-rotating 

vortices in the forward portion of the jet, these rotating 

oppositely to those in the rear. Between the two sets of 

vortices the cross-flow penetrates the jet. Again the hori

zontal flow is retarded near the plane boundary because of 

the boundary condition so that the internal vortices die 

out as the boundary is approached. 

Stability 

As shown in Appendix G the linearized stability cri

teria for Equation (19) are 

At < -L (JL- _ 2 /J_ _ y2 < _2. 
- v2 3 Rc 3 7 R 2 r Vr 

r c 

At < \ if R > f 
- 3V2R C - Vr 

r c 

These criteria, being based on a maximum field velocity 

equal to the jet exit velocity (Appendix G) , are conserva

tive since the velocity only attains that maximum value in a 

relatively small portion of the field. The linearized sta

bility analysis given, however, is developed as if the velo

city in the entire field were equal to this maximum value. 

Therefore, although violation of the above criteria would 

lead to divergence if the velocity in the entire field were 

equal to the maximum value, if the region of violation is not 
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too great the instability will be local in origin and may be 

damped as it propagates into other regions of the flow. 

The time steps used did exceed the above limits, but 

were well below the corresponding limits obtained with the 

cross-flow velocity taken as the field maximum to be used in 

the stability criteria. It is for this reason that the vor-

ticity waves running up the jet occur (Appendix K ) . These 

waves are the result of local linear instability generated 

in the region of high jet velocity near the exit. They then 

propagate up the jet but are damped in the process as a 

result of the decrease in velocity up the jet. In the two 

unstable cases discussed in Appendix K, however, the viola

tion of the above stability criteria was great enough that 

the local instability was of sufficient amplitude as to lead 

to divergence. Such vorticity waves were observed also in 

the numerical solution of Payne for the two-dimensional jet 

{49} and in that of Whitehead for the axi-symmetric emission 

of a vortex ring {51}, but were not recognized as the result 

of local linear instability. Neither of these solutions 

involved a cross-flow but were simple jets issuing into a 

quiescent surrounding. 

Surface Pressure Distribution 

Surface pressure coefficients for the above-mentioned 

cases are shown in Figures 49-53. Although the low Reynolds 

numbers of these cases preclude direct comparison with 
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available experimental data, the low pressure region behind 

the jet observed and to be expected in viscous flow (68, 79} 

is evident. (The precise location of the contours in these 

figures is less significant than their shape, since the for

mer was affected by restriction of the lateral extent of the 

spread of vorticity near the boundary applied to conserve 

computer time in these cases.) With the start from the open

ing of the jet exit, the surface pressure contours are 

originally circles about the exit, the pressure being posi

tive at all points and decreasing with increasing radius, 

since the initial solution is the superposition of a uniform 

exit source distribution and a constant pressure uniform 

cross-flow. As time progresses the pressures, particularly 

in the rear of the jet are reduced, and a region of negative 

pressure (coefficient) appears in the rear portion of the 

jet (Figure 49, T = 0.67). The negative pressure region 

expands and eventually encompasses the positive pressure 

region in front of the jet (Figure 49, T = 0.93), the latter 

having been reduced considerably. The pattern at the later 

times shown exhibits a region of positive pressure in front 

of the jet that is surrounded by a region of negative pres

sure, the lowest pressures occurring in the rear of the jet. 

With a reduction of the velocity ratio, the flow 

develops less rapidly, and the positive pressure region in 

the front of the jet is not surrounded at the last time 
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given (Figure 50). The pattern is generally the same but 

with greater downstream extent of the low pressure lobes 

>v 
behind the jet. 

With the start from the dissolution of the cylindri

cal discontinuity (Figure 51), the region of negative pres

sure behind the jet is established immediately after the 

start. The later stages are quite similar with both types 

of start. It is clear that the development into the even

tual pressure contour pattern is more rapid with the start 

from the discontinuity, as would be expected since the jet 

penetrates from the start in that case. (The loss of most 

of the contours for T = 1.00, 1.20, 1.33 was due to plotter 

error). With a reduction in velocity ratio the pattern is 

similar but less compact overall (Figure 52). The region of 

lowest pressure is more extensive, however, with the larger 

velocity ratio (cf. Figures 51 and 52, T = 0.93). 

A reduction in the cross-flow Reynolds number 

increases the extent of the low pressure region and also 

results in a lower minimum pressure behind the jet (Figure 

53). This is indicative of the importance of the viscous 

effects associated with the presence of the solid wall in 

the development of the low pressure region behind the jet, 

since these effects are stronger at lower Reynolds numbers. 

*This trend with the velocity ratio is in agreement with the 
experimental results of Mosher {80}. 



CHAPTER VII 

VORTEX LATTICE MODEL OF THE 

THREE-DIMENSIONAL JET IN CROSS-WIND 

It was recognized from the start that no potential 

flow model could represent completely the viscous effects 

that are prominent in the jet in cross-wind, in particular 

the entrainment of the cross-wind and the low pressure region 

behind the jet. However, since numerous proposals have been 

put forward for representing the jet at least approximately 

by a lattice of vortices of fixed geometry, the evaluation 

of a lattice of variable geometry determined by velocities 

induced by the lattice on itself was considered to be of 

value. With this model, the deformation and backward deflec

tion of the jet and some entrainment are included, developing 

in time from within the model itself without being prescribed 

beforehand. Thus it would seem that a model with such free

dom would incorporate many of the features of the jet in 

cross-wind, even representing in effect some of the viscous 

features. 

Vortex Lat.ice Model 

It is shown in Appendix L that the representation of a 

jet issuing normally from an infinite plane wall into a cross 

flow parallel to the wall by a lattice of vortex segments 
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must include also a uniform source distribution on the jet 

exit. The velocity then is the resultant of the velocities 

induced by the vortex segments, their solid-wall images in 

the infinite plane, and the source distribution. These 

singularities are depicted in Figure 5 4. At each time step 

the velocities induced at each vertex of the lattice by the 

vortex segments, their images, and the source distribution 

are calculated, and the vertices are moved accordingly. 

The lattice thus deforms as time progresses and the vertices 

are moved about. 

Original Lattice Configuration 

The original configuration of the lattice (at time 

zero) has all vortex segments either parallel or perpendicu

lar to the wall. The segments that are parallel to the wall 

form a set of equally spaced closed rings and are here 

denoted as "ring segments." All the rings are identical, 

and the vertices of the ring segments forming each ring lie 

on the projection of the jet: exit curve in the plane of that 

ring. Any shape exit is permitted. 

The segments that are perpendicular to the wall con

nect the vertices of the ring segments, thus forming columns, 

perpendicular to the wall, standing on the jet exit curve. 

The spacing of these columns around the jet exit curve is 

arbitrary, but symmetry about the plane parallel to the 

cross-wind and perpendicular to the wall, bisecting the jet 
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exit, is required. The lengths of the ring segments are 

determined by the column spacing and may or may not be con

stant around the ring. The lengths of all column segments 

are, however, the same since the rings are equally spaced. 

The circulation of each vortex segment is constant in 

time and is determined from the original lattice configura

tion as follows: The circulations of all the ring segments 

are the same and are determined by the jet velocity. Taking 

the line integral around the path indicated in Figure 5 4, 

T = Qv • dl = V.h 
J 

(1) 

This expression holds for any jet exit shape and any column 

spacing. The circulations of all column segments in the 

same column are the same, but there is variation from 

one column to another. Taking the line integral around the 

path indicated in Figure 54, 

r = ov 
m J~ 

m 

dl (2) 

For arbitrary jet exit shape or experimental velocity dis

tribution around the jet exit this expression must be 

evaluated to suit the particular case. In the case of 

equally spaced columns around a circular exit with a poten

tial flow velocity distribution for a circular cylinder this 

becomes 
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m 

+ A£ 
2 

A, (2V sin <())Rd 
A<J) c 

= 4V R sin -r*-sin <b 
c 2 m 

(3 

m 

The front and rear columns thus have zero circulation, whil 

those at 90° have the largest circulation. 

The jet exit is covered by a uniform source distribu 

tion of a constant strength determined by the jet exit velo 

city as indicated in Appendix N. The equation for the velo 

city induced thereby is also given in this appendix. 

Time Development 

The velocity induced at r by a straight vortex seg-

ment between r1 and r„ (see Figure 55), with positive circu 

lation reckoned as clockwise when viewed from r.. to r _ , is 

given by (Appendix N ) . 

where 

V = e 1 4?I(cos 91 " COS 62 ) 

1 x a 

1 x a r~2 ' Hi 

(4 

1 x a 
a = r - r , a - l ~p ~± ~z r - r ~p ~2 

1 * a. 
cos G 

1 • a 

1 la , cos 
1 2 la 

The use of this velocity with a finite time step, however, 

results in a spiralling effect. To avoid this the movement 

resulting from this induced velocity may be based on the 
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angular velocity about the vortex segment as follows (Appen

dix N, see Figure 56). (This has also been used in {9}.) 

Then 

and 

with 

Act Tr A VAt 
a^— = V or Aa = 
At a 

b = 2(a sin — ) 

b = e b cos —z- + e b s I n —— 

1 x e 

so that 

b = e a sin Aa + e2a(l - cos Aa) (5) 

This vector b is then the displacement of point r due to 
~p 

the velocity induced by the vortex segment. If the dis

placement were taken as vAt, instead, the perpendicular dis

tance from the vortex segment to the point r would increase 

But the velocity field of a straight vortex segment is a 

circular field, so that this distance should not change. 

The above form of the displacement achieves this desired 

effect. Note that for small Aa, i.e., small At, 

(Aa)2 

b = e aAa + e
2
a~^~2 

" «l'At + - 2 ^ vAt + 0(At) (6) 

as expected. 
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The spiralling effect is pronounced only in the imme

diate vicinity of the vortex, and only there is it necessary 

to resort to the use of angular velocity. Elsewhere dis

placements are better calculated directly from the velocity 

in the interest of economy of computer time. 

At each vertex the displacement: vectors induced by 

each ring segment, each column segment, their images in the 

wall, and the source distribution on the jet exit are calcu

lated and summed. The vertex is then moved by the resultant 

of these displacement vectors. The lattice thus deforms in 

time, and the length and orientation of each vortex segment 

changes. The circulations, however, do not change. 

Several rings and their columns are added beyond the 

top ring in the field to simulate conditions at infinity. 

These rings are equally spaced and are kept directly above 

the top ring of the field. 

At each time step a new undeformed ring is formed on 

the jet exit. All the rings move upward, of course, under 

their mutual influence and that of the source distribution, 

so that a new ring, and its associated column segments, is 

added at each time step. This new ring is initially 

undeformed a nd enters at the jet exit. It in turn becomes 

deformed as it moves upward under the influence of all the 

induced velocities of the lattice. 
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Results and Discussion* 

Appropriate values for the spacing of the rings and 

columns of the lattice were determined by comparing the wall 

pressure distribution about the undeformed lattice with the 

exact solution for the potential flow about a circular cylin

der {73, Chapter 12}. Practical limits on computer time, 

however, limit the spacings that can actually be used. The 

results with several values of these parameters are shown in 

Figures 57-5 9. 

The discretization involved causes the matching of 

the velocities induced by the exit source distribution and 

the vortex segments to be slightly imperfect. With the ver

tical velocities induced near the exit by the sources and 

the vortices matched as discussed in Appendix N, there still 

remains a slight imbalance in the other velocity components. 

This imbalance causes the first emitted ring to contract 

slightly after emission. Since vortex sheets are unstable, 

tending to roll up as a result of small displacements normal 

to the sheet, this contraction initiates a rolling up of the 

sheet as shown in Figure 60. 

Only the first few rings emitted experience signifi

cant contraction from this imbalance between the source 

*A11 quantities used on the figures discussed in this chapter 
are nondimensionalized with respect to the exit radius, the 
cross-flow velocity, and the cross-flow dynamic pressure. 
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distribution and the vortex segments, since after the lattice 

becomes deformed the velocities induced by the various vortex 

segments of the lattice are no longer ordered as at the 

start. The lattice thus attempts to reach a steady state 

below the rolled--up portion. However, vortex segments in the 

region of the roll-up become so stretched as to no longer 

give an adequate representation of the vortex sheet. There

fore, although in principle the initial roll-up could be 

tolerated and simply allowed to pass upward out of the field 

of interest, this is not practically possible because of the 

stretching and extreme distortion of the lattice. 

Therefore, a number of expedients were considered to 

stabilize the lattice during the first few steps and thus 

eliminate the roll-up. The method finally selected was to 

calculate the displacement of each vertex from a weighted 

average of the velocity actually induced at the vertex and 

that induced at a corresponding vertex a great distance 

above the plane boundary, the weight of the latter decreasing 

linearly down the jet from unity for the first ring emitted. 

The vertices of each successively emitted ring thus are dis

placed more according to the velocity actually induced at 

those vertices. Since one ring is discarded from the top at 

each time step, this initial stabilization procedure gradu

ally becomes less effective and finally becomes inoperative 

as time progresses. 
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The success of this initial stabilization of the lat 

tice is evident upon comparison of Figures 61 and 60. The 

results of the same procedure applied with other values of 

the ring and column spacing are shown in Figure 62. The 

time shown is the longest for which the lattice was not 

stretched to the point of not being an adequate representa

tion of the vortex sheet. (The stretching alluded to here 

is a result of the roll-up of the jet into two counter-

rotating vortices.) Longer times could, of course, be 

reached with closer spacing of the vortex segments in the 

lattice, but at the expense of a rapid increase in computer 

time . 

The deformation of the jet into the expected "kidney 

shape {68, 79} is evident in Figure 62. However, the surfa 

pressure distribution resulting from the deformed lattice 

(Figure 62e) is not greatly different from that before 

deformation (Figure 62f) because of the dominant influence 

of the lower portion of the lattice. This potential flow 

model thus does not give even an approximate match of the 

experimental data in the rear of the jet even though the 

deformation and deflection of the jet are included. 

The data presented here for this potential flow mode 

are only an illustrative sample of the large amount of data 

obtained. It was concluded from the study of this freely 

deforming vortex lattice model that such a model, even 
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though it does represent to some extent t e experimentally 

observed deformation and deflection of the jet, is not at 

all capable of representing the causes of the low pressure 

region behind the jet. As stated previously, this conclu

sion was not unexpected. The low pressure region behind the 

jet thus may be attributed to viscous effects arising from 

the presence of the solid wall, and not to the deformation 

and deflection of the jet. 



CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The principal conclusions of the present investiga

tion are as follows: 

1. The numerical method based on an integro-

differential formulation of the Navier-Stokes equations is a 

valid method of numerical solution of the Navier-Stokes 

equations, yielding the solution in the entire flow field 

while actual computation is confined to the region of signi

ficant vorticity magnitude This method requires two orders 

of magnitude less computer storage for three-dimensional 

problems than do methods based on differential formulation. 

2. The large computer time required by the evaluation 

of the velocity from the integral over the vorticity field 

makes the numerical method 'based on the integro-dif fer ent ial 

formulation non-competitive with methods based on differen

tial formulation in two-dimensional problems. In three 

dimensions, the integro-differential method is superior in 

speed at the present state of the art. The primary reason 

for this speed advantage is that the significant storage 

reduction achieved by the integro-differential method allows 

three-dimensional problems of large field size to be con

sidered without the use of any low-speed storage, i.e., 
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completely in the high-speed core. This feature is a result, 

of course, of confining the calculation to the region of non

zero vorticity at any time. 

3. The specification of conditions at infinity is 

unnecessary in the present formulation, these conditions 

being contained implicitly, so that it is not necessary to 

artificially locate "infinity" at the boundaries of a finite 

computational field. The solution is obtained on a field 

that is, in effect, infinite. 

4. Care must be taken in the integro-differential 

formulation to represent the integral over the vorticity dis

tribution accurately in the numerical approximation, especi

ally in the region of highest vorticity near solid boundaries. 

For this reason the proper numerical representation of bound

ary conditions is even more critical in the present formula

tion than in differential, formulations. It is thus of great 

advantage to have a coordinate line coincident with any solid 

boundary that is present. However, a moderately successful 

method of representing the boundary conditions for the inte

gral with the boundary and coordinate lines not coincident 

has been developed. 

5. The numerical method is convergent with decreasing 

time step and, for the one-dimensional flow above a suddenly 

accelerated infinite flat plate, is known to converge to the 

exact solution. 
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6. The numerical method is capable of predicting the 

drag coefficients for a two-dimensional solid circular cylin

der with good accuracy. The cell size must be reduced, how

ever, to maintain accuracy as the cylinder Reynolds number 

increases. Other numerical methods share the same feature. 

With cartesian coordinates the cell Reynolds number must be 

unity or less for accurate drag prediction. The numerical 

method with cartesian coordinates is capable of predicting 

the surface pressure distribution also, but with some irregu

larity due to the angularity of the boundary, for cell 

Reynolds numbers of unity or less. 

7. The numerical method is capable of predicting the 

time history of the length of the standing vortices behind a 

two-dimensional solid circular cylinder with accuracy for 

cell Reynolds numbers of 3 or less, and possibly higher. The 

method does produce periodic vortex shedding, at a frequency 

close to the expected value if a vorticity perturbation is 

introduced, and shows the establishment of a vortex street. 

The shedding and street formation are surpressed by the addi

tion of a rear splitter plate. 

8. The stability of the numerical method follows 

generally the linearized prediction given, but with some sig

nificant differences. In two-dimensional flow with only two 

variable components of vorticity and velocity the linearized 

stability region is followed very closely (exactly for one-
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dimensional flow), and there is no upper limit on the cell 

Reynolds number. However, in flow with three variable com

ponents of velocity and vorticity, even with a direction of in-

variance, a nonlinear instability occurs through a convec-

tive coupling between a velocity component and the two vor

ticity components normal thereto. This nonlinear instability 

arises in the parabolic differential equation for the rate of 

change of vorticity and is not peculiar to the integro-

differential formulation itself. This instability is depend

ent more on the cell Reynolds number than on the time step. 

There still is not necessarily an upper limit, per se, on 

the cell Reynolds number, but: impulsive starts are highly 

susceptible to nonlinear instability and a progressively more 

gradual start is necessary £is the cell Reynolds number 

increases and/or the velocity ratio increases. As with all 

explicit methods the time, step is rather severely limited by 

the stability requirements. 

9. The numerical solution for the problem of the jet 

issuing normally from an infinite plane wall into a cross-

flow parallel to the wall may be constructed in such a man

ner that the three-dimensional calculation is confined to a 

field of vorticity of finite extent, both in the case of a 

start from the opening of the jet exit and in the case of a 

start from the dissolution of a cylindrical discontinuity 

standing on the jet exit, separating a uniform interior jet 
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flow from the exterior potential flow around the cylindrical 

discont inuity. 

10. The numerical method shows the deflection and 

deformation of the jet into the expected kidney shape, a 

recirculation within the jet in the form of counter-rotating 

vortices, and entrainment of the cross flow into the rear of 

the jet. The method also shows the low pressure region 

behind the jet to be expected from experimental results, the 

emission of a vortex ring from the jet exit and, vorticity 

waves propagating up the jet from the exit. These waves are 

generated by local linear instability, as predicted, in the 

high velocity region near the exit and may be damped upon 

propagation upward. 

11. The potential flow model—a freely deforming lat

tice of straight vortex segments, their images in the infi

nite wall, and a uniform source distribution on the jet exit 

of the jet issuing normally from an infinite plane wall into 

a cross-flow parallel to the wall is not capable of repre

senting even approximately the causes of the low pressure 

region behind the jet, even though this model does represent 

to some extent the deflection and deformation of the jet. 

The low pressure region behind the jet may be attributed to 

viscous effects arising from the presence of the solid wall, 

and not to the deformation and deflection of the jet. 
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R e c o mm endations 

The integro-differential numerical formulation should 

be immediately applicable to the flow about three-dimensional 

solid bodies, as well as to jet flows. Future efforts using 

the integro-differential formulation should be made using 

disc storage of the geometric factors in the integral over 

the vorticity distribution. Also the coordinate system used 

should be a curvilinear system having a coordinate line 

coincident with the field boundary. The use of such a curvi

linear system with general shaped solid bodies should be 

investigated. Also the use of a coordinate system in which 

relatively more coordinate lines are concentrated near the 

solid boundaries should be considered in order to extend the 

range of Reynolds numbers for which accurate surface pres

sures can be obtained. 

Consideration should also be given to the use of an 

implicit system of difference equations rather than the pre

sent explicit form. Implicit schemes have less restrictive 

stability criteria and thus allow the use of larger time 

steps. However, the iteration required may destroy the time 

advantage unless optimized acceleration of the convergence 

of the iteration can be achieved. This optimization in the 

integro-differential formulation must be accomplished on an 

expanding field of non-rectangular shape if the essential stor

age reduction feature of the formulation is to be preserved. 



APPENDIX A 

VARIOUS FORMS OF THE EQUATIONS OF MOTION 

Vorticity Equation 

The Navier-Stokes equations for an incompressible 

fluid are 

9v 
yr + (v • V)v = 

1 2 
- ~Vp + vV v 

[j ~ ~ 
(1) 

But using the vector identities {69, Chapter IV), 

(A • V)A = jVA2 ~ A x (V x A) 

V A = V(V • A) - V x (V x A) 

(2a) 

(2b) 

and the continuity equation, 

V • v = 0 (3) 

Equation (1) may be rewritten 

9y i 
IT— + — (v • v) - v x (V x v) = 
at Z ~ ~ ~ ~ --

- -Vp - vV x (V x v) (4) 

Then defining the vorticity by 

co = V x v (5) 

and taking the curl of Equation (4), we have (since the curl 

of any gradient is zero) 
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du 
- V x (v x oi) = vV w (6) 

Here the vector identity (2b) has again been used. 

Using the continuity equation (3) and the definition 

of vorticity (5) in the vector identity (2b), we have the 

Poisson equation for the velocity, 

V v = V(V • v) - V x (Vx v) = - V x cu (7) 

Uniqueness and Identity of Solutions 

Let v, and v? be two solutions of Equation (7) satis

fying the same boundary conditions, the vorticity distribu

tion being the sane for both. Then 

V (v. - v') = 0 in the field 

v.. - v9 = 0 on the boundary 

(8a) 

(8b) 

But by the extremum principle for the Laplace equation {70, 

Chapter III} the extrema of any solution of the Laplace equa 

tion must occur on the boundary. Therefore, the only solu

tion of Equation (8a) with the boundary conditions specified 

by Equation (8b) is 

»1 - 12 = ° 

on both the field and boundary. The solution of Equation 

(7) with specified boundary conditions and vorticity 

distribution is therefore unique for tkese boundary 
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conditions and vorticity distribution. 

Now let v' and v' be two solutions of the set of 

equations, (3) and C5), satisfying the same boundary condi

tions with the same vorticity distribution. Then 

V x (yj - yp 
} in the field 

V • (y| - yp = 0 

Zi - Zi " ° on the boundary 

(9a) 

(9b) 

(9c) 

But any vector having both its curl and divergence equal to 

zero must also have its Laplacian equal to zero by the vec

tor identity (2b). Therefore, the vector v' - v' must 

satisfy 

v (Yi " Tp = 0 in the field (10) 

Then, in view of the boundary conditions for the vector 

v,! - v' specified by Equation (9s), it follows again from the 

extremum principle for the Laplace equation cited above that 

the only vector satisfying both Equation (10) and (9c) is the 

z ero vector: 

*i " 12 - ° 

in the field and boundary. Therefore, the solution of the 

set of equations, (3) and (5), with specified boundary con

ditions and vorticity distribution is also unique, 
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But any solution of the set of equations, (3) and (5), 

must also be a solution of the equation (7) because of the 

vector identity (2b). Then since the solution of the set, 

(3) and (5), and that of the equation (7) with the same 

specified boundary conditions and vorticity distribution are 

both unique, it follows that they must be identical. 
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INTEGRAL REPRESENTATION OF POISSON EQUATION SOLUTION 

General Solution 

The equation 

V v = - V x LO 

with a specified vorticity distribution is a Poisson equation 

for the velocity. The solution may, therefore, be written 

for a bounded volume in the form cf an integral repre

sentation by Green's Theorem {71, Chapter 7}: 

Bv(r') 

v(r) = 

+ 

4u 

4 7T 

[—i 
9n 

(r* - r) • n(r') 

r - r 

V x uj(r ') 

+ •v(r') ]dS 

- r 

-dv (1) 
r - r 

where the volume integral extends over the entire field, and 

the surface integral over the boundary thereof. The variable 

of integration in each integral is r!. The unit vector n is 

defined to be normal to the boundary of the field, directed 

outward. 

Specialization to Field with An Infinite Plane Boundary 

Equation (1) applies for a point r within the field. 

For a point outside the field we have 
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3 v t r < ) 

[-HTT 
9n 

r - r 
+ 

+ 

( r V - r ) * g C r ' } 

^ E ^ T F ^ 
r V x co ( r r ) 

- v ( r f ) ] d S 

r ' - r 
-dv - 0 ( 2 ) 

Let the boundary of the field consist of a plane and a hemi

sphere centered at the origin. The velocity is zero on the 

plane except on a portion termed the jet exit, the velocity 

thereon being specified as V.. The velocity at an infinite 

distance above the plane boundary is specified as Vw, Then 

Equation (1) becomes 

Sv 

^n" 
z<V - i*} r~ _ r f

d s + 4^ 

(r» - r) n 

- r —V s 

plane 

+ 
1 

? 

lM\\ J 

9v 

"Bn 

exit; 

(r' - r) • n 
+ 

- r - r 
T~Y]ds + S 

V x co 
-dv Of 

- r 

Here the surface integral over the plane boundary includes 

the jet exit. The third surface integral extends over all 

the field boundary not included in the plane boundary. Note 

that the velocity is not constant over this portion of the 

boundary, since the zero value specified at the intersection of 

this portion of the boundary with the plane boundary results in 

a velocity gradient above the plane boundary. Similarly for a 

*The notation °° on the third surface integral implies the 
limit of the integral over the hemispherical surface as its 
radius approaches infinity. 
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point R outside the flow field, Equation (2) becomes 

3v 

4?]] |r'3- R|dS + h 
plane 

r (rT ~ R) •. n 

exit 
r f - R 

3v 

3 : j 
V.dS 

+ 

+ 

4TT 

4TT 

r 2E. + 
1 |r' - Rl + 

(r' - R) • n 

,3 I 
r' " R 

v]dS 

ret V x .jo 

r f - R 
-dv - 0 (4) 

Now let the point R be the image in the plane boundary 

of the point r (Figure 1 ) : 

R = r - 2(k • r)k (5) 

where k is the unit vector normal to the plane boundary, 

directed into the flow field. Then 

(r! - R) = (r' - r) + 2(k • r)k (6a) 

and 

r' - Rl = | r ' - r | + 4(k • r)(k • rf) (6b) 

Thus for points of integration, i.e., r', on the 

plane boundary we have, since there k 0, 

Therefore 

J 

3v 

"B~n 
r ' - r 

R 

-dS = 

r - r 

dv 

"an 
R 
-dS (7) 

plane plane 
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Then combining Equations (3) and (4) through Equation 

(7) we have 

v ( r ) - -
4 7T, 

C.rV - R) • n 

e x i t 
r T - R 3 : j 

V . d S 

1 
4 77 

_ l _ r 

4TT 

[• 

3v 

in ( r ' - R) • n 
:v]dS 

J J J 

[ r T - R 

f V X (D 

r ' - R 

r r - R 

. , r ( r ' - r ) • n 
•dv + ~ - — ~ ; ^ V . d S 

4TT JJ 
e x i t r - r 

3 : J 

+ 4TT 

dv 

in" (r T - r ) • n 

r - r + 
r - r 

3 : 
v ] d S 

+ 
1 f 

4 7T 

r V x u) 

J J J r - r 
-dv ( 8 ) 

Now combine the two integrals over the exit; 

(rT - r) - n (r1 - R) • n 

exit r - r r' - R y-^V s 

(R - r ) • n 

•V . dS 
J 

exit r - r 
3-j 

= 2(k • r) 
V.dS 
jJ 

exit r' - r 

(9) 
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using Equation (5) and the fact that k • n = - 1 on the 

exit. 
dv 

The integrals of TT— over the surface at infinity*may 

also be combined as follows: 

( • 

1 

r - r r T - R 

But, by Equation (6b), 

3v 
-K-dS = 
dn 

rT - RI - Ir' - rI 3v 

r ' - R • r - r 
9n 

dS 

(10) 

r* - Rl = [|rf - r|2 + 4(k • r)(k • r ' ) ] 1 / 2 

= { |r' - r h l + 
4(k • r)(k • r 1) 

]} 
1/2 

r - r 

2(k • r)(k • r') 
r ' - r I [ 1 + •] as r ' -• °° (11) 

r - r 

Then, with this relation in "Equation (10), 

i i r ' -r ' - r r ' - R 

3v 
•)TrdS = 2(k • r) 
dn ~ 

(k • r') 3v 

r - r 
3 8n 

dS (12) 

But since dS '" |r' - rl we have 

dv 

r - r 
3 3n 

•dS = 0 

3v 
if TT— is bounded. Equation (12) may then be written 

a n 

:i"The terminology "surface at infinity" refers to the hemi 
spherical surface in the limit as its radius approaches 
inf inity. 
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r - r 

3v 
•)^~dS = 2(k • r) 
dn ~ ^' 

k • (rf - r) 9v 

r - r 
8n 

dS 

(13) 

dv 
Thus this integral does not vanish in general unless -r~ - 0 

a n 3v 
at infinity. However, if -~ 4 

o n 
over only a portion of the 

surface of finite extent above the boundary plane, k * r' is 
dv 

bounded in the region of non-zero -r— , and from Equation 
rv Oil 

3v 
(12) the integral does vanish if -~ is bounded since 

an 
i i 2 dS ~ |r' - rj . It is therefore assumed in the present 

3v 
application that —— is zero over the surface at infinity ex-

3n J 

cept on a portion of finite extent above the boundary plane, 
3v 

so that the integral of -~- over the surface at infinity does 
3n J 

vanish: 

r r 

- r R 

8v 
) — d S = 0 

dn 
(14) 

The integrals of v over the surface at infinity may 

be combined to yield 

(rf - r) • n (r' - R) 

[" •]vdS 

r - r r ' - R 

rr |r' - R| 3(r' - r) - |r ' - r|3(r ' 

J J 

- R) 
{[• 

r' - r l 3 |r' - R | 3 
] • n}vdS 

(15) 
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The numerator may be rewritten, using Equation (5), as 

|r* - R|3 (r* - r) - |r' - rl3 [(r* - r) + 2(k • r)k] 

= |r' - r \ {[1 + 
4(k • r) (k • r') 3/2 

l}(r' - r) 
r - r 

- 2 |r' - r I (k • r)k 

6(k • r) (k • r' ) 
= r - r -] (r' - r) 

r' - r 

- 2 |r' - r r (k • r)k (16) 

as r' approaches infinity. Then using Equation (16) in 

Equation (15) we have 

J J 

(r* - r) • n (r' - R) • n 
-]vdS 

r - r R 

{[• 
6 (k • r) (k • r') (r1 - r) 2 (k • r)k 

r' - r r' - r 
-] • n}vdS (17) 

But since dS ~ |r' - r| this integral vanishes for any 

bounded v. Therefore 

(r1 - r) • n (r1 - R) • n 
vdS = 0 (18) 

r - r r' - R 

Then, using Equations (9), (14), and (18), Equation 

(8) reduces to 



1 3 8 

k • r 
v ( r ) = 

2TT 

V . d S 
_=J 

• 4 . ^ _ r 

e x i t ' ~ 

+ 4 TT 
r • - r r ' - R 

•) (V x o j )dv ( 1 9 ) 

This equation reflects the following boundary conditions: 

v = 0 on the plane boundary, except on the exit 

v = 

3v 

¥n 

V . on the jet exit 

0 on the surface at infinity (not including the 
plane boundary) except on a portion of finite 
vertical extent above the plane boundary. 

Here it is not necessary to specify constant velocity on the 

jet exit. Also no assumption of constant velocity over the 

surface at infinity has been made, Indeed the velocity over 

this surface is not constant but varies on a portion of 

finite vertical extent above the plane boundary as a result 

of the viscous layer above that solid boundary. 

Note that for points on the plane boundary not on the 

exit, k • r = 0 and |rT - r| is never zero in the integral 

over the exit in Equation (19). This integral, therefore, 

vanishes for r on the plane boundary but not on the exit. 

Furthermore, R = r, from Equation (5), on the plane boundary, 

so that the volume integral of Equation (19) also vanishes 

for r on the plane boundary. Equation (19) thus yields 

v = 0 for points on the plane boundary and not on the exit, 
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as expected. Points on the, jet exit require a slightly 

different treatment. 

For points on the exit the volume integral again 

vanishes since R = r. The; surface integral is, however, 

improper, with a singularity at rf = r. The integral must, 

therefore, be evaluated by surrounding the singularity with 

a hemisphere as shown in Figure 63a. The integral vanishes 

on all of the surface except on the hemisphere since k • r 

= 0. Now the combined integrals over the exit as developed 

in Equation (9) cannot be used for this evaluation on the 

hemisphere because the image point R is now inside the field 

since R = r here. Rather, the original two integrals, i.e. , 

the left hand side of Equation (9) must be used. The hemi

sphere shown in Figure 63a then applies only to the first of 

these two integrals, and the construction shown in Figure 

63b must be used for the second. Then for the first inte

gral we have, referring to Figure 63a, 

r - r 
n = ^ — —-, d S - | r ' 

I r ' - r I 
dti 

so t h a t 

r ( r ' - r ) * n 
_1_ 
4TT 

: V.dS = l i m 

e x i t r - r 
3 i j r ' - r h-0 

2TT 

—•[ V . d ^ = ^-V. ( r ) 

0 

( 2 0 ) 

For the second integral we have, from Figure 63b, 



1 4 0 

n = -

r T - R 

r ' - R 
, dS = I r 1 - R | dfi 

s o t h a t 

( r T - R) • n 2TT 

_1_ 
4TT 

e x i t 
r ' - R 3 ~j 

V . d S = l i m 
r ' - R 

7 - ( - V . ) d f i = 
4TT I ~ j -iW 

The two integrals together then yield 

4TT 

( r ' - r ) n 

e x i t r - r 

( r ' - R) 

r T - R 
T 1 ] ! j d s s ! j ( E } ( 2 1 ) 

for r on the exit as expected. 

The form of the volume integral of Equation (19) may 

be modified as follows: 

V x LO 

-dv = 

r - r 

OJ 

[V x 

r ' - r 

- (V-

r - r 

•) x oo]dv ( 2 2 ) 

B u t 

CO 

V x 

r - r 

-dv = 
10 

n x 
r - r 

-dS ( 2 3 ) 

by a variation of Gauss' Divergence Theorem of vector 

analysis {69, Chapter VI}. Now the surface integral in 

Equation (23) must include an integral over the surface of 

an infinitesmal sphere surrounding the singularity of the 

volume integral of Equation (23) at r' = r. This surface 

integral over the sphere, however, vanishes since there 
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we h a v e 

n x 

4TT 
w r r - r 

dS = - ( — — ) x 
r - r 

w 
r ' - r r d f i 

s p h e r e 0 I r - r | J r - r 

4 IT 

( r ' - r ) x oodfi 

and the integrand of this integral approaches zero as r' -*- r 

Then using Equations (22) and (23) in Equation (19), 

we have 

k • r 
v(r) = 

2TT 

V.dS 
_rJ 

exi t r ' - r 

+ 
4TT 

(-

plane r ' - r r' - R 
•) (n x o))dS 

+ 4TT 
) (n x co)dS 

r ' - r r ' - R 

+ 4TT 
r - r 

r ' - r 

r1 - R 

r' - R 
•) x wdv (24) 

Since in Equation (22) 

r - r 

r - r 

r ' - r 

the gradient being taken with respect to r' 
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Now the surface integral on the plane boundary in 

Equation (24) vanishes since there we have |r' - R| =)r' - r 

The surface integral over the surface at infinity is 

of the same form as the left hand side of Equation (13), 
8v 

In 
being replaced by n x u>. Therefore this integral vanishes 

if co is zero on the surface at infinity (not including the 

plane boundary), except on a portion of finite vertical 

extent above the plane boundary and/or on any finite portion 

of the sur face. 

Therefore Equation (24) reduces to 

v ( r ) = 
2TT 

V. dS 
_2J 

e x i t r - r 

+ 4 TT^ 

- r - R 
•) x codv 

- r - R 

and this is the equivalent of Equation (19). 

(25) 

Specialization to Field with a 

Finite Closed Solid Body 

With v = 0 specified on the surface of a finite 

closed solid boundary, Equation (1) becomes, for a bounded 

spherical volume centered at the origin 

v(r) = 

3v 

In 
4TT 

body r - r 

-dS + 
4TT 

d V 

J^ 
r - r 

~dS 

*Here the notation °° on the second integral implies the 
limit of the integral over the spherical surface as its 
radius approaches infinity, 
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+ 
4 TT 

(r1 - r) ' n 
:7CS 

r ' - r 

+ 4TT 

V x u] 

-dv (26) 

- r 

9v 
Now let v be specified to be constant and -r-21 to be zero on 

~ 3n 

the surface at infinity.* Then the second surface integral 

above vanishes and the third becomes 

4TT 

(r' - r) n V ff(r' - r) * n 

r ' - r 
3 4 TT -dS (27) 

J.: r - r 

where V is the constant value of v at infinity. No loss 

of generality is incurred by taking the surface at infinity 

to be spherical about the point r. Then 

n = 
r - r 

r ' - r 

and dS = I r ' - r I d^ 

so that the integral becomes 

4 u 

1 
4TT 

(rf - r) • n V 
- vdS * -r= dfi = V 

r ' - r 
4TT 

0 

(28) 

Equation (26) then reduces to 

v ( r ) = ~ 1_ 
4TT 

3v 

dn 

- r 

-dS + r -
4TT 

body 

p V x oj 

r " - r 
dv + V (29 ) 

*The t e r m i n o l o g y " s u r f a c e a t i n f i n i t y " r e f e r s t o t h e 
s p h e r i c a l s u r f a c e i n t h e l i m i t a s i t s r a d i u s a p p r o a c h e s 
i n f i n i t y . The normal d e r i v a t i v e must approach zero a t l e a s t as f a s t 
as the i n v e r s e square of the r a d i u s . 
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But by Equations(22) and (23) the volume integral may be 

written 

r r V x OJ 

r - r 
-dv = 

r n x w err 
-dS + 

r - r . t 

< r T - r ) 

J l r f -
x codv (3 0) 

and since 0) = 0 on the surface at infinity*, Equation (29) 

may then be rewritten as 

v(r) = V + 
^ v~' ~oo 4TT j 

8v 

"a^T + n x to 
LdS + 

4TT 

r (r? - r) 

body 
J IT-' 

x u)dv (31) 

But 

3v 
—- + n x w = (n • V)v + n x (V x v) 
9 n ~ ~ ~ 

= [V(n • v) - (v • V ) n - n x (V x v) - v x (V x n)] 

+ n x ( V x v ) (32) 

Then, since v = 0 on the body surface, we have 

9v 
-r-21 + n x o 3 = V ( n • v) = Vv dn ~ ~ ~ ~ n (33) 

on the body surface. Here v is the velocity component 
j n J 

normal to the body surface. Now the continuity equation 

V • v = 0 (34) 

may be e x p r e s s e d i n o r t h o g o n a l c u r v i l i n e a r c o o r d i n a t e s a s 

^ S p e c i f i c a l l y , the v o r t i c i t y must approach zero a t l e a s t as f a s t as the 
inverse square of the r a d i u s . 
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{ 6 9 , C h a p t e r V I l } , 

( h 0 h o V l ) + ~-{h,h0vn) + ~r-(hnh0v0) = 0 
3 x x

x l 2 3 1" 3 x . v T 3 2 ' 9 x 3
v l ' l " 2 v 3 

(35) 

where the h's are the scale factors in the respective 

directions, i.e., 

h. E 
l 

3r 

3x 
i = 1, 2, 3 

Let the x „ direction be defined as normal to the body sur 

face. Then since v = 0 on the body surface we have 

9v 9v„ 

1 2 3 d x1 dx„ = 0 

on the body surface. Then 

|-(h 2h 3v 1) - v 1-
3-(h 2h 3) + h 2 h 3 - ^ - 0 

1 dx1 ax

on the body surface. Similarly, 

•3^-(h1h3v2) = 0 

on the body surface. Then Equation (35) reduces to 

(h1h0v.) = 0 3x v (36) 
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on the body surface. But v„ = 0 also on the body surface so 

that Equation (36) implies that 

9v 

"JhT = 0 (37) 

on the body surface as well. Also since v„ = 0 on the body 

surface 

'V3 9 v3 
8x1 3x_ 

= 0 

on the body surface, or finally 

V v = 0 n (38) 

on the body surface for any shape surface. Therefore by 

Equation (33) 

3v 
TT- + n x to = 0 
dn 

(39) 

on a body surface of any general shape. 

Equation (31) then reduces to 

v(r) = V + 7 — 
; J 

(r' - r) 

j lr ' - r 
x codv (40) 

Reduction of Volume Integral in Two-Dimensional Flow 

If LO is invarient in the z direction we have 
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(r ' - r) x u 

J J J I r ' - r 
-dv = dz ' 

(r' ~ r) x oj(xf , y ?) 
d S — — - -

r - r 
~oo xy-plane 

dSco(x ! , y ' ) x 

xy-plane 

(r1 - r) 
-dz' (41) 

r - r 

But 

(r' - r)dz1 

r - r 

i(x' - x) + j(y' - y) + kz' 

[(x' - x ) 2 + (y' - y ) 2 + z ' 2 ] 3 / 2 
dz' 

= [i(x' - x) + j(y' - y) 

dz' 

(x' - x ) 2 + (y« - y ) 2 + z ' 2 ] 3 / 2 

z 'dz r Z QZ  

+ k L " 2 2 ,2,3/2 
~ J [(xT - x) + (y - y) + z ] 

(42) 

The last integral vanishes since the integrand is odd. The 

remaining integration may be performed with the result 

r dz '  

J[(x' - x ) 2 + (y' - y ) 2 + z ' 2 ] 3 / 2 

(x' - x ) 2 + (y* - y ) 2 [(x' - x ) 2 + (y' - y ) 2 + z , 2 ] 1 / 2 

(x» - x)2+(y' - y ) 2 
(43) 
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Then 

(r» - r) 

I 3 r - r 
d z ' = 2 

i(x? - X) + j(y» - y) 

(x' - x ) 2 + (y« - y ) 2 
(44) 

and 

(r ' - r) x GO 
-d\> = 2 

r - r 

[i(xf - x) + j(yf - y)] x w(x', y') 

xy-plane 
(xT - x ) 2 + (yf - y ) 2 

-dS 

(45) 

Then, with rf restricted to the x~y plane, Equation (40) 

b ecomes 

"(J?1 - r) 
v(r) = V + if- x udS (46) 

r - r 

Reduction of Volume Integral in One-Dimensional Flow 

If (JO is invariant in the x and y directions we have 

( r ' - r ) x co 
OO OC CO 

r ' - r 

dv = dz » d x ' dy» 
( r * - r ) x 0 3 ( z ' ) 

Q - C O — CO r - r 

CO CO 

dz ' co(z 7 ) x d x ' d V 
( r 1 - r ) 

r ' - r l 3 
( 4 7 ) 

— CO — C O 

Now 

CO CO 

i J 

( r ' - r ) 
r d x ' d y ' = 

r - r 

i x ' + j y ' + k ( z ' - z ) 

[x T + y + ( z ' - z ) ] 
d x ' d y 

— CO — C O _ C O — C O 

( 4 8 ) 

But the i and j components of this integral vanish because 

of odd integrands. Therefore, 
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( r 1 - r ) 

r ' - r l 3 
d x ' d y 

— 00 _ CO 

= k ( z ' - z ) d x ' d y 

r . 2 » 2 ^ t i , 2 , 3 / 2 
[ x + y + (z ' - z ) ] ' 

= k ( z ' - z ) x 

y ' 2 + ( z f - z ) 2 [ x ' 2 + y ' 2 + ( z ' z ) V / 2 dy* 

= 2 k ( z f - z ) 1x1 
y ' 2 + ( z * - z ) 2 

2 k ( z ' - z)-, , -1 r t a n " * 1 ( r t
 : 

z - z z - z 

= 27Tk z - z 
z ' - z 

( 4 9 ) 

Since r1 - R differs from r" - r only in the sign of z, we 

have immediately that 

( r ' - R) 

r ' - R 
- d x ' d y ' = 27Tk z ' + Z - 2irk 

~ | z » + z | 
( 5 0 ) 

T h e n 



1 5 0 

( r ' - r ) x co 
-dv = 2 IT 

r ' - r 

z - z 

z - z 

( k x co) d z ' 

0 

- 2TT ( k x co) d z ' + 2TT ( k x co) d z ' 

o z 

a n d 

( 5 1 ) 

( r ' - R) x co 
dv = 2TT ( k x co) dz ' 

J | r ' - R | J 

1 ~ ^ ' o 

Then, using Equations (51) and (52), 

(" 
r ' - r 

r - r 

r ' - R 

r ' - R 
-—-) x wdv := - 4TT (k x co) dz ' 

(52) 

(53) 

If the velocity is zero on the infinite plane at z = 

0, Equation (25) then reduces to 

v(z) = - (k x co)dz' = - k x 
z 

codz ' (54) 

o 

If, however, the plane is in motion at velocity V^ then, 

reading "plane" for "exit" and "V " for "V." in Equation 
^,03 ~ "1 

(25), the first integral therein becomes 

k • r 

"TTT 

r V dS 

plane r - r 
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= V 
co 2TT 

r I A « I 

[ ( x 1 -

d x ' d y 
N2 , , v 2 . 2 , 3 / 2 

x) + ( y ? - y) + z ] 
— CO — C O 

V -5- 1 ! = v 
-co 2 7T Z ~< 

( 5 5 ) 

the integration being the same as that performed above in 

Equation (49). Therefore Equation (25) reduces in this 

case to 

v(z) = V w - k x codz ' (56) 

If the non-zero component of to is j T\ this reduces to 

u(z) = VM + jndz' 

o 

(57) 



APPENDIX C 

CATALOGING OF CELLS WITH NON-ZERO VORTICITY 

Since only the cells with non-zero vorticity, here

after referred to as "vortex cells"* for purposes of identi

fication, are to be stored, it is necessary to catalog the 

vortex cells in a manner which will allow the determination 

of which, if any, vortex cells are adjacent to any given 

cell. The convenience of subscript notation, by which an 

adjacent cell can be identified by simply incrementing a sub 

script, is not available here, since its use would require 

storing an array containing all points in the field, thus 

defeating the purpose of confining the storage to the points 

with non-zero vorticity. 

Each vortex cell is assigned a number, beginning with 

1, when it is created, and it retains the same number for al 

time. The vorticity and velocity of each cell are sub

scripted with the cell number and stored in one-dimensional 

arrays. The cataloging procedure then provides a means of 

determining the number of the vortex cell located at any 

given location in the field,, The second function of the cat 

loging procedure is to create a layer of border* cells, one 

*Vortex cells, border 
cells are defined in 

cells , and the 
Chapter II. 

aggregate of vortex 
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cell in thickness, surrounding the aggregate* of vortex 

cells. It is only these border cells that have the possi

bility of becoming vortex cells, i.e., acquiring non-zero 

vorticity, at the next time step. Since the border cells 

have zero vorticity, cell numbers are not assigned to them, 

and no values of vorticity or velocity are stored for them. 

Two-Dimensional Catalog 

Catalog Procedure 

The cell numbers, L, of the vortex cells are arranged 

in a one-dimensional array, TCEL (LE), in columns of cells 

having the same Y-coordinate, the columns being placed in the 

array successively according to ascending Y-values. Within 

each column the cells are arranged successively according to 

ascending X-values. The border cells are located between 

each of the columns in the array. This is illustrated in 

Figure 64. Here the vortex cells are enclosed by the heavy 

line and the border cells by the dotted line. The center 

numbers are the vortex cell numbers, L, which are permanent 

and occur in order of creation and not by position, and the 

corner numbers refer to the position, LE, in the array TCEL. 

Thus TCEL (3) = 10, TCEL (8) = 8, TCEL (9) = 9, TCEL (10) = 

11, TCEL (24) = 6, etc. A common value NWJ is stored in the 

*Vortex cells, border cells, and the aggregate of vortex 
cells are defined in Chapter II. 
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positions in the array TCEL corresponding to border cells, 

e.g., TCEL (1) = NWJ, TCEL (2) = NWJ, TCEL (4) = NWJ, 

TCEL (26) = NWJ, etc. 

Finally the difference between the X-coordinate of 

the first border cell in each column and the position of 

that cell in the array TCEL is stored against the column num

ber, J, in an array TXMIN (J), e.g., TXMIN (3) = 5 - 1 = 4 , 

TXMIN (7) = 2 - 18 = - 16, etc. The cell number of a cell 

with X and Y-coordinates I and J, respectively, can then be 

determined in two stepr , First: the operation LE = I -

TXMIN (J) gives the position, LE, of the cell in the array 

TCEL. The cell number, L, is then immediately available from 

L = TCEL (LE). For example, consider the cell with coordi

nates I = 4, J = 7. As noted above, TXMIN (7) = - 16 so that 

LE = 4 - (- 16) = 20. Then L = TCEL (20) = 2, which is the 

cell number of the cell at X. = 4, Y = 7 in the figure. These 

two steps will produce the yalue NWJ, common to all border 

cells, if the coordinates are those of a border cell. 

In addition, the position in the array TCEL of the 

first vortex cell in each column is stored against the column 

number, J (which is equal to the Y-coordinate), in an array 

TC(j)L 1 (J). Similarly the positions in the array TCEL of the 

first border cell in ear.h column and the first border cell 

after the vortex cells in each column are stored against the 

column number in t he arrays TC<j>L (J) and TC(j)L 2 (J), 
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respectively. Thus, TC<j>L (5) = 6, TC(j)L 1 (5) = 8, TC(j)L 2 (5) 

= 11, etc. For columns containing no vortex cells, a common 

value is stored in TC(j)L 1 and TC<J)L 2. Thus TC(j)L 1 (1) = 

TC(j)L 2 (1) and TC())L 1 (9) =; TC())L 2 (9), etc. This procedure 

is followed throughout. 

Comparison of Storage Requirements 

The storage requirements then are four arrays (TC(j)L, 

TC(()L 1, TC(j)L 2, TXMIN) of dimension equal to the maximum 

lateral (perpendicular to the free stream) extent of non-zero 

vorticity, one array (TCEL) of dimension equal to the maximum 

number of vortex cells and border cells, and six arrays for 

velocity and vorticity of dimension equal to the maximum num

ber of vortex cells. All these arrays are one-dimensional. 

By contrast, conventional storing of the entire field would 

require only the six arrays for velocity and vorticity, but 

they would be two-dimensional arrays of dimension equal to 

the number of points in the entire field. 

For example, consider a typical arrangement using a 

100 x 50 field (5000 points). It is reasonable that only a 

fourth of these points would have sufficient vorticity to be 

considered vortex cells, and the lateral extent of these 

cells would likely be no more than half the lateral field 

extent. With 1250 vortex cells there would be about 125 bor

der cells. The storage required by the two schemes is 
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Only Vortex Cells Stored Entire Field Stored 

4 x 25 = 100 6 x 5,000 = 30,000 

1 x 1375 = 1375 

6 x 1250 = 7500 

8975 

The saving in storage achieved by storing only the 

cells with non-zero vorticity is thus quite significant and 

becomes even more so for larger fields. 

Three-Dimensional Catalog 

Catalog Procedure 

The three-dimensional cataloging procedure is an 

extension of the two-dimensional procedure with the cell num

ber, L, of the vortex cells arranged in a one-dimensional 

array, CEL (LE), in columns of cells having the same Y and Z 

coordinates. The columns are numbered consecutively in 

order of creation and are placed in the array in groups of 

columns having the same Z coordinates, the groups being 

ordered successively according to ascending Z values. The 

columns within each group and the cells within each column 

are arranged successively according to ascending Y and X 

values, respectively. Again border cells are located between 

each of the columns in the array. In addition border columns, 

i.e., columns composed exclusively of border cells, are 

located between each of the groups of columns in the array. 
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Finally the differences between the Y-coordinate of the 

first border column in each group and the number of that 

column are stored against the group number, K, in an array 

YMIN (K). 

The cell number of a cell with coordinates I, J, K 

then can be determined in three steps. First, C = J -

YMIN (K) gives the number of the column containing the cell. 

Then, LE = I - XMIN (C) gives the position of the cell in 

the array CEL. The cell number is then immediately avail

able from L = CEL (LE). 

The position in the array CEL of the first vortex cell 

in each column is again stored against the column number (now 

designated C and not being related to the Y-coordinate as in 

two dimensions) in an array C(j)L 1 (C) . Similarly the posi

tions in the array CEL of the first border cell in each 

column and the first border cell after the vortex cells in 

each column are stored against the column number in the 

arrays C(j)L (C) and C(j)L 2 (C), respectively. The difference 

between the X-coordinate of the first border cell in each 

column and the position of that cell in the array CEL is 

stored against the column number, C, in an array XMIN (C). 

In turn, the number of the first vortex column, i.e., 

column containing vortex cells, in each group of columns is 

stored against the group number, K, which is equal to the Z-

coordinate, in an array PLA 1 (K). Similarly, the numbers 
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of the first: border column in each group and the first bor

der column after the vortex columns in each group are stored 

against the group number in the arrays PLA (K) and PLA 2 (K), 

respectively. This procedure is followed throughout the 

three-dimensional catalog. 

Comparison of Storage Requirements 

The storage requirements are then four arrays (C(|)L, 

C(j)L 1, C(()L 2, XMIN) of dimension equal to the maximum number 

of vortex and border columns, four arrays (PLA, PLA 1, PLA 2, 

YMIN) of dimension equal to the maximum extent of non-zero 

vorticity in the Z-direction, one array (CEL) of dimension 

equal to the maximum number of vortex and border cells, and 

six arrays for velocity and vorticity of dimension equal to 

the maximum number of vortex cells. Again all these arrays 

are one-dimensional. 

The storage economy is even greater in three dimen

sions. Continuing the previous example, let there be 50 

steps in the Z-direction also. Then the total number of 

points in the field is 5,000 x 50 = 250,000. In three dimen

sions it is reasonable to assume that the proportion of cells 

with significant vorticity will be less than in two dimen

sions, say one-tenth. Then with 25,000 vortex cells, 2500 

border cells, and 500 columns we have, assuming extent in 

the Z-direction no more than half the field, 
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Only Vortex Cells Stored 

4 x 500 = 2,000 

4 x 2 5 = 100 

1 x 27,500 = 27,500 

6 x 25,000 =150,000 

179,600 

Entire Field Stored 

6 x C250,000) = 

1,500,000 



APPENDIX D 

DIFFERENCE EQUATIONS AND TRUNCATION ERROR 

Two-Dimensional Solid Cylinder 

Straight Explicit Form 

The time derivative is approximated by a two-point 

forward difference expression, 

n+1 n 

at At ( i ) 

and the space derivatives by three-point central difference 

expressions, of x^hich the following are representative: 

n n 
l £ - C i + l , j C i - l , . 1 
3x 2 ( 1 ) 

( 2 ) 

2 Cn 

il£ Il+iil 
9x 

-. n n 
2C. . + £• -, . 

( 1 ) 
( 3 ) 

(The nondimensional spacial mesh width is equal to unity 

since the mesh width has been taken as the reference length.) 

Substitutions of these forms in Equation (IV - 3) yields the 

straight explicit difference equation (IV - 5). 

Expansion of each of the above values of t, by Taylor 

*A11 quantities in this appendix are nondimensionalized as 
noted in the Nomenclature excapt as specifically noted here, 
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series after substitution in Equation (IV - 3) yields an 

expression for the truncation error, i.e., the amount by 

which the solution of the differential equation (IV - 3) 

fails to satisfy the difference equation (IV - 5 ) : 

T 2L„ 2 J A t 6l . 3 . 3 J + 12R L. 4 + . 4J ^ J 

8t dx 3y c 3x 8y 

the derivatives being evaluated at some point in the calcu

lation field. This is the nondimensional truncation error, 

with the cell size as the reference length, and all quanti

ties on the right are likewise nondimensional. A clearer 

statement of the expected error is given by converting 

Equation (4) to dimensional form: 

T = _ ± [ i ^ ] A t - y 3 ( u ^ - + j - 3 ( v t > ] h 2 + — r ^ + ^ i h 2 (5) 
T 2 \ 2 J A C 6L _ 3 , 3 J n 12 L^ 4 A j n KD) 

3t 8x 3y 3x dy 

where all quantities are dimensional. The dimensional 

truncation error thus approaches zero with the time and 

spacial step sizes. This is true regardless of the manner 

in which the limits are approached. 

Dufort-Frankel Form 

The time derivative is approximated by a three-point 

central difference expression: 

n+1 _ n-1 

3t 2At 
(6) 
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The spacial derivatives are again approximated by three-

point central difference expressions as in Equations (2) and 

(3), but with the £. . of Equation (3) expressed as a time 
1 > J 

average: 

n 1 , n+1 'H-IN 

i*j 2 i,j i,j 
(7) 

Substitution of these forms in Equation (IV - 3) yields the 

Dufort-Frankel difference equation (IV - 6 ) . 

The dimensionless truncation error obtained in the 

manner prescribed above is (all quantities here being non-

d imens ional) 

T - ? r ^ t 3.1s.! At l r 9 3 ( u Q , 3 3 ( v Q 1 . 1 r 3 4 ^ . 1 ^ - , ,ox 
[ R ^ ] " 6 [ , 3 + I 3 ] + 12^[7A +

 a 4 ] ( 8 ) 

C d t dX dy C d X dy 

The dimensional truncation error is then, with dimensional 

quantities, 

T = - a i ^ ^ l i t 
h 3t 

ijiiiMi + iii2ii]h2 
O r, J ^ 3 

dx dy 

4 4 

+ r?: [—A + 7 4 ] h 

dx dy 

(9) 

Thus the truncation error vanishes as At and h approach zero 

At 
with a constant ratio —TT. 

h 
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Infinite Jet in Cross-Wind 

Straight Explicit Form 

With the time derivatives approximated by two-point 

forward difference expressions, and the space derivatives 

by three-point central difference expressions as in Equations 

(1) - (3), Equation (V - 3) is approximated by the straight 

explicit difference equation (V - 5). The dimensional 

truncation error is 

T 

n 

T 

2 L
9 t

2 J 6 3y3 

2 at2' 6 3x3 

|[̂ f]At +f[^ifi 
2 9t2 6 3x3 

33(v€)1h2 v 34£ 34?lh2 

: 3 " ] h + T2 [TT + 7T ]h 

dy dx dy (10a) 

3J(un)-,T 2 , v r 3 % , 3 n1}2 

3x dx 3y 
(10b) 

d 3(uQ 33(vC) , 93(.wn)11 2 
3 3 3 J 

5x 3y 3y 

4 4 
+ II[74 + 7~ ] h 

3x 3y 

(10c) 

where all quantities are dimensional. The dimensionless 

form may be easily inferred by comparison with Equations (4) 

and (5). Again the truncation error approaches zero with 

the space and time steps. 

Dufort-Frankel Form 

With the time derivatives approximated by three-point 
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central difference expressions, and the space derivatives by 

three-point central difference expressions with the time 

averaging of the central term as in Equations (6), (2), (3), 

and (7), Equations(V - 3)are approximated by the Dufort-

Frankel difference equations (V - 6). The dimensional trun

cation error is the same as that given by Equation (10) 

except that the factor — of the time-derivative term is 
2 

replaced by the factor 2~- a n d all quantities are con-
h2 

sidered dimensional. 

Three-Dimensional Jet in Cross-Wind 

With the time derivatives approximated by two-point 

forward difference expressions, and the space derivatives 

by three-point central difference expressions as in Equations 

(1) - (3) , Equations (VI - 16) are approximated by the 

straight explicit difference equations (VI - 19). The 

dimensional truncation error is 

3 
.. n, 2 c 9 C 
1 r O S n A . 1 r Z 

2 [ r i ] A t + 6[7T" at dy 

i i ] h 2 + V_ tA + l!i + l l i ] h2 
K 3 J n 1 2 1 . 4 . 4 , 4 J 

dz dx dy dz 
( H a ) 

i . 2 -, 9 3 C 
1 r d n 1 r x 
2 [7"2 ]A t + 6 [ r r d t 3z 

3 
S C 4 4 4 

L z l h 2 V f O i % d V 2 
3x 3x dy dz 

( l i b ) 



1 6 5 

3 
, rs 2 3 C 

2 L . 2 J " L 6 * 3 
3 t dx 

3 3 C 0 
x i ^ 2

 J . 

a r ]h + i 2 L , 4 
dy 3x 

^ri!i + î  + ^ 4 ] h 2 
ay 

dz 

all quantities being dimensional. 



APPENDIX E 

EVALUATION OF SOLID SURFACE BOUNDARY TREATMENTS 

Representation of Convection in Boundary Cells 

The velocity actually calculated from Equation (IV -

7) in the boundary cells* is not zero since the boundary 

cells, being square, cannot represent the true curved 

boundary exactly and some lie well out into the fluid, con

taining only a small portion of the surface. This is true 

even for the initial solution. There arises then the ques

tion as to whether this actual calculated velocity should 

properly be used in the convective terms of Equation (IV -

6), or whether a zero velocity should be substituted. This 

velocity influences the calculation of the vorticity in both 

the boundary cells and the adjacent layer of cells. 

Referring to Figure (65) and Equation (IV - 6 ) , the 

calculation of the vorticity in the fluid at points 1 and 4 

involves the product of the vorticity and y-velocity in the 

boundary cells at points 2 and 5, respectively, this product 

representing convection of vorticity across the interface 

between the points involved. 

Similarly, the calculation of the vorticity in the 

boundary cells at 2 and 5 involves the product of the 

^Boundary cells are defined in Chapter II. 
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vorticity and y-velocity at: points 1 and 3 and at points 4 

and 6, respectively. Now there is obviously no convection 

between points 3 and 2, since the interface between is in the 

solid wall. Therefore, the above-mentioned product at point 

3 is omitted in the calculation in the boundary cell at 2. 

The inclusion of the product at point 6 implies convection 

across the interface between 5 and 6. 

The presence of non-zero velocity in the boundary 

cells at points 2, 5, and 6 thus admits several alternatives 

in the representation of convection near the boundary. Five 

alternatives for the convective terms were evaluated in the 

course of this study and are discussed below in the light of 

the above explanation and Figure 65. These convection 

schemes were compared using diffusion scheme A, surface vor

ticity scheme A, and corner scheme A, as defined in later 

sections. The effects of each of these schemes are in turn 

evaluated below. 

Convection Scheme A - Use of Zero Velocity in Boundary Cells 

The use of zero velocity in the boundary cells causes 

the above-mentioned products at points 2, 5, and 6 in Figure 

65 to be zero, so that the cells at 1 and 4 experience no 

convection with the cells at 2 and 5. However, the cells at 

2 and 5 still experience convection with the cells at 1 and 

4 since the products in the latter cells are unaffected. 

This is an anomalous situation, since the convection into 
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any cell certainly must be supplied by the adjacent cell. 

In the present solution the boundary cells do contain fluid, 

and convection to or from them is not unphysical. This 

alternative then is not as attractive as it might seem at 

first thought. 

With this scheme the vorticity generated at the sur

face must move from the boundary cells to the adjacent layer 

of cells by pure diffusion before it can be convected into 

the remainder of the fluid. While this in itself is not 

unphysical in a continuous field, it becomes unrealistic in 

the discretetized field necessary in numerical solution, 

for at high Reynolds numbers the diffusion becomes insuffi

cient to transmit the vorticity generated at the surface to 

the adjacent layer of cells unless the cell size is 

extremely small. This vorticity thus never becomes avail

able for convection downstream,, so that no wake forms and 

the flow remains essentially unchanged from the potential 

flow that existed at the start. The results of this scheme 

at a cylinder Reynolds number of 12,000 at a time well 

beyond the expected onset of separation and vortex formation 

showed no vortices. 

While the failure of this scheme to represent the 

flow accurately at high Reynolds number is due partly to the 

inadequate representation of the thin boundary layer by the 

finite grid, it has been shown by several investigators 
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{21, 23, 24} that numerical solutions can represent the wake 

accurately, including the formation and shedding of vortices, 

even when the grid is too coarse to represent the boundary 

layer. If the boundary layer is thinner than the cell size, 

the numerical solution should incorporate an average effect 

of the boundary layer on the fluid in general into the first 

layer of cells — here the boundary cells. Since the effect 

of the boundary layer is to make the vorticity generated at 

the surface available for convection downstream, it follows 

that in the present solution the boundary cells must be cap

able of representing the overall effect of the boundary 

layer, and that there must therefore be convection from the 

boundary cells to the adjacent layer of cells. 

At low Reynolds numbers, or with sufficiently small 

cell size at higher Reynolds numbers, the diffusion from the 

boundary cells to the adjacent layer overshadows the convec

tion anyway, so that the value of the velocity in the bound

ary cells is of less importance. In the light of this and 

the above conclusions, the use of the actual calculated 

velocity in the boundary cells would seem to be a better 

choice. This also removes the bothersome anomaly of convec

tion into one cell but not out of the adjacent cell. 
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Convection Scheme B - Use of Calculated Velocity in 

Boundary Cells 

The occurrence of non-zero velocities in the boundary 

cells is a result of the rectangular representation of the 

boundary curve, which causes some boundary cells to contain 

more fluid than boundary. Since the boundary cells are 

intended to represent the vorticity of the fluid immediately 

adjacent to the surface these cells are fluid cells, and 

thus their velocities can be viewed as a kind of average 

velocity of the fluid contained therein. In this sense the 

calculated velocities in the boundary cells are not unreal, 

at least within the finite representation of the field, and 

are not necessarily to be rejected. 

Again referring to Figure 65, with the velocity not 

equal to zero in the boundary cells the cells at 1 and 4 

experience convection from the boundary cells, so that the 

anomaly mentioned in the previous section is removed, and the 

vorticity generated at the boundary can be convected down

stream to form a wake even at high Reynolds numbers. How

ever, the boundary cell at point 5 now experiences convection 

from the boundary cell at 6, as well as from the cell at 4, 

while the boundary eel], at 2, of course, still experiences 

no convection from point 3 within the wall. The corner 

boundary cells thus experience convection on two sides, while 

the other boundary cells have convection on only one side. 
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Since the existence of the corners is a result of the rec

tangular representation of ths curved boundary, it would 

seem well to keep special effects of the corners at a mini

mum . 

The boundary cell at 2 also experiences convection 

from the boundary cells on either side in the x-direction, 

so that now vorticity is convected along the layer of 

boundary cells. While, this convection along the layer of 

boundary cells might be considered to represent convection 

parallel to the boundary in the fluid adjacent to the 

boundary, the presence of the corners allows such convection 

to cause vorticity generated at the surface to flow along 

the layer of boundary cells to the corners and from there 

out into the fluid at an abnormally high rate. The result 

was an almost complete loss of vorticity in the boundary 

cells, which then allowed upstream penetration of the 

boundary, with consequent detachment of the entire wake from 

the body. This pattern was little affected by the cell size 

in any case. 

Convection Scheme C - Use of Zero Velocity in Boundary Cells 

Only for Calculation in Boundary Cells 

This scheme combines parts of the two previously dis

cussed schemes. The cells at 1 and 4 do experience convec

tion from the boundary cells, since the calculated velocities 

at 2 and 5 are used for the calculation of the new vorticity 
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at 1 and 4, and the anomaly of convection scheme A is thus 

removed. However, when new vorticities are calculated in 

the boundary cells, zero velocities are substituted for the 

calculated values in the boundary cells, so that there is 

no convection between the boundary cells at 5 or 6, nor any 

between the boundary cell at 2 and the boundary cells on 

either side in the x-direction, thus removing the special 

effects of the corners mentioned in the above section. 

This then allows the vorticity generated at the surface to 

be convected away from the surface but not along the surface. 

The presence of the convection away from the surface 

allows the formation of the vortices and wake, while the 

elimination of the convection parallel to the surface in the 

boundary cells prevents the, loss of vorticity in the boundary 

cells by convection to the corners and thence off into the 

fluid. The results of this scheme were an improvement over 

the two previously discussed schemes in all cases tĥ ,t were 

evaluated. 

Convection Scheme D *-• No Convection in Boundary Cells 

Here the calculated velocities are used in the 

boundary cells, so that the cells at 1 and 4 experience con

vection from the boundary cells at 2 and 4, but no con ection 

is used in the calculation of the new vorticities in the bound 

ary cells. This scheme contains an anomaly opposite to that 

of convection scheme A, for now the cell at 1 experiences 
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convection with the boundary cell at 2, but the boundary 

cell at 2 does not experience convection with the cell at 1. 

Vorticity generated at the surface is convected downstream, 

but the vorticity in the fluid adjacent to the surface is 

not diminished thereby, so that non-conservation of vorticity 

would be expected. The boundary cells here developed too 

large a vorticity, since none was lost by convection, so that 

the boundary was penetrated from the rear as a result of this 

spurious vorticity. 

Convection Scheme E - No Convection in Boundary Cells and 

Use of Zero Velocity in Boundary Cells 

This is a combination of schemes A and D. The 

anomalies of both schemes are removed since there is no con

vection at all between the boundary cells and the adjacent 

layer of cells. This scheme produced no wake or vortices, 

since, as with scheme A, there is no convection away from the 

surface of vorticity generated at the surface, and this 

scheme is therefore also unattractive and was given no 

further consideration. 

Selection of Convection Scheme 

These comparisons then indicate that the most reason

able treatment of convection in the vicinity of the surface 

is convection scheme C, which allows convection of vorticity 

generated at the surface away from the surface but not along 

the surface. Accordingly, it was determined to use 
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convection scheme C, employing the actual calculated velo

cities in the boundary cells except for calculations in the 

boundary cells, where zeros are substituted. 

Representation of Diffusion in Boundary Cells* 

Diffusion Scheme A - Use of Calculated Vorticity in 

Boundary Cells 

There might appear to be less question of the vorti

city values in the boundary cells, and in the above compari

son of convection schemes the calculated vorticity in the 

boundary cells was used in the diffusion terms of Equation 

(IV - 6). However, with this diffusion scheme (designated 

diffusion scheme A) vorticity in the boundary cells was 

diminished at low cylinder Reynolds number by diffusion to 

the extent that it was insufficient to prevent penetration 

of the upstream surface. (Comparisons of diffusion schemes 

were made using convection scheme C, surface vorticity 

scheme A, and corner scheme A, except as noted.) This was 

the case, in fact, for all four convection schemes dis

cussed above. In each case the vorticity in the boundary 

cells was severely depleted by the strong diffusion preva

lent at low Reynolds numbers. 

*When required, the value of the vorticity at virtual points 
inside the boundary is taken equal to the surface value 
corresponding to the boundary cell for which the calculation 
is being made, i.e., for calculation in cell 2, the vorti
city at point 3 is taken as the surface value at point 2 
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This is a result of the numerical approximation of the 

integrals over the vorticity distribution in Equation (IV -

4). Since the largest vorticity occurs at the surface, it is 

of paramount importance that the region in the immediate 

vicinity of the surface be well represented in the numerical 

integration. Unfortunately, this region is also the loca

tion of the largest vorticity gradients. Now in the solu

tion of the differential equation the fluid vorticity 

approaches the surface value continuously, so that the inte

gral of Equation (IV - 4) includes vorticity values up to, 

and including, the surface value. In the summation over the 

vorticity cells in Equation (IV - 7 ) , the summation over the 

boundary cells must represent the integral over the region 

immediately adjacent to the surface and hence must supply 

some direct influence of the surface value of the vorticity. 

It is the failure of the integral to include this direct 

influence of the surface vorticity that causes the penetra

tion of the surface that occurs with this diffusion scheme 

in this case. 

Diffusion Scheme B - Use of Surface Vorticity in Boundary 

Cells 

It was found necessary in order to better represent 

the integral over the region adjacent to the surface to use 

the surface values of the vorticity, rather than the actual 

values in the boundary cells, in the diffusion terms of 
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Equation (IV - 6) for calculating the new values of vorti

city in the boundary cells. In addition, the change calcu

lated for the vorticity in the boundary cells over the time 

step is assumed to be a change from the previous surface 

value at that point, rather than from the previous actual 

value of the vorticity in the boundary cells. This treat

ment of the diffusion terms for calculation in the boundary 

cells is referred to for comparison purposes as diffusion 

scheme B. 

This scheme is compatible with the location of the 

boundary cells on the surface used in the present method, 

for it becomes exact as the surface is approached since the 

true fluid vorticity is continuous to the surface. The 

important point in this argument, and also in the above 

question of the velocity to be used in the boundary cells, 

is, in fact, that the boundary cells are located astride 

the surface, as indicated in Figure 65, rather than adjacent 

to the surface as would be the case if in Figure 65 the 

dotted surface were displaced one-half cell width down and 

to the left. Properties in the boundary cells are thus 

meant to represent the properties of fluid in the immediate 

vicinity of the surface. 

It also should be noted that this treatment of the 

diffusion terms for calculation of vorticity in the boundary 

cells is a natural companion to the treatment of the 



177 

convection terms discussed above as convection scheme C. 

In each case, for calculation of the change in vorticity in 

the boundary cells the actual surface value of the property 

in question is used in the adjacent boundary cells, i.e., 

zero for velocity and the surface value for vorticity. 

The use of diffusion scheme B reduced the upstream 

penetration at low Reynolds number somewhat, but significant 

penetration still remained. A reduction of the time step 

showed no significant change in the results, thus eliminat

ing the possibility of the loss of vorticity in the boundary 

cells and consequent upstream penetration with diffusion 

scheme A being due to a too large a time step. The vortices 

formed too high above the center line, and there was sig

nificant penetration of the downstream boundary. Both of 

these features indicate that the vorticity in the boundary 

cells was too high. The penetration of the downstream sur

face and the associated outflow through the upstream bound

ary is caused by excess vorticity in the boundary cells 

around 90°, especially on the highest corners. With this 

diffusion scheme there was very little difference between 

the solution using the convection schemes C and B, the 

results being very nearly identical. 

Selection of Diffusion Scheme 

The diffusion scheme using surface values of the vor

ticity for calculation in the boundary cells (scheme B) does 
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reduce the upstream penetration by maintaining the vorticity 

in the boundary cells and therefore was selected. However, 

it results in too large a vorticity on the higher corners of 

the boundary cells, thereby causing the vortices to form too 

high on the cylinder, with consequent penetration of the 

downstream boundary and outflow through the upstream bound

ary. Consideration was therefore given to the method of 

calculation of the surface vorticity as discussed in the 

next sect ion. 

Representation of Surface Vorticity 

Surface Vorticity Scheme A - Use of Zero Velocity in 

Boundary Cells 

In all results discussed above, the surface vorticity 

was located on the boundary cells and was calculated from 

the curl of the velocity using two-point, one-sided differ

ences between the boundary cells and the adjacent layer of 

cells, with the velocity in the boundary cells taken as zero, 

this being referred to as surface vorticity scheme A. 

Referring again to Figure 65, in this scheme the sur

face vorticity at 2 is equal to the x-velocity at point 1; 

the surface vorticity at 6 is equal to the negative of the 

y-velocity at 7; and the surface vorticity at 5 is equal to 

the sum of the x-velocity at 4 and the negative of the y-

velocity at 8. This scheme results in large vorticity on the 
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outside (convex) corners and zero vorticity on the inside 

(concave) corners so that the presence of the corners is 

felt to too great an extent. 

Surface Vorticity Scheme B - Use of Calculated Velocity 

in Boundary Cells 

An obvious variation, designated surface vorticity 

scheme B, of this scheme is to use the actual calculated 

velocity in the boundary cells in the evaluation of the 

curl, e.g., the surface vorticity at 2 is set equal to the 

difference between the x-velocity at points 1 and 2, etc. 

This gives non-zero vorticity on the inside corners, but 

reduces the surface vorticity at all other points, not just 

at the outside corners and resulted in inadequate surface 

vorticity with no vortices having been formed at cylinder 

Reynolds number of 120. This is not surprising, for since 

the vorticity in the boundary cells is not equal to the sur

face vorticity, a difference taken between the boundary 

cells and the adjacent layer of cells must represent actually 

a derivative in the fluid and not at the surface. 

Representation of Corner Vorticity 

Corner Scheme A - No Special Consideration of Corners 

Corner scheme A refers simply to the calculation of 

the vorticity in the corner cells from the curl with no spe' 

cial consideration given to the corners. This scheme 
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resulted in too large a vorticity in the outside corner 

cells, as mentioned above. 

Two schemes, designated as corner schemes B and C, 

respectively, for reducing the surface vorticity at the out

side corners only were tried: (a) dividing the surface 

vorticity on the corners by two, and (b) calculating only 

the surface vorticity on the corner using non-zero velocity 

in the boundary cells. Both of these corner schemes are 

evaluated below. 

Corner Scheme B Use of Central Differences with 

Zero Velocity in Boundary Cells 

The first of these schemes might be justified by 

arguing that, since the derivatives involved in the curl at 

the corners are parallel to part of the surface, rather than 

perpendicular as at the other points, the differences there 

should be central rather than one-sided. If zero velocity 

is to be used in the boundary cells, this then results sim

ply in divisions of the curl, as calculated from the one

sided differences, by two. The surface vorticity of the 

outside corners is thus reduced, but that of the inside cor

ners remains zero. The reduction in surface vorticity at 

the outside corners caused the vortices to form later and 

closer to the center line, with less penetration of the 

downstream surface, and also less upstream penetration. 
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Corner Scheme C - Use of Central Differences with 

Calculated Velocity in Boundary Cells 

The second treatment of the surface vorticity on the 

corners, corner scheme C, mentioned above, depends for 

justification on the argument that, since the corners are 

abnormal projections away from the true curved boundary, 

central differences involving the actual calculated velocity 

in the boundary cells should be used in the curl. This 

scheme reduces the surface vorticity at the outside corners 

and gives non-zero vorticity on the inside corners. The 

upstream penetration was less, and the flow did separate and 

begin to form a wake with corner scheme C, both of which 

features favor this scheme. 

Corner Scheme D - Modification of Scheme C on Inside Corners 

A variation of corner scheme C, designated as corner 

scheme D, has the corner surface vorticity evaluated exactly 

as in scheme C, but in the calculation of the vorticity in 

the boundary cells on the inside corners the change over the 

time step was taken to be the change from zero, rather than 

from the surface value on the inside corners. This was con

sidered to combine some of the aspects of schemes B and C, 

the value of the surface vorticity on the inside corners 

being zero in the former. The vector plots showed almost no 

noticeable difference from those of scheme C, except that 

separation occurred later than with scheme C. 
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Surface Pressures and Drag Coefficients* 

Again the rectangular representation of the curved 

surface raises a question as to what value to use for the 

vorticity in the boundary cells in the calculation of the 

surface pressure coefficient and the drag coefficients— 

the actual calculated value in the boundary cells, desig

nated coefficient scheme A; or the surface value, coeffi

cient scheme B. Both choices were evaluated and the results 

for the pressure and drag coefficients, together with the 

minimum pressure coefficient on the surface, are given in 

Table 3 at tim2 T = 2.0, except as noted, for several of 

the boundary treatments. 

A comparison of coefficient schemes A and B is also 

given in the time development of the coefficients in 

Figures 66-68 for Reynolds numbers 6, 24, and 120. The 

effect of the time step on the pressure coefficient is much 

greater with coefficient scheme B, and increases as time 

progresses. The effect of the time step is greater with 

scheme A for the friction coefficient, but no such increase 

with time is evident. These trends are understandable, since 

the time step affects the vorticity in the boundary cells and 

*A11 quantities used in figures and tables discussed in 
this appendix are nondimensionalized as noted in the 
Nomenclature. Parameters used in all results presented are 
given in Table 4. 
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adjacent cells directly, but affects the surface vorticity 

only indirectly through the velocity. The pressure coeffi

cient with scheme B then is more affected by the time step, 

since one of the vorticities involved therein is more sensi

tive to the time step than is the other. Since only one 

vorticity is involved in the friction drag coefficient, 

scheme B is less sensitive to the time step in that case. 

The existence of the corners causes the steady-state 

pressure distribution to be reached much faster than with a 

smooth curved surface, with the result that little change 

occurs in the drag coefficients given after time T = 2.0, 

except at Reynolds number 120. For this reason the time 

histories of the drag coefficients given do not match those 

of solutions obtained in cylindrical coordinates, although 

the asymptotic values agree fairly well at low Reynolds 

numbers. This also is the reason for the large effect of 

the cell size on the early time development of the drag 

coefficient. The smaller cell size gives a better represen

tation of the curve and hence the true time development. 

The pressure distributions of Figure 69 also tend to 

favor scheme A, since scheme B produces a more severe pres

sure drop. The drag coefficients with scheme B are, there

fore, larger than with scheme A, and the agreement with the 

other numerical solutions and the experimental data given in 

Figure 13b is not as good. The choice of scheme A for the 
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pressure coefficient is logical, since its use of the actual 

calculated values of the vorticity in the boundary cells 

more closely represents the derivative of the vorticity in 

the fluid. Scheme A also gives friction drag coefficients 

in better agreement with the other numerical solutions 

shown in Figure 13c. 

Final Selection of Schemes 

Of the five convection schemes evaluated only schemes 

B and C produced vortices at high Reynolds numbers. These 

two schemes produced very similar results for both the flow 

pattern and the drag coefficients, the only noticeable dif

ference being a slightly more rapid development of the flow 

with scheme B. However, convection scheme C produced a 

reasonable flow pattern at high Reynolds number even with 

diffusion scheme A, while convection scheme B allowed com

plete penetration of the surface. Although diffusion scheme 

A is not to be chosen, this does seem to indicate that con

vection scheme C is more reasonable. 

The choice of diffusion scheme is more clear, since 

diffusion scheme A allowed considerable penetration of the 

surface at low Reynolds number with all convection schemes. 

The surface vorticity scheme is also clearly indicated to be 

scheme A since scheme B did not produce vortex formation. 

Diffusion scheme A was therefore selected as more represen

tative of the physical flew field. 
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The first corner scheme is eliminated by penetration 

of the downstream surface. Of the remaining three, both B 

and D involve zeros for vorticity on some of the corners and 

result in insufficient pressure drop around the cylinder. 

The final selection then is 

convection scheme C 

diffusion scheme B 

surface vorticity scheme A 

corner scheme C 

coefficient scheme A. 



APPENDIX F 

CONVERGENCE AND EFFECT OF PARAMETERS* 

Two-Dimensional Flow About Solid Cylinder 

Convergence 

Convergence of the solution as the time step 

decreases at constant cell size is demonstrated for the 

Dufort-Frankel formulation in Figure 70. Some differences 

are evident as the time step is reduced from 0.4 to 0.2, 

but the second reduction by half produced little change. 

The convergence was quantitatively evident in the numerical 

results which were checked extensively on a point-by-point 

comparison basis. 

Effect of Parameters 

Figure 71 shows the effect of the influence range r 
m 

used in the velocity calculation. (It is recalled that vor 

ticity more distant than r from the point at which the 
J m v 

velocity is being calculated is not included in the calcula 

tion at that point.) The drastic error introduced by too 

*A11 quantities used on figures discussed in this appendix 
are nondimensionalized as noted in the Nomenclature. The 
scale factors for the vector plots are given in Table 5. 
The magnitude of a vector is indicated by the length of 
the stem of the arrow, the size of the arrowheads being 
the same throughout. Spurious lines on the plots are the 
result of plotter error. Parameters used in all results 
presented are given in Table 4. 
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small an influence range is evident in Figure 71a where the 

range was one cylinder diameter. A range of two cylinder 

diameters, however, yields results very nearly the same as 

those obtained with a range of four diameters and was thus 

considered adequate. 

Figures 72 and 71b show the effect of the minimum vor 

ticity OJ necessary for creation of a new vortex cell.* (It 
J m J v 

is recalled that a new vortex cell is created from a border 

it 

cell only if the sum of the magnitude of the prospective vor 
ticity calculated for that border cell and the magnitude of 

the vorticity of any adjacent vortex cell exceeds w . Other 
m 

wise the vorticity is distributed evenly among the adjacent 

vortex cells.) Very little effect, other than the varying 

number of vortex cells, is evident even at the largest value 

of 0) used. The effect of this parameter, however, increase 
m r ' 

with time, as is noted for the one-dimensional infinite flat 

plate results of Chapter III. The value of 0.01 was con

sidered adequate for the total times considered for the thre 

dimensional jet. 

Infinite Jet in Cross-Wind 

Convergence 

The convergence of the solution as the time step 

decreases at constant cell size is demonstrated for the 

straight explicit formulation in Figure 73. Similar 

*Vortex cells and border cells are defined in Chapter II 
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convergence was obtained with the Dufort-Frankel formulation. 

Small changes occurred upon a reduction of the time step from 

0.4 to 0.2, but further reduction produced only very slight 

change as evident from these figures. Again the convergence 

was quantitatively evident in the numerical results which 

were checked point by point. 

Effect of Parameters 

The effect of the influence range r used in the 
m 

velocity calculation is shown in Figure 74. (It is recalled 

that vorticity more distant than r from the point at which J m r 

the velocity is being calculated is not included in the cal

culation at that: point.) Larga differences are evident 

between the results with ranges of one and two exit diameters. 

However, the effect of a further increase to four diameters 

is slight except to eliminate most of the misdirected down

ward vertical velocity. The magnitude of this downward 

velocity is very small, however. (Recall that the arrow

heads are all of one size. The magnitude of the velocity'is 

indicated only by the length of the shaft of the arrow.) A 

range of two exit diameters was, therefore, considered 

adequate. 

Figures 75 and 74b show the effect of the minimum 

vorticity 03 necessary for creation of a new vortex cell. 
m J 

(It is recalled that a new vortex cell is created from a 

border cell only if the sum of the magnitude of the 
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prospective vorticity calculated for that border cell and 

the magnitude of the vorticity of any adjacent vortex cell 

exceeds co . Otherwise the vorticity is distributed evenly 
m J • J 

among the adjacent vortex cells.) The effect of co in the 
m 

range considered is small at this time, being confined to a 

change in the number of vortex cells. As shown in Chapter 

III,the effect of this parameter increases with time as the 

vorticity spreads more widely. The choice of 0.01 was 

considered adequate for the total times considered. 



APPENDIX G 

LINEARIZED STABILITY CRITERIA* 

Straight Explicit Formulation 

Two-Dimensional 

Applying the results of the stability analysis in 

two-dimensions given in Appendix H to Equation (IV - 5) of 

Chapter IV and Equation (V - 5) of Chapter V we have 

a = V, b = 
R 

where V is a representative (nondimensional) velocity magni

tude in the field, and R is the cell Reynolds number. Use 
c J 

of the largest velocity in the field for V will give the 

most conservative stability criteria, of course. 

Then with the cell size as the reference length we 

have, in the notation of Appendix H, 

At At 
r = • r. q 

(1) 
0 ' 2(1) 

and, from the two-dimensional results of Appendix H, two 

regions of stability: 

R 
_c 

- 4" 
(a) At < —~ and ^=- < ̂  J 

Ajt 1 / At 
2 V / 2R 

*A11 quantities in th 
noted in the Nomencl 

is appendix are nondimensi 
ature. 

onalized as 
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R p M I < Al < 1 /At 
R 4 2 V / 2R 
c c 

The first of these may be reduced to 

Rc 2 
At < min (— , — ) 

V R c 

a n d , t h e r e f o r e , may b e s t a t e d a s 

( a ) 

R < 2 \ ? and At < ~ 
c — V — 4 

2 / 2 2 
R > \ r a n d At < 'c - V - V 2 R 

R 

s m c e 
4 - V2R 

f o r R < 2 / 2 
c - V 

The stability region (b) above may be given as 

Rc , u , Rc A At 1 . At2V2 . At2V2 , At _ < A t < _ a n d _ _ - < _ _ a n d _ r _ < _ _ 

c c 

The last of these was encountered above and reduces to 

At < 
" V 2 R 

The second becomes 

2 2 4 
At V - ~-At + 1 > 0 

c 

The roots of this quadratic are 
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At = 
V 

R ± - V2 .2 v 

Both of these roots are real and positive for R < — so 
r c — V 

that, since the quadratic is positive at infinity, it is 

positive in the following two ranges of At: 

at < — 
v 
U . /H _ v2 

R 

74 4 t - 7 K + / ^ - r 
R < 77 c — V 

If, however, R > — then there are no real roots, and the 
c V 

quadratic must be positive for all values of At. This con

dition, therefore, does not restrict At for R > —. 
c V 

Since At < 
V2R 

is also required, there are no 

acceptible values of At in the range above the larger root 

of the quadratic. Also the range of At below the smaller 

2 
root is smaller than that defined by At < — . Therefore,, 

~ V R 
Q 

the stability region (b) may be stated as 

( b ) 

R R , 
R < - a n d - £ < At < — a n d At < — 

c — V 4 — — 2 — 2 

2 R c R c 2 
R

c 1 i a n d ~ £ A t < y a i d At < -

R 

V R 

R 
*- - V2 

2 

These conditions for region (b) may be combined 

further, however. The first set requires that 
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R 
<= < -i 
4 - v 2 

'XT v2 
R2 

c 

4 2 2 
— — - V < • = — 
D2 - R 
R c 
c 

R V 
c 

which requires that 

R V 
c 
4 

> 0 

else the square root is not real. This requires that 

2/2 
R < . This, however, is already satisfied since 
c — V 

R < — for this set of conditions. It then is only required c — V J ~L 

that 

R V 4 2 c 2 
D2 - ^R 4 ; 
R c 
c 

R V 
c which reduces to —; > 0, and is thus trivial. 

The second set of conditions of (b) above require 

that 

c < 2 

4 - 2 
V R 

which requires that R < 2/2 
c - V 

Then, since 
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a n d 

R 
R 

- V 

R 

IT f o r R < ~ 
c — V 

~ R ry 

r i f f« Re >? V R 

the conditions for region (b) may be further restated as 

(b) 

2 R i 
R < - and -7- < At < — 
c — V 4 — " v 

R 
? 2/2 "c 2 
f- < R < ^JL—• and -~ < At < -f 
V — c — V 4 —• — „2 

R' 

V R 

But now the stability regions defined by (a) and (b) 

overlap and may be combined. The regions of stability then 

may be stated finally as 

2 1 
R < - and At < —~ 
c - V - 2 

R 
R W 

R > 77 and At < ~~ 
V R 

With no variation in the direction of the jet axis, the 

appropriate value for the maximum field velocity is that of 

the cross-wind, i.e., unity in the present nonddimensional 

form. For V = 1 the stability criteria become 

R < 2 and At < — 
c — — R 

- 1 
R 
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R > 2 and At < —-
c — — R 

c 

Three-Dimensional 

By the same development applied to the three-dimen 

sional results from Appendix H, the stability regions for 

Equation (VI - 19) of Chapter VI are defined by 

R < | and A t < ~ 
c - V - 2 3R 

2 4 R > — and At < -— 
C " V - 3V2R 

• > 

' 4 T . 2 
- V 

2 R 
c ) 

Here the appropriate value for the maximum field velocity is 

the jet exit velocity (the velocity ratio in the present non 

dimensional form) for velocity ratios greater than unity. 

Dufort-Frankel Formulation 

With r = — and g = —r- Equation (IV - 6) of Chapter 
R £-

IV and Equation (V - 6) of Chapter V may be written as 

+ ? i ) j + i - ^ - i > 

+ ^l+lti
 + S-i.j + sj.j+i + ^,M' ( i ) 

(Again V is a representative (nondimensional) velocity mag

nitude in the field.) Let the solution be written in the form 
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C := X„Y.T 
i,j i j n 

where the functions X, Y, and T are functions only of x, y, 

and t, respectively. Then 

(I + 2r)^-+-l = ( I _ 2 r ) I*~I - gV(^±i - ^ z l + Zj + 1 _ I l z i ) 
k2 + ^ r ; T ^ AT) T g M x x + y ; 

n n l I j j 

+ r (!i±i + fill + Ii±I + Zi^I 
k X. X, Y . Y. 

l i j J 

( 2 ) 

From this equation and the functional form of X, Y, and T it 

follows that 

X . , T X « _ . A . . . A . _ 

f i + l . i - l N TT/ i+l i-lN _ . 
r(— + — ) - SV(~Y ~ x > = c o n s t a n t = k± 

(3a) 

Y Y Y Y 
rC-p^- + -^— ' ) - g V ( - p ^ - - ^ ~ ) = constant = k2 

j j J j 

(3b) 

T T 
( I + 2 r ^ ^ ± i " (I " 2 rHF^ = constant = A = k]_ + k2 

n n 
(3c) 

Equation (3c) may be solved by the substitution of 

T = 3 where 3 is a constant. Thus 3 must satisfy n 

(f + 2r)32 A3 + (2r - p = 0 (4) 

so that there are two acceptable values: 

A ± /U - 4(4r2 - |o 
1 + 4r (5) 
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For stability it must be required that 

< 1 

This then requires consideration of the properties of qua

dratic roots as given in Appendix I. In the notation of 

Appendix I we have 

A - i + 2r 

B = - A 

C = 2r - \ 

But the constant A is the sum of the two constants, 

k- and k , defined in Equation (3a) and (3b) : A = k.. + k~ . 

T 
Using the matrices I_, IJ and L , as defined in Appendix H, 

Equation (3a) may be written as a matrix equation: 

[k _I - r(LT + L) + gV(:LT - L) ]X = 0 (6) 

where X is a column matrix: 

X 

1-1 

Thus k1 is an eigenvalue of the matrix [ r (L. + _L) 

T 
- gV(L_ - L_) ] . This matrix, is the same as the matrix B_ 

defined by Equation (H - 26) of Appendix H, except for the 

two constant coefficients. The eigenvalues, therefore, may 

be inferred from the results of Appendix H, as stated by 
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Equation (H - 33) of that appendix. Thus 

( k 1 ) p = 2 / r 2 t T 2 TTp 
; V C O S -=F- P = 1 . 2 , I - 1 ( 7 ) 

where p = 0, I corresponds to the field boundaries in the x-

direction. Similarly the eigenvalues of Equation (3b) are 

2„2 HR (k2}q ~ 2 / r " 8 V C ° S J q = ly 2''"*' J ~ 1 (8) 

where q = 0, J corresponds to the field boundaries in the y-

direction. Then the acceptable values of the constant X are 

X = (k-) + (k_) - 2 
p,q l'p 2'q 

/r 2 - g2V2 (cos ^ + cos ^ ) (9) 

so that 

B = - 2 / r - g V (cos -^ + cos -̂ y1) HE 7Tq> 

Now according to the results of Appendix I the magni 

tudes of the roots of the quadratic equation 

A 3 2 + B £ + C = 0 

will be less than unity in the following four cases: 

(a) A, B, C real - 4AC > 0 

< 1 

(b) A, B, C real 

B I < IA + C I 

B2 - 4AC < 0 
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(c) A, C real; B imaginary 

(d) A, C real; B imaginary 

B [ + 4AC >_ 0 

< 1 

B | < | A - C | 

B|2+ 4AC < 0 

In the present application, B is real if r 

2 2 2 
g V > 0. If this is the case then B - 4AC > 0 if 

2 2 2 
(r -- g V ) (cos IE * _ o ^ 2 os -r1) > 4r 

J 

Then if 

which reduces to 

2 2 2 2 2 1 
(r - g ZV Z)(2)^ >_ 4rZ - ± 

SV < 4 

we have B ~ 4AC > 0 for some p,q for all values of r such 

that r >_ gV. Then referring to cases (a) and (b) defined 

above, if r >_ gV and gV <̂  -- we must require that |B| < 

< 1, while if gV > ~r orly the latter is |A + C| a n d 

r e q u i r e d . 

Now | B | < I A + Cl i s s a t i s f i e d i f 

2 / r 
2 T T 2 I Tip , 'Tq 

g V I c o s —±- + c o s -~* < | 2 r + \•+ 2 r - \ 

This will be satisfied for all p,q if 

4 /r 2 - g2V2 < 4r 
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which reduces to 

g 2 v 2 > o 

which is always satisfied. Also 

9 1 

2 r - — 

< 1 is satisfied if 

2r + ~ 
< 1 

This also is always satisfied. Therefore the solution is 

stable if r > gV. No restriction is imposed on the value 

of gV. 

2 2 2 
If, however, r - g V < 0, we have B imaginary; then 

IBI2 + 4AC > 0 if 

t 2M2 ^ t ^SL 1^\2 ^ 1 / 2 

(g V - r )(cos —±- + cos —r1) >_ 7- - 4r 

Then, if 

which reduces to 

2 2 2 . 1 
(gZVZ - x') (2)^ >_ |- - 4r 

' >-i 
we have |B| + 4AC > 0 for some p,q for all values of r such 

that r < gV. Thus, referring to cases (c) and (d) defined 

above, if r < gV and gV >_ -r we must satisfy |B| < |A - C | and 

< 1, while for gV < -7- only the latter is required. 

Now |B| < I A — CI is satisfied if 

/ 2„2 2 I irp_ 7Tq_ / e V - r cos —f- + cos • 2/ g < |2r + \ - 2r + \ 



201 

This will be satisfied for all p,q if 

which reduces to 

. /~~2„2 2 
4/ g V - r < 1 

2 2.2 1 
r > g V - -j 

Again < 1 is always satisfied as above. 

Therefore, if r < gV the solution is stable if 

gV < -r and r < gV 

1 f~l 2 1~ gV >_ -r and /g V - -r-r < r < gV 

But since the solution is stable for all values of gV when 

r >_ gV we have for the final statement of the stability 

criteria: 

1 
gV < T > stable for all r 

1 / 2 2 1 
gV > J , stable for r > J g V ~ JZ 

Applying these criteria to Equation (IV - 6) of Chap' 

ter IV and Equation (V - 6) of Chapter V we have 

At At 
r R • g 2 

c 

so that the stability conditions become 
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Atyr , 1 L 1 e 1 1 A t 
-=-V < 7- , stable fcr all — 

L H R 

c 

A t , T > 1 , U1 . A t -s / A t
 \ T 2 1 

—V - 4 ' S t a b l e f ° r I" V - T - V ~ 16 
c 

These conditions may be restated as 

At < 7TT7 , stable for all R 
2V c 

At > 2V , stable for At2(-^ \) < -^ 
R 
c 

Now for R < — the last condition is satisfied for all At, 
c — V 

V2 1 2 
since then —j- - —;r < 0. For R^ > — this condition may be 

stated as 

4 R2 

c 
c V 

R 
At < 

A2-2 
2/V R - 4 

c 

The stability criteria then may be stated as 

R < — , stable for. all At 
c — V 

2 R 

R > - , stable for At < 
c V / 2 2 

/V R 2/V R - 4 c 

With V = 1 these become 

R < 2 , stable for all At 
c — 

R 
R > 2, stable for At < 
c 

A2 
2 /R - 4 c 



APPENDIX H 

COMPARISON OF VON NEUMANN AND MATRIX 

METHODS OF STABILITY ANALYSIS 

Consider the differential equation 

2 
9 f 3f . 3 f , > v , , > . 

3T = a 3 ^ + b7T S(X' ° (1) 

dx 
where a and b are constants and g(x, t) is a known function 

Let the differential equation be approximated by a differ

ence equation as follows: 

n+1 n n _n -n n n 
f. - f . f.,- - £. . f . , 1 - 2 f . + f l l l+l i-l , l+l l l-l n 

A^ = a 2Ax~ + b ~ —~~2 + 8i 
(Ax) 

or 

f n + 1 = fn + f ^ ( f " " f? i) + b - ^ - r C f ^ , - 2fn + fn
 n) l I 2 Ax l+l i-l , . N2 I+I I i-l 

(Ax) 

+ g*At (2) 

Here the subscript refers to space and the superscript to 

time. This difference equation is straight explicit, in 

that the values at each space point at each new time step 

are predicted from values at the same and neighboring space 

points at the previous time. 

J *• At At ^u 

Now define -r-r— = q, —- = r. Then 
^AX (Ax)Z 
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f n + 1 - Lf n + gnAt 
1 1 i 

(3) 

where the difference operation L is defined by 

T _ n _ r n , n ^ n ^ l ^ . / J r n o ^ n i ^ r n % 
L f i = f i + a q ( f

i + i - f ± - i > + b r ( f i + i - 2 f i + f i - i > 

= (1 - 2br)f" + aq(f° + 1 - f"_1) + br(f"+1 + f"_1) (4) 

Now the values actually obtained by computation with 

the difference equation will contain some computational 

error. Thus the values actually obtained at step n are 

f. + e. where f. represents the true value, and e. the 
I I I r l 

error. Then operation at the next time step produces 

L(f. + e.) + g.At, which then differs from the true solution 
I l b± 

at that time step by E, . Thus 

£n+l n+1 T ,-n n. n. 
f. + £. = L ( f . + e . ) + g . A t 
I i i i °i (5) 

But since f. is the true solution, we have, using Equation 

(3) in Equation (5), 

n+1 T n 
i i 

(6) 

so that the error satisfies the homogeneous difference 

equation: 

n + 1 ,-. O-L \ 1 i / n n \ . i _ / n i n \ /-7 \ 

E i = (1 - 2br)£1 + aq(e i + 1 - £±_±) + br(e i + 1 + e±_1) (7) 
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If there are boundary conditions imposed in the prob

lem, at say i = 0 and i = I, we then have f and f given, 

so that no error is present on the boundaries, since the 

values there are known and are not calculated. Then 

n n -. 
£o " £i = ° 

The presence of boundaries thus imposes a restriction on the 

types of errors that may arise, i.e., there will never be 

any errors on the boundaries. In the pure initial value 

problem, with no boundary conditions, no such restriction on 

the error is present, and errors of a completely arbitrary 

nature may occur. The range of errors that may arise in 

mixed initial value-boundary value problems is thus smaller 

than in pure initial value problems, and the stability 

restrictions of the latter may, therefore, be expected to be 

more severe, 

Now if boundary conditions are imposed, Equation (7) 

may be written as a matrix equation by defining the following 

I - 1 order matrices: 

L = 

0 . 

1 0 

0 1 0 . . . . 

. 0 1 0 . . . 

n _ 
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Thus L_ has zero elements except on the lower sub-diagonal 

where the elements are unity. The elements of these 

matrices are given by 

<i>i3
 = 6 i - i , r (^n ) i • el 

Then Equation (7) becomes £ = A £ with 

A = (1 - 2br)I_ + aq(LT - jL) + br(LT + L) (8) 

where _I is the unit matrix and the superscript "T" indicates 

the matrix transpose. Thus; 

L T -

0 1 0 . 1 * • 

. 0 1 0 . . 

. . 0 1 • • or (I1) . . = 6..,, • v- yij i+l,J 

In the absence of boundary conditions the matrices 

are of infinite order, so that the matrix formulation is 

thus useful only for mixed initial value-boundary value 

problems. Therefore, pure initial value problems are 

treated by the von Neumann (Fourier expansion) stability 

analysis, but mixed initial value-boundary value problems 

may be treated either by the von Neumann analysis or by 

matrix stability analysis as shown below. 

Von Neumann Stability Analysis 

Expand the error in a general Fourier Series: 
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n = Re I (cTe^lfl + C-e-iekXi)eiaktn 
k=l k k 

(9) 

+ - + 
where C , C, , 3, » 3, > and a, are all complex constants. For 

stability we must have Im(a, ) > 0 or, equivalently, 

e10tk| < 1 

Now x. = iAx and t = nAt(with the "i" here not to be con-
I n 

fused with the above usage as /-l) so that if we define 

5* = e 1 8k A x and 5fc = e l ak A t 

we have 

Ei • Re I tek<0 • c-^-r1] (?k)
n 

k=l 

(10) 

(Here the i and n are exponents, the i being the space 

coordinate index and not /-1.) Then for stability 

C < I 

Now substitute Equation (13) into Equation (7) and rearrange 

Then 

I ^^(^)i(Ck.)
n[?k " (1 - 2br) 

k=l 
• * < - < _ 1 ) 

br(< + S+-
1)] 
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+ V V ' ^ X " » ~ ̂ br) 

- aq(?k " X - £~) " b r ( ^ _ 1 + £k> ] } = 0 

Now since this must hold for all i we must have 

Ck - (1 - 2br) - aq[(£k) - (£+)
 X] 

- br[<s£) + C^)"1] = 0 

and 

(11) 

(12a) 

^k " <! 
2br) + aq[(?k) - (£~)

 X] 

- br[(?k) + (C^)"1] = 0 (12b) 

Subtracting these and rearranging, we obtain 

aq[(s£) - (̂ ) *] + br[(Cj) + «£) l] 

= - aq[(£~) " (̂ )_'1] + b r [ ( 4 k ) + (V 1] 

or 

(br + aq)[(?k) ~ (?k
)_1] = (br " a^[^k ) " ( 4 ) _ 1 ] 

or 

( < > - (Su)"1 _ b r - a q 

(5") - (Ct)-1 br + aq 

Then multiplying the numerator and denominator on the left 

by ^ , we obtain 
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<02<£> - <<> _ br - aq 
br + aq ( ? ; > 2 ( < ) (Ck) 

or , finally 

k ^br - a q ^ k (13) 

Note that this relation is a consequence of the difference 

equation only and has nothing to do with any boundary condi

tions. It is, therefore, to be satisfied in pure initial 

value problems as well as in mixed initial value-boundary 

value problems. 

Using Equation (13) , drop the superscript from £, and 

write Equation (10) now as 

k = l 

-,br + a^ -j -i n 
br aq' H J U k ; (14) 

with £, from Equation (12a): 

Ck = 1 - 2br + aq(?k - £~
2) + br(?k + S^) (15) 

or using the definition of |., 

i on. / 13i Ax - I B , Ax. . , ±3, Ax - 1 3 - Axs 

L = 1 - 2 b r + a q ( e k - e k ) + b r ( e k + e k ) 

= 1 - 2br + i2aq sin (3, Ax) + 2br cos(3,Ax) (16) 

Now for the pure initial value problem there are no 

other conditions to be satisfied, and $ may be taken to be 
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real. We then have for the stability criterion of the pure 

initial value problem, from Equation (16), 

[1 - 2br + 2br cos(3kAx)]
2 + 4a2q2sin2(BfeAx) < 1 

which may be rewritten as 

[1 - 2br + 2br cos (3kA-x).]
2 + 4a2q2 - 4a 2q 2cos 2 (3kAx) < 1 

(17) 

for all 
V 

Note that this same result is obtained when only a 

single component of the Fourier series is taken. In that 

case Equation (12b) is eliminated, and the error is given by 

Equation (14) with all C. =: 0 and all but one C, equal to 

zero. Equation (17) is unchanged. The same result is like

wise obtained by taking all C, = 0 and all but one C, equal 

to zero. In that case, Equation (12a) instead of Equation 

(12b) is eliminated. 

If, however, boundary conditions are imposed we have 

further conditions to be satisfied by the (3 . Thus applying 

the conditions e = e = 0 we have 

Re I [C+ + V a k ) n = 0 
k = l 

( 1 8 a ) 

a n d 

Re 

DO 

I i<d + crcg-H*)"^ -I](ek)n -
k = l k b r - aq 

( 1 8 b ) 
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Since these must hold for all n, we must have 

and then 

c k = " c k 

^21 _ ,br - aq. I 
^k ^br + aq; 

(19a) 

or 

^ = 

.krr 
(ir_^_aa 1/2 I k „ 
br + aq ' 

, 1 - 1 (19b) 

This then requires that $, be complex, for 

kTT 
1 3 , Ax , , .« * _ 

k
 = F « / b r ~ a q . 1 / 2 I 

^ k V b r + a q ; 

o r 

•a A -r kir l i / b r - aq N 

1.3, Ax = i — + - r l n ( r * ) 
k I 2 b r + aq 

s o t h a t 

kir . 1 , , b r - aq x 
i, = ~z~k— - i - l n ( - — — ; 1 ) 
k IAx 2 v b r + a q ' 

( 2 0 ) 

Using Equation (19b), we have from Equation (14), for 

the mixed initial value-boundary value problem, 

1 - 1 
k iT i 

« Re I c r ( ^ - ^ - ^ ) i / 2 

, L . k b r + aq k = l 

- 1 -
k iT i 

_ rbr + aq,-i .br - aq.- i/2 I n 
^br - aq; ^br + aq; J K^\L} 

where only the first "i" in the exponentials is /-l . Then 

n 
£ . 

l 

1 - 1 
kTTi 

= Re 
V c / b r _ Z a q . i / 2 , I 
£ L k ^ b r 4- a q ; t 8 

- i -
- e 

k = l 

kjr_i 

1 > ^ n 

-i.br


212 

or, including the 2i in the constants, C, , 

1 - 1 
n V _ , b r - a q x i / 2 . , k T r i v ,„ Nn 

G i = R e A C k ( br + acP •i«C-i-)(Ck) 
(21) 

k=l 

Also, substituting Equation (19b) in Equation (12a), we 

have 

, kfT 
i -

i k iT 
i ou r / b r " a q , 1 / 2 I / b r - a q N - l / 2 £, = 1 - 2 b r + a q (7 * ) e - ( - - * ) 

k ^ L b r + a q v b r + a q 

. kfr i k i T 
+ b r [ ( b r - aq 1/2 £ I + br - aq -1/2 I 

b r + aq b r + aq 

o r .kTT . kiT 
- 1 -

£, = 1 - 2 b r + k 
/ , v 2 ~ , , 2 , 1 . * I 

/ ( b r ) - ( a q ) ( e + e ) 

1 - 2 b r + 2 / ( b r ) 2 - ( a q ) 2 c o s ^ ( 2 2 ) 

The stability criterion for the mixed initial value-

boundary value problem then is one of the following: 

1 - 2 b r + 2 / ( b r ) 2 - ( a q ) 2 c o s - y - | < 1 i f | b r | >_ | a q | ( 2 3 a ) 
kTT 

f o r a l l k = 1 , 2 , •* • , I - 1 

kTT ( 1 - 2 b r ) + 4 [ ( a q ) - ( b r ) ] c o s 2 - ^ - < 1 i f | aq | >_ | b r | ( 2 3 b ) 

for all k = 1, 2, •**, I - 1. Note that for the mixed 

initial value-boundary value problem the Fourier series is 

finite, k running from 1 to I - 1. 
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In summary, by the von Neumann analysis, the error is 

given in general by Equation (14) for the pure initial value 

problem, with the stability criterion given by Equation (17), 

with 3, unrestricted. For the mixed initial value-boundary 

value problem the error is given in general by Equation (21), 

and the stability criterion by Equation (23), with k running 

from 1 to I - 1. 

Matrix Stability Analysis 

With £ = Ae and A given by Equation (8) we have 

n-KL . . . n-1. A2 n-1 
£ = A(A E ) = A £ 

Carrying this out repetitively we obtain finally 

n An o 
E = A £ 

(24) 

Then using matrix norms induced by the vector norm (natural 

norms) we have 

n i l ^ i i , n 
£ < A 

o n , I I > ii n 

£ | I <_ |A| J 

Now it may be shown* that the maximum eigenvalue in 

magnitude of a matrix is the limit inferior of its norms. 

Using this fact and requiring for stability that || A | | < 1 

for some norm, we have as a necessary and sufficient 

*{72, Chapter 1 } 
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condition for stability that 

P(A) < 1 (25) 

where p(A) is the spectral radius, i.e., maximum eigenvalue 

in magnitude, of A: 

p(A) E max |A\ 

where A is an eigenvalue of A. It is thus necessary to 

determine the eigenvalues of A. as given by Equation (8). 

These eigenvalues are determined as follows: 

Define the matrix B as 

_B E aq(LT - L,) + br(LT + L) (26) 

Then A = (1 - 2br)I_ + B_, and the eigenvalues of A then are 

the eigenvalues of B_ plus (1 - 2br). Now the eigenvalues of 

B are determined by 

B T == ATT (27) 

where T̂  is a column matrix of the same order as _B, and A' is 

the eigenvalue. Using the definition of the matrix L_, we 

have the elements of B_ given by 

(B) ±. = aq[(L£)i. - (L) ± . ] + br[(L
T) ± j + (L) ± . ] 

= aq(6._L1 . - 6. - ,) + br(6._Ll . + 6. 1 .) H V l+l,j i-l,2 i+l,3 i-l,J 

Then 
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1-1 
(B D t - I (1)^(1) 

J=l 

1-1 
I [aq(6.,1 . - 6. . .) + br(6.., . + 6. -, .)]x. 

ji-L i+l, J i-l,J i + l,J i-l,J J 

= a q ( T i + l - Ti-1> + b r ( Ti+l + Ti-l> 

Then Equation (27) represents the set of I - 1 equations 

a q ( T i + i " T ± - i > + b r ( T i + i + Tt-i ) = A ' T i 

i = 1 , 2 , • • • , 1 - 1 (28) 

with boundary conditions T = T = Q , 
o I 

Now take a solution of the form 

- I T. = C V_L + C Y 
I + + - - (29) 

where i is not /-l in the exponents. Then substituting in 

Equation (28) and rearranging, 

-1 -1 
+Y+[aq(Y+ - Y + ) + br(Y+ + Y + ) " Af] 

+ C y 1[aq(y 1 - y ) +br(y -fy X) - A'] = o 

Since this must apply for all i, we must have 
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aq(Y+ ~ Y+ ) + br(y+ + y^ ) " X' = 0 (30a) 

and 

-1 -1 
aq(y_ - Y_) + br^Y_ + Y ) - A' = 0 

(30b) 

Combining these 

aq(Y+
 - Y+ )

 + b r(Y +
 + Y+ )

 = aq(Y_ ~ Y_) + br(Y_ + Y_ ) 

and after rearrangement, 

, b r + a q. 
Y- = Cbr - aq>Y+ (31) 

Also the boundary conditions require that 

C+ + C 

C+Y+ + C_Y_ I = 0 

I -I 
C and y ~ Y_ = 0 

U s i n g E q u a t i o n ( 3 1 ) , t h e s e c o n d o f t h e s e b e c o m e s 

I , b r + a q N - I - I _ 
Y + ~ ( b r - aq> Y + = ° 

T h e n 

o r 

r 2 I _ , b r -- a q . I 
+ ^ b r + a q ; 

o r 

+ 

. kTF 

( b r _ r _ a a ) l / 2 e I . 
b r + a q ' * 

, 1 - 1 ( 3 2 a ) 

T h e n 
, kir 

, b r + a q . 1 / 2 I 
( - —^) e 

b r - a q 

( 3 2 b ) 
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Using these values in Equation (30a) or Equation (30b) , we 

have 

krr _ . kTT 

X1 = a q r ( ^ - a q . 1 / 2 e I . ( b r - aq - 1 / 2 _ 1 I Av acU U „ J. „„J e ^ b r + aq ; J 
br + aq 

kir 

+ b r [ ( 

_ -iiZ 
br - aq 1/2 / I + ( b r - aq - 1 / 2 e

 X I 
br + aq br + aq 

kTT .kTT 

= / ( b r ) 2 - ( a q ) 2 (e 1 + e 

2 / ( b r ) 2 - ( a q ) 2 c o s y k = 1, 2 , • I - 1 ( 3 3 ) 

which are the eigenvalues of 35. Using Equation (32a) and 

Equation (32b) in Equation (29), we have 

i L + U b r + aq j 

. kTTi 
I / b r + a q N - i / 2 

e - (r *) e 
br - aq 

- i -
kiri 

C(h* T a1)l/Z s i n * E 
+ br + aq I 

( 3 4 ) 

(Here only the first "i" in the exponentials is /-l in the 

first equation. In the second, the 2/-1 has been incor

porated in C .) We now have that the eigenvalues of A_ are 

A = (1 - 2br) + Ak 

(1 - 2br) + 2 /(br) 2 - (aq)2 cos ^ 

k = 1, 2, • • • , 1 - 1 (35) 
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and the eigenvectors of A, being common with those of B_, 

are 

,T v ,br - aq.i/2 . kiri 
( k) . • Cr" ; ) sin -^— 
— 1 br + aq I 

(36) 

The stability criterion for the mixed initial value-boundary 

value problem by the matrix analysis is, from Equation (35) 

and Equation (25), one of the following: 

1 - 2br + 2 /(br) 2 - (aq)2 c©S~r| < 1 if |br| >_ | aq | (37a) 

for all k = 1, 2, I - 1 

kiT 
(1 - 2br) + 4[(aq) - (br) ] c o ^ y < 1 if |aq| ^ |br| (37b) 

for all k = 1, 2, •••, I - 1 

These are the same as Equations (23a) and (23b) obtained from 

the von Neumann analysis with boundary conditions. 

Also since the eigenvectors of A form a complete set, 

A being real and symmetric, we may expand the initial error 

in terms of these eigenvectors. Using Equation (36), 

C£°>± - Y c k ( 
1 k = l k 

b r - a 
b r + aq 

cu i / 2 . kTTi I
v

i C 1 ( T k ) . 
^ ) s i n = l k I 

(38) 

k=l 

Then by Equation (24) 

1 - 1 T 1 - 1 T I " 1
 T 

£ n = A V = An [ C A = I C v A n \ - I H X j j c 
k = l k = l k = l 

k k-
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since k is an eigenvector of A so that A k = X, k. Then 

1 - 1 
/ nN r _, , b r - a q N i / 2 . k f r i , , Nn 
( e ) . = ) C, (T r * ) s i n — — (A. ) 
— 1 1

 L ^ k br + aq I k 

( 3 9 ) 
k = l 

with X given by Equation (35). This also agrees with the 

expansion in Equation (21) obtained by the von Neumann 

analysis with boundary conditions. 

Stability Criteria 

One-Dimensional 

Now consider the mixed initial value-boundary value 

problem. The stability condition is then given by Equation 

(23) : 

v W 2 k* |1 - 2br + 2 /(br) - (aq) cos—] < 1 if |br| >_ |aq| 

(1 - 2br) 2 + 4[(aq)2 - (br)2]cos2 y < 1 if | aq | >. |br| 

Now b is positive for problems of interest, and the sign of a 

does not matter. Therefore take both a and b positive. If 

aq < br and 1 - 2br > 0 we must have 

1 - 2br + 2 /(br) 2 - (aq)2 < 1 

or 

(br)2 - (aq)2 < br 

which is already satisfied since aq <̂  br here. Therefore the 
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If aq j< br and 1 - 2b r _< 0 we must have 
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2br - 1 + 2 /(br) 2 - (aq)2 < 1 

or 

r + /(br) 2 - (aq) 2 < 1 

or 

/(br) 2 - (aq)2 < 1 - br 

But this requires that 1 - br > 0 or r < —. Then 

(br)2 - (aq)2 < 1 - 2br + (br) 2 

is required, or (aq) > 2br - 1. The solution then is also 

stable for 

7T < r < - and /2br - 1 < aq < br 
lb — a — 

or 

or 

or 

If aq >_ br we must have 

(1 - 2br) 2 + 4[ (aq)2 - (br)2] < 1 

1 - 4br + 4(br) 2 + 4(aq) 2 - 4(br) 2 < 1 

- 4br + 4(aq) < 0 

(aq) < br 

Then 

br < aq < /br 
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But this then requires that br < A r , or that br < 1. We 

then also have stability for 

r < T~ and br £ aq < /br 

In summary the solution is stable under any of the following 

three conditions: 

(1) r < i and q < ^ 

M , 1 , , 1 , / 2 b r - 1 ^ b r 
( 2 ) — < r < - a n d — < q < —-

Zb — b a — a 

( 3 ) r < ~ a n d ~ < q < 7 / b T 
a ~ 

But conditions (1) and (3) can be combined to give stability 

for 

<r 1 A <r 1 /tr 
r < -ZT- a n d q < — / b r 

— zb a 

and conditions (2) and (3) can be combined to give stability 

for 

1 , , 1
 A ^ 2 b r ^ 1 7 — 

-r-r < r < 7~ and < q < — /br 
2b — b a a 

We thus finally have two regions of stability 

, 1 J ^ /br (a) r < -rr and q < 
— zb a 
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, M 1 ^ , 1 A /2br - 1 . ^ /br 
b rr < r < r and • < q < — — 

2b — b a a 

Two-Dimensional 

For two-dimensional mixed initial value-boundary 

value problems, Equation (22) is replaced by 

/ ^ 7 2 .2 kir . ITT. 
Ck 1 = 1 - 4 b r + 2 / ( b r ) - ( a q ) ( c o s y + c o s y ) 

k = 1 , 2 , •••, I - 1 ; 1 - 1 , 2 , • ' ' , J - 1 

Then if aq £ br and 1 - 4br >_ 0 we must have 

1 - 4br + 4/(br)2 - (aq)2 < 1 

or 

/(br) 2 - (aq) 2 < br 

which is already satisfied since aq <_ br here. Therefore 

the solution is stable for r < TT" a nd aq < br. 

— 4 D — 
If aq <_ br and 1 - 4br <_ 0 we must have 

4br - 1 + 4 /(br) 2 - (aq)" < 1 

or 

br + /(br) 2 - (aq)2 < ~ 

or 

A b r ) 2 - (aq) 2 < \ - br 
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• ut this requires that — -- br > 0, or r < -r-- . 
z 2 b 

Then 

(br)2 - (aq)2 < ~ - br + (br)2 

2 1 
is required, or (aq) > br - T . The solution then is also 

stable for 

4̂ " < r < ^ and/ br - \ < aq < b 

or 

or 

If aq > br we must have 

( 1 - 4 b r ) 2 + 1 6 [ ( a q ) 2 - ( b r ) 2 ] < 1 

1 - 8 b r + 1 6 ( b r ) 2 + 1 6 ( a q ) 2 - 1 6 ( b r ) 2 < 1 

(aq) < -y 

Then 

b r < aq < b r 

/
br 1 

— , o r t h a t b r < — 
We then also have stability for 

r < — and br < aq < / — 

Then after combining the 1st and 3rd, and 2nd and 3rd 

of these regions we have as above two regions of stability: 
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( a ) r < _ and q < -j / — 

4b -
(b) 7T < r < 7TT- and - / b r 

1 . 1 X 
TTT and — /b 

1 1 / b r 
— < q < — / — 
4 a / 2 

Three-Dimens iona l 

In t h r e e d imens ions Equat ion (22) i s r e p l a c e d by 

i /•-. o A L ^2 / J , kTT , lTT m i T . 
£ , n = 1 - 6br + 2 / ( b r ) - (aq) (cos-r" + c o s — + cos—) 

K. , l , m 1 J K 

k = 1, 2 , • • • , I - 1; 1 = 1, 2 , • • • , J - 1; 

m = 1, 2 , • ' * , K - 1 

Then if aq £ br and 1 - 6br >_ 0 we must have 

1 - /(bT 6br + 6/(br)2 - (aq)2 < 1 

or 

/ (br)2 - (aq) 2 < br 

which is already satisfied since aq <_ br here. Therefore the 

solution is stable for r < TT* and aq < br. 
— 6b n — 

If aq <_ br and 1 - 6br <^ 0, we must have 

6br - 1 + 6/(br)2 - (aq)2 < 1 

or 

r + /(br) 2 -- (aq)2 < ~ 
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or 

r ~~2 2 i 
/(br) - (aq) < ~ - br 

But this requires that — - br > 0 or r < -rr . Then 
3 3b 

2 2 1 2 2 
(br)Z - (aq)Z < ± - jbr + (brT 

2 2 1 is required, or (aq) > -br - -r- . The solution then is 

also stable for 

6b < r < -TT and /—br - — < aq < br 

or 

or 

Then 

If aq > br, we must have 

(1 - 6br) 2 + 36[(aq)2 - (br)2] < 1 

1 - 12br + 36 (br) 2 + 36(aq)2 - 36 (br)2 < 1 

(aq) < — 

/ b r br < aq < / ~q" 

But this then requires that br 

then also have stability for 

br 1 
— or that br < — 

We 

r < — and br < aq 
/br 
/ 3 

Then after combining the 1st and 3rd, and 2nd and 3rd, of 
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these regions, we again have two regions of stability 

f \ s 1 A * 1 A * 
(a) r < ^ and q < - / — 

<b> 6^ < ' < ^ and ± / f b r ^ < q < 1 /¥ 
9 4 a / 3 



APPENDIX I 

SOME PROPERTIES OF QUADRATIC ROOTS 

Let the roots of the quadratic equation 

A3 + BS + C = 0 

be required to be less than unity in magnitude. Thus 

or 

- B ± / B 2 - 4AC 
2A 

- B ± / B 2 - 4AC 

< 1 

< 2 I A (1) 

Four combinations of real and complex coefficients of inter

est in the present application are considered below. 

Case 1 - A, B, C Real and B2 - 4AC Z 0 

In this case the inequality (1) may be written 

BI + / B 2 - 4AC < 2I A (2) 

or 

/ B 2 - 4AC < 2I A I - IB 

This then requires that |E| < 2 |A|, and also that 

B2 - 4AC < 4A2 + B2 - 4IAl ' | B 

or 

B I < A (A + C) (3) 
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iut t h i s r e q u i r e s t h a t A(A + C) > 0 or 

A 2 ( l + | ) > 0 

Since A is real, this then reduces to — > -1. 
A 

inequality (3) may be written 

Then the 

or f inally, 

Bl < w ( 1 + i> • l A < 1 + !> 

B < A + C 

There are thus three conditions necessary for the 

satisfaction of the inequality (2): 

I B I < 2 I A | 

A > - l 

B < A + C 

together with the originally stated condition B _>_ 4AC . From 

2 2 
the first of these conditions we have B < 4A so that 

4AC < B 2 < 4A2 

But this requires that 

4AC < 4A' 

or that -r < 1. 
A 

This, then, with the second condition above, 
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requires that — 
A 

< 1. This being the case, the first con

dition above is redundant., in view of the third condition. 

Therefore, the conditions for the satisfaction of the 

inequality (1) in this case may be reduced to 

< 1 and |B| < |A + C| 

Case 2 - A, B, C Real and B - 4AC < 0 

In this case the. inequality (1) may be stated as 

B2 + (4AC - B2) < 4A2 (4) 

C 2 
so that it is required that — < 1. But since B < 4AC and 

B is real, we must have AC > 0. Therefore, the satisfaction 

of the inequality (1) requires in this case only that 

Case 3 - A, C Real; B Imaginary; |B| 4- 4AC >_ 0 

Let the imaginary B be written as B = ib, where b is 

real. Then inequality (1) may be stated as 

|-ib ± /-b - 4AC I < 2|A| 

2 
Then, since b + 4AC > 0, this may be written as 

lb | + /b 2 + 4AC < 2 | A (5) 
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which requires that |b| < 2|A|. Then 

b 2 + 4AC < 4A2 + b 2 - 4 1A 

or 

|b | < A(A - C) (6) 

iut this requires that A(A - C) > 0 or 

A2(l " f) > 0 

Therefore it is required that —• < 1. This being the case, 

the inequality (6) becomes 

M < -AT Ci -f ) • |A(i - f ) | 

so that |b| < |.A - C| is required. 

There are then three conditions for the satisfaction 

of the inequality (5), together with the originally stated 

2 
condition b >̂  - 4AC: 

lb I < 2 I A I 

A < 1 

b < A - C 

2 2 
From the first of these conditions we have b < 4A so that 

- 4AC < b < 4A' 

This then requires that 
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- 4AC < 4A' 

or that — > - 1. This, with the second condition above, 
A 

requires that < 1 and, the first condition becomes 

redundant in view of the third condition. Therefore the 

conditions for satisfaction of the inequality (1) in this 

case reduce to 

A < l 

B < A - C 

Case 4 - A, C Real; B Imaginary; |B| + 4AC < 0 

Again with B = ib, b being real, the inequality (1) 

may be stated in this case as 

b 2 + (- b 2 - 4AC) < 4A2 

C 2 
so that it is required that -- > - 1 . But since b < - 4AC 

and b is real, we must have AC < 0. Therefore the satis

faction of the inequality (1) requires, in this case, only 

that 

< 1 



APPENDIX J 

NONLINEAR INSTABILITY* 

Source of Nonlinear Instability 

The nonlinear instability arises from the derivatives 

in the convective terms involving the z-velocity component 

of Equation (V - 3c): 

7r-(w|) and -r— (wri) 
3x - 3y 

Since the flow starts with a velocity discontinuity at the 

interface between the jet and cross-wind, the gradients of 

z-velocity and x-y vorticity are quite large in the vicinity 

of this original interface for several time steps. This 

results in very large values of the above derivatives, which 

may persist for several time steps. 

The large tangential (to the interface, or jet edge) 

derivatives of the product of the z-velocity and the x-y 

vorticity in Equation (V - 3c) amplify the magnitude of the 

*A11 quantities used on figures discussed in this appendix 
are nondimensionalized as noted in the Nomenclature. The 
scale factors for the vector plots are given in Table 5. 
The magnitude of a vector is indicated by the length of 
the stem of the arrow, the size of the arrowheads being 
the same throughout. Spurious lines on the plots are the 
result of plotter error. Parameters used in all results 
presented are given in Table. 4. 
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z-vorticity on the jet edge and reverse the direction at 

some points at the first time step. Similarly the large 

normal derivatives of the same product create large z-

vorticity at the points adjacent to the original interface, 

especially inside the jet, at. some of which points the new 

vorticity is opposite in direction to the initial values at 

the adjacent points on the interface. The result at the 

first time step is shown in Figure 76a. 

The gradients of x-y velocity are much smaller, how

ever, so that no amplification occurs through Equation (V -

3a) or (V - 3b) at the start. The x-y vorticity thus exhi

bits only a normal spread from the interface (Figure 76b). 

The z-velocity, which is induced by the x-y vorticity, there

fore is quite regular (Figure 76c), but the amplified and 

misdirected z-vorticity induces an irregular x-y velocity 

distribution with large gradients, especially inside the jet, 

and with a tendency toward inflow into the jet on all sides 

(Figure 7 6d) . 

In the following time steps the large z-vorticity 

from the first time step is reversed and reduced in magnitude 

by the normal (to the jet edge) derivatives of the product of 

z-velocity and x-y vorticity. The normal derivatives also 

cause large z-vorticity to spread out to the sides and rear 

of the jet. Though some misdirection still remains, the z-

vorticity distribution has now assumed mostly its original 
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direction, but with amplification (Figure 76e). This 

results in an x-y velocity distribution more closely 

resembling the original, but with outflow from the jet 

ahead of the 90° point and inflow behind because of the 

amplified z-vorticity around the sides of the jet. The 

region of amplified z-vort;icity at the rear of the jet 

causes a similar region of outflow and inflow across the 

jet to exist near the center line at the rear of the jet 

(Figure 76h). (Though the figure shows the results at the 

third time step, this pattern was already formed at the 

second step.) 

This x-y velocity distribution involves large tan

gential gradients of the normal velocity at the edge of the 

jet on the sides and at the rear. This then causes the tan

gential derivative of the product of the normal velocity and 

tangential vorticity to be large in these regions, resulting 

in amplification of the normal vorticity through Equations 

(V - 3a) and (V - 3b), (Figure 76f). This again is a non

linear coupling of the equations, for the tangential vorti

city here couples with the normal velocity to amplify the 
Pj 

normal vorticity through the -sr— (uTl) term of Equation (V - 3a) 

and the -̂ — (v£) term of Equation (V - 3b). This misdirection 
dx 

of the x-y vorticity results in an irregular z-velocity dis

tribution, with large z-velocity being induced at the sides 

of the jet. Close examination of Figure 76g shows the z-
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velocity near the front and rear of the jet to be larger at 

the sides than on the centerline. 

This increased z-velocity and x-y vorticity at the 

sides of the jet then couple to amplify the z-vorticity in 

that region, while the originally amplified z-vorticities 

are being reduced by convection and diffusion (Figure 76i). 

Simultaneously the x-y vorticity at the sides is being ampli

fied by the coupling of the large x-y velocity gradients and 

x-y vorticity in that region (Figure 76j). The increased z-

vorticity at the sides of the jet maintains the x-y velocity 

pattern (Figure 761), with strong flow away from the jet at 

the sides followed closely by return flow to the jet, that 

causes the amplification of the x-y vorticity. Similarly, 

the increased x-y vorticity in the same region maintains the 

large z-velocity at the sides of the jet which causes the 

amplification of the z-vorticity (Figure 76k). The largest 

jet velocities then occur in the wings of the jet rather 

than in the central portion. The result of this nonlinear 

coupling of the equations is divergence unless the large vor

ticity generated can be dissipated by convection and diffu

sion rapidly enough. 

This nonlinear coupling of the equations for the vor

ticity thus arises through "convection" of velocity along 

vortex lines, as represented by the term (w • V)v, rather 

than convection due to fluid motion, represented by 

(v • V)o). In fact the latter process, through the convective 
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terms involving £, r| , and t, in Equations (V - 3a) , (V - 3b) , 

and (V - 3c), respectively, tends to aid diffusion in dissi 

pating the gradients generated. The nonlinear coupling is 

three-dimensional process and does not occur in completely 

two-dimensional flow, i.e., with zero velocity in the direc 

tion of invariance, since there only one component of vorti 

city is non-zero. 

The entirely different character of linear insta

bility, due to the diffusion terms, is illustrated in 

Figure 7 7. Diffusional instability tends to produce genera 

amplification of all vorticity components, with a wave-like 

velocity field, rather than the localized amplification and 

disturbance characteristic of the nonlinear instability. 

Characteristics of Nonlinear Instability 

This disturbance due to the convective terms is 

dependent only on the time step and not the Reynolds number 

Whether the process leads to significant perturbation of th 

flow or even divergence, however, is dependent on the 

Reynolds number since diffusion serves to damp the sustain

ing gradients. Thus, the divergence shown in Figure 27b is 

due to linear instability, the nonlinear disturbance being 

damped completely by diffusion at this low Reynolds number. 

Above a cell Reynolds number of about 3 for a velocity rati 

of 8, it is the nonlinear instability that leads to 

divergence unless a gradual start is used. Such a gradual 
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start renders the flow much more smooth. At higher velo

city ratio, however, the nonlinear disturbance becomes 

severe at lower Reynolds number as in Figure 78b, which 

shows the wave-like linear disturbance upstream, but with 

the strong flow away from and then back to the jet charac

teristic of the nonlinear disturbance. 

Instability from this source is more severe in the 

present case because the representation of the curved 

initial interface between the jet and cross-flow by square 

cells as shown in Figure 12 requires evaluating derivatives 

oblique to a discontinuity. In this representation the z-

velocity and the component of vorticity parallel to the line 

of these interface cells both vary along the line of cells, 

and it is the values of the above-mentioned derivatives 

parallel to the line of interface cells that are excessive. 

In a curvilinear coordinate system composed of lines parallel 

and perpendicular to the curved interface, however, there 

would be no variation tangential to the interface of either 

the z-velocity or the tangential vorticity component, and 

there would be no normal component of vorticity. Since the 

derivatives in question would be replaced in that case by 

derivatives parallel and perpendicular to the interface, 

their values would be zero at the start and less than those 

occurring in the present case thereafter. The instability 

could still develop after the start, however, since the 
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vorticity would not remain parallel to the coordinate lines. 

The irregularity of the original interface in the present 

case served only to initiate the original amplification of 

the z-vorticity. The sustent at ion of the process thereafter 

cannot be attributed to the form of the original interface, 

since no such discontinuity exists after the start. A suf

ficiently large disturbance in vorticity would trigger the 

process in any case. 

The severity of the perturbation caused by this non

linear instability increases with the velocity ratio (Figure 

78) since it arises from the z-velocity. It also increases 

with the cell Reynolds number since the efficacy of the dif

fusion terms in dissipating the gradients decreases as the 

Reynolds number increases. 

Setting the z-velocity in the interface cells to 

zero at the start reduces the destabilizing effect of the 

nonlinear instability considerably at low cell Reynolds 

number. This procedure is justified on the grounds that the 

z-velocity is zero outside the discontinuity curve, and this 

outside value may as well be taken in the interface cells 

through which the discontinuity curve passes. However, as 

the Reynolds number increases, the reduction in the gradients 

by diffusion in the first time step becomes insufficient to 

prevent amplification of the z-vorticity at the following 

steps. Reducing the time step at the start does not help 
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greatly because the relative magnitudes of the convective 

and diffusive terms remains the same. The instability can 

be reduced, however, by starting the flow gradually rather 

than impulsively, but at larger cell Reynolds numbers the 

start must be very gradual indeed as is shown in the 

results presented in Chapter V. 

Figure 79 shows the flow pattern for elliptic jets 

with the same major diameter as the circular jet of Figure 

79a and with the same cell Reynolds number and time step, 

the z-velocity in the interface cells again being set to 

zero at the start. As would be expected, the nonlinear 

instability is more severe, for the elliptic jet with its 

major axis perpendicular to the cross-wind than for the 

circular jet, since the gradients 90° from the cross-flow 

direction are more severe in the former case as a result of 

the larger curvature of the ellipse in those regions. Simi

larly the gradients in these regions are less severe with 

the ellipse major axis parallel to the cross-wind, so that 

the nonlinear instability is less pronounced in this case 

than with a circular jet of the same minor diameter. 

The nonlinear instability is reduced as the time step 

decreases at the lower Reynolds number, cf. Figures 80 and 

81, but the time step has less effect as the Reynolds number 

increases and the diffusion becomes less effective. Again a 

significant residual perturbation is left for cell Reynolds 
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number greater than about 2 at a velocity ratio of 8. The 

damping of a strong early disturbance is illustrated in 

Figure 82 for a case in which the z-velocity was not set to 

zero in the interface cells at the start and the flow was 

started impulsively. At the later time the outward deflec

tion fartherest downstream is the residual perturbation. 

That a gradual start that is not gradual enough can 

be worse than an impulsive start is illustrated in Figure 

83, which shows the same case as in Figure 82 but with a 

gradual start through which the jet and cross-wind veloci

ties were doubled at each time step, the full values being 

reached in 20 steps. The flow at the early time step is 

much smoother with the gradual start since the velocities 

at that time were much smaller in that case. However, at 

the later time, 20 steps after the attainment of full velo

city, the flow is more disordered than that with the impul

sive start. The reason for this is that at this Reynolds 

number the diffusion is so small that it alone cannot 

achieve sufficient dissipation of the gradients before the 

velocities near their full values in the twenty-step start. 

The result then is effectively a delayed rapid, though not 

impulsive, start, and, as far as the instability is concerned, 

a given number of time steps after the attainment of full 

velocity with the twenty-step start corresponds more closely 

to the same number of time steps from the start with the 
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impulsive start. Thus Figure 83b is more similar to Figure 

82b than to 82c, although in time it corresponds to the lat

ter. In the same manner, five and ten-step starts at this 

Reynolds number gave less disturbance at a given time than 

did the twenty-step start, the five being superior to the 

ten. The disturbance was still dissipated faster with the 

impulsive start. 

At a Reynolds number of 2.5 a two-step start was 

sufficient to completely eliminate the perturbation. The 

gradual start thus is effective against the nonlinear dis

turbance, especially at the lower Reynolds numbers where it 

gives diffusion a change to achieve significant dissipa

tion of the gradients before the convection terms become 

appreciable. However, at higher Reynolds number the start 

must be extremely slow, since the diffusion is much 

reduced. An insufficiently gradual start simply delays the 

onset of the disturbance. Linear starts were also examined 

but found to be less effective than the type discussed 

above for the same number of steps in the period of velocity 

increase. The reason for the superiority of the latter type 

is that it provides an initial period when essentially no 

convection is in effect. At high Reynolds number, however, 

this period must be very long to allow the low diffusion to 

achieve sufficient dissipation. 



APPENDIX K 

VORTICITY AND VELOCITY INTERACTIONS 

IN THE THREE-DIMENSIONAL JET IN CROSS-WIND* 

Profiles of the vorticity and velocity are shown in 

Figures 84-95 for the jet starting from the opening of the 

exit and in Figures 94-103 for the jet starting from the 

cylindrical discontinuity above the jet exit. In all cases 

both the jet and the cross-flow velocities were gradually 

increased to their final values by doubling the value at 

each time step, until the final value was reached at the 

time step indicated. Figures 84-88 and 94-98 show unstable 

cases for the two types of start, and these are used for the 

detailed analysis below since the features are more marked. 

Throughout the following discussion the terms "horizontal" 

and "vertical" are applied to planes parallel and perpen

dicular, respectively, to the. boundary plane. Also, "front" 

and "rear" refer, respectively, to the upstream and down

stream directions of the remote cross-flow. 

*A11 quantities used on figures discussed in this appendix 
are nondimensionalized as noted in the Nomenclature. The 
scale factors for the vector plots are given in Table 5. 
The magnitude of a vector is indicated by the length of 
the stem of the arrow, the size of the arrowheads being 
the same throughout. Spurious lines on the plots are the 
result of plotter error. Parameters used in all results 
presented are given in Table 4. 
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Start from the Opening of the Jet Exit 

Considering first the start from the opening of the 

jet exit, at the start the vorticity distribution consists 

of the superposition on the boundary plane of straight 

lines of vorticity anti-parallel to the y-axis and concen

tric vorticity rings centered on the jet exit axis. The 

straight lines of vorticity have no variation in the x-direc-

tion and are the result of the cross-flow, while the rings 

are due to the source flow from the jet exit and thus 

increase from zero strength at the exit axis to maximum 

strength on the edge of the exit, with continual decrease 

thereafter. This type of start thus has no vorticity in the 

fluid above the boundary. The fluid on the jet exit, however, 

does have non-zero horizontal vorticity. The initial velo

city distribution is formed by the superposition of the 

uniform cross-flow parallel to the boundary and the velocity 

due to a distribution of sources of strength equal to the 

jet exit velocity located on the jet exit as discussed in 

Chapter VI. 

Unstable Case - V = 8 
r 

During the first portion of the gradual start the con-

vective terms are insignificant compared with the diffusion 

terms, so that the vorticity spreads upward from the boundary 

by diffusion, with a resultant decrease in magnitude of the 
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vorticity on the boundary. In the last few starting steps, 

however, the convection becomes significant and begins to 

spread the vorticity downstream over the entire boundary and 

also upward and outward over the jet exit. The vertical 

convection on the exit raverses the diffusional decline in 

horizontal vorticity magnitude there, as vorticity is c o n -

vected up from below, and tends to increase the magnitude of 

the horizontal vorticity on and above the exit. This trend 

continues in the steps following the attainment of full 

velocity and is evident in the ^-profiles of Figure 84b. 

The vertical convection from below is absent on the 

edges of the exit, the exit velocity being zero there, so 

that the horizontal vorticity continues to be reduced in 

magnitude by diffusion during and immediately following the 

start period as shown in Figures 84a and 84c. The decrease 

in magnitude is accelerated at the rear edge after signifi

cant negative vorticity has been convected above the edge 

and the negative peak is formed as discussed below. The 

presence of the peak and the accompanying increase in ver

tical velocity causes significant upward convection of nega

tive vorticity away from the exit edge, thus accelerating 

the trend toward lower negative vorticity on the edge 

(Figure 84a, t = 2.2). 

The large horizontal velocity above the exit rear 

edge, due to the combination of the cross-flow and the large 
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outward horizontal velocity of the jet at this early time, 

causes considerable rearward convection of negative horizon

tal vorticity from over the exit into this region. This 

convection parallel to the boundary, aided by vertical con

vection from below as the vorticity rises over the edge, 

causes the rising negative peak in the ri-profile in Figure 

84a. Over the exit front edge the horizontal convection is 

reduced, since the cross-flow and the outward horizontal 

velocity of the jet are in opposition. The resultant hori

zontal convection is forward, since the horizontal velocity 

of the jet is larger in magnitude at: this early time than 

that of the cross-flow. Also, the horizontal vorticity on 

and over the forward portion of the exit is positive as a 

result of the large source velocity, so that there is hori

zontal convection of positive vorticity from over the exit 

into the region above the forward edge, as well as vertical 

convection from below as the vorticity rises. The reduction 

in the horizontal convection, however, results in only a 

positive protuberance on the T]-profile in Figure 84c, over 

the forward edge, rather than a peak as over the rear edge. 

The negative peak in Figure 84a and the positive pro

tuberance in Figure 84c represent the expected emission of 

the vortex ring from the exit, as influenced in the present 

case by the downstream sweep of the cross-flow, which tends 

to strengthen the ring in the rear and weaken it in front. 
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This causes the ring to rise from the front to the rear of 

the jet, so that the rear portion of the ring is both higher 

and stronger than the front. 

Also during this period following the attainment of 

full velocity, vertical vorticity is generated around the 

exit edges as a result of the horizontal gradients of the 

vertical velocity along lines of horizontal vorticity (Figure 

85a) . 

The horizontal velocity over the center of the exit 

at first tends to increase negatively as a result of the 

increase in negative r)-vorticity on the exit (Figure 86c). 

However, the vertical vorticity being generated around the 

exit edges induces positive horizontal velocity over the exit 

center, with the result that the u-profile develops a bend 

back toward positive values after sufficient vertical vor

ticity has been generated (Figure 86c, t = 2.2). 

The behavior of the horizontal velocity profiles at 

the exit edge is due to the passage of the rising vortex 

ring: an increase in velocity away from the jet axis above 

the ring, followed by a decrease below the ring (Figures 86b, 

86d, 87a). The vertical velocity peaks also reflect the 

passage of the ring, the effect being stronger toward the 

rear as a result of the convectional strengthening of the 

rear of ring by the cross-flow. This is evident in Figures 

a-c . 
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The vortex ring around the edge of the jet is influ

enced both by horizontal and vertical convection, and the 

relative importance of the two varies with position of the 

ring. This causes the ring to broaden vertically, with hori 

zontal convection tending to strengthen the upper portion of 

the ring and vertical convection the lower. At the early 

times the horizontal convection is the stronger, since the 

jet still possesses a strong radial flow, so that the maxi

mum vorticity magnitude occurs on the upper portion of the 

ring (Figure 84a, t = 2.2; Figure 84d, t = 2.4, 2.6; Figure 

84f, t = 2.4 , 2.6). 

However, the ring increases the vertical velocity of 

the jet and decreases the radial velocity just below the 

ring. Therefore, the horizontal convection is overshadowed 

by vertical convection in the lower portion of the ring. 

As the ring rises, the jet radial velocity is reduced and it 

vertical velocity is increased, so that the vertical convec

tion becomes dominant, and the vorticity magnitude maximum 

shifts from the upper to the lower portion of the ring 

(Figures 84d and 84f, t = 2.8). The further decline in jet 

radial velocity as the ring rises farther causes the effect 

of horizontal convection to be reduced to such an extent tha 

the upper portion of the vorticity crest gradually disappear 

(Figures 84d and 84f, t = 3.4). The effect of the cross-flo 

is again evident in the more rapid decline in the horizontal 
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convection effect upstream. 

The vorticity of the ring initially amplifies itself 

as it rises, since an increase in the vorticity of the ring 

tends to increase the vertical convection into the region 

just above the ring, both by virtue of the vorticity 

increase itself and through the consequent increase in ver

tical velocity. As the vertical velocity above the exit 

edge increases, the upward convection from the exit 

increases, with a resultant decrease in the magnitude of the 

horizontal vorticity on the exit edge (Figures 84d and 84f). 

The decrease in magnitude of vorticity above the exit edge 

after passage of the ring, however, decreases this convec

tion, so that a constant value of horizontal vorticity at the 

exit edge is approached. 

The large vertical gradient of horizontal vorticity 

in the region immediately below the ring combines with the 

increase in vertical velocity in this region caused by the 

ring to produce large upward convection of vorticity out of 

this region. This results in a significant decrease in the 

magnitude of the horizontal vorticity after passage of the 

ring, as is demonstrated by the large reversals in the n-

profiles in Figures 84d and 84f. This trough in the horizon

tal vorticity around the jet edge rises behind the ring and 

is even more amplified by vertical convection than is the 

ring, since the presence of the large vorticity of the ring 



249 

above continues to produce upward convection of vorticity 

out of the region between the ring and the trough, while the 

trough itself reduces the convection of vorticity into this 

region from below. In the present unstable case this ampli

fication proceeds to the point of reversing the direction of 

the horizontal vorticity in the trough and thus replacing 

the trough with a ring of opposite vorticity following the 

primary ring. 

In a similar manner the deficit of vorticity in the 

trough reduces the upward convection out of the region below 

the trough, so that convection of horizontal vorticity from 

below into this region causes another reversal in the hori

zontal vorticity below the trough, and thus a ring of vor

ticity of the same sense as the primary ring following the 

trough or ring of opposite sense, as the case may be 

(Figures 84d and 84f, t - 3.4). 

The increase in vertical velocity in the plane of the 

vortex ring emitted at start causes an increase in vertical 

convection over the jet exit and a. consequent increase in 

negative horizontal vorticity above the exit center as vor

ticity is convected from below (Figure 84e, t = 2.6). This 

negative vorticity peak rises and is amplified by vertical 

convection from below in the same manner as is the ring dis

cussed above. Also in the manner discussed above, the nega

tive vorticity peak causes large upward convection of 
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negative vorticity out of the region below the peak and 

creates a deficit in vorticity there. In the present case 

the upward convection of negative vorticity out of this 

region is sufficient to drive the deficit to a positive 

vorticity peak (Figure 8 4 e , t = 3.0). This peak is then 

strongly amplified, since the region between it and the 

negative peak above experiences both the loss of negative 

vorticity through upward convection to the negative peak 

above and the gain of positive vorticity through convection 

from the positive peak below. 

There also is large upward convection of positive 

vorticity out of the region below the positive peak, which 

creates first a deficit in vorticity and eventually a second 

negative peak in that region (Figure 84e, t = 3.2). This 

peak is also strongly amplified by vertical convection, 

through the combined influence of its own vorticity and the 

positive peak above in the same manner as is the positive 

peak. 

The amplification is enhanced by horizontal convec

tion, since the horizontal velocity induced by these horizon

tal vorticity peaks is in such a direction as to convect vor

ticity into the. regions of the peaks following the first. 

This effect, however, is overshadowed by the stronger ampli

fication produced by vertical convection as a result of the 

very large gradients of vorticity. The amplification of these 
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horizontal vorticity peaks within the jet is not unlike that 

of the peaks around the jet edges, except that the much 

larger vertical velocity within the jet drives the amplifi

cation to a much greater degree within the jet. The desta-

bilization therefore occurs within the jet. 

On the exit center the. horizontal vorticity reverses 

its early negative increase as the vertical velocity above 

the exit increases and the vertical convection of vorticity 

from below is thus balanced. Diffusion then decreases the 

magnitude of the vorticity (Figure 8 4 e , t • 2.8). However, 

with the development of the second negative peak of vorti

city above the exit, the negative vorticity on the exit is 

reduced in magnitude as the upward convection of negative 

vorticity away from the exit is increased by the presence of 

this peak. In the present: unstable case this vorticity defi

cit is driven to positive vorticity (Figure 84e, t = 3.0). 

The vorticity on the exit center then increases positively 

at a greater rate, being influenced both by upward convec-r 

tion of negative vorticity to the peak above and convection 

of positive vorticity from below. 

The vertical vorticity is subject to much less varia

tion as shown in Figure 85b and continues to be generated 

primarily by gradients of vertical velocity along lines of 

horizontal vorticity. The amplification is a result of prior 

amplification of horizontal vorticity. The trough evident at 
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t = 3.4 is due to a diffusional decrease when the convective 

terms balance. The decrease at the boundary at the later 

times is a result of diffusion. 

The horizontal velocity profiles (Figures 86 and 87) 

reflect primarily the effect of the horizontal vorticity 

distribution, since the amplification thereof causes the 

effect of the vertical vorticity to be overshadowed. The 

peaks of the horizontal velocity profiles lie generally 

between those of the horizontal vorticity at the same loca

tion. The outward directed horizontal velocity immediately 

above the exit edge is due to the horizontal vorticity 

around the edge that results from the presence of the jet. 

This outflow is eventually to be balanced by inward velocity 

induced by horizontal vorticity above the boundary plane. 

In particular, the excessively large forward velocity above 

both the center and front of the jet exit at the later 

times (Figures86h and 86i, t = 3.4) is due to the positive 

horizontal vorticity generated at those times on the exit by 

vertical convection of negative vorticity away from the exit 

into the second negative horizontal vorticity peak as dis

cussed above. 

The vertical velocity (Figure 88) generally follows 

the rise of the horizontal vorticity around the jet edge, 

especially over the exit axis. However, the strong peak 

just above the exit axis at the later times (Figure 88e, 
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t = 3.4) is due to the presence of strong negative horizon

tal vorticity just downstream, corresponding to the lower 

negative peak in the T|-profile over the exit center in 

Figure 8 4 e. All of these features are reduced in the 

stable case considered be].ow. 

Stable Case - V = 8 
r 

The reduction of convectional instability by a 

decrease in the time step is evident upon comparison of the 

results discussed above with those presented in Figures 89-

93. Most of the same features discussed above are present, 

but the magnitudes are greatly reduced and some significant 

alteration of form results. 

The primary effect at the early times of the time-

step reduction is to signifie.antly decrease the contribution 

of horizontal convection to the formation of the vortex ring 

emitted from the exit. Thus the sharp peak on the upper 

part of the negative crest of the ri-profile of Figure 84a at 

t = 2.2 is eliminated (Figure 89a). A similar effect, but 

to a much lesser degree, occurs at the front of the jet 

(Figure 89c). Otherwise, the forms of both the horizontal 

and vertical vorticity distributions at the early times are 

not altered, though the magnitudes are decreased somewhat 

(Figures 89a-c , 90a) . 

The forms of the velocity distributions at the early 

times (Figures 91a-c, 92a, 93a-c) are altered only by the 
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above-mentioned reduction of the upper part of the horizon

tal vorticity crest. This causes a corresponding reduction 

of the outward horizontal velocity above the ring (most 

noticeable in Figure 92a at t = 2.2) and of the vertical 

velocity. The overall magnitudes are also somewhat reduced, 

of course. 

Even at the later times the forms of the horizontal 

vorticity distributions are not greatly altered (Figures 89 

d-f). Comparison of Figures 84d and 89d shows the negative 

peaks, which correspond to the vortex ring emitted from the 

exit at the start, to be in the same locations with each 

time step (comparison should be with the lower part of the 

crest in Figure 84d in view of the reduction in the upper 

part mentioned above). The same conclusions are reached by 

comparison of the positive crests at the front of the jet 

(Figures 84f and 89f). The speed of propagation of the ring 

is thus unaltered by the time step reduction. The primary 

effect is, as mentioned above, the reduction of the upper 

part of the vorticity crest that constitutes the ring, as a 

result of the reduction of the effect of horizontal convec

tion. The self-amplification of the ring by vertical convec

tion is also significantly reduced, but; this affects only the 

magnitude, not the form. 

Of more significance to stability is the alteration 

of the vorticity trough that follows the ring. In the 
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unstable case this vorticity deficit is amplified and driven 

to a reversal in direction of vorticity by vertical convec

tion across the large vorticity gradient from the trough to 

the ring above. This amplification is reduced with the 

smaller time step to the extent that a balance is achieved 

with damping (Figures 89d and 89f). This then leaves only 

moderate vertical gradient of vorticity below the trough, 

so that no vortex ring follows the trough. 

The reversal of the ri-profile below the trough at the 

front of the jet (Figure 89f, t = 3.4) is caused by forward 

horizontal convection of positive vorticity from over the 

exit. This convection is a result of the forward horizontal 

velocity still being induced in the lower forward part of 

the jet by the positive horizontal vorticity that is created 

on the forward edge of the exit by the presence of the jet. 

This horizontal convection is thus increasing the positive 

vorticity in the forward part of the jet above the exit. 

This increase in positive vorticity in this region will then 

serve to balance that on the exit edge below and to reduce 

the forward velocity. Such a balance has already been more 

nearly achieved at the rear of the jet (Figure 89d). 

The reduction of ccnvectional instability has its 

greatest effect in the interior of the jet, however, as evi

denced by the sharp contrast between Figure 84e and Figure 

89e. Again the form and location of the crests are 
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esentially the same. Here, as at the jet edge, the reduced 

time step allows the amplification by vertical convection 

to be arrested by diffusion before the large vertical gradi

ents that power the amplification by vertical convection can 

develop. 

The vertical vorticity shows the least alteration, it 

being simply reduced and smoothed at the lower time step 

(Figure 90b). The positive crest occurring at t = 3.4 with 

the larger time step (Figure 85b), is, of course, removed, 

since the large horizontal, vorticity that led to its crea

tion has been eliminated. The boundary values of all vorti

city components show little effect of the time step reduc-

t ion . 

The primary effect, other than a general magnitude 

reduction, of the reduction of the time step on the horizon

tal velocity distribution (Figures 91 and 92) is the change 

in form of the profiles below the ring emitted at the start. 

Since the severity of the horizontal vorticity trough follow

ing the ring has been greatly reduced, the upper part of the 

horizontal velocity crest below the ring, i.e., between the 

ring and the trough, is correspondingly reduced (Figures 91 

g-i). The lower part of the horizontal velocity distribution 

reflects the elimination of the severe horizontal vorticity 

gradients in that region which induced this horizontal 

velocity in the previous case. 
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The form of these velocity distributions is due to 

the combined effects of the horizontal and vertical vorti

city distributions. The outward velocity above the rising 

vortex ring emitted at the start is due to the ring. 

Similarly the inward velocity induced by the ring below 

itself accounts for the abrupt upper portion of the velocity 

crest in that region evident especially in Figures 91g and 

92b at t = 3.4. These effects are less marked at the front 

of the jet because of both the opposition of the cross-flow 

and the reduced strength of the ring in that region (Figure 

91i) . 

The lower portion of the velocity distribution, except 

for the region jus- above the boundary, is affected primarily 

by the vertical vorticity :hat has been generated around the 

jet edge, and generally follows the shape of the vertical 

vorticity distribution (Figure 90b). This causes a forward 

recirculation within the jet. In the region immediately 

above the boundary the horizontal vorticity on the boundary, 

which exists because of the presence of the jet, is also 

effective and tends to produce forward velocity in the for

ward portion of the jet and outward velocity around the jet 

edge. These velocities are, however, being reduced by the 

diffusion and convection of vorticity of like sign into the 

region above the boundary as discussed above. This vorticity 

tends to induce velocities in the opposite direction. 
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The vertical velocity distribution (Figure 93) is 

affected primarily by the large horizontal vorticity around 

the edge of the jet, and the crest reflects the passage of 

the vortex ring emitted at the start. The secondary crest 

at t = 3.4 above the ~xit (Figure 93e) is due to the nega

tive horizontal vorticity crest just aft, corresponding to 

the lower negative crest of Figure 89e. The reduction of 

the upper portion of the horizontal vorticity crests at the 

lower time step is reflected by a corresponding reduction of 

the upper portion of the vertical velocity crests. 

Start from a Cylindrical Discontinuity 

With the start from the cylindrical discontinuity 

above the jet exit, the initial vorticity distribution on the 

boundary plane consists of linos of vorticity perpendicular 

to the streamlines of the two-dimensional potential flow 

about the cylinder. In addition there is a cylindrical vor

tex sheet standing on the exit and extending upward to infin

ity with no vertical variation. The vorticity on this sheet 

consists of horizontal rings of vorticity around the sheet 

and vertical vortex lines parallel to the cylinder axis, the 

former being due. to the jet within the cylindrical disconti

nuity and the latter to the cross-flow without. The initial 

vorticity of the fluid both inside and outside the disconti

nuity is zero. 

The fluid on the jet exit at the start 
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theoretically has zero vorticity also but, due to the dis

cretization, a small amount of non-zero vorticity is present 

there. The initial velocity distribution consists of a uni

form vertical jet within the cylindrical discontinuity, and 

the two-dimensional potential flow about the discontinuity, 

perpendicular to its axis, outside as discussed previously 

in Chapter VI. 

Unstable Case - V = 8 
r 

During the first part of the gradual starting period 

the convective terms are negligible, and diffusion spreads 

the vorticity, reducing the sharp initial gradients. Thus 

the vorticity profiles at the end of the starting period (t 

= 0.8 in Figures 94 and 95) reflect primarily this diffusive 

effect. The differences between the front and rear of the 

jet near the boundary (Figures 93a, 93c) are the result pri

marily of the vorticity generated on the boundary by the 

cross-flow, which tends to be in conjunction with that due 

to the jet in the rear, but in opposition in front. The 

generation of horizontal vorticity on the boundary tends to 

counter the diffusional dissipation there, with the result 

that a vertical gradient in horizontal vorticity develops 

above the edge of the exit, especially in the rear where the 

vorticity generated on the edge by the jet and that generated 

by the cross-flow are in conjunction (Figure 94a, t = 0.8) 

and thus augment each other. 
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When the full velocities are attained, the existence 

of this vertical gradient causes horizontal vorticity to be 

convected upward from the exit edge, especially in the rear 

of the jet. This effect accounts for the peak in the r) -

profile at the rear of the jet (Figure 94a; t = 1.2, 1.6) 

that forms just above the boundary immediately after the 

starting period. This horizontal vorticity crest is then 

convected upward in the same manner as the starting vortex 

ring emitted from the exit with the other type of start dis

cussed above. As with the ring in that case, the crest in 

the present case amplifies itself primarily by vertical con

vection as it rises, there being amplification to a lesser 

degree by horizontal convection, from upstream, of vorticity 

that had diffused from the jet edge. The rearward velocity 

causing this horizontal convection is the outward velocity 

induced by the crest above itself. 

Also by the same process discussed for the other type 

of start, a vorticity trough develops behind the crest 

(Figure 94a, t = 2.4) and follows it upward, being amplified 

by vertical convection across the steep gradient of vorti

city from trough to crest above. The development, rise, and 

amplification of the crest and trough in the present case 

are thus completely analogous to that of the vortex ring and 

trough formed with the start from the opening of the jet 

exit, but with much smaller amplitudes since the engendering 
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gradients are much smaller. Indeed, the use of "crest" here 

as opposed to "ring" with the other start, has no signifi

cance other than to recall the difference in amplitude. The 

term "ring" was used before only in deference to common 

usage. 

The vorticity crest is much less marked in the front 

of the jet, but is evident at the latest time shown (Figure 

94c, t = 2.8). The crest here is amplified by vertical con

vection resulting from the stronger vertical gradient in ver 

tical velocity, as well as from the gradient of horizontal 

vorticity, and, therefore, becomes significant only after 

the vertical velocity crest is formed. The vorticity crest 

then appears in the region of strong vertical velocity gra

dient above the vertical velocity crest. 

As with the other start, the crest is both higher and 

stronger in the rear of the jet. (The trough above the 

crest in front of the jet is due to the excessive loss of 

vorticity to downstream horizontal convection resulting 

from the creation of vertical vorticity between the center 

and sides of the jet as discussed below in connection with 

the horizontal velocity profiles.) At the exit edge the 

horizontal vorticity decreases by diffusion until a balance 

is reached with vertical convection from below, and a steady 

state is approached (Figure 94a, 94c). The general vertical 

decrease in horizontal vorticity at the edge of the jet is 



262 

due both to diffusion and downstream convection, the latter 

being relatively important in the front of the jet. 

The only other noteworthy feature of the ri-profiles 

at the jet edge is the small protuberance in the upper por

tion of the profiles (above the vorticity crest discussed 

previously, with the same direction as this crest) (Figures 

94a, 94c; t = 2 „ 8 ) . This perturbation is a result of an 

approximation in the solution whereby the velocity in the 

border cells (cells having vorticity that differs from the 

value at an infinite distance above the point in question by 

less than a specified minimum) is taken to be the asymptotic 

value approached at an infinite distance above the point in 

question. This causes the vertical velocity above the top

most vortex cell to be slightly less than its true value, 

and thus allows a small excess of convection of vorticity 

from below to produce the protuberance in the vorticity pro

file. A comparison with a larger minimum vorticity is given 

in Figure 94 at t = 2.8. Here the above-mentioned uppermost 

vorticity crest at the rear of the jet is clearly more 

severe with the larger minimum vorticity. Otherwise the 

effect of the change in the minimum vorticity at this time 

is quite small. 

The protuberance in the upper portion of the horizon

tal vorticity at the rear of the jet in Figure 94c, result

ing as discussed above from the minimum vorticity effect, is 
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illustrative of the possible destabilizing influence of the 

use of too large, a value for the minimum vorticity. The 

effect of the minimum vorticity is naturally greatest near 

the boundary of the region of non-zero vorticity and in this 

case a change of the minimum vorticity from 0.1 to 0.01 had 

almost no effect at all in the lower portion of the jet. At 

larger time steps the effect is more pronounced and hastens 

the destabilization. 

The horizontal vorticity over the exit center is 

initially near zero, but some positive vorticity is soon 

acquired by horizontal convection from the front of the jet 

(Figure 94b, t = 0.8), resulting from the vertical vorticity 

generated between the center and sides of the jet as dis

cussed below in connection with the velocity profiles. This 

convection causes a positive crest to form which rises and 

is amplified, both by its own tendency to increase the upward 

convection of positive vorticity into the region toward which 

it moves and by continued horizontal convection of positive 

vorticity from the front of the jet. 

The vertical convection of positive vorticity out of 

the region below this crest causes a region of negative vor

ticity to develop below the crest (Figure 94b, t = 1.6). 

This negative crest is then strongly amplified as it rises 

by vertical convection across the large vertical gradient 

between it and the positive crest above. The negative crest 
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then causes large vertical convection of negative vorticity 

out of the region below and thus leads to the formation of a 

second positive crest (Figure 94b, t = 2.0). This second 

positive crest in turn rises and is amplified by vertical 

convection across the vertical vorticity gradient between it 

and the negative crest above, This process continues with 

the formation of a second negative crest (t = 2.4) followed 

by a third positive crest (t = 2.8), etc., all being strongly 

amplified by vertical convection. This is exactly the same 

behavior described above for the interior of the jet with the 

other type of start and rapidly leads to divergence. The 

behavior of the vorticity on the exit center is controlled 

primarily by upward convection across the gradients created 

above the boundary by this oscillation. 

The behavior of the vertical vorticity on the edge of 

the jet (Figure 95) differs somewhat from that observed with 

the other type of start because of the differences in the 

vertical velocity distribution- With the present start the 

jet is already established at ::he start, so that there is 

strong vertical velocity throughout the region of the hori

zontal vorticity variation described above. Significant 

horizontal gradients in vertical velocity then can exist 

along all the lines of horizontal vorticity. The vertical 

vorticity on the jet edge thus follows closely the horizontal 

vorticity in the interior of the jet. Comparison of Figures 
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94b and 95 shows this correspondence at the later times, 

with the phase lag of the vertical vorticity behind the 

horizontal vorticity to be expected since variations in the 

former are generated by the latter. At the early times the 

profile at the rear of the jet is more representative of 

the horizontal vorticity just inside the sides of the jet 

than is the profile in the center of the jet, so that the 

initial crest of the vertical vorticity corresponds more 

closely to the crest in the profile in Figure 94a. 

The general vertical decrease is due primarily to 

diffusion. There is also general downstream convection of 

vertical vorticity, but this and the diffusion are over

powered locally by the above effects. With the start from 

the opening of the exit, however, the jet must develop from 

the start, and, at the times shown, significant vertical 

velocity has not yet spread too great a distance above the 

exit. Therefore, the horizontal vorticity in the upper part 

of the developing jet is ineffective in generating vertical 

vorticity, since insufficient vertical velocity is there 

available. 

With the present type of start the horizontal velo

city is affected more by the vertical vorticity than was the 

case with the other type of start, since significant vertical 

vorticity exists at the sides of the jet from the beginning 

along the entire length of the jet. The values approached by 
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all the velocities at large distance above the boundary are 

due entirely to vertical vorticity. Also, the strong out

ward horizontal velocity above the exit edge is absent with 

the present start, since horizontal vorticity is also estab

lished from the beginning along the entire jet. The hori

zontal velocity in the rear and sides of the jet, however, 

reflects primarily the rise of the horizontal vorticity 

crest at the edge of the j e t — outward velocity above the 

crest and inward below (Figures 96a and 97). The small 

bulge due to the. horizontal vorticity protuberance caused by 

the minimum vorticity effect is discernable at t = 2.8 just 

below the top of the velocity profile at the sides of the 

j et (Figure 97) . 

The rearward horizontal velocity in the forward por

tion of the jet at the early times (Figures 96c, 96d) is due 

to vertical vorticity between the center and sides of the jet 

directed opposite to that on the jet sides. This vertical 

vorticity is generated by the convective terms as a result of 

the gradients in y-vorticity and vertical velocity normal to 

the centerline at the front of the jet. These gradients are 

prominent at the start because of the curvature of the jet 

edge. This vertical vorticity is realigned with that on the 

jet sides as time passes, as a result of the corrective 

influence of the gradient in vertical velocity along x -

vorticity lines. 
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Vertical vorticity directed opposite to that on the 

jet sides is also created in the interior of the jet between 

the center and the sides in the same manner. The causative 

horizontal vorticity gradient here is initially a result, 

however, of diffusion of y-vorticity inward from the sides 

of the jet. This horizontal vorticity is convected upward 

and causes a rising horizontal gradient until significant 

vorticity has reached the center of the jet. 

At the later times the large horizontal vorticity in 

the center of the jet discussed above (Figure 94b) is the 

cause of the gradient, At these times this vertical vorti

city gradually shifts to become in phase with that on the 

jet sides, but with larger amplitude. There is then con

siderable horizontal variation of the vertical vorticity, 

with different patterns in different planes, so that the 

separate effects on the horizontal velocity profile at the 

front of the jet. are obscured. However, the general trend 

at the later times is toward a positive crest above the 

boundary and a negative crest above that, as reflected in the 

horizontal velocity profiles at the front of the jet (Figure 

96d) . It is the negative velocity due to the negative crest, 

which of course emerges before the following positive crest, 

that increases the rearward horizontal convection and causes 

the upper horizontal vorticity trough at the front of the 

jet mentioned above (Figure 94c). The generation of this 
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vertical vorticity between the center and sides of the jet 

is accentuated by the small number of cells per radius used 

A smaller cell size would result in smaller gradients. 

The decrease in horizontal vorticity in the front of 

the jet (Figure 94c) causes an excess in positive vorticity 

at, and just above, the exit edge, and this tends to induce 

forward horizontal velocity above the boundary at the front 

of the jet. This effect is accentuated at the later times 

by the increase in horizontal vorticity just behind the 

front of the jet, corresponding to the increase on the bound 

ary that occurs in conjunction with the lowest positive 

crest in the horizontal velocity profile at the jet center 

(Figure 94b). 

The horizontal velocity above the jet center is nega 

tive at the early times, because of the above-mentioned 

oppositely directed vertical vorticity between the center 

and the sides of the jet, and horizontal convection there

from is the cause of the formation of the initial horizonta 

vorticity crest in the interior of the jet mentioned above 

(Figure 94b , t = 1.6). 

However, the crests in the horizontal vorticity exer 

a dominant effect when they achieve sufficient amplifica

tion, and the horizontal velocity in the jet center then 

follows the horizontal vorticity there (Figures 96c and 94b, 

at t = 2.8). The horizontal velocity in the jet center is 
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in phase with the vertical vorticity at the jet sides at the 

later times (Figures 95 and 96c) and must also, therefore, 

be influenced by this vorticity at those times. However, 

the phase relationship between this vertical vorticity and 

the horizontal vorticity in the jet center is such that 

their effects or the horizontal velocity are not separable. 

The stronger horizontal vorticity must, however, dominate. 

The vertical velocity distribution in the center of 

the jet (Figure 98b) conforms primarily to the horizontal 

vorticity in the rear (and sides) of the jet (Figure 94a). 

The decrease in vertical velocity after the increase above 

the exit at the early times is due to the vertical decrease 

in horizontal vorticity magnitude. As the crest in the 

horizontal vorticity at the jet edge develops and rises, a 

corresponding vertical, velocity crest follows inside the 

jet. The subsequent development of the horizontal vorti

city trough around the jet then causes a similar trough in 

the interior vertical velocity. These correspondences are 

quite evident at the latest time in Figures98b and 94a. 

The small uppermost crest of vertical velocity is due to the 

corresponding vorticity crest caused by the minimum vorticity 

effect discussed, above. 

The strong crest just above the boundary is due to 

x-vorticity on either side of the centerline which diffuses 

from the exit edge into the jet and then is convected upward. 
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A comparison of the effect of the range of integra

tion r in the velocity calculation is given in Figures 9 6-

98 at t = 2.4. As would be expected an increase in the 

integration range tends to increase the rearward horizontal 

velocity and the vertical velocity. The effect on the former 

is stronger in the lower portion of the jet as a result of 

the significant rearward and lateral spread of vertical vor

ticity. The effect on the vertical velocity is stronger in 

the upper portion of the jet because of the dominant influ

ence of the exit source integral in the lower portion of 

the jet. 

Stable Case - V == 8 
r__ 

The stabilizing effect of a reduction in time step is 

evident upon comparison of Figures 94-98 with Figures 99-103. 

The horizontal vorticity distribution at the edges of the jet 

has the same basic form with the smaller time step, but the 

peaked nature prevalent at the larger time step is reduced 

to a smooth waveform (Figure 99a, 99c; Figures 94a, 94c). 

Again the negative crest at the rear of the jet and the posi

tive crest at the front are both due primarily to vertical 

convection and are formed initially from the vertical gradi

ents of horizontal vorticity created by diffusive dissipa

tion above the boundary. (The stronger vertical gradient of 

vertical velocity is also significant at the front of the jet 

as mentioned above.) The crest is enhanced in the rear and 
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degraded in the front by horizontal convection due to the 

cross-flow, and is therefore both stronger and higher in the 

rear of the jet. 

The reduction of the convectional instability also 

eliminates the vorticity trough that develops in the upper 

portion of the horizontal vorticity profile at the front of 

the jet with the larger time step (Figures 99c and 94c) as a 

result of excessive rearward horizontal convection caused by 

the generation of oppositely directed vertical vorticity 

between the center and sides of the jet discussed above. 

The smaller negative crest in the upper portion of th 

horizontal vorticity profile at the rear of the jet (Figure 

99a) caused by the minimum vorticity effect as discussed 

above is still present but reduced. A comparison with a 

smaller minimum vorticity is given in Figure 99 at t = 2.2. 

Again the effect is slight except in the upper portion where 

the above-mentioned crest is eliminated. 

In the interior of the jet the pattern of the horizon 

tal vorticity distribution is altered significantly in form 

as well as magnitude by the reduction in time step (Figures 

99b and 94b). The early development of the positive crest 

followed by a negative crest is essentially the same, the 

former crest again being formed as a result of rearward hori 

zontal convection, and the latter by vertical convection 

across the vertical gradient thus created. However, the 
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subsequent amplification is much reduced and the wavelength 

of the disturbance is increased, so that the catastrophic 

divergence evident with the larger time step does not occur. 

The increase in wavelength is significant, since disturb

ances of wavelengths equal to twice the cell size, as 

occurred with the larger time step, are the most destructive 

with central differences for first derivatives, since then 

the opposite wave crests fall on the two points used for 

evaluation of the derivative. 

The broad nature of the positive crest at the later 

times in Figure 99b is due to the combined effects of hori

zontal and vertical convection, the former being dominant in 

the lower portion of the crest and the latter in the upper 

portion. This form develops because the vertical convection 

tends to spread the crest upward. In the unstable case con

sidered previously, the divergent amplification from verti

cal convection far overshadowed the effects of horizontal 

convection and distorted, the upper portion of the crest into 

an overpowering sharp peak. The minimum vorticity effect 

discussed above also tends to make the upper portion of the 

crest more abrupt by reducing the vertical convection of 

vorticity away from the top of the crest. 

Again the vertical vorticity distribution at the sides 

of the jet is influenced primarily by the horizontal vorti

city in the interior of the jet, and is created by gradients 
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of vertical velocity along horizontal vorticity lines. 

There is, therefore, close correspondence between the wave 

forms of Figures 100a and 99b, the former having a phase la 

relative to the latter. The contrast with the unstable cas 

in Figure 95 is marked and agrees with the corresponding co 

trast between the horizontal vorticity profiles in the inte 

rior of jet. As with the horizontal vorticity, the time 

step reduction achieves an increase in wavelength as well a 

a decrease in amplitude of the disturbance waveform. 

The behavior of both the horizontal and vertical vor 

ticity on the boundary is not greatly affected by the time 

step, though the magnitude of the variation is reduced, 

especially in the interior of the jet after the unstable 

case begins to diverge (Figures 99a, 99c, 100a; Figures 94a, 

94c, 95). 

The horizontal velocity distribution at the edge of 

the jet has a similar form with each of the two time steps 

(cf. Figures 101b, lOld, 102a, with Figures 96b, 96d, 97), 

but with reduced magnitude of the variation at the smaller 

time step. The sharp horizontal vorticity peaks are 

reduced, so that the velocity profile at the rear of the 

jet (Figure 101b) has a smooth wave form with the smaller 

time step. With the reduced amplitude of the horizontal 

vorticity variations in the rear of the jet, there is also 

a significant contribution to the horizontal velocity there 
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by the vertical vorticity generated on the sides of the jet 

and convected downstream by the cross-flow, as illustrated 

by the phase coincidence of Figures 101b and 100a at the 

later times. The outward velocity is the result of the 

horizontal vorticity crest, but the positive velocity crest 

below is due largely to the vertical vorticity crest above 

the boundary. 

In the front portion of the jet the rearward crest of 

the horizontal velocity is much reduced. This crest, it is 

recalled, is a result of vertical vorticity generated 

between the center and sides of the jet that is directed 

opposite to that on the sides (see the discussion of the 

unstable case above). The positive crest is due to the cor

responding crest of the vertical vorticity at the sides of 

the jet (Figure 100a) and also to the positive horizontal 

vorticity at the forward edge of the exit. 

In the interior of the jet the horizontal velocity 

distribution is greatly altered by the time step reduction 

(cf. Figures 101c and 96c), as a result of the alteration of 

the vorticity distributions. The initial rearward velocity 

induced by the vertical vorticity generated between the cen

ter and sides mentioned above is still present but reduced. 

At the later times the horizontal velocity in the center of 

the jet follows close1y the vertical vorticity distribution 

on the sides of the jet (Figure 100a), with modifications 
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due to the horizontal vorticity distribution in the interior 

of the jet (Figure 99b) that cause the velocity wave to lag 

slightly behind the vertical vorticity wave. 

The initial decrease in vertical velocity above the 

exit at the front and rear of the jet, as well as the 

increase in the interior (FigureslQ3a-c), is again due to the 

diffusion of horizontal vorticity generated on the exit edge 

into the jet. The vertical velocity at the rear of the jet 

(Figure 103a) reflects primarily the horizontal vorticity 

distribution in the interior of the jet and hence follows 

roughly the profile of Figure 99b. 

The variation in horizontal vorticity at the edge of 

the jet is too small with the smaller time step to have a 

noticeable effect on the vertical velocity over the exit 

center. The profile there (Figure 103b) therefore exhibits 

a general vertical decrease as a result of the decrease in 

horizontal vorticity at the sides of the jet, with none of 

the severe oscillation present with the larger time step 

(Figure 98b). 

In the forward portion of the jet (Figure 103c) the 

vertical velocity general" decreases vertically because of 

the reduction in horizontal vorticity in the forward portion 

of the jet by horizontal convection and diffusion. The 

crest just above the boundary is again due to x-vorticity to 

the sides of the centerline as discussed in the unstable 
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case. Again a comparison is given of the effect of an 

increase in the range of integration in the velocity calcu

lation (Figures 101-103, t = 1.8), the increase tending to 

increase the rearward horizontal velocity and the vertical 

veloc ity. 

The horizontal vorticity distributions at later 

times (Figures 99d-f) exhibit generally a continuation of 

the pattern of vertically moving waves, with only a few 

modifications. Vertical convection across the gradients 

that result above the exit with the upward passage of the 

waves continue to generate the waves at the rear of the jet 

(cf. small crest two radii above the boundary at t = 5.0 in 

Figure 99d) and in the interior of the jet (Figure 99e). 

The latter profile is subject to some distortion near the 

boundary resulting from truncation error in the velocity 

calculation. In order to conserve computer time the range 

used in the velocity calculation in the present case of Ion 

duration was chosen to be only one exit diameter. This 

introduces no great error until the later times when sig

nificant vorticity is widely spread near the boundary. The 

error then is greatest in the lower portion of the jet near 

the center and front of the jet, since the predominant hori 

zontal movement of vorticity is rearward and to the sides. 

Some rather sharp horizontal gradients of velocity, there

fore, develop in the jet interior and the results shown for 
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the last two times are suspect in the lower forward portion 

o f the jet. 

The uppermost crest at the rear of the jet, resulting 

from the minimum vorticity effect discussed above, causes 

the creation and amplification of the trough which follows. 

This trough develops primarily because of the loss of vor

ticity through vertical convection across the gradient 

caused by the crest above, but is amplified by losses due to 

downstream convection resulting from the horizontal vorti

city gradient created by the uppermost positive crest in the 

jet interior. Both this trough and the crest above exist 

only because of the minimum vorticity approximation and are, 

therefore, removable. Horizontal convection is the cause of 

the broadening of the primary crest. Here negative vorti

city is convected downstream from the interior of the jet. 

At the front of the jet, the crest generated at the 

start becomes more apparent as time passes and it moves up

ward. The crest is maintained by vertical convection from 

below because of the vertical gradients of both the horizon

tal vorticity and the vertical velocity, the latter gradient 

being more significant in the front of the jet than else

where, and thus is located in the region of large velocity 

gradient above the vertical velocity crest (Figure 103f). 

The amplification of the trough behind at the last two time 

steps is due to horizontal convection that is directed 
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upstream in front and downstream b e h i n d — a result of the 

above-mentioned truncation error in the integration. The 

narrowing of the negative crest in the jet interior is due 

to downstream horizontal convection of positive vorticity 

into the upper portion of the crest. This is a result of 

the uppermost rearward velocity crest in the interior of the 

jet. 

The vertical vorticity at the jet sides (Figure 100b) 

continues to follow the horizontal vorticity in the interior 

of the jet in a vertically moving wave with little distor

tion. 

The horizontal velocity (Figure 101) continues to 

reflect the combined influence of both the horizontal and 

vertical vorticity, with, the latter being dominant. There 

is thus a close phase coincidence with the vertical vorticity 

(Figure 100b). The topmost velocity crest in the rear of the 

jet is raised a bit by the vorticity trough following the 

crest created by the minimum vorticity effect (Figure 99d). 

Also the larger horizontal vorticity variations in the inte

rior of the jet (Figure 99e) are such as to amplify the 

effect of the vertical vorticity in that region. Since the 

vertical vorticity lags the horizontal, the velocity contri

butions of each are in phase here and, therefore, the effects 

are not separable. The large negative velocity near the 

boundary at the later times is probably excessive as a result 
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of the above-mentioned truncation error in the integration, 

since a considerable body of vertical vorticity directed 

opposite to that nearest the exit center (negative at these 

times) is not being included in the calculation here. 

The horizontal velocity in the front of the jet 

(Figure lOli) is also influenced to an increasing degree by 

the vertical vorticity, and. at the latter times is in phase 

with the horizontal velocity at the center and rear of the 

jet (Figures lOlg, lOlh). However, as noted above, the 

horizontal velocity in the interior of the jet also has the 

proper phase relationship with the velocity here. 

The horizontal velocity at the sides of the jet shows 

less variation and reflects the passage of the horizontal 

vorticity wave up the sides of the jet. The outward hori

zontal velocity just above the edge of the exit on all sides 

is due to the horizontal vorticity generated on the exit 

edge by the jet. This is to be balanced by the effect of 

vorticity of like sign above the boundary, but such a bal

ance cannot be achieved perfectly due to the discretization. 

Again a smaller cell size, i.e., more cells per jet radius, 

would improve the results. 

The vertical velocity just above the boundary con

tinues to be influenced strongly by the horizontal vorticity 

generated at the exit edge by the jet and diffused onto the 

jet on the boundary as discussed above. The vertical 



281 

velocity in the interior of the jet decreases vertically as 

a result of the general decrease in horizontal vorticity at 

the sides of the jet. 

At the front and rear of the jet, however, the verti

cal velocity continues to reflect the influence of the hori

zontal vorticity in the interior of the jet. The wave form 

of Figure 103d thus corresponds generally to that of Figure 

9 9 e . (Recall that the profile of Figure 99e is over the 

exit center and is only representative, not definitive, of 

the horizontal vorticity distribution in the entire jet 

interior.) At the front of the jet (Figure 103f) the 

results are more complicated, involving also the effect of 

the x-vorticity distribution to the sides of the centerline, 

which is the cause of the crest as discussed above. This 

effect decreases in time as the vorticity is dissipated. 



APPENDIX L 

DEVELOPMENT OF SINGULARITY DISTRIBUTION 

FOR VORTEX LATTICE MODEL 

As shown in Appendix B the velocity induced by a spe

cified vorticity distribution may be calculated from the 

integral relation (B - 1) for a bounded volume: 

v(r) = 
4TT 

9v 
~ (r' - r) ' n 

[-T—^—r
 + ~ '^—^3ds + /-

1 r •- r i , i 3 ~ 4TT 

~ r - r 

V x 0) 
-dv 

r - r 

This may be rewritten, using Equation (B - 30), as 

v ( r ) = 
4TT 

9v 

J^ ( r 1 - r ) • n 

r - r 
-v + 

r - r 

n x co 

r ' - r 
• ] d S 

( 1 ) 

4TT 

( r ' - r ) x OJ 

-dv 
r ' - r 

( 2 ) 

The volume integral extends over the entire flow field, and 

the surface integral covers the entire boundary of the flow 

field. The unit vector n is the outward normal to the bound 

ary of the flow field (Figure 1). 

Let part of the fluid boundary be a plane located 

at z = 0, which is impervious except for a finite area of 

arbitrary shape on which the normal velocity is uniform. 

This finite area of non-zero normal velocity on the z = 0 
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plane is here referred to as the "exit." The remainder of 

the boundary of the flow field is taken to be a he isphere 

located above the z = 0 plane, with its center at the ori

gin. The flow field thus comprises the entire region above 

the z = 0 plane, this region being designated the "object 

field. " 

Now for every point r in the object field define a 

corresponding point r.. in the region below the z = 0 plane 

(this region being designated the "image field") having the 

same x and y components as r, but with the z component 

reversed . Thus 

r± E r - 2(k • r)k (3) 

Also define an image vorticity 0) at each point in the image 

field, this image vorticity having the same z component as 

the vorticity at the corresponding point in the object field, 

but with the other components reversed: 

w 1(r 1) E 03(r) - 2[i • w(r)]i - 2 [j • U(r)]j (4) 

with r 1 and r related by Equation (3). Finally, define the 

normal velocity on the common plane boundary in the image 

field to be opposite to that in the object field: 

k • v 1(x 1, yx, 0) = - k • y( x, y, 0) (5) 

where, by Equation (3) , x = x and y = y. 
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Then the velocity induced at points within the image 

field by the image vorticity is given by (cf. Equation (2)) 

9v, 

?i<Ei> = -h\ 
3n 1 

Cr" - rx) 

r - r r" - r 

n n x L0-. 

3 ~± r„ _ r J-

+ 
4TT 

(r" - r ) x UK 

dv 

r" - r 1 

(6) 

where the integration is now over the image field, the vari

able of integration being r". If Equations (4) and (5) are 

substituted in the integrals of Equation (6), and the points 

of integration r" in the image field are converted to the 

corresponding points r' in the object field by application 

of Equation (3), 

r" = r' - 2(k • r*)k (7) 

The integrals over the image field may then be transformed 

to integrals over the object field, and it may then be shown 

that Equation (6) reduces to (Appendix M) 

v 1(r 1) = y(r) - 2[k • y(r)]k (8) 

with r.. and r related by Equation (3), and v(r) given by 

Equation (2). The velocity in the image field induced by the 

image vorticity is thus the same as that at corresponding 

points in the object field, except that the z component is 
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reversed. 

Now if in the integrals over the image field in Equa

tion (6), the point r is located outside the image field, 

i.e., outside the field of integration, the equation is 

equal to zero. Then, since all points in the object field 

are outside the image field, we may write, using Equation 

(2) and Equation (6) with r in the object field, 

v ( r ) = -±-1_ 
4TT [• 

3v 
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- = — ^ - ~ v + — ]dS 

r - r r - r 

+ 4TT 

( r ' - r ) x w 
-dv 
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~T~li + 7 7 T ] d S i 
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+ 4TT 

( r " - r ) x ai 

J 
image r - r 

T~ d v i ( 9 ) 

with oi and v1 given by Equations (4) and (8), respectively, 

and r" related to r' by Equation (7). The first two inte

grals are over the object field, and the last two are over 

the image field, the sum of the latter being zero since r is 

outside the image field. 

Let the velocity approach at infinity a uniform value 

that is parallel to the common plane boundary, except 
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possibly on a finite portion of the surface at infinity.* 

With the uniform velocity at infinity indicated by V we 

have, using v = V and v, * V « since V has no z component, 

_1_ 
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The last step follows from the development of Equation (B -

28) of Appendix B from Equation (B - 2 7 ) . The left hand 

side of Equation (10) vanishes when v, and hence v., is 

replaced by the deviation of the velocity from the uniform 

value, since then the total solid angle subtended by the 

finite area of non-zero velocity deviation approaches zero 

at inf inity. 

With the above specification of the velocity at infin

ity and the additional stipulation of no variation of velo-

*The terminology "surface at infinity" refers to the hemi
spherical surface in the limit as its radius approaches 
inf inity. 

tThe notation °° on the surface integrals implies the limit 
of the integral over the hemispherical surface as its 
radius approaches infinity. 



287 

city normal to the surface on the finite area of deviation 

from uniformity,* we have the first surface integrals in 

both the object and image spaces of Equation (9) vanishing 

on the surface at infinity. Similarly, if the vorticity at 

infinity is specified to be either zero or normal to the 

surface, the last surface integral in each space vanishes 

on the surface at infinity.T 

It is shown in Appendix M that the surface integrals 

on the plane boundary may be combined and reduced, so that 

Equation (9) becomes 

v(r) = V 
1 
2TT 

dv dv 
z _ i _ • z si 

T + J "5 (k 

dx I dy 

r) 
•dS + k-

obj ec t 
p lane 

- r 
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v dS 
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- r 

+ 
4TT 

(r ' - r) x oo f f K r " - r) x LO. 
•dv + 

object - r 
4TT 

-dv 

image'~ 

(11) 

where the surface integrals are over the z = 0 plane. Now 
9 v 9v 

the derivatives T; and n are zero everywhere on the z = 0 
dx dy 

plane except on the edge of the exit. Therefore, if e is a 

unit outward normal to the exit area boundary curve and lies 

in the z = 0 plane and e is an infinitesmal distance parallel 

to e, we have 

*More specifically, the normal derivative must vanish at least 
as fast as the inverse square of the radius, a condition that 
is fulfilled for velocities induced by vortices and sources. 

fThis condition is fulfilled by specification since the 
vorticity is confined to the lattice and thus has all its 
derivatives zero elsewhere. 
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dv dv 
z . z 

I T — + j-=— 
~ dx x. dy 

V. 
e and dS = e dl 

where V. is the uniform z-velocity on the exit area, and dl 
J 

is an increment of arc length along the exit area bounding 

curve. Then the first surface integral of Equation (11) 

becomes 

9v, 

"dT + j 

3v 

w. -dS = - V. 0 

r - r 

dl 

r - r 

(12) 

with the line integral taken around the exit area boundary 

curve. If dl is a vector of magnitude dl, directed tangent 

to the exit area bounding curve in the direction of positive 

line integration, i.e., exit area on the left, we have 

e dl = d.- x k 

so that the right hand side of Equation (12) may be written 

•V. 0 
J J 

dl 

r - r 

= V.k x <p 
3-

dl 

r - r 

(13) 

B u t b y a v e c t o r i n t e g r a l t h e o r e m { 6 9 , C h a p t e r 6} 

d r = (n x Vcf>)dS ( 1 4 ) 

where the surface integral is taken over the area enclosed 

by the circuit of the line integral, and n is a unit normal 
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to the surface directed in the positive sense of traverse of 

a circuit. Then applying Equation (14) to Equation (13) we 

have 

V. 0 
J J 

dl x k 

r - r 

- V . k x [ k x 

= V.k x [k x V(-
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In the last step the vector identity {69, Chapter 2 } , 

A x (B x C) = (A • C)B - (A • B)C (16) 

has been used. Substitution of Equation (15) in Equation 

(11), via Equations (12) and (13), then yields 

V. r c r ' - r { c r ( r ' - r ) x ^ 
v ( r ) = V( 2TT J 
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T d S + 4? J 

ob j ec t 

-dV 

- r 

1 
4TT J 

image 

( r " - r ) x UJ 

i r — r i ~ d v i (17 ) 

- r 

The surface integral in this equation is just the velocity 

induced by a uniform source distribution of strength V. 
J 

located on the exit area {7 3, Chapter 11}. The second volume 

integral is the velocity induced by the solid-wall images of 

the vorticity in the flow field. 
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DEVELOPMENT OF CERTAIN RELATIONS CITED IN APPENDIX L 

Development of Equation (L - 8) from Equation (L - 6) 

If Equation (L - 8) is true, then 

v n = i v + i v - k v 
~1 ~ x t y ~ z (1) 

Now, since n = k on the plane boundary, 

9v 

J^. = i-
9z 

3v 

+ J 
o-

dz 

9v 

o-

+ k-r-
~ dZ 

o-

(2) 

where the derivatives are those obtained as z approaches 

zero from below. But if Equation (L - 8 ) , and hence Equa

tion (1) above, is true, the x and y velocity components 

vary continuously at the plane boundary from the object to 

the image field, but their gradients in the z-direction are 

discontinuous. Conversely the z velocity component is dis

continuous at the plane boundary, but its z-gradient is con

tinuous. Therefore 

9v. 

9z 
o-

8v. 

8~z~ 
+ v (3a) 
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9z 
o-

3v. 

d7 = + v (3b) 

o + 
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= + v, = - v (3c) 
o + 

if Equation (L - 8) is true. 

Also from Equations (L - 3) and (L - 7) 

r = r' - r - 2[k • (r' - r)]k (4) 

so that 

r - r r - r (5) 

for r" and r related to r' and r by Equations (L - 3) and 

(L - 7),respectively. This relation is true throughout the 

field. 

Now using Equation (4) on the z = 0 plane, 

(r" - r1) • n 1 = (r" - r^) • k 

(r ' - r) ' k - 2(r' - r) • k 

- (r* - r) • k 

= (r' - r) " n (6) 

since n = k = - n. Also on the z = 0 plane, from Equation 

<L - 4 ) , 

n.. x OL = k x ( - ico - j 03 + ko) ) = - k x (ioo + i co + koo ) 
~ 1 ~ 1 „ v » x ~ y ~ z ~ ~ x x. y - a 

= n x oj ( 7 ) 
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F i n a l l y , f r o m E q u a t i o n s ( 4 ) a n d (L - 4 ) we h a v e 

( r " - r 1 ) x o^ = ( r ' - r ) ( r T - r ) - ( r * - r ) 
~ A ~ ~ y ~ ~ z 

-co -co + C0 

( 8 ) 

Then, using Equations (1), (3), (5), (6), (7), and 

(8) in Equation (L - 6) we have 

llir~l> = 4? 

9 v 3 v d v 
_ . x _ . y , ; 

~ 8z i 3z ~ 3z 

J J 
r - r 

( r ' - r ) 
z , . ( i v + j v - k v ) + 

r - r 
3 v t v

x 

i co - i co 
- y ~ x 

r - r 

] d S 

+ 4 TT 

i [ ( r ' - r ) 0) - ( r ' - r ) fa) ] + i [ ( r ' - r ) w - ( r ' - r ) co ] 
~ ~ y z ~ ~ z y =1 L ~ ~y z x ~ ~ x z 

dV 

1 

4 TT 

k [ ( r ' - r ) co - ( r f - r ) co ] 
~ ~ x y _- ~ y x d v = i v + i v - k v w ~ x ~ y ~ z 

( 9 ) 

by comparison with Equation (L - 2). 

Reduction of Surface Integrals of Equation (L - 9) 

From Equation (3), on the z = 0 plane 

»v. 9v 3v 
. x . y , 

9v 
z 
9z (10) 

But also 
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9 v 3 v 1 / 

= - x* - J-** - k-9z i 3z 9z (11) 

since n = - k. Therefore 

'V 

n 

'V 9v &-v 
+ T-E: - - 2(l-r£ + j-rf") 9n : Sz J~ 3z 

(12) 

Also on the z = 0 plane we have from Equation (L - 7) , since 

k • r' = 0, r" = r'. Then on the z = 0 plane, 

r" - r = r ' - r 

and 

(r" - r) 5l - - (r» - r) n 

(13) 

(14) 

Then using Equations (2), (7), (12), (13), and (14) 

we have the sum of the surface integrals on the z = 0 plane 

in Equation (L - 9) reduced to 

4TT 

9 v 3 v 
r -2(i^r^ + 3^-) 2(r' - r) * n ico - j to 

[ I^JS - 3 z + _ - - 4. o^L-JL ~ x 

p lane r ' - r r - r 
3 r z 

kv + 2- ]dS 

r ' - r 

But since k • r ' = 0 we have r' • n = 0 on the z = 0 plane. 

Also 

9v 9v 3v 9v 9v_ 'V 3v 9v 
X , X Z,. X 

y 9z 9z 3x 9z 9x (15a) 
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Therefore the above surface integral finally reduces to 

3v 

1 
2TT [• 

z , z 
1—ST" + j 3x -i dy k(k • r) -]dS 

plane r - r r - r 



APPENDIX N 

VELOCITY INDUCED BY THE LINEAR VORTEX SEGMENTS 

AND BY THE EXIT SOURCE DISTRIBUTION 

Linear Vortex Segments 

As noted in Chapter VII the velocity induced at r 
~P 

by a straight vortex segment between r and r„ (Figure 55), 

with positive circulation reckoned as clockwise when viewed 

from r, to r , is given by 

v = e. -; (cos 6., - cos Q.) 
-1 4 IT a 1 z 

where 

• i 

1 x a 

1 x a. 

1 x a 

1 • a 

cos 1 la cos 

1 * a 

2 la 

wi th 

= r — r t Z2 ~1 

a i - r ~ r i ~1 ~p ~1 

a0 = r - r0 ~ 2 ~ p ~ 2 

With the coordinates of the point of calculation taken as 

(x , y , z ) and those of the ends of the vortex segment 
P P P 

taken as (x , y , z ) and (*„, y2»
 zj) w e have 
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\ = T;l(y2 - y i ) ( z
P

 z i> - ( z 2 - z i ) ( y
P - ^ i ) ] 

e i = ^ [ ( z 2 - z i ) ( y p - v - ( y
2 - y i ) ( x

P - x i ) ] 

el = i7[(x2 " xl ) ( yp ' yl> " (y2 - yl ) ( xp - X l ) ] 

Z X 

where 

qx - ([(y2 - y^Cz - Z l) - i*% - * ) (y - y ^ ] 

+ [(z2 - z1)(x ~ x1) - (x2 - x1)(z - z^)] 

+ [(x2 - x1)(y - yx) - (y2 - Y ^ U - x ^ ] ) 
2,1/2 

Also 

where 

a = 

q2 = [(x2 - x x )
2 + (y2 - Yl)

2 + (z2 - Z ; L )
2 ] 1 / 2 

Also 

cos 

(x2-x1)(Kp-x1)+(y2-y1)(yp-y1)+(z2-z1)(zp-z1) 

q 2[(x p-x 1)
2
+(y p-y 1)

2
+( Z p- Z l)

2] 1 / 2 

C O S 

(x2-x1)(xp-x2)+(y2-y1)(yp-y2)+(z2-z1)(zp-z2) 

q 2[(K p-x 2)
2
+(y p-y 2)

2
+(z p-z 2)

2] 1 / 2 

Then 
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r x 
v = -,— —— ( c o s 8 , - c o s 9 „ ) 

x 4 TT a 1 2 

= •; ^ ( c o s 9 , - c o s 0 . ) 
y 4 TT a 1 2 

V 
r xz 

- ^ ( c o s 6 l - cos e2) 

a n d 

V E v = - ( c o s G-. - c o s 9 . ) 
47ra 1 2 

Aa 
VAt 

a l s o 

' 2 x q 2 
[ ( y 2 - y x ) e

x - ( z
2 " z±) e i 1 

z y 

a n d 

y 2 x z 

e 2 = ^ [ ( x 2 - x 1 ) e 1 - ( y 2 - y 1 ) e l ] 
z ^2 y x 

b = e . a s i n Aa + e a ( l - c o s Aa) 
x 1 2 

x x 

b = e.. a s i n Aa + e a ( l - c o s Aa) 
y -- 2 

y y 

b = e , a s i n Aa + e„ a ( l - c o s Aa) 
z 1 2 

z z 
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The contribution of this vortex segment to the motion of 

point r for this time interval then is given by 

Ax = v At 
x 

Ay = v At 
3 y 

Az = v At 
z 

if the spiral correction is not used, or by 

Ax = b 
x 

Ay = b 
y 

Az = b 
z 

if the spiral correction is used. 

Exit Source Distribution 

From {74} the velocity induced at a point (x, y, z) 

by a uniform source distribution of unit density on a 

quadrilateral lying in the xy-plane with corner points 

(*!> Y 1 ) , (x2, y 2 ) , (x3, y 3 ) , and (x^, y^) is given by 

y2 - yx 

X 

r + r - d 

^(-~Z I A ) + 
rl + r2 + dl 

y3 - y2 . / 2 + r3 ' d 2 , 

'"S + '3 + ^ 

+ _ ln( _. ) + 
d3 r + r4 + d3 

yl " y4 
r
4 + ri - d

4 
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*1 ' *2 . ,rl + r2 ' J l . _, X2 - x3 , ,r2 + r3 " d 2 s 

~^~ ' ^ * *2 - ^ + ~ ^ r ln^2 + '3 + S) 
I _ 

X3 I X4 . f
r3 + r4 ' d 3 , X4 ' xl , ,r4 + rl ' V 

~ — • ln(-z—irz—r A ) + —-, in(-—T—-—i j ) r3 + r4 + d3 r4 + r l + d4 

- I , " ! 6 ! - h l s v = tan ( ) 
z zr, 

. -l,mle2 " V tan ( — ) 
zr 

_x m e 2 - h 
+ tan ( — ) 

zr 

- -l,m263 " h 3 , 
tan ( y- ) zr 

. f -1 °3»3 ' h 3 , 
+ tan ( ) 

zr .. 

, -l,m3e4 " V 
tan ( ) 

zr, 

-1 m4 e4 ~ h4 + tan x ( - ^ _ ^ ±) 
zr 

. m , e - h "1/ A 4 K tan ( — ) 
A z r 

where 

dn = [(x x,) + (y2 
,2.1/2 

d0 = [(x x2) + (y3 
..2.1/2 

y2) ] 

d0 = [(x x
3
} + (y4 

v2,1/2 
y3) ] 

4 

and 

[(x x4) + (y1 y 4 ) 2 ] 1 / 2 

;;i 

x„ - x 

y . - y 
Ql 
2 " x 

m 
y,. - y 

x , - x 
111 = y i : y > 
4 x. - x 
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and 

/ N2 . ,2 2,1/2 (x - xk) + (y - yfc) + z ] 

e k = z2 + (x - x k )
2 

h k = (y - yk)(x - xk) 

for k = 1, 2, 3, 4 . 

Since the vortex sheet surrounding the jet is repre

sented by discrete linear vortex segments, it is appropriate 

to replace the true exit area by an area bounded by straight 

lines connecting the column vortex segments on the plane 

boundary as shown in Figure 104. This area can then be 

divided into triangular segments, and the velocity induced 

by each triangle calculated from the above relations. The 

sum of the velocities induced by all the triangles then is 

the total velocity induced by the uniform source distribu

tion on exit area that lies inside the vortex sheet. If the 

exit area is circular, the triangular segments are isoceles 

triangles, and it is convenient to calculate the induced 

velocity components in a coordinate system having its origin 

at the vertex of the triangle and its x'-axis along the 

bisector of the vertex angle (Figure 105a), and then to 

transform to the basic coordinate system. Thus 

2 1 , / l "*• r2 - d * 4 + rl - d 

1 l n [ ( r , + r„ + d ) (r, + r, + d 1] 



3 0 1 

r + r „ - l 0 r + r - l 9 . r , 2 3 2 s f 3 4 f , 

v ' , = ~ l n [ ( 
y d r , + r 

r , + r i - d r T + r « + d 
4 1 v / 1 2 

i2 
v , = t a n ( 

z z r 

4 1 

h 

^7>< t 1 + r 2 - d 

1 1 7 ^ " h2 
•) - t a n " 1 ; - ^ - ) 

z r 

X2 X 2 
- — e - h - — e - h 

- 1 1 - 1 1 
+ t a n ( ~ ) - t a n ( - ^ ) z r zr 1 

w h e r e 

a n d 

A * -\ 

= u . 2 + y , 2 + 2 , 2 ) l / 2 

= [(x» - 1 1 )
2 + (y' - 1 2 )

2 + z ' 2 ] 1 / 2 

= [(x' - l x )
2 + y'2 + z ' 2 ] 1 / 2 

[(x» - l x )
2 + (y- + 1 2 )

2 + z ' 2 ] 1 / 2 

,2 ,2 
x + z 

2 2 
e2 = e3 = e4 = ^x' ~ 1l') + z ' 

hx = x'y' h3 = (xf - l1)y' 

h 2 = (x1 - l1)(y* - 12) h4 = (x' - l1)(y* + 12) 
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Then 

v' = v' . cosO 
x x 

v f , sine 
y 

v1 = v', sina + vT, cosa 
y x y 

v' = v?, 
z z 

In the case of a general shaped exit area it is con

venient to take the initial x-axis along one side of the 

triangle (Figure 105b). Thus 

, 1 3 . ,rl + r2 - d l , X3 , ,X2 + r3 " d 2 , 

V 
X2 , ,T1 + r2 " V 12 " Xl , ,r2 + r3 ' d 2 s 

^ ^ T ^ T ^ ^ * - i p - ln(r2 + r3 + d2) 

r + r . - d r . + r - d 
, i • 3 4 3s , , , 4 1 4v 

+ l n ( ; —-—) + l n ( —j—) r 3 + r4 + d3 r4 + r l + d 4 

X3 X3 
l~el " b l 1~62 " b2 

_ - 1 , 2 \ . - 1 / 2 
v , = tan ( j ) - tan ( j ) 

z z r1 z r„ 

e„ - b 
- 1 2 2 - 1 3 

. - 1 / 2 1 „ - 1 / 2 1 J 

+ t a n ( —— ; - t a n (-z r z r 

w h e r e 

2 , 2 . 1 / 2 
d l " ( 1 2 + 1 3 ) 

d2 = [ d x - i 2 ) 2 + : . \ ] i n 



Then 

d3 = 3 ( 2 ^ - 1 ) 

dy = 3(11 + V 
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and 

r, = (x'2
 + y'2 + , ' 2 ) 1 / 2 

= [(*' ~ i 2 )
2 + (yT - i 3 )

2 + z ' 2 ] 1 / 2 

= [<*' - l x )
2 + y'2 + 2 ' 2 ] 1 / 2 

= [(x' - d . ) 2 + y'2 + z ' 2 ] 1 / 2 

,2 ,2 x + z 

e2 = (x' - 1 2 )
2 + z'2 

(x1 - 1 1 )
2 + z'2 

(x' - d 4 )
2 + z'2 

bx = x'y' b 3 = (x' i1)y
l 

b 2 = (xf - l2)(y
T - 13) = (xf - d

4 ) y ' 

V ' = V ' , CO SO" 
X X 

v', sina 
y 

v ' = v' , sine 4- v ' . cosO y x y 

V z ' 
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The above relations apply for a source distribution 

of unit density. The velocity induced by the source dis

tribution in the present application is then given by 

( v ) n z o , 
v = — — v 

2TT 

Ideally the exit velocity (v ) should be the prescribed jet 

velocity. Similarly at infinite distance above the plane 

boundary the undeformed vortex lattice above should induce 

the same prescribed jet velocity at points inside the 

lattice. This, however, cannot be precisely the case since 

the lattice is composed of discrete elements, rather than 

being a continuous vortex shee;„ It is, however, necessary 

that the vertical velocity induced by the source match that 

actually induced by the discrete vortex lattice before 

deformation, else the vortex rings near the exit will move 

initially at a vertical velocity different from that at an 

infinite distance above the plane boundary. Therefore, the 

source strength is determined from the vertical velocity 

actually induced by the undeformed lattice at a great dis

tance above the plane boundary, rather than from the ideal 

jet velocity. This determination is made as follows: The 

vertical velocity induced by continuous infinite circular 

cylinder vortex sheet of strength V. on itself is equal to 

V . 
—4- {75}. The velocity induced on itself by an infinite sheet 
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composed of plane segments parallel to the axis is then 

ip . 
approximated as ——V. , where ty is the average angle between 

the planes forming the sheet (Figure 104). Therefore, if 

V , is the vertical velocity actually induced on the lattice 
cal J 

vertices at a great distance above the plane boundary by the 

discrete lattice before deformation, the effective jet 

velocity may be approximated as 

(Veff t/j c a l 

The source strength is then based on (V.) f f , rather than the 

prescribed jet velocity V.. This procedure was found to pro

duce an excellent matching of the initial vertical velocity 

of the rings near the exit with that at a great distance 

above the exit for both 16 and 3 2 column vortices spaced 

evenly around a circular exit. 
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Table 1. Parameters Used in Various Numerical Solutions 
for Circular Cylinder 

Hamielec and Raal {27} 

Mesh size: 

Field size 

0.0513 for R = 1, 10, 50 (R = 0.0256, 0.256, 
C 1.28) 

0.105 for R = 2, 4, 15 (R = 0.105, 0.210, 
C 0.788) 

0.0618 for R = 30 (R = 0.928) 
0.0253 for R = 100 C(R = 1.26) 

c 
90.0 for R = 1, 2*4 
66 .5 for R = 10, 15, 30 
20.1 for R = 50 
12.2 for R = 100 

Takami and Keller (28 } 

Mesh size: 

Field size: 

Takaisi {31} 

0.0816 for R from 1 to 60 (R from 0.0408 to 
C 2.45) 

59.4 for R from 1 to 20 
16.9 for R from 30 to 60 

0.111 for R from 0.5 to 100 (R from 0.027 
C to 5.56) 

Mesh size: 

Field size: 10 for R from 0.5 to 100 

Thoman and Szewczyk {3 0} 

Mesh size: 

Field size 

Final time 

1/12 of boundary layer thickness at 
forward stagnation point. 

10 laterally, 18 downstream for R from 
40 to 40,000 

24 for R = 40 
160 for R = 200 

Jain and Rao {2 9} 

Mesh size: 

Field size: 111.3 

0.1102 for R from 40 to 200 (R = 2.2 to 11.0) 
c 

for R from 40 to 200 

Final time: 24 for R = 40 
32 for R = 60, 200 
52 for R = 100 
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Table 1 (Continued) 

Kawaguti and Jain {32} 

Mesh size: 0.1102 for R from 1 to 100 (R 

Final time: 

Field size 

Final time 

0.0551 to 
5.51) 

Field size: 111.3 

1.2 
12 
16 
24 

Son and Hanratty {33} 

Mesh size: 

for R from 1 to 100 

for R = 1 
for R = 10, 20, 60 
for R = 30 
for R = 40, 50, 100 

0.0816 for R = 40 (R = 1.63) 
t--

0.0319 for R = 200 (R = 3.19) 
c 

0.0222 for R = 500 (R = 5.55) 
c 111.3 for R = 40 

152.4 for R = 200 
157.3 for R = 500 

50 for R = 40 
56.1 for R = 200 
67.4 for R = 500 

Note : Mesh sizes given are ratios of physical radial incre
ment at the cylinder surface to the cylinder radius. 
Field sizes given are ratios of the physical maximum 
field radius to the cylinder radius. Final times are 
given as nondimensionalized with respect to the cylin
der radius and free stream velocity. The cell Reynolds 
numbers here are based on the mesh size given. 
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Table 2. Combinations Evaluated for Cylinder 
Boundary Treatments 

Convect ion 
S cheme 

A 
B 
C 
D 
E 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X X X X 

X 

X 

Diffusion 
Scheme 

A 
B 

X X X X 

X X X X X X X X X X 

X 

Surface 
Vorticity 

Scheme 
A 
B 

X X X X X X X X X 

X 

X X X X X 

Corner 
Scheme 

A 
B 
C 
D 

X X X X X X X X X X 

X 
X 

X 

X X 

Convection Schemes 

v = 0 in boundary cells 
v ^ 0 in boundary cells 
v = 0 in boundary cells only for calculation there 
No convection in boundary cells 
No convection in boundary cells, v = 0 in boundary 
cells 

Diffusion Schemes 

A : Calculated vorticity used for calculation in boundary 
cells 

B : Surface vorticity used for calculation in boundary 
cells 
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Table 2 (Continued) 

Surface Vorticity Schemes 

A : v = 0 in boundary cells 
B : v ^ 0 in boundary cells 

Corner Schemes 

y = 0 in boundary cells, one-sided difference 
y = 0 in boundary cells , central difference 
y 4- 0 in boundary cells , central difference 
y ^ 0 in boundary cells , central differences, zero 
vorticity used on inside corners for calculation there 
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Table 3 (Continued) 

Scheme 
(A) (B) (A) (B) (A) (B) 

D 
CD CD S 

P 

(c ) . (c ) . 
p m m p m m 

R = 120 
(t = 42) 

(t = 20; N D = 24) 

(At = 0.2, t - 20, N 
= 24) 

(t = 20, N = 24) 

c B A C 0 . 5 8 0 . 6 7 0 . 2 2 0 . 2 3 + 0 . 2 3 + 0 . 1 2 

c B A G 0 . 3 0 0 . 3 8 0 . 1 4 0 , 1 6 + 0 . 4 4 + 0 . 3 4 
B B A C 0 . 3 4 0 . 4 4 0 . 1 9 0 . 2 1 + 0 . 3 3 + 0 . 1 9 
C B A D 0 . 5 3 0 . 6 5 0 , 2 1 0 . 2 3 + 0 . 2 9 + 0 . 1 4 
G B Ax G 0 . 0 0 2 0 . 1 4 0 . 2 6 0 . 2 8 - 0 . 1 2 - 0 . 4 3 

C R A C - 0 . 0 0 7 0 . 0 6 0 . 2 8 0 . 2 9 - 0 . 1 8 - 0 . 3 6 
* * A C - 0 . 1 9 - 0 . 1 0 0 . 24 0 . 2 5 - 0 . 0 2 - 0 . 3 2 

R = 6 
(At = 0 . 2 ) 

1.82 
1.87 

67 
26 

2.04 
2.16 

2.51 
2.52 

-1.35 
-1.41 

-3.48 
-3.11 

All values obtained with At = 0.4, N = 12 at time t = 12, except as noted. 
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Table 4. Values of Parameters Used in Results Presented 

Figure R At N, 
m 

CO 
m 

formu
lation 

5 1 * -- __, 0.001 * D 
6 1 * -- __ 0.001 * D 
7 1 0.4 -- — * * D 
8 1 0.4 __ __ * * D 
9 1 0.1 -- -- 0.001 * D 

13 * 0.4 12 24 0.01 D 
14 * 0.4 * V> 0.01 D 
15 * 0.4 12 V> 0.01 D 
16 * 0.4 * 

\t* 
0.01 D 

17 10 0.4 12 \t* 0.01 * D 
18 10 0.4 12 24 0.01 D 
19 10 0.4 12 24 0. 01 * D 
20 10 0.4 12 24 0.01 * D 
21 10 0.4 12 24 0.01 D 
24 10 0.4 12 24 0.01 D 
27 1.35 •k 6 12 0.001 5.6 S 
28 2.5 0.65 6 12 0.001 15.6 S 
29 5.0 0.2 6 2 4 0.01 * S 
30 5.0 0.2 6 24 0.01 * s 
31 2.5 0.4 12 24 0.01 * s 
32 5.0 0.2 6 24 0.01 * s 
33 5.0 0.2 6 24 0.01 * s 
34 5.0 0.2 6 24 0.01 * s 
35 2.5 0.4 6 24 0.01 * s 
37-42 2.0 0.05 6 12 0.001 9 * s 
43-48 2.0 0.1 6 6 0.10 9 * s 
49 2.0 0.05 6 12 0.001 9 * s 
50 2.0 0.1 6 12 0.01 12 * s 
51 2,0 0.1 6 6 0.10 9 * s 
52 2.0 0.2 6 12 0.01 12 * s 
53 1.0 0.1 6 12 0.01 12 * s 
66 0.5 * 12 24 0.01 * D 
67 2 * •k 2.N 

If* 
0.01 * D 

68 10 * * 
2.N 

If* 0.01 * D 
69 * 0.4 12 

2.N 

If* 0.01 14 D 
70 2 * 12 24 0.01 12 D 
71 10 0.4 12 * 0.001 16 D 
72 10 0.4 12 24 * 16 D 
73 2.0 * 6 12 0.01 8 S 
74 2.5 0.4 6 * 0.001 12 D 
75 2.5 0.4 6 12 * 12 D 
76 3.5 0. 70 6 12 0.001 * S 
77 1.0 0.30 6 12 0.001 2.4 S 
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Table 4 (Continued) 

78 1.5 0.40 6 12 0.001 4.0 s 
79 3.0 0.65 12 2 4 0.001 7.8 s 
80 2.5 0.40 12 24 0.001 * D 
81 2.5 0.60 12 24 0.001 * D 
82 10.0 0.4 5 24 0.01 * D 
83 10.0 0.4 6 2 4 0.001 * D 
84- 88 2.0 0.1 6 12 0.01 9 * S 
89- 93 2.0 0.05 6 12 0.001 9 * S 
94- 98 2.0 0.2 6 6 0.01 9 * S 
99-103 2.0 0.1 6 6 0.10 9 * S 

Notes: 

1. An asterisk indicates a quantity given on the figure. 

2. In Figures 13-15, At = 0.2 for R = 2. 

3. D indicates the Dufort-Frankel formulation. 

4. S indicates the straight: explicit formulation. 
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Table 5 (Continued) 

Notes: 

1. The columns contain the following scale factors: 

Column la 
Column lb 
Column 2a 
Column 2b 
Column 3a 
Column 3b 
Column 4a 
Column 4b 

inches per unit horizontal velocity 
inches per cell on horizontal velocity plot 
inches per unit vertical velocity 
inches per cell on vertical velocity plot 
inches per unit horizontal vorticity 
inches per cell on horizontal vorticity plot 
inches per unit vertical vorticity 
inches per cell on vertical vorticity plot 

2. Plots are unretouched computer plots of a Cal-Comp Incremental Plotter 
Spurious lines are the results of plotter failure. 

uo 
M 
Ui 
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(a) Velocity Field Development 
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Figure 3. Illustration of Jet: in Cross-Wind Problem with Start from 
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Figure 4. Illustration of Infinite Jet in Cross-Wind Problem 
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(continued on next page) 

Figure 14. Time Development of Circular Cylinder Drag 
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Pressure During Vortex Shedding - R = 120 
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Figure 19. Vortex Street Behind Circular Cylinder (Coordinate System Moving 
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Figure 21. Effect of Rear Splitter Plate on Time Development of Circular 
Cylinder Pressure Drag and Surface Pressure - R = 120 LO 
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Figure 22. Coordinate System for Infinite Jet in Cross-Wind Solution 
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Figure 23. Determination of Initial Vorticity in Initial Vortex Cells 
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Initial Solution - Infinite Jet in Cross-Wind (Vr = 8) 
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(a) At = 0.35 

(b) At = 0.40 

Figure 27. Effect of Time Step at Low Reynolds Number near the Stability 
Boundary - Infinite Jet in Cross-Wind (Vr = 8) - R = 1.35 
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Figure 28. Persistence of Perturbation due to Nonlinear Instability 
Infinite Jet in Cross-Wind (V 8) •• Rc = 2.5 
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Figure 29. Time Development of Circular Infinite Jet in Cross-Wind 
(Vr = 8) - Twenty Step Gradual Start - R = 30 
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Figure 30. Time Development of Circular Infinite Jet in Cross-Wind 
(Vr = 8) - Forty Step Gradual Start - R = 30 
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Figure 31. Time Development of Circular Infinite Jet in Cross-Wind 
(Vr = 8) - Forty Step Gradual Start with Smaller Cell 
Size - R = 30 
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Figure 32. Time Development of Circular Infinite Jet in Cross-Wind 
(Vr = 4) - Twenty Step Gradual Start - R = 30 
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Figure 33. Time Development of Elliptic Infinite Jet in Cross-Wind 
(Vr = 8) - Twenty Step Gradual Start - R = 30 
(Major Axis Parallel to Cross-Flow, Eccentricity = 5/6) 
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Figure 34. Time Development of Elliptic Infinite Jet in Cross-Wind 
(V = 8) - Forty Step Gradual Start - R = 30 (Major Axis 
Parallel to Cross-Flow, Eccentricity = 5/6) 
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Figure 35. Time Development of Elliptic Infinite Jet in Cross-Wind 
(Vr = 8) - Forty Step Gradual Start - R = 15 (Major Axis 
Perpendicular to Cross-Flow, Eccentricity = 5/6) 
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Figure 36. Coordinate System for Three-Dimensional Jet in Cross-Wind 
Solution and Initial Conditions for Start from Cylindrical 
Discontinuity 
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Figure 39. Vertical Velocity Vectors - Start from Opening of Jet 
Exit (V = 8) - 32 Step Gradual Start, At = 0.05 - R = 12 
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Figure 51. Surface Pressure Contours - Start from Cylindrical 
Discontinuity (Vr • 8) - Four Step Gradual Start , At = 0.2 
R = 12 
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Figure 52. Surface Pressure Contours - Start from Cylindrical 
Discontinuity (Vr = 4) - Four Step Start, At = 0.2 -
R = 12 
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Figure 54. Initial Vortex Lattice Configuration 
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Figure 55. Velocity Induced by Vortex Segment 
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Figure 56. Correction for Spiralling Effect of Vortex Induced Velocity 
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Figure 60. Roll-Up of Vortex Lattice due to Normal Perturbation 
(Vr = 8) - Vortex Lattice Model, Initial Ring Spacing = 0.5 
Exit Radius, 16 Column Vortices - T = 0.905 
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Figure 61. Vortex Lattice Model (Vr = 8) - Initial Ring Spacing =0.5 
Exit Radius, 16 Column Vortices - T = 1.207 
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(a) Vortex Lattice. - Top View 
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(b) Vortex Lattice - Side View 
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Figure 62. Vortex Lattice Model (Vr - 8) - Initial Ring Spacing = 0.5 
Exit Radius, 32 Column Vortices -- T = 1.107 
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Figure 62. (cont.) 

-f> 
Ni 
ON 



(f) Surface Pressure Contours at T =0.277 

Figure 62. (cont.) 

•£-
K3 
•^j 



428 

object 
field 

(a) Pole in Object Field 

object 
field 

(b) Pole in Image Field 

Figure 63. Integration Around Singularity on Jet Exit 
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Figure 66. Comparison of Time Development of Drag Coefficients and 
Surface Pressure Minimum with Alternate Coefficient Schemes -
Circular Cylinder (Scheme CBAC), R = 6 
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Figure 67. Comparison of Time Development of Drag Coefficients 
and Surface Pressure Minimum with Alternate Coefficient 
Schemes - Circular Cylinder (Scheme CBAC), R = 24 
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Figure 68. Comparison of Time Development of Drag Coefficients 
and Surface Pressure Minimum with Alternate Coefficient 
Schemes - Circular Cylinder (Scheme CBAC), R • 120 
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Figure 69. Comparison of Surface Pressure Distribution with -i>> 
Alternate Coefficient Schemes - Circular Cylinder oo 
(Scheme CBAC) - T = 2.33 
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Figure 72. Effect of Minimum Vorticity, com, Necessary for Creation 
of New Vortex Cell - Circular Cylinder, R = 120 -
T = 2.67 
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Figure 73. Convergence for Decreasing Time Step at Fixed Cell 
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Figure 75. Effect of Minimum Vorticity, a>m, Necessary for 
Creation of New Vortex Cell - Infinite Jet in 
Cross-Wind (Vr = 8), R = 15 - T = 4.0 
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(b) Horizontal Vorticity, t = 0.7 

(c) Vertical Velocity, t = 0.7 

(a) Vertical Vorticity, t = 0.7 

(d) Horizontal Velocity, t = 0.7 

Figure 76. Time Development of Nonlinear Instability - Infinite Jet in 
Cross-Wind (Vr = 8) - Rc - 3.5 
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(f) Horizontal Vorticity, t = 2.1 

(e) Vertical Vorticity, t = 2,1 
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(g) Vertical Velocity, t = 2.1 

(h) Horizontal Velocity, t = 2.1 

Figure 76. (cont.) 
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(j) Horizontal Vprticity, t = 4.9 

(i) Vertical Vorticity, t = 4. 
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Figure 76. (cont.) 
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(a) Vertical Vorticity 

(b) Horizontal Vorticity 

Figure 77. Linear Instability - Infinite Jet in Cross-Wind (V = 8) -
Rc = 1.0 
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Figure 77. (cont.) 
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(a) Vr = 8 

Figure 78. Effect of Velocity Ratio on Nonlinear Instability 
Jet in Cross-Wind - Rc = 1.5 

- Infinite 
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(a) Circular Jet 

Figure 79. Comparisons of Nonlinear Instability with Circular and Elliptic 
Jets (Eccentricity 5/6) - Infinite Jet in Cross-Wind (Vr = 8) -
R„ = 3.0 
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(b) Elliptic Jet, 
Major Axis Parallel 

to Cross-Flow 

(c) Elliptic Jet, 
Major Axis 

Perpendicular 
to Cross-Flow 

Figure 79. (cont.) 
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(a) t - 2.0 

(b) t =* 4.0 

Figure 80. Time Development of Horizontal Vorticity with Slight Nonlinear 
Instability - Infinite Jet in Cross-Wind (Vr = 8) - Rc = 2.5 
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(a) t = 3.0 

(b) t = 6.0 

Figure 81. Time Development of Horizontal Vorticity with Significant 
Nonlinear Instability - Infinite Jet in Cross-Wind (Vr = 8) 
R„ = 2.5 
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(c) 9 .0 

F i g u r e 8 1 . ( c o n t , ) 
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(a) t * 4,0 

Figure 82. Daraping of Early Nonlinear Instability - Infinite Jet in 
Cross-Wind (Vr = 8) - Rc = 10.0 



466 

(a) t - 4.0 

(b) t = 16.0 

Figure 83. Nonlinear Instability with Twenty Step Gradual Start -
Infinite Jet in Cross-Wind (V,. = 8) - R = 10.0 
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(b) Exit Center 
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(c) Exit Fore Edge 
1Z - Early Times 

(d) Exit Aft Edge 
- Later Times 

Figure 84. Horizontal Vorticity Profiles - Start from Opening of Jet 
Exit (Vr = 8) - 16 Step Gradual Start, At = 0.1 - R = 12 
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(f) Exit Fore Edge 
- Later Times 

(e) Exit Center 
- Later Times 

Figure 84. (cont.) 
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(a) Exit Side Edge 
- Early Times 

(b) Exit Side Edge 
- Later Times 

Figure 85. Vertical Vorticity Profiles - Start from Opening of Jet 
Exit (Vr = 8) - 16 Step Gradual Start, At = 0.1 - R = 12 

(a) One Radius Aft of Exit 
- Early Times 

(b) Exit Aft Edge 
- Early Times 

Figure 86. Horizontal Velocity Profiles - Start from Opening of Jet 
Exit (Vr = 8) - 16 Step Gradual Start, At = 0.1 - R = 12 



470 

r-4 z 

-1 1 

(c) Exit Center 
- Early Times 

(d) Exit Fore Edge 
- Early Times 

(e) One Radius Fore 
of Exit 
- Early Times 

(f) One Radius Aft 
of Exit 
- Late_r Times 

(g) Exit Aft Edge 
- Later Times 

(h) Exit Center - Later Times 

Figure 86. (cont.) 
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(i) Exit Fore Edge 
- Later Times 

(j) One Radius Fore 
of Exit 
- Later Times 

Figure 86. (cont.) 
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Figure 87. Horizontal Velocity Profiles - Start from Opening of Jet 
Exit (Vr = 8) - 16 Step Gradual Start, At = 0.1 - R = 12 
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(a) Exit Aft Edge 
- Earlv Times 

(c) Exit Fore Edge 
- Early Times 

r-12 

(b) Exit Center 
- Early Times 

Figure 88. 

(d) Exit Aft Edge 
- Later Times 

Vertical Velocity Profiles - Start from Opening of Jet 
Exit (Vr = 8) -- 16 Step Gradual Start, At = 0.1 - R = 12 
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(e) Exit Center 
- Later Times 

(f) Exit Fore Edge 
- Later Times 

Figure 88. (cont.) 
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(a) Exit Aft Edge 
- Early Times 

(b) Exit Center 
- Early Times 

ri2 

(c) Exit Fore Edge 
- Early Times 

(d) Exit Aft Edge 
- Later Times 

Figure 89. Horizontal Vorticity Profiles - Start from Opening of Jet 
Exit (Vr = 8) - 32 Step Gradual Start, At = 0.05 - R = 12 
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(e) Exit Center 
- Later Times 

(f) Exit Fore Edge 
- Later Times 

Figure 89. (cont.) 
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(a) Exit Side Edge 
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Figure 90. Vertical Vorticity Profiles - Start from Opening of Jet 
Exit (Vr = 8) - 32 Step Gradual Start, At = 0.05 - R = 12 
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(a) One Radius Aft 
of Exit 
- Early Times 

(b) Exit Aft Edge 
- Early Times 

(c) Exit Center 
- Early Times 

(d) Exit Fore Edge 
- Early Times 
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of Exit of Exit 
- Early Times ~ Later Times 

Figure 91. Horizontal Velocity Profiles - Start from Opening of Jet 
Exit (V = 8) - 32 Step Gradual Start, At = 0.05 - R = 12 
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(g) Exit Aft Edge 
- Later Times 

(h) Exit Center 
- Later Times 

(i) Exit Fore Edge 
- Later Times 

(j) One Radius Fore 
of Exit 
- Later Times 

Figure 91. (cont.) 



478 

(a) Exit Side Edge 
- Early Times 
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(b) Exit Side Edge 
- Later Times 

Figure 92. Horizontal Velocity Profiles - Start from Opening of Jet 
Exit (V = 8) - 32 Step Gradual Start, At = 0.05 - R = 12 

(a) Exit Aft Edge 
- Early Times 

(b) Exit Center 
- Early Times 

Figure 93. Vertical Velocity Profiles - Start from Opening of Jet 
Exit (Vr = 8) - 32 Step Gradual Start, At = 0.05 - R = 12 
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(c) Exit Fore Edge 
- Early Times 

(d) Exit Aft Edge 
- Later Times 

(e) Exit Center 
- Later Times 

Figure 93. (cont.) 
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(f) Exit Fore Edge 
- Later Times 

Figure 93. (cont.) 
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. wm = 0.1 (t = 2.8) 

(a) Exit Aft Edge 

M.2 

(b) Exit Center 

Figure 94. Horizontal Vorticity Profiles - Start from Cylindrical 
Discontinuity (V = 8) - Four Step Gradual Start, At = 0.2 -
R = 12 
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(c) Exit Fore Edge 

Figure 94. (cont.) 

0.8 

Figure 95. Vertical Vorticity Profiles - Start from Cylindrical 
Discontinuity (Vr = 8) - Four Step Gradual Start, At = 0 2 
R = 12 - Exit Side Edge 
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• r = 12 (t = 2.4) 

0.5 

(a) One Radius Aft of Exit 

(b) Exit Aft Edge 

(c) Exit Center 

Figure 96. Horizontal Velocity Profiles - Start from Cylindrical 
Discontinuity (Vr = 8) - Four Step Gradual Start, 
At = 0.2 - R = 12 
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(d) Exit Fore Edge 

0.5 

(e) One Radius Fore 
of Exit 

Figure 96. (cent.) 

r = 12 (t = 2.4) m 

Figure 97. Horizontal Velocity Profiles - Start from Cylindrical 
Discontinuity (V = 8) - Four Step Gradual Start, 
At = 0.2 - R = 12 - Exit Side Edge 
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Figure 98. Vertical Velocity Profiles - Start from Cylindrical 
Discontinuity (Vr = 8) - Four Step Gradual Start, 
At = 0.2 - R = 12 
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1.2 

(c) Exit Fore Edge 

Figure 98. (cont.) 
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(a) Exit Aft Edge 
- Early Times 

(b) Exit Center 
- Early Times 

(c) Exit Fore Edge 
- Early Times 

Figure 99. Horizontal Vorticity Profiles - Start from Cylindrical 
Discontinuity (V = 8) - Eight Step Gradual Start, 
At = 0.1 - R = 12 
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(d) Exit Aft Edge 
- Later Times 

(e) Exit Center 
- Later Times 

Figure 99. (cont.) 
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Cf) Exit Fore Edge 
«-• Later Times 

Figure 99. (cent.) 
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(a) Exit Side Edge 
- Early Times 

(b) Exit Side Edge 
- Later Times 

Figure 100. Vertical Vorticity Profiles - Start from Cylindrical 
Discontinuity (Vr = 8) - Eight Step Gradual Start, 
At = 0.1 - R = 12 
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• r = 12 (t = 1.8) 
r"ib 
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(a) One Radius Aft 
of Exit 
- Early Times 

(b) Exit; Aft Edge 
•- Early Times 

(c) Exit Center 
- Early Times 

(d) Exit Fore Edge 
- Early Times 

Figure 101. Horizontal Velocity Profiles - Start from Cylindrical 
Discontinuity (Vr = 3) - Eight Step Gradual Start, 
At = 0.1 - R = 12 
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(e) One Radius Fore 
of Exit 
- Early Tim£ 

(g) Exit Aft Edge 
- Later Times 

(h) Exit Center 
- Later Times 

Figure 101. (cont.) 



493 

r-16 

(i) Exit Fore Edge 
- Later Times 

0.5 0.5 

(j) One Radius Fore 
of Exit 
- Later Times 

Figure 101. (cont.) 
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(a) Exit Side Edge 
- Early Times 

(b) Exit Side Edge 
- Later Times 

Figure 102. Horizontal Velocity Profiles - Start from Cylindrical 
Discontinuity (Vr • 8) - Eight Step Gradual Start, 
At = 0.1 - R = 12 
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r i 6 1-16 

(a) Exit Aft Edge 
- Early Times 

(b) Exit Center 
- Early Times 

r i 2 

(c) Exit Fore Edge 
- Early Times 

Figure 103. Vertical Velocity Profiles - Start from Cylindrical 
Discontinuity (V = 8) - Eight Step Gradual Start, 
At - 0.1 - R - 12 
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(d) Exit Aft Edge 
- Later Times 

Figure 103. (cont.) 
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(e) Exit Center 
- Later Times 

Figure L03. (coot.) 
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(f) Exit Fore Edge 
- Later Times 

Figure 103. (cont.) 
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Figure 104. Exit Source Distribution - Vortex Lattice Solution 
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(a) Circular Exit 

(b) General Exit 

Figure 105. Exit Source Triangles - Vortex Lattice Solution 
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