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SUMMARY 

The purpose of this research is to develop a framework which analyzes circuit-level 

reliability and evaluates the lifetimes of complex systems like state-of-art microprocessors. 

The novelty of the proposed work lies on its statistical timing analyzer and the ability to 

handle the combined effect of a variety of front-end-of-line (FEOL) wearout mechanisms, 

while including both the manufacturing process variability and the real-time uncertainties 

in workload and ambient conditions like operating temperature and IR drops. Overall, the 

proposed framework presents the correlation between circuit performance (speed) and 

circuit lifetime, which enables circuit designers to avoid excessive guard-banding, by using 

a better understood reliability budget to achieve higher performance. 

Historically, research work on aging effect is active mainly within the communities 

of device and reliability physics. The relative lack of design knowledge and aging-aware 

CAD tools further creates a barrier for managing the impact of device degradation on 

circuit performance. This work not only bridges the gap between device-level wearout 

mechanisms and circuit-level performance degradations, but also takes into account the 

impact of software usage on hardware reliability 0–[14]. The timing analyzer in this work 

is the first attempt in the literature to achieve a comprehensive process-voltage-

temperature-aging-aware statistical timing analysis (StTA) while considering the effect of 

several FEOL wearout mechanisms (bias temperature instability (BTI), hot carrier 

injection (HCI), gate oxide breakdown (GOBD)) simultaneously. Because of this 

contribution, one paper of this research received the Best Paper Award at ESREF 2015 

(European Symposium on Reliability of Electron Devices, Failure Physics, and Analysis).  



 xiv 

Front-end-of-line (FEOL) wearout mechanisms (BTI, HCI, GOBD) degrade 

transistor characteristics as a function of stress probability. A FPGA-based emulation 

platform has been developed to determine the activity and stress-state profiles while the 

emulated systems are running benchmarks. The activity and stress-state profiles are then 

used to determine the IR-drop profiles and the thermal profiles of a system. Taking into 

account the detailed voltage, thermal and electrical stress profiles, the degradations of 

transistor characteristics for each device within the system are calculated according to the 

device-level wearout models. More specifically, BTI and HCI are modeled as degradations 

of transistor threshold voltage while GOBD is modeled as degradations of gate-to-source 

and gate-to-drain resistance.  

Then, a unified gate-delay model is proposed to link device-level degradations and 

the gate delays. The gate-delay model includes the following parameters: channel length, 

threshold voltage, GOBD breakdown resistances, supply voltage, temperature, input slew 

and Pi-model parameters (for the RC load). Among them, the threshold voltage of each 

transistor combines the effect of process variation, BTI, and HCI, while the GOBD 

breakdown resistances of each transistor represent the GOBD effect. A method, called 

multivariate adaptive regression splines (MARSP), is employed to characterize the gate 

delay as a function of these parameters. MARSP is well-suited for capturing essential 

nonlinearities and interactions in a high-dimension parameter space. 

Based on the unified gate-delay models, a statistical timing engine is developed to 

estimate the variability of circuit-performance degradation due to the aging effect when 

PVT variations are present. The proposed timing engine consists of two parts: a block-

based analyzer and a path-based analyzer. The block-based analyzer performs PVT-aging- 
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aware critical path extraction, and the path-based analyzer performs accurate circuit-delay 

estimation of the extracted paths. 

Using the statistical timing engine, a framework of circuit-level aging assessment 

has been constructed. The proposed framework determines the detailed electrical stress 

profiles, thermal profiles and IR-drop profiles of each device within the system under 

study. Combining these profiles and device wearout models, the statistical timing engine 

is applied to characterize microprocessor performance degradation and assess system 

lifetime. Moreover, the lifetime estimates take into account realistic use scenarios which 

include active, standby, and sleep modes. 

Overall, this work presents cross-layer solutions that enable aging analysis of large 

complex microprocessors, which run realistic workloads. Additionally, this work addresses 

challenges that arise to attain accurate aging-aware gate-delay models especially when the 

dimension of the involved parameters is high. It’s the first attempt to have a comprehensive 

aging simulator which handles the effect of BTI, HCI and GOBD simultaneously while 

also taking into account the workloads, ambient conditions and manufacturing variability 

0–[5]. The framework presented here manages to assess aging of the entire design under 

realistic usages, and enables designers to tighten excessive guard-banding while still 

meeting the reliability requirements 0–[13].



 1 

1. INTRODUCTION 

The aggressive scaling of CMOS technology not only brings benefits of speed and 

power, but also poses challenges to circuit designers because of the ever-increasing 

manufacturing variability and reliability issues. The challenge is further compounded by 

the real-time uncertainties in workload and ambient conditions, which dynamically 

influence the circuit degradation rate. To improve design predictability and guarantee 

system lifetime, it’s essential to have accurate aging simulation tools for reliability.  

It is very challenging to accurately characterize circuit performance degradation due 

to device reliability in the presence of Process-Voltage-Temperature (PVT) variations for 

a complex system. A common way to deal with this in industry is to add an extra guard-

band for aging on top of the worst PVT corners.  The guard-band is set by assuming that 

all the transistors receive the worst-case stress conditions. However, adding excessive 

guard-banding sacrifices the performance of microprocessors and creates headaches in 

timing closure. 

The purpose of this research is to present a solution to assess the lifetimes of complex 

systems like state-of-art microprocessors, while taking into account the effect of PVT 

variations and a variety of Front-end-of-line (FEOL) device wearout mechanisms. The 

proposed aging simulator achieves accurate statistical timing analysis to study the 

combined impact of aging effect, manufacturing variability, ambient conditions and 

realistic workloads 0–[13]. It presents the relationship between circuit performance (speed) 

and circuit reliability, and gives insights for designers to achieve optimal tradeoff between 

performance and reliability. Moreover, circuit designers can benefit from the proposed 
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work to avoid excessive guard-banding to achieve higher performance while still 

maintaining the required reliability. 

The device wearout mechanisms studied in this work are Bias Temperature 

Instability (BTI), Hot Carrier Injection (HCI), and gate oxide breakdown (GOBD). BTI is 

a wearout mechanism which causes the threshold voltage, Vth, of CMOS transistors to 

increase over time under voltage stress, resulting in a temporally-dependent degradation of 

digital circuit delay. HCI also degrades the threshold voltage of the transistors under stress. 

From the perspective of circuit operation, HCI and BTI stress have different time windows. 

HCI stresses devices only during the dynamic switching period when current flows through 

the device, whereas BTI stresses devices as a function of logic state.  

GOBD, also time-dependent dielectric breakdown (TDDB), is another reliability 

concern for CMOS devices. When the gate dielectric layer abruptly loses its insulating 

properties, it’s called hard breakdown (HBD), and HBD can be detected as a large jump in 

the current versus time curve. Prior to hard breakdown, GOBD involves soft breakdown 

(SBD) where the leakage current in the gate dielectric slightly increases with time, while 

the gate dielectric still retains its insulation property. It’s well understood that GOBD 

causes gate delay degradation as the transistors gradually weaken before hard breakdown 

happens. Eventually, the degraded circuit will fail to work when the delay exceeds the 

clock period.  

To take into account the susceptibility of circuit performance to reliability and 

variations, statistical timing analysis (StTA) is needed to be PVT and aging aware to assure 

the design meets timing specifications and the reliability requirements before committing 



 3 

a design to manufacture. The objective of StTA is to determine the distribution of the circuit 

delay with acceptable accuracy and reasonable runtime. In the circuit, each transistor 

undergoes different workload, different temperature and different voltages, which means 

that each transistor ages differently. In order to achieve accurate timing analysis, the gate-

delay model has to be properly characterized to take into account the effect of different 

PVT parameters and different aging conditions of transistors in the gate. As circuit 

integration increases dramatically, the complexity of large circuits make it very challenging 

to perform accurate PVT-aging-aware timing analysis. 

 

Figure 1 – The framework of the proposed PVT-aware aging simulator. 

The big picture of the proposed aging simulation framework is shown in Figure 1. 

Because the wearout mechanisms being studied are activity, supply voltage (VDD) and 

temperature dependent, the research has utilized FPGA emulation to efficiently acquire 

electrical, thermal and IR-drop profiles for large systems like microprocessors. Simulating 

a large system on FPGA emulation platform takes only a few minutes to complete, while 

running Register-Transfer Level (RTL) simulations to extract the activity profiles of each 

net might take a few months to simulate a single benchmark. 
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The RTL is firstly synthesized and loaded to the FPGA with the Xilinx ISE 

(Integrated Software Environment). Once the FPGA is programmed, the activity can be 

collected by placing counters at the I/O ports to track the state probabilities and the toggle 

rates of the ports during application runtime. Since the I/O ports for each unit can be found 

on the top of each module, the counters are attached to the ports automatically with a 

scripting language. The activity transportation unit is inserted into the RTL automatically 

as well. The RTL is also synthesized for layout generation.  Using the RC information from 

the layout, the net activities, and the computed power profile (via a power simulator), the 

thermal profile throughout the microprocessor is computed using a thermal simulator.  The 

net activities and layout are also used to determine the IR-drop profile throughout the 

microprocessor.  

For process variations, the proposed work includes inter-die, intra-die, and intra-gate 

variations supporting any distribution and any correlation profile between different 

parameters. The process variations due to channel length (∆L) and threshold voltage (∆Vth) 

for each transistor are considered. Because BTI and HCI also impact the threshold voltage, 

the threshold voltage for each transistor is a combination of variation due to the process, 

BTI and HCI, while ∆L is only due to process variations. 

The degradations of each transistor in the circuit are calculated according to the 

device-level wearout models and the extracted electrical stress, thermal, IR-drop, and 

process profiles. As BTI and HCI both cause threshold voltage shifts, it’s straightforward 

to combine their effect. However, it’s not straightforward to further include GOBD as there 

is a clear gap between circuit timing and GOBD. This research bridges this gap by using a 

unified gate-delay model based on Multivariate Adaptive Regression Splines (MARSP) 
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method 0–[3]. MARSP is well suited for capturing essential nonlinearities and interactions 

in a high-dimension space. The proposed gate-delay model links device-level wearout 

models and the gate delays.  The gate-delay models include many parameters, including 

PVT and wearout parameters.  Among them, the threshold voltage of each transistor 

combines the effect of process variation, BTI, and HCI, while the GOBD breakdown 

resistances of each transistor represent the GOBD effect. 

The electrical stress, thermal, IR-drop, and process profiles. and RC parasitics, and 

the degradation profiles, generate all the parameters for each gate which are needed to 

calculate the gate delays.  Based on the unified gate-delay models, a statistical timing 

engine is developed to estimate the variability of circuit-performance degradation due to 

the aging effect when PVT variations are present. The proposed timing engine consists of 

two parts: a block-based timing analyzer and a path-based timing analyzer. The block-

based timing analyzer performs PVT aging-aware critical path extraction, and the path-

based timing analyzer performs accurate circuit-delay estimation of the extracted paths. 

The statistical timing engine proposed in this work is achieved based on the Monte 

Carlo (MC) method. Monte Carlo StTA sufficiently samples the random parameter domain 

based on the Metropolis sampling algorithm. For each sample, the circuit delay is computed 

using traditional static timing analysis (STA) based on gate-delay models. If a sufficient 

number of samples are drawn, the circuit-delay distribution is obtained. The Monte Carlo 

approach has the advantage of being completely general, having the ability of handling any 

kind of parameter distribution, and any correlations between different parameters. Monte 

Carlo StTA also has the advantage of accuracy, and it is universally used as a reference to 

validate the accuracy of probabilistic StTA implementations. The disadvantage of MC 
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StTA is the high runtime cost due to the required sample size.  There have been some 

existing efforts to reduce the large sample size of MC StTA using reduced sampling 

techniques, such as quasi-Monte Carlo [15], Latin hypercube [16], importance sampling 

[17], and the Karhunen-Loeve expansion model [18]. Moreover, the Monte Carlo method 

intrinsically facilitates parallel computation, like multi-threading. As nowadays a great deal 

of computational resources is available, many computation-intensive approaches become 

practical. As it’s shown in this thesis, the runtime of the proposed aging-aware StTA 

framework is very acceptable. 

The proposed PVT-aging-aware statistical timing engine performs the analysis of 

circuit timing degradation. The timing engine generates the delay degradation at a variety 

of stress times. Lifetimes can then be calculated according to the specified operating 

frequency. When the circuit delay of the aged circuit exceeds the clock period, the amount 

of stress time is marked as the chip lifetime.  

Overall, this research work has proposed a framework of aging simulation to estimate 

the lifetimes of complex systems like state-of-art microprocessors while considering the 

combined effect of process variations, workloads, ambient conditions, and a variety of 

FEOL wearout mechanisms. The results of this aging simulators can present some insights 

to circuit designers for them to get the optimal trade-offs between performance and 

reliability.  This thesis also applies the proposed aging simulator for finding the optimum 

operating voltage which can achieve the best lifetime for reliability-critical applications 

The rest of the thesis is organized as follows. Chapter 2 gives some background 

knowledge followed by a survey of the related work. Chapter 3 presents the device-level 
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wearout models that are used in this research. Chapter 4 gives the flow of standard cell 

characterization and how the MARSP method is used in the gate-delay modeling. Chapter 

5 utilizes the MARSP-based delay models to construct a Monte-Carlo based Statistical 

Timing Analyzer which combines the advantages of both block-based method and path-

based method. Chapter 6 presents the framework of the proposed aging simulator, and 

presents the methodology of how to efficiently evaluate performance degradation of a 

microprocessor due to BTI, HCI and GOBD, simultaneously. In Chapter 7, the proposed 

aging simulator is extended to study the relationship between performance and reliability 

of the cache memory for different cache configurations. Chapter 8 concludes this thesis. 
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2. RELATED WORK 

This chapter surveys prior related work in three aspects: gate-delay characterizations 

for standard cells, statistical timing analysis, and aging analysis due to BTI, HCI and 

GOBD. 

2.1 Gate-Delay Modeling 

There are many existing works on standard cell characterization using both the 

traditional method [19]–[23] and the emerging current source-based method [24]–[28]. 

Except for [20],[21], all methods evaluate only the accuracy in characterizing a single cell.  

And [20],[21] consider only a single benchmark circuit, without determining the accuracy 

of their method with respect to SPICE.  

This research uses a method of standard cell characterization consisting of three 

models: an input capacitance model for standard cells, a sensitivity model for variational 

resistive-capacitive loads, gate delay and interconnect delay models via multivariate 

adaptive regression splines (MARSP). This is the first time that MARSP has been applied 

to standard cell characterization.  

MARSP is an adaptive procedure for multivariate nonparametric regression. That is, 

it doesn’t take a predetermined form, but it constructs the model structure according to the 

information derived from the data. The MARSP technique is well suited for high-

dimensional problems while capturing essential nonlinearities and interactions.  Due to its 

adaptive nature, MARSP can ‘filter out’ the negligible parameters without manual 

intervention. For a complex cell containing over 40 devices, the categorization (or 
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clustering) of switching/non-switching devices and on-transition/off-transition/non-

transition devices used in [19],[22] is cumbersome. MARSP can reduce this effort by 

automatically capturing essential parameters and removing negligible parameters through 

its intelligent process. 

2.2 Statistical Timing Analysis 

Statistical timing Analysis can be categorized into two board classes: Monte Carlo 

(MC) method and Probabilistic method. Monte Carlo method is based on sample-space 

enumeration while Probabilistic method is based on statistical operations between random 

variables (RVs).  

Probabilistic StTA models gate delay and arrival times as RVs and propagates arrival 

time through the circuit via statistical sum and maximum operations. Probabilistic StTA 

has drawn much attention and research effort due to its runtime advantages. However, it 

has proven to be challenging to efficiently model skewness in the arrival-time distribution 

which results from nonlinearity of gate delays and the statistical maximum operation. Much 

effort [29]–[34] has tried to address these issues. 

Monte Carlo StTA sufficiently samples the probability regions based on the 

Metropolis sampling algorithm [35]. For each sample, the circuit delay is computed using 

gate-delay models in which canonical first-order or quadratic model is usually used. 

Although for each sample the computed circuit delay can be either an overestimate or an 

underestimate, the error in estimating the circuit-delay distribution is acceptable if a 

sufficient number of samples are drawn. Monte Carlo StTA has the advantage of being 

completely general. [36] has shown that Monte Carlo StTA is accurate even in scenarios 
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with high dimensionality and non-Normal distributions in the process variation space, 

where Probabilistic StTA has difficulties.  

Monte Carlo based StTA is universally used to validate the accuracy of all practical 

probabilistic StTA implementations, but never used as a practical StTA method itself. The 

accuracy of Monte Carlo StTA relies on its large sample size, because the root-mean-

square error in the estimate of circuit delay decreases as O(n-0.5) where n is the sample size 

[18]. The high runtime cost due to its required sample size has been the main hurdle 

preventing Monte Carlo StTA from being practical.  

There have been some existing efforts to reduce the large sample size of Monte Carlo 

StTA using reduced sampling techniques, such as quasi-Monte Carlo [15], Latin hypercube 

[16], importance sampling [17], and the Karhunen-Loeve expansion model [18]. In this 

work, it proposes to reduce the sample size and the overall runtime cost by estimating the 

circuit delay of each sample with significant accuracy.  In other words, the standard 

deviation of the error for each estimate is a function of the standard deviation of the error 

of each component, and if we reduce the standard deviation of the errors of the components, 

it becomes possible to reduce the sample size while achieving the same standard deviation 

of the error for the system. 

The difficulties of extending gate-level characterization to circuit-delay 

approximation are from two sources. First, the output transition time of each gate 

propagates to be used as the input transition time of the subsequent gate. The transition-

time error is accumulated and magnified stage by stage, which further undermines the 

accuracy of circuit delay. Second, input capacitances of standard cells are part of the loads 
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of previous stage cells. With process variations present, these input capacitances are 

variational, which causes the loads of previous stage gates to also be variational. If this 

variability of loads is neglected, this will cause transition time error and the error will be 

magnified stage by stage.  This work proposes a framework consisting of sophisticated 

gate-level models to solve these difficulties. The proposed framework has significantly 

smaller error in estimating circuit delay, with accuracy verified with SPICE. Because of 

the accuracy of our framework for each sample, only limited samples are needed to get the 

circuit delay distribution and thus the runtime efficiency is improved significantly. 

2.3 Aging Analysis of Circuit Timing Due To BTI, HCI and GOBD 

Many prior works have studied the impact of BTI on circuit timing [37]–[42]. [37] 

considers the effect of voltage, temperature and node switching activity, without 

considering process variations. [38] and [39] propose a framework to study the BTI effect 

using an iterative scheme to deal with the interdependence between temperature and power 

profiles, together with BTI degradation. [40] provides a probabilistic method to study the 

BTI effect using both the Reaction-Diffusion (R-D) and the Trapping-Detrapping (T-D) 

models. [41] and [42] analyze the impact of Negative Bias Temperature Instability (NBTI) 

on circuit timing using a Monte Carlo analysis technique and first order models of 

variation. 

HCI stresses devices only during the dynamic switching period when current flows 

through the device, whereas BTI stresses devices as a function of logic state. The impact 

of HCI on circuit timing has been studied in several research efforts. [43] studies the impact 

of the HCI effect on the soft-error rate of small-scale digital circuits. [44] proposes a 
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scalable approach for HCI degradation analysis using the Gaussian model for process 

variations and a first-order model for timing degradation. 

Gate Oxide Breakdown (GOBD) involves soft breakdown (SBD) where the leakage 

current in the gate dielectric slightly increases with time, while the gate dielectric still 

retains its insulation property. It’s well understood that GOBD causes gate delay 

degradation as the transistors gradually weaken before hard breakdown happens. GOBD 

has been widely studied at the transistor-level. However, less study has been focused on 

the gate level. In [45], an analytical model is presented to predict the delay of logic gates 

subject to GOBD. [46] analyzes the impact of GOBD on a 41-stage ring oscillator. 

Unfortunately, only small circuits, like ring oscillators, are studied. 

As BTI and HCI both cause threshold voltage shifts, it’s straightforward to combine 

their effect. [47] studied the combined effect of BTI and HCI on circuit timing. However, 

it’s not straightforward to further include GOBD as there is a clear gap between circuit 

timing and GOBD. This work bridges this gap by using a unified MARSP-based gate-delay 

model. Therefore, the proposed framework can study the combined aging effect of BTI, 

HCI and GOBD. 
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3. DEVICE-LEVEL WEAROUT MECHANISMS 

3.1 Bias Temperature Instability (BTI) 

 Bias Temperature Instability (BTI) includes Negative Bias Temperature Instability 

(NBTI) and Positive Bias Temperature Instability (PBTI). NBTI is the degradation of a 

pMOS device under negative gate stress, and PBTI is the degradation of an nMOS device 

under positive gate stress. BTI results in shifts in device parameters, such as threshold 

voltage, transconductance, device mobility, etc., but is generally associated with shifts in 

the threshold voltage. 

 The initial distribution of threshold voltages is generally assumed to be Normal.  

Recent experimental work has shown that the threshold voltage shift (Δ𝑉𝑡ℎ) as a function 

of time under DC stress (𝑡𝐷𝐶) is best modeled with trapping/de-trapping theory [48]: 

  Δ𝑉𝑡𝑝/𝑡𝑛(𝐷𝐶) = 𝜙(𝑇, 𝐸𝐹)(𝐴 + Bln(𝑡𝐷𝐶)) (1) 

where,𝐴, 𝐵, and 𝜙 are constants. 𝜙 is proportional to the number of available traps and is a 

function of temperature, T, and the Fermi level, 𝐸𝐹 . The temperature dependence is 

incorporated in 𝜙(𝑇, 𝐸𝐹).  The duty cycle, 𝛼, impacts the shift and is incorporated as an 

effective Fermi level [49], where 𝐸𝐹,𝑒𝑓𝑓 = 𝛼𝐸𝐹,𝑜𝑛 + (1 − 𝛼)𝐸𝐹,𝑜𝑓𝑓, and 𝐸𝐹,𝑜𝑛 and 𝐸𝐹,𝑜𝑓𝑓 

are Fermi levels when the device is on and off, respectively. The duty cycle accounts for 

the percentage of the time that the transistor is under stress, i.e., when the gate terminal of 

the NMOS device is at a HIGH voltage or the gate terminal of the PMOS device is at a 

LOW voltage. More specifically, if the duty cycle, 𝛼, for a transistor is given, then the time 

under stress, 𝑡𝑠𝑡𝑟𝑒𝑠𝑠, and the recovery time, 𝑡𝑟𝑒𝑐, can be obtained as 𝑡𝑠𝑡𝑟𝑒𝑠𝑠 =  𝛼 ∙ 𝑡𝑡𝑜𝑡𝑎𝑙, 
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𝑡𝑟𝑒𝑐 = (1 − 𝛼) ∙ 𝑡𝑡𝑜𝑡𝑎𝑙, respectively, where 𝑡𝑡𝑜𝑡𝑎𝑙 is the total time that the circuit is aging. 

Hence, overall,  

  Δ𝑉𝑡𝑝/𝑡𝑛 = 𝜙0𝑒
−𝐸𝐹 𝑘𝑇⁄ 𝑔(𝑡𝑠𝑡𝑟𝑒𝑠𝑠 (𝑡𝑠𝑡𝑟𝑒𝑠𝑠 + 𝑡𝑟𝑒𝑐)⁄ ) ∙ (𝐴

+ 𝐵𝑙𝑛(𝑡𝑠𝑡𝑟𝑒𝑠𝑠 + 𝑡𝑟𝑒𝑐)) 

(2) 

where 𝜙0 is a constant.  The constants were obtained from the experimental results in [50]. 

3.2 Hot Carrier Injection (HCI) 

 HCI describes the phenomenon by which carriers at a MOSFET’s drain gain 

sufficient energy to be injected into the gate oxide and cause degradation of some device 

parameters. This occurs as carriers shoot out from the source of a MOSFET, accelerate in 

the channel, and experience impact ionization near the drain end of the device. Damage 

can occur at the interface, within the oxide and/or within the sidewall spacer. Interface-

state generation and charge trapping induced by this mechanism result in degradation of 

some MOSFET parameters, such as the threshold voltage, transconductance, channel 

mobility, and drain saturation current. 

 Historically, HCI was only a major concern for nMOS devices, with pMOS devices 

showing comparatively negligible degradation because (a) holes have a smaller impact 

ionization rate and (b) holes face a higher 𝑆𝑖 − 𝑆𝑖𝑂2barrier than electrons. However, 

subsequent reports have revealed that HCI effects on pMOS devices have also been 

observed [51]. Since hot electrons are generated during logic transitions, the impact of HCI 

is directly proportional to the switching frequency. In this research, predictive HCI lifetime 

models under dynamic stress are used for long term performance-degradation simulations. 

The threshold voltage degradation due to HCI during stress time is modeled as [52]: 
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 Δ𝑉𝑡𝑝/𝑡𝑛 = 𝐴𝐻𝐶𝐼(𝑟𝑡𝑟𝑎𝑛𝑠𝑡𝑠𝑡𝑟𝑒𝑠𝑠𝑡𝑡𝑟𝑎𝑛𝑠)
𝑛 (3) 

where 𝑟𝑡𝑟𝑎𝑛𝑠 is the frequency-dependent transition rate, 𝑡𝑠𝑡𝑟𝑒𝑠𝑠 is the stress time, 𝑡𝑡𝑟𝑎𝑛𝑠 is 

the transition time, and 𝐴𝐻𝐶𝐼  is a technology dependent constant that depends on the 

inversion charge, the trap generation energy, the hot electron mean free path, and other 

process-dependent factors. The data used in our study of HCI comes from the experimental 

data in [53],[54]. 

 

Figure 2 – Stress-time windows of NBTI, PBTI and HCI for an inverter. 

 From the perspective of circuit operation, HCI and BTI stress have different time 

windows. HCI stresses devices only during the dynamic switching period when current 

flows through the device, whereas BTI stresses devices as a function of logic state.  The 

stress time windows of BTI and HCI for an inverter circuit are illustrated in Figure 2 as an 

example. 

3.3 Gate Oxide Breakdown (GOBD) 

GOBD is one of the key reliability issues for CMOS devices. Stress induced leakage 

current (SILC) is induced by trap-assisted tunneling mechanisms where electrons pass from 

the cathode to the anode via defect sites (neutral traps) in the gate dielectric by the electrical 
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field [55]–[58]. When the gate dielectric experiences partial breakdown, it is known as soft 

breakdown (SBD) [55],[59].  

Experimental observations indicate that the mean time to failure is a function of the 

total gate oxide surface area, temperature, and gate voltage due to the weakest-link 

character of gate dielectric breakdown [60]. However, when abstracting this relationship 

to the system level, it is important to take into account details of circuit operation, not just 

the surface area.  Moreover, circuits have been known to operate during breakdown [61]. 

In order to model circuit performance degradation under breakdown, time-dependent 

resistance models [62],[63] and time-dependent leakage current models [64] have been 

proposed for SPICE simulation.  This research work uses time-dependent resistance 

models. 

Using emulation, described in the next section, the devices are partitioned into 

groups that experience equivalent stress and temperature.  More specifically, for an nMOS 

device, the time under stress is the time that the gate has the supply voltage applied.  This 

time depends on the input patterns and the propagation of these patterns to each MOSFET. 

For each group of devices, the next step is to determine the number of devices experiencing 

different numbers of soft breakdown paths.  This is done using the percolation model.   
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Figure 3 – Defect generation in the gate dielectric layer based on a 2D percolation 

model for SBD and HBD paths. 

The percolation model (PM) concept involves placing neutral traps randomly 

within the gate dieelctric and analyzing the number of resistive conduction paths in a 2D 

matrix representing the gate dielectric layer [65], as shown in Figure 3. The 2D model have 

been expanded to 3D to count an accurate number of conduction paths in this research.  

In the percolation model, the defect generation rate depends only on the gate 

voltage (𝑉𝐺) and temperature (T). Therefore, during electrical stress, the trap density in the 

gate dielectric increases with stress time 𝑡 as a power law in the anode hole injection model. 

Stress is converted to a number of traps [66],[67]: 

 𝑁𝑡𝑟𝑎𝑝(𝑡, 𝑉𝐺) = 𝐴 𝑒𝑥𝑝(𝐵𝑉𝐺) 𝑡
𝛽 ⋅ 𝜏𝑜𝑥𝑊𝐿 ⋅ exp (−𝜃𝑇) (4) 

where 𝐴, 𝐵, and 𝛽 are fitting constants, and 𝜏𝑜𝑥,𝑊, and 𝐿 are oxide thickness, gate width, 

and length, respectively, and 𝜃 ≈ 0.01℃−1 [67]. 
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(a) 

 

(b) 

Figure 4 – Time distribution of defect generation in SiO2.  (a) The probability 

distribution of the time of occurrence of the kth SBD path for different gate sizes.  (b) 

The probability distribution of the number of SBD paths for a fixed gate size as a 

function of time. 

Figure 4 shows the PM simulation results and the probability distribution of the 

time of occurrence of conduction paths in the oxide layer as a function of gate size (Figure 

P
ro

b
ab

il
it

y 

Time (s) 

1.8x 

1.6x 

1.4x 

1.2x 

1.0x 

105 106 

P
ro

b
ab

il
it

y 

Time (s) 
tstress 

a1% 

a2% 

a3% 

a5% 

a4% 

15th path 

8th   path 

5th  path 

3rd  path 

1st  path 

105 106 

0.999 

0.99 

0.96 

0.90 

0.75 

0.50 

0.25 

0.10 

0.05 

0.02 

0.01 

0.003 

0.001 

0.999 

0.99 

0.96 

0.90 

0.75 

0.50 

0.25 

0.10 

0.05 

0.02 

0.01 

0.003 

0.001 

1.0x 

1.2x 

1.4x 

1.6x 

1.8x 
P

ro
b

ab
il

it
y 

Time (s) 

1.8x 

1.6x 

1.4x 

1.2x 

1.0x 

105 106 

P
ro

b
ab

il
it

y 

Time (s) 
tstress 

a1% 

a2% 

a3% 

a5% 

a4% 

15th path 

8th   path 

5th  path 

3rd  path 

1st  path 

105 106 

0.999 

0.99 

0.96 

0.90 

0.75 

0.50 

0.25 

0.10 

0.05 

0.02 

0.01 

0.003 

0.001 

0.999 

0.99 

0.96 

0.90 

0.75 

0.50 

0.25 

0.10 

0.05 

0.02 

0.01 

0.003 

0.001 



 19 

4(a)).  It also shows the number of SBD paths as a function of time (Figure 4(b)).  Then, 

as it’s seen in Figure 4(b), if we know the stress duration of an applied gate voltage to a 

MOSFET, the probability of a fixed number of conduction paths can be estimated. 

The results in Figure 4 indicate the probability that at least n paths are observed in 

the oxide.  To find the probability that there are exactly n paths, it is necessary to subtract 

the 𝑛 − 1𝑠𝑡 curve from the 𝑛𝑡ℎ curve.  A result is illustrated in Figure 5. 

 

Figure 5 – Probability of the kth SBD path for a fixed gate size and as a function of 

time. 

Note that the number of breakdown paths in the gate depends on the operating 

conditions.  Hence, given a time under operation, the emulator determines the time under 

stress for each group of devices. This is used to look up probabilities of different numbers 

of SBD paths.  The number of devices in the group multiplies the probabilities to estimate 

the expected number of devices with each number of breakdown events in the group.   

The time under stress for the 𝑖𝑡ℎ  device is a function of bias.  Let 𝛼𝑖, where 0 ≤

𝛼𝑖 ≤ 1, be the fraction of time under stress for the 𝑖𝑡ℎ device. Then, 𝑡𝑠𝑡𝑟𝑒𝑠𝑠,𝑖 = 𝑡𝛼𝑖, where 
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t is the time under operation. Let 𝑝𝑖 = 𝑓𝑆𝐵𝐷(𝑛)(𝑡𝑠𝑡𝑟𝑒𝑠𝑠,𝑖) be a probability of n SBD paths for 

the 𝑖𝑡ℎ device.  Therefore, 𝑝𝑖 = 𝑓𝑆𝐵𝐷(𝑛)(𝑡𝛼𝑖).  If the group of devices has N devices, then 

𝑁𝑝𝑖  devices are randomly selected to have n breakdown paths at time t.  Each sample 

randomly selects the devices experiencing SBD.   

Next, for each breakdown path, the SBD leakage resistance is calculated with the 

QPC model [68], 

 
𝑅𝑆𝐵𝐷 ≅ 𝑉𝐺/ [

4𝑒

ℎ𝛼
𝑁 ⋅ 𝑒𝑥𝑝(−𝛼𝛷) ⋅ 𝑠𝑖𝑛ℎ (

𝛼𝑒(𝑉𝐺 − 𝑉0)

2
 )] 

(5) 

where 𝛷 = 3 ~ 4𝑒𝑉, 𝑉0 = 0 ~ 0.5𝑉, 𝛼 = 2~3𝑒𝑉−1, ℎ  is Plank’s constant, e is the 

electron charge, and 𝑁 is number of SBD conduction paths [68]. The location of SBD, 

gate-to-drain vs. gate-to-source, is randomly selected.  The resistance as a function of the 

number of SBD paths is illustrated in Figure 6.   

 

Figure 6 – SBD resistance as a function of the number of SBD paths. 



 21 

 

Figure 7 – Device-level GOBD soft breakdown model used in this work. 

 

Figure 8 – The impact of SBD on ring oscillator performance. 

In summary, the device-level GOBD model used in this work introduces two time-

dependent resistances for each transistor, shown in Figure 7. The impact of SBD on a ring 

oscillator is illustrated in Figure 8.  It shows the waveform comparison of the case with no 

SBD path, one SBD path, two SBD paths and three SBD paths. It can be seen that more 

SBD paths result in larger delays, while not degrading signal swing. 
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4. STANDARD CELL CHARACTERIZATION AND RC 

INTERCONNECT CHARACTERIZATION 

This chapter introduces the method for standard cell characterization and 

interconnect characterization. The proposed method incorporates three sophisticated gate-

level models: an input capacitances model, a sensitivity model of variational resistive-

capacitive loads, and gate and interconnect delay models via the multivariate adaptive 

regression splines (MARSP) method.  

4.1 Standard Cell Characterization 

4.1.1 Variation Modelling 

Table 1 – Variations and corners of PVT parameters 

Var. 
Random 

Variations 
Corners Var. 

Random 

Variations 
Corners 

ΔLp 
Gaussian, 

3σ=20% 
[-20%, 20%] ΔLn 

Gaussian, 

3σ=20% 
[-20%, 20%] 

ΔVthp 
Gaussian, 

3σ=20% 
[-20%, 20%] ΔVthn 

Gaussian, 

3σ=20% 
[-20%, 20%] 

ΔVdd 
Uniform, (-10%, 

10%) 
[-10%, 10%] ΔT (°C) 

Uniform, (-50, 

50) 
[-50,50] 

Slope 
Uniform, (10ps, 

3ns) 
[10ps, 3ns]    

Table 1 presents the PVT parameters, where 𝛥𝐿 denotes channel length variation, 

𝛥𝑉𝑡ℎ denotes threshold voltage variation, 𝛥𝑉𝑑𝑑 denotes supply voltage variation, ΔT is 

temperature variation, 𝑆𝑙𝑜𝑝𝑒  is the input transition time, and the subscripts p and n 
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correspond to PMOS and NMOS devices, respectively. The percentages given in Table 1 

are percentages of nominal values of the corresponding parameters. Corner information is 

given to facilitate later explanations. 

The process parameters, namely 𝛥𝐿𝑝, 𝛥𝐿𝑛, ∆𝑉𝑡ℎ𝑝, ∆𝑉𝑡ℎ𝑛 in Table 1, correspond to 

each transistor. The value can be a combination of inter-die, intra-die, and intra-gate 

variation. The examples in this thesis consider inter-die variation for channel length and 

intra-gate variation for threshold voltage because lithography/etch has the strongest impact 

on channel length and random dopant fluctuations have the strongest impact on the 

threshold voltage.  However, any process model with any between and within-die variation 

model can be implemented, including measured distributions and correlation profiles. 

The voltage, temperature and slope parameters, namely ∆𝑉𝑑𝑑, ∆𝑇, 𝑆𝑙𝑜𝑝𝑒 , are 

applied to each cell. As will be shown in later sections, our method supports a temperature 

profile from a thermal simulator and a voltage profile from a power grid simulator which 

takes into account the IR-drop effects. Again, the temperature profile and voltage profile 

don’t have to be a specific distribution. They could be any form of distribution with a 

correlation structure. 

4.1.2 Input Capacitances of Standard Cells 
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Figure 9 – Input capacitances of standard cells, as well as the interconnect network, 

construct the load of previous gate. (a) A buffer and its interconnect load.  (b) The 

buffer with the variational model of the input capacitance of the next stage 

incorporated into its load. 

Figure 9(a) illustrates a small patch of a gate-level circuit. The buffer gate in this 

example has two fanout gates, an inverter gate and a NOR2 gate. The load seen by the 

buffer is the interconnect network together with the input capacitances of its fanout gates, 

as shown in Figure 9(b). With fanout gates modeled as corresponding input capacitances, 

circuit-level timing analysis can be done stage by stage, in the way that each stage contains 

a standard cell and its connecting load as Figure 9(b) shows. 
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Figure 10 – Circuit used to characterize input capacitances of standard cells. 

With PVT variations in consideration, it is not satisfactory to model input 

capacitances as fixed values [4]. The variations of standard cell input capacitances must be 

taken into account. This work presents a modeling method to get variation-aware equations 

of input capacitances of standard cells. Firstly, a test circuit is used to characterize the 

actual input capacitance. Figure 10 shows the case of input A of XOR2 gate, where Ceff is 

tuned until the delay from node c to node g is equal to the delay from node c to node d. The 

acquired value of Ceff is the input capacitance of input A of gate X4. X1 and X2 are used to 

produce a reasonable input slope at node c, and X5 is used as a load to prevent node e from 

switching excessively fast. 

When PVT variations of gate X4 are present, the acquired values of Ceff vary. The 

PVT parameters in Table 1 are considered. That is, seven parameters are considered for an 

inverter gate, while eleven parameters are considered for a two-input gate. Central 

Composite Design [69], which uses the parameter corners in Table 1, is employed to design 

the experiments. 
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After the input capacitance of input A of gate X4 has been characterized with each 

experiment, a first-order linear regression equation can be found as follows: 

 
𝐶𝑖𝑛𝑝𝑢𝑡_𝑐𝑎𝑝 = 𝑘0 +∑𝑘𝑖

𝑛

𝑖=1

𝑋𝑖 
(6) 

where n is the number of considered PVT parameters, k0 is the constant term, Xi, i=1,2,…,n 

denote considered PVT parameters, and ki, i=1,2,…,n are the first-order sensitivity 

coefficients. 

The input-capacitance model is tested in the context of Figure 9(b). Random 

variations of PVT parameters in Table 1 are applied to the three gates in Figure 9(a).  Slope 

is only applied to the Buffer. Two methods are implemented to get the input capacitance 

used in Figure 9(b): one uses a fixed value for the pin capacitance from the standard cell 

library and the other uses the variational model in (6). The simulations were done using 

hSPICE [70], and the errors were obtained by comparing to the results from the circuit in 

Figure 9(a). Table 2 lists the average error of these two methods. 

Table 2 – Accuracy comparison using fixed input capacitance vs. variational input 

capacitance. 

 
Gate Delay Error  

(node in to node a) 

Interconnect Delay Error 

(node a to node b) 

Fixed Input 

Capacitance model 
5.88% 

6.91% 

Proposed Input 

Capacitance model 
0.32% 

-0.07% 
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Please note that every input of a gate has its input capacitance. For example, a NOR2 

gate has two input-capacitance models, for input A and input B, respectively. And for each 

input capacitance, scenarios for the rising-edge and the falling-edge are considered 

separately. 

4.1.3 Approximations of Interconnect RC Networks Using Moments Matching 

An RC interconnect is a linear system with one input and one or multiple outputs. 

The interconnect input could be a primary input or a gate output, while the interconnect 

outputs could be a primary output or inputs of its loading gates. Consider the interconnect 

network in Figure 9(a), node a is the interconnect input and node b and c are the outputs. 

For an interconnect network, we denote its input admittance function as Y(s) and its 

transfer functions as H1(s), H2(s) …, for each output. They can be expanded at s=0 using 

a Taylor series as follows (only showing one transfer function): 

 H(s) = 𝑚0 +𝑚1𝑠 + 𝑚2𝑠
2 +𝑚3𝑠

3 +⋯ (7) 

 Y(s) = 𝑦0 + 𝑦1𝑠 + 𝑦2𝑠
2 + 𝑦3𝑠

3 +⋯. (8) 

Here, m0, m1 … are called the moments of H(s), while y0, y1 … are the moments of 

Y(s). Please note that y0 is zero and m0 is one for RC trees [70].  The first, second and third 

moments of Y(s) are y1, y2 and y3 respectively, and m1, m2 and m3 are those for H(s) similarly. 

We use the modified nodal analysis (MNA) [70] method to generate moments in (7) and 

(8) via Matlab. 
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Reduced-order models are routinely used to replace the original large-order models. 

We will introduce the reduced-order model of Y(s) first, and then the reduced-order model 

of H(s). 

4.1.3.1 Pi-model as an Approximation of Y(s) 

The Pi-model is the most popular reduced-order model to estimate the input 

admittance of RC interconnects. Figure 11 gives the structure of the Pi-model, where Y(s) 

denotes the input admittance of the original network and Y’(s) denotes the input admittance 

of the Pi-model. 

 

Figure 11 – Y’(s) in Pi-model as an approximation of original input admittance 

function Y(s). 

The values of 𝐶1, R, and 𝐶2 are obtained by equating the first, second, and third 

moments of Y(s) to the first, second and third moments of Y’(s), respectively.  The 

equations for the Pi-model are as follows: 

 𝐶2 = 𝑦2
2 𝑦3⁄  (9) 

 𝑅 = −𝑦2 𝐶2
2⁄  (10) 

 𝐶1 = 𝑦1 − 𝐶2 (11) 

 

RC Network

Y(s) Y’(s)
C1 C2

R

(a) original interconnect (b) Pi-model
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where y1, y2 and y3 are the first three moments of Y(s) in (8). 

Thus, the sample space of the input admittance function of interconnect is reduced 

down to a three-parameter space. These three parameters C1, R and C2, plus PVT 

parameters in Table 1, construct the parameter space of standard cell characterization 

which is introduced later in Section 4.1.4. Specifically, ten parameters are included for the 

characterization of an inverter, while fourteen parameters are needed for the 

characterizations of BUF, NOR2 and NAND2. 

4.1.3.2 H’(s)-model as an Approximation of H(s) 

This work employs a stable two-pole (S2P) approximation [72] to get the reduced-

order model of H(s). S2P preserves the first three moments of H(s) and more importantly 

guarantees the generated model is stable. The obtained model, H’(s), is a second-order 

model with two stable poles, where 

 
 𝐻′(𝑠) =

𝑘1
𝑠 + 𝑝1

+
𝑘2

𝑠 + 𝑝2
 

(12) 

and where 

 𝑝1 = −
𝑚2

𝑚3
 

(13) 

 

𝑝2 = 𝑝1 |

1
𝑚1

−
𝑚1

𝑚2
𝑚1

𝑚2
−
𝑚2

𝑚3

| 

(14) 
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𝑘1 =

1 +𝑚1𝑝2
𝑝1 − 𝑝2

𝑝1
2 

(15) 

 
𝑘2 = −

1 +𝑚1𝑝1
𝑝1 − 𝑝2

𝑝2
2. 

(16) 

It can be easily deduced from (13) and (16) that 

 𝑘1𝑝2 + 𝑘2𝑝1 = 𝑝1𝑝2. (17) 

H'(s) in (12) cannot be directly included in a netlist for circuit-level simulation. 

Therefore, this work implements it as a two-port network with the same transfer function, 

as shown in Figure 12. 
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Figure 12 – An illustration of single-stage timing analysis with a Pi-model for gate 

analysis and an H’(s)-model for interconnect analysis. 

In Figure 12, Vi(s) is the input of this network while Vo(s) is the output. Rx and Cx 

constitute a low-pass RC filter fed by a Vi(s)-controlled voltage source Vix(s) with gain (1-

ξ), while Ry and Cy form the other low-pass RC filter fed by a Vi(s)-controlled voltage 

source Viy(s) with gain ξ. The output voltages of the two filters, Vox(s) and Voy(s), are added 

to form Vo(s). 

Now, it’s time to show how the transfer function in Figure 12 is exactly the same as 

in (12). The transfer function in Figure 12 is as follows: 

Vi(s)
a

a
Buffer

C1 C2

R

Rx1

Cx1Vix1(s)=(1-ξ1)Vi(s)

Vox1(s)

Ry1

Cy1Viy1(s)=ξ1Vi(s)

Voy1(s)

Vo1(s)=

Vox1(s)+Voy1(s)

Rx2

Cx2Vix(s)=(1-ξ2)Vi(s)

Vox2(s)

Ry2

Cy2Viy(s)=ξ2Vi(s)

Voy2(s)

Vo2(s)=

Vox2(s)+Voy2(s)

b

c

in
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𝐻′(𝑠) =

𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
=
𝑉𝑜𝑥(𝑠) + 𝑉𝑜𝑦(𝑠)

𝑉𝑖(𝑠)
 

 

 

=

1
𝐶𝑥𝑠

(𝑅𝑥 +
1
𝐶𝑥𝑠

)
(1 − 𝜉)𝑉𝑖(𝑠) +

1
𝐶𝑦𝑠

𝑅𝑦 +
1
𝐶𝑦𝑠

𝜉𝑉𝑖(𝑠)

𝑉𝑖(𝑠)
 

 

 

=

1 − 𝜉
𝑅𝑥𝐶𝑥

𝑠 +
1

𝑅𝑥𝐶𝑥

+

𝜉
𝑅𝑦𝐶𝑦

𝑠 +
1

𝑅𝑦𝐶𝑦

 . 

(18) 

By mapping (18) to (12), we get 

 1

𝑅𝑥𝐶𝑥
= 𝑝1 

(19) 

 
 
1

𝑅𝑦𝐶𝑦
= 𝑝2 

(20) 

 
 
1 − 𝜉

𝑅𝑥𝐶𝑥
= 𝑘1 

(21) 

 𝜉

𝑅𝑦𝐶𝑦
= 𝑘2 . 

(22) 

It is easily seen that (17) still holds for (13)–(16), so that H’(s) in (18) is exactly the 

same as in (12). 

As can be seen from (19) and (20), RxCx is determined by 1/p1 while RyCy is similarly 

determined by 1/p2. In our work, we set Cx and Cy to a fixed value, 10-15F, leaving Rx and 
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Ry to be calculated according to (19) and (20), respectively. Therefore, we actually have 

three parameters in the H’(s)-model, Rx, Ry and ξ, which means H(s) is simplified to a three-

parameter space. 

4.1.4 Sensitivity of the Pi-Model and the H’(s)-Model to Variations of Input 

Capacitances in the Fanout Gates 

As input capacitances of fanout gates are included as part of the interconnect, the 

variations of these capacitances cause the Pi-model and the H’(s)-model to vary. Here we 

denote the variational input capacitances of fanout gates of one interconnect network as 

𝐶𝑓𝑎𝑛𝑜𝑢𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = [𝐶𝑓𝑎𝑛𝑜𝑢𝑡_1, 𝐶𝑓𝑎𝑛𝑜𝑢𝑡_2, … , 𝐶𝑓𝑎𝑛𝑜𝑢𝑡_𝑁] where N is the number of fanout gates at the 

output of this interconnect network. It is impractical to run the whole process, i.e., moment 

generation and calculations of C1, R, C2, Rx, Ry, and ξ, for every variational sample of  

𝐶𝑓𝑎𝑛𝑜𝑢𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . Thus, we expand a first-order Taylor-series at nominal values of 𝐶𝑓𝑎𝑛𝑜𝑢𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . Let’s 

take C1 of the Pi-model as an example, since the other parameters (R, C2, Rx, Ry and ξ) are 

similar. 

 

𝐶1 = 𝐶1_𝑛𝑜𝑚𝑖𝑛𝑎𝑙 +∑𝛼𝑖(𝐶𝑓𝑎𝑛𝑜𝑢𝑡_𝑖 − 𝐶𝑓𝑎𝑛𝑜𝑢𝑡_𝑖_𝑛𝑜𝑚𝑖𝑛𝑎𝑙) 

𝑁

𝑖=1

 

(23) 

where 𝐶𝑓𝑎𝑛𝑜𝑢𝑡_𝑖_𝑛𝑜𝑚𝑖𝑛𝑎𝑙 is the nominal value of 𝐶𝑓𝑎𝑛𝑜𝑢𝑡_𝑖, 𝛼𝑖 is the first derivative of 𝐶1 

with respect to 𝐶𝑓𝑎𝑛𝑜𝑢𝑡_𝑖, 𝑖𝜖{1,2, … ,𝑁}, and 𝐶1_𝑛𝑜𝑚𝑖𝑛𝑎𝑙 is the nominal value of 𝐶1. 

The errors in using (23) to calculate the Pi-model and the H’(s)-model parameters 

are all less than 0.1% in our test RC interconnects. Please note that (23) is unique for each 

interconnect in a circuit, but needs to be characterized only once and the characterization 
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time is negligible because the interconnect network size in our experiments throughout this 

thesis is not large (less than 100 RC segments). 

4.1.5 Gate-Delay Characterization using Multivariate Adaptive Regression Splines 

(MARSP) 

As mentioned in Section 4.1.2, with fanout gates being modeled as corresponding 

input capacitances, a circuit can be divided into gate-level stages for timing analysis as 

shown in Figure 9(b). The timing analysis of each stage incorporates two parts: gate 

delay/output-slew modeling and interconnect delay/output-slew modeling. The output of 

the buffer in Figure 9(b), node a, is also the input of the interconnect network. The delay 

of the buffer is the delay from node in to node a, while the delay of the interconnect network 

is the delay from node a to node b or from node a to node c. The output slew of the buffer 

is used as the input slew of the interconnect. The total delay of each stage is the sum of the 

gate delay and the interconnect delay. 

Using the Pi-model and H’(s)-model, the circuit in Figure 9(b) is transformed into 

Figure 12. The upper box in Figure 12 represents gate timing analysis, while the lower box 

represents interconnect timing analysis. In this section, MARSP is used to characterize the 

delay and slew models of standard cells. 
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Figure 13 – The solid line denotes the form of the hinge function (x-t)+ while the 

dashed line denotes the hinge function (t-x)+. 

This work employs MARSP [73] to characterize a fitted function between response 

variables (gate delay or slew time) and the explanatory parameters (PVT parameters, aging 

parameters, and RC loads). MARSP is an adaptive procedure that uses piecewise linear 

segments and is well suited for high-dimensional problems while capturing essential 

nonlinearities and interactions. 

The piecewise nature of MARSP allows it to split the whole high-dimension 

parameter space into multiple subspaces, and each subspace has a unique regression model. 

MARSP inherently integrates all the regression models of different subspaces into one 

general expression using piecewise hinge functions [73]. 

A hinge function has the form of (𝑥 − 𝑡)+ or (𝑡 − 𝑥)+ which are shown in Figure 13. 

They are defined as: 

 
(𝑥 − 𝑡)+ = {

𝑥 − 𝑡,       𝑖𝑓 𝑥 > 𝑡,
   0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 
(24) 

 
(𝑡 − 𝑥)+ = {

𝑡 − 𝑥,       𝑖𝑓 𝑥 < 𝑡,
   0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 
(25) 

x

y

t

(x-t)+

(t-x)+
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where t is a constant, called the knot. MARSP forms a collection of hinge-function pairs 

for each explanatory parameter Xj with knots at 𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑀 , where M is the number of 

experiments. 

MARSP models have the following form: 

 

𝑓(𝑋 ) = 𝛽0 +∑𝛽𝑡

𝑇

𝑡=1

ℎ𝑡(𝑋 ) 
(26) 

where ℎ𝑡(𝑋 ) is called a basis function. (Constant 1 is the basis function of the intercept 

term.) MARSP builds a model in two phases: the forward stepwise addition and the 

backward stepwise deletion. 

In the forward phase, MARSP starts with a model which consists of an intercept term. 

Then it repeatedly adds basis functions in pairs to the model step by step. It finds the pair 

of basis functions that gives the maximum reduction in the sum-of-squares residue error. 

The two basis functions in the pair are identical except that a different side of a mirrored 

hinge function is used for each function. Each new basis function consists of a term already 

in the model (which could be a constant 1) multiplied by a new hinge function. The process 

of forward stepwise addition continues until the change in residual error is smaller than a 

threshold or until the maximum number of terms is reached. 

After the forward stepwise addition, we have a large model which typically overfits 

the data. An overfit model has a good fit to the data used to build the model but will not 

generalize to new data. To build a model with a better generalization ability, backward 

stepwise deletion prunes the model. The backward phase uses Generalized Cross 
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Validation (GCV) to choose the best model subset. The GCV formula trades off goodness-

of-fit against model complexity. The backward stepwise deletion removes model terms one 

by one, deleting the least important term (according GCV) at each step until the model 

again has only the intercept term. At the end of the backward phase, from among the “best” 

models of each size, the one with the lowest GCV value is selected and outputted as the 

final one. 

MARSP is a form of nonparametric regression which doesn’t take a predetermined 

form, but constructs the model structure according to the information derived from the data. 

It ‘filters out’ the negligible parameters without manual intervention which eliminates the 

need for categorization (or clustering) of switching/non-switching transistors and on-

transition/off-transition/non-transition transistors, as in [19],[22]. 

Why is MARSP better than the traditional regression technique? The traditional 

regression technique or the Response Surface Methodology (RSM) technique suffers from 

the disadvantage of using the same model to cover the entire parameter space. One model 

is insufficient to accurately estimate the gate delay (or slew time) over the whole parameter 

space, especially when the dimension of the parameter space is large, e.g., in the case where 

intra-gate variability is considered. Therefore, the timing behavior must be characterized 

separately for different PVT subspaces (corners) which results in cumbersome parameter 

space splitting and large characterization efforts. 

The piecewise nature of MARSP allows it to split the whole high-dimension 

parameter space into multiple subspaces, and each subspace has a unique regression model. 

MARSP inherently integrates all the regression models of different subspaces into one 
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general expression using piecewise hinge functions. Therefore, MARSP saves 

characterization effort by characterizing standard cells only once over the whole PVT 

space, including the corners. 

 

Figure 14 – The efficiency and accuracy of MARSP model is shown for a non-linear 

case. (a) a nonlinear function 𝒉(𝑿𝟏, 𝑿𝟐) which changes only when X1 is high and X2 

is low. (b) a quadratic model regressed from 𝒉(𝑿𝟏, 𝑿𝟐). 

Figure 14(a) shows a situation where the response variable h(X1,X2) only changes at 

the corner where X1 is large and X2 is low. The MARSP model can easily handle this 

nonlinear relationship by using hinge functions as follows: 

 ℎ(𝑋1, 𝑋2) = 15 + 0.015 ∗ (20 − 𝑥)+ ∗ (𝑦 − 20)+ (27) 

Figure 14(b) shows the quadratic regression model which has poor accuracy for this 

case. 

4.1.6 Experimental Results 

Table 3 – Variations and Corners of Pi-model and H’(s)-model 
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Var. 
Random 

Variation 
Corners Var. 

Random 

Variation 
Corners 

𝐶2 (fF) 
Uniform,  

(1,100) 
[1,100] 𝑅𝑥 (Ohm) 

Uniform,  

(0.5, 1000) 
[0.5, 1000] 

𝑅 (Ohm) 
Uniform,  

(1,500) 
[1, 500] 𝑅𝑦 (Ohm) 

Uniform,  

(0.5, 1000) 
[0.5, 1000] 

𝐶1 (fF) 
Uniform, 

(0.01,1) 
[0.01,1] 𝜉 

Uniform,  

(-0.99,0.99) 
[-0.99,0.99] 

Central Composite Design [69] is employed to design the characterization 

experiments, and then hSPICE [70] is used to run the simulations. The distributions and 

corners of PVT parameters are as shown in Table 1, while the distributions and corners of 

C1, R and C2 are as shown in Table 3. The implementation of MARSP is from a Matlab 

toolbox called ARESLab [74]. Note that rising-edge and falling-edge scenarios are 

characterized separately. Besides, for a two-input cell, for example, NOR2, each input is 

characterized separately with the other input being at a non-controlling value. 

Table 4 – Comparison of MARSP and quadratic models on representative standard 

cells. 

Cell Dimen. 
Char. Time (s) 

Number of 

Operations 

(worst case in 

MARSP) 

Number of 

Operations 

(RSM) 

Char. Error 

MARSP RSM 

MARSP Quadr. Mul. Add. Mul. Add. mean SD mean SD 

INVX1 10 480 1 189 108 120 65 0.28% 2.13% -1.68% 5.01% 

NOR2X1 14 683 1 182 104 224 119 0.01% 2.35% -2.90% 7.48% 

CLKBUF3 70 3577 79 227 126 280 148 0.02% 2.51% -4.64% 6.45% 

XOR2X1 30 1503 2 203 116 274 145 0.06% 2.17% -3.82% 7.28% 

DFFPOSX1 50 2489 42 223 124 278 146 0.08% 2.36% -4.03% 6.79% 

Inter. 5 22 1 44 28 26 14 0.01% 0.12% -1.59% 3.53% 

Table 4 presents the results of some representative cells using NCSU 45nm 

FreePDK [75].  It can be seen that MARSP is substantially more accurate than the quadratic 

method.  This accuracy is important, because these errors accumulate when cells are 

cascaded together.  This is because, and error in a previous stage is amplified in the next 
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stage.  Hence, a small error in cell characterization can become a large error for the circuit.  

This accuracy, however does come at a cost in characterization time, as noted in Table 4. 

4.1.6.1 Validation Using Test Paths 

The characterized gate-delay models are also validated using some test paths from 

ISCAS85 benchmarks [76]. ISCAS85 benchmark circuits were synthesized and the 

obtained netlists go to Cadence Encounter [77] to do place and route, and then parasitic RC 

interconnects were extracted using QRC [78]. The longest path of each circuit is identified 

using a script, and in total we considered ten test paths. The ten paths are not necessarily 

the critical paths when considering process variations.  They are selected simply to 

determine the accuracy of timing analysis for paths.  We implemented our framework using 

C++ and Perl. The experiments were run on a Linux platform with a 2.27GHz CPU and 

4GB memory. 
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Figure 15 – Flow graph of the implementation which applies gate-level models to 

path-delay analysis. 

Figure 15 shows the implementation flow for extending our gate models to 

estimating path-delay distributions.  Table 5 presents the results in comparison to hSPICE 

[70] using ten test paths. Figure 16 gives a histogram comparison for one of the paths 

between hSPICE and our model. The average mean and standard deviation (SD) values of 

errors per sample are 0.71% and 1.25%, respectively. 

2. Monte Carlo Samples Generation

10. Last sample?

4. Calculations of Input Capacitances of fanout gates

5. Pi-model and H’(s)-model calculations

6. Gate Delay/Transition Calculation

7. Interconnect Delay/Transition Calculation

8. Primary Output?

3. Apply values of each sample to corresponding gate/interconnect 

No, next gate

1. Generates sensitivity model for each interconnect in the form of (10)

end

Yes

Yes

No, next sample

9. Calculate the total delay of the path



 42 

 
(a) 

 
(b) 

Figure 16 – Experimental results of validating the proposed gate-delay models on a 

43-stage test path. (a): Monte Carlo histogram comparison between our model and 

SPICE for test path (N85 to N724) in circuit c499. (2000 samples were run.) (b): error 

percentage histogram for this test case. 

Table 5 – Experimental results of validating the proposed gate-delay models on 

ISCAS85 benchmarks. 

Path 
Circuit 

Name 

PI to 

PO 

Num. 

of 

stages 

Num. 

of 

samples 

Running Time 

Path-delay error 

per sample 

(MARSP) 

Path-delay error 

per sample 

(quadratic) 

SPICE 

(s) 

MARSP 

(s) 

Quadr. 

(s) 
Mean SD Mean SD 

1 c432 
N102 to 

N421 
60 2000 4211 119 192 1.21% 1.21% -10.99% 24.9% 

2 c499 
N85 to 

N724 
43 2000 2417 84 138 0.25% 0.54% -13.95% 26.6% 
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3 c880 
N1 to 

N878 
57 2000 4148 113 185 -0.31% 0.53% -14.10% 25.4% 

4 c1355 
G11 to 

G1352 
42 2000 2412 86 144 1.54% 1.49% -10.68% 26.7% 

5 c1908 
N19 to 

N2890 
72 2000 5878 155 250 2.12% 1.92% -10.76% 26.9% 

6 c2670 
N227 to 

N3851 
54 2000 4001 110 180 0.90% 1.16% -15.81% 25.1% 

7 c3540 
N33 to 

N5360 
77 2000 6719 166 270 0.75% 1.10% -5.94% 27.5% 

8 c5315 
N335 to 

N8128 
71 2000 6454 153 251 -1.53% 1.55% -11.72% 26.3% 

9 c6288 
N290 to 

N6287 
221 2000 19898 422 698 1.29% 1.50% -14.43% 23.1% 

10 c7552 
N18 to 

N11334 
116 2000 9948 228 378 0.87% 1.48% -10.23% 25.8% 

avg. - - 81 2000 6608 164 268 0.71% 1.25% -11.86% 25.8% 

 

4.2 Interconnect Characterization 

For the timing analysis of interconnect, we consider Rx, Ry and ξ of the H’(s)-model 

and VDD and slope in Table 1, which are the five explanatory parameters. The 

characterization variables are interconnect delay and interconnect transition time which are 

defined similarly to standard cell characterization. 

For the design of experiments, 4000 Monte Carlo simulations in hSpice [70] were 

used, where the distributions of Rx, Ry and ξ are as in Table 3 and distributions of VDD and 

slope are as in Table 1. Again, MARSP methods are employed to characterize the fitted 

functions. Then another 1000 Monte Carlo samples are used to test the generated models. 

The characterization results for interconnect are also shown in the last row of Table 

4. This research work doesn't consider interconnect variability (spacing, width). Please note 

that a higher-order H’(s)-model which matches more moments of the original H(s) can be 

easily put into our methodology at the expense of adding more parameters to the MARSP 

models.   
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5. MONTE CARLO BASED FRAMEWORK FOR CIRCUIT-LEVEL 

STATISTICAL TIMING ANLAYSIS 

This chapter proposes a framework of statistical timing analysis (StTA) which 

utilizes the MARSP-based gate-delay models shown in Chapter 4. The proposed statistical 

timing analyzer contains two procedures: block-based StTA and path-based StTA. Block-

based StTA performs statistical critical-path extraction using static timing analysis.  Then 

the extracted critical paths are fed into path-based StTA to perform input-vector-dependent 

dynamic timing analysis to generate accurate circuit-delay distributions. 

The proposed timing analyzer is implemented with C++ and Perl, and the 

experiments were run on a Linux platform with a 2.27GHz CPU and 1GB memory without 

using multi-threading. To verify the performance of our framework, ISCAS85 benchmarks 

[76] were implemented with NCSU 45nm technology [75], and test six industrial designs 

(two from a sponsor and four from the IWLS2005 [79] benchmarks) were implemented 

with a commercial 90nm technology. All the experiments are based on the following 

settings:  ΔVth is subject to intra-gate Gaussian variations and ΔL is due to inter-die 

Gaussian variations with a three-sigma value equal to their corners in Table 1. All other 

parameters are uniformly distributed between their corners in Table 1 and Table 3. 

5.1 Block-Based Statistical Timing Analyzer 

5.1.1 Implementation 
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Figure 17 – Abstraction of a timing graph from a combinational circuit. 

While probabilistic block-based StTA performs statistical sum and max operations 

between random variables, Monte Carlo block-based StTA requires sum and max 

operations between numerical values. The timing graph which is used in traditional static 

timing analysis (STA) is abstracted from a combinational circuit, as shown in Figure 17.  

The nodes of the timing graph represent primary inputs/outputs of the circuit and gate 

input/output pins. The edges of the timing graph represent gate input-pin-output-pin delay 

and interconnect delay. Each delay (gate delay or interconnect delay) comes from the 

maximum value of all the switching scenarios.  After a forward traversal of the timing 

graph, the circuit delay is obtained from the maximum arrival time of all primary outputs. 

And by a back traversal, the path which results in the maximum circuit delay is identified 

as the most critical path. For each Monte Carlo sample, the process of the forward traversal 

and the back traversal is repeated to produce a circuit delay and a critical path. With a 

number of samples, the distribution of circuit delay and a set of critical paths are obtained 

in the presence of process variations. 

5.1.2 Experimental Results 

Theoretically, block-based StTA produces an overestimate of circuit delay in 
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real switching propagation (so called dynamic timing analysis) while block-based StTA 

propagates arrival time without considering the switching directions (so called static timing 

analysis). Experimental results confirm this theory, showing our block-based 

implementation has an average 7.42% overestimate of SPICE results on ten ISCAS85 

benchmark circuits [76]. 

Table 6 – Comparison of the first 10 circuit paths extracted from our Block-Based 

StTA and STA 

Ranked critical paths from 

proposed Block-based StTA 

The possibilities of being 

critical path 
Rank in STA 

1st 9.20% 22th 

2nd 8.20% 8th 

3rd 7.10% 6th 

4th 7.05% Beyond the 100th 

5th 7.05% 35th 

6th 6.05% 7th 

7th 5.95% 11th 

8th 5.55% 1th 

9th 4.90% Beyond the 100th 

10th 3.90% 70th 
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Figure 18 – Comparison of the circuit delay distributions of circuit c499 from SPICE 

using STA and our block-based StTA. (2000 samples were run.) 

Because of process variations, the application of traditional STA may not identify all 

critical paths.  Paths vary randomly with process variations.  Even though there are errors 

produced by uncertainty in switching scenarios, this block-based StTA method can identify 

critical paths under process variations more accurately than the traditional STA method in 

the presence of process variations.  These paths will be used by the more accurate path-

based StTA to find the delay distribution for the circuit.   

As one critical path is identified for each Monte Carlo sample, a set of critical paths 

are obtained after a number of samples are run. Therefore, the possibility of each path being 

critical can be calculated by dividing the frequency that each path is critical by the number 

of total samples. Table 6 shows the comparison of extracted critical paths by block-based 
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it presents a comprehensive comparison of hSpice (using the first 10 paths from STA), 

hSpice (using the first 100 paths from block-based STA), hSpice (using the first 10 paths 

from block-based StTA) and hSpice (using the first 100 paths from block-based StTA) for 

benchmark c499. The experimental results validate the point that STA results are short of 

covering the real critical paths when process variations are taken into account. As it can be 

seen from the results, even the first 100 paths from STA has smaller delay than the first 10 

paths from StTA. This matches Table 6 where the 4th and 9th paths from StTA are beyond 

the 100th in STA. 

5.1.3 Complexity analysis 

The complexity of the proposed block-based framework is O(MN), where M is the 

number of gates and interconnects and N is the number of samples. Figure 19 presents the 

linearity between runtime per sample and the average depth of the extracted paths. 

 

Figure 19 – The runtime per sample versus the number of gates and interconnects in 

block-based StTA. 

5.2 Paths-Based Statistical Timing Analyzer 

0

0.5

1

1.5

2

2.5

3

3.5

0 2000 4000 6000 8000 10000 12000

Circuit Size (Number of gates and inters)

R
u

n
n

in
g

ti
m

e 
p

er
 s

am
p

le
 (

s)



 49 

5.2.1 Implementations 

In probabilistic path-based StTA, a set of paths, which is likely to be critical, is drawn 

first. Then statistical analysis is performed over these paths to estimate the circuit-delay 

distribution. In our Monte Carlo based framework, the statistical analysis over those 

extracted paths is based on samples rather than probabilistic operations. 

 

Figure 20 – Flow graph of the implementation which applies gate-level models to 

path-delay analysis. 

More specifically, Monte Carlo samples over the extracted paths are generated, and 

then the delays of extracted paths for each sample are calculated via the framework in 

Figure 20. Circuit delay is obtained by taking the maximum of the path delays. With a 

number of samples, the circuit-delay distribution can be found. 

2. Monte Carlo Samples Generation

10. Last sample?

4. Calculations of Input Capacitances of fanout gates

5. Pi-model and H’(s)-model calculations

6. Gate Delay/Transition Calculation

7. Interconnect Delay/Transition Calculation

8. Primary Output?

3. Apply values of each sample to corresponding gate/interconnect 

No, next gate

1. Generates sensitivity model for each interconnect in the form of (23)

end

Yes

Yes

No, next sample

9. Calculate the total delay of the path
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The detailed implementation procedures to perform path-based StTA are shown in 

Table 7.  

Table 7 – Implementation of Path-Based StTA 

Input: Netlists of extracted paths, the number of extracted paths M, and the number of samples N. 

Output: CD (circuit delays for all N samples) 

 

1: generate N samples for the extracted paths (distributions according to Table 1) 

2: for i=1 to N, do 

3:     for j=1 to M, do 

4:         PDj = Delay of Path j (using the framework in Figure 20) 

5:     end for 

6:     CDi = maximum (PD1, PD2, …,  PDM) 

7: end for 

8: return CD = [CD1, CD2, …, CDN] 

 

5.2.2 Experimental Results 

The results of our framework (called GTStTA) are compared to SPICE.  On average, 

the errors of mean and standard deviation (SD) values of the circuit delay distribution are 

1.47% and -1.15%, respectively, while the mean and SD values of errors per sample are 

1.97% and 1.55%, respectively. The low error percentage in each sample shows that our 

framework captures the real circuit delays very well with each sample, and thus ensures 

the accuracy of the circuit delay distribution. Figure 21(a) shows the histogram of our path-

based StTA and SPICE for circuit c499, where the sample size is 2000. And Figure 21(b) 

shows the error distribution of this testcase. 
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(a) 

 

(b) 

Figure 21 – (a) Comparison of the circuit delay distributions of circuit c499 from 

SPICE (using different critical path pools). (2000 samples were run.). (b) The error 

distribution. 
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The complexity of our path-based framework is O(PMN), where P is the number of 

extracted paths, M  is the average number of stages (depth) of the extracted paths and N is 

the number of samples. Figure 22 presents the linearity between runtime per sample and 

average depth of the extracted paths. 

 

Figure 22 – The runtime per sample versus the number of gates and interconnects in 

paths-based StTA. 
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considers all the potential paths extracted under the process variations and maintains the 

advantage of accuracy when the delay is calculated. 

Table 8 – Implementation of Block-Based and Path-Based Combined StTA 

Input: Circuit netlist, and the number of samples N. 

Output: CD (circuit delay) distribution 

 

1: generate N samples for the circuit (distributions according to Table 1) 

2: for i=1 to N, do 

3:     CPi = Critical Path extracted using block-based StTA 

4:     CDj = Delay of CPi (using path-based StTA) 

5: end for 

6: return CD = [CD1, CD2, …, CDN] 

The block-based timing analyzer first abstracts a timing graph from the gate-level 

netlist, shown in Figure 17. The nodes of the timing graph represent primary inputs/outputs 

and gate input/output pins. Its edges represent the timing elements of the circuit, namely, 

the gate input-pin-output-pin delay and the interconnect delay. The weights on these edges 

is the delay of the corresponding timing elements, which is calculated using the unified 

gate-level MARSP models. After a forward traversal of the timing graph, the arrival times 

at primary outputs and D inputs of flip-flops are obtained.  By a backward traversal, the 

critical path can be extracted using the PERT algorithm [81]. For each Monte Carlo sample, 

the process of delay evaluation, forward traversal and backward traversal is repeated.  

5.3.2 Experimental Results 

Table 9 presents the experimental results using ISCAS85 and ISCAS 89 benchmark 

circuits to verify the accuracy of our timing engine. On average, for ISCAS85 and 

ISCAS89 benchmarks, we achieve 0.70% and 1.45% error in estimating the mean and the 

standard deviation (SD) of the circuit delay distribution, respectively. In the experiments, 

the sampled values of the process variations in each transistor (channel length and threshold 
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voltage) are subject to a Gaussian distribution with three sigma equal to the corners shown 

in Table 1. And the temperature and voltage values in each transistor are obtained from the 

thermal profile and IR-drop profile, respectively, determined by emulation.  The block-

based StTA is input pattern free. For the path-based StTA, the input vectors are generated 

via Automatic Test Pattern Generation (ATPG) to sensitize the extracted critical paths. 

Since simulating the whole circuit via SPICE is basically impossible, SPICE simulations 

are based on the critical paths extracted from the block-based StTA. 

Table 10 shows the results of these six large benchmarks for which 200 samples were 

run. TA1 is a fabricated Floating-Point Unit Processor, and TA2 is a fabricated RISC 

microprocessor. Other benchmarks in Table 10 are from the IWLS benchmarks. On 

average, the error in estimating the mean and the SD of the circuit delay distribution is 

1.45% and 3.75% respectively. 

For IWLS benchmarks, the error is slightly larger than the error for ISCAS 

benchmarks. The errors have several possible sources. Firstly, large circuits have longer 

interconnect which might need higher-order Y’(s) and H’(s) models. Secondly, for large 

interconnect networks in large circuits, the first-order sensitivity model in (24) may 

generate some errors.  

A quadratic Response Surface Model (RSM) delay model was also implemented and 

tested to give a comparison. The quadratic RSM first generates a quadratic regression 

model as follows: 
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 𝐷 = 𝑑0 +∑𝑎𝑖𝑋𝑖 +∑𝑏𝑖𝑋𝑖
2 +∑𝑏𝑖,𝑘𝑋𝑖𝑋𝑘

𝑖≠𝑘

. (28) 

D denotes gate delay, Xi denotes variational PVT parameters, d0 denotes the constant 

term, and ai and bi denote coefficients of first-order and second-order terms, respectively. 

Average errors of RSM in comparison with SPICE are 15.2% and 19.5% for the 

mean and SD, respectively. The quadratic RSM model has a fixed number of operations, 

while the operations of the MARSP model depend on the subspace in which the input 

parameters fall. However, quadratic RSM models require more operations than the 

maximum number of operations of MARSP models when the number of parameters is 

larger than eighteen. 

Table 9 – Experimental results of the proposed StTA analyzer on ISCAS85 

benchmarks. 

Circuit 

Name 

Number 
of 

samples 

Number 

of 
critical 

paths 

run 

Running Time 
Error per sample 

(GTStTA) 
SPICE 

Path-based 

GTStTA 
(
GTStTA − SPICE

SPICE
)% 

SPICE 
(s) 

GTStTA 
(s) 

RSM (s) 
Mean 
(%) 

SD 
Mean 
(ps) 

SD 
(ps) 

Mean 
(ps) 

SD 
(ps) 

Mean (%) SD (%) 

c432 2000 55 199452 5451 8490 2.13% 0.99% 1434 216.7 1452 216.5 1.26% -0.09% 

c499 2000 102 241312 7160 11763 -0.18% 1.43% 971 141.2 970.2 142.1 -0.09% 0.64% 

c880 2000 80 303744 7472 12232 -0.17% 1.89% 1324 205.6 1323 208.7 -0.08% 1.51% 

c1355 2000 124 280376 8953 14991 3.36% 2.26% 960.6 144.1 991.8 142 3.25% -1.46% 

c1908 2000 118 651230 15021 24227 2.28% 0.76% 1601 242.7 1638 240.9 2.31% -0.74% 

c2670 100 23 4388 104 170 2.62% 2.19% 1263 171.9 1294 163.6 2.45% -4.83% 

c3540 100 24 6694 166 271 2.81% 1.93% 1772 239.9 1820 236.1 2.71% -1.58% 

c5315 100 26 7407 166 275 2.85% 1.44% 1589 227.9 1634 237.5 2.83% 4.21% 

c6288 100 30 74559 528 876 1.99% 1.27% 5766 389.6 5878 367.2 1.94% -5.75% 

c7552 100 28 27636 277 459 2.01% 1.33% 2665 291.8 2616 281.8 -1.84% -3.43% 

avg. - - 179679 4529 7375 1.97% 1.55% 1935 227.1 1962 223.6 1.47% -1.15% 

 Table 10 – Experimental results of the proposed StTA analyzer on large circuits. 

Circuits 
Cell 

Number 

Time 

Saved 

SPICE(ps) Our Engine(ps) 

mean S.D. mean S.D. 

TA1 21,725 99.1% 645 79 652 82 

TA2 78,623 99.5% 1431 130 1443 136 
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leon2 454,489 99.0% 1960 412 2005 427 

netcard 425,264 99.1% 1842 393 1879 412 

leon3mp 330,993 98.8% 1211 368 1256 375 

leon3-avnet-

3s1500 
542,081 99.2% 1981 432 2022 448 

 

5.3.3 Complexity 

 

Figure 23 – The runtime per sample versus the number of gates and interconnects in 

the proposed block-based and paths-based combined StTA. 

In this path-based and block-based combined framework, most of runtime was spent 

on the block-based part. The runtime per sample versus circuit size is shown in Figure 23. 
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more samples are required or a larger circuit is simulated. One solution for this issue is 

using a Graphic Processor Unit (GPUs) to facilitate parallel computations as different 

samples can be independently processed. 
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6. AGING SIMULATION FOR STATE-OF-ART 

MICROPROCESSORS 

This section introduces the aging simulator framework which is shown in Figure 1. 

The framework firstly extracts the activity, IR-drop, and temperature profiles of a 

microprocessor while running benchmarks. The extracted profiles are then used to 

calculate the degradation of device parameters in each transistor. Next, the obtained aging 

profiles, along with the PVT profiles, are fed into the PVT-aging timing engine to achieve 

comprehensive timing analysis when BTI, HCI, and GOBD happen simultaneously. 

6.1 Extraction of the Stress, Thermal, IR-Drop and Process profiles 

The wearout mechanisms being studied are activity, supply voltage (VDD) and 

temperature dependent. The degradation of system performance is also directly dependent 

on the thermal and the IR-drop profile, because temperature and VDD directly impact 

circuit timing. In this work, FPGA emulation is used to simulate the microprocessors, 

which provides an efficient way to acquire electrical, thermal and IR-drop profiles for any 

digital system for use in system-level reliability analysis. 
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Figure 24 – The system used to collect activity profile of the microprocessor contains 

an FPGA board that implements the microprocessor system and exports data on the 

activity profile to a PC. 

The microprocessor under study is LEON3 microprocessor [82]. The RTL has been 

synthesized and loaded to the FPGA with the Xilinx ISE (Integrated Software 

Environment) [83]. Once the FPGA is programmed, the activity can be collected by placing 

counters at the I/O ports to track the state probabilities and the toggle rates of the ports 

during application runtime, as illustrated in Figure 24.  

Since the I/O ports for each unit can be found on the top of each module, the counters 

are attached to the ports automatically with a scripting language. The activity transportation 

unit is inserted into the RTL automatically as well. The complexity of this RTL revision 

process is O(n), where n is the number of the number of I/O ports. Since the complexity is 

linear, the RTL revision process is scalable and can be implemented for large systems. Our 

current work focuses on implementing a microprocessor on a single FPGA, so the revised 

RTL is executable as long as the FPGA has enough resources (gates) to support large 

systems. A set of standard benchmarks [84] were used as the applications for analysis.   
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The activities and state probabilities are only captured at block I/Os, because 

monitoring all internal nets would require too many resources.  After capturing the I/O 

activities and state probabilities, they are linked to the netlist for activity and state 

propagation to each net in the design using PrimeTime [80].  The propagation is a function 

of the design's logic.  It is probabilistic, since the exact signals that produced the I/O 

activities and state probabilities are unknown.  Therefore, the resulting activities and state 

probabilities at internal nodes may have errors with respect to the exact signal probabilities 

and activities.  The result is a complete stress/transition probability profile of the internal 

nodes of the microprocessor under study. This activity and state propagation component is 

done in software on a block-by-block basis. Thus, we have the probability of a transition 

occurring in any cell and the probability at each state, i.e., the probability at logic “1”.  

 
(a) 
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(b) 

Figure 25 – (a) The distributions of the DC stress probability and (b) the transition 

rate (toggle rate) for the LEON3 microprocessor while running a standard 

benchmark. 

Figure 25 (a) and (b) show the distributions of the stress probability and the transition 

rate, respectively, when the microprocessor is running a set of standard benchmarks. It can 

be seen that the distribution of the stress state probability and transition rate is different for 

each block. For example, Itags and Dtags have a low stress state probability and a high 

transition rate, while DIV, MUL, IU and MMU have a high stress state probability and a 

low transition rate. 

The propagation of transition rate and state probability was verified by comparing 

the exact transition numbers and state periods of randomly selected nets from the 

microprocessor with the ones calculated by propagations. The results in [13] shows that 

the percent errors for more than 90% of the selected samples are less than 10% for transition 

rate and more than 80% of the selected samples have errors that are less than 15% for state 

probability. The high errors are mostly from the nets in deeper locations of the circuit that 
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are far from the I/Os. Since errors are cumulative, activity propagation to deeper stages 

leads to a larger difference between the real transition rate/state probability and the 

calculated ones. 

 
(a) 

 
(b) 

Figure 26 – (a) The temperature and (b)VDD distribution of the LEON3 

microprocessor running a standard benchmark. 
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The temperature variation throughout the microprocessor is also taken into account 

when modelling different wearout mechanisms.  The netlist was used for layout generation 

using Cadence Encounter [77] and a commercial PDK [85].  The RC information extracted 

from the layout via [78], together with the net activities, was used for the extraction of the 

power profile and the consequent thermal profile, through the power simulator [80] and the 

thermal simulator [86], respectively. The net activities and layout are also used to 

determine the IR-drop profile throughout the microprocessor via [77]. Figure 26 shows the 

distributions of the temperature and the supply voltage in Figure 26(a) and Figure 26(b), 

respectively, when LEON3 is running a standard benchmark. 

6.2 Proposed PVT-Aware Aging Simulator 

 

Figure 27 – The flow chart of proposed aging simulator. 

The overall flow chart of the proposed PVT-aware aging simulator is shown in Figure 

27. The core of this aging simulator is the PVT-aging aware timing engine which is 
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of profiles, including process variation, thermal, IR-drop, RC parasitics, BTI, HCI and 

GOBD. The generation of these profiles was discussed in Section 6.1. 

 

Figure 28 – The framework of the PVT-aging-aware timing engine. 

Figure 28 presents the algorithm of the timing engine. As introduced in Chapter 5, 

both the block-based and path-based timing analyzer are based on Monte Carlo analysis. 

The electrical stress, thermal, IR-drop, process profiles and RC parasitics, together with 

the device-level wearout models, generate all the parameters for each gate which are 

needed to calculate the gate delays. All the information is fed to the PVT-aging aware 

timing engine as shown in Figure 28 for the analysis of circuit timing degradation. 

Input:  circuit netlist, RC parasitics (.spef), process-variation spatial correlation profile, BTI 

∆Vth profile,  HCI ∆Vth profile, GOBD RG2S/RG2D profile, thermal profile, IR-drop profile

Output: Circuit-delay distribution 

Block-based timing analyzer

      1. generate N Monte Carlo samples for the circuits according to process-variation spatial 

correlation profile.

      2. abstract timing graph from circuit netlist, and apply (∆L, ∆Vth, RG2S, RG2D)

      3. for i=1 to N   //for each Monte Carlo sample

             3.1. apply to each gate the corresponding values of ∆L, ∆Vth, RG2S, RG2D, T and etc. 

             3.2. do forward traversal to evaluate the edges (gate and wire delay) and propagate the 

Algorithm: Statistical Timing Engine

                    arrival time to Primary Output/DFF

             3.3. do backward traversal to extract the first 3 critical paths using PERT algorithm.

       4. end for

       5. get the critical-path collection: P ={CP1, CP2, …, CPm}

       // m is up to 3*N, because some paths are repetitive

Path-based timing analyzer

       6. for i=1 to N   //for each Monte Carlo sample

             6.1. calculate the path delays for each critical path in P as {PD
i
1, PD

i
2, …, PD

i
m}

             6.2. get the maximum path delay D
i
=max{PD

i
1, PD

i
2, …, PD

i
m}

       7. end for

       8. circuit-delay distribution from {D
1
,D

2
,…,D

N
}
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generates the delay degradation at a variety of stress times. Figure 29 shows the delay 

distribution of a RISC microprocessor at different stress times.  

 

Figure 29 – The delay distributions of a RISC microprocessor due to the combined 

effect of PVT and aging under a variety of stress times. 

The system-level aging simulator is constructed by analyzing the performance 

(circuit delay) degradation at different stress times. When the circuit delay degrades beyond 

the clock period, the system is fails and the lifetime is thus obtained. Figure 30 shows a 

comparison of the lifetime distributions due to BTI, HCI, GOBD individually and 

simultaneously. It can be seen that GOBD is generally the most critical mechanism of the 

three, but for some samples BTI is dominant. Besides, when all of these three mechanisms 

happen simultaneously, the lifetime is shorter than the lifetimes due to analyzing each 

mechanism alone. It is concluded that BTI and HCI also have some effect on circuit 

lifetimes even if they are not dominant. 
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Figure 30 – The lifetime distributions of the LEON3 microprocessor due to BTI, HCI, 

GOBD and the combined effect. 

6.3 Lifetime Analysis Considering Realistic Workloads 

This work not only accounts for activity and temperature, but also accounts for the 

fact that processors are not in operation at all times. Realistic use conditions include 

operation modes, standby, and periods of time when the processor is turned off, as 

illustrated in Figure 31. This research takes these use scenarios into account. These use 

scenarios determine the two key parameters that are needed to determine the stress and 

temperature for all wearout mechanisms, the logic state probability for each net, which 

determines the duty cycle over the full lifetime of the microprocessor, and the activity of 
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operation. 
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Figure 31 – The use scenarios provided by Intel are shown [87]. 

For BTI, by weighting the lifetimes of operation, standby and off modes in 

accordance with Figure 31, the lifetimes of the microprocessor under study are estimated 

based on different operating frequencies for different use scenarios, as shown in Figure 32. 

The different operating modes impact the values of 𝑡𝑠𝑡𝑟𝑒𝑠𝑠 and 𝑡𝑟𝑒𝑐in equation (2).  For 

example, during the “off” state, 𝑡𝑟𝑒𝑐   is increased. The results clearly indicate that the 

estimated system lifetimes decrease as the system frequency increases, and gaming has the 

shortest lifetime.  The lifetimes converge to zero at the upper and lower limits of the initial 

operating frequency. 
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Figure 32 – The estimated lifetimes of the LEON3 microprocessor due to BTI for 

different use scenarios and different system frequencies. Dotted lines show the 

boundaries when considering process variation. 

 

Figure 33 – The estimated lifetimes of the LEON3 microprocessor due to HCI for 

different use scenarios and different system frequencies. Dotted lines show the 

boundaries when considering process variation. 
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The microprocessor system lifetimes for different operating frequencies and different 

use scenarios were also investigated under HCI. The system lifetimes estimated by the 

proposed methodology are shown in Figure 33. Similar to BTI, the microprocessor 

lifetimes estimated by our methodology decrease as the system frequency increases, and 

gaming has the shortest lifetime.  Again, the lifetimes converge to zero at the initial 

operating frequency limits. 

Besides LEON3, a 32-bit RISC microprocessor which includes around 73k gates was 

also studied. The area for the 32-bit RISC microprocessor is around 7 mm2 and the power 

consumption is around 0.1W~0.2W. 

 

Figure 34 – The estimated lifetimes of the RISC microprocessor due to BTI for 

different benchmarks and different system frequencies. Dotted lines show the 

boundaries when considering process variations. 
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Figure 35 – The estimated lifetimes of the RISC microprocessor due to HCI for 

different benchmarks and different system frequencies.  Dotted lines show the 

boundaries when considering process variations. 

 

Figure 36 – The statistical lifetime distribution of the RISC microprocessor due to 

BTI for different system frequencies, for the gaming use scenario. 

HCI Lifetime for a RISC Microprocessor

1E+06

1E+09

1E+12

600 650 700 750 800

L
if

et
im

e 
(y

ea
rs

)

Operating Frequency (MHz)

General Usage

Office Work

Gaming

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-20 0 20 40 60 80

P
ro

b
a
b

il
it

y

ln(lifetime in years)

600 MHz
650 MHz
700 MHz
750 MHz
800 MHz

99.9

99.9

98.8

93.4

80.7

63.2

45.5

30.8

19.9

12.6

7.88

Weibull Probability Plot for BTI Lifetime



 71 

 

Figure 37 – The statistical lifetime distribution of the RISC microprocessor due to 

HCI for different system frequencies, for the gaming use scenario. 
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P=0.95.  These corresponding time-to-failure points are the confidence bound limits in 

Figure 34 and Figure 35. 

6.4 APPLICATION: Finding Optimum Operating Voltages Using Proposed Aging 

Simulator 

In this subsection, the proposed aging simulator was applied to a case study to solve 

a practical problem: find the optimum operating voltage of a system so that the best 

performance-reliability tradeoff can be achieved. 

To make this application more realistic, the hard breakdown (HBD) of GOBD is 

included. In previous sections, the soft breakdown (SBD) of GOBD is discussed and 

modelled by inserting a gate-to-source resistance (RG2S) or gate-to-drain resistance (RG2D) 

in a target gate in order to create the current leakage path in the circuit. HBD happens after 

the soft breakdown, and it is well understood that HBD happens when the gate dielectric 

layer abruptly loses its insulating properties. HBD can be detected as a large jump in the 

current vs. time curve, while in soft breakdown (SBD), the leakage current in the gate 

dielectric slightly increases with time and the gate dielectric still remains its insulation 

property. The method to analyze the hard failure rate is from [8]. The permanent HBD of 

GOBD is referred as hard failure hereafter, while soft failure refers to the failures caused 

by the timing violations due to BTI, HCI and GOBD soft breakdown. 
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Figure 38 – Chip temperatures while LEON3 is running at different voltages and 

circuit delays at each corresponding VDD/Temperature condition. 

The test case is the LEON3 microprocessor where different operating voltages are 

applied. The power consumption of LEON3 while running a standard benchmark in 

operation mode is simulated and fed to the thermal simulator to get the operating 

temperatures. In the thermal simulator, the ambient temperature is set to room temperature 

(27°C). The operating temperatures under different voltages are shown in Figure 38, along 

with the average circuit delays under the corresponding operating conditions (voltage and 

temperature). As expected, higher voltage brings higher temperatures. Moreover, the 

circuit delay decreases under the conditions of high voltage and high temperature, which 

means the effect of high voltage on decreasing delay is stronger than the effect of high 

temperature on increasing delay. 
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Figure 39 – The soft failure rate in 10 years due to timing violations for different 

operating voltages and for different usage scenarios when ambient temperature is set 

to 27°C. 

 

Figure 40 – The hard failure rate in 10 years due to the permanent GOBD hard 

breakdown are shown for different operating voltages and for different usage 

scenarios when ambient temperature is set to 27°C. 
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to distinguish it from permanent catastrophic failures. The soft failure rate decreases as 

the voltage increases because larger timing slack is observed at higher voltages. On the 

other hand, however, higher voltage and higher temperature increase the probability of 

suffering from catastrophic GOBD hard breakdown where the gate dielectric permanently 

breaks down and leads to a current runaway. The hard failure rate in 10 years under 

different voltages is shown in Figure 40, where it’s seen that the failure rate dramatically 

increases at higher voltages and higher temperatures. In the worst case (VDD=1.7V, 

Temperature = 100°C), the hard failure rate in 10 years is close to 100%. 

Combining the soft failure rate due to timing failures and the hard failure rate due 

to GOBD hard breakdown, we get the overall failure rate in 10 years for different usage 

scenarios in Figure 41. For the ‘Gaming’ scenario, the optimum voltage to achieve the 

best lifetime is 1.3V, while for the other three scenarios the optimum voltage is 1.4V. 

From the results, it’s seen that at lower voltage, the soft failure is dominant while the hard 

failure is dominant at higher voltages. 
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Figure 41 – The overall failure rate in 10 years due to both soft failure and hard 

failure is shown for different operating voltages and for different usage scenarios 

when ambient temperature is set to 27°C. 

 

Figure 42 – The overall failure rate in 10 years due to both soft failure and hard 

failure is shown for different operating voltages and for different usage scenarios 

when the ambient temperature is set to 40°C. 
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Figure 43 – The overall failure rate in 10 years due to both soft failure and hard 

failure is shown for different operating voltages and for different usage scenarios 

when the ambient temperature is set to 15°C. 

 

Figure 44 – The overall failure rate in 10 years due to both soft failure and hard 

failure is shown for different operating voltages and for different usage scenarios 

when the ambient temperature is set to 27°C and the IR-drop effect is ignored. 
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supply voltages are shown in Figure 42 and Figure 43, for ambient temperatures equal to 

40°C and 15°C, respectively. Experimental results see the trend that the optimum voltage 

shifts to the left (lower) when the ambient temperature increases. More specifically, for 

the use scenarios of Office Work, Corporate and General Usage, the optimum voltage 

shifts from 1.4V to 1.3V when ambient temperature increases from 27°C to 40°C. This is 

because the higher ambient temperature brings up the chip temperature and ultimately 

makes hard breakdown failure more severe when the supply voltage is higher than 1.4V. 

When the ambient temperature decreases from 27°C to 15°C, the optimum voltage shifts 

from 1.3V to 1.4V for the Gaming scenario. Lower temperature decreases the hard 

breakdown failure rate, and the soft breakdown dominates at low supply voltages. Figure 

44 is shown to investigate the impact of the IR-drop effect. Results show that ignoring the 

IR-drop effect would underestimate the soft failure rate and overestimate hard failure rate. 

However, the optimum operating voltages are not affected. 
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7. SRAM LIFETIME ANALYSIS FOR DIFFERENT CACHE 

CONFIGURATIONS 

This research work also includes the lifetime analysis of SRAMs, particularly the 

caches within in state-of-art microprocessors. 

The majority of transistors in a modern microprocessor are used to implement Static 

Random Access Memories (SRAM). Therefore, it is important to analyze the reliability of 

SRAM blocks. The first-level (L1) data cache is a prime candidate, since it experiences 

frequent read and write operations, yet stores data for a significant amounts of time. 

Besides, cache efficiency is also very critical for system performance. Much prior work 

has focused on the cache architectures needed to achieve high hit rates. However, the 

question of how the reliability of the cache is affected when higher performance is achieved 

remains unanswered. In this work, the reliability (failure probability) of the L1 data cache 

in a state-of-art microprocessor is investigated for different design configurations: 

associativity, cache line size, cache size, and replacement algorithm. By analyzing the 

reliability and performances for different cache designs, we provide insight on the 

performance-reliability tradeoff in cache system design. The effect of error correcting 

codes (ECCs) is also considered, as ECCs enhance cache lifetime. 

SRAMs are highly sensitive to BTI-induced transistor-strength mismatch [6], [10], 

[12], [88]–[90]. SRAM stability is analyzed in [91]–[93] by assuming two ideal stress 

conditions, static stress and alternating stress. To consider realistic stress conditions in 
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SRAM cells, [94]–[97] estimate the SRAM degradation due to BTI based on a customer 

usage workload profile.  

SRAM stability due to HCI is less studied in prior research because BTI is usually 

dominant due to its frequency independence. However, nowadays, since chips are running 

at higher frequencies, HCI is becoming an issue [98],[99]. In [100],[101], the impact of 

HCI on SRAM cell stability is analyzed, and [100] compares the simulation results with 

silicon experimental results. 

In this work, the stability degradations of SRAM cells due to BTI and HCI are studied 

under various stress conditions, and failure probability of the L1 data cache within a state-

of-art microprocessor is calculated by taking into account realistic workloads when a set 

of benchmarks are running on the microprocessor. The work is new in the following ways. 

  Cache reliability is analyzed for different cache configurations relating to: 

associativity, cache line size, cache size, and the replacement algorithm.  

  The effect of Error Correcting Codes (ECCs) is studied in the failure-probability 

analysis of the data cache. 

  The impact of process variations is included using Monte Carlo simulations, and 

the lifetime distribution of SRAM cells with different stress conditions is extracted.  The 

distribution is parameterized, where we found in this work that the Log-Normal distribution 

is the best fit. 
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  This work takes into account real temperature and IR-drop profiles of a 

microprocessor when analyzing cache reliability by using an FPGA-based aging 

assessment framework. 

  This work considers the combined effect of BTI and HCI, rather than studying 

them individually. We have found that HCI can mitigate SRAM stability degradation due 

to BTI for some of the stability metrics. Therefore, studying BTI and HCI separately leads 

to an overestimation of SRAM stability degradation. 

To the best of our knowledge, this is the first study on the reliability-performance 

tradeoff for caches with different cache configurations.  However, much prior work has 

focused on mitigating cache degradation in the presence of BTI. [102]–[105] have 

proposed to reduce the impact BTI aging by balancing the amount of time that ‘0’ and ‘1’ 

values are stored in the cells.  In [106], the authors have proposed to exploit 

microarchitectural redundancy to extend cache lifetimes in the presence of BTI.  Other 

methods reduce BTI aging by dealing with the parameters that have a strong impact on 

BTI, such as the temperature and supply voltage [107],[108].  In addition, [105] has 

proposed an indexing scheme to balance the usage of entries in the cache to combat HCI.  

In [109], the authors reduce HCI aging by shifting the incoming data to spread the bit flips 

evenly among the memory cells. 

7.1 SRAM Stability 

Each cache bit is implemented with an SRAM cell consisting of 6 transistors (6T), 

as shown in Figure 45. The labeled transistors form an inverter loop that holds the stored 

logic value, whereas the remaining pass transistors controlled by the wordline (WL) signal 
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allow read and write operations to the cell through the bitline (BL) and its complement 

(BL̅̅̅̅ ).  

In a 6T cell, HCI affects all the transistors on a write if the logic value flips. On the 

other hand, when the cell is stable and storing a ‘0’, the PMOS transistor 𝑇𝑃1 and the 

NMOS transistor 𝑇𝑁2 are under stress, and they suffer from NBTI and PBTI, respectively. 

On the contrary, when the cell stores a ‘1’, transistors 𝑇𝑃2 and 𝑇𝑁1 are affected by NBTI 

and PBTI, respectively. Note that the wearout effects induced by each type of duty cycle 

are complementary, meaning that, for a given duty cycle, the pair of transistors not under 

stress are partially under recovery from BTI degradation. Overall, the four transistors of 

the inverter loop are continuously aging regardless of whether the cell stores ‘0’ or ‘1’, or 

is transitioning. This fact makes such transistors particularly sensitive to wearout [102]. 

Note that the NMOS pass transistors just age from BTI when the SRAM cell is being 

accessed, making them much less sensitive to aging than the inverter loop transistors. Thus 

this work focuses on the wearout of the inverter loop transistors. 

 

 

Figure 45 – A typical 6T SRAM cell. 
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7.2 SRAM Lifetime Characterizations 

SRAMs are characterized with several performance metrics. These include the read 

and retention static noise margins (SNMs), the write margin, the read current (IREAD), and 

the minimum retention voltage (Vdd-min-ret). The static noise margins are defined as the 

minimum DC noise voltage necessary to change the state of an SRAM cell. The read SNM 

is measured with the access transistors turned on, while the access transistors are off for 

the retention SNM. The write margin is the minimum voltage needed to flip the state of the 

cell, with the access transistors turned on. Vdd-min is the minimum voltage in which the 

SRAM retains its state. Finally, the read current, which is inversely proportional to access 

time, is the current flow through pull-down devices when performing a read operation.  The 

stability margins are extracted by fitting squares between the static noise margin (SNM) 

curves and observing the diagonal length of the smaller of the two squares [112].  When 

any of these four performance metrics degrade to a predefined threshold, the SRAM cell is 

said to have failed, and thus the lifetime of the cell is obtained. Variations of two process 

parameters have been included: the channel length and the threshold voltage of each 

transistor in the SRAM cell, both of which are subject to a Gaussian distribution with three 

sigma equal to 30% of the corresponding nominal value. Monte Carlo SPICE simulations 

were implemented to obtain 2000 samples. 
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                                             (a)                                                                           (b) 

 

                                             (c)                                                                           (d) 

Figure 46 – The degradation of the write margin, the read SNM, the Vdd-min-ret, 

and the IREAD of a memory cell due to BTI, BTI and HCI, shown in (a)-(d), 

respectively. 

Figure 46 shows the degradation of the read SNM, the write margin, Vdd-min-ret, 

and IREAD of a memory cell. It shows a comparison between degradation due to BTI alone 

and due to both BTI and HCI.  BTI severely degrades the read SNM, as well as the write 

margin. Vdd-min-ret is also affected, while IREAD is relatively unaffected.  

When BTI and HCI are considered simultaneously, as shown in Figure 46, the 

stability degradation of the write margin, the read SNM, and Vdd-min-ret is smaller than 

the degradation when only BTI is present, while for IREAD, the combined effect of BTI and 

HCI produces larger degradation than BTI alone. As IREAD has limited degradation, SRAM 

lifetimes are mostly determined by the degradation of the write margin, the read SNM and 

Vdd-min-ret. Therefore, studying BTI and HCI separately leads to a significant 

overestimation of SRAM stability degradation, as the inclusion of HCI actually ‘mitigates’ 

the stability degradation due to BTI. 
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The activity profile of the SRAM cells in the data cache was extracted using the same 

framework mentioned in Section 6.1. The thermal and IR-drop profiles were extracted in 

the same way, too. The probability is obtained of a transition occurring in each cell, 

together with the probability at each logic state, i.e., logic ‘1’ and ‘0’. Figure 47 and Figure 

48 show the distributions of the state probabilities and the transition rate, respectively, of 

the data cache, when the microprocessor is running a standard benchmark. 

 

(a) 

 

(b) 

Figure 47 – (a) The distribution of state probability for the 32KB data cache shown 

in 1024 words; (b) The histogram of the state probability distribution in the number 

of SRAM cells. 
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(a) 

 

(b) 

Figure 48 – (a) The distribution of transition rate for the 32KB data cache shown in 

1024 words; (b) The histogram of the transition-rate distribution in the number of 

SRAM cells. 
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devices in the same cell. The cell becomes increasingly skewed under BTI as some devices 

degrade more than the others. This leads to impaired noise immunity. On the other hand, 

all the devices undergo the same stress due to HCI, as mentioned in Section 7.1.  As a 

result, the inclusion of HCI mitigates the unevenness of the Vth degradation for the 

transistors in an SRAM cell. 
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Please also note that the HCI effect has a strong dependence on the operating 

frequency. Throughout the work, the LEON3 microprocessor is assumed to run at 

250MHz. For this situation, BTI is dominant and HCI has a smaller influence. HCI could 

have more influence when the operating frequency reaches the GHz range. 

When any of the four performance metrics mentioned in Section 7.2 degrade to a 

predefined threshold, the SRAM cell is said to have failed, and thus the lifetime of the cell 

is obtained. Using Monte Carlo simulations, the lifetime distribution of an SRAM cell is 

obtained for the given performance constraints. 

Running SPICE simulations for each SRAM cell is very computationally-expensive. 

In order to manage the large volume of SRAM cells and to limit the number of SPICE 

simulations, we partition both the static stress probability and switching activity into 21 

states (0%, 5%, 10%, … , 95%, 100%) to balance the accuracy and computational cost of 

the simulations for BTI and HCI, respectively.  It's assumed that the cells in the same stress 

state have the same stress.   

For BTI, the 21 stress states represent duty cycles, that is, 0%, 5%, 10%, … , 100% 

duty cycle. 0% duty cycle means the cell has 0% time storing a ‘1’, while 100% duty cycle 

corresponds to 100% time storing a ‘1’. For HCI, the 21 stress states are proportional to 

the maximum observed transition rate, that is, 0%, 5%, 10%, … , 100% of the maximum 

transition rate. One example of the distributions of stress states for BTI and HCI is 

illustrated in Figure 47(b) and Figure 48(b), respectively, for a 32KB data cache. Note that 

the stress distribution not only depends on the applications being run, but also depends on 

the memory allocation of the cache system, which will be discussed in detail in Section 
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7.4. When BTI and HCI are combined, the stress states are combinations of the duty-cycle 

state and the toggle-rate state. For example, a stress state could have a low duty cycle and 

a high toggle rate, or a high duty cycle and a low toggle rate. The number of combinations 

is 21×21=441. Figure 49 shows an example of the stress-state distribution when BTI and 

HCI are combined. 

 

Figure 49 – An example of a stress-state distribution for a 32KB memory is shown. A 

stress state is a combination of the duty-cycle state and the toggle-rate state, when the 

combined effect of BTI and HCI is considered. The z axis is the number of cells. 

Since process variations are considered, the lifetime of each SRAM cell is a 

distribution rather than a fixed value.  Because we assume all the cells in the same stress 

state have the same stress, all the cells in one stress state share the same lifetime 

distribution. By running Monte Carlo simulations in SPICE, the lifetime distribution is 

computed for each stress state.  Importance sampling [113] ensures adequate sampling of 

the tails of the distribution.  Example lifetime distributions for four different stress state 

are illustrated in Figure 50 for the combined effect of BTI and HCI. As can be seen from 

this figure, an SRAM cell has a longer lifetime when it has a 50% duty cycle than when it 

has a 0% duty cycle. Moreover, higher toggle rates result in better lifetimes. 

4000

5000

3000

2000

1000

0

# of cells

Toggle-Rate State
Duty-Cycle State



 89 

 

Figure 50 – The lifetime distribution of a SRAM cell when it’s in a specific stress state. 

Each stress state is a combination of the duty-cycle state and the toggle-rate state. 

Four stress states are shown in this figure. 

Because SRAM stability is very sensitive to temperature and supply voltage, the 

actual temperature and IR-drop profiles are needed for accurate lifetime estimation. The 

lifetime distribution of the 441 stress states is characterized for two different temperatures 

and two different supply voltages, that is, both temperature and supply voltage are 

partitioned into two states. 

The lifetime distribution of SRAM cells shown in Figure 50 is best fit with a Log-

Normal distribution. (Figure 50 is actually a Log-Normal probability plot.) The fitted Log-

Normal distributions are used to determine the probability of failure of an SRAM cell, 

𝑃𝐹𝑏𝑖𝑡, which is a function of time, 𝑡: 

 𝑃𝐹𝑏𝑖𝑡 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 (𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 < 𝑡). (29) 

The probability of failure of a word is then calculated by 
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𝑃𝐹𝑤𝑜𝑟𝑑 = 1 −∏(1 − 𝑃𝐹𝑏𝑖𝑡𝑖)

𝑁

𝑖=1

 

(30) 

where 𝑃𝐹𝑤𝑜𝑟𝑑  is the probability of failure of a word, 𝑃𝐹𝑏𝑖𝑡  is the probability of 

failure of a bit, and N is the number of bits in one word. The word size is N=32 for the data 

cache of the LEON3. Since 𝑃𝐹𝑏𝑖𝑡 changes as a function of time, 𝑃𝐹𝑤𝑜𝑟𝑑 also changes as a 

function of time.  

If the SRAM does not use error correcting codes, the memory fails when the first cell 

fails to work. The probability of failure of the SRAM block is obtained accordingly as a 

function of time: 

 

𝑃𝐹𝑆𝑅𝐴𝑀 = 1 − ∏ (1 − 𝐹𝑃𝑤𝑜𝑟𝑑𝑖)

𝑁𝑤𝑜𝑟𝑑

𝑖=1

 

(31) 

where 𝑃𝐹𝑆𝑅𝐴𝑀 is the probability of failure of the whole memory block, 𝐹𝑃𝑤𝑜𝑟𝑑𝑖 is 

the probability of failure of word i, and 𝑁𝑤𝑜𝑟𝑑 is the number of words. 

Error correcting codes can ensure that a memory system can tolerate faults.  BCH 

codes [114] require seven additional bits per word and can correct one bit per word.  The 

relationship between failures of single bits, 𝑃𝑓𝑎𝑖𝑙, and the failure of the word is modeled 

with a binomial distribution.  For a word containing N bits, the probability of failure of a 

word, 𝐹𝑤𝑜𝑟𝑑, is 
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𝑃𝐹𝑤𝑜𝑟𝑑 = 1 −∏(1 − 𝑃𝐹𝑏𝑖𝑡𝑖)

𝑁

𝑖=1

−∑[𝑃𝐹𝑏𝑖𝑡𝑗 ∗∏(1 − 𝑃𝐹𝑏𝑖𝑡𝑖)

𝑖≠𝑗

]

𝑁

𝑗=1

 

(32) 

The word size when there are ECCs is N=39 for the D-Cache, I-Cache, and RF blocks 

of the LEON3. The failure probability of the memory, 𝑃𝐹𝑆𝑅𝐴𝑀, is calculated using (31). 

7.4 Performance-Reliability Analysis for Different Cache Configurations 

Based on the method for memory lifetime characterization in Section 7.2, the 

reliability (failure rate) of the LEON3 L1 data cache was studied for different cache 

configurations: associativity, cache line size, cache size, and the replacement algorithm. 

The impact of Error Correcting Codes (ECC) was also analyzed. 

Six representative benchmarks from MiBench [84] were run on the microprocessor: 

Basicmath, Qsort, SHA, CRC32, FFT and Dijkstra. The Basicmath benchmark performs 

simple mathematical calculations that often don’t have dedicated hardware support in 

embedded processors. Qsort sorts a large array of strings into ascending order using the 

well-known quick sort algorithm. SHA is the secure hash algorithm that produces a 160-

bit digest for a given input. CRC32 is a benchmark performing a 32-bit Cyclic Redundancy 

Check (CRC) on a file to detect errors in data transmission. FFT performs a Fast Fourier 

Transform on an array of data. The Dijkstra benchmark constructs a large graph in an 

adjacency matrix representation and then calculates the shortest path between every pair of 

nodes using repeated applications of Dijkstra’s algorithm. 
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The framework in Section 6.1 was used to extract the Duty-Cycle/Toggle-Rate, 

temperature, and IR-drop profiles of the data cache for different cache designs and for the 

six applications above. The method for memory lifetime characterization described in 

Section 7.2 was then used to calculate the failure rate of the data cache while running each 

specific application. 

 

Figure 51 – The duty-cycle distributions of SRAM cells in a 2-way 32KB data cache, 

while the microprocessor is running six different benchmarks. 

Figure 51 shows the state probability (duty-cycle) distribution for each application 

using a 2-way 32KB data cache with 16Byte line size. Clearly, logic ‘0’ is the predominant 

state. Memories in a processor contain more 0s than 1s throughout normal operations [115]. 

In general, ‘0’ is stored longer than ‘1’ because the memory is usually initialized to zero 

when it’s allocated. Thus, even if there is an equal likelihood of an application writing a 

‘0’ or a ‘1’ in any bit position, this initialization will always mean that ‘0’ is stored longer. 

Other reasons for ‘0’ being stored longer are that false Boolean values and NULL pointers 

are represented with zero, as well as most data in dense-form sparse matrices [114]. 

7.4.1 Associativity 

0
0.1
0.2
0.3
0.4
0.5

0% 20% 40% 60% 80% 100%

Fr
ac

ti
o

n
 o

f 
C

e
lls

State Probability (Duty Cycle)

Basicmath
Qsort
FFT
SHA
CRC32
Dijkstra



 93 

Cache associativity can be seen as bookshelves in different shapes and sizes. Caches 

fall into one of three categories: direct mapped, n-way set associative, and fully associative. 

Direct mapped caches are designed so that a cache block can only go in one spot in the 

cache. 2-way set associative caches are made up of sets that can each fit two blocks, while 

in 4-way set associative cache, each set fits four blocks. For a fully associative cache, a 

cache block can go anywhere in the cache. It is worth noting that the direct mapped cache 

is actually a 1-way set associative cache and a fully associative cache of m blocks is an m-

way set associative cache. Higher associativity can improve the hit rate, but will reduce 

cycle time and cost more area because of the need for more comparators. The L1 data cache 

of the LEON3 microprocessor was implemented with three different associativities: 1-way, 

2-way and 4-way, while the cache line size (16Byte), cache size (32KB), and the 

replacement algorithm (LRU) were kept the same.  

 

Figure 52 – The failure probability as a function of time for the three different 

associativities and two benchmarks. 
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Figure 53 – The failure probabilities in 6 years for a 16 Byte cache line and a 32 Byte 

cache line for six applications. The hit-rate improvement is also shown, defined as the 

improvement of using a 32 Byte cache line compared to a 16 Byte line. 

 

Figure 54 – The hit rate and the failure probability in 6 years are shown for five 

different cache sizes and for three applications. 
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Figure 55 – The failure probabilities in 6 years for three different replacement 

algorithms for six benchmarks, as well as the hit rate improvements of LRU and LRR. 

The hit-rate improvement is defined as the improvement compared to the ‘Random’ 

replacement policy. 

 

Figure 56 – The failure probabilities of the 2-way 32KB data cache with and without 

ECCs are shown as a function of time for three applications. 

Figure 52 shows the failure rate for different associativities. For illustration purposes, 

the results from two applications are shown: Basicmath and Dijkstra, since other 

applications produce the same trend. The hit rate of 1-way, 2-way and 4-way associativities 
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are 96.12%, 96.33%, 96.36%, respectively, for Basicmath, and are 62.23%, 64.81%, 

65.54%, respectively, for Dijkstra. Higher associativity results in a higher hit rate, but also 

increases the failure rate. A higher hit rate produces fewer misses, and thus the cells are 

more likely to keep their stored values unchanged, which aggravates the BTI effect. From 

the perspective of aging, a cache miss is potentially useful as it flips the value stored in a 

cell and therefore mitigates BTI. 

7.4.2 Cache Line Size 

Data is transferred between the main memory and the cache in blocks of fixed size, 

called cache lines. When a cache line is copied from the main memory into the cache, a 

cache entry is created. The cache entry includes the copied data as well as the requested 

memory location (called a Tag). 

We implemented the data cache with two different cache line sizes: 16 Byte and 32 

Byte, while the associativity (2-way), cache size (32KB), and the replacement algorithm 

(LRU) are kept the same. Figure 53 shows the failure probabilities of the six benchmarks 

for a 16 Byte and a 32 Byte cache line. It’s observed that the 32 Byte cache line has a lower 

failure rate than the 16 Byte cache line for all six benchmarks. Except for Basicmath and 

SHA, which see little hit-rate improvement, the 32 Byte cache line achieves better 

performance than the 16 Byte cache line. Overall, the 32 Byte cache line is better than the 

16 Byte cache line in both performance and reliability. This observation is a little counter-

intuitive as we’ve shown that a higher hit rate results in lower reliability in Section 7.4.1. 

So it might be straightforward to think that the 32 Byte cache line would have a higher 

failure rate because of its higher hit rate. However, a cache miss in a 32 Byte cache line 
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produces recovery cycles for up to 256 (32×8) SRAM cells which is twice as many as with 

a 16 Byte cache line (16×8 SRAM cells). Therefore, although a 32 Byte cache line has less 

misses, it actually has a larger number of BTI stress recovery cycles than a 16 Byte cache 

line, which results in improved reliability. 

7.4.3 Cache Size 

The total size of the data cache is another important metric in cache system design. In our 

experiments, the data cache is implemented with five different cache sizes: 4KB, 16KB, 

32KB, 64KB and 128KB, while the associativity (2-way), cache line size (16Byte), and 

replacement algorithm (LRU) are kept the same. Figure 54 shows the hit rate and failure 

rate (in 6 years) for five different cache sizes for three applications. The failure rate 

increases dramatically as the cache size increases. This can be easily understood because 

the failure probability is larger when there are more SRAM cells. 

It’s also observed that the hit rate increases as the cache size increases. However, when the 

cache size is larger than 32KB, little improvement is seen in the hit rate. According to the 

performance specification and reliability budget, cache designers could determine an 

optimal cache size balancing both performance and reliability requirements. 

7.4.4 Replacement Algorithm 

In order to make room for a new entry on a cache miss, the cache may have to evict 

one of the existing entries. The heuristic that it uses to choose the entry to evict is called 

the replacement policy. The fundamental problem with any replacement policy is that it 

must predict which existing cache entry is least likely to be used in the future.  
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In this work, three different replacement algorithms were implemented, namely, 

Random, Least-Recently-Replaced (LRR) and Least-Recently-Used (LRU), while the 

associativity (2-way), cache line size (16 Byte) and cache size (32KB) were kept the same. 

The ‘random’ algorithm randomly selects a cache entry to evict. It uses a simple 1- or 2-

bit counter to select the eviction entry and has low area overhead. The LRR algorithm 

evicts the cache entry which was least recently replaced. It uses one extra bit in the Tag 

part and has therefore also low area overhead. The LRU algorithm, a popular replacement 

policy, evicts the entry which was least recently used. The LRU scheme has typically the 

best performance, but also the highest area overhead. A two-way LRU uses one flip-flop 

per cache line, a three-way LRU uses three flip-flops per cache line, and a four-way LRU 

uses five flip-flops per cache line to store the access history. Overall, LRU favors the most 

recently accessed data, while LRR favors recently loaded data.  

The failure probabilities for the three replacement algorithms under study are shown 

in Figure 55, as well as the hit-rate improvement of LRU and LRR compared to the random 

algorithm. It’s observed that LRU achieves the best hit rate in all the applications. 

However, it always has lower reliability compared to LRR and the random algorithm. So 

tradeoffs between performance and reliability, together with other important metrics such 

as leakage power etc., should be made according to the priority associated with each metric.   

The reason for the above results is similar to the observations on the impact of 

associativity. A higher hit rate means fewer misses, which results in fewer recovery cycles.  

As a result, the cells suffer from more BTI degradation. 

7.4.5 Error Correcting Codes (ECC) 
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ECC is a technique which can detect and correct the most common sources of internal 

data corruption. ECCs add some redundancy (some extra bits) to check the consistency of 

the data and to recover data determined to be corrupted. The word size containing the ECC 

codes for the data cache of LEON3 is N=39 when the implemented ECC is designed to 

correct single-bit errors. 

The failure probabilities of the data cache for a 2-way 32KB data cache with and 

without ECC codes are shown in Figure 56 as a function of time. Again, three benchmarks 

are illustrated as examples, and other benchmarks produce similar results. It can be seen 

that ECCs lead to a substantial improvement in the failure probability. 

7.5 Conclusions 

The reliability and performance of the data cache is analyzed while varying five 

different configuration parameters: associativity, cache line size, cache size, the 

replacement algorithm, and ECC codes. A general rule is that higher performance (higher 

hit rate) results in lower reliability (higher failure probability). This can be attributed to the 

fact that cache misses are helpful for reliability. When a cache miss happens, the old data 

in the specific cache line needs to be replaced by new data. When the value stored in a 

SRAM cell flips, the stressed transistors recover from BTI stress, and this improves 

reliability. If a cache configuration has a higher hit rate, it’s expected to see a higher failure 

probability. For example, for associativity, larger associativity results in better 

performance, but worse reliability. For the replacement algorithm, the ‘random’ 

replacement policy has the worst hit rate and the best reliability, while the popular LRU 

algorithm has the best hit rate and the worst reliability. 
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One exception of this rule happens for different cache line sizes. The 32 Byte cache 

line is better than the 16 Byte cache line in both performance and reliability. One cache 

miss for a 32 Byte cache line can recover as many as 256 (32×8) cells from BTI stress, 

which is twice as many as for a 16 Byte cache line. Therefore, despite the fact that the 32 

Byte cache line has fewer cache misses, it actually results in more BTI stress recovery. 

Thus, the 32 Byte cache line achieves higher performance and better reliability. 

Cache size is of great significance to both cache performance and reliability. It is 

observed that when the cache size increases to larger than 16KB, the cache reliability 

dramatically drops, while the performance (hit rate) has very limited improvement. 

Moreover, ECC always improves reliability at the cost of area and power overhead. 

Overall, the proposed framework can efficiently evaluate the performance and 

reliability of the cache memory and can provide insight to cache designers to help them 

optimize performance-reliability tradeoffs by selecting the appropriate cache 

configurations based on the specification budget and lifetime requirements. 
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8. CONCLUSIONS 

8.1 Conclusions of This Research 

This research presents a framework of aging simulator which can assess the lifetimes 

of complex systems like state-of-art microprocessors, while taking into account the effect 

of PVT variations and a variety of Front-end-of-line (FEOL) device wearout mechanisms. 

The proposed aging simulator achieves accurate statistical timing analysis to study the 

combined impact of aging effect, manufacturing variability, ambient conditions and 

realistic workload. The timing analyzer in this work is the first attempt in the literature to 

achieve a comprehensive process-voltage-temperature-aging-aware statistical timing 

analysis (StTA) while considering the effect of bias temperature instability (BTI), hot 

carrier injection (HCI), gate oxide breakdown (GOBD) simultaneously. 

The proposed aging simulator presents the relationship between circuit performance 

(speed) and circuit reliability, and gives insights for designers to achieve optimal tradeoff 

between performance and reliability. Moreover, circuit designers can benefit from the 

proposed work to avoid excessive guard-banding to achieve higher performance while still 

maintaining the required reliability. 

This research also includes the SRAM lifetime analysis, particularly the lifetimes of 

the data cache within state-of-art microprocessors. The work studies the performance and 

reliability for different cache configurations, and provides insight to cache designers to 

help them optimize performance-reliability tradeoffs by selecting the appropriate cache 

configurations based on the specification budget and lifetime requirements. 
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8.2 Future Work 

While the proposed aging simulator can study the system lifetimes of state-of-art 

microprocessors due to a variety of wearout mechanisms, this research is limited to 

microprocessors with only one core in the system. Future work might involve the lifetime 

analysis of multi-core microprocessors and heterogeneous systems that use more than one 

kind of processor or cores. 

Reliability of FinFET (Fin Field Effect Transistor) technology has been widely used 

in some performance-driven applications. The device-level wearout mechanisms, as well 

as the system lifetime estimations, would be quite different in FinFET technology and 

remain to be discovered and explored. 

The cache reliability discussed in Chapter 7 deal with front-end wearout mechanisms 

only, and the proposed framework can be easily extended to study the cache reliability due 

to backend wearout mechanisms for different cache configurations. 
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