
COMPREHENSIVE VARIATION-AWARE AGING SIMULATOR

FOR LOGIC TIMING AND SRAM STABILITY

A Dissertation

Presented to

The Academic Faculty

by

Taizhi Liu

In Partial Fulfillment

of the Requirements for the Degree

Ph.D. in the

School of Electrical and Computer Engineering

Georgia Institute of Technology

May, 2017

COPYRIGHT © 2017 BY TAIZHI LIU

COMPREHENSIVE VARIATION-AWARE AGING SIMULATOR

FOR LOGIC TIMING AND SRAM STABILITY

Approved by:

Dr. Linda Milor, Advisor

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. Abhijit Chatterjee

School of Electrical and Computer

Engineering

Georgia Institute of Technology

Dr. Azad Naeemi

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. Jye-Chyi (JC) Lu

School of Industrial and Systems

Engineering

Georgia Institute of Technology

Dr. Sung Kyu Lim

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Date Approved: [April 3rd, 2017]

Dedicated to my loving parents, who guided me to where I am today.

And to my wife and my daughter, who made me a better person.

iv

ACKNOWLEDGEMENTS

I would like to express my special thanks to my advisor, Professor Linda S. Milor,

for her guidance and advice during my Ph.D. study. I would also like to thank Professor

Azad Naeemi and Professor Sung Kyu Lim for their helpful suggestions and for their time

being on my reading committee. I am also very grateful to Professor Abhijit Chatterjee and

Professor Jye-Chyi Lu, both of whom have agreed to serve on my dissertation committee.

I would like to express my thanks to all the lab members, Dr. Fahad Ahmed, Dr.

Chang-Chih Chen, Dr. Woongrae Kim Dr. Soonyoung Cha, Kexin Yang, Rui Zhang,

Daehyun kim for their collaboration, and valuable comments and feedback.

I would like to extend special thanks to my wife and my best friend, Jing Lu, for

her unconditional love and support. I would also like to thank my newly born daughter,

Natalie Liu, who made me a dad and a better person. I am also very thankful to my parents,

Xinglai Liu and Jinfeng Zhu, who have always been on my side, for their love and

encouragement throughout my life.

Last but not least, I would like to thank all the professors, teachers, families, and

friends who guided me to become the person that I am today.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF SYMBOLS AND ABBREVIATIONS xii

SUMMARY xiii

1. Introduction 1

2. Related Work 8

2.1 Gate-Delay Modeling 8

2.2 Statistical Timing Analysis 9
2.3 Aging Analysis of Circuit Timing Due To BTI, HCI and GOBD 11

3. Device-Level Wearout Mechanisms 13
3.1 Bias Temperature Instability (BTI) 13
3.2 Hot Carrier Injection (HCI) 14

3.3 Gate Oxide Breakdown (GOBD) 15

4. Standard Cell Characterization and RC Interconnect Characterization 22

4.1 Standard Cell Characterization 22
4.1.1 Variation Modelling 22
4.1.2 Input Capacitances of Standard Cells 23

4.1.3 Approximations of Interconnect RC Networks Using Moments Matching 27
4.1.4 Sensitivity of the Pi-Model and the H’(s)-Model to Variations of Input

Capacitances in the Fanout Gates 33
4.1.5 Gate-Delay Characterization using Multivariate Adaptive Regression Splines

(MARSP) 34
4.1.6 Experimental Results 38

4.2 Interconnect Characterization 43

5. Monte Carlo Based Framework for Circuit-Level Statistical Timing Anlaysis 44

5.1 Block-Based Statistical Timing Analyzer 44
5.1.1 Implementation 44
5.1.2 Experimental Results 45
5.1.3 Complexity analysis 48

5.2 Paths-Based Statistical Timing Analyzer 48
5.2.1 Implementations 49
5.2.2 Experimental Results 50
5.2.3 Complexity 51

5.3 Block-Based and Path-Based Combined Statistical Timing Analyzer 52
5.3.1 Implementations 52

 vi

5.3.2 Experimental Results 53

5.3.3 Complexity 56

6. Aging Simulation For State-Of-Art Microprocessors 58

6.1 Extraction of the Stress, Thermal, IR-Drop and Process profiles 58
6.2 Proposed PVT-Aware Aging Simulator 63
6.3 Lifetime Analysis Considering Realistic Workloads 66
6.4 APPLICATION: Finding Optimum Operating Voltages Using Proposed

Aging Simulator 72

7. SRAM Lifetime Analysis for Different Cache Configurations 79
7.1 SRAM Stability 81
7.2 SRAM Lifetime Characterizations 83

7.3 Activity Extraction of SRAM cells 84
7.4 Performance-Reliability Analysis for Different Cache Configurations 91

7.4.1 Associativity 92
7.4.2 Cache Line Size 96

7.4.3 Cache Size 97
7.4.4 Replacement Algorithm 97

7.4.5 Error Correcting Codes (ECC) 98

7.5 Conclusions 99

8. Conclusions 101
8.1 Conclusions of This Research 101

8.2 Future Work 102

REFERENCES 103

 vii

LIST OF TABLES

Table 1 – Variations and corners of PVT parameters 22

Table 2 – Accuracy comparison using fixed input capacitance vs. variational

input capacitance.

26

Table 3 – Variations and Corners of Pi-model and H’(s)-model 38

Table 4 – Comparison of MARSP and quadratic models on representative

standard cells.

39

Table 5 – Experimental results of validating the proposed gate-delay models

on ISCAS85 benchmarks.

42

Table 6 – Comparison of the first 10 circuit paths extracted from our Block-

Based StTA and STA

46

Table 7 – Implementation of Path-Based StTA 50

Table 8 – Implementation of Block-Based and Path-Based Combined StTA 53

Table 9 – Experimental results of the proposed StTA analyzer on ISCAS85

benchmarks.

55

Table 10 – Experimental results of the proposed StTA analyzer on large

circuits.

55

 viii

LIST OF FIGURES

Figure 1 – The framework of the proposed PVT-aware aging simulator. 3

Figure 2 – Stress-time windows of NBTI, PBTI and HCI for an inverter. 15

Figure 3 – Defect generation in the gate dielectric layer based on a 2D

percolation model for SBD and HBD paths.

17

Figure 4 – Time distribution of defect generation in SiO2. 18

Figure 5 – Probability of the kth SBD path for a fixed gate size and as a

function of time.

19

Figure 6 – SBD resistance as a function of the number of SBD paths. 20

Figure 7 – Device-level GOBD soft breakdown model used in this work. 21

Figure 8 – The impact of SBD on ring oscillator performance. 21

Figure 9 – Input capacitances of standard cells, as well as the interconnect

network, construct the load of previous gate.

24

Figure 10 – Circuit used to characterize input capacitances of standard cells. 25

Figure 11 – Y’(s) in Pi-model as an approximation of original input admittance

function Y(s).

28

Figure 12 – An illustration of single-stage timing analysis with a Pi-model for

gate analysis and an H’(s)-model for interconnect analysis.

31

Figure 13 – The solid line denotes the form of the hinge function (x-t)+ while

the dashed line denotes the hinge function (t-x)+.

35

Figure 14 – The efficiency and accuracy of MARSP model is shown for a non-

linear case.

38

Figure 15 – Flow graph of the implementation which applies gate-level models

to path-delay analysis.

41

Figure 16 – Experimental results of validating the proposed gate-delay models

on a 43-stage test path.

42

Figure 17 – Abstraction of a timing graph from a combinational circuit. 45

 ix

Figure 18 – Comparison of the circuit delay distributions of circuit c499 from

SPICE using STA and our block-based StTA. (2000 samples were

run.)

47

Figure 19 – The runtime per sample versus the number of gates and

interconnects in block-based StTA.

48

Figure 20 – Flow graph of the implementation which applies gate-level models

to path-delay analysis.

49

Figure 21 – (a) Comparison of the circuit delay distributions of circuit c499

from SPICE (using different critical path pools). (2000 samples were

run.). (b) The error distribution.

51

Figure 22 – The runtime per sample versus the number of gates and

interconnects in paths-based StTA.

52

Figure 23 – The runtime per sample versus the number of gates and

interconnects in the proposed block-based and paths-based

combined StTA.

56

Figure 24 – The system used to collect activity profile of the microprocessor

contains an FPGA board that implements the microprocessor system

and exports data on the activity profile to a PC.

59

Figure 25 – (a) The distributions of the DC stress probability and (b) the

transition rate (toggle rate) for the LEON3 microprocessor while

running a standard benchmark.

61

Figure 26 – (a) The temperature and (b)VDD distribution of the LEON3

microprocessor running a standard benchmark.

62

Figure 27 – The flow chart of proposed aging simulator. 63

Figure 28 – The framework of the PVT-aging-aware timing engine. 64

Figure 29 – The delay distributions of a RISC microprocessor due to the

combined effect of PVT and aging under a variety of stress times.

65

Figure 30 – The lifetime distributions of the LEON3 microprocessor due to

BTI, HCI, GOBD and the combined effect.

66

Figure 31 – The use scenarios provided by Intel are shown [87]. 67

Figure 32 – The estimated lifetimes of the LEON3 microprocessor due to BTI

for different use scenarios and different system frequencies. Dotted

lines show the boundaries when considering process variation.

68

 x

Figure 33 – The estimated lifetimes of the LEON3 microprocessor due to HCI

for different use scenarios and different system frequencies. Dotted

lines show the boundaries when considering process variation.

68

Figure 34 – The estimated lifetimes of the RISC microprocessor due to BTI for

different benchmarks and different system frequencies. Dotted lines

show the boundaries when considering process variations.

69

Figure 35 – The estimated lifetimes of the RISC microprocessor due to HCI for

different benchmarks and different system frequencies. Dotted lines

show the boundaries when considering process variations.

70

Figure 36 – The statistical lifetime distribution of the RISC microprocessor due

to BTI for different system frequencies, for the gaming use scenario.

70

Figure 37 – The statistical lifetime distribution of the RISC microprocessor due

to HCI for different system frequencies, for the gaming use scenario.

71

Figure 38 – Chip temperatures while LEON3 is running at different voltages

and circuit delays at each corresponding VDD/Temperature

condition.

73

Figure 39 – The soft failure rate in 10 years due to timing violations for

different operating voltages and for different usage scenarios when

ambient temperature is set to 27°C.

74

Figure 40 – The hard failure rate in 10 years due to the permanent GOBD hard

breakdown are shown for different operating voltages and for

different usage scenarios when ambient temperature is set to 27°C.

74

Figure 41 – The overall failure rate in 10 years due to both soft failure and hard

failure is shown for different operating voltages and for different

usage scenarios when ambient temperature is set to 27°C.

76

Figure 42 – The overall failure rate in 10 years due to both soft failure and hard

failure is shown for different operating voltages and for different

usage scenarios when the ambient temperature is set to 40°C.

76

Figure 43 – The overall failure rate in 10 years due to both soft failure and hard

failure is shown for different operating voltages and for different

usage scenarios when the ambient temperature is set to 15°C.

77

Figure 44 – The overall failure rate in 10 years due to both soft failure and hard

failure is shown for different operating voltages and for different

usage scenarios when the ambient temperature is set to 27°C and the

IR-drop effect is ignored.

77

 xi

Figure 45 – A typical 6T SRAM cell. 82

Figure 46 – The degradation of the write margin, the read SNM, the Vdd-min-

ret, and the IREAD of a memory cell due to BTI, BTI and HCI,

shown in (a)-(d), respectively.

84

Figure 47 – (a) The distribution of state probability for the 32KB data cache

shown in 1024 words; (b) The histogram of the state probability

distribution in the number of SRAM cells.

85

Figure 48 – (a) The distribution of transition rate for the 32KB data cache

shown in 1024 words; (b) The histogram of the transition-rate

distribution in the number of SRAM cells.

86

Figure 49 – An example of a stress-state distribution for a 32KB memory is

shown. A stress state is a combination of the duty-cycle state and the

toggle-rate state, when the combined effect of BTI and HCI is

considered. The z axis is the number of cells.

88

Figure 50 – The lifetime distribution of a SRAM cell when it’s in a specific

stress state. Each stress state is a combination of the duty-cycle state

and the toggle-rate state. Four stress states are shown in this figure.

89

Figure 51 – The duty-cycle distributions of SRAM cells in a 2-way 32KB data

cache, while the microprocessor is running six different benchmarks.

92

Figure 52 – The failure probability as a function of time for the three different

associativities and two benchmarks.

93

Figure 53 – The failure probabilities in 6 years for a 16 Byte cache line and a

32 Byte cache line for six applications. The hit-rate improvement is

also shown, defined as the improvement of using a 32 Byte cache

line compared to a 16 Byte line.

94

Figure 54 – The hit rate and the failure probability in 6 years are shown for five

different cache sizes and for three applications.

94

Figure 55 – The failure probabilities in 6 years for three different replacement

algorithms for six benchmarks, as well as the hit rate improvements

of LRU and LRR. The hit-rate improvement is defined as the

improvement compared to the ‘Random’ replacement policy.

95

Figure 56 – The failure probabilities of the 2-way 32KB data cache with and

without ECCs are shown as a function of time for three applications.

95

 xii

LIST OF SYMBOLS AND ABBREVIATIONS

BTI Bias Temperature Instability

CAD Computer-Aided Design

CRC Cyclic Redundancy Check

ECC Error Correcting Codes

FEOL Front-End-Of-Line

FPGA Field-Programmable Gate Array

GCV Generalized Cross Validation

GOBD Gate Oxide Breakdown

HCI Hot Carrier Injection

L1 First-Level

MARSP Multivariate Adaptive Regression Splines

PDK Process Design Kit

PVT Process-Voltage-Temperature

RISC Reduced Instruction Set Computing

RSM Response Surface Methodology

RV Random Variable

SPICE Simulation Program with Integrated Circuit Emphasis

SRAM Static Random Access Memories

STA Static Timing Analysis

StTA Statistical Timing Analysis

TDDB Time-Dependent Dielectric Breakdown

 xiii

SUMMARY

The purpose of this research is to develop a framework which analyzes circuit-level

reliability and evaluates the lifetimes of complex systems like state-of-art microprocessors.

The novelty of the proposed work lies on its statistical timing analyzer and the ability to

handle the combined effect of a variety of front-end-of-line (FEOL) wearout mechanisms,

while including both the manufacturing process variability and the real-time uncertainties

in workload and ambient conditions like operating temperature and IR drops. Overall, the

proposed framework presents the correlation between circuit performance (speed) and

circuit lifetime, which enables circuit designers to avoid excessive guard-banding, by using

a better understood reliability budget to achieve higher performance.

Historically, research work on aging effect is active mainly within the communities

of device and reliability physics. The relative lack of design knowledge and aging-aware

CAD tools further creates a barrier for managing the impact of device degradation on

circuit performance. This work not only bridges the gap between device-level wearout

mechanisms and circuit-level performance degradations, but also takes into account the

impact of software usage on hardware reliability 0–[14]. The timing analyzer in this work

is the first attempt in the literature to achieve a comprehensive process-voltage-

temperature-aging-aware statistical timing analysis (StTA) while considering the effect of

several FEOL wearout mechanisms (bias temperature instability (BTI), hot carrier

injection (HCI), gate oxide breakdown (GOBD)) simultaneously. Because of this

contribution, one paper of this research received the Best Paper Award at ESREF 2015

(European Symposium on Reliability of Electron Devices, Failure Physics, and Analysis).

 xiv

Front-end-of-line (FEOL) wearout mechanisms (BTI, HCI, GOBD) degrade

transistor characteristics as a function of stress probability. A FPGA-based emulation

platform has been developed to determine the activity and stress-state profiles while the

emulated systems are running benchmarks. The activity and stress-state profiles are then

used to determine the IR-drop profiles and the thermal profiles of a system. Taking into

account the detailed voltage, thermal and electrical stress profiles, the degradations of

transistor characteristics for each device within the system are calculated according to the

device-level wearout models. More specifically, BTI and HCI are modeled as degradations

of transistor threshold voltage while GOBD is modeled as degradations of gate-to-source

and gate-to-drain resistance.

Then, a unified gate-delay model is proposed to link device-level degradations and

the gate delays. The gate-delay model includes the following parameters: channel length,

threshold voltage, GOBD breakdown resistances, supply voltage, temperature, input slew

and Pi-model parameters (for the RC load). Among them, the threshold voltage of each

transistor combines the effect of process variation, BTI, and HCI, while the GOBD

breakdown resistances of each transistor represent the GOBD effect. A method, called

multivariate adaptive regression splines (MARSP), is employed to characterize the gate

delay as a function of these parameters. MARSP is well-suited for capturing essential

nonlinearities and interactions in a high-dimension parameter space.

Based on the unified gate-delay models, a statistical timing engine is developed to

estimate the variability of circuit-performance degradation due to the aging effect when

PVT variations are present. The proposed timing engine consists of two parts: a block-

based analyzer and a path-based analyzer. The block-based analyzer performs PVT-aging-

 xv

aware critical path extraction, and the path-based analyzer performs accurate circuit-delay

estimation of the extracted paths.

Using the statistical timing engine, a framework of circuit-level aging assessment

has been constructed. The proposed framework determines the detailed electrical stress

profiles, thermal profiles and IR-drop profiles of each device within the system under

study. Combining these profiles and device wearout models, the statistical timing engine

is applied to characterize microprocessor performance degradation and assess system

lifetime. Moreover, the lifetime estimates take into account realistic use scenarios which

include active, standby, and sleep modes.

Overall, this work presents cross-layer solutions that enable aging analysis of large

complex microprocessors, which run realistic workloads. Additionally, this work addresses

challenges that arise to attain accurate aging-aware gate-delay models especially when the

dimension of the involved parameters is high. It’s the first attempt to have a comprehensive

aging simulator which handles the effect of BTI, HCI and GOBD simultaneously while

also taking into account the workloads, ambient conditions and manufacturing variability

0–[5]. The framework presented here manages to assess aging of the entire design under

realistic usages, and enables designers to tighten excessive guard-banding while still

meeting the reliability requirements 0–[13].

 1

1. INTRODUCTION

The aggressive scaling of CMOS technology not only brings benefits of speed and

power, but also poses challenges to circuit designers because of the ever-increasing

manufacturing variability and reliability issues. The challenge is further compounded by

the real-time uncertainties in workload and ambient conditions, which dynamically

influence the circuit degradation rate. To improve design predictability and guarantee

system lifetime, it’s essential to have accurate aging simulation tools for reliability.

It is very challenging to accurately characterize circuit performance degradation due

to device reliability in the presence of Process-Voltage-Temperature (PVT) variations for

a complex system. A common way to deal with this in industry is to add an extra guard-

band for aging on top of the worst PVT corners. The guard-band is set by assuming that

all the transistors receive the worst-case stress conditions. However, adding excessive

guard-banding sacrifices the performance of microprocessors and creates headaches in

timing closure.

The purpose of this research is to present a solution to assess the lifetimes of complex

systems like state-of-art microprocessors, while taking into account the effect of PVT

variations and a variety of Front-end-of-line (FEOL) device wearout mechanisms. The

proposed aging simulator achieves accurate statistical timing analysis to study the

combined impact of aging effect, manufacturing variability, ambient conditions and

realistic workloads 0–[13]. It presents the relationship between circuit performance (speed)

and circuit reliability, and gives insights for designers to achieve optimal tradeoff between

performance and reliability. Moreover, circuit designers can benefit from the proposed

 2

work to avoid excessive guard-banding to achieve higher performance while still

maintaining the required reliability.

The device wearout mechanisms studied in this work are Bias Temperature

Instability (BTI), Hot Carrier Injection (HCI), and gate oxide breakdown (GOBD). BTI is

a wearout mechanism which causes the threshold voltage, Vth, of CMOS transistors to

increase over time under voltage stress, resulting in a temporally-dependent degradation of

digital circuit delay. HCI also degrades the threshold voltage of the transistors under stress.

From the perspective of circuit operation, HCI and BTI stress have different time windows.

HCI stresses devices only during the dynamic switching period when current flows through

the device, whereas BTI stresses devices as a function of logic state.

GOBD, also time-dependent dielectric breakdown (TDDB), is another reliability

concern for CMOS devices. When the gate dielectric layer abruptly loses its insulating

properties, it’s called hard breakdown (HBD), and HBD can be detected as a large jump in

the current versus time curve. Prior to hard breakdown, GOBD involves soft breakdown

(SBD) where the leakage current in the gate dielectric slightly increases with time, while

the gate dielectric still retains its insulation property. It’s well understood that GOBD

causes gate delay degradation as the transistors gradually weaken before hard breakdown

happens. Eventually, the degraded circuit will fail to work when the delay exceeds the

clock period.

To take into account the susceptibility of circuit performance to reliability and

variations, statistical timing analysis (StTA) is needed to be PVT and aging aware to assure

the design meets timing specifications and the reliability requirements before committing

 3

a design to manufacture. The objective of StTA is to determine the distribution of the circuit

delay with acceptable accuracy and reasonable runtime. In the circuit, each transistor

undergoes different workload, different temperature and different voltages, which means

that each transistor ages differently. In order to achieve accurate timing analysis, the gate-

delay model has to be properly characterized to take into account the effect of different

PVT parameters and different aging conditions of transistors in the gate. As circuit

integration increases dramatically, the complexity of large circuits make it very challenging

to perform accurate PVT-aging-aware timing analysis.

Figure 1 – The framework of the proposed PVT-aware aging simulator.

The big picture of the proposed aging simulation framework is shown in Figure 1.

Because the wearout mechanisms being studied are activity, supply voltage (VDD) and

temperature dependent, the research has utilized FPGA emulation to efficiently acquire

electrical, thermal and IR-drop profiles for large systems like microprocessors. Simulating

a large system on FPGA emulation platform takes only a few minutes to complete, while

running Register-Transfer Level (RTL) simulations to extract the activity profiles of each

net might take a few months to simulate a single benchmark.

Netlist
& ParasiticsRTL

Synthesis
APR

FPGA
Emulator

Synthesis

Benchmarks &
Use Scenarios

Compile

I/O
activities

RS-232

Device-Level Aging Models
Activity Profile

IR-drop Profile

Thermal Profile

Timing Graph
Preprocessing

Pi & H’(s) Models

 Threshold Voltages &
TDDB SBD Resistances

Process Variations
(Channel length, VTH)

Gate Delay Models

Inter. Delay Models

Block-Based & Path-Based
Statistical Timing Engine

I/O
Timing

Life-
times

Timing
Constraints

Activity
Propagation

 4

The RTL is firstly synthesized and loaded to the FPGA with the Xilinx ISE

(Integrated Software Environment). Once the FPGA is programmed, the activity can be

collected by placing counters at the I/O ports to track the state probabilities and the toggle

rates of the ports during application runtime. Since the I/O ports for each unit can be found

on the top of each module, the counters are attached to the ports automatically with a

scripting language. The activity transportation unit is inserted into the RTL automatically

as well. The RTL is also synthesized for layout generation. Using the RC information from

the layout, the net activities, and the computed power profile (via a power simulator), the

thermal profile throughout the microprocessor is computed using a thermal simulator. The

net activities and layout are also used to determine the IR-drop profile throughout the

microprocessor.

For process variations, the proposed work includes inter-die, intra-die, and intra-gate

variations supporting any distribution and any correlation profile between different

parameters. The process variations due to channel length (∆L) and threshold voltage (∆Vth)

for each transistor are considered. Because BTI and HCI also impact the threshold voltage,

the threshold voltage for each transistor is a combination of variation due to the process,

BTI and HCI, while ∆L is only due to process variations.

The degradations of each transistor in the circuit are calculated according to the

device-level wearout models and the extracted electrical stress, thermal, IR-drop, and

process profiles. As BTI and HCI both cause threshold voltage shifts, it’s straightforward

to combine their effect. However, it’s not straightforward to further include GOBD as there

is a clear gap between circuit timing and GOBD. This research bridges this gap by using a

unified gate-delay model based on Multivariate Adaptive Regression Splines (MARSP)

 5

method 0–[3]. MARSP is well suited for capturing essential nonlinearities and interactions

in a high-dimension space. The proposed gate-delay model links device-level wearout

models and the gate delays. The gate-delay models include many parameters, including

PVT and wearout parameters. Among them, the threshold voltage of each transistor

combines the effect of process variation, BTI, and HCI, while the GOBD breakdown

resistances of each transistor represent the GOBD effect.

The electrical stress, thermal, IR-drop, and process profiles. and RC parasitics, and

the degradation profiles, generate all the parameters for each gate which are needed to

calculate the gate delays. Based on the unified gate-delay models, a statistical timing

engine is developed to estimate the variability of circuit-performance degradation due to

the aging effect when PVT variations are present. The proposed timing engine consists of

two parts: a block-based timing analyzer and a path-based timing analyzer. The block-

based timing analyzer performs PVT aging-aware critical path extraction, and the path-

based timing analyzer performs accurate circuit-delay estimation of the extracted paths.

The statistical timing engine proposed in this work is achieved based on the Monte

Carlo (MC) method. Monte Carlo StTA sufficiently samples the random parameter domain

based on the Metropolis sampling algorithm. For each sample, the circuit delay is computed

using traditional static timing analysis (STA) based on gate-delay models. If a sufficient

number of samples are drawn, the circuit-delay distribution is obtained. The Monte Carlo

approach has the advantage of being completely general, having the ability of handling any

kind of parameter distribution, and any correlations between different parameters. Monte

Carlo StTA also has the advantage of accuracy, and it is universally used as a reference to

validate the accuracy of probabilistic StTA implementations. The disadvantage of MC

 6

StTA is the high runtime cost due to the required sample size. There have been some

existing efforts to reduce the large sample size of MC StTA using reduced sampling

techniques, such as quasi-Monte Carlo [15], Latin hypercube [16], importance sampling

[17], and the Karhunen-Loeve expansion model [18]. Moreover, the Monte Carlo method

intrinsically facilitates parallel computation, like multi-threading. As nowadays a great deal

of computational resources is available, many computation-intensive approaches become

practical. As it’s shown in this thesis, the runtime of the proposed aging-aware StTA

framework is very acceptable.

The proposed PVT-aging-aware statistical timing engine performs the analysis of

circuit timing degradation. The timing engine generates the delay degradation at a variety

of stress times. Lifetimes can then be calculated according to the specified operating

frequency. When the circuit delay of the aged circuit exceeds the clock period, the amount

of stress time is marked as the chip lifetime.

Overall, this research work has proposed a framework of aging simulation to estimate

the lifetimes of complex systems like state-of-art microprocessors while considering the

combined effect of process variations, workloads, ambient conditions, and a variety of

FEOL wearout mechanisms. The results of this aging simulators can present some insights

to circuit designers for them to get the optimal trade-offs between performance and

reliability. This thesis also applies the proposed aging simulator for finding the optimum

operating voltage which can achieve the best lifetime for reliability-critical applications

The rest of the thesis is organized as follows. Chapter 2 gives some background

knowledge followed by a survey of the related work. Chapter 3 presents the device-level

 7

wearout models that are used in this research. Chapter 4 gives the flow of standard cell

characterization and how the MARSP method is used in the gate-delay modeling. Chapter

5 utilizes the MARSP-based delay models to construct a Monte-Carlo based Statistical

Timing Analyzer which combines the advantages of both block-based method and path-

based method. Chapter 6 presents the framework of the proposed aging simulator, and

presents the methodology of how to efficiently evaluate performance degradation of a

microprocessor due to BTI, HCI and GOBD, simultaneously. In Chapter 7, the proposed

aging simulator is extended to study the relationship between performance and reliability

of the cache memory for different cache configurations. Chapter 8 concludes this thesis.

 8

2. RELATED WORK

This chapter surveys prior related work in three aspects: gate-delay characterizations

for standard cells, statistical timing analysis, and aging analysis due to BTI, HCI and

GOBD.

2.1 Gate-Delay Modeling

There are many existing works on standard cell characterization using both the

traditional method [19]–[23] and the emerging current source-based method [24]–[28].

Except for [20],[21], all methods evaluate only the accuracy in characterizing a single cell.

And [20],[21] consider only a single benchmark circuit, without determining the accuracy

of their method with respect to SPICE.

This research uses a method of standard cell characterization consisting of three

models: an input capacitance model for standard cells, a sensitivity model for variational

resistive-capacitive loads, gate delay and interconnect delay models via multivariate

adaptive regression splines (MARSP). This is the first time that MARSP has been applied

to standard cell characterization.

MARSP is an adaptive procedure for multivariate nonparametric regression. That is,

it doesn’t take a predetermined form, but it constructs the model structure according to the

information derived from the data. The MARSP technique is well suited for high-

dimensional problems while capturing essential nonlinearities and interactions. Due to its

adaptive nature, MARSP can ‘filter out’ the negligible parameters without manual

intervention. For a complex cell containing over 40 devices, the categorization (or

 9

clustering) of switching/non-switching devices and on-transition/off-transition/non-

transition devices used in [19],[22] is cumbersome. MARSP can reduce this effort by

automatically capturing essential parameters and removing negligible parameters through

its intelligent process.

2.2 Statistical Timing Analysis

Statistical timing Analysis can be categorized into two board classes: Monte Carlo

(MC) method and Probabilistic method. Monte Carlo method is based on sample-space

enumeration while Probabilistic method is based on statistical operations between random

variables (RVs).

Probabilistic StTA models gate delay and arrival times as RVs and propagates arrival

time through the circuit via statistical sum and maximum operations. Probabilistic StTA

has drawn much attention and research effort due to its runtime advantages. However, it

has proven to be challenging to efficiently model skewness in the arrival-time distribution

which results from nonlinearity of gate delays and the statistical maximum operation. Much

effort [29]–[34] has tried to address these issues.

Monte Carlo StTA sufficiently samples the probability regions based on the

Metropolis sampling algorithm [35]. For each sample, the circuit delay is computed using

gate-delay models in which canonical first-order or quadratic model is usually used.

Although for each sample the computed circuit delay can be either an overestimate or an

underestimate, the error in estimating the circuit-delay distribution is acceptable if a

sufficient number of samples are drawn. Monte Carlo StTA has the advantage of being

completely general. [36] has shown that Monte Carlo StTA is accurate even in scenarios

 10

with high dimensionality and non-Normal distributions in the process variation space,

where Probabilistic StTA has difficulties.

Monte Carlo based StTA is universally used to validate the accuracy of all practical

probabilistic StTA implementations, but never used as a practical StTA method itself. The

accuracy of Monte Carlo StTA relies on its large sample size, because the root-mean-

square error in the estimate of circuit delay decreases as O(n-0.5) where n is the sample size

[18]. The high runtime cost due to its required sample size has been the main hurdle

preventing Monte Carlo StTA from being practical.

There have been some existing efforts to reduce the large sample size of Monte Carlo

StTA using reduced sampling techniques, such as quasi-Monte Carlo [15], Latin hypercube

[16], importance sampling [17], and the Karhunen-Loeve expansion model [18]. In this

work, it proposes to reduce the sample size and the overall runtime cost by estimating the

circuit delay of each sample with significant accuracy. In other words, the standard

deviation of the error for each estimate is a function of the standard deviation of the error

of each component, and if we reduce the standard deviation of the errors of the components,

it becomes possible to reduce the sample size while achieving the same standard deviation

of the error for the system.

The difficulties of extending gate-level characterization to circuit-delay

approximation are from two sources. First, the output transition time of each gate

propagates to be used as the input transition time of the subsequent gate. The transition-

time error is accumulated and magnified stage by stage, which further undermines the

accuracy of circuit delay. Second, input capacitances of standard cells are part of the loads

 11

of previous stage cells. With process variations present, these input capacitances are

variational, which causes the loads of previous stage gates to also be variational. If this

variability of loads is neglected, this will cause transition time error and the error will be

magnified stage by stage. This work proposes a framework consisting of sophisticated

gate-level models to solve these difficulties. The proposed framework has significantly

smaller error in estimating circuit delay, with accuracy verified with SPICE. Because of

the accuracy of our framework for each sample, only limited samples are needed to get the

circuit delay distribution and thus the runtime efficiency is improved significantly.

2.3 Aging Analysis of Circuit Timing Due To BTI, HCI and GOBD

Many prior works have studied the impact of BTI on circuit timing [37]–[42]. [37]

considers the effect of voltage, temperature and node switching activity, without

considering process variations. [38] and [39] propose a framework to study the BTI effect

using an iterative scheme to deal with the interdependence between temperature and power

profiles, together with BTI degradation. [40] provides a probabilistic method to study the

BTI effect using both the Reaction-Diffusion (R-D) and the Trapping-Detrapping (T-D)

models. [41] and [42] analyze the impact of Negative Bias Temperature Instability (NBTI)

on circuit timing using a Monte Carlo analysis technique and first order models of

variation.

HCI stresses devices only during the dynamic switching period when current flows

through the device, whereas BTI stresses devices as a function of logic state. The impact

of HCI on circuit timing has been studied in several research efforts. [43] studies the impact

of the HCI effect on the soft-error rate of small-scale digital circuits. [44] proposes a

 12

scalable approach for HCI degradation analysis using the Gaussian model for process

variations and a first-order model for timing degradation.

Gate Oxide Breakdown (GOBD) involves soft breakdown (SBD) where the leakage

current in the gate dielectric slightly increases with time, while the gate dielectric still

retains its insulation property. It’s well understood that GOBD causes gate delay

degradation as the transistors gradually weaken before hard breakdown happens. GOBD

has been widely studied at the transistor-level. However, less study has been focused on

the gate level. In [45], an analytical model is presented to predict the delay of logic gates

subject to GOBD. [46] analyzes the impact of GOBD on a 41-stage ring oscillator.

Unfortunately, only small circuits, like ring oscillators, are studied.

As BTI and HCI both cause threshold voltage shifts, it’s straightforward to combine

their effect. [47] studied the combined effect of BTI and HCI on circuit timing. However,

it’s not straightforward to further include GOBD as there is a clear gap between circuit

timing and GOBD. This work bridges this gap by using a unified MARSP-based gate-delay

model. Therefore, the proposed framework can study the combined aging effect of BTI,

HCI and GOBD.

 13

3. DEVICE-LEVEL WEAROUT MECHANISMS

3.1 Bias Temperature Instability (BTI)

 Bias Temperature Instability (BTI) includes Negative Bias Temperature Instability

(NBTI) and Positive Bias Temperature Instability (PBTI). NBTI is the degradation of a

pMOS device under negative gate stress, and PBTI is the degradation of an nMOS device

under positive gate stress. BTI results in shifts in device parameters, such as threshold

voltage, transconductance, device mobility, etc., but is generally associated with shifts in

the threshold voltage.

 The initial distribution of threshold voltages is generally assumed to be Normal.

Recent experimental work has shown that the threshold voltage shift (Δ𝑉𝑡ℎ) as a function

of time under DC stress (𝑡𝐷𝐶) is best modeled with trapping/de-trapping theory [48]:

 Δ𝑉𝑡𝑝/𝑡𝑛(𝐷𝐶) = 𝜙(𝑇, 𝐸𝐹)(𝐴 + Bln(𝑡𝐷𝐶)) (1)

where,𝐴, 𝐵, and 𝜙 are constants. 𝜙 is proportional to the number of available traps and is a

function of temperature, T, and the Fermi level, 𝐸𝐹 . The temperature dependence is

incorporated in 𝜙(𝑇, 𝐸𝐹). The duty cycle, 𝛼, impacts the shift and is incorporated as an

effective Fermi level [49], where 𝐸𝐹,𝑒𝑓𝑓 = 𝛼𝐸𝐹,𝑜𝑛 + (1 − 𝛼)𝐸𝐹,𝑜𝑓𝑓, and 𝐸𝐹,𝑜𝑛 and 𝐸𝐹,𝑜𝑓𝑓

are Fermi levels when the device is on and off, respectively. The duty cycle accounts for

the percentage of the time that the transistor is under stress, i.e., when the gate terminal of

the NMOS device is at a HIGH voltage or the gate terminal of the PMOS device is at a

LOW voltage. More specifically, if the duty cycle, 𝛼, for a transistor is given, then the time

under stress, 𝑡𝑠𝑡𝑟𝑒𝑠𝑠, and the recovery time, 𝑡𝑟𝑒𝑐, can be obtained as 𝑡𝑠𝑡𝑟𝑒𝑠𝑠 = 𝛼 ∙ 𝑡𝑡𝑜𝑡𝑎𝑙,

 14

𝑡𝑟𝑒𝑐 = (1 − 𝛼) ∙ 𝑡𝑡𝑜𝑡𝑎𝑙, respectively, where 𝑡𝑡𝑜𝑡𝑎𝑙 is the total time that the circuit is aging.

Hence, overall,

 Δ𝑉𝑡𝑝/𝑡𝑛 = 𝜙0𝑒
−𝐸𝐹 𝑘𝑇⁄ 𝑔(𝑡𝑠𝑡𝑟𝑒𝑠𝑠 (𝑡𝑠𝑡𝑟𝑒𝑠𝑠 + 𝑡𝑟𝑒𝑐)⁄) ∙ (𝐴

+ 𝐵𝑙𝑛(𝑡𝑠𝑡𝑟𝑒𝑠𝑠 + 𝑡𝑟𝑒𝑐))

(2)

where 𝜙0 is a constant. The constants were obtained from the experimental results in [50].

3.2 Hot Carrier Injection (HCI)

 HCI describes the phenomenon by which carriers at a MOSFET’s drain gain

sufficient energy to be injected into the gate oxide and cause degradation of some device

parameters. This occurs as carriers shoot out from the source of a MOSFET, accelerate in

the channel, and experience impact ionization near the drain end of the device. Damage

can occur at the interface, within the oxide and/or within the sidewall spacer. Interface-

state generation and charge trapping induced by this mechanism result in degradation of

some MOSFET parameters, such as the threshold voltage, transconductance, channel

mobility, and drain saturation current.

 Historically, HCI was only a major concern for nMOS devices, with pMOS devices

showing comparatively negligible degradation because (a) holes have a smaller impact

ionization rate and (b) holes face a higher 𝑆𝑖 − 𝑆𝑖𝑂2barrier than electrons. However,

subsequent reports have revealed that HCI effects on pMOS devices have also been

observed [51]. Since hot electrons are generated during logic transitions, the impact of HCI

is directly proportional to the switching frequency. In this research, predictive HCI lifetime

models under dynamic stress are used for long term performance-degradation simulations.

The threshold voltage degradation due to HCI during stress time is modeled as [52]:

 15

 Δ𝑉𝑡𝑝/𝑡𝑛 = 𝐴𝐻𝐶𝐼(𝑟𝑡𝑟𝑎𝑛𝑠𝑡𝑠𝑡𝑟𝑒𝑠𝑠𝑡𝑡𝑟𝑎𝑛𝑠)
𝑛 (3)

where 𝑟𝑡𝑟𝑎𝑛𝑠 is the frequency-dependent transition rate, 𝑡𝑠𝑡𝑟𝑒𝑠𝑠 is the stress time, 𝑡𝑡𝑟𝑎𝑛𝑠 is

the transition time, and 𝐴𝐻𝐶𝐼 is a technology dependent constant that depends on the

inversion charge, the trap generation energy, the hot electron mean free path, and other

process-dependent factors. The data used in our study of HCI comes from the experimental

data in [53],[54].

Figure 2 – Stress-time windows of NBTI, PBTI and HCI for an inverter.

 From the perspective of circuit operation, HCI and BTI stress have different time

windows. HCI stresses devices only during the dynamic switching period when current

flows through the device, whereas BTI stresses devices as a function of logic state. The

stress time windows of BTI and HCI for an inverter circuit are illustrated in Figure 2 as an

example.

3.3 Gate Oxide Breakdown (GOBD)

GOBD is one of the key reliability issues for CMOS devices. Stress induced leakage

current (SILC) is induced by trap-assisted tunneling mechanisms where electrons pass from

the cathode to the anode via defect sites (neutral traps) in the gate dielectric by the electrical

 16

field [55]–[58]. When the gate dielectric experiences partial breakdown, it is known as soft

breakdown (SBD) [55],[59].

Experimental observations indicate that the mean time to failure is a function of the

total gate oxide surface area, temperature, and gate voltage due to the weakest-link

character of gate dielectric breakdown [60]. However, when abstracting this relationship

to the system level, it is important to take into account details of circuit operation, not just

the surface area. Moreover, circuits have been known to operate during breakdown [61].

In order to model circuit performance degradation under breakdown, time-dependent

resistance models [62],[63] and time-dependent leakage current models [64] have been

proposed for SPICE simulation. This research work uses time-dependent resistance

models.

Using emulation, described in the next section, the devices are partitioned into

groups that experience equivalent stress and temperature. More specifically, for an nMOS

device, the time under stress is the time that the gate has the supply voltage applied. This

time depends on the input patterns and the propagation of these patterns to each MOSFET.

For each group of devices, the next step is to determine the number of devices experiencing

different numbers of soft breakdown paths. This is done using the percolation model.

 17

Figure 3 – Defect generation in the gate dielectric layer based on a 2D percolation

model for SBD and HBD paths.

The percolation model (PM) concept involves placing neutral traps randomly

within the gate dieelctric and analyzing the number of resistive conduction paths in a 2D

matrix representing the gate dielectric layer [65], as shown in Figure 3. The 2D model have

been expanded to 3D to count an accurate number of conduction paths in this research.

In the percolation model, the defect generation rate depends only on the gate

voltage (𝑉𝐺) and temperature (T). Therefore, during electrical stress, the trap density in the

gate dielectric increases with stress time 𝑡 as a power law in the anode hole injection model.

Stress is converted to a number of traps [66],[67]:

 𝑁𝑡𝑟𝑎𝑝(𝑡, 𝑉𝐺) = 𝐴 𝑒𝑥𝑝(𝐵𝑉𝐺) 𝑡
𝛽 ⋅ 𝜏𝑜𝑥𝑊𝐿 ⋅ exp (−𝜃𝑇) (4)

where 𝐴, 𝐵, and 𝛽 are fitting constants, and 𝜏𝑜𝑥,𝑊, and 𝐿 are oxide thickness, gate width,

and length, respectively, and 𝜃 ≈ 0.01℃−1 [67].

 Si

SiO2

Gate

SiO2

HBD path SBD path

Vgate

0 L xHBD

Source Drain

IBD_GS IBD_GD

Leakage current

BD path

IHBD ISBD

 18

(a)

(b)

Figure 4 – Time distribution of defect generation in SiO2. (a) The probability

distribution of the time of occurrence of the kth SBD path for different gate sizes. (b)

The probability distribution of the number of SBD paths for a fixed gate size as a

function of time.

Figure 4 shows the PM simulation results and the probability distribution of the

time of occurrence of conduction paths in the oxide layer as a function of gate size (Figure

P
ro

b
ab

il
it

y

Time (s)

1.8x

1.6x

1.4x

1.2x

1.0x

105 106

P
ro

b
ab

il
it

y

Time (s)
tstress

a1%

a2%

a3%

a5%

a4%

15th path

8th path

5th path

3rd path

1st path

105 106

0.999

0.99

0.96

0.90

0.75

0.50

0.25

0.10

0.05

0.02

0.01

0.003

0.001

0.999

0.99

0.96

0.90

0.75

0.50

0.25

0.10

0.05

0.02

0.01

0.003

0.001

1.0x

1.2x

1.4x

1.6x

1.8x
P

ro
b

ab
il

it
y

Time (s)

1.8x

1.6x

1.4x

1.2x

1.0x

105 106

P
ro

b
ab

il
it

y

Time (s)
tstress

a1%

a2%

a3%

a5%

a4%

15th path

8th path

5th path

3rd path

1st path

105 106

0.999

0.99

0.96

0.90

0.75

0.50

0.25

0.10

0.05

0.02

0.01

0.003

0.001

0.999

0.99

0.96

0.90

0.75

0.50

0.25

0.10

0.05

0.02

0.01

0.003

0.001

 19

4(a)). It also shows the number of SBD paths as a function of time (Figure 4(b)). Then,

as it’s seen in Figure 4(b), if we know the stress duration of an applied gate voltage to a

MOSFET, the probability of a fixed number of conduction paths can be estimated.

The results in Figure 4 indicate the probability that at least n paths are observed in

the oxide. To find the probability that there are exactly n paths, it is necessary to subtract

the 𝑛 − 1𝑠𝑡 curve from the 𝑛𝑡ℎ curve. A result is illustrated in Figure 5.

Figure 5 – Probability of the kth SBD path for a fixed gate size and as a function of

time.

Note that the number of breakdown paths in the gate depends on the operating

conditions. Hence, given a time under operation, the emulator determines the time under

stress for each group of devices. This is used to look up probabilities of different numbers

of SBD paths. The number of devices in the group multiplies the probabilities to estimate

the expected number of devices with each number of breakdown events in the group.

The time under stress for the 𝑖𝑡ℎ device is a function of bias. Let 𝛼𝑖, where 0 ≤

𝛼𝑖 ≤ 1, be the fraction of time under stress for the 𝑖𝑡ℎ device. Then, 𝑡𝑠𝑡𝑟𝑒𝑠𝑠,𝑖 = 𝑡𝛼𝑖, where

 20

t is the time under operation. Let 𝑝𝑖 = 𝑓𝑆𝐵𝐷(𝑛)(𝑡𝑠𝑡𝑟𝑒𝑠𝑠,𝑖) be a probability of n SBD paths for

the 𝑖𝑡ℎ device. Therefore, 𝑝𝑖 = 𝑓𝑆𝐵𝐷(𝑛)(𝑡𝛼𝑖). If the group of devices has N devices, then

𝑁𝑝𝑖 devices are randomly selected to have n breakdown paths at time t. Each sample

randomly selects the devices experiencing SBD.

Next, for each breakdown path, the SBD leakage resistance is calculated with the

QPC model [68],

𝑅𝑆𝐵𝐷 ≅ 𝑉𝐺/ [

4𝑒

ℎ𝛼
𝑁 ⋅ 𝑒𝑥𝑝(−𝛼𝛷) ⋅ 𝑠𝑖𝑛ℎ (

𝛼𝑒(𝑉𝐺 − 𝑉0)

2
)]

(5)

where 𝛷 = 3 ~ 4𝑒𝑉, 𝑉0 = 0 ~ 0.5𝑉, 𝛼 = 2~3𝑒𝑉−1, ℎ is Plank’s constant, e is the

electron charge, and 𝑁 is number of SBD conduction paths [68]. The location of SBD,

gate-to-drain vs. gate-to-source, is randomly selected. The resistance as a function of the

number of SBD paths is illustrated in Figure 6.

Figure 6 – SBD resistance as a function of the number of SBD paths.

 21

Figure 7 – Device-level GOBD soft breakdown model used in this work.

Figure 8 – The impact of SBD on ring oscillator performance.

In summary, the device-level GOBD model used in this work introduces two time-

dependent resistances for each transistor, shown in Figure 7. The impact of SBD on a ring

oscillator is illustrated in Figure 8. It shows the waveform comparison of the case with no

SBD path, one SBD path, two SBD paths and three SBD paths. It can be seen that more

SBD paths result in larger delays, while not degrading signal swing.

RG2S_P(t)

RG2D_P(t)

RG2D_N(t)

RG2S_N(t)

 22

4. STANDARD CELL CHARACTERIZATION AND RC

INTERCONNECT CHARACTERIZATION

This chapter introduces the method for standard cell characterization and

interconnect characterization. The proposed method incorporates three sophisticated gate-

level models: an input capacitances model, a sensitivity model of variational resistive-

capacitive loads, and gate and interconnect delay models via the multivariate adaptive

regression splines (MARSP) method.

4.1 Standard Cell Characterization

4.1.1 Variation Modelling

Table 1 – Variations and corners of PVT parameters

Var.
Random

Variations
Corners Var.

Random

Variations
Corners

ΔLp
Gaussian,

3σ=20%
[-20%, 20%] ΔLn

Gaussian,

3σ=20%
[-20%, 20%]

ΔVthp
Gaussian,

3σ=20%
[-20%, 20%] ΔVthn

Gaussian,

3σ=20%
[-20%, 20%]

ΔVdd
Uniform, (-10%,

10%)
[-10%, 10%] ΔT (°C)

Uniform, (-50,

50)
[-50,50]

Slope
Uniform, (10ps,

3ns)
[10ps, 3ns]

Table 1 presents the PVT parameters, where 𝛥𝐿 denotes channel length variation,

𝛥𝑉𝑡ℎ denotes threshold voltage variation, 𝛥𝑉𝑑𝑑 denotes supply voltage variation, ΔT is

temperature variation, 𝑆𝑙𝑜𝑝𝑒 is the input transition time, and the subscripts p and n

 23

correspond to PMOS and NMOS devices, respectively. The percentages given in Table 1

are percentages of nominal values of the corresponding parameters. Corner information is

given to facilitate later explanations.

The process parameters, namely 𝛥𝐿𝑝, 𝛥𝐿𝑛, ∆𝑉𝑡ℎ𝑝, ∆𝑉𝑡ℎ𝑛 in Table 1, correspond to

each transistor. The value can be a combination of inter-die, intra-die, and intra-gate

variation. The examples in this thesis consider inter-die variation for channel length and

intra-gate variation for threshold voltage because lithography/etch has the strongest impact

on channel length and random dopant fluctuations have the strongest impact on the

threshold voltage. However, any process model with any between and within-die variation

model can be implemented, including measured distributions and correlation profiles.

The voltage, temperature and slope parameters, namely ∆𝑉𝑑𝑑, ∆𝑇, 𝑆𝑙𝑜𝑝𝑒 , are

applied to each cell. As will be shown in later sections, our method supports a temperature

profile from a thermal simulator and a voltage profile from a power grid simulator which

takes into account the IR-drop effects. Again, the temperature profile and voltage profile

don’t have to be a specific distribution. They could be any form of distribution with a

correlation structure.

4.1.2 Input Capacitances of Standard Cells

 24

Figure 9 – Input capacitances of standard cells, as well as the interconnect network,

construct the load of previous gate. (a) A buffer and its interconnect load. (b) The

buffer with the variational model of the input capacitance of the next stage

incorporated into its load.

Figure 9(a) illustrates a small patch of a gate-level circuit. The buffer gate in this

example has two fanout gates, an inverter gate and a NOR2 gate. The load seen by the

buffer is the interconnect network together with the input capacitances of its fanout gates,

as shown in Figure 9(b). With fanout gates modeled as corresponding input capacitances,

circuit-level timing analysis can be done stage by stage, in the way that each stage contains

a standard cell and its connecting load as Figure 9(b) shows.

C0 C1

R1

C3

R3

C4

R4

C2

R2

Buffer

Inverter

NOR2

(a)

C0 C1

R1

C3

R3

C4

R4

C2

R2

Buffer Cnor2_B

Cinverter

(b)

a

b

c

a
c

b

in

in

A

B

 25

Figure 10 – Circuit used to characterize input capacitances of standard cells.

With PVT variations in consideration, it is not satisfactory to model input

capacitances as fixed values [4]. The variations of standard cell input capacitances must be

taken into account. This work presents a modeling method to get variation-aware equations

of input capacitances of standard cells. Firstly, a test circuit is used to characterize the

actual input capacitance. Figure 10 shows the case of input A of XOR2 gate, where Ceff is

tuned until the delay from node c to node g is equal to the delay from node c to node d. The

acquired value of Ceff is the input capacitance of input A of gate X4. X1 and X2 are used to

produce a reasonable input slope at node c, and X5 is used as a load to prevent node e from

switching excessively fast.

When PVT variations of gate X4 are present, the acquired values of Ceff vary. The

PVT parameters in Table 1 are considered. That is, seven parameters are considered for an

inverter gate, while eleven parameters are considered for a two-input gate. Central

Composite Design [69], which uses the parameter corners in Table 1, is employed to design

the experiments.

a

g

X1

Ceff

X2
b eAX3

c d
X5

f

X5

BUF BUF BUF

BUF

BUFXOR2

B
X4

c

Delayc-g

Delayc-d

Tune Ceff to make Delayc->g = Delayc->d

 26

After the input capacitance of input A of gate X4 has been characterized with each

experiment, a first-order linear regression equation can be found as follows:

𝐶𝑖𝑛𝑝𝑢𝑡_𝑐𝑎𝑝 = 𝑘0 +∑𝑘𝑖

𝑛

𝑖=1

𝑋𝑖
(6)

where n is the number of considered PVT parameters, k0 is the constant term, Xi, i=1,2,…,n

denote considered PVT parameters, and ki, i=1,2,…,n are the first-order sensitivity

coefficients.

The input-capacitance model is tested in the context of Figure 9(b). Random

variations of PVT parameters in Table 1 are applied to the three gates in Figure 9(a). Slope

is only applied to the Buffer. Two methods are implemented to get the input capacitance

used in Figure 9(b): one uses a fixed value for the pin capacitance from the standard cell

library and the other uses the variational model in (6). The simulations were done using

hSPICE [70], and the errors were obtained by comparing to the results from the circuit in

Figure 9(a). Table 2 lists the average error of these two methods.

Table 2 – Accuracy comparison using fixed input capacitance vs. variational input

capacitance.

Gate Delay Error

(node in to node a)

Interconnect Delay Error

(node a to node b)

Fixed Input

Capacitance model
5.88%

6.91%

Proposed Input

Capacitance model
0.32%

-0.07%

 27

Please note that every input of a gate has its input capacitance. For example, a NOR2

gate has two input-capacitance models, for input A and input B, respectively. And for each

input capacitance, scenarios for the rising-edge and the falling-edge are considered

separately.

4.1.3 Approximations of Interconnect RC Networks Using Moments Matching

An RC interconnect is a linear system with one input and one or multiple outputs.

The interconnect input could be a primary input or a gate output, while the interconnect

outputs could be a primary output or inputs of its loading gates. Consider the interconnect

network in Figure 9(a), node a is the interconnect input and node b and c are the outputs.

For an interconnect network, we denote its input admittance function as Y(s) and its

transfer functions as H1(s), H2(s) …, for each output. They can be expanded at s=0 using

a Taylor series as follows (only showing one transfer function):

 H(s) = 𝑚0 +𝑚1𝑠 + 𝑚2𝑠
2 +𝑚3𝑠

3 +⋯ (7)

 Y(s) = 𝑦0 + 𝑦1𝑠 + 𝑦2𝑠
2 + 𝑦3𝑠

3 +⋯. (8)

Here, m0, m1 … are called the moments of H(s), while y0, y1 … are the moments of

Y(s). Please note that y0 is zero and m0 is one for RC trees [70]. The first, second and third

moments of Y(s) are y1, y2 and y3 respectively, and m1, m2 and m3 are those for H(s) similarly.

We use the modified nodal analysis (MNA) [70] method to generate moments in (7) and

(8) via Matlab.

 28

Reduced-order models are routinely used to replace the original large-order models.

We will introduce the reduced-order model of Y(s) first, and then the reduced-order model

of H(s).

4.1.3.1 Pi-model as an Approximation of Y(s)

The Pi-model is the most popular reduced-order model to estimate the input

admittance of RC interconnects. Figure 11 gives the structure of the Pi-model, where Y(s)

denotes the input admittance of the original network and Y’(s) denotes the input admittance

of the Pi-model.

Figure 11 – Y’(s) in Pi-model as an approximation of original input admittance

function Y(s).

The values of 𝐶1, R, and 𝐶2 are obtained by equating the first, second, and third

moments of Y(s) to the first, second and third moments of Y’(s), respectively. The

equations for the Pi-model are as follows:

 𝐶2 = 𝑦2
2 𝑦3⁄ (9)

 𝑅 = −𝑦2 𝐶2
2⁄ (10)

 𝐶1 = 𝑦1 − 𝐶2 (11)

RC Network

Y(s) Y’(s)
C1 C2

R

(a) original interconnect (b) Pi-model

 29

where y1, y2 and y3 are the first three moments of Y(s) in (8).

Thus, the sample space of the input admittance function of interconnect is reduced

down to a three-parameter space. These three parameters C1, R and C2, plus PVT

parameters in Table 1, construct the parameter space of standard cell characterization

which is introduced later in Section 4.1.4. Specifically, ten parameters are included for the

characterization of an inverter, while fourteen parameters are needed for the

characterizations of BUF, NOR2 and NAND2.

4.1.3.2 H’(s)-model as an Approximation of H(s)

This work employs a stable two-pole (S2P) approximation [72] to get the reduced-

order model of H(s). S2P preserves the first three moments of H(s) and more importantly

guarantees the generated model is stable. The obtained model, H’(s), is a second-order

model with two stable poles, where

 𝐻′(𝑠) =

𝑘1
𝑠 + 𝑝1

+
𝑘2

𝑠 + 𝑝2

(12)

and where

 𝑝1 = −
𝑚2

𝑚3

(13)

𝑝2 = 𝑝1 |

1
𝑚1

−
𝑚1

𝑚2
𝑚1

𝑚2
−
𝑚2

𝑚3

|

(14)

 30

𝑘1 =

1 +𝑚1𝑝2
𝑝1 − 𝑝2

𝑝1
2

(15)

𝑘2 = −

1 +𝑚1𝑝1
𝑝1 − 𝑝2

𝑝2
2.

(16)

It can be easily deduced from (13) and (16) that

 𝑘1𝑝2 + 𝑘2𝑝1 = 𝑝1𝑝2. (17)

H'(s) in (12) cannot be directly included in a netlist for circuit-level simulation.

Therefore, this work implements it as a two-port network with the same transfer function,

as shown in Figure 12.

 31

Figure 12 – An illustration of single-stage timing analysis with a Pi-model for gate

analysis and an H’(s)-model for interconnect analysis.

In Figure 12, Vi(s) is the input of this network while Vo(s) is the output. Rx and Cx

constitute a low-pass RC filter fed by a Vi(s)-controlled voltage source Vix(s) with gain (1-

ξ), while Ry and Cy form the other low-pass RC filter fed by a Vi(s)-controlled voltage

source Viy(s) with gain ξ. The output voltages of the two filters, Vox(s) and Voy(s), are added

to form Vo(s).

Now, it’s time to show how the transfer function in Figure 12 is exactly the same as

in (12). The transfer function in Figure 12 is as follows:

Vi(s)
a

a
Buffer

C1 C2

R

Rx1

Cx1Vix1(s)=(1-ξ1)Vi(s)

Vox1(s)

Ry1

Cy1Viy1(s)=ξ1Vi(s)

Voy1(s)

Vo1(s)=

Vox1(s)+Voy1(s)

Rx2

Cx2Vix(s)=(1-ξ2)Vi(s)

Vox2(s)

Ry2

Cy2Viy(s)=ξ2Vi(s)

Voy2(s)

Vo2(s)=

Vox2(s)+Voy2(s)

b

c

in

 32

𝐻′(𝑠) =

𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
=
𝑉𝑜𝑥(𝑠) + 𝑉𝑜𝑦(𝑠)

𝑉𝑖(𝑠)

=

1
𝐶𝑥𝑠

(𝑅𝑥 +
1
𝐶𝑥𝑠

)
(1 − 𝜉)𝑉𝑖(𝑠) +

1
𝐶𝑦𝑠

𝑅𝑦 +
1
𝐶𝑦𝑠

𝜉𝑉𝑖(𝑠)

𝑉𝑖(𝑠)

=

1 − 𝜉
𝑅𝑥𝐶𝑥

𝑠 +
1

𝑅𝑥𝐶𝑥

+

𝜉
𝑅𝑦𝐶𝑦

𝑠 +
1

𝑅𝑦𝐶𝑦

 .

(18)

By mapping (18) to (12), we get

 1

𝑅𝑥𝐶𝑥
= 𝑝1

(19)

1

𝑅𝑦𝐶𝑦
= 𝑝2

(20)

1 − 𝜉

𝑅𝑥𝐶𝑥
= 𝑘1

(21)

 𝜉

𝑅𝑦𝐶𝑦
= 𝑘2 .

(22)

It is easily seen that (17) still holds for (13)–(16), so that H’(s) in (18) is exactly the

same as in (12).

As can be seen from (19) and (20), RxCx is determined by 1/p1 while RyCy is similarly

determined by 1/p2. In our work, we set Cx and Cy to a fixed value, 10-15F, leaving Rx and

 33

Ry to be calculated according to (19) and (20), respectively. Therefore, we actually have

three parameters in the H’(s)-model, Rx, Ry and ξ, which means H(s) is simplified to a three-

parameter space.

4.1.4 Sensitivity of the Pi-Model and the H’(s)-Model to Variations of Input

Capacitances in the Fanout Gates

As input capacitances of fanout gates are included as part of the interconnect, the

variations of these capacitances cause the Pi-model and the H’(s)-model to vary. Here we

denote the variational input capacitances of fanout gates of one interconnect network as

𝐶𝑓𝑎𝑛𝑜𝑢𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = [𝐶𝑓𝑎𝑛𝑜𝑢𝑡_1, 𝐶𝑓𝑎𝑛𝑜𝑢𝑡_2, … , 𝐶𝑓𝑎𝑛𝑜𝑢𝑡_𝑁] where N is the number of fanout gates at the

output of this interconnect network. It is impractical to run the whole process, i.e., moment

generation and calculations of C1, R, C2, Rx, Ry, and ξ, for every variational sample of

𝐶𝑓𝑎𝑛𝑜𝑢𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . Thus, we expand a first-order Taylor-series at nominal values of 𝐶𝑓𝑎𝑛𝑜𝑢𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . Let’s

take C1 of the Pi-model as an example, since the other parameters (R, C2, Rx, Ry and ξ) are

similar.

𝐶1 = 𝐶1_𝑛𝑜𝑚𝑖𝑛𝑎𝑙 +∑𝛼𝑖(𝐶𝑓𝑎𝑛𝑜𝑢𝑡_𝑖 − 𝐶𝑓𝑎𝑛𝑜𝑢𝑡_𝑖_𝑛𝑜𝑚𝑖𝑛𝑎𝑙)

𝑁

𝑖=1

(23)

where 𝐶𝑓𝑎𝑛𝑜𝑢𝑡_𝑖_𝑛𝑜𝑚𝑖𝑛𝑎𝑙 is the nominal value of 𝐶𝑓𝑎𝑛𝑜𝑢𝑡_𝑖, 𝛼𝑖 is the first derivative of 𝐶1

with respect to 𝐶𝑓𝑎𝑛𝑜𝑢𝑡_𝑖, 𝑖𝜖{1,2, … ,𝑁}, and 𝐶1_𝑛𝑜𝑚𝑖𝑛𝑎𝑙 is the nominal value of 𝐶1.

The errors in using (23) to calculate the Pi-model and the H’(s)-model parameters

are all less than 0.1% in our test RC interconnects. Please note that (23) is unique for each

interconnect in a circuit, but needs to be characterized only once and the characterization

 34

time is negligible because the interconnect network size in our experiments throughout this

thesis is not large (less than 100 RC segments).

4.1.5 Gate-Delay Characterization using Multivariate Adaptive Regression Splines

(MARSP)

As mentioned in Section 4.1.2, with fanout gates being modeled as corresponding

input capacitances, a circuit can be divided into gate-level stages for timing analysis as

shown in Figure 9(b). The timing analysis of each stage incorporates two parts: gate

delay/output-slew modeling and interconnect delay/output-slew modeling. The output of

the buffer in Figure 9(b), node a, is also the input of the interconnect network. The delay

of the buffer is the delay from node in to node a, while the delay of the interconnect network

is the delay from node a to node b or from node a to node c. The output slew of the buffer

is used as the input slew of the interconnect. The total delay of each stage is the sum of the

gate delay and the interconnect delay.

Using the Pi-model and H’(s)-model, the circuit in Figure 9(b) is transformed into

Figure 12. The upper box in Figure 12 represents gate timing analysis, while the lower box

represents interconnect timing analysis. In this section, MARSP is used to characterize the

delay and slew models of standard cells.

 35

Figure 13 – The solid line denotes the form of the hinge function (x-t)+ while the

dashed line denotes the hinge function (t-x)+.

This work employs MARSP [73] to characterize a fitted function between response

variables (gate delay or slew time) and the explanatory parameters (PVT parameters, aging

parameters, and RC loads). MARSP is an adaptive procedure that uses piecewise linear

segments and is well suited for high-dimensional problems while capturing essential

nonlinearities and interactions.

The piecewise nature of MARSP allows it to split the whole high-dimension

parameter space into multiple subspaces, and each subspace has a unique regression model.

MARSP inherently integrates all the regression models of different subspaces into one

general expression using piecewise hinge functions [73].

A hinge function has the form of (𝑥 − 𝑡)+ or (𝑡 − 𝑥)+ which are shown in Figure 13.

They are defined as:

(𝑥 − 𝑡)+ = {

𝑥 − 𝑡, 𝑖𝑓 𝑥 > 𝑡,
 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(24)

(𝑡 − 𝑥)+ = {

𝑡 − 𝑥, 𝑖𝑓 𝑥 < 𝑡,
 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(25)

x

y

t

(x-t)+

(t-x)+

 36

where t is a constant, called the knot. MARSP forms a collection of hinge-function pairs

for each explanatory parameter Xj with knots at 𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑀 , where M is the number of

experiments.

MARSP models have the following form:

𝑓(𝑋) = 𝛽0 +∑𝛽𝑡

𝑇

𝑡=1

ℎ𝑡(𝑋)
(26)

where ℎ𝑡(𝑋) is called a basis function. (Constant 1 is the basis function of the intercept

term.) MARSP builds a model in two phases: the forward stepwise addition and the

backward stepwise deletion.

In the forward phase, MARSP starts with a model which consists of an intercept term.

Then it repeatedly adds basis functions in pairs to the model step by step. It finds the pair

of basis functions that gives the maximum reduction in the sum-of-squares residue error.

The two basis functions in the pair are identical except that a different side of a mirrored

hinge function is used for each function. Each new basis function consists of a term already

in the model (which could be a constant 1) multiplied by a new hinge function. The process

of forward stepwise addition continues until the change in residual error is smaller than a

threshold or until the maximum number of terms is reached.

After the forward stepwise addition, we have a large model which typically overfits

the data. An overfit model has a good fit to the data used to build the model but will not

generalize to new data. To build a model with a better generalization ability, backward

stepwise deletion prunes the model. The backward phase uses Generalized Cross

 37

Validation (GCV) to choose the best model subset. The GCV formula trades off goodness-

of-fit against model complexity. The backward stepwise deletion removes model terms one

by one, deleting the least important term (according GCV) at each step until the model

again has only the intercept term. At the end of the backward phase, from among the “best”

models of each size, the one with the lowest GCV value is selected and outputted as the

final one.

MARSP is a form of nonparametric regression which doesn’t take a predetermined

form, but constructs the model structure according to the information derived from the data.

It ‘filters out’ the negligible parameters without manual intervention which eliminates the

need for categorization (or clustering) of switching/non-switching transistors and on-

transition/off-transition/non-transition transistors, as in [19],[22].

Why is MARSP better than the traditional regression technique? The traditional

regression technique or the Response Surface Methodology (RSM) technique suffers from

the disadvantage of using the same model to cover the entire parameter space. One model

is insufficient to accurately estimate the gate delay (or slew time) over the whole parameter

space, especially when the dimension of the parameter space is large, e.g., in the case where

intra-gate variability is considered. Therefore, the timing behavior must be characterized

separately for different PVT subspaces (corners) which results in cumbersome parameter

space splitting and large characterization efforts.

The piecewise nature of MARSP allows it to split the whole high-dimension

parameter space into multiple subspaces, and each subspace has a unique regression model.

MARSP inherently integrates all the regression models of different subspaces into one

 38

general expression using piecewise hinge functions. Therefore, MARSP saves

characterization effort by characterizing standard cells only once over the whole PVT

space, including the corners.

Figure 14 – The efficiency and accuracy of MARSP model is shown for a non-linear

case. (a) a nonlinear function 𝒉(𝑿𝟏, 𝑿𝟐) which changes only when X1 is high and X2

is low. (b) a quadratic model regressed from 𝒉(𝑿𝟏, 𝑿𝟐).

Figure 14(a) shows a situation where the response variable h(X1,X2) only changes at

the corner where X1 is large and X2 is low. The MARSP model can easily handle this

nonlinear relationship by using hinge functions as follows:

 ℎ(𝑋1, 𝑋2) = 15 + 0.015 ∗ (20 − 𝑥)+ ∗ (𝑦 − 20)+ (27)

Figure 14(b) shows the quadratic regression model which has poor accuracy for this

case.

4.1.6 Experimental Results

Table 3 – Variations and Corners of Pi-model and H’(s)-model

 39

Var.
Random

Variation
Corners Var.

Random

Variation
Corners

𝐶2 (fF)
Uniform,

(1,100)
[1,100] 𝑅𝑥 (Ohm)

Uniform,

(0.5, 1000)
[0.5, 1000]

𝑅 (Ohm)
Uniform,

(1,500)
[1, 500] 𝑅𝑦 (Ohm)

Uniform,

(0.5, 1000)
[0.5, 1000]

𝐶1 (fF)
Uniform,

(0.01,1)
[0.01,1] 𝜉

Uniform,

(-0.99,0.99)
[-0.99,0.99]

Central Composite Design [69] is employed to design the characterization

experiments, and then hSPICE [70] is used to run the simulations. The distributions and

corners of PVT parameters are as shown in Table 1, while the distributions and corners of

C1, R and C2 are as shown in Table 3. The implementation of MARSP is from a Matlab

toolbox called ARESLab [74]. Note that rising-edge and falling-edge scenarios are

characterized separately. Besides, for a two-input cell, for example, NOR2, each input is

characterized separately with the other input being at a non-controlling value.

Table 4 – Comparison of MARSP and quadratic models on representative standard

cells.

Cell Dimen.
Char. Time (s)

Number of

Operations

(worst case in

MARSP)

Number of

Operations

(RSM)

Char. Error

MARSP RSM

MARSP Quadr. Mul. Add. Mul. Add. mean SD mean SD

INVX1 10 480 1 189 108 120 65 0.28% 2.13% -1.68% 5.01%

NOR2X1 14 683 1 182 104 224 119 0.01% 2.35% -2.90% 7.48%

CLKBUF3 70 3577 79 227 126 280 148 0.02% 2.51% -4.64% 6.45%

XOR2X1 30 1503 2 203 116 274 145 0.06% 2.17% -3.82% 7.28%

DFFPOSX1 50 2489 42 223 124 278 146 0.08% 2.36% -4.03% 6.79%

Inter. 5 22 1 44 28 26 14 0.01% 0.12% -1.59% 3.53%

Table 4 presents the results of some representative cells using NCSU 45nm

FreePDK [75]. It can be seen that MARSP is substantially more accurate than the quadratic

method. This accuracy is important, because these errors accumulate when cells are

cascaded together. This is because, and error in a previous stage is amplified in the next

 40

stage. Hence, a small error in cell characterization can become a large error for the circuit.

This accuracy, however does come at a cost in characterization time, as noted in Table 4.

4.1.6.1 Validation Using Test Paths

The characterized gate-delay models are also validated using some test paths from

ISCAS85 benchmarks [76]. ISCAS85 benchmark circuits were synthesized and the

obtained netlists go to Cadence Encounter [77] to do place and route, and then parasitic RC

interconnects were extracted using QRC [78]. The longest path of each circuit is identified

using a script, and in total we considered ten test paths. The ten paths are not necessarily

the critical paths when considering process variations. They are selected simply to

determine the accuracy of timing analysis for paths. We implemented our framework using

C++ and Perl. The experiments were run on a Linux platform with a 2.27GHz CPU and

4GB memory.

 41

Figure 15 – Flow graph of the implementation which applies gate-level models to

path-delay analysis.

Figure 15 shows the implementation flow for extending our gate models to

estimating path-delay distributions. Table 5 presents the results in comparison to hSPICE

[70] using ten test paths. Figure 16 gives a histogram comparison for one of the paths

between hSPICE and our model. The average mean and standard deviation (SD) values of

errors per sample are 0.71% and 1.25%, respectively.

2. Monte Carlo Samples Generation

10. Last sample?

4. Calculations of Input Capacitances of fanout gates

5. Pi-model and H’(s)-model calculations

6. Gate Delay/Transition Calculation

7. Interconnect Delay/Transition Calculation

8. Primary Output?

3. Apply values of each sample to corresponding gate/interconnect

No, next gate

1. Generates sensitivity model for each interconnect in the form of (10)

end

Yes

Yes

No, next sample

9. Calculate the total delay of the path

 42

(a)

(b)

Figure 16 – Experimental results of validating the proposed gate-delay models on a

43-stage test path. (a): Monte Carlo histogram comparison between our model and

SPICE for test path (N85 to N724) in circuit c499. (2000 samples were run.) (b): error

percentage histogram for this test case.

Table 5 – Experimental results of validating the proposed gate-delay models on

ISCAS85 benchmarks.

Path
Circuit

Name

PI to

PO

Num.

of

stages

Num.

of

samples

Running Time

Path-delay error

per sample

(MARSP)

Path-delay error

per sample

(quadratic)

SPICE

(s)

MARSP

(s)

Quadr.

(s)
Mean SD Mean SD

1 c432
N102 to

N421
60 2000 4211 119 192 1.21% 1.21% -10.99% 24.9%

2 c499
N85 to

N724
43 2000 2417 84 138 0.25% 0.54% -13.95% 26.6%

0

100

200

300

400

500

0.6 0.8 1 1.2 1.4

SPICE
OurModel

Path Delay (ns)

Fr
eq

u
en

cy

0

100

200

300

400

500

600

-2.0% -1.0% 0.0% 1.0% 2.0% 3.0%
Error Percentages

Fr
eq

u
en

cy

 43

3 c880
N1 to

N878
57 2000 4148 113 185 -0.31% 0.53% -14.10% 25.4%

4 c1355
G11 to

G1352
42 2000 2412 86 144 1.54% 1.49% -10.68% 26.7%

5 c1908
N19 to

N2890
72 2000 5878 155 250 2.12% 1.92% -10.76% 26.9%

6 c2670
N227 to

N3851
54 2000 4001 110 180 0.90% 1.16% -15.81% 25.1%

7 c3540
N33 to

N5360
77 2000 6719 166 270 0.75% 1.10% -5.94% 27.5%

8 c5315
N335 to

N8128
71 2000 6454 153 251 -1.53% 1.55% -11.72% 26.3%

9 c6288
N290 to

N6287
221 2000 19898 422 698 1.29% 1.50% -14.43% 23.1%

10 c7552
N18 to

N11334
116 2000 9948 228 378 0.87% 1.48% -10.23% 25.8%

avg. - - 81 2000 6608 164 268 0.71% 1.25% -11.86% 25.8%

4.2 Interconnect Characterization

For the timing analysis of interconnect, we consider Rx, Ry and ξ of the H’(s)-model

and VDD and slope in Table 1, which are the five explanatory parameters. The

characterization variables are interconnect delay and interconnect transition time which are

defined similarly to standard cell characterization.

For the design of experiments, 4000 Monte Carlo simulations in hSpice [70] were

used, where the distributions of Rx, Ry and ξ are as in Table 3 and distributions of VDD and

slope are as in Table 1. Again, MARSP methods are employed to characterize the fitted

functions. Then another 1000 Monte Carlo samples are used to test the generated models.

The characterization results for interconnect are also shown in the last row of Table

4. This research work doesn't consider interconnect variability (spacing, width). Please note

that a higher-order H’(s)-model which matches more moments of the original H(s) can be

easily put into our methodology at the expense of adding more parameters to the MARSP

models.

 44

5. MONTE CARLO BASED FRAMEWORK FOR CIRCUIT-LEVEL

STATISTICAL TIMING ANLAYSIS

This chapter proposes a framework of statistical timing analysis (StTA) which

utilizes the MARSP-based gate-delay models shown in Chapter 4. The proposed statistical

timing analyzer contains two procedures: block-based StTA and path-based StTA. Block-

based StTA performs statistical critical-path extraction using static timing analysis. Then

the extracted critical paths are fed into path-based StTA to perform input-vector-dependent

dynamic timing analysis to generate accurate circuit-delay distributions.

The proposed timing analyzer is implemented with C++ and Perl, and the

experiments were run on a Linux platform with a 2.27GHz CPU and 1GB memory without

using multi-threading. To verify the performance of our framework, ISCAS85 benchmarks

[76] were implemented with NCSU 45nm technology [75], and test six industrial designs

(two from a sponsor and four from the IWLS2005 [79] benchmarks) were implemented

with a commercial 90nm technology. All the experiments are based on the following

settings: ΔVth is subject to intra-gate Gaussian variations and ΔL is due to inter-die

Gaussian variations with a three-sigma value equal to their corners in Table 1. All other

parameters are uniformly distributed between their corners in Table 1 and Table 3.

5.1 Block-Based Statistical Timing Analyzer

5.1.1 Implementation

 45

Figure 17 – Abstraction of a timing graph from a combinational circuit.

While probabilistic block-based StTA performs statistical sum and max operations

between random variables, Monte Carlo block-based StTA requires sum and max

operations between numerical values. The timing graph which is used in traditional static

timing analysis (STA) is abstracted from a combinational circuit, as shown in Figure 17.

The nodes of the timing graph represent primary inputs/outputs of the circuit and gate

input/output pins. The edges of the timing graph represent gate input-pin-output-pin delay

and interconnect delay. Each delay (gate delay or interconnect delay) comes from the

maximum value of all the switching scenarios. After a forward traversal of the timing

graph, the circuit delay is obtained from the maximum arrival time of all primary outputs.

And by a back traversal, the path which results in the maximum circuit delay is identified

as the most critical path. For each Monte Carlo sample, the process of the forward traversal

and the back traversal is repeated to produce a circuit delay and a critical path. With a

number of samples, the distribution of circuit delay and a set of critical paths are obtained

in the presence of process variations.

5.1.2 Experimental Results

Theoretically, block-based StTA produces an overestimate of circuit delay in

comparison with SPICE results, because SPICE calculates the gate delay according to the

1

2

7

4 5

6
3 8

9

10

11

12

1

2 4

5

6

7

8

9

10

11

12

source
sink

3

 46

real switching propagation (so called dynamic timing analysis) while block-based StTA

propagates arrival time without considering the switching directions (so called static timing

analysis). Experimental results confirm this theory, showing our block-based

implementation has an average 7.42% overestimate of SPICE results on ten ISCAS85

benchmark circuits [76].

Table 6 – Comparison of the first 10 circuit paths extracted from our Block-Based

StTA and STA

Ranked critical paths from

proposed Block-based StTA

The possibilities of being

critical path
Rank in STA

1st 9.20% 22th

2nd 8.20% 8th

3rd 7.10% 6th

4th 7.05% Beyond the 100th

5th 7.05% 35th

6th 6.05% 7th

7th 5.95% 11th

8th 5.55% 1th

9th 4.90% Beyond the 100th

10th 3.90% 70th

 47

Figure 18 – Comparison of the circuit delay distributions of circuit c499 from SPICE

using STA and our block-based StTA. (2000 samples were run.)

Because of process variations, the application of traditional STA may not identify all

critical paths. Paths vary randomly with process variations. Even though there are errors

produced by uncertainty in switching scenarios, this block-based StTA method can identify

critical paths under process variations more accurately than the traditional STA method in

the presence of process variations. These paths will be used by the more accurate path-

based StTA to find the delay distribution for the circuit.

As one critical path is identified for each Monte Carlo sample, a set of critical paths

are obtained after a number of samples are run. Therefore, the possibility of each path being

critical can be calculated by dividing the frequency that each path is critical by the number

of total samples. Table 6 shows the comparison of extracted critical paths by block-based

StTA and PrimeTime [80] STA for benchmark c499. It lists the first 10 critical paths along

with their possibilities of being critical, and compare with their rank in STA. In Figure 18,

0

100

200

300

0.6 0.8 1.0 1.2 1.4 1.6

10 paths (STA)

100 paths (STA)

10 paths (our method)

100 paths (our method)

Circuit Delay (ns)

F
re

q
u

e
n

c
y

 48

it presents a comprehensive comparison of hSpice (using the first 10 paths from STA),

hSpice (using the first 100 paths from block-based STA), hSpice (using the first 10 paths

from block-based StTA) and hSpice (using the first 100 paths from block-based StTA) for

benchmark c499. The experimental results validate the point that STA results are short of

covering the real critical paths when process variations are taken into account. As it can be

seen from the results, even the first 100 paths from STA has smaller delay than the first 10

paths from StTA. This matches Table 6 where the 4th and 9th paths from StTA are beyond

the 100th in STA.

5.1.3 Complexity analysis

The complexity of the proposed block-based framework is O(MN), where M is the

number of gates and interconnects and N is the number of samples. Figure 19 presents the

linearity between runtime per sample and the average depth of the extracted paths.

Figure 19 – The runtime per sample versus the number of gates and interconnects in

block-based StTA.

5.2 Paths-Based Statistical Timing Analyzer

0

0.5

1

1.5

2

2.5

3

3.5

0 2000 4000 6000 8000 10000 12000

Circuit Size (Number of gates and inters)

R
u

n
n

in
g

ti
m

e
p

er
 s

am
p

le
 (

s)

 49

5.2.1 Implementations

In probabilistic path-based StTA, a set of paths, which is likely to be critical, is drawn

first. Then statistical analysis is performed over these paths to estimate the circuit-delay

distribution. In our Monte Carlo based framework, the statistical analysis over those

extracted paths is based on samples rather than probabilistic operations.

Figure 20 – Flow graph of the implementation which applies gate-level models to

path-delay analysis.

More specifically, Monte Carlo samples over the extracted paths are generated, and

then the delays of extracted paths for each sample are calculated via the framework in

Figure 20. Circuit delay is obtained by taking the maximum of the path delays. With a

number of samples, the circuit-delay distribution can be found.

2. Monte Carlo Samples Generation

10. Last sample?

4. Calculations of Input Capacitances of fanout gates

5. Pi-model and H’(s)-model calculations

6. Gate Delay/Transition Calculation

7. Interconnect Delay/Transition Calculation

8. Primary Output?

3. Apply values of each sample to corresponding gate/interconnect

No, next gate

1. Generates sensitivity model for each interconnect in the form of (23)

end

Yes

Yes

No, next sample

9. Calculate the total delay of the path

 50

The detailed implementation procedures to perform path-based StTA are shown in

Table 7.

Table 7 – Implementation of Path-Based StTA

Input: Netlists of extracted paths, the number of extracted paths M, and the number of samples N.

Output: CD (circuit delays for all N samples)

1: generate N samples for the extracted paths (distributions according to Table 1)

2: for i=1 to N, do

3: for j=1 to M, do

4: PDj = Delay of Path j (using the framework in Figure 20)

5: end for

6: CDi = maximum (PD1, PD2, …, PDM)

7: end for

8: return CD = [CD1, CD2, …, CDN]

5.2.2 Experimental Results

The results of our framework (called GTStTA) are compared to SPICE. On average,

the errors of mean and standard deviation (SD) values of the circuit delay distribution are

1.47% and -1.15%, respectively, while the mean and SD values of errors per sample are

1.97% and 1.55%, respectively. The low error percentage in each sample shows that our

framework captures the real circuit delays very well with each sample, and thus ensures

the accuracy of the circuit delay distribution. Figure 21(a) shows the histogram of our path-

based StTA and SPICE for circuit c499, where the sample size is 2000. And Figure 21(b)

shows the error distribution of this testcase.

 51

(a)

(b)

Figure 21 – (a) Comparison of the circuit delay distributions of circuit c499 from

SPICE (using different critical path pools). (2000 samples were run.). (b) The error

distribution.

5.2.3 Complexity

0

100

200

300

400

0.58 0.83 1.08 1.33 1.58

SPICE
GTStTA

Circuit Delay (ns)

Fr
eq

u
en

cy

0

200

400

600

800

-10 -8 -6 -4 -2 0 2 4 6 8 10
Error Percentage

Fr
eq

u
en

cy

 52

The complexity of our path-based framework is O(PMN), where P is the number of

extracted paths, M is the average number of stages (depth) of the extracted paths and N is

the number of samples. Figure 22 presents the linearity between runtime per sample and

average depth of the extracted paths.

Figure 22 – The runtime per sample versus the number of gates and interconnects in

paths-based StTA.

5.3 Block-Based and Path-Based Combined Statistical Timing Analyzer

5.3.1 Implementations

Block-based StTA conducts statistical critical-path selection, and path-based StTA

achieves SPICE-level accuracy. The extracted critical paths from block-based StTA are fed

into path-based StTA to perform accurate input-vector-dependent timing analysis to

generate circuit-delay distribution. The detailed implementation is shown in Table 8. For

each Monte Carlo sample, one critical path is extracted using block-based StTA, then path-

based StTA generates the delay of this extracted path according to the same sample. Once

a number of samples are run, the circuit-delay distribution is obtained. This method

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

0 50 100 150 200 250

R
u

n
ti

m
e

P
er

 S
sa

m
p

le
 (

s)

Average Depth of extracted paths

 53

considers all the potential paths extracted under the process variations and maintains the

advantage of accuracy when the delay is calculated.

Table 8 – Implementation of Block-Based and Path-Based Combined StTA

Input: Circuit netlist, and the number of samples N.

Output: CD (circuit delay) distribution

1: generate N samples for the circuit (distributions according to Table 1)

2: for i=1 to N, do

3: CPi = Critical Path extracted using block-based StTA

4: CDj = Delay of CPi (using path-based StTA)

5: end for

6: return CD = [CD1, CD2, …, CDN]

The block-based timing analyzer first abstracts a timing graph from the gate-level

netlist, shown in Figure 17. The nodes of the timing graph represent primary inputs/outputs

and gate input/output pins. Its edges represent the timing elements of the circuit, namely,

the gate input-pin-output-pin delay and the interconnect delay. The weights on these edges

is the delay of the corresponding timing elements, which is calculated using the unified

gate-level MARSP models. After a forward traversal of the timing graph, the arrival times

at primary outputs and D inputs of flip-flops are obtained. By a backward traversal, the

critical path can be extracted using the PERT algorithm [81]. For each Monte Carlo sample,

the process of delay evaluation, forward traversal and backward traversal is repeated.

5.3.2 Experimental Results

Table 9 presents the experimental results using ISCAS85 and ISCAS 89 benchmark

circuits to verify the accuracy of our timing engine. On average, for ISCAS85 and

ISCAS89 benchmarks, we achieve 0.70% and 1.45% error in estimating the mean and the

standard deviation (SD) of the circuit delay distribution, respectively. In the experiments,

the sampled values of the process variations in each transistor (channel length and threshold

 54

voltage) are subject to a Gaussian distribution with three sigma equal to the corners shown

in Table 1. And the temperature and voltage values in each transistor are obtained from the

thermal profile and IR-drop profile, respectively, determined by emulation. The block-

based StTA is input pattern free. For the path-based StTA, the input vectors are generated

via Automatic Test Pattern Generation (ATPG) to sensitize the extracted critical paths.

Since simulating the whole circuit via SPICE is basically impossible, SPICE simulations

are based on the critical paths extracted from the block-based StTA.

Table 10 shows the results of these six large benchmarks for which 200 samples were

run. TA1 is a fabricated Floating-Point Unit Processor, and TA2 is a fabricated RISC

microprocessor. Other benchmarks in Table 10 are from the IWLS benchmarks. On

average, the error in estimating the mean and the SD of the circuit delay distribution is

1.45% and 3.75% respectively.

For IWLS benchmarks, the error is slightly larger than the error for ISCAS

benchmarks. The errors have several possible sources. Firstly, large circuits have longer

interconnect which might need higher-order Y’(s) and H’(s) models. Secondly, for large

interconnect networks in large circuits, the first-order sensitivity model in (24) may

generate some errors.

A quadratic Response Surface Model (RSM) delay model was also implemented and

tested to give a comparison. The quadratic RSM first generates a quadratic regression

model as follows:

 55

 𝐷 = 𝑑0 +∑𝑎𝑖𝑋𝑖 +∑𝑏𝑖𝑋𝑖
2 +∑𝑏𝑖,𝑘𝑋𝑖𝑋𝑘

𝑖≠𝑘

. (28)

D denotes gate delay, Xi denotes variational PVT parameters, d0 denotes the constant

term, and ai and bi denote coefficients of first-order and second-order terms, respectively.

Average errors of RSM in comparison with SPICE are 15.2% and 19.5% for the

mean and SD, respectively. The quadratic RSM model has a fixed number of operations,

while the operations of the MARSP model depend on the subspace in which the input

parameters fall. However, quadratic RSM models require more operations than the

maximum number of operations of MARSP models when the number of parameters is

larger than eighteen.

Table 9 – Experimental results of the proposed StTA analyzer on ISCAS85

benchmarks.

Circuit

Name

Number
of

samples

Number

of
critical

paths

run

Running Time
Error per sample

(GTStTA)
SPICE

Path-based

GTStTA
(
GTStTA − SPICE

SPICE
)%

SPICE
(s)

GTStTA
(s)

RSM (s)
Mean
(%)

SD
Mean
(ps)

SD
(ps)

Mean
(ps)

SD
(ps)

Mean (%) SD (%)

c432 2000 55 199452 5451 8490 2.13% 0.99% 1434 216.7 1452 216.5 1.26% -0.09%

c499 2000 102 241312 7160 11763 -0.18% 1.43% 971 141.2 970.2 142.1 -0.09% 0.64%

c880 2000 80 303744 7472 12232 -0.17% 1.89% 1324 205.6 1323 208.7 -0.08% 1.51%

c1355 2000 124 280376 8953 14991 3.36% 2.26% 960.6 144.1 991.8 142 3.25% -1.46%

c1908 2000 118 651230 15021 24227 2.28% 0.76% 1601 242.7 1638 240.9 2.31% -0.74%

c2670 100 23 4388 104 170 2.62% 2.19% 1263 171.9 1294 163.6 2.45% -4.83%

c3540 100 24 6694 166 271 2.81% 1.93% 1772 239.9 1820 236.1 2.71% -1.58%

c5315 100 26 7407 166 275 2.85% 1.44% 1589 227.9 1634 237.5 2.83% 4.21%

c6288 100 30 74559 528 876 1.99% 1.27% 5766 389.6 5878 367.2 1.94% -5.75%

c7552 100 28 27636 277 459 2.01% 1.33% 2665 291.8 2616 281.8 -1.84% -3.43%

avg. - - 179679 4529 7375 1.97% 1.55% 1935 227.1 1962 223.6 1.47% -1.15%

 Table 10 – Experimental results of the proposed StTA analyzer on large circuits.

Circuits
Cell

Number

Time

Saved

SPICE(ps) Our Engine(ps)

mean S.D. mean S.D.

TA1 21,725 99.1% 645 79 652 82

TA2 78,623 99.5% 1431 130 1443 136

 56

leon2 454,489 99.0% 1960 412 2005 427

netcard 425,264 99.1% 1842 393 1879 412

leon3mp 330,993 98.8% 1211 368 1256 375

leon3-avnet-

3s1500
542,081 99.2% 1981 432 2022 448

5.3.3 Complexity

Figure 23 – The runtime per sample versus the number of gates and interconnects in

the proposed block-based and paths-based combined StTA.

In this path-based and block-based combined framework, most of runtime was spent

on the block-based part. The runtime per sample versus circuit size is shown in Figure 23.

From the linear relationship between runtime per sample and circuit size, we can deduce

that our framework would take ~8 hours to get the circuit-delay distribution of a large

circuit with one million gates and interconnects by running 100 Monte Carlo samples.

Because this work is based on the Monte Carlo method, the runtime cost may be large if

0

50

100

150

200

250

300

0 200 400 600
Circuit Size (Number of Gates)R

u
n

n
in

g
ti

m
e

 p
er

 s
am

p
le

 (
s)

k k k

 57

more samples are required or a larger circuit is simulated. One solution for this issue is

using a Graphic Processor Unit (GPUs) to facilitate parallel computations as different

samples can be independently processed.

 58

6. AGING SIMULATION FOR STATE-OF-ART

MICROPROCESSORS

This section introduces the aging simulator framework which is shown in Figure 1.

The framework firstly extracts the activity, IR-drop, and temperature profiles of a

microprocessor while running benchmarks. The extracted profiles are then used to

calculate the degradation of device parameters in each transistor. Next, the obtained aging

profiles, along with the PVT profiles, are fed into the PVT-aging timing engine to achieve

comprehensive timing analysis when BTI, HCI, and GOBD happen simultaneously.

6.1 Extraction of the Stress, Thermal, IR-Drop and Process profiles

The wearout mechanisms being studied are activity, supply voltage (VDD) and

temperature dependent. The degradation of system performance is also directly dependent

on the thermal and the IR-drop profile, because temperature and VDD directly impact

circuit timing. In this work, FPGA emulation is used to simulate the microprocessors,

which provides an efficient way to acquire electrical, thermal and IR-drop profiles for any

digital system for use in system-level reliability analysis.

 59

Figure 24 – The system used to collect activity profile of the microprocessor contains

an FPGA board that implements the microprocessor system and exports data on the

activity profile to a PC.

The microprocessor under study is LEON3 microprocessor [82]. The RTL has been

synthesized and loaded to the FPGA with the Xilinx ISE (Integrated Software

Environment) [83]. Once the FPGA is programmed, the activity can be collected by placing

counters at the I/O ports to track the state probabilities and the toggle rates of the ports

during application runtime, as illustrated in Figure 24.

Since the I/O ports for each unit can be found on the top of each module, the counters

are attached to the ports automatically with a scripting language. The activity transportation

unit is inserted into the RTL automatically as well. The complexity of this RTL revision

process is O(n), where n is the number of the number of I/O ports. Since the complexity is

linear, the RTL revision process is scalable and can be implemented for large systems. Our

current work focuses on implementing a microprocessor on a single FPGA, so the revised

RTL is executable as long as the FPGA has enough resources (gates) to support large

systems. A set of standard benchmarks [84] were used as the applications for analysis.

 60

The activities and state probabilities are only captured at block I/Os, because

monitoring all internal nets would require too many resources. After capturing the I/O

activities and state probabilities, they are linked to the netlist for activity and state

propagation to each net in the design using PrimeTime [80]. The propagation is a function

of the design's logic. It is probabilistic, since the exact signals that produced the I/O

activities and state probabilities are unknown. Therefore, the resulting activities and state

probabilities at internal nodes may have errors with respect to the exact signal probabilities

and activities. The result is a complete stress/transition probability profile of the internal

nodes of the microprocessor under study. This activity and state propagation component is

done in software on a block-by-block basis. Thus, we have the probability of a transition

occurring in any cell and the probability at each state, i.e., the probability at logic “1”.

(a)

 61

(b)

Figure 25 – (a) The distributions of the DC stress probability and (b) the transition

rate (toggle rate) for the LEON3 microprocessor while running a standard

benchmark.

Figure 25 (a) and (b) show the distributions of the stress probability and the transition

rate, respectively, when the microprocessor is running a set of standard benchmarks. It can

be seen that the distribution of the stress state probability and transition rate is different for

each block. For example, Itags and Dtags have a low stress state probability and a high

transition rate, while DIV, MUL, IU and MMU have a high stress state probability and a

low transition rate.

The propagation of transition rate and state probability was verified by comparing

the exact transition numbers and state periods of randomly selected nets from the

microprocessor with the ones calculated by propagations. The results in [13] shows that

the percent errors for more than 90% of the selected samples are less than 10% for transition

rate and more than 80% of the selected samples have errors that are less than 15% for state

probability. The high errors are mostly from the nets in deeper locations of the circuit that

 62

are far from the I/Os. Since errors are cumulative, activity propagation to deeper stages

leads to a larger difference between the real transition rate/state probability and the

calculated ones.

(a)

(b)

Figure 26 – (a) The temperature and (b)VDD distribution of the LEON3

microprocessor running a standard benchmark.

RF

I-Cache

DIV

MUL

MMU

IU Itags

Dtags

D-Cache

64.20

63.33

62.47

61.60

60.73

59.87

(°C)

RF

I-Cache

DIV

MUL

MMU

IU Itags

Dtags

D-Cache

1.189

1.167

1.145

1.123

1.101

1.079

(V)

 63

The temperature variation throughout the microprocessor is also taken into account

when modelling different wearout mechanisms. The netlist was used for layout generation

using Cadence Encounter [77] and a commercial PDK [85]. The RC information extracted

from the layout via [78], together with the net activities, was used for the extraction of the

power profile and the consequent thermal profile, through the power simulator [80] and the

thermal simulator [86], respectively. The net activities and layout are also used to

determine the IR-drop profile throughout the microprocessor via [77]. Figure 26 shows the

distributions of the temperature and the supply voltage in Figure 26(a) and Figure 26(b),

respectively, when LEON3 is running a standard benchmark.

6.2 Proposed PVT-Aware Aging Simulator

Figure 27 – The flow chart of proposed aging simulator.

The overall flow chart of the proposed PVT-aware aging simulator is shown in Figure

27. The core of this aging simulator is the PVT-aging aware timing engine which is

constructed based on the StTA framework in Section 5.3. The timing engine is fed by a set

RTL

Netlist

Layout/

RC

Parasitics

FPGA

Process

Variation

Synthesis

Tool

APR

tool

Process-Voltage-

Temperature-BTI-

HCI-GOBD-aware

Timing Engine

Activity &

Stress Profile

BTI

Model

BTI Vth

Profile

Lifetime

Distribution

Time

ConstraintsTech Library

Test Vectors/

Benchmarks

OS

(optional)

HCI Vth

Profile

HCI

Model

GOBD

Model

GOBD

Resistance

Profile

IR-drop

Profile

Power

Simulator

Thermal

Simulator

Thermal

Profile

 64

of profiles, including process variation, thermal, IR-drop, RC parasitics, BTI, HCI and

GOBD. The generation of these profiles was discussed in Section 6.1.

Figure 28 – The framework of the PVT-aging-aware timing engine.

Figure 28 presents the algorithm of the timing engine. As introduced in Chapter 5,

both the block-based and path-based timing analyzer are based on Monte Carlo analysis.

The electrical stress, thermal, IR-drop, process profiles and RC parasitics, together with

the device-level wearout models, generate all the parameters for each gate which are

needed to calculate the gate delays. All the information is fed to the PVT-aging aware

timing engine as shown in Figure 28 for the analysis of circuit timing degradation.

Input: circuit netlist, RC parasitics (.spef), process-variation spatial correlation profile, BTI

∆Vth profile, HCI ∆Vth profile, GOBD RG2S/RG2D profile, thermal profile, IR-drop profile

Output: Circuit-delay distribution

Block-based timing analyzer

 1. generate N Monte Carlo samples for the circuits according to process-variation spatial

correlation profile.

 2. abstract timing graph from circuit netlist, and apply (∆L, ∆Vth, RG2S, RG2D)

 3. for i=1 to N //for each Monte Carlo sample

 3.1. apply to each gate the corresponding values of ∆L, ∆Vth, RG2S, RG2D, T and etc.

 3.2. do forward traversal to evaluate the edges (gate and wire delay) and propagate the

Algorithm: Statistical Timing Engine

 arrival time to Primary Output/DFF

 3.3. do backward traversal to extract the first 3 critical paths using PERT algorithm.

 4. end for

 5. get the critical-path collection: P ={CP1, CP2, …, CPm}

 // m is up to 3*N, because some paths are repetitive

Path-based timing analyzer

 6. for i=1 to N //for each Monte Carlo sample

 6.1. calculate the path delays for each critical path in P as {PD
i
1, PD

i
2, …, PD

i
m}

 6.2. get the maximum path delay D
i
=max{PD

i
1, PD

i
2, …, PD

i
m}

 7. end for

 8. circuit-delay distribution from {D
1
,D

2
,…,D

N
}

 65

generates the delay degradation at a variety of stress times. Figure 29 shows the delay

distribution of a RISC microprocessor at different stress times.

Figure 29 – The delay distributions of a RISC microprocessor due to the combined

effect of PVT and aging under a variety of stress times.

The system-level aging simulator is constructed by analyzing the performance

(circuit delay) degradation at different stress times. When the circuit delay degrades beyond

the clock period, the system is fails and the lifetime is thus obtained. Figure 30 shows a

comparison of the lifetime distributions due to BTI, HCI, GOBD individually and

simultaneously. It can be seen that GOBD is generally the most critical mechanism of the

three, but for some samples BTI is dominant. Besides, when all of these three mechanisms

happen simultaneously, the lifetime is shorter than the lifetimes due to analyzing each

mechanism alone. It is concluded that BTI and HCI also have some effect on circuit

lifetimes even if they are not dominant.

0

20

40

60

80

100

1 1.8 2.6 3.4 4.2

N
u

m
b

er
 o

f
S

a
m

p
le

s

Circuit Delay (ns)

no stress

1 day

3 years

300 years

30000 years

 66

Figure 30 – The lifetime distributions of the LEON3 microprocessor due to BTI, HCI,

GOBD and the combined effect.

6.3 Lifetime Analysis Considering Realistic Workloads

This work not only accounts for activity and temperature, but also accounts for the

fact that processors are not in operation at all times. Realistic use conditions include

operation modes, standby, and periods of time when the processor is turned off, as

illustrated in Figure 31. This research takes these use scenarios into account. These use

scenarios determine the two key parameters that are needed to determine the stress and

temperature for all wearout mechanisms, the logic state probability for each net, which

determines the duty cycle over the full lifetime of the microprocessor, and the activity of

each node, which determiens the average current and temperature during each state of

operation.

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-20 0 20 40 60 80

P
ro

b
a

b
il

it
y

 [
%

]

Lifetime [ln(years)]

BTI only

HCI only

GOBD only

Combined Effect

99.6

99.2

97.8

93.3

84.1

69.2

50.2

30.8

15.9

7.1

 67

Figure 31 – The use scenarios provided by Intel are shown [87].

For BTI, by weighting the lifetimes of operation, standby and off modes in

accordance with Figure 31, the lifetimes of the microprocessor under study are estimated

based on different operating frequencies for different use scenarios, as shown in Figure 32.

The different operating modes impact the values of 𝑡𝑠𝑡𝑟𝑒𝑠𝑠 and 𝑡𝑟𝑒𝑐in equation (2). For

example, during the “off” state, 𝑡𝑟𝑒𝑐 is increased. The results clearly indicate that the

estimated system lifetimes decrease as the system frequency increases, and gaming has the

shortest lifetime. The lifetimes converge to zero at the upper and lower limits of the initial

operating frequency.

0% 20% 40% 60% 80% 100%

General Usage

Office Work

Gaming

Corporate

Operation

Standby

Off

 68

Figure 32 – The estimated lifetimes of the LEON3 microprocessor due to BTI for

different use scenarios and different system frequencies. Dotted lines show the

boundaries when considering process variation.

Figure 33 – The estimated lifetimes of the LEON3 microprocessor due to HCI for

different use scenarios and different system frequencies. Dotted lines show the

boundaries when considering process variation.

BTI Lifetime for the LEON3 Logic Part

1.E-15

1.E-08

1.E-01

1.E+06

1.E+13

1.E+20

280 285 290 295 300

L
if

et
im

e
(y

ea
rs

)

Operating Frequency (MHz)

Corporate

Gaming

Office Work

General Usage

1E+06

1E+08

1E+10

1E+12

280 285 290 295 300

L
if

et
im

e
(y

ea
rs

)

Operating Frequency (MHz)

General Usage

Office Work

Gaming

HCI Lifetime for the LEON3 Logic Part

 69

The microprocessor system lifetimes for different operating frequencies and different

use scenarios were also investigated under HCI. The system lifetimes estimated by the

proposed methodology are shown in Figure 33. Similar to BTI, the microprocessor

lifetimes estimated by our methodology decrease as the system frequency increases, and

gaming has the shortest lifetime. Again, the lifetimes converge to zero at the initial

operating frequency limits.

Besides LEON3, a 32-bit RISC microprocessor which includes around 73k gates was

also studied. The area for the 32-bit RISC microprocessor is around 7 mm2 and the power

consumption is around 0.1W~0.2W.

Figure 34 – The estimated lifetimes of the RISC microprocessor due to BTI for

different benchmarks and different system frequencies. Dotted lines show the

boundaries when considering process variations.

1E-18

1E-08

100

1E+12

1E+22

1E+32

1E+42

600 650 700 750 800

L
if

et
im

e
(y

ea
rs

)

Operating Frequency (MHz)

Corporate

Gaming

General Usage

Office Work

BTI Lifetime for a RISC Microprocessor

 70

Figure 35 – The estimated lifetimes of the RISC microprocessor due to HCI for

different benchmarks and different system frequencies. Dotted lines show the

boundaries when considering process variations.

Figure 36 – The statistical lifetime distribution of the RISC microprocessor due to

BTI for different system frequencies, for the gaming use scenario.

HCI Lifetime for a RISC Microprocessor

1E+06

1E+09

1E+12

600 650 700 750 800

L
if

et
im

e
(y

ea
rs

)

Operating Frequency (MHz)

General Usage

Office Work

Gaming

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-20 0 20 40 60 80

P
ro

b
a
b

il
it

y

ln(lifetime in years)

600 MHz
650 MHz
700 MHz
750 MHz
800 MHz

99.9

99.9

98.8

93.4

80.7

63.2

45.5

30.8

19.9

12.6

7.88

Weibull Probability Plot for BTI Lifetime

 71

Figure 37 – The statistical lifetime distribution of the RISC microprocessor due to

HCI for different system frequencies, for the gaming use scenario.

Figure 34 and Figure 35 show the estimated lifetime due to BTI and HCI,

respectively, for the RISC microprocessor, for different operating frequencies. As with the

LEON3, the estimated system lifetimes decrease as the system frequency increases. The

convergence to zero lifetime at initial operating frequency limits does not show in the

graphs because these limits are outside the frequency range in the graphs.

The confidence bounds in the above figures were based on simulated distributions of

delay. Figure 36 and Figure 37 show the cumulative probability plots of Weibull

distributions for BTI and HCI, respectively. By fitting the cumulative probability plot using

a Weibull distribution, the shape parameter, 𝛽, and the characteristic lifetime parameter, 𝜂,

of the Weibull distribution are obtained. Given 𝜂 and 𝛽, the time-to-failure is computed

for any probability point, P. Given a confidence level, say, 90%, we compute the

corresponding time-to-failure points for the appropriate probability points, i.e., P=0.05 and

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

17.5 19.5 21.5 23.5 25.5 27.5

P
ro

b
a

b
il

it
y

 [
%

]

Lifetime [ln(years)]

600 MHz
650 MHz
700 MHz
750 MHz
800 MHz

99.9

98.8

93.4

80.7

63.2

45.5

30.8

19.9

12.6

7.88

Weibull Probability Plot for HCI Lifetime

 72

P=0.95. These corresponding time-to-failure points are the confidence bound limits in

Figure 34 and Figure 35.

6.4 APPLICATION: Finding Optimum Operating Voltages Using Proposed Aging

Simulator

In this subsection, the proposed aging simulator was applied to a case study to solve

a practical problem: find the optimum operating voltage of a system so that the best

performance-reliability tradeoff can be achieved.

To make this application more realistic, the hard breakdown (HBD) of GOBD is

included. In previous sections, the soft breakdown (SBD) of GOBD is discussed and

modelled by inserting a gate-to-source resistance (RG2S) or gate-to-drain resistance (RG2D)

in a target gate in order to create the current leakage path in the circuit. HBD happens after

the soft breakdown, and it is well understood that HBD happens when the gate dielectric

layer abruptly loses its insulating properties. HBD can be detected as a large jump in the

current vs. time curve, while in soft breakdown (SBD), the leakage current in the gate

dielectric slightly increases with time and the gate dielectric still remains its insulation

property. The method to analyze the hard failure rate is from [8]. The permanent HBD of

GOBD is referred as hard failure hereafter, while soft failure refers to the failures caused

by the timing violations due to BTI, HCI and GOBD soft breakdown.

 73

Figure 38 – Chip temperatures while LEON3 is running at different voltages and

circuit delays at each corresponding VDD/Temperature condition.

The test case is the LEON3 microprocessor where different operating voltages are

applied. The power consumption of LEON3 while running a standard benchmark in

operation mode is simulated and fed to the thermal simulator to get the operating

temperatures. In the thermal simulator, the ambient temperature is set to room temperature

(27°C). The operating temperatures under different voltages are shown in Figure 38, along

with the average circuit delays under the corresponding operating conditions (voltage and

temperature). As expected, higher voltage brings higher temperatures. Moreover, the

circuit delay decreases under the conditions of high voltage and high temperature, which

means the effect of high voltage on decreasing delay is stronger than the effect of high

temperature on increasing delay.

0.8

0.9

1.0

1.1

1.2

1.3

1.2 1.3 1.4 1.5 1.6 1.7

D
e
la

y
 (

n
s
)

VDD (V)

Delay

Temperature

T
e
m

p
e
ra

tu
re

 (
 C

)

105

95

85

75

65

55

 74

Figure 39 – The soft failure rate in 10 years due to timing violations for different

operating voltages and for different usage scenarios when ambient temperature is set

to 27°C.

Figure 40 – The hard failure rate in 10 years due to the permanent GOBD hard

breakdown are shown for different operating voltages and for different usage

scenarios when ambient temperature is set to 27°C.

Then, the proposed aging simulator is used to get the lifetimes for different operating

voltages. Figure 39 shows the failure rate in 10 years for each use scenario. The failure

rate is calculated according to the timing failures, and we refer to it as the soft failure rate

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

1 2 3 4 5 6

So
ft

 F
ai

lu
re

 R
at

e

General Usage

Office Work

Gaming

Corporate

1.2V
60 C

1.3V
72 C

1.4V
82 C

1.5V
90 C

1.6V
96 C

1.7V
100 C

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

H
ar

d
 F

ai
lu

re
 R

at
e

General Usage

Office Work

Gaming

Corporate

1.2V
60 C

1.3V
72 C

1.4V
82 C

1.5V
90 C

1.6V
96 C

1.7V
100 C

 75

to distinguish it from permanent catastrophic failures. The soft failure rate decreases as

the voltage increases because larger timing slack is observed at higher voltages. On the

other hand, however, higher voltage and higher temperature increase the probability of

suffering from catastrophic GOBD hard breakdown where the gate dielectric permanently

breaks down and leads to a current runaway. The hard failure rate in 10 years under

different voltages is shown in Figure 40, where it’s seen that the failure rate dramatically

increases at higher voltages and higher temperatures. In the worst case (VDD=1.7V,

Temperature = 100°C), the hard failure rate in 10 years is close to 100%.

Combining the soft failure rate due to timing failures and the hard failure rate due

to GOBD hard breakdown, we get the overall failure rate in 10 years for different usage

scenarios in Figure 41. For the ‘Gaming’ scenario, the optimum voltage to achieve the

best lifetime is 1.3V, while for the other three scenarios the optimum voltage is 1.4V.

From the results, it’s seen that at lower voltage, the soft failure is dominant while the hard

failure is dominant at higher voltages.

 76

Figure 41 – The overall failure rate in 10 years due to both soft failure and hard

failure is shown for different operating voltages and for different usage scenarios

when ambient temperature is set to 27°C.

Figure 42 – The overall failure rate in 10 years due to both soft failure and hard

failure is shown for different operating voltages and for different usage scenarios

when the ambient temperature is set to 40°C.

0.0%

0.1%

1.0%

10.0%

100.0%

O
ve

ra
ll

Fa
ilu

re
 R

at
e

General Usage

Office Work

Gaming

Corporate

1.2V
60 C

1.3V
72 C

1.4V
82 C

1.5V
90 C

1.6V
96 C

1.7V
100 C

0.1%

1.0%

10.0%

100.0%

O
ve

ra
ll

 F
ai

lu
re

 R
at

e

General Usage

Office Work

Gaming

Corporate

1.2V

66 C

1.3V

77 C
1.4V

87 C

1.5V

95 C

1.6V

101 C
1.7V

104 C

 77

Figure 43 – The overall failure rate in 10 years due to both soft failure and hard

failure is shown for different operating voltages and for different usage scenarios

when the ambient temperature is set to 15°C.

Figure 44 – The overall failure rate in 10 years due to both soft failure and hard

failure is shown for different operating voltages and for different usage scenarios

when the ambient temperature is set to 27°C and the IR-drop effect is ignored.

To investigate the impact of ambient temperature on circuit reliability, we also vary

the ambient temperature. The chip temperature and the overall failure rate under different

0.0%

0.1%

1.0%

10.0%

100.0%

O
ve

ra
ll

 F
ai

lu
re

 R
at

e

General Usage

Office Work

Gaming

Corporate

1.2V

53 C

1.3V

65 C
1.4V

76 C

1.5V

84 C

1.6V

91 C
1.7V

97 C

0.0%

0.1%

1.0%

10.0%

100.0%

O
ve

ra
ll

 F
ai

lu
re

 R
at

e

General Usage

Office Work

Gaming

Corporate

1.2V

60 C

1.3V

72 C
1.4V

82 C

1.5V

90 C

1.6V

96 C
1.7V

100 C

 78

supply voltages are shown in Figure 42 and Figure 43, for ambient temperatures equal to

40°C and 15°C, respectively. Experimental results see the trend that the optimum voltage

shifts to the left (lower) when the ambient temperature increases. More specifically, for

the use scenarios of Office Work, Corporate and General Usage, the optimum voltage

shifts from 1.4V to 1.3V when ambient temperature increases from 27°C to 40°C. This is

because the higher ambient temperature brings up the chip temperature and ultimately

makes hard breakdown failure more severe when the supply voltage is higher than 1.4V.

When the ambient temperature decreases from 27°C to 15°C, the optimum voltage shifts

from 1.3V to 1.4V for the Gaming scenario. Lower temperature decreases the hard

breakdown failure rate, and the soft breakdown dominates at low supply voltages. Figure

44 is shown to investigate the impact of the IR-drop effect. Results show that ignoring the

IR-drop effect would underestimate the soft failure rate and overestimate hard failure rate.

However, the optimum operating voltages are not affected.

 79

7. SRAM LIFETIME ANALYSIS FOR DIFFERENT CACHE

CONFIGURATIONS

This research work also includes the lifetime analysis of SRAMs, particularly the

caches within in state-of-art microprocessors.

The majority of transistors in a modern microprocessor are used to implement Static

Random Access Memories (SRAM). Therefore, it is important to analyze the reliability of

SRAM blocks. The first-level (L1) data cache is a prime candidate, since it experiences

frequent read and write operations, yet stores data for a significant amounts of time.

Besides, cache efficiency is also very critical for system performance. Much prior work

has focused on the cache architectures needed to achieve high hit rates. However, the

question of how the reliability of the cache is affected when higher performance is achieved

remains unanswered. In this work, the reliability (failure probability) of the L1 data cache

in a state-of-art microprocessor is investigated for different design configurations:

associativity, cache line size, cache size, and replacement algorithm. By analyzing the

reliability and performances for different cache designs, we provide insight on the

performance-reliability tradeoff in cache system design. The effect of error correcting

codes (ECCs) is also considered, as ECCs enhance cache lifetime.

SRAMs are highly sensitive to BTI-induced transistor-strength mismatch [6], [10],

[12], [88]–[90]. SRAM stability is analyzed in [91]–[93] by assuming two ideal stress

conditions, static stress and alternating stress. To consider realistic stress conditions in

 80

SRAM cells, [94]–[97] estimate the SRAM degradation due to BTI based on a customer

usage workload profile.

SRAM stability due to HCI is less studied in prior research because BTI is usually

dominant due to its frequency independence. However, nowadays, since chips are running

at higher frequencies, HCI is becoming an issue [98],[99]. In [100],[101], the impact of

HCI on SRAM cell stability is analyzed, and [100] compares the simulation results with

silicon experimental results.

In this work, the stability degradations of SRAM cells due to BTI and HCI are studied

under various stress conditions, and failure probability of the L1 data cache within a state-

of-art microprocessor is calculated by taking into account realistic workloads when a set

of benchmarks are running on the microprocessor. The work is new in the following ways.

 Cache reliability is analyzed for different cache configurations relating to:

associativity, cache line size, cache size, and the replacement algorithm.

 The effect of Error Correcting Codes (ECCs) is studied in the failure-probability

analysis of the data cache.

 The impact of process variations is included using Monte Carlo simulations, and

the lifetime distribution of SRAM cells with different stress conditions is extracted. The

distribution is parameterized, where we found in this work that the Log-Normal distribution

is the best fit.

 81

 This work takes into account real temperature and IR-drop profiles of a

microprocessor when analyzing cache reliability by using an FPGA-based aging

assessment framework.

 This work considers the combined effect of BTI and HCI, rather than studying

them individually. We have found that HCI can mitigate SRAM stability degradation due

to BTI for some of the stability metrics. Therefore, studying BTI and HCI separately leads

to an overestimation of SRAM stability degradation.

To the best of our knowledge, this is the first study on the reliability-performance

tradeoff for caches with different cache configurations. However, much prior work has

focused on mitigating cache degradation in the presence of BTI. [102]–[105] have

proposed to reduce the impact BTI aging by balancing the amount of time that ‘0’ and ‘1’

values are stored in the cells. In [106], the authors have proposed to exploit

microarchitectural redundancy to extend cache lifetimes in the presence of BTI. Other

methods reduce BTI aging by dealing with the parameters that have a strong impact on

BTI, such as the temperature and supply voltage [107],[108]. In addition, [105] has

proposed an indexing scheme to balance the usage of entries in the cache to combat HCI.

In [109], the authors reduce HCI aging by shifting the incoming data to spread the bit flips

evenly among the memory cells.

7.1 SRAM Stability

Each cache bit is implemented with an SRAM cell consisting of 6 transistors (6T),

as shown in Figure 45. The labeled transistors form an inverter loop that holds the stored

logic value, whereas the remaining pass transistors controlled by the wordline (WL) signal

 82

allow read and write operations to the cell through the bitline (BL) and its complement

(BL̅̅̅̅).

In a 6T cell, HCI affects all the transistors on a write if the logic value flips. On the

other hand, when the cell is stable and storing a ‘0’, the PMOS transistor 𝑇𝑃1 and the

NMOS transistor 𝑇𝑁2 are under stress, and they suffer from NBTI and PBTI, respectively.

On the contrary, when the cell stores a ‘1’, transistors 𝑇𝑃2 and 𝑇𝑁1 are affected by NBTI

and PBTI, respectively. Note that the wearout effects induced by each type of duty cycle

are complementary, meaning that, for a given duty cycle, the pair of transistors not under

stress are partially under recovery from BTI degradation. Overall, the four transistors of

the inverter loop are continuously aging regardless of whether the cell stores ‘0’ or ‘1’, or

is transitioning. This fact makes such transistors particularly sensitive to wearout [102].

Note that the NMOS pass transistors just age from BTI when the SRAM cell is being

accessed, making them much less sensitive to aging than the inverter loop transistors. Thus

this work focuses on the wearout of the inverter loop transistors.

Figure 45 – A typical 6T SRAM cell.

TP1

TN1

TP2

TN2

WL WL

BLBL

 83

7.2 SRAM Lifetime Characterizations

SRAMs are characterized with several performance metrics. These include the read

and retention static noise margins (SNMs), the write margin, the read current (IREAD), and

the minimum retention voltage (Vdd-min-ret). The static noise margins are defined as the

minimum DC noise voltage necessary to change the state of an SRAM cell. The read SNM

is measured with the access transistors turned on, while the access transistors are off for

the retention SNM. The write margin is the minimum voltage needed to flip the state of the

cell, with the access transistors turned on. Vdd-min is the minimum voltage in which the

SRAM retains its state. Finally, the read current, which is inversely proportional to access

time, is the current flow through pull-down devices when performing a read operation. The

stability margins are extracted by fitting squares between the static noise margin (SNM)

curves and observing the diagonal length of the smaller of the two squares [112]. When

any of these four performance metrics degrade to a predefined threshold, the SRAM cell is

said to have failed, and thus the lifetime of the cell is obtained. Variations of two process

parameters have been included: the channel length and the threshold voltage of each

transistor in the SRAM cell, both of which are subject to a Gaussian distribution with three

sigma equal to 30% of the corresponding nominal value. Monte Carlo SPICE simulations

were implemented to obtain 2000 samples.

0

400

800

1200

550 600 650 700

Fr
e

q
u

e
n

cy

Write Margin (mV)

Fresh
BTI Only - 6 Years
BTI and HCI - 6 Years

0

400

800

1200

160 210 260 310

Fr
e

q
u

e
n

cy

Read SNM (mV)

Fresh
BTI only - 6 years
BTI and HCI - 6 years

 84

 (a) (b)

 (c) (d)

Figure 46 – The degradation of the write margin, the read SNM, the Vdd-min-ret,

and the IREAD of a memory cell due to BTI, BTI and HCI, shown in (a)-(d),

respectively.

Figure 46 shows the degradation of the read SNM, the write margin, Vdd-min-ret,

and IREAD of a memory cell. It shows a comparison between degradation due to BTI alone

and due to both BTI and HCI. BTI severely degrades the read SNM, as well as the write

margin. Vdd-min-ret is also affected, while IREAD is relatively unaffected.

When BTI and HCI are considered simultaneously, as shown in Figure 46, the

stability degradation of the write margin, the read SNM, and Vdd-min-ret is smaller than

the degradation when only BTI is present, while for IREAD, the combined effect of BTI and

HCI produces larger degradation than BTI alone. As IREAD has limited degradation, SRAM

lifetimes are mostly determined by the degradation of the write margin, the read SNM and

Vdd-min-ret. Therefore, studying BTI and HCI separately leads to a significant

overestimation of SRAM stability degradation, as the inclusion of HCI actually ‘mitigates’

the stability degradation due to BTI.

7.3 Activity Extraction of SRAM cells

0

400

800

1200

390 450 510 570 630

Fr
e

q
u

e
n

cy

Vdd-Min-Ret (mV)

Fresh
BTI only - 6 Years
BTI and HCI - 6 years

0

400

800

1200

28 33 38 43

Fr
e

q
u

e
n

cy

I_READ (a.u.)

Fresh
BTI only - 6 years
BTI and HCI - 6 years

 85

The activity profile of the SRAM cells in the data cache was extracted using the same

framework mentioned in Section 6.1. The thermal and IR-drop profiles were extracted in

the same way, too. The probability is obtained of a transition occurring in each cell,

together with the probability at each logic state, i.e., logic ‘1’ and ‘0’. Figure 47 and Figure

48 show the distributions of the state probabilities and the transition rate, respectively, of

the data cache, when the microprocessor is running a standard benchmark.

(a)

(b)

Figure 47 – (a) The distribution of state probability for the 32KB data cache shown

in 1024 words; (b) The histogram of the state probability distribution in the number

of SRAM cells.

75%

85%

65%

55%

45%

35%

> 95%

< 25%

State Probability (Duty-Cycle)

0

5000

10000

15000

0% 20% 40% 60% 80% 100%N
u

m
b

e
r

o
f

C
e

lls

State Probability (Duty Cycle)

 86

(a)

(b)

Figure 48 – (a) The distribution of transition rate for the 32KB data cache shown in

1024 words; (b) The histogram of the transition-rate distribution in the number of

SRAM cells.

The reason for this mitigation effect of HCI can be attributed to the impaired

degradation of the transistors within one cell. BTI stress is different for PMOS and NMOS

devices in the same cell. The cell becomes increasingly skewed under BTI as some devices

degrade more than the others. This leads to impaired noise immunity. On the other hand,

all the devices undergo the same stress due to HCI, as mentioned in Section 7.1. As a

result, the inclusion of HCI mitigates the unevenness of the Vth degradation for the

transistors in an SRAM cell.

10

12

8

6

4

2

> 14

0

Toggle Rates (times/μs)

0
5000

10000
15000
20000

0 4 8 12 16 20N
u

m
b

e
r

o
f

C
e

lls

Toggle Rate (times/μs)

 87

Please also note that the HCI effect has a strong dependence on the operating

frequency. Throughout the work, the LEON3 microprocessor is assumed to run at

250MHz. For this situation, BTI is dominant and HCI has a smaller influence. HCI could

have more influence when the operating frequency reaches the GHz range.

When any of the four performance metrics mentioned in Section 7.2 degrade to a

predefined threshold, the SRAM cell is said to have failed, and thus the lifetime of the cell

is obtained. Using Monte Carlo simulations, the lifetime distribution of an SRAM cell is

obtained for the given performance constraints.

Running SPICE simulations for each SRAM cell is very computationally-expensive.

In order to manage the large volume of SRAM cells and to limit the number of SPICE

simulations, we partition both the static stress probability and switching activity into 21

states (0%, 5%, 10%, … , 95%, 100%) to balance the accuracy and computational cost of

the simulations for BTI and HCI, respectively. It's assumed that the cells in the same stress

state have the same stress.

For BTI, the 21 stress states represent duty cycles, that is, 0%, 5%, 10%, … , 100%

duty cycle. 0% duty cycle means the cell has 0% time storing a ‘1’, while 100% duty cycle

corresponds to 100% time storing a ‘1’. For HCI, the 21 stress states are proportional to

the maximum observed transition rate, that is, 0%, 5%, 10%, … , 100% of the maximum

transition rate. One example of the distributions of stress states for BTI and HCI is

illustrated in Figure 47(b) and Figure 48(b), respectively, for a 32KB data cache. Note that

the stress distribution not only depends on the applications being run, but also depends on

the memory allocation of the cache system, which will be discussed in detail in Section

 88

7.4. When BTI and HCI are combined, the stress states are combinations of the duty-cycle

state and the toggle-rate state. For example, a stress state could have a low duty cycle and

a high toggle rate, or a high duty cycle and a low toggle rate. The number of combinations

is 21×21=441. Figure 49 shows an example of the stress-state distribution when BTI and

HCI are combined.

Figure 49 – An example of a stress-state distribution for a 32KB memory is shown. A

stress state is a combination of the duty-cycle state and the toggle-rate state, when the

combined effect of BTI and HCI is considered. The z axis is the number of cells.

Since process variations are considered, the lifetime of each SRAM cell is a

distribution rather than a fixed value. Because we assume all the cells in the same stress

state have the same stress, all the cells in one stress state share the same lifetime

distribution. By running Monte Carlo simulations in SPICE, the lifetime distribution is

computed for each stress state. Importance sampling [113] ensures adequate sampling of

the tails of the distribution. Example lifetime distributions for four different stress state

are illustrated in Figure 50 for the combined effect of BTI and HCI. As can be seen from

this figure, an SRAM cell has a longer lifetime when it has a 50% duty cycle than when it

has a 0% duty cycle. Moreover, higher toggle rates result in better lifetimes.

4000

5000

3000

2000

1000

0

of cells

Toggle-Rate State
Duty-Cycle State

 89

Figure 50 – The lifetime distribution of a SRAM cell when it’s in a specific stress state.

Each stress state is a combination of the duty-cycle state and the toggle-rate state.

Four stress states are shown in this figure.

Because SRAM stability is very sensitive to temperature and supply voltage, the

actual temperature and IR-drop profiles are needed for accurate lifetime estimation. The

lifetime distribution of the 441 stress states is characterized for two different temperatures

and two different supply voltages, that is, both temperature and supply voltage are

partitioned into two states.

The lifetime distribution of SRAM cells shown in Figure 50 is best fit with a Log-

Normal distribution. (Figure 50 is actually a Log-Normal probability plot.) The fitted Log-

Normal distributions are used to determine the probability of failure of an SRAM cell,

𝑃𝐹𝑏𝑖𝑡, which is a function of time, 𝑡:

 𝑃𝐹𝑏𝑖𝑡 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 (𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 < 𝑡). (29)

The probability of failure of a word is then calculated by

-3

-2

-1

0

1

2

3

20 40 60 80 100 120

P
ro

b
a
b

il
it

y
 o

f
F

a
il
u

re

Lifetime [ln(years)]

0% Duty Cycle + 0% Toggle

0% Duty Cycle + 100% Toggle

50% Duty Cycle + 0% Toggle

50% Duty Cycle + 100% Toggle

100%

98%

84%

50%

16%

2%

0%

 90

𝑃𝐹𝑤𝑜𝑟𝑑 = 1 −∏(1 − 𝑃𝐹𝑏𝑖𝑡𝑖)

𝑁

𝑖=1

(30)

where 𝑃𝐹𝑤𝑜𝑟𝑑 is the probability of failure of a word, 𝑃𝐹𝑏𝑖𝑡 is the probability of

failure of a bit, and N is the number of bits in one word. The word size is N=32 for the data

cache of the LEON3. Since 𝑃𝐹𝑏𝑖𝑡 changes as a function of time, 𝑃𝐹𝑤𝑜𝑟𝑑 also changes as a

function of time.

If the SRAM does not use error correcting codes, the memory fails when the first cell

fails to work. The probability of failure of the SRAM block is obtained accordingly as a

function of time:

𝑃𝐹𝑆𝑅𝐴𝑀 = 1 − ∏ (1 − 𝐹𝑃𝑤𝑜𝑟𝑑𝑖)

𝑁𝑤𝑜𝑟𝑑

𝑖=1

(31)

where 𝑃𝐹𝑆𝑅𝐴𝑀 is the probability of failure of the whole memory block, 𝐹𝑃𝑤𝑜𝑟𝑑𝑖 is

the probability of failure of word i, and 𝑁𝑤𝑜𝑟𝑑 is the number of words.

Error correcting codes can ensure that a memory system can tolerate faults. BCH

codes [114] require seven additional bits per word and can correct one bit per word. The

relationship between failures of single bits, 𝑃𝑓𝑎𝑖𝑙, and the failure of the word is modeled

with a binomial distribution. For a word containing N bits, the probability of failure of a

word, 𝐹𝑤𝑜𝑟𝑑, is

 91

𝑃𝐹𝑤𝑜𝑟𝑑 = 1 −∏(1 − 𝑃𝐹𝑏𝑖𝑡𝑖)

𝑁

𝑖=1

−∑[𝑃𝐹𝑏𝑖𝑡𝑗 ∗∏(1 − 𝑃𝐹𝑏𝑖𝑡𝑖)

𝑖≠𝑗

]

𝑁

𝑗=1

(32)

The word size when there are ECCs is N=39 for the D-Cache, I-Cache, and RF blocks

of the LEON3. The failure probability of the memory, 𝑃𝐹𝑆𝑅𝐴𝑀, is calculated using (31).

7.4 Performance-Reliability Analysis for Different Cache Configurations

Based on the method for memory lifetime characterization in Section 7.2, the

reliability (failure rate) of the LEON3 L1 data cache was studied for different cache

configurations: associativity, cache line size, cache size, and the replacement algorithm.

The impact of Error Correcting Codes (ECC) was also analyzed.

Six representative benchmarks from MiBench [84] were run on the microprocessor:

Basicmath, Qsort, SHA, CRC32, FFT and Dijkstra. The Basicmath benchmark performs

simple mathematical calculations that often don’t have dedicated hardware support in

embedded processors. Qsort sorts a large array of strings into ascending order using the

well-known quick sort algorithm. SHA is the secure hash algorithm that produces a 160-

bit digest for a given input. CRC32 is a benchmark performing a 32-bit Cyclic Redundancy

Check (CRC) on a file to detect errors in data transmission. FFT performs a Fast Fourier

Transform on an array of data. The Dijkstra benchmark constructs a large graph in an

adjacency matrix representation and then calculates the shortest path between every pair of

nodes using repeated applications of Dijkstra’s algorithm.

 92

The framework in Section 6.1 was used to extract the Duty-Cycle/Toggle-Rate,

temperature, and IR-drop profiles of the data cache for different cache designs and for the

six applications above. The method for memory lifetime characterization described in

Section 7.2 was then used to calculate the failure rate of the data cache while running each

specific application.

Figure 51 – The duty-cycle distributions of SRAM cells in a 2-way 32KB data cache,

while the microprocessor is running six different benchmarks.

Figure 51 shows the state probability (duty-cycle) distribution for each application

using a 2-way 32KB data cache with 16Byte line size. Clearly, logic ‘0’ is the predominant

state. Memories in a processor contain more 0s than 1s throughout normal operations [115].

In general, ‘0’ is stored longer than ‘1’ because the memory is usually initialized to zero

when it’s allocated. Thus, even if there is an equal likelihood of an application writing a

‘0’ or a ‘1’ in any bit position, this initialization will always mean that ‘0’ is stored longer.

Other reasons for ‘0’ being stored longer are that false Boolean values and NULL pointers

are represented with zero, as well as most data in dense-form sparse matrices [114].

7.4.1 Associativity

0
0.1
0.2
0.3
0.4
0.5

0% 20% 40% 60% 80% 100%

Fr
ac

ti
o

n
 o

f
C

e
lls

State Probability (Duty Cycle)

Basicmath
Qsort
FFT
SHA
CRC32
Dijkstra

 93

Cache associativity can be seen as bookshelves in different shapes and sizes. Caches

fall into one of three categories: direct mapped, n-way set associative, and fully associative.

Direct mapped caches are designed so that a cache block can only go in one spot in the

cache. 2-way set associative caches are made up of sets that can each fit two blocks, while

in 4-way set associative cache, each set fits four blocks. For a fully associative cache, a

cache block can go anywhere in the cache. It is worth noting that the direct mapped cache

is actually a 1-way set associative cache and a fully associative cache of m blocks is an m-

way set associative cache. Higher associativity can improve the hit rate, but will reduce

cycle time and cost more area because of the need for more comparators. The L1 data cache

of the LEON3 microprocessor was implemented with three different associativities: 1-way,

2-way and 4-way, while the cache line size (16Byte), cache size (32KB), and the

replacement algorithm (LRU) were kept the same.

Figure 52 – The failure probability as a function of time for the three different

associativities and two benchmarks.

0%

1%

2%

3%

4%

5%

0 2 4 6 8 10

F
a

il
u

re
 R

a
te

No. of Years

4-way
2-way
1-way

Dijkstra

Basicmath

 94

Figure 53 – The failure probabilities in 6 years for a 16 Byte cache line and a 32 Byte

cache line for six applications. The hit-rate improvement is also shown, defined as the

improvement of using a 32 Byte cache line compared to a 16 Byte line.

Figure 54 – The hit rate and the failure probability in 6 years are shown for five

different cache sizes and for three applications.

0%

2%

4%

Fa
ilu

re
 R

at
e

 in
 6

 y
rs

16Byte Cache Line

32Byte Cache Line

Hit Rate Improvement

30.00%

35.00%

40.00%

45.00%

40%

50%

60%

70%

80%

90%

100%

4 16 32 64 128

H
it

 R
a

te

Cache Size (KB)

Failure Rate

Hit RateBasicmath
Qsort
Dijkstra

Fa
il

u
re

 R
at

e

15%

10%

5%

0%

 95

Figure 55 – The failure probabilities in 6 years for three different replacement

algorithms for six benchmarks, as well as the hit rate improvements of LRU and LRR.

The hit-rate improvement is defined as the improvement compared to the ‘Random’

replacement policy.

Figure 56 – The failure probabilities of the 2-way 32KB data cache with and without

ECCs are shown as a function of time for three applications.

Figure 52 shows the failure rate for different associativities. For illustration purposes,

the results from two applications are shown: Basicmath and Dijkstra, since other

applications produce the same trend. The hit rate of 1-way, 2-way and 4-way associativities

0%

1%

2%

3%

4%

Fa
ilu

re
 R

at
e

 in
 6

 y
rs

Random
LRU
LRR

LRU – Hit Rate Improvement
LRR – Hit Rate Improvement

1E-10

1E-09

1E-08

0.0000001

0.000001

0.00001

0%

1%

2%

3%

4%

0 2 4 6 8 10

F
a

il
u

re
 R

a
te

No. of Years

Basicmath
Qsort
Dijkstra

w ECC

w/o ECC
1E-5

1E-6

1E-10

1E-9

Fa
il

u
re

 R
at

e
 w

/o
 E

C
C

Fa
il

u
re

 R
at

e
 w

 E
C

C

1E-7

1E-8

 96

are 96.12%, 96.33%, 96.36%, respectively, for Basicmath, and are 62.23%, 64.81%,

65.54%, respectively, for Dijkstra. Higher associativity results in a higher hit rate, but also

increases the failure rate. A higher hit rate produces fewer misses, and thus the cells are

more likely to keep their stored values unchanged, which aggravates the BTI effect. From

the perspective of aging, a cache miss is potentially useful as it flips the value stored in a

cell and therefore mitigates BTI.

7.4.2 Cache Line Size

Data is transferred between the main memory and the cache in blocks of fixed size,

called cache lines. When a cache line is copied from the main memory into the cache, a

cache entry is created. The cache entry includes the copied data as well as the requested

memory location (called a Tag).

We implemented the data cache with two different cache line sizes: 16 Byte and 32

Byte, while the associativity (2-way), cache size (32KB), and the replacement algorithm

(LRU) are kept the same. Figure 53 shows the failure probabilities of the six benchmarks

for a 16 Byte and a 32 Byte cache line. It’s observed that the 32 Byte cache line has a lower

failure rate than the 16 Byte cache line for all six benchmarks. Except for Basicmath and

SHA, which see little hit-rate improvement, the 32 Byte cache line achieves better

performance than the 16 Byte cache line. Overall, the 32 Byte cache line is better than the

16 Byte cache line in both performance and reliability. This observation is a little counter-

intuitive as we’ve shown that a higher hit rate results in lower reliability in Section 7.4.1.

So it might be straightforward to think that the 32 Byte cache line would have a higher

failure rate because of its higher hit rate. However, a cache miss in a 32 Byte cache line

 97

produces recovery cycles for up to 256 (32×8) SRAM cells which is twice as many as with

a 16 Byte cache line (16×8 SRAM cells). Therefore, although a 32 Byte cache line has less

misses, it actually has a larger number of BTI stress recovery cycles than a 16 Byte cache

line, which results in improved reliability.

7.4.3 Cache Size

The total size of the data cache is another important metric in cache system design. In our

experiments, the data cache is implemented with five different cache sizes: 4KB, 16KB,

32KB, 64KB and 128KB, while the associativity (2-way), cache line size (16Byte), and

replacement algorithm (LRU) are kept the same. Figure 54 shows the hit rate and failure

rate (in 6 years) for five different cache sizes for three applications. The failure rate

increases dramatically as the cache size increases. This can be easily understood because

the failure probability is larger when there are more SRAM cells.

It’s also observed that the hit rate increases as the cache size increases. However, when the

cache size is larger than 32KB, little improvement is seen in the hit rate. According to the

performance specification and reliability budget, cache designers could determine an

optimal cache size balancing both performance and reliability requirements.

7.4.4 Replacement Algorithm

In order to make room for a new entry on a cache miss, the cache may have to evict

one of the existing entries. The heuristic that it uses to choose the entry to evict is called

the replacement policy. The fundamental problem with any replacement policy is that it

must predict which existing cache entry is least likely to be used in the future.

 98

In this work, three different replacement algorithms were implemented, namely,

Random, Least-Recently-Replaced (LRR) and Least-Recently-Used (LRU), while the

associativity (2-way), cache line size (16 Byte) and cache size (32KB) were kept the same.

The ‘random’ algorithm randomly selects a cache entry to evict. It uses a simple 1- or 2-

bit counter to select the eviction entry and has low area overhead. The LRR algorithm

evicts the cache entry which was least recently replaced. It uses one extra bit in the Tag

part and has therefore also low area overhead. The LRU algorithm, a popular replacement

policy, evicts the entry which was least recently used. The LRU scheme has typically the

best performance, but also the highest area overhead. A two-way LRU uses one flip-flop

per cache line, a three-way LRU uses three flip-flops per cache line, and a four-way LRU

uses five flip-flops per cache line to store the access history. Overall, LRU favors the most

recently accessed data, while LRR favors recently loaded data.

The failure probabilities for the three replacement algorithms under study are shown

in Figure 55, as well as the hit-rate improvement of LRU and LRR compared to the random

algorithm. It’s observed that LRU achieves the best hit rate in all the applications.

However, it always has lower reliability compared to LRR and the random algorithm. So

tradeoffs between performance and reliability, together with other important metrics such

as leakage power etc., should be made according to the priority associated with each metric.

The reason for the above results is similar to the observations on the impact of

associativity. A higher hit rate means fewer misses, which results in fewer recovery cycles.

As a result, the cells suffer from more BTI degradation.

7.4.5 Error Correcting Codes (ECC)

 99

ECC is a technique which can detect and correct the most common sources of internal

data corruption. ECCs add some redundancy (some extra bits) to check the consistency of

the data and to recover data determined to be corrupted. The word size containing the ECC

codes for the data cache of LEON3 is N=39 when the implemented ECC is designed to

correct single-bit errors.

The failure probabilities of the data cache for a 2-way 32KB data cache with and

without ECC codes are shown in Figure 56 as a function of time. Again, three benchmarks

are illustrated as examples, and other benchmarks produce similar results. It can be seen

that ECCs lead to a substantial improvement in the failure probability.

7.5 Conclusions

The reliability and performance of the data cache is analyzed while varying five

different configuration parameters: associativity, cache line size, cache size, the

replacement algorithm, and ECC codes. A general rule is that higher performance (higher

hit rate) results in lower reliability (higher failure probability). This can be attributed to the

fact that cache misses are helpful for reliability. When a cache miss happens, the old data

in the specific cache line needs to be replaced by new data. When the value stored in a

SRAM cell flips, the stressed transistors recover from BTI stress, and this improves

reliability. If a cache configuration has a higher hit rate, it’s expected to see a higher failure

probability. For example, for associativity, larger associativity results in better

performance, but worse reliability. For the replacement algorithm, the ‘random’

replacement policy has the worst hit rate and the best reliability, while the popular LRU

algorithm has the best hit rate and the worst reliability.

 100

One exception of this rule happens for different cache line sizes. The 32 Byte cache

line is better than the 16 Byte cache line in both performance and reliability. One cache

miss for a 32 Byte cache line can recover as many as 256 (32×8) cells from BTI stress,

which is twice as many as for a 16 Byte cache line. Therefore, despite the fact that the 32

Byte cache line has fewer cache misses, it actually results in more BTI stress recovery.

Thus, the 32 Byte cache line achieves higher performance and better reliability.

Cache size is of great significance to both cache performance and reliability. It is

observed that when the cache size increases to larger than 16KB, the cache reliability

dramatically drops, while the performance (hit rate) has very limited improvement.

Moreover, ECC always improves reliability at the cost of area and power overhead.

Overall, the proposed framework can efficiently evaluate the performance and

reliability of the cache memory and can provide insight to cache designers to help them

optimize performance-reliability tradeoffs by selecting the appropriate cache

configurations based on the specification budget and lifetime requirements.

 101

8. CONCLUSIONS

8.1 Conclusions of This Research

This research presents a framework of aging simulator which can assess the lifetimes

of complex systems like state-of-art microprocessors, while taking into account the effect

of PVT variations and a variety of Front-end-of-line (FEOL) device wearout mechanisms.

The proposed aging simulator achieves accurate statistical timing analysis to study the

combined impact of aging effect, manufacturing variability, ambient conditions and

realistic workload. The timing analyzer in this work is the first attempt in the literature to

achieve a comprehensive process-voltage-temperature-aging-aware statistical timing

analysis (StTA) while considering the effect of bias temperature instability (BTI), hot

carrier injection (HCI), gate oxide breakdown (GOBD) simultaneously.

The proposed aging simulator presents the relationship between circuit performance

(speed) and circuit reliability, and gives insights for designers to achieve optimal tradeoff

between performance and reliability. Moreover, circuit designers can benefit from the

proposed work to avoid excessive guard-banding to achieve higher performance while still

maintaining the required reliability.

This research also includes the SRAM lifetime analysis, particularly the lifetimes of

the data cache within state-of-art microprocessors. The work studies the performance and

reliability for different cache configurations, and provides insight to cache designers to

help them optimize performance-reliability tradeoffs by selecting the appropriate cache

configurations based on the specification budget and lifetime requirements.

 102

8.2 Future Work

While the proposed aging simulator can study the system lifetimes of state-of-art

microprocessors due to a variety of wearout mechanisms, this research is limited to

microprocessors with only one core in the system. Future work might involve the lifetime

analysis of multi-core microprocessors and heterogeneous systems that use more than one

kind of processor or cores.

Reliability of FinFET (Fin Field Effect Transistor) technology has been widely used

in some performance-driven applications. The device-level wearout mechanisms, as well

as the system lifetime estimations, would be quite different in FinFET technology and

remain to be discovered and explored.

The cache reliability discussed in Chapter 7 deal with front-end wearout mechanisms

only, and the proposed framework can be easily extended to study the cache reliability due

to backend wearout mechanisms for different cache configurations.

 103

REFERENCES

[1] Taizhi Liu, Chang-Chih Chen and Linda Milor, “Comprehensive Reliability-Aware

Statistical Timing Analysis Using a Unified Gate-Delay Model for

Microprocessors,” IEEE Transactions on Emerging Topics in Computing, 2016.

[2] Taizhi Liu, Chang-Chih Chen and Linda Milor, “Accurate Standard Cell

Characterization using Multivariate Adaptive Regression Splines,” Proc. of

International Symposium on Quality Electronic Design (ISQED), pp. 272–279,

2015.

[3] Taizhi Liu, Chang-Chih Chen and Linda Milor, “Process Variation Aware Timing

Analysis Based on a Monte Carlo Framework Using a Novel Delay Model,” Proc.

of TAU Workshop, 2015.

[4] Taizhi Liu, Seyed-Abdollah Aftabjahani and Linda S. Milor, “Compact variation-

aware models for standard cells with interconnect-dominated loads for statistical

static timing analysis,” Proc. of Design of Circuits and Integrated Systems (DCIS),

2013.

[5] Taizhi Liu, Chang-Chih Chen, Soonyoung and Linda Milor, “System-level

variation-aware aging simulator using a unified novel gate-delay model for bias

temperature instability, hot carrier injection, and gate oxide breakdown,”

Microelectronics Reliability, vol. 55, no. 9–10, pp. 1334–1340, 2015.

[6] Taizhi Liu, Chang-Chih Chen, Woongrae Kim and Linda Milor, “Comprehensive

reliability and aging analysis on SRAMs within microprocessor systems,”

Microelectronics Reliability, vol. 55, no. 9–10, pp. 1290–1296, 2015.

[7] Taizhi Liu, Chang-Chih Chen, Jiadong Wu and Linda Milor, “SRAM stability

analysis for different cache configurations due to Bias Temperature Instability and

Hot Carrier Injection,” Proc. of IEEE 34th International Conference on Computer

Design (ICCD), pp. 225–232, 2016.

[8] Chang-Chih Chen, Taizhi Liu, Soonyoung Cha, Linda Milor, “Processor-level

reliability simulator for time-dependent gate dielectric breakdown”,

Microprocessors and Microsystems, vol. 39, no. 8, pp. 950–960, 2015.

 104

[9] Soonyoung Cha, Chang-Chih Chen, Taizhi Liu and Linda S. Milor, “Extraction of

threshold voltage degradation modeling due to negative bias temperature instability

in circuits with I/O measurements,” Proc. of VLSI Test Symposium (VTS), pp. 1–6,

2014.

[10] Chang-Chih Chen, Soonyoung Cha, Taizhi Liu and Linda S. Milor, “System-Level

modeling of microprocessor reliability degradation due to BTI and HCI,” Proc.

International Reliability Physics Symposium (IRPS), pp. CA 8.1–CA 8.9, 2014.

[11] Soonyoung Cha, Dae-Hyun Kim, Taizhi Liu and Linda S. Milor, “The die-to-die

calibrated combined model of negative bias temperature instability and gate oxide

breakdown from device to system,” Microelectronics Reliability, vol. 55, no. 9–10,

pp. 1404–1411, 2015.

[12] Woongrae Kim, Chang-Chih Chen, Taizhi Liu, Soonyoung Cha and Linda Milor,

“Estimation of remaining life using embedded SRAM for wearout parameter

extraction”, Proc. of IEEE International Workshop on Advances in Sensors and

Interfaces (IWASI), pp. 243–248, 2015.

[13] Chang-Chih Chen, Taizhi Liu, and Linda Milor, “System-Level Modeling of

Microprocessor Reliability Degradation Due to Bias Temperature Instability and Hot

Carrier Injection”, IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 24, no. 8, pp. 2712–2725, 2016.

[14] Y. Cao et al., "Cross-layer modeling and simulation of circuit reliability", IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 1, pp. 8-23, Jan.

2014.

[15] A. Singhee and R. A. Rutenbar, “From finance to flip flops: A study offast quasi-

Monte Carlo methods from computational finance applied to statistical circuit

analysis,” in Proc. IEEE Int. Symp. Quality Electronic Design (ISQED), 2007, pp.

685–692.

[16] M. Keramat and R. Kielbasa, “Worst case efficiency of LHSMC yield estimator of

electrical circuits,” in Proc. Int. Symp. on Circuits and Systems, vol. 3. 1997, pp.

1660–1663.

[17] R. Kanj, R. Joshi, and S. Nassif, “Mixture importance sampling and its application

to the analysis of SRAM designs in the presence of rare failure events,” in Proc.

IEEE Design Automation Conf. (DAC), 2006, pp. 69–72.

 105

[18] A. Singhee, S. Singhal, and R. A. Rutenbar, “Practical, fast Monte Carlo statistical

static timing analysis: Why and how,” in Proc. International Conference on

Computer-Aided Design (ICCAD), 2008, pp. 190–195.

[19] W. Zhang, A. Singhee, J.Xiong, P. Habitz, A. Joshi, C. Visweswariah and J.

Sundquist, “A dynamic method for efficient random mismatch characterization of

standard cells,” in Proc. International Conference on Computer-Aided Design

(ICCAD), 2012, pp. 180–186.

[20] K. Okada, K. Yamaoka, and H. Onodera, “A statistical gate-delay model considering

intra-gate variability,” in Proc. International Conference on Computer-Aided Design

(ICCAD), 2003, pp. 908–913.

[21] K. Okada, K.Yamaoka, and H. Onodera, “A statistical gate delay model for intra-

chip and inter-chip variabilities,” in Proc. Asia & South Pacific Design Automation

Conf. (ASPDAC), 2003.

[22] S. Sundareswaran, J. Abraham, R. Panda and A. Ardelea, “Characterization of

standard cells for intra-cell mismatch variations,” IEEE Trans. Semiconductor

Manufacturing, vol. 22, no. 1, pp. 40–49, Feb. 2009.

[23] L. Brusamarello, G. I. Wirth, P. Roussel and M. Miranda, “Fast and accurate

statistical characterization of standard cell libraries,” Microelectronics Reliability,

vol. 51, no. 12, pp. 2341–2350, Dec. 2011.

[24] S. Gupta and S. S. Sapatnekar, “Compact current source models for timing analysis

under temperature and body bias variations,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 20, no. 11, pp. 2104–2117, Nov. 2012.

[25] B. Amelifard, S. Hatami, H. Fatemi, and M. Pedram, “A current source model for

CMOS logic cells considering multiple input switching and stack effect,” in Proc.

Design, Automation & Test in Europe Conf. (DATE), 2008, pp. 568–574.

[26] A. Goel and S. Vrudhula, “Current source based standard cell model for accurate

signal integrity and timing analysis,” in Proc. Design, Automation & Test in Europe

Conf. (DATE), 2008, pp. 574–579.

[27] B. Liu and A. B. Kahng, “Statistical gate level simulation via voltage controlled

current source models,” in Proc. IEEE Int. Workshop Behavioral Modeling

Simulation, Sep. 2006, pp. 23-27.

 106

[28] A. Goel and S. Vrudhula, “Statistical waveform and current source based standard

cell models for accurate timing analysis,” in Proc. IEEE Design Automation Conf.

(DAC), 2008, pp. 227–230.

[29] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and S. Narayan, “First-

order incremental block-based statistical timing analysis,” in Proc. IEEE Design

Automation Conf. (DAC), 2004, pp. 331–336.

[30] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering spatial

correlations using a single pert-like traversal,” in Proc. International Conference on

Computer-Aided Design (ICCAD), 2003, pp. 621–625.

[31] K. Chopra, S. Shah, A. Srivastava, D. Blaauw, and D. Sylvester, “Parametric yield

maximization using gate sizing based on efficient statistical power and delay

gradient computation,” in Proc. International Conference on Computer-Aided

Design (ICCAD), 2005, pp. 1023–1028.

[32] Y. Zhan, A. J. Strojwas, X. Li, L. T. Pileggi, D. Newmark, and M. Sharma,

“Correlation-aware statistical timing analysis with non-Gaussian delay

distributions,” in Proc. IEEE Design Automation Conf. (DAC), 2005, pp. 77–82.

[33] S. Bhardwaj, P. Ghanta, and S. Vrudhula, “A framework for statistical timing

analysis using non-linear delay and slew models,” in Proc. International Conference

on Computer-Aided Design (ICCAD), 2006, pp. 225–230.

[34] L. Cheng, J. Xiong, and L. He, “Non-Gaussian statistical timing analysis using

second-order polynomial fitting,” IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), vol. 28, no. 1, pp. 130–140, Jan. 2009.

[35] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equation of

state calculations by fast computing machines,” J. Chem. Phys., vol. 21, no. 6, pp.

1087–1092, Jun. 1953.

[36] L. Scheffer, “The count of Monte Carlo,” in Proc. of TAU Workshop, 2004.

[37] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and Y. Cao, “The impact of

NBTI effect on combinational circuit: Modeling, simulation, and analysis,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 2, pp.

173–183, Feb. 2010.

 107

[38] F. Firouzi, S. Kiamehr, and M.B. Tahoori, “Statistical analysis of BTI in the

presence of process-induced voltage and temperature variations,” Proc. Asia &

South Pacific Design Automation Conf. (ASPDAC), 2013, pp. 594–600.

[39] F. Firouzi, S. Kiamehr, M. Tahoori, and S. Nassif, “Incorporating the impacts of

workload-dependent runtime variations into timing analysis,” in Proc. Design,

Automation & Test in Europe Conf. (DATE), 2013, pp. 1022-1025.

[40] J. Fang and S.S. Sapatnekar, “The impact of BTI variations on timing in digital logic

circuits,” IEEE Trans. Device & Materials Reliability, vol. 13, no. 1, pp. 277–286,

March 2013.

[41] Y. Lu, L. Shang, H. Zhou, H. Zhu, F. Yang, and X. Zeng, “Statistical reliability

analysis under process variation and aging effects,” in Proc. IEEE Design

Automation Conf. (DAC), 2009, pp. 514–519.

[42] S. Han and J. Kim, “NBTI-aware statistical timing analysis framework,” in Proc.

IEEE Int. SoC Conf., 2010, pp. 158–163.

[43] K. Ramakrishnan, R. Rajaraman, S. Suresh, N. Vijaykrishnan, Y. Xie, and M. Irwin,

“Variation impact on SER of combinational circuits,” in Proc. IEEE Int. Symp.

Quality Electronic Design (ISQED), 2007, pp. 911–916.

[44] J. Fang and S.S. Sapatnekar, “Incorporating Hot Carrier Injection Effects into

Timing Analysis for Large Circuits,” IEEE Trans. Very Large Scale Integration

Systems (TVLSI), vol. 22, no. 12, pp. 2738–2751, Dec. 2014.

[45] M. Choudhury, V. Chandra, K. Mohanram, and R. Aitken., "Analytical model for

TDDB-based performance degradation in combinational logic." in Proc. IEEE

Design, Automation and Test in Europe (DATE), 2010, pp. 423-428.

[46] B. Kaczer, R. Degraeve, M. Rasras, K. Van de Mieroop, P. J. Roussel and G.

Groeseneken, “Impact of MOSFET gate oxide breakdown on digital circuit

operation and reliability,” IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 500–

506, Mar. 2002.

[47] S. Kiamehr, F. Firouzi, and M.B. Tahoori, “Aging-aware timing analysis

considering combined effects of NBTI and PBTI,” Proc. IEEE Int. Symp. Quality

Electronic Design (ISQED), 2013, pp. 53-59.

 108

[48] G.I. Wirth, R. da Silva, and B. Kaczer, “Statistical model for MOSFET bias

temperature instability component due to charge trapping,” IEEE Trans. Electron

Devices, vol. 58, no. 8, pp. 2743-2751, 2011.

[49] R. Fernandez, B. Kaczer, A. Nackaerts, S. Demuynck, R. Rodriguez, M. Nafria, and

G. Groeseneken, “AC NBTI studies in the 1 Hz – 2 GHz range on dedicated on-

chip CMOS circuit,” Proc. Int. Electron Devices Meeting, 2006.

[50] S. Zafar, Y.H. Kim, V. Narayanan, C. Cabral, V. Paruchuri, B. Doris, J. Stathis, A.

Callegari, and M. Chudzik, “A comparative study of NBTI and PBTI (charge

trapping) in SiO2/HFO2 stacks with FUSI, TiN, Re Gates,” Proc. Symp. VLSI Tech.,

2006, pp. 23-25.

[51] S.-Y. Chen, C.-H. Tu, P.-W. Kao, M.-H. Lin, H.-S. Haung, J.-C. Lin, M.-C. Wang,

S.-H. Wu, Z.-W. Jhou, S. Chou, and J. Ko, “Investigation of DC hot-carrier

degradation at elevated temperatures for p-channel metal-oxide-semiconductor field-

effect transistors,” Jpn. J. Appl. Phys, vol. 47, no. 3, pp. 1527-1531, 2008.

[52] W. Wang, V. Reddy, A.T. Krishnan, R. Vattikonda, S. Krishnan, and Y. Cao,

“Compact Modeling and Simulation of Circuit Reliability for 65-nm CMOS

Technology,” IEEE Trans. Device and Materials Reliability, vol. 7, no. 4, pp. 509-

517, 2007.

[53] C. Ma, B. Li, L. Zhang, J. He, X. Zhang, X. Lin, and M. Chan, “A Unified FinFET

Reliability Model Including High K Gate Stack Dynamic Threshold Voltage, Hot

Carrier Injection, and Negative Bias Temperature Instability,” Proc. Int. Symp.

Quality Electronic Design, 2009, pp. 7-12.

[54] C.H. Tu, S.Y. Chen, A.E. Chuang, H.S. Huang, Z.W. Jhou, C.J. Chang, S. Chou,

and J. Ko, “Transistor variability after CHC and NBTI stress in 90 nm pMOSFET

technology,” Electronics Letters, vol. 45, no. 15, pp. 854-856, 2009.

[55] K. Okada, "Analysis of the relationship between defect site generation and dielectric

breakdown utilizing A-mode stress induced leakage current." IEEE Trans. on

Electron Devices, vol. 47, no. 6, pp. 1225-1230, 2000.

[56] R. Degraeve, J.L. Ogier, R. Bellens, P.J. Roussel, G. Groeseneken, and H.E. Maes,

"A new model for the field dependence of intrinsic and extrinsic time-dependent

dielectric breakdown." IEEE Trans. Electron Devices, vol. 45, no. 2, pp. 472-481,

1998.

 109

[57] S. Takagi, N. Yasuda, and A. Toriumi, “Experimental evidence of in- elastic

tunneling and new I–V model for stress-induced leakage current,” IEDM Tech. Dig.,

1996., pp. 323-326.

[58] R. Degraeve, B. Kaczer, A. De Keersgieter, and G. Groeseneken. "Relation between

breakdown mode and breakdown location in short channel NMOSFETs and its

impact on reliability specifications." IEEE Int. Reliability Physics Symp. (IRPS),

2001, pp. 360-366.

[59] B.P. Linder, D.J. Frank, J.H. Stathis, and S.A. Cohen, “Transistor-lim- ited constant

voltage stress of gate dielectrics,” in Symp. VLSI Technol. Dig., 2001, pp. 93–94.

[60] E. Y. Wu, E. J. Nowak, A. Vayshenker, W. L. Lai, and D. L. Harmon, “CMOS

scaling beyond the 100-nm node with silicon-dioxide-based gate dielectrics,” IBM

Journal of Research and Development, vol. 46, 2002.

[61] B. Kaczer, R. Degraeve, M. Rasras, K. Van de Mieroop, P.J. Roussel, and G.

Groeseneken, "Impact of MOSFET gate oxide breakdown on digital circuit

operation and reliability," IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 500-506,

March 2002.

[62] T. Nigam, A. Kerber, and P. Peumans. "Accurate model for time-dependent

dielectric breakdown of high-k metal gate stacks." IEEE Int. Reliability Physics

Symposium (IRPS), 2009, pp. 523-530.

[63] M. Choudhury, V. Chandra, K. Mohanram, and R. Aitken., "Analytical model for

TDDB-based performance degradation in combinational logic." in Proc. Design,

Automation & Test in Europe Conf. (DATE), 2010, pp. 423-428.

[64] S.Y. Kim, G. Panagopoulos, C.-H. Ho, M. Katoozi, E. Cannon, and K. Roy. "A

Compact SPICE Model for Statistical Post-Breakdown Gate Current Increase Due to

TDDB." IEEE Int. Reliability Physics Symposium (IRPS), 2013.

[65] J.H. Stathis, “Percolation models for gate oxide breakdown,” J. Appl. Phys., vol. 86,

no. 10, pp. 5757–5766, Nov. 1999.

[66] M. Houssa, P.W. Mertens, and M.M. Heyns. “Relation between stressinduced

leakage current and time-dependent dielectric breakdown in ultra-thin gate oxides.”

Semiconductor Sci. Technol., vol. 14, no. 10, pp. 892–896, 1999.

 110

[67] S. Lombardo, J. H. Stathis, B. P. Linder, K. L. Pey, F. Palumbo, and C. H. Tung.

"Dielectric breakdown mechanisms in gate oxides." Journal of Applied Physics, vol.

98, no. 12, p. 121301, Dec. 2005.

[68] E. Miranda and J. Suñé. "Analytic modeling of leakage current through multiple

breakdown paths in SiO2 films." IEEE Int. Reliability Physics Symp. (IRPS), 2001,

pp. 367-379.

[69] G.E.P. Box, W.G. Hunter, and J.S. Hunger, Statistics for Experimenters, 2nd

Edition. New York: John Wiley and Sons, 2005.

[70] HSPICE User Manual: www.synopsys.com

[71] M. Celik, L. Pileggi, and A. Odabasioglu, IC Interconnect Analysis. New York:

Springer Science & Business Media, 2002.

[72] E. Acar, A. Odabasioglu, M. Celik, and L. T. Pileggi, “S2P: A stable 2-pole RC

delay and coupling noise metric,” in Proc. Great Lakes Symp. on VLSI, 1999.

[73] J. H. Friedman, “Multivariate adaptive regression splines,” The Annual of Statistics,

vol. 19, no. 1, pp. 1–67, March 1991.

[74] G. Jekabsons, ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave,

2011, available at http://www.cs.rtu.lv/jekabsons/.

[75] FreePDK, North Carolina State University [Online],

http://www.eda.ncsu.edu/wiki/FreePDK.

[76] ISCAS85 Benchmarks. [Online]. Available:

http://web.eecs.umich.edu/~jhayes/iscas.restore/benchmark.html, accessed July 14,

2016.

[77] Cadence Soc Encounter. [Online]. Available:

http://www.cadence.com/products/di/soc_encounter/pages/default.aspx, accessed

Jan. 29, 2016.

[78] QRC Extraction Users Manual, Cadence, Sep. 2009.

http://www.cs.rtu.lv/jekabsons/
http://www.eda.ncsu.edu/wiki/FreePDK

 111

[79] Available: http://iwls.org/iwls2005/benchmarks.html, 2015.

[80] PrimeTime: www.synopsys.com

[81] T. Kirkpatrick and N. Clark, “PERT as an aid to logic design,” IBM J. Res.

Develop., vol. 10, no. 2, pp. 135–141, Jun. 1966.

[82] LEON3 processor: www.gaisler.com

[83] Xilinx ISE, http://www.xilinx.com/products/design-tools/ise-design-suite

[84] Mibench benchmark: http://www.eecs.umich.edu/mibench

[85] S. Assefa et al., “A 90nm CMOS integrated nano-photonics technology for 25Gbps

WDM optical communications applications,” in Proc. IEEE Int. Electron. Devices

Meet. (IEDM), Dec. 10–12 2012.

[86] HotSpot: www.lava.cs.virginia.edu/HotSpot

[87] R. Kwasnick, A.E. Papathanasiou, M. Reilly, A. Rashid, B. Zaknoon, and J. Falk,

“Determination of CPU use conditions,” Proc. Int. Reliability Physics Symp. (IRPS),

2011, pp. 2C.3.1-2C.3.6.

[88] B. Kaczer et al., "Atomistic approach to variability of bias-temperature instability in

circuit simulations ", in IEEE Int. Reliability Physics Symposium (IRPS), 2011, pp.

XT.3.1-XT.3.5.

[89] V. Huard et al. "NBTI degradation: From transistor to SRAM arrays", in Proc. IEEE

Int. Reliability Physics Symposium (IRPS), 2008. pp. 289-300.

[90] A. Bansal et al., "Impact of NBTI and PBTI in SRAM Bit-cells: Relative

Sensitivities and Guidelines for Application-Specific Target Stability/Performance",

in Proc. IEEE Int. Reliability Physics Symposium (IRPS), 2009, pp. 745-749.

[91] J. C. Lin et al., “Time dependent vccmin degradation of SRAM fabricated with high-

k gate dielectris,” in Proc. IEEE Int. Reliability Physics Symposium (IRPS), 2007,

pp. 439-444.

http://www.synopsys.com/
http://www.xilinx.com/products/design-tools/ise-design-suite
http://www.eecs.umich.edu/mibench
http://www.lava.cs.virginia.edu/HotSpot

 112

[92] K. Kang et al., “Impact of negative-bias temperature instability in nanoscale SRAM

array: Modeling and analysis,” IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), vol. 26, no. 8, pp. 1770-1781, 2007.

[93] A. Bansal et. al., “Impacts of NBTI and PBTI on SRAM static/dynamic noise

margins and cell failure probability,” Journal Micro. Rel., pp. 642-649, 2009.

[94] A. Bansal, J.-J. Kim and Rahul Rao, "Usage-based degradation of SRAM arrays due

to bias temperature instability," in Proc. IEEE Int. Reliability Physics Symposium

(IRPS), 2012, pp. 2F.6.1-2F.6.4.

[95] P. Weckx et al., "Defect-based methodology for workload-dependent circuit lifetime

projections-Application to SRAM," in Proc. IEEE Int. Reliability Physics

Symposium (IRPS), 2013, pp. 3A.4.1-3A.4.7.

[96] D. Angot et al., “The impact of high Vth drifts tail and real workloads on SRAM

reliability,” in Proc. IEEE Int. Reliability Physics Symposium (IRPS), 2014, pp.

CA.10.1-CA.10.6.

[97] E. Mintarno et al, "Workload dependent NBTI and PBTI analysis for a sub-45nm

commercial microprocessor", in Proc. IEEE Int. Reliability Physics Symposium

(IRPS), pp. 3A.1.1-3A.1.6, 2013.

[98] S. Khan et al., “Trends and challenges of SRAM reliability in the nano-scale era,” in

Proc. Design and Technology of Integrated Systems in Nanoscale Era (DTIS), 2010.

[99] M. Indaco et al., “On the impact of process variability and aging on the reliability of

emerging memories (Embedded tutorial),” in Proc. European Test Symposium

(ETS), 2014.

[100] V. Huard et al., “Managing SRAM reliability from bitcell to library level,” in

Proc. IEEE Int. Reliability Physics Symposium (IRPS), 2010, pp. 655-664.

[101] J. Qin et al., “SRAM stability analysis considering gate oxide SBD, NBTI and

HCI,” in Proc. International Integrated Reliability Workshop (IIRW), 2007, pp. 33-

37.

[102] A. Calimera et al., “Paritioned cache architectures for reduced NBTI-induced

aging,” in Proc. Design, Automation & Test in Europe Conf. (DATE), 2011.

 113

[103] A. Gebregiorgis et al., “Aging mitigation in memory arrays using self-controlled

bit-flipping technique,” in Proc. Asia & South Pacific Design Automation Conf.

(ASPDAC), 2015, pp. 231-236.

[104] S. Ganapathy et al., “IRMW: A low-cost technique to reduce NBTI-dependent

parametric failrues in L1 data caches,” in Proc. International Conference on

Computer Design (ICCD), 2014, pp .68-74.

[105] E. Gunadi et al., “Combating aging with the colt duty cycle equalizer,” in Proc.

IEEE/ACM International Symposium on Microarchitecture (MICRO-43), 2010, pp

103-114.

[106] J. Shin et al., “A proactive wearout recovery approach for exploiting

microarchitectural redundancy to extend cache SRAM lifetime,” in Proc.

International Symposium on Computer Architecture (ISCA), 2008, pp. 353-362.

[107] M. Basoglu et al., “NBTI-aware DVFS: A new approach to saving energy and

increasing processor lifetime,” in Proc. International Symposium on Low Power

Electronics and Design (ISLPED), 2010, pp. 253-258.

[108] O. Khan et al., “A self-adaptive system architecture to address transistor aging,”

in Proc. Design, Automation & Test in Europe Conf. (DATE), 2009, pp. 253-258.

[109] A. Valero et al., “Enhancing the L1 data cache design to mitigate HCI,” IEEE

Computer Architecture Letters, in press.

[110] G.I. Wirth et al., “Statistical model for MOSFET bias temperature instability

component due to charge trapping,” IEEE Trans. Electron Devices, vol. 58, no. 8,

pp. 2743-2751, 2011.

[111] W. Wang, et al., “Compact Modeling and Simulation of Circuit Reliability for 65-

nm CMOS Technology,” IEEE Trans. Device and Materials Reliability, vol. 7, no.

4, pp. 509-517, 2007.

[112] E. Seevinck, F.J. List, and J. Lohstroh, "Static-noise margin analysis of MOS

SRAM cells," IEEE J. Solid-State Circuits, vol. 22, no. 5, pp. 748-754, Oct. 1987.

 114

[113] R. Kang, R. Joshi, and S. Nassif, "Mixture importance sampling and its

application to the analysis of SRAM designs in the presence of rare failure events,"

in Proc. Design Automation Conf. (DAC), 2006, pp. 69-72.

[114] B. Sklar and F.J. Harris, “The ABCs of Linear Block Codes,” IEEE Signal

Processing Magazine, pp. 14-35, July 2004.

[115] A. Ricketts et al., “Investigating the impact of NBTI on different power saving

cache strategies,” in Proc. Design, Automation & Test in Europe Conf. (DATE),

2010, pp. 592-597.

