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SUMMARY 

Systems of coupled oscillators find extensive use as mathematical 

models for a great variety of physical systems, from crystal lattices 

in solid state physics and molecular systems in chemical physics 

through canonical ensembles in statistical mechanics to systems of 

planets and galaxies in astrophysics. 

In many cases the harmonic approximation, in which only linear 

forces are included in the model, suffices to provide a useful descrip-

tion of physical phenomena in terms of a system of coupled oscillators. 

However, there are some important physical phenomena which cannot 

be adequately described unless nonlinear forces are also included in 

the coupled oscillator model. For example, in the description of a 

crystal lattice, nonlinear terms must be included in order to provide 

adequate theories of thermal conductivity, thermal expansion, and the 

propagation of sound waves. As another example, in chemical physics, 

the dissociation of a molecule is primarily a nonlinear phenomenon. 

In principle it is always possible to obtain the general solution 

of the linear coupled oscillator system given by the harmonic approxi-

mation. An orthogonal transformation to normal mode variables, in 

which the equations of motion are completely decoupled, can always be made 

for physically realistic linear systems. 

But if nonlinear forces are included in the coupled oscillator 

system, then the equations of motion cannot in general be completely 

decoupled by a linear transformation. If a normal mode transformation 
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which decouples only the linear portion of the system is applied, 

then the nonlinear terms couple the resulting "harmonic normal modes." 

For many of the physical systems of interest, the linear and 

nonlinear couplings cooperate in a fashion such that the oscillator 

system is capable of complete sharing of energy among all of its 

harmonic normal modes. That is, the set of harmonic normal mode fre-

quencies is "tuned," so that internal resonances are present in the 

harmonic normal mode system, and under certain conditions energy can 

be passed around among all of the modes. 

The available perturbation methods, such as those of Kryloy-

Bogoliubov and Wigner-Brillouin, encounter a classic difficulty 

characterized by the appearance of terms having small divisors, when 

applied to nonlinear systems having tuned frequencies. Since these 

tuned systems share energy and are the systems of greatest interest 

in the present investigation, the ineffectiveness of these perturba-

tion methods when applied to tuned systems is a serious shortcoming. 

The primary aim of the present investigation is to develop a 

perturbation method which is effective in dealing with tuned nonlinear 

coupled oscillator systems. 

In order to deal with the most extreme case of tuned harmonic 

normal mode frequencies, an exactly-tuned nonlinear one-dimensional 

coupled oscillator system has been chosen as a model to be analyzed, 

This model is not meant to represent any particular physical system; 

rather, it has been designed to emphasize the feature of tuned frequencies 

in a reasonably simple nonlinear coupled oscillator system. It is felt 

that if a successful analytic method of solution can be developed for 
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this simple but extreme case, then considerable insight into the 

solution of more complicated physical three-dimensional nonlinear 

systems in which the tuning relations are perhaps more complicated 

will have been gained. 

The system chosen for analysis in the present investigation is 

governed by a hamiltonian which is of the following form in harmonic 

normal mode variables: 

H = Z 	qio-+ 12-27,0?-ej-) 4- 	
er■ 	

(1) 
12-14 

It can be shown that the cubic coupling energy terms, the portion of 

Equation (1) controlled by overall coupling parameter a, are of 

such a form that the frequencies w k  = kw form an exactly-tuned set 

for this system. 

Analysis of the system given by Equation (1) for an arbitrary number 

of oscillators, N, has been guided by the analysis of three simpler 

cases. 

In the first case, some simplification of the analysis has been 

achieved by showing that the solution of a given tuned oscillator system 

is well-approximated by the solution to a corresponding "resonant" sys-

tem. This "resonant" system is constructed by retaining only the slowly-

varying coupling terms in the hamiltonian of the original system. The 

distinction between slowly- and rapidly-varying terms is most conven-

iently made in action-angle formalism. 

In the second case, various methods of solution have been applied 

to obtain the general solution of a linear coupled oscillator system 
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which is somewhat similar to the nonlinear system of Equation (1), but 

which is much easier to solve. The harmonic normal mode hamiltonian of 

this linear system is of the form 

1.1 

= 	
12,-1 	 12_,JL 

	 ( 2 ) 

where now the quadratic coupling energy terms are of such a form that 

the frequencies w k  = w form an exactly-tuned set. 

In the third case, the energy solution for a resonant exactly-

tuned nonlinear two-oscillator system corresponding to the system given 

in Equation (1) has been obtained. 

The results from these three preliminary investigations have 

guided the analysis of the N-oscillator nonlinear oscillator system. 

The resonant exactly-tuned nonlinear system corresponding to the system 

specified by Equation (1) has been found to possess N periodic solu-

tions for N different special sets of initial conditions. Further, it 

has been found that the general solution of the N-oscillator resonant 

system can be expressed in terms of a perturbation expansion about a 

periodic solution. 

The expansion parameter used in this method of general solution 

is a function only of ratios between initial conditions. To first order, 

the method of expansion about periodic solutions avoids the problem of 

the appearance of terms with small divisors. In higher-order approxima 

tions, terms of this sort may appear, but it seems likely that they can 

be eliminated by an appropriate choice of arbitrary constants in the 

formal solution. 



To check the effectiveness of the method of expansion about 

periodic solutions developed here, results of this method have been 

compared with relatively "exact" numerical solutions of the equations 

of motion for various selected sets of initial conditions, using a 

high-speed digital computer. 

This comparison indicates that the periodic solutions are valid 

zeroth-order terms for a perturbation expansion, and that reasonably 

good first-order approximations to the exact general solutions of small 

systems can be obtained. It is, however, crucial to expand about an appro-

priate periodic solution for a given set of initial conditions, in order 

to keep the expansion parameters small. Some difficulties have been 

encountered using the choice of arbitrary constants which results in 

computational simplicity of the second-order calculation; but it is felt 

that the second-order and higher calculations can in principle be success-

fully conducted, with another choice of arbitrary constants. 

The principal conclusion which can be drawn from this investiga-

tion is that weakly-coupled energy-sharing nonlinear oscillator systems 

are amenable to analysis and that these systems have much in common with 

energy-sharing linear coupled oscillator systems. It is hoped that this 

result will encourage the development of more practical methods of analysis 

for such systems. 

In the case of physically realistic systems, there are rapidly-

varying as well as slowly-varying terms in the couplings, and the fre-

quencies are not likely to be exactly tuned. Thus the analysis of the 

resonant exactly-tuned nonlinear system summarized above is not a com-

plete analysis which is immediately applicable to physical problems. But 
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it should be the more difficult part of the analysis; it is expected 

that the effects of nonresonant coupling terms and detuning of the fre-

quencies can be dealt with by standard perturbation methods, using the 

solution of the resonant exactly-tuned system as a zeroth-order solu-

tion. 

Such perturbations of the resonant exactly-tuned system will not 

be considered analytically in this study. However, some computer studies 

both of the effect of nonresonant coupling terms and of detuning have 

been included in this investigation. 

In addition to its primary aim of developing a perturbation method 

for resonant exactly-tuned nonlinear coupled oscillator systems, this 

investigation has had several related secondary aims. 

First, an investigation in some detail has been made of the 

relationship between energy sharing and tuning of the uncoupled harmonic 

normal mode frequencies. A system need not be exactly tuned in order to 

be capable of complete energy sharing. A criterion for the tuning of a 

few simple nonlinear systems has been developed early in the investiga- 

tion. Contact is made here with computer studies by Fermi, Pasta and Ulam, 

and by Jackson. 

Second, some investigation of the constants of the motion for a 

nonlinear system has been made. Since knowledge of N constants of the 

motion is equivalent to knowledge of the general solution of a system, and 

since the general solution has been obtained, it would appear that at 

least the resonant exactly-tuned nonlinear systems investigated in this 

study possess N constants of the motion. However, the form of these 

constants of the motion has not yet been found. At best, one additional 



constant of the motion other than the hamiltonian has been identified 

for nonlinear systems® 

Finally, the approach to equilibrium has been studied briefly. 

A computer study of linear and nonlinear systems of five oscillators 

indicates that both quickly reach an equilibrium configuration after 

being started with all the energy in the lowest mode. The single-

oscillator distribution densities of both systems are in reasonable 

agreement with the Boltzmann distribution of equilibrium statistical 

mechanics. Thus four oscillators evidently form an adequate heat bath 

for the fifth, in the canonical ensemble theory of equilibrium statis-

tical mechanics. 

XV 



CHAPTER I 

INTRODUCTION 

In the first two sections of this chapter, some historical remarks 

will be made and an outline of the content of the remainder of this thesis 

will be given. The third section will serve as a review of the solution 

of a general linear coupled oscillator system in normal modes. The final 

section will introduce some of the physical systems and physical phe-

nomena for which nonlinear coupled oscillator systems are appropriate 

mathematical models. 

Historical Introduction  

Systems of coupled oscillators have for nearly three centuries 

been valuable to physicists as mathematical models for various physical 

systems. Newton (1686) first used a one-dimensional lattice of equal 

massed connected by linear springs, that is, a harmonic coupled oscilla-

tor system, as a model for the propagation of sound waves in air. This 

model enjoyed some success in theoretically predicting the speed of sound 

in air (Lamb 1931)0 

Many of the vital problems and techniques of modern theoretical 

physics and pure mathematics were first discovered in connection with 

such harmonic coupled oscillator systems: eigenvalues and eigenvectors, 

Fourier expansions, expansions in series of orthogonal functions, partial 

differential equations, wave propagation, and atomic theory of solids 

and crystal structure (Rayleigh 1926; Brillouin 1946)0 
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Any conservative system of coupled particles in which only forces 

which are linear functions of displacements act can in principle be 

solved. A transformation can be made to a normal mode representation, in 

which the equations of motion are completely decoupled. The general par-

ticle solution is then a linear superposition of normal mode solutions. 

(It should be emphasized that the general particle solution of the 

linear system is available "in principle." For example, the normal modes 

of a one-dimensional random A-B alloy are not easily calculated (Dean and 

Bacon, 1962). In general, the only solvable linear systems are periodic 

with respect to the distribution of the particle masses.) 

For the linear system, there is no sharing of energy between the 

completely decoupled normal mode oscillators. Thus N constants of the 

motion are known to exist for any linear system having N degrees of free-

dom, in the form of the N normal mode energies. 

It isjust this relative simplicity which limits the usefulness 

of the linear system as a mathematical model adequately representing actual 

physical systems. As will be discussed in detail later in this chapter, 

there are numerous applications in which the harmonic potentials and con-

stant normal mode energies of the linear model fail to provide physically 

realistic results. Harmonic potentials are symmetrical, and a linear model 

of a crystal lattice cannot exhibit thermal expansion. Constant normal 

mode energies cause trouble in many applications to solid state, chemical, 

statistical mechanical and astrophysical systems in which sharing of energy 

among the normal modes is a vital feature. 

With these shortcomings in mind, now consider a conservative system 

of coupled particles in which nonlinear as well as linear forces act. For 
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this system, it is no longer true that a mathematical formalism for obtain-

ing the general solution is immediately available. There is no general 

theorem which guarantees that the equations of motion of a nonlinear sys-

tem can be diagonalized by a linear transformation. 

At best, an orthogonal transformation which decouples the linear 

portion of the system may be applied. The description which results from 

this transformation will be referred to as the "harmonic normal mode" 

description in this investigation. The nonlinear forces transform in 

such a manner as to provide couplings between the harmonic normal modes of 

the system. 

The anharmonic potentials of the nonlinear coupled oscillator 

system are unsymmetrical, and so an appropriately constructed nonlinear 

model of a crystal lattice can exhibit thermal expansion. Since the 

nonlinear forces couple the harmonic normal modes of the linear portion 

of the system, it should be possible to have sharing of energy between the 

harmonic normal modes, at least under some conditions. Thus the nonlin-

early coupled oscillator system should provide a realistic description of 

certain physical phenomena for which the linear system fails to be an 

adequate model. 

As mentioned, the solution of the nonlinear system is not available 

in general. However, there are numerous approximation schemes for dealing 

with the effects of the inclusion of nonlinear terms. Many of these rely 

upon the fact that the nonlinear coupling forces are weak in comparison to 

the linear restoring forces which constitute the harmonic normal mode 

oscillators themselves. 

It happens that the available approximation schemes are least 
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effective in describing nonlinear effects which involve complete sharing 

of energy between harmonic normal modes. In order to improve the approxi-

mate calculations for these energy-sharing situations, it would be of 

considerable aid to have a simple energy-sharing nonlinear model upon 

which detailed analysis could be made. 

Purpose of Investigation  

The primary aim of this investigation is to formulate and analyze 

such an energy-sharing nonlinear coupled oscillator system® It is hoped 

that this work will be found useful in the development of improved approxi-

mation calculations for more complicated physically realistic systems in 

which nonlinear energy-sharing effects are not yet adequately treated by 

the presently available approximation methods. 

As an illustration from solid state physics, the Kronig-Penney model 

for electron band theory was the first simple model in terms of which elec-

tron wave functions in a crystal could be easily calculated. These 

results have been improved and approximations have been made based on the 

Kronig-Penney and succeeding models, to produce the modern rather refined 

electron band theory of crystals. 

In analogy to the Kronig-Penney model, a simple model of an 

anharmonic crystal lattice, in terms of which detailed calculations can 

be made with relative ease, would be quite useful in the development of 

lattice theory. In particular, an energy-sharing nonlinear system is 

relevant to the full understanding of lattice thermal conductivity, as 

will be discussed later in this chapter. 

The remainder of the present introductory chapter will review the 

normal mode solution of a linear system, and will provide a detailed dis-

cussion of some of the physical systems and physical phenomena for which 
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the energy-sharing nonlinear coupled oscillator system is a relevant model. 

In Chapter II, the relationship between energy sharing among harmonic 

normal modes and tuning of the harmonic normal mode frequencies will be 

investigated in detail. Based on the findings in Chapter II, the definite 

nonlinear model to be analyzed will be formulated and discussed in Chapter 

III. 

Chapter IV will discuss the effectiveness of some of the avail-

able perturbation methods in solving nonlinear coupled oscillator systems 

capable of various amounts of energy sharing. For the completely energy-

sharing model formulated in Chapter III, these methods display serious 

shortcomings. This indicates the need for a new method of solution. 

In order to guide the analysis of the energy-sharing nonlinear sys-

tem, various methods of solving a similar artificially constructed energy-

sharing linear coupled oscillator system will be considered in Chapter V. 

In Chapter VI a method of analytic solution for the nonlinear model 

formulated in Chapter III will be developed. The experience gained from 

solving the linear system in Chapter V, plus the benefit of the energy 

solution of the two-oscillator nonlinear system, will be used to guide 

the development of this method. 

The validity of this method of solution will then be checked in Chap-

ter VII, by comparing the analytic results with the results of numerical 

integration, for certain selected sets of initial conditions. 

Chapter VIII will briefly present the results of two computer 

investigations, one concerning constants of the motion and the other 

concerning the approach to equilibrium. Finally, some overall conclu-

sions about the results of this thesis will be stated in Chapter IX. 
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Normal Modes for Linear Systems  

Consider a collection of point masses m i  with forces acting 

between them so that they vibrate about stable equilibrium positions. 

In three dimensions, let the displacements from the equilibrium positions 

in the x, y, z directions be denoted xl , x2, x3  for the first 

particle; x4 , x5 , x6  for the second particle; and so on. 

The potential energy is assumed to depend only upon the x i . 

Therefore, it can be expanded in a Taylor series of the form 

-66(1 , 4. 1 41) Ve, 	() O ><(,4 Xt 

4- Xi0X. 4- ..•, g3x3  

(1)  

where the zero subscript implies evaluation for the equilibrium config-

uration, and N = 3n, where n is the total number of particles in the 

system. 

The force acting on mass mk  in the xl  direction (where 

i = 3k-2, 3k-1, or 3k) is 

Jral 	
oxj 	• (2)  

■■ ON For simplicity, let Vo  = O. By symmetry, 	Kt 0  ... Lo ; 

that is, no force acts on any particle for the equilibrium configuration. 

Thils the potential energy may be written 



N 
-76c.,40 = 	1h6 q Xt'd 

N 	141 

where the force constants 

acv  

'6L3 = 	I  COI- === .*c,6>c,1 axle, /0 

are elements of symmetric tensors of rank 2, 3, ... 

The harmonic approximation consists of retaining only the quad-

ratic term in the potential energy, so that only linear forces act in 

the system. In many cases this is a good approximation, for small displace-

ments. However, there exist some physical phenomena, such as thermal expan-

sion and thermal conductivity, in which the effect of some of the higher-

order terms cannot be successfully neglected, no matter how small the 

(nonzero) displacements are. This is a consequence of the zero point 

energy (Leibfried and Ludwig 1961, p. 277). 

Since the potential energy in the harmonic approximation is a 

symmetric quadratic form, and since the kinetic energy, 

	

N 	2. 	141 
=Z,--= 	X•67; 

	

Lr-i 	VAL 	1.=-1 
(3)  

is also a symmetric quadratic form, the hamiltonian for the linear 

system can be written in the following matrix form (Rubin 1963): 

7 

(3)  

(4)  

= 	4- -1-3Cr 	 (6) 
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whereXisacolunnvectorwithelementsx"XT is its row vector 

transpose, M is a diagonal matrix with elements M kk  = mk , and 

matrix B has elements B..ij  already introduced. 

The equations of motion for the linear system are 

13 —x . 	 ( 7 ) 

1 
To solve these equations in terms of normal modes, first let Y = M 7  X, 

so that Equations (7) become 

= 	laKiY, 	 (8) 

Now define the normal mode co-ordinates, Q = ST Y. Matrix S is the 
_1 

orthogonal matrix which diagonalizes real symmetric matrix M 2  B M 2 , 

so that the equations of motion finally become 

F;4 = sAmi ami SY = 

2 
where the elements of the diagonal matrix Q

2 
are QA. =* ? wj  

The individual normal mode equations of motion are 

9fiL = 	le.= 1, 2., 

so that the normal mode oscillators execute sinusoidal motions (so that 

the amplitudes never change from the original values). The general solu-

tion in particle variables is the linear superposition of normal mode com-

ponents given by 

(9)  

(10)  

x = s 



1 
The normal mode transformation Q = ST M2 X can always be 

made, at least in principle, for systems of the harmonic approximation. 

Therefore N constants of the motion are in principle always available 

for any harmonic system, in the form of the normal mode energies, 

9 

(12) 

The above discussion has provided a brief review of the well-known 

situation for the harmonic approximation. Now it is of interest to con-

sider the situation in which cubic and higher degree terms are retained 

in the expression for the potential energy. 

Suppose the cubic term in the potential energy expression of 

Equation (3) is kept in addition to the quadratic term of the harmonic 

approximation. Then the expression for the hamiltonian, 

	

N W 	 N 14J N 
=xoc. +- 	0412,4)4,0(k, 

	

1., 1 J.1 	 t't j=1 b-1 	4  
(13) 

cannot be written in the simple matrix notation used earlier, because of 

the presence of the third rank tensor C ijk . 

In particular, any orthogonal transformation, 

Ste) 
	k) J / 
	 (14) 

which reduces the second term in Equation (13) to a diagonal form, will 

not in general have the same effect on the third term. That is, the 
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inclusion of a cubic term in the hamiltonian of a system of coupled par-

ticles makes it impossible in general to make a linear transformation to 

a set of variables in which motions are completely decoupled. There exist 

no normal mode variables, in the completely decoupled sense, for a non-

linear system. 

However, the concept of normal modes is still of value in dealing 

with nonlinear systems. If the orthogonal transformation given by Equa-

tion (14) is applied to the system of Equation (13), then a description 

is obtained in which the linear portion of the system is decoupled, and 

the nonlinear portion provides couplings between these harmonic normal 

modes. It is for this reason that the study of the behavior of systems 

of particles coupled by nonlinear as well as linear forces is character-

ized as the study of nonlinear coupled oscillator systems. 

The primary aim of this thesis is to formulate and analyze a non-

linear coupled oscillator model which is capable of complete energy sharing 

among its harmonic normal modes. In the final section of this introduc-

tory chapter, a number of physical systems for which such a model is 

relevant will be examined in detail. 

Physical Systems of Interest  

In the physics of the past fifty years, nonlinear coupled oscil-

lator systems have been used as mathematical models to represent physical 

systems ranging from crystal lattices, in which some vibrations have periods 

as small as 10-12 seconds, to systems of galaxies, in which the periods may 

be as large as 10
+14 

seconds. 

In this section, some of the physical systems for which a completely 

energy-sharing model is most appropriate will be discussed in some detail. 



11 

Emphasis will be given to those physical phenomena which are basically 

nonlinear. 

Crystal Lattice Vibrations  

Thermal effects in solids due to lattice vibrations may be studied 

by considering dielectric crystals, in which electron effects are negli-

gible; or the thermal effects due to lattice vibrations and electrons in 

conducting crystals may be studied separately, and the effects of inter-

actions considered afterward (Ziman 1960). 

For the perfect harmonic crystal lattice with periodic boundary 

conditions, the traveling waves which transport energy through the crystal 

are just the normal modes of the crystal lattice (Klemens 1958). 

For this perfect harmonic crystal, there exists a certain equili-

brium distribution of energy among the normal modes, such that if there is 

no temperature gradient, then there is no net heat transported through the 

crystal. But there are also other distributions such that some net heat 

is transported through the crystal, even with no temperature gradient 

(Peierls 1956; Hemmer 1959). For the perfect harmonic lattice, a linear 

system, there is no exchange of energy between normal modes and the system 

cannot return to its equilibrium distribution, as would an actual physical 

system. This possibility of a steady-state heat flow in the absence of a 

temperature gradient leads to infinite thermal conductivity in the per-

fect harmonic model of a crystal lattice. 

As reviewed by Klemens (1958), finite lattice thermal conductivity 

may be introduced into the crystal lattice model by three kinds of inter-

action processes, which allow the exchange of energy between the lattice 

waves: imperfections in the crystal lattice; anharmonic forces in addition 
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to the harmonic forces; and the finite boundaries of the crystal (of 

greatest importance at low temperatures). 

Imperfections in the crystal lattice alter the normal modes of 

the system so that the traveling waves (normal modes of the perfect sys- 

tem) are no longer exactly the normal modes of the imperfect system. The 

result is an exchange of energy among the traveling waves, which is 

needed if a return to an equilibrium energy distribution is to be possi-

ble. 

Anharmonic forces provide a mechanism for the sharing of energy 

among the harmonic normal modes which has already been introduced briefly, 

and which will be examined in detail in Chapter II. 

The effect of finite boundaries of the crystal can be described 

in terms of the first two kinds of interaction processes, according to 

Klemens. 

The three kinds of interaction processes mentioned here are of 

varying importance in different actual materials and at different tem-

peratures. Qualitatively, the details of the physical effects which 

account for finite thermal conductivity have been reasonably well explained 

during the past fifty years. Early treatments by Debye (1914) and Peierls 

(1929) have provided the basic foundations. 

Attention will now be centered upon the effects of anharmonic forces 

on lattice thermal conductivity. Peierls shows that only those nonlinear 

terms which (a) conserve energy and (b) either conserve quasi-momentum 

(normal terms) or produce a difference in quasi-momentum equal to an in-

verse lattice vector (umklapp terms) are of importance in the explanation 

of thermal conductivity. The umklapp terms contribute a term to the thermal 
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conductivity which varies inversely as the temperature for high temperatures 

and which increases exponentially at low temperatures. These qualitative 

results have been verified experimentally. 

In contrast to the success of the qualitative theory of Peierls, a 

quantitative theory of lattice thermal conductivity is still lacking. As 

will be illustrated in the next chapter, the work of Peierls shows that 

only those nonlinear terms which cause energy sharing are significant in 

thermal conductivity due to anharmonicities. Thus it would be of consid-

erable aid in the development of a quantitative theory of thermal conduc-

tivity to have a definite model of an energy-sharing nonlinear coupled 

oscillator system, in terms of which detailed calculations could be made. 

The results of analysis of such a simple nonlinear model would then be used 

to guide the development of approximate calculations in more complex 

physically realistic crystal models. 

It must be noted that in general, the system used to represent a 

crystal lattice should be quantized. However, this thesis is intended to 

be somewhat general in its fields of applications, and so all investiga-

tions in the present work are conducted in the hamiltonian formalism of 

classical mechanics. There are some applications in which the classical 

formalism is entirely adequate, such as the application to systems of 

galaxies; also, the classical formalism provides a simplicity of notation 

and description. 

For application to systems such as crystal lattices, quantization 

of the hamiltonian formalism is conveniently carried out by the introduc-

tion of Heisenberg operators. The co-ordinate and momentum variables of 

the classical formalism are replaced by time-dependent creation and 
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destruction operators (Messiah 1963). These operators obey a commutation 

relation, so that the description of lattice vibrations may be recast in 

the following quantum-mechanical terms: quanta of the lattice vibrations, 

called phonons, form a Bose-Einstein system of particles of energy ht.), 

/..1\ 
quasi-momentum hk, and wave packet velocity aukk)  , where u(k) is 

a k 
the angular frequency of a normal mode lattice vibration, and k is the 

wave vector. 

There is no limit to the number of phonons in a normal mode. The 

state of the system is given by the number N i  of phonons in each normal 

mode, so that the hamiltonian for the quantum mechanical linear system is 

(15) 

including the zero-point energy. Cubic nonlinear terms in the hamiltonian 

give couplings between normal modes in the form of three-phonon inter-

actions, in which two phonons are destroyed and one created, or vice-versa. 

Quartic nonlinear terms give four-phonon interactions, and so on. 

For weakly nonlinear systems, which are of interest in the study 

of thermal conductivity at fairly low temperatures, Peierls (1956) keeps 

only cubic anharmonic terms in the hamiltonian. In fact, Ziman (1960, p. 

146) feels that nonlinear terms of higher degree may be neglected even at 

rather high temperatures, since four-phonon interactions can be produced 

by two consecutive three-phonon interactions, involving the concept of an 

intermediate state. 

Essentially, the quantization of the oscillator systems of this 

investigation involves merely a redescription in another formalism. In 
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later work, when references are made to the application to crystal 

lattices, the phonon description may at times be used, although the 

investigation will be conducted in the classical formalism. 

Anharmonic terms account for other physical effects observed 

in actual crystals, besides finite thermal conductivity. For example, 

a strictly harmonic crystal model cannot exhibit thermal expansion. In 

order to display thermal expansion, a model must have a potential energy 

which is asymmetric as a function of the separation of nearest-neighbor 

pairs of atoms. Kittel (1956, p. 152) assumes a potential energy of the 

form 

V(r) = br2 - cr3  4r4., 	 (16) 

where r is the displacement from the equilibrium separa .O.on distance of 

twoatoms:r=xi -x.
J 
 . Using the classical Boltzmann distribution func- 

tion, the average value of r for small displacements is found by Kittel 

to be 

(17) 

that is, the potential given by Equation (16) exhibits linear thermal 

expansion, assuming moderate temperatures. Note that only the cubic term 

cr 3  introduces asymmetry into Equation (16), so that the quartic term 

dr
4 

does not contribute to <r>. 

Besides thermal conductivity and thermal expansion, anharmonic 

terms enter into the explanation of other crystal phenomena, such as high 

temperature lattice specific heat and temperature dependence of lattice 
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elastic constants (Peierls 1956; Ziman 1960). However, the principal 

lattice physical phenomenon of interest with regard to completely energy-

sharing nonlinear coupled oscillator systems is lattice thermal conduc-

tivity. 

Canonical Ensembles and Equilibrium Behavior  

In equilibrium statistical mechanics, the complete description of 

the equilibrium behavior of each particle in a physical system of many 

(1023 ) particles is impossible. Only the collective thermodynamic proper-

'ties of the overall system are of interest. 

In order to obtain thermodynamic properties, statistical mechanics 

employs the concept of the canonical ensemble, a collection of identical 

macroscopic systems having identifiable individual energies, having weak 

interactions which exchange energy among them. The overall ensemble has 

states which are specified by the state of each of the systems in the 

ensemble at a given time. 

The permissible states of a canonical ensemble satisfy the condi- 

tions 

t = 1\1 	anal 	Et =-- 
	 (18 ) 

where ni  is the number of systems in the ith  state, having energy 

E.; N is the total number of systems and E is the total energy in the 

ensemble. The second condition in Equations (18) contains the implicit 

assumption that the total interaction energy is a canonical ensemble is 

negligible compared with the total energy of the ensemble. 

In order to obtain thermodynamic properties of the ensemble without 
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further considering the nature of the interaction processes which couple 

the individual systems, several probability assumptions are introduced 

(Davidson 1962). One assumption is that an examination of the ensemble 

states at various times will give the probability for the distribution of 

states of one individual macroscopic system. Another assumption is that 

any one state of the ensemble which satisfies the two conditions given by 

Equations (18) is as probable as any other. 

From the foregoing considerations, the canonical partition func-

tion for the ensemble is calculated. All of the thermodynamic properties 

of the system can then be calculated, using this partition function. 

In the study of canonical ensembles, it would be of interest to have 

a definite mathematical model in which the interaction processes which 

couple the individual systems were actually specified. A detailed study 

of the operation of this model would aid the understanding of the relevance 

of the probability assumptions which have been introduced. 

It is necessary that the model chosen be capable of complete energy 

sharing between all the individual systems, even with the constraint that 

the total interaction energy be arbitrarily small. 

A system of nonlinear coupled oscillators, such as the system of 

harmonic normal mode oscillators coupled by nonlinear forces introduced 

earlier in this chapter, might provide useful in the construction of a 

representation of a canonical ensemble. As will be seen in Chapter II, 

if the model is so chosen that the harmonic normal mode frequencies form 

an exactly-tuned set relative to the nonlinear coupling, such a system is 

capable of complete energy sharing among the harmonic normal modes for 

arbitrarily small nonlinear coupling energies. However, it must be noted 
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that a fairly large number of oscillators should be used to represent each 

subsystem of the ensemble. 

Ergodicity and Nonequilibrium Behavior  

In the field of nonequilibrium statistical mechanics, there is a 

long-standing desire to exhibit a mathematical model in terms of which the 

mechanisms of the approach to equilibrium can be studied. 

The work of Poincarg (1957), Fermi (1923), and others (ter Haar 

1954) indicates that a weakly nonlinear system of coupled oscillators will 

be ergodic, a property which is thought to be necessary for an approach to 

equilibrium. Unhappily, acceptance of ergodicity rules out almost any hope 

of obtaining a general analytic solution to the equations of motion of a 

system. 

With these anticipated analytic difficulties in mind, the group of 

Fermi, Pasta and Ulam (1955) used a computer to provide numerical solu-

tions for the harmonic normal mode energies of some simple weakly nonlinear 

coupled oscillator systems, for specific sets of initial conditions, as a 

first probe into the behavior of such systems. 

The systems studied were found not only to be nonergodic, but 

failed to share appreciable energy except among several adjacent harmonic 

normal modes. 

The reason for the failure of these particular systems to share 

appreciable energy was indicated recently by Ford (1961) to be a lack of 

tuning of the harmonic normal mode frequencies. A detailed explanation of 

this situation will be presented in Chapter II of this thesis. 

Existing perturbation theories applied to some new appropriately 

tuned nonlinear systems by Ford indicated that even some completely energy- 
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sharing weakly nonlinear coupled oscillator systems retain the property 

of nonergodicity. 

This indication of nonergodicity has encouraged an effort to develop 

the mathematical analysis of such energy-sharing nonlinear coupled oscilla-

tor systems. These systems may be too simple to be physically realistic, 

but it is felt that an understanding of such systems is a necessary first 

step in the development of a theory of the approach to equilibrium. It 

may well be that more complex physically realistic systems will be suscep-

tible to the type of analysis developed here, and yet will exhibit the 

properties of ergodicity indicated by Poincar‘, Fermi, and others. 

Celestial Systems and Constants of the Motion  

In present-day astrophysics, there is a growing interest in the 

study of constants of the motion for collective dynamical systems, such as 

systems of galaxies. 

For example, for axially symmetric potentials, two constants of 

the motion, the total energy and the total angular momentum, are always 

known. Much effort has been recently expended in the search for addi- 

tional constants of the motion (Contopoulos 1963), but to date the results 

are not entirely satisfactory (Hgnon and Heiles 1964). 

The detailed specifications of intergalactic potentials seem to be 

even less developed than specifications of the interatomic potentials in 

crystal lattice dynamics. Nonlinear forces act in addition to linear 

forces, and dissociation is possible. But the nature and strength of the 

nonlinear couplings for physically interesting cases are not apparently well 

known. 

It is well known in classical mechanics (Whittaker 1944) that if N 
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constants of the motion are known for any system having N degrees of 

freedom, then it is possible to formally obtain the general solution of 

the system. Whittaker provides a formal method for constructing the 

general solution. Equivalently, given the general solution of a system, 

it should be possible to construct the corresponding constants of the 

motion. 

In the nonlinear celestial problem, the difficulty of determin-

ing all the constants of the motion is thus indicated by the difficulty 

of finding general solutions to the nonlinear equations of motion. Any 

new information about either constants of the motion or general solutions 

of energy-sharing nonlinear systems should be of interest. 

The specification of the constants of the motion for many-body 

dynamical systems is a problem of great general interest in present-day 

physics (Bohm and Carmi 1964). General conclusions about the overall 

collective properties of a many-body system may be drawn from a knowledge 

of the constants of the motion. Basic symmetry properties of a physical 

system are generated by the constants of the motion (Goldstein 1959), so 

that a knowledge of the constants of the motion gives a very fundamental 

description of a system. 

In Chapter VI of this thesis, a method of analytic solution will 

be developed for energy-sharing nonlinear coupled oscillator systems. 

Possession of a form of general solution should lead to the knowledge of 

the form of N constants of the motion for a given nonlinear system. 

However, this has not been accomplished in the present work. The sole 

result obtained is the identification of one additional constant of the 

motion for nonlinear systems, in a form which has been known for many years. 
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Other Systems of Interest  

The formulation and analysis of the nonlinear coupled oscillator 

systems of this thesis are done in a general manner, and there are numer-

ous applications to physical problems other than those mentioned in detail 

above. 

The problem of stability of accelerator orbits involves nonlinear 

couplings due to minor misalignments and equipment misadjustments (Hagedorn 

1956). The crucial cases correspond to the exactly-tuned nonlinear oscil-

lator systems in which long-term sharing of energy occurs even with 

arbitrarily weak couplings. 

A similar problem exists in the containment of plasmas, in which 

weak nonlinear perturbations cause instabilities which have proved diffi-

cult to analyze. 

The dissociation of chemical molecules is basically a nonlinear 

phenomenon. Recent studies of unimolecular reactions (Bunker 1962; Thiele 

and Wilson 1961) indicate that the dissociations of simple structures such 

as carbon dioxide may be successfully explained in terms of nonlinear 

coupled oscillators. 

In hydrodynamics, certain couplings are present which result in 

large-scale phenomena of deep-water ocean waves (Lamb 1932; Longuet-Higgins 

1962) for which , the nonlinear systems studied here are relevant models. 

Finally, the action of finite-amplitude sound waves in crystals 

involves a nonlinear coupled oscillator model, needed to explain the 

appearance of higher harmonics due to the structure of the crystal. 

It has been the aim of Chapter I to provide an introduction to the 

reasons for the study of energy-sharing nonlinear coupled oscillator 
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systems. The general effect of the addition of nonlinear terms on energy 

sharing has been indicated, and some physical systems for which the nonlin-

ear system is a relevant model have been described. 

In the following chapter, the relationship between tuning of the 

harmonic normal mode frequencies and sharing of energy between harmonic 

normal modes will be investigated. This will serve as a prelude for the 

actual formulation of a particular model, in Chapter III. 



CHAPTER II 

THE RELATIONSHIP BETWEEN ENERGY SHARING AND 

TUNING FOR COUPLED OSCILLATOR SYSTEMS 

It has been demonstrated in some early computer studies of simple 

nonlinear coupled oscillator systems (Fermi, Ulam and Pasta 1955) that 

not every system having a complete set of nonlinear couplings among all 

its oscillators is capable of complete sharing of energy among all of 

these oscillators. 

Therefore, before attempting to formulate a nonlinear coupled 

oscillator model which is capable of complete energy sharing, it is 

necessary to investigate the circumstances which control the sharing of 

energy in oscillator systems. 

In the first section of this chapter, some simple one-dimensional 

systems of coupled oscillators will be introduced. In the second section, 

the relationship between energy sharing and tuning of the oscillator fre-

quencies will be examined, with the aid of action-angle formalism. The 

last section will present some computer results which can be used to 

check the validity of the conclusions reached in the first part of the 

chapter. 

Some Simple One-Dimensional Systems  

For simplicity, most of the remaining portion of this thesis will 

employ one-dimensional models for purposes of illustrating characteristics 

and methods of solution for various coupled oscillator systems. These 

23 
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one-dimensional models contain many but not always all of the essential 

features of the physical systems to which they are relevant. 

This approach of simplification is taken in order to isolate the 

analysis of the more difficult aspects of the physical problems discussed 

in Chapter I from the many other aspects which are already well understood. 

It is felt that if some of these more difficult aspects can be better under-

stood, then the overall methods of attack for actual physical systems can 

be improved. 

In the first subsection, a simple one-dimensional perfect harmonic 

system will be introduced. There is no mechanism for sharing energy 

between the normal modes of this perfect harmonic system, so in the sec-

ond and third subsections additional sets of forces will be included so 

as to couple the normal modes. 

The nonlinear coupling introduced in the second subsection provides 

an interaction between harmonic normal modes in a manner which has already 

been described briefly in Chapter I. The additional linear coupling intro-

duced in the third subsection serves the same purpose, although in an 

artificial manner. The linear coupled oscillator system of the third sub-

section will be used in this thesis as an easily solvable companion model, 

the analysis of which will be used to guide the analysis of the more dif-

ficult nonlinear coupled oscillator system of the second subsection. 

Perfect Harmonic System  

For a perfect harmonic system in which the normal modes are com-

pletely decoupled, consider a finite one-dimensional array of N + 2 

equally-spaced identical point masses m, connected by nearest-neighbor 

linear massless springs having identical force constants c. 



25 

Let the dimensionless independent variable, "oscillator time," 
1 

be defined as t = (—c ) 2  t°, where t° is actual time in seconds. The 

dot notation will be used to denote differentiation with respect to this 

normalized oscillator time t. Thus frequencies are also dimensionless 

in this normalized description. 

Denote the longitudinal displacement of the k th particle from 

its equilibrium position 0k , and the corresponding momentum 'Pk  = m Qk o 

Let the ends of the array be fixed, so that Q0 = QN+1 = 0 and there are 

N moving particles. 

(The boundary conditions used here are rather arbitrary, and are 

chosen for convenience. In calculations of actual physical systems, other 

types of boundary conditions may be used, such as the periodic boundary 

conditions used in dealing with crystal lattices. In actual applications, 

for a sufficiently large number of particles, the particular type of 

boundary conditions assumed can have little effect on the overall behavior 

of the system (Born and Huang 1954).) 

The hamiltonian for the system described is 

ik 	)2.  It .." 	 2- It...0 	14.1 	/ 
(1) 

where Q0  = QN+1 = 0. Hamilton's equations combine to give the individual 

equations of the motion for the system, 

(2) 

- 0; or in matrix form, where k = 1,2,...,N, and Q0 = QN+1 - 
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(3) 

   

For the remainder of this thesis, unless otherwise noted, an individual 

equation of the Equation (2) variety will be assumed valid for sub-

scripts in the range from 1 through N, without the explicit appearance 

of the notation k = 1,...„N. 

The transformation which diagonalizes Equation (3) is 

QW- = (TF4--.1-r)1 	. 
-C=I 	0■14-1) 

(4) 

and the normal mode equations of motion are, in matrix form, 

   

MM. 

•■■•■ 

(5) 

  

where the normal mode frequencies are given by 

241--T+t3 • 
	 (6 ) 

The individual normal mode equations, 
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have solutions of the form 

?-1L. 	Ak Cs (colt*  81t.)/ 
	 (8) 

where Ak and ek are arbitrary constants to be fixed by the initial 

conditions. The normal mode hamiltonian is 

= 1 	+ we-Fie-) . 	(9 ) 

The individual normal mode energies, 

- 	Cpk.2- + 6010141.2-) / 	(1 0) 

form a set of N constants of the motion. 

Nonlinear Couplings between Harmonic Normal Modes  

The perfect harmonic system just introduced cannot share energy 

among its normal modes, because the normal modes are completely decoupled. 

However, as indicated in the first chapter, couplings between the normal 

modes can be obtained by introducing an additional set of nonlinea'r 

forces in the system. For simplicity, the added nonlinear terms will be 

restricted to cubic coupling energy terms in the hamiltonian. As men-

tioned in the discussion of various applications to physical systems in 

Chapter I, cubic nonlinearities may be sufficient to explain many of the 

physical phenomena which are of interest. 

In keeping with the simplicity of the nearest-neighbor particle 
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couplings of the perfect harmonic system just considered, Equation (1), 

let the cubic energy coupling also be of nearest-neighbor form in the 

nonlinear system; 

(sik*I—Q08. (11) 

where a is a parameter which controls the overall strength of the 

added nonlinear coupling. The corresponding particle equations of 

motion are 

6•IL = 	—2(4 4/C;t1t+t) 	N4r4)1.--. (QtAlk.473. (12)  

For this nonlinearly coupled system, the luxury of a transforma-

tion to normal mode variables which completely decouple the system is 

not available. At best, the harmonic normal mode transformation which 

decouples only that linear portion of the system which remains when a = 0 

may be made. 

When the harmonic normal mode transformation 

(13) 

is applied to the nonlinear system governed by the hamiltonian of Equa-

tion (11), the resulting hamiltonian is of the form 

N , 
1-1= 	(11.2 +01014 + mo-it, (14) 
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where the general explicit form of the third-rank tensor elements C ijk 

 will be exhibited later, in conjunction with the computer studies of 

Chapter VII. 

The general nature of the coefficients C ijk  is such that there 

can be energy exchange between widely separated harmonic normal modes, 

as well as between adjacent ones. Thus the nonlinear coupling chosen 

provides long-range as well as short-range interactions. In the quantum-

mechanical description, the cubic coupling energy terms represent three-

phonon interactions. 

Linear Couplings between Harmonic Normal Modes  

It is also posible to provide couplings between the normal modes 

of the perfect harmonic system of the first subsection, by introducing 

an additional set of linear forces in that system. This is a rather arti-

ficial construction, not meant to have physical relevance, but instead 

designed to provide a formal system which is easy to solve and which 

has many similarities both of behavior and analysis to the nonlinear 

coupled oscillator system of the second subsection. 

In order to obtain a simple result in harmonic normal mode varia-

bles, an additional set of linear forces may be introduced in particle 

variables by assuming a particle hamiltonian of the form 

(641-4,)2-  Dc.60s 	Q 
0 	 Itaw 	444-0 IL  / 

so that the particle equations of motion are 

= (64,1-zalck-61w) - 0(2- cos 0-  Q.1" 

(15)  

(16)  
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When the harmonic normal mode transformation of Equation (13) is 

applied to the linear system governed by the hamiltonian of Equation (15), 

the resulting hamiltonian is of the form 

IB C ( 02- 4- coo!17.2.) — Oct. E4,41 	(17) 

and the corresponding harmonic normal mode equations are 

= - 6(4.114- 	g-m-I 
	 (18) 

Thus the added couplings of the particles to their equilibrium positions, 

the linear forces a 2 cos (N+1) kir  Qk  in Equations (16), result in a 

nearest-neighbor coupling of the harmonic normal modes, as shown by Equa-

tions (18). 

The term "harmonic normal modes" was used in conjunction with the 

nonlinear system to denote the set of variables obtained when the trans-

formation which decoupled the linear portion of the system was applied to 

the whole system. The result was a description in terms of nonlinear 

couplings between harmonic normal mode oscillators. 

In the present subsection, the same terminology will be formally 

used, so that a description is obtained in which there are linear couplings 

between harmonic normal mode oscillators. The "harmonic normal modes" are 

just the normal modes of the perfect harmonic system of the first subsec-

tion. This whole description of the linear coupled system is rather 

artificial, since in principle another different transformation could have 

been applied to the linear coupled particle system, Equation (15), to 
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completely decouple it to begin with. However, as mentioned, the formal 

construction of the linear coupled oscillator system of this subsection 

will provide some useful analogies to nonlinear coupled oscillator sys-

tems. 

In this section, models in which there are couplings between the 

normal modes of the perfect harmonic system have been constructed. How-

ever, there is no guarantee that the presence of these couplings will 

automatically make possible complete sharing of energy among the normal 

modes, even under the most favorable conditions. In the next section, the 

mechanism of energy sharing will be investigated in some detail for the 

coupled oscillator systems introduced in this section. 

Relation between Energy Sharing and Tuning  

There exists a general relation between the sharing of energy 

among harmonic normal modes and the tuning of the harmonic normal mode 

uncoupled frequencies, for all systems of coupled oscillators. This 

relation will be examined in the present section, along with the concept 

of tuning., 

In the first subsection, tuning of the linear coupled oscillator 

system will be studied, taking advantage of the fact that the general 

solution of the linear system is relatively easily obtained. In the sec-

ond subsection, the same problem of tuning of the linear system will be 

studied using action-angle formalism; these results will be compared 

with those of the first subsection. In the final subsection, the action-

angle formalism will be used to study the tuning of the nonlinear coupled 

oscillator system. 
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Tuning of the Linear System  

Since nearest-neighbor couplings between all of the harmonic 

normal modes are present in the linear system governed by the hamiltonian 

of Equation (17), it might be expected that appreciable energy sharing 

among all of the harmonic normal modes could occur, at least for some 

sets of initial conditions. 

However, this is not necessarily true. The maximum attainable 

amount of energy sharing between harmonic normal modes depends crucially 

upon the relations which exist between the set of uncoupled normal mode 

frequencies and the coupling parameter a, for linear coupled oscillator 

systems. 

In order to see this, consider a linear coupled oscillator system 

governed by a hamiltonian of the form 

1.1 
	 (0,..2-+aktFt 2) — 

0"0 
(19) 

in which the uncoupled harmonic normal mode frequencies w k  are allowed 

to be free variables. This system differs from that of Equation (17) in 

that the frequencies in the latter are fixed, with values given by Equa-

tions (6) of this chapter. The corresponding harmonic normal mode equa-

tions of motion are 

= 	+04 (1.1L-1+ tw), 	(20) 

which are the same as Equations (18) except that the frequencies wk  are 

free variables. 

Example for N = 20  The important features of the general solution 
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for N linear coupled oscillators may be illustrated by a solution for 

N = 2. Based on this solution, some general conclusions about solutions 

for N oscillators may be drawn. 

The equations of motion for the two-oscillator linear system with 

variable frequencies are 

4?-1" = - 0.)1211 4- 04 	; 
60 

=-• 	€4-2. + O& 
I.  

A solution of the form 

Ai, cos Caleb + 
	

(22) 

such as might be tried as a generalization of the solution which is 

valid when a = 0, is not valid when a / 0 if w 2 / w1 . Instead, a 

general solution of the form 

= 	AILS, cos Cakb se%) 
SCI 

I•1 
(23) 

must be assumed. 

Substitution of this assumed solution into the equations of 

motion, Equations (21), produces the following linear eigenvalue-eigen-

vector problem in 91.  piA k iii for 1.=1,2: 

(0.4"-s2.4J LA2Li 	o , 
0(  -1 lAiki [0 

	
(24) 

The eigenvalues obtained by solving the secular equation are 
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(25a) 

(25b) 

(26a) 

(26b) 

JWL:= .0.te-irc022-)+4.[Ccoe---to1) 2- + 

and the eigenvector components are related by 

A 2.1 = 	2AL)  

Al2.. — (0),2!....s2,2,1-) 

where the Akk are taken as arbitrary, to be fixed along with the At 

by the initial conditions on the q k  and pk . 

Two extremes of "tuning" will be recognized. The system will be 

regarded as strongly detuned if 1w 2  - w1 1 >> a l  and will be regarded 

as strongly tuned if 1w2 wil<< a. 

Suppose the system is strongly detuned: 1w 2  - w 1 1 >> a, or, if 

the frequencies are taken to be roughly unity in order of magnitude, 

1 	2 
'6)2  - w .3 2 1 >> a. Then the eigenvalues of Equations (25) are given 

approximately by 

(27a) 

42-  ti oh? 4- 
6010.-aq) 

(27b) 

and the eigenvector components of Equations (26) are given approximately 

by 
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DC. 	A 	A  
Al2_ 	60 .1._cor.) ti-2_2. 	Au.  

tst. 	A 
A24 1?e,  "7-  74:4Z75M11 44 Ail . 

Let the initial conditions be q k (0) = Ak , pk (0) = 0, for 

k = 1,2. In the square matrix which relates the eigenvector components 

tAkii to the initial conditions {AA, the off-diagonal elements are 

small for the strongly detuned case: 

[g(A.00s,— Gti?) 

I 	— KAALI-01 [Al 	[Al 
I 	A22.  = A21 	(29) 

The result for the eigenvector components for the strongly detuned linear 

system is 

L 	De., 	A 	 04. 	A 
^-1 	-r aril-07) /12. 	 -- (coz._4012.) tta, 

A22.% — 6.10,.4.0) Al ; A24 (0:4Z 

(30a) 

(30b)  

so that one term dominates in each solution for the q k  in Equations 

(23). 

There can be no appreciable sharing of energy in this strongly 

detuned system, for any set of initial conditions® The time dependence 

of the energy of the first harmonic normal mode oscillator is typical: 

= Izzahz  [ 	er(ao:f27,,,2.)) A 1  Az COS (12.2.—.12.) -b] 	(31) 
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In contrast with this strongly detuned case of a coupled system 

which cannot share appreciable energy, consider the strongly tuned case. 

Suppose the uncoupled harmonic normal mode frequencies satisfy the relation 

2 1w2 - w1 1 << a, so that 1w2 -Li 1
2 1 << a. Then the eigenvalues of Equa-

tions (25) are given approximately by 

%'-= 2 (0)1 2- +A1-2 ) 4- pC. ; 
	

(32a) 

2 N  2(6024-6022) 
	

(32b) 

and the eigenvector components of Equations (26) are given approximately 

by 

A l2_ 	+. 	
Q22/ 

	 (33a) 

A2.1 	iccul".4,049+-0( A  11 • 
	 (33b ) 

For convenience in describing the strongly tuned case, a detuning 

parameter, s, may be introduced. Denote the frequencies w l  = w and 

w2  = (1 + s)w, so that the condition for strong tuning, 1w 2  - w1 1 << a, 

becomes s << as The eigenvalues given by Equations (32) become 

z2_12 	64)2 CI 4-54-00 ; 
	 (34a) 

a2.2- 	44)2- 
	 (34b) 

and the eigenvectors given by Equations (33) become 
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11) A22. ; 
	 (35a) 

A ►  Pt- 4-  0 4- i- ) Alt. 	 (35b) 

In terms of the initial conditions used previously, the eigen-

vector components are 

All e.e.'-• A, 4- 04-s)A2; 	A l2.A4 04-21)A, 
—(44)A.; 

—(14-s)A, 4-A2 ; 	AzI Pd.' ( 1 4- CAti  
4-0 -I-24) A2. 

(36a) 

(36b) 

In this strongly tuned system, each term in the general solution, Equa-

tions (23), is of roughly the same order of magnitude. Therefore there 

can be almost complete energy sharing for certain sets of initial condi-

tions. Keeping only lower order terms, the energy of the first oscillator 

is typical: 

602'(Ah-A22) 4--/02 (P-A6 Cos Cat-JO-b. 
	(37) 

Examination of Equation (37) shows that complete sharing of energy 

is obtained either for the initial conditions A l / 0 , A2 = 0 or for 

the initial conditions A l = 0
, A2 / O. At the other extreme, if the ini-

tial conditions are such that either A 2 = Al or A2 = -Al, then there 

is no appreciable energy sharing. Any intermediate amount of energy 

sharing is available for an appropriate intermediate choice of initial 

conditions. 

General Case for N Oscillators. A generalization of the results 
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just obtained for two oscillators may easily be made, for the case of N 

linear coupled oscillators. 

The N equations of motion, Equations (20), may be solved by 

assuming a general solution of the form given by Equation (23). Substi-

tution of this assumed solution into the equations of motion produces the 

following linear eigenvalue-eigenvector problem in Re, tA k9.3 for 

1,2,000,N: 

Co..)---S2J-2-) 

1■••■■•111 

0 	t t 

642.2.—S10.2) 

(4)2 - nsi") 

  

= 

( 38 ) 

   

   

For the strongly detuned case, in which all adjacent uncoupled 

frequencies wk  differ by much more than the coupling parameter a, the 

square matrix in Equation (38) is essentially diagonal. All but one of 

the elements of the main diagonal are of the same order of magnitude, since 

the coupled and uncoupled frequencies are approximately equal in the 

strongly detuned case: 

= 	4- er(po). 	 (39) 

One element of the main diagonal, say the k th, is much smaller 

than the rest. This leads to a situation in which one eigenvector ele-

ment, Akk , is much larger than the rest. Thus one term dominates in 

each solution for the qk , in Equation (23), in much the same way as for 
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the N = 2 system. For the same reasons as for the two-oscillator system, 

the strongly detuned linear coupled system of N oscillators cannot 

share appreciable energy. 

On the other hand, for the strongly tuned case in which all of the 

uncoupled frequencies are very nearly equal, the square matrix in Equa-

tion (38) is essentially tridiagonal, with all elements of the order of 

a. The eigenvector components A k  are then all approximately equal, for 

a given Q  and k = 1,2„...,N. This leads to the possibility of complete 

energy sharing for selected sets of initial conditions. 

In this section, it has been shown by use of general analytic 

solutions that tuning of the uncoupled harmonic normal mode frequencies 

is necessary in order that a linear coupled oscillator system be capable 

of sharing appreciable energy, even under the most favorable conditions. 

In the case of the linear system considered here, the coupling between har-

monic normal modes is such that a set of frequencies which are all equal 

constitutes a tuned set. 

The problem of obtaining a general analytic solution when the 

frequencies are free variables is not as easily solved for the nonlinear 

coupled oscillator system as it is for the linear coupled oscillator sys-

tem considered here. Therefore, the examination of the relation between 

energy sharing and tuning for the linear system will be conducted over 

again in action-angle formalism in the next subsection. The action-angle 

formalism will be just as useful for nonlinear systems as it is for linear 

systems. The validity of the results obtained in the next subsection may 

be checked by a comparison with the results just obtained. 
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Use of Action-Angle Formalism for Tuning  

The mechanism for energy sharing in a coupled oscillator system, 

which involves a correlation between the nature of the couplings and the 

values of the uncoupled frequencies, may be summarized as "internal 

resonance" (Ford 1961). For a given set of couplings, a coupled oscil-

lator system is capable of sharing energy only if internal resonances are 

present; that is, only if the uncoupled frequencies are "tuned" relative 

to the couplings. 

A convenient formalism for the display of the general tuning rela-

tions available for a given set of couplings is that obtained by the use 

of action-angle variables. As will be seen, the action variables are 

closely related to the harmonic normal mode energies. Thus action-angle 

formalism gives direct information about energy sharing without the need 

of investigating the behavior of the position and momentum variables. 

To illustrate the use of action-angle variables, consider the 

two-oscillator linear coupled system governed by the hamiltonian 

(1)19- + 122.1-+ (44211- 4- co2.2t22) 	091 
	(40) 

which is the hamiltonian of Equation (19) for the case N=2. 

Make a canonical transformation to action-angle variables accord- 

ing to 

Pit- 	(zwie.Jit:) s-ktek., 	(41 ) 

so  that the hamiltonian of Equation (40) becomes 
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= w i J i 	 [co,') cos(yt-1253 (42) 

Note that the energy of the kth harmonic normal mode (neglecting that 

part associated with the coupling term) is given by 

EIL 2(pkt 	 cott:JIL, 
	 (43) 

so that the action variables and harmonic normal mode energies are prac-

tically the same thing. 

The equations of motion in action-angle variables are 

• 

= 	GiOk—  [Si r■ 6101#192) Sh (cfl  t '12.)] ; 
	(44a) 

32. = —9( ( 4)1F*6i162-)i  [4\41) 4K6P I -2)3 
	(44b) 

(*el = 	4-  4 (4)1  Cw41-. [cas(t914144-cos. 0e112)]; (44c) 

(a;L,F3%;4)lica 41414&) #cav(if ■10-3 • (44d) 

These equations may be solved iteratively with some success, if 

the coupling parameter is small (a << 1), and if the uncoupled fre-

quencies (which are free parameters) are of the order of unity, by the 

following method. (The exact solution for the linear system is available 

by simpler methods.) 

For the zeroth-order solution, use the solution 



Jitc, = colNsi-arcb ; yko  = Glik* + 

obtained when a = O. Substitution of these expressions on the right 

sides of Equations (44) leads to the first-order energy solutions 

04- L2-1*4:  Lc°  -111-  (32249-,1] cortslak ; (46a) 
GO% 	et)a 	 I+ Ct)  a-) 	CU) 	2, 	m  

J24  =__ 	( J0)2.2.6 yi [c*c-oL..!..101 — 	: 1) -] 	s 	(46b) 

The constants of integration in Equations (46) may be recognized 

as the zeroth-order solutions, J ko . Factor these terms out to obtain 

+ Jlt= 	1 4_ 04 (z._)1 	
Cpicjaa. 

	

to (4 402/ L. (tor+A),J) 	
3, (47a) / 

J-‘12: 	1-5c21(11.4-1L01.. 2.2:_gits- 	(47b) 2.1 	- = 1241 4" 	(WI COZt  L (cot 4.  U2.) 	to —C42.) • 

Examination of Equations (47) shows that there will be little energy 

sharing unless the denominators of the time-varying terms are of the order 

of a. For, in a given energy equation, if a denominator of a time-vary-

ing term is of the order of a, then it is of the same order as the 

numerator, and the time-varying term makes a zeroth-order contribution to 

the energy, Here the assumption is made that J10  and J20  are of the 

same order of magnitude. If they are not, higher order iterations must be 

made in order for the crude sort of argument being made here to be valid. 

42 

(45 ) 
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The rapidly-varying terms in Equations (47), those having argu-

ments (p i  + p 2), cannot contribute significantly to energy sharing for 

any set of positive values of 	andd w2. The only significant terms 

for purposes of energy sharing are the slowly-varying terms having argu-

ments (p 1  - p 2) in Equations (47). The denominators of these terms can 

be of order a if the uncoupled frequencies satisfy the condition 

lw w I 1 	2 	a. Therefore action-angle formalism produces the same con- 

dition for tuning of the linear coupled two-oscillator system as did the 

analytic procedure of the subsection preceding this one. 

In this thesis, the slowly-varying terms will be called "resonant" 

terms and the rapidly-varying terms will be called "nonresonant" terms, 

because of the different roles which these two kinds of terms play in 

providing internal resonances in coupled oscillator systems. Internal 

resonances are the mechanism Of appreciable energy sharing. 

It should be possible to study the energy-sharing properties of a 

given system by retaining only the slowly-varying "resonant" terms at the 

very start. In this scheme, the solution of the resulting "resonant" 

system could be obtained, and the effect of the "nonresonant" terms could 

then be obtained using standard perturbation methods. The effectiveness 

of such a procedure will be studied throughout the remainder of this 

thesis. 

In this subsection, a crude but relatively simple action-angle for-

malism which lays bare the relation between energy sharing and tuning in 

systems of coupled oscillators has been presented in terms of a linear 

system. This action-angle formalism has been used to obtain the same 

tuning condition developed in the previous subsection for the linear 
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system. A simplification of the analysis of energy sharing has been 

suggested, in which only those slowly-varying terms which are principally 

responsible for energy sharing are retained in the system from the very 

beginning. 

In the following subsection, action-angle formalism will be applied 

to a nonlinear coupled oscillator system. 

Tuning of the Nonlinear System  

Since a large number of long and short range couplings between all 

of the harmonic normal modes are present in the cubic nonlinear system 

governed by the hamiltonian 

H = 	_(piza..442-gie-.) 4-  oct .C 143 1tF-t13 74- le=1 	 LAI* 
( 48 ) 

previously introduced in Equation (14) of this chapter, it might be 

expected that appreciable energy sharing among all of the harmonic normal 

modes could occur, at least for some sets of initial conditions. 

However, as was the case for the linear system just examined, this 

is not necessarily true. Action-angle formalism may be employed to demon-

strate that energy sharing in the nonlinear system depends crucially upon 

the tuning of the uncoupled harmonic normal mode frequencies. 

To illustrate, consider a two-oscillator nonlinear system with cubic 

coupling terms, of the type introduced earlier in this chapter. 

Let the original particle hamiltonian be of the form 

=-iR12.4-P22) Z Ca?-+ (a2.-0.1)- 6413 
	

(49) 

Cal3 +-(a2.-0 



which is the hamiltonian of Equation (11) of this chapter, for N=2. 

Application of the harmonic normal mode transformation of Equation (13) 

to this system results in the harmonic normal mode hamiltonian 

== 2 (V41-444*14HoLle-p•i) — Ju(t12f2 	(50) 

which is Equation (14) for N =2. The variables q l  and q2  represent 

the in-phase and out-of-phase modes 

ar,d 	=-Wai-Qz), 	(51) 

and the uncoupled harmonic normal mode frequencies, given by Equation 

(6), are wi  = 1 and w2  = UT. 

As with the linearly coupled system of the previous subsections, 

it may be necessary to replace the frequencies just specified by a tuned 

pair, in order to obtain a system capable of appreciable energy sharing. 

In order to do this in a general manner, the frequencies in Equation (50) 

will be taken to be free variables, of the order of unity in magnitude. 

Changing the values of the uncoupled harmonic normal wide frequen-

cies in this manner implies a changing of the linear particle couplings 

in the particle hamiltonian of Equation (49) as well. The general effect 

of tuning on the particle couplings will be considered in Chapter III. 

Action-angle formalism will now be used to determine what choice 

of frequencies ki cohstitutes a tuned set for this system. That is, 

action-angle formalism will be used to determine what internal resonances 

are available due to this particular cubic nonlinear coupling. 

In action-angle variables, the hamiltonian given by Equation (50) 

45 
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becomes 

(52) 0,4  j, 	
.c'c,;(4:4:_tj+2.cosy.] 

Jit [cos  3ce1 -1-. 3 caste2.] 67.ar 

As discussed in the previous subsection, tuning of the system of Equation 

(52) may be investigated by considering the corresponding resonant system. 

The possible slowly-varying terms in Equation (52) may be identified by 

making the temporary formal replacement T k  = wkt, and checking to see 

for what choices of frequencies w i  and w2  the arguments of certain of 

the coupling terms vanish. 

In the case of the hamiltonian of Equation (52), the only possible 

slowly-varying "resonant" term is that having the argument (2p, - p 2). 

This term is resonant if the uncoupled frequencies satisfy the relation 

4/2 	2°1 °  

Elimination of all the other rapidly-varying "nonresonant" terms 

from the coupling in the hamiltonian of Equation (53) results in the 

resonant hamiltonian 

= 60, 3, 4- w2.iz.— oC z '112;;1  cos (210 -12). et.) 
(53)  

The corresponding harmonic normal mode equations of motion for the 

resonant system are 
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- eit) UO1)4:54' (ZVI -let); 	(54a) 

-1-04  (i0 	Etr` (2Jel 
	 (54b) 

(ef, i l.  cps' (2-ter (PO; 
	( 54 c ) 

1)2- = 	(--'6)0qa1.*-1)kcos (2,—) . 

	 (54d) 

The zeroth-order solution of Equations (54) is 

3 12.4)  = C.O h54-0.1Vb; 	yfr.0 = COICE any 	 (55) 

obtained when a = O. Substitution of this zeroth-order solution into 

the right sides of Equations (54) gives the first -order energy solution 

J it = 3 1 0 	4- 04 	C's  it 
	(Pt)  3, 

coz) 	; 
(56a) 

Ja4  = 	(-410-X0 	1, 2  1 	c°5  (-24i12)! 	(56b) 
-".4:o 	 (26Or''‘,012) 

Examination of Equations (56) shows that there will be apprecia-

ble energy sharing only if the uncoupled harmonic normal mode frequencies 

w1 and w2 satisfy the general tuning condition 

2.44t coz. 	(-20.127. 	 (57) 



48 

1 

where ,2  represents a sort of typical amplitude of the oscillations 

of the system. If this condition is satisfied, then the denominators 

the time-varying terms in Equations (56) will be of the order of a(;), 

cancelling factors of the same order in the numerators. The time-varying 

terms are then zeroth-order contributions to the energy expressions and 

there can be appreciable energy sharing. 

The tuning condition of Equation (57) may be rewritten in a more 

convenient form as 

12w1 - t..)2 1 << a A , 	 ( 58 ) 

where A = IQk+1 - Qk I is the "typical amplitude of oscillations" for a 

specific set of initial conditions. 

The reason for the appearance of aA rather than just a in the 

tuning condition given by Equation (58) can be seen from a comparison of 

the hamiltonians of linear and cubic nonlinear systems. The particle 

hamiltonian for the linear system is 

= 	 ,2e.os o,4.1)  
o 	 12-=4) 

	 (59) 

so that the coupling strength, defined in this thesis as the ratio of 

the average total coupling energy to the average total particle energy, 

is just the coupling parameter, a. But the particle hamiltonian for the. 

cubic nonlinear system is 

= 	42
4- 	N4 1 )1-04

3; (60) 

►L=1 
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(61) 

so that the coupling strength for the cubic nonlinear system involves 

the "typical amplitude" A as well as a: 

= 
040.14-0 \ 0441" i3   = o^c A 

 i-CN4-1) law-41 3- 
where c is approximately unity. 

The exact specification of the typical amplitude A is a rather 

tricky matter, even for the two-oscillator system. In the general case 

of N oscillators, it is possible to give some approximation to A if 

there is complete energy sharing; but if there is not complete energy 

sharing, then the magnitude of A depends upon how many modes are partici-

pating, which depends upon the tuning of the system, which depends upon 

the magnitude of A. This constitutes a vicious circle, since none of 

the properties mentioned are known to begin with. 

For purposes of the present thesis, it is sufficient to be con-

tent with a very rough estimate for the typical amplitude: assume that 

there is fairly widespread energy sharing in the system, so that there is 

some semblance of equipartition of energy. Then for systems in which the 

total coupling energy is small compared to the total energy, a rough 

approximation is 

-14 	QM-1 
	 (62) 

where the bar denotes a time average. The typical amplitude of the 

oscillations is then very roughly 



( 	-L- 
A 	1:'-)T-1 ) . 

For systems in which there is only limited energy sharing, and 

for systems in which the total coupling energy is not small, the esti-

mate supplied by Equation (63) is a poor one and must be modified. The 

main point to be made is that there is some sort of an amplitude factor 

which is crucial in the tuning relations for nonlinear systems, whether 

it is easily specified in all cases or not. 

For further discussions of tuning, it is convenient to define a 

normalized tuning parameter, s. In terms of this tuning parameter, the 

tuning condition first given in Equation (58) may finally be written 

2w, —  Wa. i  5 z----,- 	 « I . 
Cs  

(54)  

In addition to identifying sets of well-tuned frequencies by the 

condition of Equation (64), action-angle formalism can also be used to 

predict approximately the sharpness of tuning when the frequencies are not 

so well tuned. The use of normalization in the specification of the 

tuning parameter, s, sidesteps the practical difficulties of obtaining 

the typical amplitude, A, for a given system. 

For the present case of the two-oscillator system, the first-order 

. 
p ic  Equations (54c) and (54d) can be approximated by 

Ti = A — c( 1 .- ( 0-1)-)(42._Ni 	i 
1  602./ CoS 219, - Ga.) ;  

= — C tf2_ coz 0( .L)(1.1 	/ 
wi cv2.J a) cos L.Z.G, —42) 

(65a) 

(65b) 

50 

(63)  
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which is good enough if 632  Z 263 1  and if only an approximate second-

order energy solution is desired. The result of integrating Equations 

(65) is 

	

(0o,  6-(cs))-E; 
	

(66a) 

	

tfr= (602.4- (3-Ccs)) -E. 	 (66b) 

Substitution of the first-order expressions given by Equations 

(56) and (66) on the right sides of Equations (54a) and (54b) for the 

energies, produces upon integration time-varying terms which have denomina-

tors of the form 

(zw, —0)2.) &Ccs), 	 (67) 

rather than denominators of the form (2w 1  - w2) as appeared in the 

first-order expressions for the energy, Equations (56). 

This rather crude second-order result gives somewhat more informa-

tion about the sharpness of the internal resonances than did the first-order 

result. If the condition given by Equation (64) is satisfied, then there 

can be complete energy sharing. If the frequencies are such that 

12w1 	w2I = e(Cs), then energy sharing should be cut about in half; in 

terms of the tuning parameter, this is the case s = 1. 

A few simple calculations for other values of s lead to the 

normalized energy sharing curve presented in Figure 1. This is a universal 

curve, valid for all systems of two coupled oscillators. Of course, the 

definitions of the tuning parameters, s, are different for different 

types of couplings between oscillators. 



52 

Per Cent Energy Sharing 
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Tuning Parameter, s 

Figure 1. Predicted Sharpness of Tuning for 
Two Coupled Oscillators. 
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This resonance situation for the sharing of energy between two 

coupled oscillators is similar to the resonance situation encountered in 

a series RLC electrical circuit. In the electrical circuit, there is a 

tuning mechanism by which the values of the capacitance C and the 

inductance L may be varied to maximize the amount of power developed in 

the resistor R: 

 

E2-R. 

 

(68) = Ka 4- (al— C)2-  • 

Here the tuning parameter s corresponds to (wL - - 2" ) 2. The tuning wc 

curve for this electrical system is quite similar to the tuning curve of 

Figure 1 for two coupled oscillators. 

The action-angle formalism for tuning, which has been illustrated 

in this subsection for a system of two nonlinear coupled oscillators, is 

easily generalized to deal with a system of N nonlinear coupled oscil-

lators. For the particular cubic coupling used in systems of the type 

given by Equation (14), it is found that an exactly-tuned set of fre-

quencies is given by the relation 

0.*.= lz-co = l'- ( 0241) • 
	 (69) 

That is, an exactly-tuned set of frequencies for a cubic-coupled system 

is one in which the uncoupled harmonic normal mode frequencies are com- 

- mensurabie, having a one-to-one correspondence with the integers 1,2,3,— 

In this section, some rather basic studies of the relation between 

energy sharing and tuning for systems of coupled oscillators have been 

made. A method of finding the available internal resonances, which 
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constitute the mechanism for energy sharing, has been presented in terms 

of action-angle formalism. In addition to determination of a tuned set of 

frequencies for a given coupling, the method has provided an approximate 

indication of the sharpness of tuning, as a function of the coupling 

strength. For nonlinear systems, the coupling strength involves an average 

amplitude as well as the coupling parameter, a. This means that the 

tuning of a nonlinear system is in general a function of the level of 

amplitudes supplied by the initial conditions, in addition to the dependence 

upon the relations between the uncoupled frequencies. 

In the next section, some relevant computer results will be dis-

cussed. The studies to be presented deal principally with nonlinear 

coupled oscillator systems in which the coupling energies are small. The 

results of the predictions supplied by the action-angle formalism of 

this section will be checked against some of the actual results for these 

various systems. However, it must be noted that the predictions which 

involve a calculation of the typical amplitude of oscillations cannot be 

taken too seriously in the next section, due to the crudeness of the 

approximations involved in calculations of the type given by Equation (63). 

Computer Studies  of Energy Sharing 

It is of interest to check the general conclusions about the rela-

tion between energy sharing and tuning, which have been obtained in the 

preceding section, by comparing them with some actual computations for 

some appropriate nonlinear coupled oscillator systems. 

In a sense, the computer is used in these studies as a research 

tool to provide "experimental" data, which may be used to establish the 

validity of certain theoretical results and to aid the development of 
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further theory. 

In the first subsection, some of the results of an early computer 

study by Fermi, Ulam and Pasta will be presented and discussed. Some more 

recent work by Jackson will also be included. In the final subsection, 

some computer studies of the effect which tuning has on energy sharing 

will be discussed, for cubic nonlinear systems of two oscillators and five 

oscillators. 

Computer Studies by Fermi, Pasta and Ulam (FPU) and Jackson  

An early numerical investigation of the nature of sharing of energy 

between harmonic normal modes for broken quadratic, cubic, and quartic 

energy coupling terms was conducted by Fermi, Pasta and Ulam (1955) using 

one of the first high-speed digital computers built. 

In a typical FPU calculation, the total energy of a system of 31 

moving particles was placed initially in the first harmonic normal mode 

configuration. The spread of this energy among the other harmonic normal 

modes modes of a cubic nonlinear coupled system was then observed as a 

function of time. 

The surprising result was that only the first few modes of the 

cubic-coupled system shared appreciable energy. Other couplings and 

other types of initial conditions were tried, always with the result of 

only limited energy sharing. 

In the light of the discussions of the preceding section of this 

chapter, it appears that the lack of appreciable energy sharing may be 

attributed to a lack of tuning of the uncoupled harmonic normal mode fre-

quencies in the models used by FPU. 

This conjecture, which is the basis for the earlier discussions 
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in this chapter, was first advanced by Ford (1961) on the basis of per-

turbation theory. As a check on the validity of this conjecture and the 

conclusions developed from it in this chapter, some theoretical calcula-

tions of the extent of energy sharing expected in the cubic FPU system 

will be made. These predictions will then be compared with the actual 

FPU computer results. 

The cubic-coupled FPU systems are just the simple one-dimensional 

systems with nearest-neighbor couplings specified by Equation (11) of 

this chapter. Therefore, when the transformation given by Equation (13) 

is applied, a system of nonlinear coupled oscillators governed by the 

hamiltonian of Equation (14) is obtained, having uncoupled harmonic normal 

mode frequencies 

wl, = 2- s l y` 254). 
	

(70) 

specified earlier by Equation (6)0 

It was concluded in Equation (68) that a tuned set of frequencies 

for the cubic nonlinear system is one in which the w k  are commensurable, 

in the ratio 1,2,3,... . From Equation (70), it is seen that the fre-

quencies for the FPU system come close to being tuned only on the low-

frequency end, that is, for small k. Thus a qualitative prediction that 

only the lower modes can share appreciable energy can be made immediately. 

A quantitative prediction of the extent of energy sharing can 

also be made, using a generalization of the tuning theory for two oscil-

lators developed in the previous section. If the initial conditions are 

such that all of the energy is started in the first mode, then the most 

important couplings in the cubic nonlinear system are those which couple 
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the first mode to the higher modes. It is then appropriate to define 

N -1 tuning parameters, normalized as before, according to 

Cs 	K=2,„., N. 
— 

	

(71) 

Roughly speaking, if s k  << 1 then there will be appreciable partici-

pation of the kth mode in the sharing of energy. For tuning parameters 

of the order of unity and larger, there will be partial participation in 

energy sharing, of an amount specified by the tuning curve given by Fig-

ure 1. 

For a specific system, consider the first system of 31 moving 

particles for which FPU made numerical computations (FPU 1955, p. 12, 

Fig. 1). This is a cubic nonlinear system with coupling parameter 

a = 0.25. The initial conditions used by FPU for this system (Jackson 

1963b, p. 690) are 

Qit(0) = s ( r` 04- 1 ) 
	

4(0) 	 ( 72 ) 

corresponding to excitation of only the first harmonic normal mode. 

The average amplitude of oscillations in this system for these 

initial conditions, the quantity A in Equation (70), may be approximated 

by Equation (63) as A 21  0.05. A quick check in which this value is used 

in the expression for the particle hamiltonian, Equation (11), shows that 

the average total coupling energy is indeed small compared to the total 

energy of the system, so that Equation (65) is a good approximation for A 

from the point of view of weak coupling. That is, although the coupling 



parameter, a 	0.25, is fairly large, the coupling strength, 

C s 	0(1 A A--# 

is quite small relative to unity, and this system is rather weakly coupled. 

As pointed out earlier, in conjunction with the action-angle for-

malism for tuning, the quantity which is important in tuning considera-

tions for the nonlinear system is not the coupling parameter alone, but 

instead is the quantity of Equation (73), referred to here as the 

" coupling strength," which involves the average amplitude as well as the 

coupling parameter. 

In this thesis, a strongly coupled system will be regarded as one 

for which the average total coupling energy is a sizeable fraction of the 

total energy of the system; that is, a strongly-coupled system is one for 

which the coupling strength is greater than, say, 0.1. 

Now that the coupling strength, Equation (73) has been calculated 

for the system of 31 particles, the tuning parameters may be calculated. 

The results are presented in the first part of Table 1. These results 

indicate that there will be appreciable energy sharing only among the 

first four or five of the 31 harmonic normal modes for this FPU system. 

The actual numerical results obtained for this system by FPU are 

presented in Figure 20 The theoretical prediction of the extent of energy 

sharing in this system is essentially correct; in the actual system, very 

little energy reaches modes higher than the fifth. 

In their next calculation (FPU 1955, p. 13, Fig. 2), FPU main-

tained all parameters of the first cubic-coupled N=31 system unchanged, 
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(73) 
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except that the coupling parameter was increased to a = 1, in an attempt 

to obtain more energy sharing. 

Since the same initial conditions are used in this second calcu-

lation, the average amplitude A remains the same. The coupling strength 

is increased by a factor of four to C s  = 0.03. Therefore, even though 

the coupling parameter is now unity, this is still not a strongly coupled 

system in the sense defined in this thesis, because of the small average 

amplitude of the oscillations. 

The tuning parameters for the N = 31 system having a = 1 are 

presented in the second part of Table 1. On the basis of these calcula-

tions, there should be appreciable energy sharing only among the first six 

or seven modes. The actual numerical results of FPU, which are presented 

in Figure 3, indicate that this theoretical prediction is again essentially 

correct. Although this system is four times as strongly coupled as the 

first, there is still a lack of appreciable energy sharing among all the 

modes, due to a lack of tuning of the uncoupled frequencies. 

The lack of tuning and hence energy sharing in the FPU systems 

considered here cannot be entirely remedied by increasing the coupling 

strength. For example, if the coupling strength is increased to unity, 

still only a little more than half of the frequencies will satisfy the 

tuning condition. But increasing the coupling strength even this much 

is fruitless, because the cubic-coupled system will dissociate due to 

breaking of the bonds between particles. Dissociation of FPU and other 

simple one-dimensional systems will be discussed further in Chapter III. 

The approach taken by tPU in choosing initial conditions was to 

maintain uniform the amplitude of whatever mode j was initially excited, 
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Table 1. Tuning Parameters for N=31 FPU Systems 

First System: a = 0.25 

Mode, k 	 Tuning Parameter, sk 

2 	 0.03 

3 	 0.11 

4 	 0.29 

5 	 0.57 

6 	 1.01 

7 	 1.62 

Second System: a = 1.0 

Mode, k 	 Tuning Parameter, 

2 0.01 

3 0.03 

4 0.07 

5 0.14 

6 0.25 

7 0.40 

8 0.60 

9 0.86 

10 1.19 
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Ek 

Figure 2. Mode Energies E k  versus Time for N = 31 FPU 
System, a = 0.25. (Energies in modes higher 
than 5 are negligible. Time is measured as the 
number of uncoupled periods of the first mode.) 

Figure 3. Mode Energies Ek  versus Time for N = 31 FPU 
System, a = 1.00. (Energies in modes higher 
than 7 are negligible. Time is measured as 
the number of uncoupled periods of the first mode,) 



according to 

qrk(o) = (t)EILLi . 

Sincetheuncoupledfrequencies. are small for small j, this means 

the total energy of the system, 

(0) ---- ice (4-9 
	

(75) 

was small whenever energy was initially placed in a low mode, such as 

the first. The average amplitude of oscillations, 

(4Hk  kevj , 	(76) 

was thus small for the cases presented here, leading to small coupling 

strengths and relatively weakly-coupled systems. 

A better way to control the coupling strength would be to maintain 

uniform a certain total energy H, rather than to maintain uniform an 

amplitude qj . If H is chosen equal to (N+1) units of energy no 

matter what modes are excited, then 

A= (4 1--= 
	 (77) 

and control of the coupling strength is returned to the coupling param-

eter, a: 

cs = occA 	t4. 	 (78) 
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(74) 

This specification of a uniform total energy which is proportional 
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to the number of particles in the system maintains the average energy 

per particle uniform. It is therefore a physically more realistic 

approach. However, in practice, when dealing with artificial one-

dimensional systems of the type considered here, this approach cannot 

always be used for systems having a large number of particles, because 

of dissociation. A smaller uniform total energy must be used in these 

cases. 

In connection with the computer studies of FPU-type systems, some 

recent work by Jackson is of interest. In a paper which compares the 

predictions of a perturbation method for FPU systems with actual com-

puter results, Jackson (1963b) provides computations for some smaller 

systems of three and eight moving particles, with several values of 

coupling parameters. It is of interest to compare some predictions of 

the extent of energy sharing for these small systems with Jackson's 

actual results. 

For the three-oscillator system, Jackson uses initial conditions 

of the same type as FPU, with all energy initially in the first harmonic 

normal mode, so that the average amplitude of oscillations is A #2/ 0038 

for this system. 

In the first case, the coupling parameter is taken to be a = 0.25, 

so that the coupling strength is C s  At 0.06. The tuning parameters 

defined in Equation (70) are s2  = 1.8 and s3  = 7, so that about 35 

per cent of complete energy exchange between the first and second oscil-

lators is expected on the basis of the tuning curve given in Figure 1 in this 
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chapter; participation of the third oscillator in energy sharing is 

expected to be negligible. Jackson's computer results show that there 

is actually only about 19 per cent energy exchange between the first two 

oscillators; participation of the third is less than two per cent. 

In the second case, a = 0,50, so that the coupling strength 

is Cs m 0.13. The tuning parameters are s 2  m 0.9 and s 3 	3.5, 

which means that about 52 per cent energy sharing among the first two 

oscillators, and about 20 per cent participation of the third, are 

expected. The actual amounts are about 39 and seven per cent, respec-

tively. 

In the third case of the three-oscillator system, a = 0.75, so 

that Cs m 0.19. The tuning parameters are s2 Al 0.6 and s 3 m 2.3, 

so the first two oscillators are expected from Figure 1 to share about 

65 per cent, and the third about 23 per cent, of the maximum possible. 

Jackson's calculations show that the actual amounts are about 54 per 

cent and 17 per cent, respectively. 

These comparisons indicate that the theoretical predictions of 

energy sharing run high by as much as a factor of two for cases in which 

little energy is shared, but are rather accurate for cases in which 

appreciable energy is shared. In all cases, the theory mildly overesti-

mates the extent of energy sharing, for the three-oscillator system. 

As a final comparison, consider the eight-oscillator system for 

which Jackson has made calculations. For this system the average ampli-

tude of oscillations is A m 0.17, the coupling parameter is a = 0.25, 

and the coupling strength is C s  m 0.03. The first three tuning parameters 

are s2  m 0.35, s 3  Z  1.42, and s4  Z  3.5, so that about 75 per cent of 
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the maximum possible energy sharing between the first two oscillators is 

expected; participation of the third should be about 40 per cent, and the 

fourth less than 20 per cent. The actual computer results indicate about 

56 9  ten, and less than two per cent, respectively. The theoretical pre-

dictions are not as accurate as for the smaller system, but the essential 

features of the predictions are correct. 

In this section, the conclusions obtained in the previous section, 

concerning the relation between tuning and energy sharing, have been 

tested by comparison with actual computer results. The conclusions 

have generally been found to be valid, for cases in which the frequen-

cies have been fixed and the coupling strengths varied. In the next sec-

tion, the validity of the theoretical predictions of the extent of energy 

sharing will be further checked, by considering cases in which the 

coupling strengths are fixed and the frequencies are varied. 

Computer Studies of the Effects of Changing the Frequencies  

It is not possible to obtain appreciable sharing of energy between 

all of the harmonic normal modes of an untuned system such as the FPU 

cubic-coupled nonlinear system, even for coupling strengths so large 

that the system dissociates, as has been indicated in the preceding sub-

section. 

Many of the physical applications of coupled oscillator systems 

require a mathematical model in which complete energy sharing is possible, 

and yet in which the average total coupling energy is small compared to 

the total energy of the system. Such a model can be obtained rather 

simply from the FPU systems of this chapter, by changing the set of 

uncoupled frequencies from the untuned FPU set to a tuned set. This 
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formulation of a tuned model will be undertaken in Chapter III. 

Since a change in the frequencies is necessary in the formula-

tion of a model which is capable of sharing energy, some computer studies 

of the actual effect which changing the frequencies has on energy shar-

ing will be conducted in this subsection. Results of theoretical pre-

dictions based on action-angle formalism will be compared with these 

computer results. 

Two-Oscillator System. A computer study of energy sharing as a 

function of w2, with fixed w 1 = 1, was made for the N=2 system 

governed by the hamiltonian given in Equation (50) of this chapter. 

The series of results is presented in Figure 4. The initial conditions 

are the same for all the curves: all initial positions and momenta are 

zero except p l  = UT, so that the hamiltonian is maintained uniform at 

a magnitude of unity. The coupling parameter is a = 0.1. 

The values assigned to w2  range from the FPU value of w2  = TT 

to the exactly-tuned value of w2  = w. It is evident that little energy 

is exchanged between oscillators in the FPU system with this coupling 

strength (C s  z 0.038, and s 2  = 7), due to a lack of tuning. On the 

other hand, in the exactly-tuned system there is almost 100 per cent 

energy sharing (there is a small amount of energy in the coupling between 

oscillators). 

Figure 5 presents these same results as a tuning curve, which is 

compared with the theoretical tuning curve (Figure 1) developed earlier 

for the two-oscillator system using action-angle formalism. Examina-

tion of Figure 5 shows that the actual tuning curve for two oscillators 

is a bit sharper than the predicted tuning curve. For cases in which not 
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much energy is shared, more energy sharing is predicted than actually 

occurs. But the half-widths of the two curves agree, and in general the 

correspondence is good. 

Five-Oscillator System. In order to check the effect which changing 

the frequencies from the FPU set to an exactly-tuned set has on energy 

sharing in a somewhat larger system, computer studies were made of the 

time behavior of the harmonic normal mode energies as a function of vari-

ous sets of frequencies, for a cubic-coupled system of five oscillators. 

There are many ways to "tune" a system having more than two 

degrees of freedom. The procedure used here is just one orderly means 

of varying the amount of tuning continuously from the relatively untuned 

case supplied by the FPU frequencies to the exactly-tuned case specified 

for the cubic-coupled system by Equation (69). 

A variable untuned set of frequencies may be defined by 

(79) 

where Aw is a fixed frequency decrement. Summing the series which 

appears in this definition leads to 

wiz.= k(601— (!) Aco) , 	 (80) 

so that the detuning is greater for the higher modes: 

lizut-wo 	
12-=2.-m. 	(81)  

Frequency decrement Aw has been varied from zero, which provides 



commensurable frequencies wk  = kw1 , to 

Ll CA.) ag-l) 	/ 

which for N=5 gives detuning which exceeds that of the FPU frequen-

cies. Figure 6 presents graphically the effect of using various fre-

quency decrements between the two extreme cases mentioned here. 

The coupling parameter for the five-oscillator system used in 

this study is a = 0.1, and the total energy is H = 3. Thus the aver-

age amplitude of oscillations is A tr- 0.71, and the coupling strength 

is Cs Rs 0.05. 

Table 2 summarizes the tuning parameters for the various choices 

of decrements chosen for study. In calculating these parameters, w1 

is chosen in each case so that w 6 = 2, as in Figure 6. 

Mode, k 

Table 2. 	Tuning 

0.095 

Parameters for 	N=5 

Tuning Parameter, 	sk , 

Tuned Systems 

for Decrement 	Aw 

0.000 0.057 (FPU) 0.029 0.009 

2 2.1 1.2 0.85 0.61 0.21 0.00 

3 6.4 3.6 2.95 1.83 0.64 0.00 

4 13 7.2 7.2 3.66 1.27 0.00 

5 21 12 14 6.1 2.10 0.00 

Inspection of the detuning parameters in Table 2 indicates that 

appreciable energy sharing should be expected only for the two systems 

having frequency decrements of zero and 0.009 -- that is, for the exactly-

tuned system and for the next best one. At the other extreme, very little 

energy should be shared between modes of the system having decrement 
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(82) 
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Aw = 0.095, except perhaps for about a 35 per cent exchange between the 

first two modes. 

The actual numerical results are presented in Figures 7, 8, 9, 10 

and 11 for the values of frequency decrement given in Table 2 (except 

for the case Au = 0.057, for which the tuning parameters are much the 

same as those of the FPU system). Qualitatively, these computer results 

show that the systems for which Aw = 0 and Aw = 0.009, the two best 

tuned systems, share appreciable energy among all modes. The next system, 

for Aw = 0.029, shows a noticeable reduction in the participation of the 

fourth and fifth modes in energy sharing. The FPU system shares little 

energy except between the first two modes, and the most severely untuned 

system, that for which Aw = 0.095, shows negligible energy sharing; the 

exchange between even the first two oscillators amounts to less than 

ten per cent. 

The theoretical predictions of the extent of energy sharing for 

these systems are essentially correct. There is perhaps more energy 

sharing than expected in those systems which do share energy, and less 

energy sharing than expected in the systems which do not share appreciable 

energy. 

The computer studies of this subsection indicate that the reason 

for the failure of the FPU systems to share appreciable energy among all 

modes is due to a lack of tuning of the uncoupled harmonic normal mode 

frequencies. Actually, this conclusion might have been reached somewhat 

earlier, on the basis of the work of Peierls (1956) on crystal lattices. 

Peierls observes that in a crystal lattice two longitudinal phonons can-

not combine to produce a third longitudinal phonon, or vice-versa, because 
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such a phonon interaction does not satisfy conditions of conservation of 

energy and quasi-momentum. The longitudinal phonons correspond to the 

phonons of a one-dimensional systems such as the FPU system, and the cubic 

coupling of the FPU system corresponds to three-phonon interactions in the 

quantum-mechanical description. 

The computer results of this subsection also demonstrate explicitly 

that a well-tuned oscillator system is capable of sharing energy among all 

of its modes. This will be of importance in Chapter III, where an energy-

sharing model is to be formulated. 

In this chapter, some important results have been obtained with 

regard to the relationship between energy sharing and tuning of an oscil-

lator system. An action-angle formalism which is fairly reliable in pre-

dicting the extent of energy sharing in a given system has been developed 

and verified against established results. It has been shown that if 

certain tuning conditions on the set of uncoupled harmonic normal mode 

frequencies are satisfied for a given type of coupling, then a coupled 

oscillator system is capable of sharing appreciable energy among all of 

its modes. The crucial parameter in tuning has been shown to be not the 

coupling parameter alone, but instead involves also the typical ampli-

tude of the oscillations of the system, for cubic-coupled nonlinear sys-

tems. 

The mechanism of energy sharing has been shown to be the presence 

of internal resonances. The importance of such resonances is well known 

in physics, for example in celestial mechanics. In the solar system, 

Jupiter has a strong effect on the other bodies because of its great mass. 

It is observed that there are few or no asteroids having orbits the periods 
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of which are in the commensurable ratio of 1:2 with the period of 

Jupiter. Presumably this is because considerable energy is exchanged 

due to slowly-varying coupling terms, moving the asteroids out of these 

particular orbits. Similarly, gaps are observed in Saturn's rings, where 

particles would have periods putting them in resonance with the inner 

satellites of Saturn (Danby 1962). 

The fact that the frequencies may be slightly detuned from the 

exact relation w2  = 2w1  without materially impairing the resonance 

phenomenon, is also noted in astronomical observations. The gaps in the 

distribution of the asteroids do not occur only at the exact 1:2 ratio 

of the periods of Jupiter and the mean motions of the asteroids; there is 

a range of values in the neighborhood of this ratio (Contopoulos 1963, 

p. 9). 

In the following chapter, the information gained in this chapter 

will be put to use in the formulation of an appropriate nonlinear 

coupled oscillator model which is capable of sharing appreciable energy, 

and which is simple enough to be analytically tractable. 
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CHAPTER III 

THE MODEL: A NONLINEAR COUPLED OSCILLATOR SYSTEM 

CAPABLE OF COMPLETE ENERGY SHARING 

According to the discussions of Chapter II, not all nonlinear 

coupled oscillator systems are capable of sharing appreciable energy 

among all modes. In order to share energy completely, an oscillator 

system must have frequencies which satisfy certain tuning conditions, 

which in general depend upon the coupling strength for the particular 

system. 

The primary aim of this investigation is to formulate and analyze 

a simple but representative nonlinear coupled oscillator system which is 

capable of complete energy sharing. The experience gained in Chapter II 

will be of considerable value in the choice of such a model. 

In the first section of this chapter, the particular nonlinear 

coupled oscillator system which has been chosen for extensive further 

analysis in this thesis will be formulated. This model is capable of 

complete energy sharing for any strength of coupling. In the second 

section, the significance of the corresponding couplings in particle 

co-ordinates for this model will be discussed, since the model is formu-

lated in harmonic normal mode variables. The final section will briefly 

review some other nonlinear models which are capable of complete energy 

sharing. 
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Formulation of the Model  

As discussed in the introductory remarks of Chapter II, for pur-

poses of simplicity one-dimensional models will be used in this thesis 

for purposes of illustrating characteristics and methods of analysis for 

various coupled oscillator systems. 

In the spirit of this desire for simplicity, a very simple nonlinear 

coupled oscillator system which is capable of complete energy sharing will 

be chosen for further study. 

The particular one-dimensional model which will be given extensive 

further analysis in this thesis is the exactly-tuned cubic-coupled non-

linear oscillator system governed by a hamiltonian of the form 

N 	 t.1 
k= 	(pk.2-4- Goa? 	4.t-  Z.COLM,Jtk (1) 

This hamiltonian is the same as that appearing in Equation (14) of 

Chapter II, except that the relatively untuned set of "FPU-type" uncoupled 

harmonic normal mode frequencies appearing there has been replaced by the 

exactly-tuned set 

(2) 

given in Chapter II by Equation (69). For the sake of maintaining some 

generality in the analysis of this system, the explicit forms of the 

coupling coefficients, C ijk  in Equation (1), will not be specified 

until the computer studies of Chapter VII. 

The model specified by Equation (1) is not meant to represent any 
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particular physical system. Rather, it has been designed to emphasize 

the feature of tuned frequencies in a moderately simple system. Because 

the frequencies of this model are exactly tuned, this system is capable 

of sharing appreciable energy among all of its modes for an arbitrarily 

small total coupling energy, according to the tuning studies of Chapter 

II. That is, there is zero detuning of the frequencies of this system, 

so that the system is capable of substantial energy sharing for any 

strength of coupling. 

As will be discussed in Chapter IV, the available approximation 

schemes for solving nonlinear coupled oscillator systems which are cap-

able of complete energy sharing are least effective when strong internal 

resonances are present in the systems. The model chosen here exhibits 

the strongest possible internal resonances, due to its exact tuning. It 

is felt that if a successful analytic method of solution can be developed 

for this simple but extreme case, then this will give considerable 

insight into the solution of more complicated three-dimensional nonlinear 

physically realistic systems, in which the tuning relations are more 

general. 

Much of the remainder of this thesis will be devoted to analysis 

of the model formulated here. However, it is intended that the general 

methods of analysis developed in terms of this model will find appli-

cation to other types of nonlinear coupled oscillator systems as well. 

Since the system defined in Equation (1) is specified in terms of 

harmonic normal mode variables, some discussion of the corresponding 

particle couplings is relevant. This discussion is given in the follow-

ing section. 
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Couplings in Particle Co-ordinates  

A set of nearest-neighbor linear coupling forces between parti-

cles in the perfect harmonic system specified by Equation (2) in Chapter 

II produces the set of harmonic normal mode frequencies, "FPU" fre-

quencies, given by 

wfr_ = 2- sk2%11+1) 
	

(3 ) 

which is Equation (6) of Chapter II. 

This set of frequencies is not very well tuned, and does not 

promote appreciable energy sharing. When the set of frequencies given 

by Equation (3) is replaced by the exactly-tuned set given in Equation 

(2) of this chapter, some corresponding modifications of the particle 

model are necessary. 

There are several cases. In the case of a crystal lattice model, 

the masses of all of the particles are to be maintained equal, which 

requires in particle co-ordinates that the set of nearest -neighbor linear 

coupling forces between particles be replaced by another set of linear 

forces. These new linear forces are likely to be longer in range. In 

another case, that of a chemical molecule particle model, varying the 

harmonic normal mode frequencies corresponds to varying the masses of 

the particles and maintaining the same linear nearest-neighbor , couplings. 

The crystal lattice model is of particular interest. Although 

the one-dimensional system specified by Equation (1) is physically 

artificial, information about its particle couplings may lend insight into 

the actual particle couplings present in physically realistic three-

dimensional systems. 
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The details of the tuning procedure for a crystal lattice 

particle model are as follows. Starting with a simple FPU-type nearest-

neighbor coupled system governed by 

N 
PAZ—  + 2 G.. (C4.4. — 	k 	-(sZekl 61103 	(4)  

k= I ft.:4D 

a transformation to the harmonic normal mode representation is made, 

according to 

atc.= 	Geks, ?3 , 	= (3:1,4147' si r, 
IL= I 

(5)  

so that the hamiltonian becomes 

14 
= 	(Fitz  4—UV-pi) 12.=1 

(6)  

in which the harmonic normal mode frequencies are given by 

6 ) 1, = 2. Sly\ 
	

(7 ) 

This set of frequencies is not tuned very well, so it is replaced by 

the exactly-tuned set 

(8) 

The problem is to determine a set of linear couplings between 

particles, which corresponds to this tuned set of frequencies. 
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One (but by no means the only) solution is supplied by appli-

cation of the inverse of the transformation given by Equation (5) to the 

tuned hamiltonian, Equation (6). Application of the transformation 

qrSL=41t.Qk-/ 	(5-iemsin-2-t 	(9) 
12-1  

to the hamiltonian of Equation (6) gives a particle hamiltonian of the 

form 

= 	Pk, + 	Bid 	— 	 ( 10)  

inwhichthecoefficients13
1 j 
 are of a form such that the coupling 

forces are fairly long in range, as will be seen. Note that the cubic 

coupling term, the nonlinear portion of the original hamiltonian, has 

not been altered by tuning of the harmonic normal mode frequencies. 

Thecalculationofthecoefficients13..ij  in Equation (10) have 

been performed for a five-particle system. The results are most con-

veniently presented in terms of the equations of motion of the nearest-

neighbor "FPU" particle system and the new "tuned" particle system cor- 

responding to Equation 

FPU System 
YR • 

(10): 

-2.00 1.00 

Q2 1.00 -2.00 

Q3 0.00 1.00 

Q4 0.00 0.00 

Q5  0.00 0.00 

0.00 

1.00 

-2.00 

1.00 

0.00 

0.00 

0.00 

1.00 

-2.00 

1.00 

••• 

0.00 

0.00 

0.00 

1.00 

-2.00 

II 1M 

Q2 

Q3 

44 

Q5 

(11) 
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Tuned System 

Q3 

Q4 

Q5 

-1.63 

1.03 

-0.21 

0.07 

-0.03 

1.03 

-1.84 

1.11 

-0.24 

0.07 

-0.21 

1.11 

-1.87 

1.11 

-0.21 

0.07 

-0.24 

1.11 

-1.84 

1.03 

IMP 

-0.03 

0.07 

-0.21 

1.03 

-1.63 

•••11 	IMO 

Qi  

Q2 

Q3 

Q4 

Q5 

(1 2) 

Note that the elements of the force-coefficient matrix for the 

tuned system alternate in sign, and decrease in magnitude fairly rapidly 

off the main diagonal. This result is reminiscent of a one-dimensional 

ionic crystal in which long-range forces act. The first row equation of 

motion, for example, may be interpreted as 

	

Ql  = -0.76 (Q1  - Q0 ) 	
nearest-neighbor forces 
	(13) 

-1.03 (Q1  - Q2 ) 

	

+0.21 (Q1  - Q3 ) 	second-neighbor force 

-0.07 (Q1  - Q4) 	third-neighbor force 

	

+0.03 (Q1  - Q5 ) 	fourth-neighbor force 

-0.01 (Q1  - Q6 ) 	fifth-neighbor force 

with similar interpretations for the other equations of motion, given 

by the other rows of Equation (12). 

The combination of long-range interaction forces and fixed-end 

boundary conditions for a system of few particles, such as the example 

of the five-particle system, causes the end terms of the main diagonal 

to be smaller in magnitude than the central terms. In a system of many 

particles, boundary conditions should have less effect, and the main 
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diagonal terms should approach a magnitude of 2.00 as in the FPU sys-

tem. Such a trend is observed in similar computations for N = 10 and 

N = 15. 

Studies of these slightly larger systems indicate that the couplings 

are fairly long range in this type of system. For example, the ratio of 

tenth-neighbor forces to nearest-neighbor forces is about 0.005. Thus the 

forces decrease at a rate which is slightly greater than r -2 1  where r 

is the interaction distance. 

Three comments may be made with regard to the effect which tuning 

the harmonic normal mode frequencies has on the linear couplings between 

particles. 

First, it is possible that these tuned systems might have been 

constructed in a direct fashion from basic physical considerations. 

If a one-dimensional model of an ionic crystal (alternating signs) were 

to be constructed, with long-range interaction forces diminishing as 

r
-2 

then a particle system with linear couplings very similar to those 

obtained here by hindsight would have been chosen for investigation. A 

transformation to harmonic normal modes would then have produced a set 

of frequencies not too different from the tuned set chosen here to pro-

duce strong resonances. The model constructed in the direct manner 

described would have shared considerable energy and would have been 

physically more realistic than, say, the FPU systems. It may be that once 

a better experimental knowledge of the force coefficients present in an 

actual crystal lattice is available, the insight into the relationship 

between long-range couplings and tuned frequencies (hence energy sharing) 

which has been gained here will be of use in the "direct" construction 
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of three-dimensional mathematical models for crystal lattices. 

Second, the introduction of long-range linear particle inter-

actions as prescribed by hindsight produces an exactly commensurable 

set of harmonic normal mode frequencies in the one-dimensional model. 

This implies a dispersionless medium, because the group velocity, 

.(1Z-) 	 (14) 

is the same for all modes (phonons). This emphasizes the artificial 

nature of the ones-dimensional model chosen here. Such a lack of dis-

persion is generally found only in continuous media, such as for example 

the uniform vibrating string. A system of discrete masses, even if 

infinite, generally displays dispersion. But the present result implies 

that the special set of long-range couplings found here is equivalent to 

a continuity or smearing-out of the discrete masses actually involved. 

Third, the introduction of a particle system with long-range linear 

interactions is not necessarily the only means by which a tuned harmonic 

normal mode system can be obtained. There are other particle couplings 

which, when transformed, produce tuned frequencies. The long-range 

interaction interpretation was introduced only because it seems appropri-

ate in an application to crystal lattice vibrations. It may well be true 

that long-range interactions are not important in crystal lattice phe-

nomena; the work of Peierls (1956) indicates, for example, that the exist-

ence of transverse as well as longitudinal phonons in three-dimensional 

lattices provides the necessary internal resonances via interactions 

involving both longitudinal and transverse phonons, without the need for 

any tuning of the frequencies. 
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Bearing in mind these acknowledged shortcomings, it is never-

theless of some interest to use some typical values of physical param-

eters in the one-dimensional cubic-coupled model, in order to determine 

the order of magnitude of such characteristics as linear thermal expansion 

and the strength of coupling at various temperatures for this model. These 

characteristics are associated with the presence of the cubic anharmonic 

term in the potential, and have little to do with whether the harmonic 

normal mode frequencies are tuned or not. 

The exact details of interatomic potentials are complicated. The 

work of Peierls (1929, 1956) and Ziman (1960) suggests that only cubic 

anharmonic terms are of importance in the explanation of many nonlinear 

physical crystal phenomena, except perhaps at very high temperatures. 

The particle model discussed in this section may be represented as 

a one-dimensional lattice of mass points separated by lattice constant  

If this model is "tuned," then there will be long-range forces as well as 

nearest-neighbor forces; but the nearest-neighbor forces are the strong-

est, and will be the only ones considered in what follows. 

A typical nearest-neighbor interaction between particles con-

sists of linear and quadratic forces, so that the corresponding pair-

potential well consists of quadratic and cubic terms, as illustrated 

in Figure 12. The dissociation energy per particle is characterized 

by D in Figure 12. 

Dissociation is possible (although extremely improbable in large 

systems) in any system in which the total energy of the system, the 

hamiltonian H, exceeds D. Here the probability of dissociation is 

related to the probability of energy distributions in which only a few 



Figure 12. Typical Nearest-Neighbor 
Pair-Potential Well. 
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particles have a large fraction of the total energy of the system. Thus 

dissociation is much more likely in a system which is capable of complete 

energy sharing than in one which is not, because the distribution of 

energy among the particles is continually changing in an energy-sharing 

system. 

The above remarks are more relevant to small systems than to large 

ones. For large systems, dissociation is not likely until the total 

energy per particle, H/N, is of the order of D. 

The strength of the cubic interaction in this model may be speci-

fied in terms of the typical dissociation energy D, and the typical 

dissociation distance rD/ which will be assumed here to be one-half 

the lattice constant
o for this model. The cubic potential wells 

are given by 

(r) = r2  — C r3  — 1)/ 	 (15) 

where r is the pair separation (0k+1 	Clk)' with the two conditions -  

V(rv) = 0 anci 

For a typical lattice, assume the values 

D=Ixi cr's joule, 	L = 4-x 1 0-1°  me4-er. 

Then the force coefficients in Equation (15) are 

b = 	= 715A Id joule/tY■ai-er2- 

04,4 c = ig 	— 2,5x 10 11  jouie/wit4er3. Sio3  

(16)  

(17)  

(18)  
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The typical Debye temperature for a crystal is elb Z 200° K. Assuming 

classical statistics above this temperature, 

<E> x  1"<r2> — c<r3> =s= 

At room temperature, T 300° K or kT a 4 x1021 joule, 

the average interaction distance is 

<r3>  <r> 	<r2.> 	0i7 x 1O -11  
as calculated from Equation (19). Thus for this model the ratio of 

the cubic coupling energy to the quadratic coupling energy is about 0.04 

at room temperature. This system is weakly coupled, according to the 

criterion set up in Chapter II. The temperature corresponding to the 

ratio 0.1, which was arbitrarily set in Chapter II as the upper bound 

defining systems with weak coupling strength, is 

T 	4000° K 
	

(21) 

The linear thermal expansion associated with this model may be 

calculated from the expression 

<r> ti  tiz-T Tc,i ti 4,5x 10-14  T 
	

(22) 

for the average value of r at moderate temperatures, where T is the 

absolute temperature. This expression is derived by Kittel (1956, p. 

152), and has already been introduced as Equation (17) in Chapter I. 

The corresponding expression for linear thermal expansion p is 

QT —So(H-AT) — L4--<r>, 	(23) 

(19) 

(20)  
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so that for the parameters used in this model, 

p x 10-6 
Q,, I-  ° K (24) 

The actual values of 0 for most materials range from 1 x10 -6 to 

30 x10
-6 per degree Kelvin, so that the quantity of thermal expansion 

exhibited by this model is of approximately the correct order. 

In this section, the couplings between particles for the exactly-

tuned nonlinear model specified in Equation (1) of this chapter have been 

investigated. A one-dimensional ionic crystal has been suggested as one 

possible interpretation. Using some typical crystal lattice parameters, 

the strength of coupling and thermal expansion exhibited by the cubic-

coupled particle system have been calculated. For moderate temperatures, 

this crystal lattice model is weakly coupled, in the sense defined in 

Chapter II, and possesses a reasonable thermal expansion property. 

In the following section, brief mention will be made of some 

other nonlinear systems which are capable of complete energy sharing. 

Other Energy-Sharing Nonlinear Models  

In addition to the original simple systems studied by the group 

of Fermi, Pasta and Ulam, there have been several other types of non-

linear systems which have received recent attention. Most of these are 

capable of complete energy sharing among all modes. 

Jackson (1963b) has made a preliminary investigation of the 

effect of imperfections on energy sharing in the FPU cubic-coupled sys- 

tems. The coupling parameters were made different for different coupling 

terms in an N =3 system, so as to enhance the participation of certain 
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modes. The result was a small but not significant change in the extent 

of energy sharing. 

Zabusky (1962) has studied in detail the finite string which is 

obtained from the cubic-coupled FPU system by taking the limit as N-0 , 00. 

The linear spring constants, inverses of the particle masses, and 

coupling parameter are all taken to be proportional to N in Zabusky's 

model, so that the frequency spectrum remains discrete. A method of 

analysis which provides a solution which is good up to a certain break- 

down time is presented. In a more recent paper (Kruskal and Zabusky 1964) 

the method is improved by the inclusion of higher derivatives. 

Northcote and Potts (1963) have formulated a hard sphere model 

(one-dimensional) which is calculationally very simple and yet which 

displays complete energy sharing. This is accomplished by adding a very 

highly nonlinear interaction term to the basic linear system, in such a 

manner as to produce elastic collisions when two particles approach within 

a given distance of each other. 

Perhaps the most fruitful approach is that taken by Prigogine 

(1962) and co-workers, in which the infinite string is obtained by keep-

ing the linear spring constants, particle masses, and coupling parameter 

constant and taking the limit as N-->co. In this case there are infin-

itely many discrete frequencies, making available myriad internal 

resonances. The same sort of approach is taken by Peierls (1956), with 

regard to crystal lattice studies. 

In this chapter, the exactly-tuned nonlinear coupled oscillator 

system which will be studied extensively in the remainder of this thesis 

has been formulated. Some discussion of the corresponding particle 
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couplings for this model has been given, and some of the other nonlinear 

energy-sharing systems which appear in the literature have been mentioned 

briefly. 

In the next chapter, some of the available methods of solution of 

nonlinear coupled oscillator systems will be applied to the model formu-

lated in this chapter. 
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CHAPTER IV 

AVAILABLE PERTURBATION METHODS 

FOR NONLINEAR COUPLED OSCILLATOR SYSTEMS 

Some presently available perturbation methods which are generally 

useful in the solution of systems of oscillators coupled by nonlinear 

forces will be illustrated in this chapter. These methods are found to 

be adequate in dealing with untuned systems, but encounter difficulties 

characterized by the appearance of "small divisors" when applied to 

tuned systems. This is a serious shortcoming in an investigation of 

energy-sharing oscillator systems, which are necessarily tuned systems. 

The problem of small divisors is most severe for an exactly-tuned model 

such as that formulated in the last chapter, as will be seen. 

The problem of small divisors has already been hinted at in the 

action-angle formalism which was presented in Chapter II. In the first 

section of the present chapter, the manner in which small divisors appear 

in a simple series solution in position-momentum variables will be illus-

trated in detail. The second section will present the Krylov-Bogoliubov 

method of dealing with the small divisors problem. This method is pro-

hibitively complicated for nonlinear systems of many coupled oscillators, 

and so in the last section a rather simple yet effective scheme, adapted 

from the Wigner-Brillouin perturbation method in quantum mechanics, will 

be illustrated. 
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Series Solution in Secular Terms  

The fact that the nonlinear forces which couple the oscillators 

are weak in many physically meaningful cases, such as those discussed 

in Chapter I, leads naturally to the application of perturbation methods 

to nonlinear coupled oscillator systems. In most of the presently avail-

able perturbation schemes, the small coupling parameter a is used as 

the expansion parameter for power series representations of positions 

and momenta. 

The principal difficulty encountered by such schemes is the 

appearance of terms with small divisors in the power series expansions. 

A certain number of such terms appear automatically in some higher order 

for any coupled oscillator system; additional terms with small divisors 

appear if the system is tuned. 

These terms with small divisors are actually contributions to the 

terms which are of zeroth order in the expansion parameter a. As will 

be seen in the last two sections of this chapter, the main task of the 

established perturbation methods is to choose the zeroth-order term cor-

rectly, so that terms with small divisors do not appear in higher orders. 

In this section, a simple-minded approach to the solution of the 

equations of motion of a nonlinear coupled oscillator system with arbi-

trary frequencies will be taken. The results of this sort of approach 

will point out very clearly the need for more refined methods of solu-

tion. 

For simplicity, the following method and others to be presented in 

this chapter will be discussed in terms of their application to a two-

oscillator nonlinear system. These discussions of two-oscillator 
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examples will contain all the essential features of applications to more 

general systems. 

The nonlinear system chosen for the examples is governed by the 

hamiltonian 

1—; if_ (1)12*P246012-4-ah2g22.1  - 	 Cep 	-z3) ! 	(1) 

which is Equation (51) of Chapter II. The frequencies w i  and w2  

will be taken as free parameters in Equation (1), unless otherwise speci-

fied. The equations of motion are 

= C01211 + 0<, 	; 
	 (2a) 

(2b) 

Perhaps the simplest approach to take in solving Equations (2) is 

the following. The solution to these equations when there is no coupling 

between the oscillators (a = 0) is of the form 

?t. = AIL cos Ccok:-.1-- 00 1 	 (3) 

where the Ak and the ek are constants to be fixed by the initial 

conditions. To find the general solution of Equations (2) when a / 0, 

assume a solution of the form 

= A k. cDs (oileb ek) ‘tg,-Q,4es.,. 	(4 ) 

This assumed form allows for no modification of the general solution 
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in zeroth order, due to the nonzero coupling. (Also, the power series 

expansion in a does not explicitly show that the correct expansion 

parameter for the cubic nonlinear system is the coupling strength 

Cs N aA, where A is the average amplitude of the oscillations for a 

given set of initial conditions, rather than a alone. But this is not 

particularly important.) 

To second order in a, writing T k  * wkt + Gm  let 

, COS 'CI 	0(pri1 4- 42  Fit ; 

?Z. :=7- A2 COS r."2_ 	F.21 00122 • 

Substitution of Equations (5) into Equations (2) yields 

(Az-0)12M' COS rl 4r-  Cs(  1, ill + e412-gl I — 	
(6a) 

-0(2=f 	4-64) 12.g12 -  tri(102.21—g-ite-zo) — 0; 

(0)22.--60..) A-zeosz2.4- 0( 5,21 4-600.22, 	 I 	( 6b) 

4-061 iiz4-60..212,2.— IIG (to h-3g,24.e21) -= 

where cos T i  and 	20 = A2  cos T 2 . ?"10 = A l 	 ( 

Equate to zero the coefficients of the respective powers of a 

in Equations (6). The zeroth-order equations are identically satisfied. 

The first-order equations are 

4r-co12?-11 	A2. COS eexitk) 444, A, cos  (.--( --L-t) ; 	(7a) 
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(1)2'2 iirzi 4-z+akiCoati' —A cos 	7b  

The solution of Equation (7) for all values of w 1  and w2 

except the exactly-tuned case w 2 = 2w1  (discussed later in this sec- 

tion) is 

AI Az cos Ct2,-t) 	Aq  A2. COS (frol:'"e1 	 (8a) 

?"I  — 	0424-Wur] 	TE&A/1 (01.-607-3 

3A6 	a? cos at 	34: cosztg.  (8b)  
?ez-' = C0)22---4012-3 	4(42,13 

Substitution of this first-order solution into the second-order 

equations from Equations (6) yields 

6012. 	(A7-- 34-1) A I  ceet, 	Ae Cos
2402.2- 	41-G02,--440123 

Ap cos 3 ti  _ 3A 1 A-2,-cos(t1 4-2:r.,4)  
+042- 4wt2 3 	#L642.--  4-402:2-3 

_ 3A, Ai coset, 	A-% A2.2.  COS ti  
Ccoz.2-- 4-toz2.] 	aCcol'--Cw14-6000 

4. Ai 42  cos Cti +2x2.) 	Al A2, c°rel  
2-C4)12-  - 6)1 -1-(4)2.).2.3 	ZCo -Cw1-coa,/-3 

4_  Al At Cos (1-...1  -2z2)  
2aucl--601-6002-3 

(9a) 



99 

	

Al2A2.cca'r2. 	j_  AN2.Cos'Atl-1-t2..)  (9b) 
Ct)zzlzz = 2 D.0,1-- (w1 -60-4)2-3 2.[co12---641 4-a02-] 

	

4.  A l 2-4 cos 'CZ 	1 AF-A, cos (2-t, -10  
zCcwa- - (a1 -a102.] 7-  z [C012-  - -009 

(A 3422-) A7_CoS tz_ 3 At?-42.0DS(41-7-#2)  
2L02:4. 	4- 	- 4-a) 

3A?-A2.cos-(2:ti -Ve2) 	9A? cosh.  .1_ 9A73.. cos 3e..  
4- [we- —4-6o 12-] 	ef-C402„2-- 	 zt-te432.2-- 4-642,3 . 

Integration of second-order Equations (9) will produce terms 

which are proportional to t sirvu k  in q12, arising from the cos T k 

 terms. Such terms are called secular terms, from early celestial per-

turbation theory. A truncated series expansion in which secular terms 

appear is inadmissible as a form for the general solution q k , for the 

secular terms are unbounded and aperiodic, whereas the q k  are known to 

be bounded and multiply periodic. 

For the particular nonlinear system considered here, secular 

terms appear in second and higher even orders of a for all values of 

w i  and w2. Additional secular terms will appear in first order if the 

system is exactly tuned, that is, if w2  = 2wl . This may be seen from 

Equations (8), where for w2  = 2w1 , 

cecTi 	 (43a0/  

atita 	cos atl == ctintIL  ire EgA44:4\0312). 

Other similar tuning effects will produce additional secular 

terms in various higher orders. For example, if w 2  = w 1 , then there 
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will be additional secular terms produced by the integration of second-

order Equations (9)0 

The appearance of secular terms as such is not crucial; the more 

important general effect is the appearance of terms with small divisors 

in the solution. 

To see this, consider the example of a single ordinary differ-

ential equation of the form 

4- co- 	pc A2  cos 0,04-4b, 

which is typical of Equations (7) or (9). Here A represents a sort 

of typical amplitude of the oscillations, and s is a tuning parameter 

such as was used in Chapter II. The general solution of Equation (11) 

with initial conditions q(0) = A and C1(0) = 0, for example, is 

ocA 
= [ 	[0.4..02]] cos (A 	cos(0)tot, ( 12) 

which is valid of s / 0. That portion of the right side which is con-

trolled by a will be important only if 

[6432.  CW+5)2] fti pC 
	

(13) 

which is equivalent to the tuning condition given by Equation (64) in 

Chapter II. 

This shows that small divisors appear and make the coupling, 

characterized by the right side of Equation (11), important in zeroth 

order in the coupling parameter a for any tuned system, that is, for 



— CesS't 
(.04-sY1-1 	

(14) 
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any system satisfying the condition given in Equation (13). The coupling 

parameter alone is not adequate for the right side of Equation (13); the 

"typical amplitude" of the oscillations must also be included. 

Secular terms are just a special form of terms with small divisors, 

which appear in the solution, Equation (12), in the limit as the tuning 

parameter approaches zero: 

= A COS 	0( AI  COS CA I ihN 
S 0 	 s ••0 

.4-0(A2.6iActk 
5-•■0 

= A cos ath P-LIS--b sir.ctrE. 

sk sb  

-0.04-s)3-7 J 

The last part of Equation (14) is the solution which would be obtained 

from Equation (11) if tuning parameter s were set equal to zero to 

begin with. 

Thus although the appearance of secular terms in the solutions of 

exactly-tuned systems is rather spectacularly inadmissible, it is only 

a special case of a more general inadmissibility of terms which have 

small divisors, a situation which occurs any time the present "simple-

minded" approach is applied to tuned coupled oscillator systems. 

In this section, it has been shown how small divisors appear when 

a perturbation expansion is tried in which the zeroth-order term of the 

general solution is assumed to be exactly the solution of the uncoupled 

system. Small divisors appear in second and higher even orders for all 

choices of the frequencies, in the example illustrated, in the severe 

form of secular terms. Additional small divisors appear in all orders 
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for tuned systems, in the form of secular terms if the systems are exactly 

tuned. 

A truncated series solution containing secular terms is of no use 

as a general solution valid for all time. Only if the series could be 

summed to eliminate secular terms, would this form be of much value. But 

the summation of the series is a prohibitively difficult task. Therefore, 

it is necessary to find a better method of solution. 

In particular, it is necessary to develop a better means of deter-

mining the zeroth-order terms about which the perturbation expansion is 

made. The last two sections of this chapter present some available methods 

which do this. 

Method of Krylov-Bogoliubov (KB)  

Krylov and Bogoliubov (1947) observe that the result of summing 

the series of secular terms which arise in the method just described, is 

in general to alter the amplitude and frequency of the zeroth-order term 

in the trial solution, Equation (4) of the previous section. 

In order to provide for amplitude and frequency modulation, KB 

suggest that a power series solution of the form 

Aops ti, 	?+,9(A) 
	

(1 5) 

should be assumed, where the amplitudes and frequencies are functions of 

time specified by the differential equations 

41, 	7.' 	Ack1G4,J,7=i ) ; 

	

(16a) 
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r4 	colt 4- A.04.1.,0,,,(A„,,j ), 
	(16b) 

and the qki are periodic functions of each of the T i . 

The solution proceeds formally as follows. The assumed series 

solutions, Equations (15), are substituted into the equations of motion, 

Equation (2) in the case of the two-oscillator nonlinear system. The 

coefficient of each power of a is equated to zero, which leads to a 

system of differential equations which can formally be solved for the 

qa.  as functions of the A and Tit. . The Ak k and 
w
k s, of Equations 

(16) are determined as functions of the AL and Ts ..  at each step so 

as to eliminate secular terms. 

Formally, it is then possible to solve the resulting system of 

coupled differential equations, Equations (16), to obtain the A k  and 

the T
k 

as functions of time. 

However, for nonlinear systems, the solution of the systems of 

coupled nonlinear differential equations, Equations (16), may be just as 

difficult as solution of the original problem. Therefore, the method of 

KB in its full generality is not very practical as a general method for 

the solution of many-particle nonlinear oscillator systems. 

At best, a restricted version of the KB method, in which only 

frequency modulation is employed, may be used to give qualitative results 

for a fairly sharply-tuned system. As an example, Ford (1961) uses this 

method to analyze the N = 31 FPU system, obtaining most of the essential 

features of the exact solution. 

In this section, the Krylov-Bogoliubov perturbation method and its 
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application to a nonlinear coupled oscillator system have been discussed 

briefly. The formalism involved in this application is in general prohibi-

tively difficult, although it must be mentioned that the KB method has 

been quite successful in extensive applications in other fields of physics 

and engineering. As an alternative to the KB scheme, another more recent 

method will be presented in the following section. 

Method of Wigner-Brillouin (WB)  

A much simpler method than that of Krylov-Bogoliubov for the 

elimination of secular terms in the solutions of nonlinear coupled 

oscillator systems is a classical version of the Wigner-Brillouin 

perturbation method in quantum mechanics (Brueckner 1959). An adapta-

tion of this method was first applied to fairly sharply-tuneeFPU 

nonlinear systems by Jackson (1963a, 1963b) with considerable success. 

The WB method involves only frequency shifts to eliminate secular 

terms. The computations involve generally algebraic rather than differ-

ential equations, which is a considerable advantage in nonlinear cases. 

The results of the method can be placed in a form such that the relation-

ship between tuning and energy sharing is easily discussed without the 

need for a complete algebraic solution. 

As an illustration,, the WB method will be applied to the two-

oscillator nonlinear system of Equations (1) and (2). This example will 

display all the essential features of more general applications. 

To second order in a, assume a general solution of the form 

CI 
= A, cos z, + 04. 	4- 42-?,,_ ; 
	(17a) 
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A, cost2_4- 04. ?2.1 + 
	

(17b) 

where T
1 

= Ql t + 1, T
2 

= Q2t + 92' and where Q1 and Q2 are 

unknown frequencies to be determined. 

Substitution of Equations (17) into the equations of motion, 

Equations (2), yields 

(6012—D12-) Al cost( 4- X 	4-60121-11 	
(18a) 

4-042 Ei12+C°12t 12—  0 ( .1c) -211-11?e2o) — 0 ; 

(18b) (ojz2-_ S2.2.2)A2..00S'ez 4-0( {ezA 4-0-)22 s1 —  i(g■ -2:)3 

"1-(2 { -,,+61)2ge.2.-07.-  ($0  — 3.20 pez4)1 = 0, 

where ?10 = A l  cos T 1  and *20 = A2  cos T 2. Equations (18) are r  

identical with Equations (6) except for the replacement of w k  by Qk 

 in the zeroth-order coefficients and in the Tk . 

Equate to zero the coefficients of the respective powers of a 

in Equations (18)• The first-order and the second-order equations are 

exactly the same as those obtained for the two-oscillator system in the 

first section of this chapter, except that Qk  replaces wk  in the Tk • 

Integration of the first-order equations, Equations (7), without 

specification of whether the system is tuned or not, results formally in 

Q ., = Al A2. cos ('t 4') 	a
-

1  Az  	• 	( 19a) 

Cu 	triE(A) 12-- (S12.4 .-C24)21 	EGO12--Caz—J09 
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(A11-- 3147,-) 	A1'cos2t 1  	_ 3A;:coszt#2.  (19b) 
*-41 	G)2.2- 	 2I2Let1244-149 

If the system is tuned, then w 2  = 2w 1  and some of the denominators in 

Equations (19) may be small; this situation will be considered later in 

this section. 

Substitution of this first-order solution into the second-order 

equations from Equations (18) yields 

6 	

(P-314,9Alcosti 	Al3  cos 'el 	 (20a) 12.-■-  toilit = 	2(422- 	+- 
+Nal.- 4212.3 

4_  AI' cos 3ti  _ 3A1 A77-- c.os eti +.2.r.2.)  
4C602:2---4-nn 	4-0O32:2-- 4-.2.0:3 

3 Al  A22.cos (.. —2'4) 4_ A I  A.2- ca.s t,  
- • #ct4,2. - et-s.2.22-3 	2zet),2- c1rk1L2I-3 

AI  Az.a•coseti-1-2. )  4_ Ai A-2ms 'ci 	+ Algcos(e,--2t1.)  

A i-A2. cos ez 4_ PA-Leos (at., +-t,L) 
— 	+9.2)9 2Cc0t2— C9-1-kazI9 

(20b) 

+ [44),-1.- (2,44020 	a w1  (s -.2z723 

	

kr24 cost. 	#  Ai2A20DsCatt-1 2)  
2-Coxi--021 -a02-3 

3 (Ail--sA2,) 42 cets-'1  _ 3Al2A2cos(2t1-t0  
zu1/2.2- 	.4-Ce02.2--4-s2. 12-3 

	

3A24 co,5- (2.-e,-pra) 	9A2 cost, 	94, cos  3 ta.  
4-Ccoil. —44423 	el-tc4".— 4449 41{04.-4-J2In • 
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The terms involving cos T i  in Equation (20a) and the terms 

involving cos T 2  in Equation (20b) must be eliminated, since they will 

lead to secular terms upon integration of Equations (20). 

The principal features of the WB method is that the zeroth-order 

terms in Equations (18) are set up specifically for the purpose of 

eliminating from higher orders those terms which produce secular terms 

upon integration. The cos T i  terms of Equation (20a) are grouped with 

the cos T
1 

zeroth-order term in Equation (18a); the cos T
2 

terms of 

Equation (20b) are grouped with the cos T 2  zeroth-order term in Equa-

tion (18b), 

The frequencies Q, and Q2  are determined by equating the 

coefficients of the zeroth-order terms in Equations (18) to zero. The 

result is 

3A2.2-) 	 (21a) (A)12- 4.0(2' 

	

ZW2-2- 	4-CUlt -44117:3 

	

+ A2 	 Az  

2. [wig-4E012)1:3 	2Ecu1l'-- (.124 a2.)2"-] ; 

= tot-2-  #- °(.2' 	DJ 1-C2-a r4- si013 

+11- 	,3 (A (2.-3A2,-) 
24012-- (ao-5i3O2-3 	2442.z 

9A2.2. 
 4-0-zz] 

(21b) 
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Now that those terms which, upon integration, produce secular 

terms have been eliminated from the second-order Equations (20), the 

latter equations may be integrated. 

The general solution of the two-oscillator nonlinear system by the 

WB method, correct to order a 2 , , 	s then 

= 	cos-t, ,„( 	A2. cos eet+t-i..) 	A 	 (22a) 

[012-421+.22.7-3 	Cie-- 

+ De' 	415  CaS 3 ti 	3 A l  At cr6. C-q  
{4{ 22"  4-2193 5012.-9A23 	4Cot-4-.22,3t6012-- (-2,+2401 

_  3A,A2.2-cos (-et- 2r)  
Coia.2--4-212-] [co?--024-2.2.07-] 

4. A i  42cbs  

2F0-4- Cat sta-)2] Eco?-- (s2.1-222) 23 
AI: cos Crt  - 2:r2.)  

.TE- ► [0-)12- 02-v-2-a02-3 J ; 
Az  cos r.2.  _ 0(  (A?--3A2)  4 zae-crsco2.2:4-cian  

_  3A2cosZt2..  
CO 2-- 4-an 

[2-C40 12-4.214--5/3Ccut— (224 4 •24)2  

Ai2"-A2. cos Cati +ri)  

cos Cati  
C.to Carn09C0)22 42.114-1423 

3 Ai -A/ cos (1t, -'a)  
4C 2. 4-a12-3 E€421.-- (2.11-B02:3 

—  3  Al2-A-2. Cos (2,:rt +'CO 	+ 	9 Aiozs 3?-2.  
4-  Cci- ►t.-4-,i242-] C4-424440-9 	4-C602--4-24 [4-943 3 • 

(22b) 
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The overall accomplishment of the WB perturbation scheme is a 

conversion of the nonlinear differential equations problem of solving 

Equations (18) into the nonlinear algebraic problem of solving Equations 

(21) for the perturbed frequencies Qi  and 	In In fact, Equations (22) 

may be used to discuss energy sharing immediately, without need for an 

exact solution of Equations (21) for 	and 522 . 

An examination of Equations (21) shows that a good approximate 

solution to order a
2 

is obtained by setting Q l  = wl  and Q2  = w2  in 

all the denominators on the right side. Provided that none of these 

denominators is less than aA in magnitude, where A is a typical 

amplitude, Equations (22) show that for small aA, 	= Al  cos T 1  and 

= A2  cos 	In In this case the oscillators move almost as if uncoupled 

(except for the small frequency shift) and no appreciable exchange of 

energy between oscillators occurs. 

To study the effect of tuning the frequencies using this formalism, 

examine the approximation in Equation (21a) for Q i : 

(Al24-23Arin  4_ 	AI'  

4-2.44 CM 149 

AZ2-  

2-[(4 12-- (W2±C1-02-3 
A:-  

C01)2:3 
Small denominators will occur only if 12w 1  - w2 1 S aA. The same con-

clusion is reached from an examination of Equation (21b). 

If 12w1  - w2 1 = aA, the threshold of tuning, then the exact 

solution of Equations (21) is of the form 

( 23) 
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601  4- A 
	

(24a) 

602. 4- D& A 4- 	 (24b) 

As a consequence, some of the terms of order aA in the general solu-

tion, Equations (22), have denominators of order aA and become zeroth-

order terms: for example, 

a( Q , A7. CIAS 	el) 	A cos- Cr2..--ti). Cwit - 
(25) 

This modification to the zeroth-order term means that appreciable 

energy sharing will occur in this system. 

If 2w1 is not of the order of w 2' then from Equations (21) 

the frequency shifts are of order (aA) 2 : 

52. 1  = Gui 	CoLA >2 	• • 	 (26a) 

—az 	(0(,A)2* " . 	(26b) 

An examination of the general solution, Equations (22), now shows that 

no first-order terms can have denominators of order aA. Among the 

second-order terms, denominators of order (aA) 2 can occur only if 

w1 - w2 g (aA) 2 , a sharper tuning condition than that provided in 

first order. Thus this system should exhibit energy sharing independent 

of a for the frequencies w 2  = w1 , as well as when w2  = 2wl . The 

amount of energy sharing when w2  = wl  may not be appreciable, however, 

since this is a higher-order resonance. 
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To order a
2

, the two sets of tuned frequencies discussed above 

are the only two which can be found for this system. All the general 

conclusions obtained in Chapter II using action-angle formalism are 

included in the results of this WB formalism. In fact, the WB method 

has provided more extensive results and displays considerable mathematical 

simplicity in doing it. 

Until now in this discussion, the WB method, which is the best 

perturbation method for nonlinear coupled oscillator systems now avail-

able, has been used only to eliminate those secular terms which arise in 

second and higher even orders of a for any choice of w l  and 	The The 

tuned sets of frequencies which make possible appreciable energy sharing 

have been identified. But the WB method has not yet been used to deal 

with an exactly-tuned system, such as the model formulated in Chapter 

III as the system of prime interest in the remainder of this thesis. 

In order to analyze the exactly-tuned system using the WB method, 

consider the solution of Equations (2) when w2  = 2w l . Substitution of 

the trial solution, Equations (17), into Equations (2) results in Equa-

tions (18), as before. The first-order equations in a are Equations 

( 7 ): 

ii11# (4111 = -11)01 A2..GOStrti-ti) 4-i At Az CDS Cr.2.—ti); 
	(7a) 

C0421 = —26 GV--3A2t) 242: CGS 2:CI 
	 (7b) 

	cos 2r,2. 3Q2:2-  

Since (T 2  - T i ) = T i  + aAt and 2T 1  = T 2  + aAt, integration of the 
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cos (t. 2 - 1 ) term in Equation (7a) and integration of the cos 21 1 

term in Equation (7b) will lead to terms having small divisors. 

It is not particularly clear how these terms should be treated 

in general in the WB formalism. They can be conveniently moved down to 

zeroth order only if T 2  = 2T 1  is true exactly. This relation will be 

found to be valid only for certain restricted sets of initial conditions, 

which give rise to periodic solutions, as will be discussed in Chapter VI. 

The WB perturbation scheme provides a simple and effective method 

of dealing with the problem of the small divisors which automatically 

arise in the solutions of untuned oscillator systems. This formalism 

also provides a surprisingly good analysis of tuned systems, so long as 

they are not too sharply tuned. Jackson (1963b) makes this observation 

in the case of strongly-coupled FPU systems. 

However, the manner in which the WB method should be used to deal 

with exactly-tuned systems, such as are of principal interest in this part 

of the thesis, is not entirely clear in general. Apparently, contribu-

tions to zeroth order arise in all orders for an exactly-tuned system. 

It has been indicated in this chapter that the better presently 

available perturbation methods, such as the method of Wigner-Brillouin as 

adapted by Jackson, are best suited to deal with systems which are other 

than exactly tuned systems, the rest of this thesis will be an effort 

to develop a different sort of perturbation scheme designed basically for 

exactly-tuned systems. If insight into the solution of an exactly-tuned 

system can be gained, then the solution of any system tuned to any degree 

should be available in principle, using the exactly-tuned system solu-

tion as a zeroth-order solution and employing conventional perturbation 
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methods with the tuning parameters playing the role of perturbation param-

eters. 

This chapter has established the need for a better method of solu-

tion for exactly-tuned nonlinear coupled oscillator systems. In the 

next chapter, various methods will be used to solve the comparatively 

easy exactly-tuned linear coupled oscillator system introduced in Chapter 

II. The experience gained in the analysis of the linear system in Chap-

ter V will be used as a guide in the analysis of the nonlinear coupled 

oscillator system in Chapter VI. 
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CHAPTER V 

VARIOUS METHODS OF ANALYTIC SOLUTION FOR 

LINEAR COUPLED OSCILLATOR SYSTEMS 

In Equation (17) of Chapter II, a rather artiacially constructed 

system having linear couplings between adjacent harmonic normal modes was 

introduced. This system was constructed in order to provide a system 

which is easy to solve and yet which has many similarities both of 

behavior and analysis to a nonlinear coupled oscillator system. 

In this chapter, an exactly-tuned linear coupled oscillator 

system of this sort will be solved by several different methods. The 

experience gained in solving the linear system in this chapter will be 

used as a guide in the analysis of more difficult exactly-tuned nonlinear 

systems in Chapter VI. 

In the first section of this chapter, a solution of the linear 

system in its true normal modes will be illustrated, primarily for 

reference. In the second section, a solution of an N = 2 linear system 

by means of integration of the action-angle equations of motion will be 

presented. The third section will introduce the use of a trial solution 

for solving linear systems; the solutions of a given system and the 

resonant system which corresponds to it will be compared, and a prescrip-

tion for the momenta of a resonant system will be presented. The final 

section of this chapter will illustrate a method of general solution by 

means of expansions about periodic solutions for the linear system. 
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Solution in Normal Modes  

Principally for purposes of comparison with the other solutions 

to be obtained later in this chapter, the solution of the linear system 

in terms of its true normal modes will be obtained in this section. 

This method is of no value in the corresponding analysis of a nonlinear 

system. 

The example chosen for solution in this chapter is the two-oscil-

lator linear system governed by 

(1) 

in which the equal frequencies, w l  = w2  = w, represent an exactly-

tuned set for this linear coupling, as was indicated in Chapter II. 

The corresponding equations of motion are 

(4?2.; 
	 (2a) 

v<1. 1 • 
	 (2b) 

Except as noted in the second section, the discussions of methods of 

solution as illustrated by two-oscillator examples in this chapter will 

contain all the essential features of applications to larger linear 

coupled oscillator systems. 

For any relatively simple system of linearly coupled particles, 

a true normal mode solution can be obtained by the direct application 

to the particle hamiltonian of a transformation which completely decouples 

the system. 
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The same result may be achieved in less direct fashion by first 

applying a "harmonic normal mode" transformation to the particle hamil-

tonian to decouple that part of the system which remains when a = 0, 

and by then following this with a second transformation which completes 

the decoupling of the entire system, including the coupling term con-

trolled by a. 

In the present case, the latter two-step procedure is the more 

convenient, because the first step has already been made, in that Equa-

tions (2) are formulated in harmonic normal mode variables. 

The second step, the transformation which completes the decoupling 

of Equations (2), is 

- 	+.y2.) ; 

	 (3a ) 

= U  ($12.), 
	 (3b) 

and the true normal mode equations of motion are 

+ C(42--c>0 y = 0; 
	 (4a) 

	

(V-4-00 = 
	 (4b) 

which are completely decoupled. The general harmonic normal mode 

solution is therefore 

?1 = 	cos (-Eli .t+G.1) Ca COS' (a  z++ 92 ) ; 
	(5a) 

	

= C1 cos (S11 -6 +01) — C2 cos Caeb 02)/ 	(5b) 
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1 	 1 
, 	 , 	, 2 where Q

1 = kw - a) ' 2 = kw
2  + a) , and where C 1 , C2 , 91'  and 

92 are constants to be determined by the initial conditions. Note that 

the effect of the coupling in this tuned case is to split the harmonic 

normal mode frequencies, so that Q i  < w and Q2  > w. This is typical 

of larger linear systems, in which the frequencies are always split in 

symmetric pairs. If the number of oscillators, N, is odd, then one 

frequency remains unshifted while the others split. 

In this section, the general solution of the N =2 linear system 

has been obtained by transforming to the true normal modes. This solu-

tion will be compared to solutions obtained by other methods in the 

remainder of this chapter. 

Solution in Action-Angle Variables  

As mentioned in the discussion of celestial systems in Chapter I, 

a general solution of any system having N degrees of freedom can be 

constructed if N constants of the motion are known. 

Such a method of solution for the N =2 linear system will be 

illustrated in this section. The system actually solved here is the 

"resonant" system which corresponds to the "original" system introduced 

and solved in the first section of this chapter. A comparison of the solu-

tions to the resonant and original systems will be delayed until the 

third section of this chapter. 

The method presented in this section has direct application to 

the nonlinear N =2 system as well. However, it should be noted that 

use of this particular form of the constants of the motion is not as 

easily generalized for systems of more than two oscillators as are most 
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of the other methods illustrated in this chapter. 

As shown in Chapter II, the canonical transformation 

= -2-e)car tfk-/ 	PIE-= - (24*J1jksill 
	(6) 

may be applied to Equation (1) to produce action-angle hamiltonian 

= 603 1  60,12_—#.5-J1iJ23--[cosOfri-y4 4- cos (yl—-4-)-3 	(7 ) 

and corresponding equations of motion which have already been pre-

sented as Equations (44) of Chapter II, except for the present 

restriction that w i  = w2  = w. 

In Chapter II, action-angle formalism was used to show that only 

the slowly-varying "resonant" terms in Equations (44) are important in 

energy sharing. The rapidly-varying "nonresonant" terms should at most 

serve to perturb the solution of the resonant system in a manner which 

can be adequately treated by usual perturbation procedures. 

Therefore, it should be possible to obtain a good approximation 

to an actual energy-sharing situation by retaining only the slowly- 

varying terms in the hamiltonian of Equation (7), and solving the result-

ing "resonant" system. 

When the rapidly-varying coupling term is dropped from Equation 

(7), the resonant hamiltonian is 

N.-,  W i, , +6u32.— 	cos 	(fr"), 
	(8 ) 

with corresponding equations of motion 
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31 	J1132Sk Clei —WO ; 
	 (9a) 

"I" 204.-5J14-J2.1-sir\ (It —(p2s) ; 
	 (9b) 

(el  = 0 4- --“Jri-J 2*COSOf t—yz) ; 
	(9c) 

to -g s- 	 (9d) 

The hamiltonian is one constant of the motion, and Equations 

(9a) and (9b) immediately provide a second constant of the motion of 

the form 

K =J1  +J2 	 (10) 

In the present case it is convenient to employ the two known constants 

of the motion in the form of the total uncoupled oscillator energy K i , 

and a quantity K2  which is proportional to the total coupling energy: 

K1= ciJJ, +wiz  ; 
	 (11a) 

K2_ = 6.0J 1  1-J2 12--. cos 
(y ,- (e..) . 

	 ( 11b) 

To obtain an equation of motion in a single variable, say J2 , 

square both sides of Equation (9b) to obtain 

— (ifY- 	- I 32- ws2-6() f7-)1, 
	(12) 

and use constants of the motion K
1 and K2 to eliminate variables 

J 1 , T 1  and T2: 



:12 = C-C' [— J24- I) ')) a cE2.] 
= c°74-4-x[C..12.--0(AG2.-J2.13, 

where X 2  and p2  are roots of the quadratic equation in J 2  in the 

first part of Equation (13), which satisfy the relation X 2  5. J 2  5 p 2 . 

Equation (13) may be written 

Cll2- 	L Pc444. = a
J2.42)(1A2.-.J2w)] 2.  

(21)  

so that integration of the right side produces an inverse sine function. 

This results in a general energy solution 

e, = 663, = (K-w>,) — co  (,,,,,,_),20) si,,,2_44-b ; 	(15a) 

Ez. = adz= 	c4)>■2.  4- 03 (Az  —)„..) sqh21. 14$-E. (15b) 

Substitution of the expressions for J, and J2  into Equations (9c) 

and (9d), use of K2 , and integration of the resulting $ 1  and cl:i 2 

 equations yields 

T1 = cAYE + .6).,-t 1-12,2_,\.i. 
L LAa.) 4ar ii-,-;--C] ; (16a) 
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(13)  

(16b) 
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The action-angle solution given by Equations (15) and (16) is 

equivalent to the form 

_.z.r.  	I 	 1 41_ = ) ■ (A) LP1/422-  CoS1 	coS Oh, - n2  Sir \-2.z-o -c Sly.u.n] ; 	
(17a) 

(-2'1[)%2# 	 „A_ ?.2. = „4,, 	COS •7_ 0.) C-OS 	 Slit\ 	„,, 	 ( 1 

When initial conditions are introduced and the roots X 2  and p2  are 

evaluated in terms of them, Equations (17) are found to be equivalent 

to the form 

F, C, cosCacb+01) -I- C2  ccAs 	Oz.) ; 

?2,-z--  cos (n.,-E+‘;t0 — Cz COS 

1 a 	 1 a where Q1 = 	-  2 w  ' Q2  = w + 2 — — , and where C 1 , C2, Al, and 9
2 w 

are constants to be determined by the initial conditions. 

In this section, a method for obtaining the general solution of a 

resonant linear system by means of integration of the action-angle equa-

tions of motion, using known constants of the motion, has been illustrated 

for N =2. 

In the next section, a simpler method for obtaining the general 

solution of a resonant system by the use of suitable trial solutions 

will be illustrated. A comparison of the solutions of the original and 

the corresponding resonant systems will be made. 

Use of Trial Solutions  

Due to the relative simplicity of the linear system, the same 
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conclusions concerning the solution of the resonant linear system may be 

reached in a more straightforward and convincing fashion by employing 

trial solutions for q l  and q2, rather than by doing general integra-

tions in action-angle variables. 

This method is possible mainly by hindsight, for linear systems, 

in which the general solution is known to be a linear superposition of 

N individual true normal mode solutions. Unlike the action-angle formal-

ism of the preceding section, it will not be particularly useful in the 

analysis of nonlinear systems. 

The method of using trial solutions is presented in this section 

for two reasons. In the first subsection, the solutions of "original" 

and corresponding "resonant" systems will be compared. In the second 

subsection, a prescription for the form of the momenta in an exactly-

tuned resonant system will be developed. These results, rather than the 

method used to obtain them, will be of use as guides in the later analysis 

of nonlinear systems. 

Comparison of Solutions of Original and Resonant Systems  

In this subsection, the general solutions of the original system, 

Equation (1) of this chapter, and the corresponding resonant system, 

specified in action-angle variables by Equation (8) of this chapter, 

will be obtained using appropriately-chosen trial solutions. These two 

solutions will then be compared. 

Consider first the original system given by Equations (1) and (2). 

Let the initial conditions be 

-12_= 4Iz_ 	and 	-1,._(6) --= 0. 	 (19) 
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By hindsight, based on knowledge of the existence of N normal modes 

for an N-oscillator linear system, assume a trial general solution of 

the form 

?-1 	CI cb S (S2 .1E 4 41) 4 Cz COS (-Q ,2k CIO ; 
	(20a) 

C1 cos Cs/ 1-E+ 	— Cz  cos (az-E + 	. 	(20b) 

Substitution of this trial solution into Equations (2) and application 

of the position initial conditions of Equations (19) yields the general 

solution 

(A-142.) COS(l-4)4 	—40 GDS (0)2-4-04)4*; (21a ) 

CZ = (Al 4- A2.) cos (0)2.-00-1--t — 	—42) cos  (0)2.4. 004- 	(21b) 

For comparison, consider the corresponding resonant system. The 

result of retaining only the slowly-varying resonant terms in the hamil-

tonian of the original system by way of Equations (7) and (8) of this 

chapter, is a position-momentum hamiltonian 

-= (1,12- + )s-+ww-+ mzeiz—) 	 (-1 .'I 	(22) 

in which the coupling energy now involves momenta as well as positions. 

This artificial appearance of momenta in the coupling is of no physical 

consequence. It is only the result of a formal approximation made in 

action-angle variables to simplify analysis of the energy-sharing proper-

ties of the system. However, it is important to note that in dealing 
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with actual physical systems by this "corresponding resonant system" 

approach, it is necessary to provide for the effect of the nonresonant 

terms, which when included prevent the appearance of momentum terms in 

the coupling. That is, a physical coupling depending upon positions 

alone cannot be represented by resonant coupling terms only. 

As would be expected from the symmetric form of the resonant 

hamiltonian, Equation (22), with respect to momenta and positions, the 

four first-order hamilton equations of motion display a certain symmetry: 

QI 	Pi 	f2-4: p2 ; 
	

(23a) 

P i 	
-6'911 -1- 41 
	

(23b) 

172- 	; 

	

(23c) 

(23d) 

Equations (23) can be combined to form two second-order equations of 

motion involving only the qk , as before: 

(24a) 

(24b)  

A comparison of Equations (24) for the resonant system with Equations 

(2) for the original system shows that the only formal effect of dropping 

nonresonant terms in the coupling is a shift of the frequencies by the 

order of a
2
, so far as the equations of motion of the linear system 
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are concerned. 

However, the effect of dropping nonresonant terms on energy 

sharing is slightly greater than Equations (24) would indicate. In 

the original system, p k  = F4k ; whereas in the corresponding resonant 

system, pk  = qk  + 0(a), as is shown by first-order Equations (23b) 

and (23d). Therefore, the energy expressions 

(110- 4- co ft.2gie.) 
	

(25) 

differ in order a for the two systems. This small difference is displayed 

as a small additional rapidly-varying energy which appears in the energy 

solutions to the original system, but does not appear in the energy 

solutions to the corresponding resonant system. The reason for this is 

that by its very definition, the resonant system contains no rapidly-

varying contributions to the energies. 

It follows from the above discussion that the energy solution to 

the original system can be closely approximated by the solution to the 

corresponding resonant system, if p k  in the energy expression for the 

resonant system is replaced by Cik . 

To solve Equations (24), assume a trial general solution of the form 

given by Equations (20), to obtain expressions of the form 

q cos 6)-16-)-E+ 	+ C, cosEwir 416)-64-k] ; (26a) 

= ci cos aw---16) 4.1913 —c2.cos[G444.- -64)+02.-1. (26b) 

Application of the position initial conditions given in Equations (19) 

results in the general solution 
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2k=i,(At -I-A2)cosCcu-2M-b4-Wi+AL)cosa046)b; (27a) 

?s= (A, -v cbs(0)--k-Mt (27b) 

For the particular set of position initial conditions applied, 

in which the initial momenta are zero, the amplitudes of the general 

solution to the resonant system, Equations (27), are the same as the 

amplitudes of the solution to the original system, Equations (21). 

For the more general initial conditions 

Ak 	, ete.,(6) = Bk/ 	(29) 

the amplitudes of Equations (27) will differ in second order in a 

from the amplitudes of Equations (21), because of the order a 2  dif- 

ference in the frequencies which appear in the amplitudes of the velocities, 

the 4k . However, as far as the energy sharing solution is concerned, 

this difference is relatively trivial. 

In this subsection, the general solutions of the original and 

resonant systems have been compared in detail. To zeroth order in 

coupling parameter a, these two solutions are the same. There are 

second-order shifts in the frequencies, caused by the inclusion of non-

resonant terms; and there are differences of second order in a in the 

magnitudes of the amplitude coefficients of the two solutions. The first-

order differences in the momenta of the two systems are easily compensated 

for in the energy solutions. 

This general result, that the solution of the resonant system 

closely approximates the solution of the corresponding original system 
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for a linear coupled exactly-tuned oscillator model, encourages the 

attempt to analyze nonlinear systems in terms of the corresponding resonant 

nonlinear systems. With this in mind, a prescription for the form of the 

momenta in an exactly-tuned resonant system will be developed in the next 

subsection, in terms of the linear system. This result will be especially 

useful in dealing with nonlinear systems. 

Prescription for Momenta  

As noted in the preceding subsection, the momenta p k  are not 

exactly equal to the velocities 4 k  in a resonant system, because of 

the appearance of momenta in the coupling term of a resonant hamiltonian. 

Expressions for the momenta of the N=2 resonant linear system 

of this chapter can be obtained by integration of the Pk  equations, 

Equations (23b) and (23d), after substitution of the position expressions, 

Equations (26): 

-= —cuci sih[cco j)-)-E4G 1 -] 

ce-SiiNC.Cco 	
; 

122_ = 	Ci CIA ECCO -491)+ 4'6'1] 
+ W CZ SIP\ (WA" -it3) -b4-92-.3 • 

(29a) 

(29b)  

Note that these momentum expressions contain only terms which are of 

zeroth order in a. This is a necessary feature of a resonant system, 

in which only zeroth-order variations in the energies have been retained. 

This result suggests a prescription for the form of a trial solu-

tion to be assumed for a resonant linear system. As before, assume the 



12.1 C 1  — C1 CI 
oC 

 Ls / 

j22, C2. 

(32a) 

(32b) 
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general position solution to be 

?rt CI co  (-Ai= Ai- 	Ar C4L cos (223: 02:) i 	( 30a) 

?ra. C3 Cos (C2.1-b 4,  GI) c4  cos (.2.2.+-4- 	. 	(30b) 

Prescribe the accompanying form for the momenta to be 

p i  == —WC sirk (421434r 	-- WCZ Sk (az+ 4-Q.2.); 	(31a) 

	

—co; sir\ (S2-L4-&) — C4. SIK (afe-142). 	( 31 b) 

That is, obtain the trial form for the momenta of a resonant system from 

the trial form for the positions by formally replacing cos by sin, and by 

multiplying each term by the negative of its uncoupled harmonic normal 

mode frequency, so that there are only terms of zeroth order in a in 

the amplitudes of the p k o 

When such a trial solution, Equations (30) and (31), is substi-

tuted into the first-order equations of motion of the resonant system, 

Equations (23), the algebraic equations arising from corresponding 'Ilk 

 and pk  equations are found to be the same. For example, substitution 

of Equations (30a) and (31a) into Equations (23a) and (23b) results in 

either case in 

The success of this prescription for a trial solution of a 
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resonant system means that one can work with N first-order differen-

tial equations rather than with N second-order differential equations, 

in an exactly-tuned resonant system. 

This observation is of consideiable value in dealing with non-

linear exactly-tuned resonant systems, where the same prescription is 

found to be valid for the same reasons. Second-order differential equa-

tions for the resonant nonlinear system are somewhat more involved than 

are the first-order equations. Knowledge of the appropriate form of the 

Pk for use in the first-order equations provides a considerable simpli-

fication in the analysis of nonlinear systems. 

Two illustrations of the use of trial solutions for exactly-tuned 

linear systems have been given in this section. The first example indi-

cates that the solution of a given lirikar system may be rather well approx-

imated by the solution of the corresponding resonant system. The second 

example gives a general prescription for the form of the momentum trial 

solution which is appropriate in the analysis of resonant exactly-tuned 

coupled oscillator systems. 

The experience gained in terms of linear coupled systems thus far 

in this chapter will be of considerable aid in guiding the analysis of 

nonlinear systems. However, none of the methods yet presented are 

entirely adequate in dealing with nonlinear systems of more than two 

degrees of freedom. 

The method which is illustrated in the next section is the one 

which will ultimately find general use in the analysis of nonlinear sys-

tems in Chapter VI. It is introduced in this chapter mainly to provide 

later comparison with an application of the same sort of method to a 

nonlinear system in Chapter VI. 
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Expansions about Periodic Solutions  

The last method of solution for linear systems to be illustrated 

in this chapter is the method of making a perturbation expansion about a 

known periodic solution of the system. This method ultimately will be 

applied with some success in the analysis of nonlinear systems in Chapter 

V I. 

For systems of linear differential equations, there is a theorem 

which assures that linear superposition is valid. This is not true in 

general for nonlinear systems. However, it is of interest to investigate 

for the nonlinear system whether there are any cases at all in which 

some form of linear superposition does hold, even if only approximately. 

The method of expansions about periodic solutions provides an appropriate 

formalism for such an investigation. 

The solution of the N=2 resonant exactly-tuned linear system, 

Equations (9) of this chapter, will be illustrated. The prescription 

for the form of momentum trial solutions developed for resonant systems 

in the preceding section will be used. Since the Cl ic  and Ok  first- 

order equations produce equivalent algebraic relations, only one set, the 

Pk Equations (9b) and (9d), need be used: 

	

P) = (4211 + 	; 	 (33a) 

= 	602-2. 4- 	. 
	

(33b) 

To obtain a "periodic solution" of this system, assume a solution 

of the periodic form 
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cos(R-640 ; 	— WC, Si h. C.240; (34a) 

	

= c2. cos (.-64-6) ; 	p2.:= --toCzsiACSL-64-G), (34b) 

Here it has been assumed that the arguments of q l  and q2  are of the 

same frequency and have the same phase angle (except perhaps for a 

factor of 180 0 ). Thus there are only three arbitrary constants in Equa-

tions (34): C1,  C2, and A. 

Substitution of this trial solution, Equations (34), into the 

equations of motion, Equations (33), yields 

	

= coca 	— Cz_ 	 (35a) 

-Q-C2 = 	, 	 (35b) 

the algebraic solution of which is 

 

C2_ 	 (36) 

The equations of motion have placed another constraint upon the ratio 

of the amplitudes of the periodic solution, so that there is now just 

one arbitrary amplitude, say C 1 , along with the one arbitrary phase 

angle, 8. 

If position initial conditions (these assure that 8 = 0, and 

are the only appropriate type for periodic solutions for N > 2) of 

the type 

Co) — 	-ahl Wo) = 0 	 (37) 
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are specified, the solution of Equations (33) becomes 

= 	cos(o)--Pi)-6; 	(38a) 

cos (()) 124) t. 	(38b) 

Equations (38) show that a periodic solution of the form assumed 

in Equations (34) can occur only for two special sets of initial condi-

tions of the type given in Equation (37): A 2  = +AI  and A2  = -A l . This 

conclusion is confirmed by an examination of the general solution of this 

system, given by Equations (27) in this chapter. The general solution 

reduces to single periodic terms only for these specific sets of initial 

conditions. 

Having identified the existence and form of the periodic solutions 

of this linear system, the general solution may now be obtained as a 

perturbation expansion about a periodic solution. 

For this purpose, assume a trial general solution of the form 

	 A l-kI ckicos(a+s_s2.)-b ; 	(39a) 

?IL  = Co k 	C 	CR.-A-J/-11e* (39b )  

the zeroth-order terms of which are the trial periodic solutions, Equa-

tions (34). That is, the expansion parameter p is a function of the 

initial conditions only; for the system of Equations (33), if the initial 
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conditions are A2  = ±A 1 , then p = 0 and Equations (39) reduce to 

Equations (34). For simplicity in Equations (39), the phase angles 

which are needed for general initial conditions are taken as zero, which 

is compatible with position initial conditions of the type given by 

Equations (37). 

Justification for the form of the above simplified trial general 

solution will not be attempted here. This matter will be discussed in 

Chapter VI in conjunction with the pertWrbation expansion about a periodic 

solution for a nonlinear system. The main purpose of the present applica-

tion to a linear system is to provide an illustration which later may be 

compared with the application to a nonlinear system in the next chapter. 

To see how the by now familiar general solution of the linear 

system emerges from this perturbation expansion about a periodic solution, 

keep only terms through order p 1 
 in the trial general solution, Equa-

tions (39): 

0 car -C2-:b 
[C it  cos(Sa.4-34) 4- CH ctos(2.—ne) -Q ; 

= C2,42 COSR:E 

coscz-ksi.)-b C2.-1 cos Csz.--.4)..] 

(40a)  

(40b)  

with corresponding expressions for the momenta. 

Substitution of these order p trial solutions, Equations (40), 

into the equations of motion, Equations (33), yields the same solution 

(4 1) 
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in zeroth order as appears in Equations (36). Equating coefficients 

of first order in p yields 

(44-.24:,)(:11 == 00(211 - 	(1,,, 	 (42a) 

Cs2--5242) ct-1 --= 60C1.-- ■ - De4.4)-  Ci ; 
	

(42b) 

Ca -I- si.) C21 w C  - kelt; 	(42c) 

	

= 	 (42d) 

The solution of Equations (42a) and (42c) is 

=. w 	== AH Cu / 	 (43) 

which leads to a contradiction in Equations (42b) and (42d) unless the 

following amplitudes vanish: 

	

C 1  =O ; 	 0 . 	 (44) 

In a somewhat similar fashion, if the trial general solution is 

taken to higher order in p for the linear system, then the coeffi-

cients of the (Q + c ) terms vanish for III > 1. The net result is 

that there are only two nonvanishing terms in each of the infinite-sum 

general solution expressions, Equations (39), for the linear system. 

That is, the general solution as an expansion about a periodic solution 

for the linear system, correct to all orders of 3, is 

GI = CID [cos (a) T.  ;4.5}b-k-1s 	(.05.64 -1--,-tik,)47.1 ; 	(45a) 
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Ci o Ecc's Co; >E 	 cle  s w s. e,„ 	(45b) 

with corresponding expressions for the momenta. 

Suppose an expansion about the periodic solution for which 

A2 = +A 1 is desired. Choose the upper set of signs in Equations (45) 

so that the appropriate periodic solution is obtained when p = O. Appli-

cation of the initial conditions, Equations (37), results in 

(4 6) 

where C 11 
= C10 has been arbitrarily assumed in order to avoid a 

redundancy between p and C11 . The general solution may then be 

written as 

= :12-_(A 1 4-4.)[cos(60-k-k)-E (44-i-) cos(ci,-74)-E-3 ;  (47a) 

( 47b) 

The above solution, Equations (47), is the correct general solution, 

which reduces to an in-phase periodic solution when A 2  = +Al . A similar 

expansion could have been made about the out-of-phase periodic solution. 

The periodic solutions obtained here are the same as the true 

normal modes of the resonant linear system, which were identified at the 

beginning of this chapter. 

The validity of the concept of linear superposition for the 

linear system is demonstrated by the appearance of only one other term, 
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the other normal mode solution, when a perturbation expansion is made 

about a given periodic (normal mode) solution. The degree to which 

linear superposition applies in a nonlinear system will be tested in this 

same formalism, by making an expansion about a periodic solution and 

investigating the terms which arise. These other terms are not expected 

to be the other periodic solutions, but the matter will be studied. 

In this chapter, a linear coupled oscillator system has been 

subjected to analysis by a variety of methods. The solution has been 

obtained by way of normal mode analysis, integration of the action-angle 

equations of motion using constants of the motion, use of trial solutions, 

and pert\rbation expansions about periodic solutions. Much of the exper-

ience thus gained will be of significant aid as a guide in the analysis 

of nonlinear coupled oscillator systems. 

In particular, the methods of integration of the action-angle 

equations and expansions about periodic solutions will be directly 

applied to systems of two and N oscillators, respectively. Analogy 

to the result for the linear system will be used to argue that the 

solution of the resonant system is a good approximation to the solution 

of the original system for nonlinear energy-sharing systems, at least 

weakly-coupled ones. Ana the prescription for the form of the momenta in 

a resonant exactly-tuned coupled oscillator system will be used in the 

analysis of nonlinear systems in Chapter VI. 

Thus the function of the present chapter has been to provide 

experience which is needed in the analysis of nonlinear coupled oscil-

lator systems in Chapter VI. 



137 

CHAPTER VI 

A METHOD OF ANALYTIC SOLUTION 

FOR NONLINEAR COUPLED OSCILLATOR SYSTEMS 

The analysis of exactly-tuned linear coupled oscillator systems 

presented in the preceding chapter will be used in this chapter as a 

guide in developing an analysis of exactly-tuned nonlinear coupled oscil-

lator systems. 

The main problem in the analysis of an exactly-tuned nonlinear 

system by a perturbation method, to which this thesis is limited, is the 

specification of an appropriate zeroth-order trial general solution. The 

general solution of a nonlinear system is not expected to be a simple lin-

ear suppi-position of individual solutions, becalAe true decoupled normal 

modes do not exist in general for a nonlinear system. Available pertur-

bation theories, such as the Wigner-Brillouin scheme discussed in Chapter 

IV, encounter certain difficulties in the construction of the complete 

zeroth-order term in the trial solution for an exactly-tuned nonlinear 

system. 

Some simplification of the analysis can be achieved by considering 

only the "resonant" systems corresponding to the given exactly-tuned sys-

tems for which solutions are desired. That is, systems obtained by 

retaining only the slowly-varying coupling terms of given systems will 

be more simply analyzed. The energy solution of a resonant system is 

expected to be a good approximation to the energy solution of the cor-

responding original system in the nonlinear case, by analogy to the 
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linear case discussed in Chapter V, and by the discussion in action-angle 

formalism presented in Chapter II. More generally, the position and 

momentum solutions of the resonant system are expected to be good 

approximations to the solutions of the actual system, if the differences 

between the momenta of the two systems are compensated for. 

In the first section of this chapter, the exact energy solution 

for a two-oscillator resonant exactly-tuned nonlinear system will be 

obtained, by use of action-angle variables, in order to gain insight into 

an appropriate form of position-momentum trial solution. The difficulties 

involved in directly obtaining the position-momentum general solutions 

from this energy solution will be discussed. An expansion of the exact 

energy solution will be discussed. An expansion of the exact energy 

solution in trigonometric series will then be made, as a guide in obtain-

ing trigonometric series expansions for the positions and momenta. 

In the second section, a method of obtaining a general position-

momentum solution for a two-oscillator nonlinear system as a pert4bation 

expansion about a periodic solution will be developed. The trigonometric 

series expansion of the energy solution, obtained in the first section, 

will be used as a guide. 

In the final section of this chapter, which is to be considered 

the most important portion of the thesis, a method of obtaining a general 

position-momentum solution for a nonlinear coupled oscillator system hav- 

ing N degrees of freedom in one dimension will be developed, as a pertur-

bation expansion about a periodic solution. Both the two preceding sec-

tions in this chapter and the experience gained in Chapter V will be used 

to develop this method. 
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To provide a check on the effectiveness of this method of per-

turbation expansions about periodic solutions in the general case of N 

oscillators, it will be necessary to resort to the use of a computer to 

compare the results of this method with the results of a numerical inte-

gration of the equations of motion, for certain specified sets of initial 

conditions. This will be carried out later, in Chapter VII. 

Energy Solution for Two-Oscillator Nonlinear System 

Consider the exactly-tuned cubic nonlinear system governed by 

Cp2 4- F2:2- 4- 0.f2V-# 427.2) -- k(e12--F,e), (1) 
which is the N =2 case of the model formulated in Chapter III. 

As discussed in conjunction with Equation (52) of Chapter II, the 

energy solution of the system given by Equation (1) may be well approximated 

by the solution of the corresponding "resonant" system in which only the 

slowly-varying nresOnant" coupling terms are retained in the hamiltonian. 

The identification of these resonant terms is made most conveniently in 

action-angle formalism. 

In action-angle variables, the hamiltonian given by Equation (1) 

becomes 

+.(.03., t4.2.4-t 	, 	[co, (.2* , 41,2,) 	(2) 

4-cas ez4f i  
2 cos (92. 

4- je-.1  [cos 3 cez  4- 3 cos. y-2,,"3 
Elimination of all rapidly-varying nonresonant terms from Equation (2) 
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results in the resonant hamiltonian 

, 
zw-12- - Zia 	‘J I J2:2.  Cbgt2terfz.) • ( 3)  

The resonant hamiltonian given in action-angle variables in 

Equation (3) corresponds to a position-momentum hamiltonian of the 

form 

14  = “pizi-p2-2-- ki9-t-orog)- 044-6- (2127-2_4-h21-2.# z6- pli p2)• (4) 

Note that the q2 term in the coupling of the original hamiltonian, 

Equation (1), contains no resonant portion whatever, and has been com-

pletely dropped in forming the resonant hamiltonian given by Equation (4). 

One might regard the dropping of nonresonant terms as equivalent 

to the addition of certain mixed position-momentum coupling terms, which 

serves to reveal the underlying q, p symmetry of a resonant coupling. 

These symmetrizing portions of the coupling were formerly cancelled out 

by the presence of the nonresonant coupling terms in the original hamil-

tonian, Equation (1). 

In the first subsection, it will be shown that an exact energy 

solution of the two-oscillator resonant nonlinear system can be 

obtained by integration of the equations of motion in action-angle 

variables, because two constants Of the motion are readily available for 

this system. 

The second subsection will present the formal method by which 

the companion ' lc  solutions can be obtained, and will discuss the dif-

ficulties involved in trying to obtain the complete position-momentum 
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solution from the complete action-angle solution. 

The third subsection will develop a trigonometric series expan-

sion of the elliptic function exact energy solution obtained in the 

first subsection, in an effort to salvage some information about the 

appropriate form for a position-momentum solution from the energy solu-

tion. 

Energy Solution in Action-Angle Variables  

The method of solution of an exactly-tuned resonant nonlinear 

system of two oscillators by integration of the action-angle equations 

of motion will closely follow the method illustrated in Chapter V for the 

linear system. This sort of analysis was first carried out over forty 

years ago, by co-workers of Whittaker. 

The system governed by the hamiltonian of Equation (3) has action-

angle equations of motion of the form 

• 
j i  = 04 	-1 J1J i- 60 	2t Eth (v6-10; 	(5a) 

32,_ 	(Art J, 	Czyl—t(); 	(5b) 

jet  = co c/s.4:40-1-jzik co.T (24e 	; 	( 5c) 

(e, 2t4  042,4-2.16)—i J 1  11.4  casCziet —v2). (5d) 

Two constants of the motion, the total uncoupled oscillator energy K i 

 and a quantity K2  which is proportional to the total coupling energy, 

are immediately available for this system: 



coJ, 2co,12_ ;  
I 	 / 

K2_ = CuJI .)2.2-  cos eay, - 

By squaring Equation (5b) and using constants of the motion K1 

and K2, an equation in the single variable J 2 may be obtained: 

-11(647 Df- (-,,),J22.-.4-Ct4))z-i(N2 -J. (7) 

This may be written in the form 

cova- 	CC32.—>Y2-Vip.-32.)(v2.--32.) -3 
	

( 8 ) 

where X2 , [Iv  and v 2  are the roots of the cubic equation in J 2 

 on the right side of Equation (7). These roots satisfy the relation 

X 2 	j2 	11'2 5: v 2 °  

The integration of Equation (8) has been performed by Baker 

and Ross (1921, 1922) in a more general treatment of systems coupled as 

in Equation (3) in which the frequencies are taken to be free parameters. 

The present exactly-tuned system is just a special case of their more 

general study. 

Baker and Ross deal with the above cubic in J2 as a quartic, the 

fourth root of which is J2 -IP.. 00. Using standard transformations for 

quartics (Jeffreys 1950) to reduce the integral of Equation (8) to a 

standard form, Baker and Ross obtain an exact energy solution in terms 

of elliptic functions sn(u, k): 

142 

(6a) 

( 6b) 
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I 4- kroNCLOO 	/ 	
(9a) 

ez.z. 240  it=  2S2-4-2..rplz..glquik)  
1 4- 	Cu, 	/ 	(9b) 

where k,j, and m are functions of the roots X 	and v 2 2' /1 2' 

which are defined in the Baker-Ross paper. 

The Baker-Ross form of solution is not the most convenient for 

purposes of the present study. A more appropriate form of solution, which 

is directly analogous to the form of solution for the linear system given 

in Chapter V by Equations (15), may be obtained by a somewhat more straight-

forward integration of Equation (8). 

Use a standard transformation for a cubic (Jeffreys 1950), rather 

than for a quartic, to reduce the integral of Equation (8) to a standard 

form: let J 2  = Ar.)1 2. , so that 

g2.  
6-112:E 	E12,42) St] [(74,-Q Sn 

= 
1 

C2)2 
where m2  = (1121..x2)  , n2  = (v2  1X2) , k2  = m2 	, and z = m24  g2 °  

The last integral in Equation (10) is the standard form for an elliptic 

integral of the first kind, so that z 2 = sn(u2,  k2 ) , in analogy to an 

inverse sine integral; the time variable is 

uL= A  241:  (Aft Le., 

- zSL -1z.(2"-OsIN Cu, IL)  Ei  = cAJJ, = 

(10) 
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The form of energy solution obtained by this method is 

= 	= CK-1--21.6X2.) - 260c0.2.42)SA2 (1)2104); (12a) 

= 2W J2. = 7-GO,X2,4-2W(A2,42)4Y‘02./k2). (12b) 

A comparison between this form and Equations (15) of Chapter V shows that 

the only essential difference between the general energy solutions of the 

linear and nonlinear systems is the replacement of trigonometric "sin" 

functions in the linear solution by elliptic "sn" functions in the non-

linear solution. 

This result, along with the existence of a second constant of 

the motion for the resonant nonlinear system, encourages a belief that 

the characters of solutions of linear and nonlinear coupled oscillator 

systems are not greatly different. It seems likely that the difficulties 

which have troubled analyses of tuned nonlinear systems may be difficul-

ties inherent in the particular mathematical formalisms involved, rather 

than difficulties due to any lack of underlying simplicity for nonlinear 

systems. The latter observation agrees with that of Baker (1921), who 

points out that seemingly overwhelming difficulties may be encountered 

simply because of a wrong choice of an infinite series representation, 

for example. 

In this subsection, the exact energy solution has been obtained 

for the two-oscillator nonlinear system. In the case of the two-oscil-

lator linear system for which the complete solution was obtained in 

Chapter V, the next step was integration of the ci) k  equations, after 

expressions for the Jk  had been obtained. The following subsection 
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will point out the formal difficulties involved in following the same 

procedure to obtain the general position-momentum solution for the 

nonlinear system. 

Integration of the (i) k  Equations 

The integration of the eli k  equations for the nonlinear system is 

not as easy as it was for the linear system in Chapter V, specifically 

because of the appearance of elliptic functions rather than trigonometric 

functions in the expressions for the Jk . 

For example, consider the integration of the first equation, 

Equation (5c) of this chapter: 

- = 	- 	id?. cos (.21,-(P.) 

7-, 

(13)  

where the second constant of the motion, K 2  from Equation (6b), has 

been used to eliminate T i  and cp 2  on the right side. Substitution 

of the solution for J 1 from Equation (12a) into Equation (13) and 

integration yields 

,, clo t  cot —0.(2,r2,- 60 2- 	j a + bsr\2-(Ut  
0 

K1  
where a = (-- - 2k 2) and b = -2(11 2  - x2 ). 

Reference to a standard work on elliptic functions (Hancock 1910) 

reveals that the integral encountered in Equation (14) may be evaluated 

in terms of elliptic functions and theta functions: 

(14)  



%S. 

(15) 
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,f-b kb
ru  

6 sy\.2 (u, )= U 	Jo  I — w-Cu,lt) 
0 

	

[ 
	k-) 

  	

1. sY■ WO 	I (6Zufai 2 	 . 
cACA,14.1-KtoilL) `)3  ®Cu4-a) u  a. / 

where c
2 
 = b  — a 

The integration of the (il k  equations'as done by Baker and Ross 

(1921) 9  using a slightly different form of solutions for J 1  and J2' 

results in equally complicated expressions involving theta functions 

for T, and 92. Baker and Ross venture no further than to numerically 

approximate the action-angle variables for a given set of initial condi-

tions, in order to obtain an approximation to the position-momentum solu-

tion of a given nonlinear system. 

The relative complexity of the general action-angle solution 

discourages any attempt to obtain the general position-momentum solution 

for the nonlinear system considered. Formally, it is possible to express 

the various elliptic and theta functions in trigonometric series, take 

the various inverse tangents and other functions involved, and finally 

obtain a trigonometric series representation of the q,p solution from 

the J, q  solution. However, this procedure has been attempted and 

appears to be prohibitively difficult in the general case. 

Apparently, a more practical approach is to deal only with the 

relatively simple energy solutions. In the next subsection, the energy 

solutions obtained in the first subsection will be studied in more detail, 

in an attempt to obtain some information from them with regard to the 



147 

general form of the position-momentum solution. 

Series Expansion of Energy Solution  

In order to avoid the mathematical difficulties of dealing with 

the complete J, p solution, and yet in order to gain some insight into 

the actual form of the q,p solution for the two-oscillator nonlinear 

system, a more detailed investigation will be made of the relatively 

simple energy solution obtained earlier. 

The elliptic functions which appear in the energy solution will 

be expanded in their trigonometric series representations. Two special 

limiting cases for the elliptic functions will be considered, in an 

attempt to find some situations in which special solutions are easier to 

find than the general solution. 

Referring to Equation (12), the general solution for the energy 

of the first oscillator is 

El  = (1(-1  –242) –2u) (440 sv(2- Cu, k) 
	

(16) 

the energy of the second oscillator is just E 2  = K1  - El . 

A standard trigonometric series representation of the elliptic 

function sn(u,k) is the following (Hancock 1910, p. 486): 

sh(u/ k) = 	( 13) 	si rs & U 
	

( 1 7 ) 

+4—m1,1/45 2_1-u 4- 2 --g  sm5-1-7u 

where k is the modulus of elliptic function sn(u,k), 0 	k 	1; 

is the complete elliptic integral of the first kind, with modulus k; and 
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q is defined by 

e 	 (18 ) 

where K° is the complete elliptic integral of the first kind, with 
1 

modulus k' = (1 - k2 ) I 0 

For simplicity in the construction of later expressions, it is 

desirable to obtain a form for sn(u,k) which involves only argument 

u and modulus k. To do this starting from Equation (17), it is neces-

sary to express K and q in terms of modulus k. 

Modulus k may be related to q by the expression (Hancock 

1910, p. 480) 

raqz-)(1-119  

from which an expression for q in terms of k may be obtained: 

-1-16 (e.  ( 	a let- 	• 

Complete elliptic integral K may be written (Hancock 1910, p. 

476) as 

--- 	( I .4- 2-zo- 2?.4-  2x1.9 4-- )2•1  

which, with the use of Equation (19), becomes 

= 2 ( 4-  42'4 	 . 

(19)  

(20)  

(21)  

(22)  



(24) 

Substitution of Equations (20) and (22) for q and K on the 

right side of Equation (17) leads to 

siN (ol io -= (I+ le- 4- 7:756 + 	SIr &U 	(23) 

le'r 	 sirk 
4- ( zsz 	i) sk 5 	11-  U • / 

where the arguments of the trigonometric functions are odd integer 

multiples of 
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Equation (23) shows that the elliptic function sn(u,k) may be 

expressed as a trigonometric series in sines of odd multiples of an 

argument which is proportional to u. The coefficients of the expan-

sion and of u may be expressed as power series in even powers of 

modulus k. 

The two limiting cases of sn(u,k) occur for k = 0 and for 

k = 1. If k = 0, then sn(u,k) = sin u, as Equations (23) and (24) 

show. At the other extreme, if k = 1, then sn(u,k) = tanh u, a 

bounded function which has an infinite period. The latter limit is more 

easily established using a different series representation from that of 

Equation (23), although Equation (24) does indicate that the period of 

sn(u,k) increases as k increases to unity. 

A trigonometric series expansion for sn
2 (u l k), which is the 

function which appears in the typical energy solution given by Equation 

(15), may be obtained by squaring both sides of Equation (23). The 
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typical energy solution for the two-oscillator nonlinear system may there-

fore be written as a trigonometric series: 

(K 1  — 2.co),2.) — 2(4)1.2-xo ji C 1 -- 	-- 	( 25) 
( I 	— &i¢) co 

— +6-  ( 	k-4) cos 2 u 
le9 cos 3.1u 

• 

1 where 2 — u is given by Equation (24). 

The elliptic function modulus k is a function only of the initial 

conditions applied to the system. In the integration of Equation (8) 

earlier in this chapter, modulus k 2  was introduced in Equation (10) as 

L. _ 	 
- (26) 

where X 2, 112' and v 2 are roots of the cubic in J2 which appears 

in Equation (7), and are therefore functions of the initial conditions 

only, through constants of the motion K 1  and K2 . 

It follows from Equations (25) and (26) that if the initial con-

ditions are such that (11 2  - x 2) = 0, then the energy solution is 

constant in time: 

et = (Kt -244X2.). 	 (27) 

This result indicates the existence of periodic solutions for the 

nonlinear system, for certain special sets of initial conditions. 
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Furthermore, by solving the cubic of Equation (7), it is found 

that if X2 29 then X 2 "4  11 2 << v 29 so that for sets oi initial 

conditions in the neighborhood of the set for which X 2  = 11 2 , kz  is 

small. This indicates that an energy solution of the form 

E I  -= (1-240)■2.)-260 ck2- >2') Si  V\ 2-  U 	 ( 29 ) 

will be a good approximation to the exact solution in the region in 

which X 2  2;  11 2 . But this is just the form of the solution to the lin-

ear two-oscillator system, Equations (15) of Chapter V, which further 

demonstrates the similarities previously noted between linear and non-

linear coupled oscillator systems. 

The general form of the energy solution, Equation (25), implies 

that the general form of the position-momentum solution will be similar 

in many respects to that obtained for the linear system. This encourages 

an attempt to develop a method of perturbation expansions about periodic 

solutions as a scheme for obtaining general position-momentum solutions 

for resonant nonlinear systems. 

In this section, a trigonometric series expansion for the exact 

energy solution of the resonant exactly-tuned nonlinear two-oscillator 

system has been obtained. This expression will be used to guide the 

development of an appropriate form of trial general solution for the 

positions and momenta of an N-oscillator resonant nonlinear system in the 

remainder of this chapter. In the next section, some consideration will 

be given to the position-momentum solution of the two-oscillator nonlinear 

system, as a final preliminary to the analysis of the general situation. 
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Two-Oscillator General Solution  

The trigonometric series expansion, Equation (25) of this chap-

ter s  for the energy solution of the two-oscillator resonant exactly-

tuned nonlinear system described by Equations (5), provides evidence 

of the existence of periodic solutions for special sets of initial con-

ditions for this system. It also indicates that expansions about 

periodic solutions may provide a workable scheme for obtaining the gen-

eral position-momentum solution of the system. 

In this section the existence of periodic solutions and the 

details of expansions about them will be investigated for the two-

oscillator nonlinear system. This is ,the last preliminary example to 

be worked out prior to the more general analysis of the N-oscillator 

system, to be given in the last section of this chapter. 

The resonant exactly-tuned two-oscillator nonlinear system 

governed by the hamiltonian given in Equation (4) of this chapter has 

the following first-order equations of motion: 

= 171 - 4 111-1k-a 61:12- F12. 4-  itiTzgi P2-); 
	 (29a) 

(29b) 

= — tAl211 "E D4  i (2-212• 4-  &a  Pi P2') ; 
	(30a) 

N- = —42 ?'2- -I—a(  i (tri2-  — ?;1 24)12) t 
	 (30b) 

In order to find the periodic solutions of this system, assume 

a trial position solution of the form 
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ct cos (a-b Gi ) ; 

= G1, cos 242-E + 9 ), 

where Q = w + a  b w o 

Equations (31) represent a generalization of the form of the 

periodic solution found to exist for the linear system in Chapter V. 

Here it is recognized that in the exactly-tuned nonlinear system the 

uncoupled frequency of the kth oscillator is kco rather than just 

w as in the linear system. 

The trial momentum solution corresponding to Equations (31) is 

_coci 	 (32a) 

172 = —244 GL  sk 2 (a-b 4-0 1 	 (32b) 

in accordance with the prescription for momenta developed in Chapter V 

for resonant exactly-tuned linear systems. This prescription is valid 

for any resonant system in which only slowly-varying terms are retained 

in the coupling, because it is the only possible choice consistent with 

Equations (31) which assures that there are no rapidly-varying energy terms 

in 

(33) 

The result of substitution of Equations (31) and (32) into either 

Equations (29) or Equations (30) is the same: 

(34) 
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A comparison of Equations (34) of this chapter and Equations (36) of 

Chapter V shows that the two periodic solutions which have been shown to 

exist for this nonlinear two-oscillator system are completely analogous 

to the periodic solutions of the linear system. The primary difference 

is that the part of the frequencies which is of order a is proportional 

to the amplitude in the nonlinear system, whereas it is not in the linear 

system. Minor differences in the numerical factors are basically due to 

the difference in the uncoupled frequencies of the two systems. 

In order to make a perturbation expansion about a periodic solu-

tion, it ig necessary to assume some form of trial solution. One rather 

general form of trial solution which results in an energy expression of 

the form of Equation (25) of this chapter is 

Calwor4-400 1  4--akz)2.A 2- 	coz (35) 

1 	4-12112-4- 3 cos (kz-z-e) 

N IA ,  .4- ai232/g2-+ 	] cos ( o )LTA- te) 

ak-22A2-4- .1 cos. (kt-2:te) 

42.242- 4- ► ij cos Ozz+zte) 4- . 
where 

z= (a) kir+ 1:1 /1 1  b2A24.,, 	+- 	(36) 

and 

"e-ei Ccor+ GP + c242- 4- • 	+ Ge 	 (37) 
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with companion momentum expressions obtained from the qk  by the pre-

scription of multiplying the q k  expressions by -kw and replacing 

"cos" by "sin." Expansion parameter p is to be a function only of the 

initial conditions, so that if 	= 0 then the general solution given by 

Equations (35) reduces to the periodic solution given by Equations (31). 

The expression for the oscillator energy E k  corresponding to 

the trial solution of the form given in Equations (35) is 

-1-k2032" [ale: 241-kbo a-kol p I  ►  ' 1 	 (38) 

+. [400 	4-akti)13.' 4- 1 1 .] cos (De-6 +Goa) 

[aitop (4-24424 /  4- -] cos 2_02dt+Gz) 4-111, 

Thus the frequency denoted Q e  is the fundamental frequency of energy 

exchange between oscillators. Comparison of Equation (38) with Equation 

(25) verifies that the trial solution of the form given in Equations (35) 

does indeed lead to an energy solution of the same form (Oet = 	u) as 

that obtained by integration of the equations of motion in action-angle 

variables. However, the roles of expansion parameters p and k
2 

in 

Equations (38) and (25) are clearly different. 

Substitution of the trial solution of Equations (35) into the 

equations of motion, Equations (29) or (30), results in the solution 
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i-i = atm) cp° 4- 	aim 
a-I oo A

i 
+ 	 0-100 182. 4_. :3 cast (39a) 

41. ay-141001  1 )1 4.  
ad::, A2-4" 1 1 C°S  et —te) 

#[ 	(24-5) 	R'+  (2,4--v-3) edg2-4-. , :]cos(e+t-e) 

4-E 	 1-(34-tro 1117,4 , , .1 cos(t-ite) 

4- +3§:atopi' CA°  4-  tt;163 I  -1-/e4-6(a+trotolut 	(39b) 

+- E -0-11§MAI - 0-6) Zat. pz 	coscze-tae) 

[ 	tri) tJ;k,6 --(5303.) t".2;42-4. 	,042-t+te) 

4- E 	 -i. 013)(aa4-17-0Tr4- ,  .1 cos (2c-2re) 

C. 	 02A-75)10/82+ cos(2-"e+2e0) 
4- ••• 

wkere = (60-40100[460-1-1-u;-) 	 (40) 

+ (Am- - 4-(z+c-§)(tonA2.4-..])b 4-8/  a-loo 

r 	aya. ahci 	= tk—a Lin 4- 	 Ge , e 	2AE too 	aloe, 	 (41) 

This expansion was made about the periodic solution obtained by taking 

upper signs in Equation (34). Note that ti e  is typically determined to 

one less order in A than the rest of the solution. 
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Four of the arbitrary coefficients in the solution given by Equa- 

a lll 
tions (39), say a100, 	p, e, and eel  can be fixed in terms of 

a l00 
the initial conditions 

giz.(0) = 	; 	 = 	. 	 (42 ) 

The other coefficients, such as 
a 101 	a102 	a112 and 	remain , arbi- , 
a100  ' a 	a 

	

 100 	100 
trary in this solution. 

One way in which these arbitrary coefficients might be specified 

is in such a manner as to provide agreement with the elliptic function 

expansions of the energy solution given in Equation (24) of this chapter. 

However, this is neither practical in all orders of p nor particularly 

desirable, since an energy solution is not available for nonlinear sys-

tems of more than two oscillators. 

	

A more satisfactory arrangement is to choose a 101 
5 
 all; 	and 

a 100 100 	100 

similar terms on even-numbered "diagonals" of the solution given by Equa- 

a102 tions (39) zero, and to choose ---- and similar terms on odd-numbered 
a 100 

interior "diagonals" so that the higher-order corrections to the frequen-

cies Q and Qe vanish. For the system being considered at present, this 

means choose 

a402_ 
aioo 	11-(2-4-0) Caul  

atoo • 

Equations (40) and (41) show that with this choice and with 

21101  =a 0 	01-02  
0400 	/ 	atop = ", 

(43)  

(44)  
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there are no higher-order corrections to the frequencies Q and 	at at 

least through order p 2 	In the next section of this chapter, it will 

be shown that the choice described results in no higher-order frequency 

corrections of any order in the expansion parameter p. 

As a result of the preceding discussion, the form of trial solu-

tion finally decided upon for the two-oscillator nonlinear system is 

c/ 	
Afr00 cos. le-t 
	

(45 ) 

	

L 	A le_10 COS 0-1:: 
0 COS (IZ-st 

+Pa 	41, 1  I cos az -k e -1- te) 
4- Ak.H cos (kz 

4-1 I cos CILe -te 

cos (ket ---4-t-e)] 4-  

where r = (w 	b)t 	e 2  and T = 	Ct 	8e 

Equation (45) has been written in a manner which is easily gen-

eralized for systems of more than two oscillators. Note that the second 

and third terms of order p 2 are really cos kt terms, and were written 

on the first line of the previous trial solution form, given by Equation 

(35). 

The trial solution given by Equation (45) is essentially the same 

as the trial solution used in Chapter V for an expansion about a periodic 

solution for the linear system (Equations (39) of Chapter V). This form 

of trial solution was introduced without justification for the linear sys-

tem, principally to provide a comparison between solutions l of the linear 
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and nonlinear systems. 

The comparison shows that whereas the expansion about a periodic 

solution for the linear system truncates automatically at order p 1 , so 

that there are just N total terms in an expression for a given q k , 

the expansion about a periodic solution for the nonlinear system continues 

indefinitely and has an infinite number of higher harmonics. 

Furthermore, any semblance of linear superposition for the nonlinear 

system is very weak, even for arbitrarily small p (near a periodic solu-

tion), because both the cos (kT - 	 and and the cos(kT + tie ) terms appear 

to first order in 13; there are (2N-1) rather than N terms in an 

expression for a given q k , to order p. The only similarity to linear 

superposition stems from the fact that the coefficients of the cos(kT -ti e ) 

terms are somewhat smaller than the coefficients of the cos(kT + tie ) 

terms, as may be seen from Equations (39) for the case N =2. Thus there 

are N dominant terms in an expression for a given q k , to order p, 

for the nonlinear system. However, these dominant terms of order p 

still do not correspond to excitation of the other periodic solutions of 

the system, as was the case for the linear system in which the periodic 

solutions were the true normal modes. 

In addition to the appearance of higher harmonics in the solution 

of the nonlinear system, the other major difference between the solutions 

of linear and nonlinear coupled oscillator systems is the dependence upon 

amplitude shown by the frequency components which are of order a )  in 

the nonlinear system. This leads to an inverse proportionality between 

the period of energy exchange and the typical amplitude of the oscillations 

of the nonlinear system; in the linear system, the period of energy exchange 
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is independent of the amplitudes of the oscillations. 

In this section s  a workable form of trial general solution for 

the positions and momenta of a two-oscillator resonant exactly-tuned 

nonlinear system has been deve3oped. In the next section, a generali-

zation of this method for nonlinear systems of more than two oscillators 

will be made. 

Many-Oscillator General Solution 

The preceding discussions of this chapter have served to make 

plausible a certain form of trial solution for a nonlinear system of two 

oscillators. The remainder of this chapter will be devoted to the devel-

opment of a more general form of trial solution, which is appropriate 

for nonlinear systems of many oscillators. Particular attention will 

be given to methods of dealing with the algebraic computations which are 

involved. 

For a typical resonant exactly-tuned nonlinear system of N 

oscillators, consider the model formulated in Chapter III. If only 

resonant terms are retained in the coupling energy of this model, then the 

hamiltonian is of the form 

H = 	 C jk,„ 	32.,tYt/ 
ki/S " 

(46) 

where z is a general symbol standing for either q or p, and where 

the C OQ 
Im  are numerical coefficients. 

Hamilton's equations of motion for this system are 
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4- DC. 	CeAk 
1y% 

(47a) 

„N 
F1L 	la2c02?-it — 0C, (47b) 

Man\ 

where zizm  is of the form win  or pAqm  in Equation (47a), or is 

of the form qtqm  or plym  in Equation (47b). The coefficients in 

the equations of motion, CEM and CEM°, are not the same in the two 

Equations (47a) and (47b); in order to maintain some generality of 

analysis, these coefficients will not be explicitly specified in this 

chapter. Some definite values will be used only in Chapters VII and 

VIII, in conjunction with the numerical studies of these systems. 

Since the coupling term of the hamiltonian given by Equation (46) 

is qresonant," the only CEMkim  and CEMy kkm  which appear in Equations 

(47) are those for which either m = k or m = k. 

In the first subsection, a method of finding N stable periodic 

solutions for an N-oscillator nonlinear system will be presented. Having 

this indication of the existence at least in many cases of N distinct 

periodic solutions, the second subsection will discuss the details of 

obtaining a perturbation expansion about a periodic solution. 

Periodic Solutions  

In order to search for periodic solutions, assume a trial solution 

of the form 

	

qrlt = C - COS CR-E - 9) 
	

(48a) 

izto 	sip\ k(sa+ (3) , 	(48b) 



162 

where W = w + b. This form is assumed for the case w i  = w 2/2 = w 3/3=000 

Substitute this trial solution into Equations (47a) and (47b). The alge-

braic relations obtained in this manner from Equation (47a) will be the 

same as those obtained from Equation (47b). 

The result of the above procedure is a system of N nonlinear equa-

tions in N + 1 unknowns, which are the N coefficients Ck  and the fre-

quency component b. This may be regarded as a nonlinear eigenvalue-

eigenvector problem. It is convenient to normalize the eigenvector at first, 

in order to provide the (N +1) th condition, and to later determine the 

norm to agree with the magnitude of the hamiltonian desired for a given 

numerical solution. 

Since the eigenvalue-eigenvector problem set forth here is non-

linear, the usual matrix methods do not apply. In fact, there is no 

general theorem which guarantees that there even exist N eigenvalues, 

distinct or repeated, and N corresponding eigenvectors. 

However, two distinct eigenvalues and corresponding eigenvectors 

were found for the two-oscillator nonlinear system studied earlier in this 

chapter, and these nonlinear periodic solutions were entirely analogous 

to the periodic solutions of the linear two-oscillator system. It may be 

assumed that the same analogy holds also between linear and nonlinear 

systems of more than two oscillators. On the basis of such an analogy, 

the N-oscillator nonlinear system would be expected to possess N dis-

tinct periodic solutions. 

Assume that an analogy between linear and nonlinear periodic solu-

tions holds. One method of solving the nonlinear eigenvalue-eigenvector 

problem for periodic solutions of the nonlinear system is to supply an 

approximate solution to the N equations, using the assumed analogy to 
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the periodic solutions of the linear system, and then to improve this 

approximate solution by an iterative procedure. This procedure is repeated 

N times, for each periodic solution. The analogy to the linear system 

implies that the approximate periodic solutions of the nonlinear system 

involve sets of initial conditions for which a "vibrating string" diagram 

of the system has zero, one, two,...„ N-1 modes. Also, the frequencies 

associated with these periodic solutions should show the same splitting 

in symmetric pairs observed for the linear system in the early part of 

Chapter V, although values for the frequencies are not included in the 

initial periodic solution approximations. 

To provide an iterative scheme for improving the approximate 

periodic solution, the problem may be linearized and standard matrix 

techniques employed. The nonlinear eigenvalue-eigenvector equations are 

of the form 

1.1 
6, 	fL7iCENkave,,Cs2.014A/C4.., 	(49) 

where bk is the approximation to frequency component b which is 

provided by the kth of Equations (49)0 (The initial approximate 

solution provides values only for the C i .) There are M < N of the 

Equations (49), for the M values of k for which C k 	00 

Refinements of the approximations to the C i  are made by defining 

new values C. 

= CL-1- 	 (50) 



and making a Taylor series expansion of the b
k 

to first order, 

6k(EC) N Lk (CO 4- 	a 6it-Ca1
)  

acj 	J 

sothatthecorrectionsAC,may be determined: 

AC = BM-1  
whereACisacolmnvectorwithMelementsAC.;BPR is an M by 

M matrix with elements 

1:.k (CO BE 1a 	
acs 

( 53 ) 

and AB is a column vector with M elements AB
k 
 = bk (Ci ) - b

k 
 (C.). 

The value of bk (Ci ) is approximated by 

bit (Ek,) ^-c= 	:=-- 	(*ca.), 	(54) 

since b is a next-iteration value, compared with the b k (Ci ). 

Given a set of approximate relations for the C„ one itera- 
I 

 
8b-(C.) 

tion consists of a calculation of the b k (C i ), b
, 

and ac 	from 
J 

which vector AB and matrix BPR -1 are constructed. The corrections 

AC. from Equation (52) are then calculated, and the E. are con-

structedfrointherelationgiverlinaluation(50.TheseC.are then 

the approximate C i  for the next iteration. Iterations are discontinued 

whensuccessivecalculationsfortheC.and b agree within some 
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(51)  

(52)  
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specified amount. 

Such an iteration procedure would be tedious if performed by 

hand, but is ideally suited for a high-speed digital computer. The 

rate of convergence of the method could be improved by taking more 

terms in the Taylor expansion, which would require the calculation of 

higher derivatives. But there are many of these, and a more compli-

cated method such as the method of steepest descents for the solution 

of AC is required; so the simple method outlined here is probably 

adequate in most cases. 

The actual results of the computations for small systems (N < 10) 

is reserved for Chapter VII. However, it is important to note before 

continuing the present development of a method of expansions about 

periodic solutions, that the actual numerical computations in Chapter VII 

provide some evidence that N distinct periodic solutions exist for each 

small nonlinear N-oscillator system which has been investigated. 

In the nonlinear system, there is the possibility of the existence 

of singular "unstable" periodic solutions in addition to the N "stable" 

solutions being sought. For example, a perfectly valid singular periodic 

solution for the two-oscillator nonlinear system specified by Equations 

(29) of this chapter is 

7.5  0, 	PI =a 0  ; 	(55a) 

cos.  (cik+e), 	—20)C2. sir Z( 	(55b) 

in addition to the other two solutions given by Equations (34). 

The energies corresponding to the periodic solution given by 
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Equations (55) are 

5 1  s: 0/ 
 E2

=26620 - . 	(56) 

The solution given by Equations (55) is referred to here as "unstable" 

in the sense that it is not suitable as a zeroth-order solution about 

which a general solution can be obtained in a perturbation expansion. 

That is, it is not possible to obtain an energy solution which is confined 

to an arbitrarily small neighborhood of the energy solution given by 

Equations (56), by making a sufficiently small change in the initial 

conditions from the set which produces the unstable periodic solution. 

As can be shown in a numerical solution using the computer, or from the 

elliptic function solution, any deviation of the initial conditions from 

the set 

(o) = 0 , 	p i  Co) 	0 ; 	 ( 57) 

(0) 	 p2 	1)z 

results in complete energy exchange between the two oscillators (although 

the period of this energy exchange may be very long compared to the 

periods of the uncoupled oscillators). 

The procedure outlined in the present discussion for finding 

periodic solutions is quite unlikely to specify unstable periodic solu-

tions. The iteration procedure cannot converge to an unstable solution, 

simply because the nature of the instability is such as to drive successive 

iterations away from one of these singular solutions. 

Moreover, the beginning approximations are much closer to stable 
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periodic solutions, obtained by analogy with those of the linear system, 

than they are to unstable periodic solutions. As can be seen by a com-

parison of Equations (29) of this chapter and Equations (23) of Chapter 

V, there is no possibility for the existence of unstable periodic solu-

tions for the linear system. 

In this subsection, a method of obtaining N stable and distinct 

periodic solutions for a resonant exactly-tuned nonlinear system of N 

oscillators has been described. Some evidence for the general existence 

of N such solutions has been presented. 

Although the method has been illustrated here in terms of an 

application to a cubic nonlinear system, it should be generally appli-

cable to other types of resonant exactly-tuned nonlinear systems as well. 

In the following subsection, a method of making perturbation 

expansions about the periodic solutions identified in the present sub-

section will be developed. 

Expansion about Periodic Solution  

Since there is some evidence for the existence of N periodic 

solutions, a general method will now be developed for obtaining the gen-

eral solution of a resonant exactly-tuned nonlinear coupled oscillator 

system in the neighborhood of a periodic solution, as a perturbation 

solution about the periodic solution. 

This subsection is to be considered the most important portion of 

the thesis. Nearly all of the material before this has been presented 

as a preliminary to this analysis of the general case. 

The expansions about periodic solutions for nonlinear systems 

do not automatically truncate at some low order, as do those for the 
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linear system. Any definite indication of the accuracy of the approximate 

solution obtained in some region of a periodic solution by artificial 

truncations of the expansions developed here must await a computer 

study in Chapter VII. 

A form of trial general solution will be assumed which is a gen-

eralization of the last form of solution, Equation (45), developed for 

the two-oscillator nonlinear system earlier in this chapter. The gener-

alization consists of recognizing that for an N-oscillator system, there 

must be N - 1 expansion parameters, p.. 

With the aid of certain conventions to be defined, the assumed 

trial solution may be written rather concisely: 

4-NI 

	

g4   EA ,= 	 , 	h, A 
ii j2. 	JTIR.-141 	!PIA • -ph- in 	 (58a) 

• cos (let + 

„441 1 r  „ 

	

—1414)40 fa—. "#jrz,--N11-1431h22"/8jAlailizwir 	(59b) 

• SIN (12:t 	J.6)-3 

for k = 1 1 2,... 0 N, where N1 = N -1, and where 

= 	lkT6A0) -E + p ; 	 (59) 

ahcl 	— 	 . 	 (60) 
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The following conventions are assumed in writing the trial solution in 

this form: if j i  = 0, then 13 0 =1 and To  = 0; if j i  < 0, then 

p..=13 -ji 	ji andT 	-v... 	 1 =-T..Also t ifj.=0 and there is another sub- ji 	 31 

script 4 / 0 for which Q > i, then all the coefficients A k . 	4 
J 1 J 2-4T 

containing this combination are zero. In practice, the series is 

truncated to order T as shown, although in principle, T-4 ■ 00. The 

overall amplitude of the general solution is given by A o , the 

introduction of which will be discussed presently. 

The solution given by Equations (58) has many terms if it is not 

truncated to low order. That is, if the expansion is truncated to 

order pT 1  there are roughly N(2N -1) T terms to be calculated. For 

example, for N =8, a truncation to the fairly low order p 3 still pro-

duces about 27,000 terms, an excessive number for even a modestly large 

high-speed computer to handle efficiently. 

On the other hand, the solution given by Equations (58) suffers 

in accuracy if it is truncated to too low an order. For example, for 

the two-oscillator resonant nonlinear system discussed earlier in this 

chapter, there exists an extreme case:of initial conditions for which the 

actual period of energy exchange is infinite (Baker 1921). Many terms are 

neelled to accurately represent solutions near this extreme. Systems of 

more than two oscillators are not expected to possess solutions having 

infinite periods, but there will in general be cases in which many terms 

in the solution given by Equations (58) are needed for an accurate approxi-

mation to the exact solution of resonant exactly-tuned systems of N 

oscillators. 

A sensible compromise between truncation in low order to minimize 
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the number of terms to be calculated, and truncation in high order to 

maximize the accuracy of the series approximation, is to carry the com-

plete solution out to a reasonable order, such as T=2 for N< 10, 

and then to include only those higher-order terms which make a signifi- 

cant contribution to the solution, if needed. For a certain set of ini-

tial conditions and an expansion about a certain periodic solution, some 

of the 0. will be smaller than others, so that many of the higher-order 

terms in p
i 
 are not significant and may be neglected. This sort of com- 

promise meets both demands of minimizing the number of terms and yet maxi-

mizing the accuracy of the approximation. 

For T =2, the assumed trial solution given concisely by Equa-

tions (58) is of the following explicit form: 

Ate, cos lee 	 (61) 
NI 

' [Ark ') I 0 ODS (IZ,t+ tj 1) 
4-44 0 cos (12:t —T-11)] 

NI 	NI 
4-  	z, 

,INO2.coki.i, 	s2.) 

4-4-31-32-cos azt 
4--  A 1,4 ja  cos Om 

with corresponding momentum expressions obtained by the same prescrip-

tion used in Equations (58b), and where 't and Tji  are defined by 

Equations (59) and (60). 

To obtain the solution of the cubic-coupled nonlinear system 
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formulated as the model to be analyzed in this thesis, substitute the trial 

solutions given by Equations (61) into the equations of motion, Equations 

(47), and equate coefficients of similar combinations of p ji . Equa- 

tions (47a) and (47b) provide identical systems of algebraic relations 

involving the amplitude components A kkin  and the frequency components 

b and cj, for all orders of p. 

Zeroth-Order Terms. The zeroth-order algebraic equations in this 

expansion about a periodic solution are exactly the same as the original 

equations for the periodic solution alone, Equations (49). They will be 

written here with two minor changes, namely the notational replacement of 

Ck by Ak00' and the explicit inclusion of the norm of the eigenvector 

fAk00i' indicated here by A 0 : 

17 1e.A0  =-- 12,2_ 	C5M 	Ao 	itt,v,00 	 (62) 

As discussed earlier in connection with periodic solutions of 

the N-oscillator nonlinear system, the value of the norm A 0  is first 

set at unity for purposes of the eigenvector problem, and is then adjusted 

to a different amplitude to provide a total system energy which agrees 

with the magnitude of the hamiltonian desired in a particular situation. 

The role which overall amplitude A0  plays in the general solu-

tion given by Equations (58) is quite similar. 

The fact that the zeroth-order equations of the expansion about a 

periodic solution are the same as the equations of the periodic solution 

itself, means that the zeroth-order terms for the perturbation expansion 

presented here have been chosen correctly to all orders in the expansion 
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parameters p ii . This appears to be an advantage over many of the exist. 

ing perturbation methods which use a as an expansion parameter. The 

problem of the appearance of small divisors, which arises in the latter 

methods and causes contributions in zeroth order from supposedly higher-

order terms, should not arise in the perturbation scheme now being des-

cribed. 

The nonlinear eigenvalue-eigenvector solution scheme described in 

the previous subsection may be used to solve the zeroth-order equations 

of the expansion. 

Note from Equations (62) that the periodic-solution frequency Com-

ponent b is determined by the zeroth-order equations, but that the 

energy-sharingfrequencycomponentsc.are not determined until first 

order,eventhoughthec.are zeroth-order terms. This is to be 

expected, since the construction of the perturbation expansion has abso-

lutely no effect on the zeroth-order periodic solution. 

First-Order Terms. The first-order algebraic equations in an 

expansion about one of the N possible zeroth-order solutions are of the 

general forms 

024cS I VIOAlki l o="10-fiV5M1212mA0(4064 1 0 
0 Armao); 

(63a) 

(6-9) AoAki,c,  
4- AP.xj,o Amoo) 

(63b)  
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where the upper-lower signs on the subscripts follow a certain convention: 

for a given term, if IM+1, = k in the coefficient CEMo tan  9  then use 

upper signs on the subscripts; if m 	= k, then use lower signs. As 

mentioned earlier, these are the only two cases for the resonant system. 

The basis for this convention becomes clear if the rather lengthy result 

of substitution of Equations (61) into Equations (47) is carried out in 

detail, observing the manner in which the various trigonometric terms com-

bine. 

The quantities Akoo  and b in Equations (63) are known from 

the solution of the zeroth-order Equations (62). The quantities to be 

determined from Equations (63) are therefore the Ak io  and the c., so 

that Equations (63) represent a system of 2N equations in 2N + 1 

unknowns. 

An examination of Equations (63) shows that because the zeroth-

order solutions are known for an expansion about a given periodic solu-

tion, this system of equations forms a linear eigenvalue-eigenvector 

problem. As before, the eigenvector solutions may be normalized, with 

the norms to later be determined by the initial conditions. 

The linear eigenvalue-eigenvector problem encountered here is not 

quite as simple computationally as the one usually encountered in con-

nection with simple physical systems. When Equations (63) are written in 

2N by 2N matrix formulation in the usual form 

_ 
.... 02-9 1) 	"2. 10M....z1:3 i , • 

M2A 	(6- ci 1) . 	M 
M31 	M32 (  

•••••■ 

(64) 
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matrix M is found to be unsymmetric, primarily because of the presence 

of the factors 1/0 in Equations (63). 

In the usual simple physical problem, matrix M is symmetric. In 

this case, there is a theorem which guarantees the existence of 2N real 

eigenvalues, and there are well-established transformation methods for 

diagonalizing matrix M and thus determining its eigenvalues. 

But in the case of a nonsymmetric matrix M, 2N real eigenvalues 

do not necessarily exist, and methods of finding eigenvalues if they do 

exist are not so well established. 

One very unsophisticated method of determining the eigenvalues of 

nonsymmetric matrix M is to determine the roots of its secular equation 

by evaluation of the determinant of M. Such a method may be implemented 

in two steps, for efficiency. Since M is known to have two repeated 

roots of zero, which are trivial since they duplicate the results of the 

zeroth-order solution, the first step is to find the general location of 

the nonzero roots of interest. This may be done by an orderly evaluation 

of the secular determinant over the domain in which the roots are expected. 

The second step is to use a general rootfinder method to home in on the 

roots by an iterative procedure, refining the approximate values of the 

roots obtained in the first step. 

The straightforward method indicated is practical if a high-speed 

digital computer is used to evaluate the determinants and to conduct the 

iterative procedure for improving approximations to the roots. Standard 

methods for finding the real or complex roots of arbitrary functions are 

readily available. The procedure chosen for the present problem refines 

given approximations to roots by a method of variation of the approximation, 
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followed by second-order interpolation to an improved approximation. 

A discussion of actual computer results for these eigenvalues 

will not be given. It suffices to state that in every case in which a 

calculation was attempted, for small nonlinear systems of N < 10 

oscillators, the values of all 2N real eigenvalues have been successfully 

determined, using the procedure outlined above. Of these 2N eigen-

values, two are always zero, and the remaining 2(N -1) occur in 

c., -c. pairs, as may be seen from the symmetry of Equations (63)0 

Therefore, there are just N -1 eigenvalues of interest. For definite-

ness, let these be all the positive ones. These N -1 eigenvalues c. 

give the frequency components of energy sharing associated with the N -1 

expansion parameters p.. 

Having obtained the N m  1 eigenvalues of interest, the correspond-

ing N -1 normalized eigenvectors may be found by any standard method of 

solution of 2N homogeneous linear algebraic equations in 2N unknowns. 

In the actual computations, it was found convenient to use a Gauss-Jordan 

procedure, programmed on the computer. 

Computation of these eigenvectors completes the solution through 

firstorderintheexpansimparametersp..The frequency components b 

and c. have now been determined by the zeroth- and first-order equations, 

andtherearenolligher-ordercorrectionstoargurnentsTard.to Tj  

any order in p r o It might therefore appear that extending the expansion 

to order p
2 and higher can have no effect upon the frequencies calcu-

lated for a given system by this method. 

However, this is not true; the actual frequency corrections given 

in Equations (59) and (60) are proportional to the zeroth-order norm AO 
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aswellastobandc—respectively, The zeroth =order norm A 0.  and • 

the N -1 norms of the N -1 first-order eigenvectors„ together with phase 

angleeandtheN-lphaseanglesare the 2N arbitrary constants 

of the general solution which are fixed by the 2N initial conditions 

(°) == ko CZtiz_, (0) == 13 k_ 
	 (65) 

Components of the zeroth- and first-order eigenvectors appear in the 

higher-order equations, and so for a given set of initial conditions, 

inclusion of higher-order terms in the expansion about a periodic solu-

tion affects the values of the N norms. It is this sort of effect of 

higher-order terms on the zeroth-order norm A0  which alters the fre-

quency components in Equations (59) and 60) when higher-order terms are 

included, for a given set of initial conditions. 

Although the frequencies are thus altered by the inclusion of 

higher-order terms, the shift is uniform for all of the components, 

Each of the components t. which control the periods of the various 

energy-sharing harmonics are proportional to the amplitude A09  so that 

inclusion of higher-order terms can have no effect upon the ratios of the 

periods of the various energy-sharing processes specified in the first-

order solution. The effect of higher-order terms is restricted to an 

expansion or contraction of the overall energy-sharing time scale, in addi-

tion to the inclusion of higher harmonics. 

Second-Order Terms. The second-order algebraic equations in an 

expansion about one of the N possible zeroth-order solutions are of the 

general form 
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+cia) Ao 	 (66a) Aki, p.2.cam 	(d A j2_  

+Akii 0 A pAjzo 

4-Acji±j2. A0); 

-cjz.) A O  Aki ,..j2.= 1-1,.2...oteumum  A. (Ai6 
ANN-jzo 

4-4.k.kj, Fit. A moo) ; 

(I) s r  - cje 	CrAki,k,,46 GkicoAfth- citiz 
0 A mi2,0  

-1- As,Ti l ±j Armco) ; 

(66b)  

(66c)  

-1-1,2_ 1%,\CEAA 1,1A 
	

(66d) 

A 	t0 

-ALT J.. A moo)/ 

where the convention for upper and lower signs introduced in conjunction 

with Equations (63) is used. All of the terms in Equations (66) are known 

from the zeroth- and first-order solutions except for the amplitude com-

ponents of the form Akkm  in which all three subscripts are nonzero. 

Equations (66) together form a system of 4N linear nonhomogeneous 

algebraic equations in 4N unknowns. There are (N -1)
2 

such systems of 

equations, since j 1  and j 2  each range from 1 to N -1. These systems 

of equations are easily solved by any standard methpd for solving sets of 
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linear nonhomogeneous equations. 

Higher-Order Terms. Second-order Equations (66) may be written 

in a more concise form with the aid of an added convention: 

Noci, 0 ci2.) A0  A 12_Gi 	 (67) 

= 	CEM !aim  A-0 (A/00 A-moitsj2 

Asoci l  0 Aiyajzo 
÷ 4u ®,i7_ Arm00), 

where the added convention is to change all the circled signs of subscripts 

j 1  if the circled sign of ca l  is negative, and to leave them unchanged 

otherwise; and similarly for j 2. The upper-lower sign convention intro-

duced with Equations (63) still holds. 

Using the above convention to write one equation which represents 

eight, the third-order equations in an expansion about one of the N 

possible zeroth-order solutions are of the form 

Opsci l ecdacia)A-016ri lsjasj, 	 ( 8) 

	CAM A0 A0 ( As.000AtheilekRi3 st.c.-rvt 
+- Ask o° 4yaj30 

4- Altj ko Ativetja  0 

4- Akg ej 2.0j3  400 ) • 

Equations (68) form (N -1) 3 systems of 8N linear nonhomogeneous 

algebraic equations in 8N unknowns 9  which are the amplitude 
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coefficients A kirnn  which have four nonzero subscripts. All the other 

terms which appear in Equations (68) are known from lower-order calcu-

lations. 

The obvious generalization of Equation (68) to a case of order T 

results in (N -1) T systems of 2TN equations in 2
T
N unknowns. These 

higher-order (T E 3) equations are easy to solve by standard methods, 

but there are so many equations and unknowns for even small systems that 

the task becomes prohibitively lengthy. 

As mentioped before, if these higher-order terms are to be used, 

some method of choosing only those higher-order terms which are most 

significant must be used, in order to reduce the number of terms to be 

calculated. This can be done only for a given system, that is, for a 

given set of initial conditions and an expansion about a particular 

periodic solution. 

Expansion Parameters. Assume a simple set of all position or all 

momentum initial conditions are applied to the system, so that all the 

phase angles in the general expansion, Equations (59) and (60) are either 

zero or 2'  so that there are only N initial conditions of importance. 

The eigenvector of the zeroth-order solution and the N-1 eigen-

vectors of the N -1 first-order solutions have all been tiOrmalized to 

unity to begin with. The components of these eigenvectors are multiplied 

by A0  and Aop i , respectively, in the solutions given by Equations 

(58) or (61), 

When the N initial conditions are applied to the system, the 

values of the N norms must be changed from unity to another set of 

values, in order that the solutions given by Equations (58) or (61) 
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agree in amplitude with the initial conditions at t = 0. 

Thus it is natural to identify the parameters A0  and the AoPi 

 with the norms of the zeroth- and first-order eigenvectors. This means 

thattheexpansionpararrietersp.vd11 represent the ratios of the 

norms of the nth eigenvectors from first order to the norm of the 

eigenvector from zeroth order. If the initial conditions are those which 

produce the periodic solution about which a given expansion has been made, 

then the norms of the first-order eigenvectors will be zero and the expan-

sionparametersp.will be zero, as is required.• 

Withtheexpansionparametersp.normalized in this manner, a 

useful expansion about a given periodic solution for a given set of 

initial conditions can be recognized as one for which all of the expan-

sionparametersVare less than unity; the smaller the better. There 

is only one overall amplitude in the entire solution, and that is A 0 . 

Thus it is not the level of the amplitudes of the initial conditions 

which determines how good a given expansion about a periodic solution 

will be. It is only the ratios between the initial condition amplitudes 

which is significant. 

No matter how high an order of truncation is to be used, approxi-

matevaluesforAo andtheN-lexpansionparametersVmay be 

obtained after the zeroth- and first-order solutions have been obtained, 

for a given set of initial conditions, by use of a matrix inversion. For 

example, if the initial conditions are 

k.to) 	Ark. ; 	(0) = 0 	 (69) 

then from the zeroth- and first-order portions of Equations (58) it 
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AgeneralexpressionforAo andtheVas a function of the initial 

conditions Ak may be obtained by inversion of the square matrix, since 

its components are fixed for an expansion about a given periodic solution. 

ThisevaluationoftheVgives a useful preliminary estimate 

of which periodic solution is best expanded about, for a given set of 

initial conditions. The values obtained in this approximation are not 

expected to change drastically due to the inclusion of higher-order terms, 

at least for most sets of initial conditions. 

It is anticipated that in order to obtain general solutions for 

all sets of initial conditions for a given nonlinear coupled oscillator 

system, it will be necessary to make expansions about all N of the 

available periodic solutions. The best that can be hoped is that general 

solutions for nearly all sets of initial conditions can be well approxi- 

mated in this manner, without going above, say, second order in the expan-

sion parameters. 

In this chapter, a method for obtaining a representation of the 

general solution of a resonant exactly-tuned cubic-coupled nonlinear 

N-oscillator system has been developed, in which the general solution 

is supplied as a set of perturbation expansions about periodic solutions 
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of the system. 

First, as a guide in addition to the experience gained in the 

analysis of linear systems, the energy solution of a nonlinear two-

oscillator system has been obtained. A method for finding periodic 

solutions and making perturbation expansions about them has been 

developed for the nonlinear two-oscillator system. Finally, a gener-

alization of this method, appropriate for nonlinear many-oscillator 

systems, has been obtained. This general method has been illustrated in 

terms of a cubic nonlinear system, but it is expected to find applica-

tion to other types of nonlinear systems as well. 

Since there is no other readily available analytical method for 

solution of resonant exactly-tuned nonlinear many-oscillator systems, the 

effectiveness of this method in determining approximations to the general 

solutions of these systems for various initial conditions is not known. 

It is necessary to test the results of the method developed in this chap-

ter against the results of numerical integrations of the equations of 

motion, for particular sets of initial conditions. 

This may be done in a practical manner by the use of a high-speed 

digital computer. A stringent test of the validity of one of these approx-

imate solutions, obtained by truncation of the exact infinite series form, 

is to compare the results of the approximation with those of numerical 

solution for an extreme case. For the two-oscillator nonlinear system, 

such an extreme case would be that for which the period of energy exchange 

is infinite, as indicated by the elliptic function solution. Computed 

comparisons of this and other types will be presented in the following 

chapter. 



CHAPTER VII 

COMPARISONS BETWEEN ANALYTIC SOLUTIONS 

AND NUMERICAL SOLUTIONS 

FOR SOME NONLINEAR COUPLED OSCILLATOR SYSTEMS 

The analytic method of solution for resonant exactly-tuned 

nonlinear coupled oscillator systems, which has been developed in Chapter 

VI in the form of perturbation expansions about periodic solutions, pro-

vides a set of infinite series expressions for the positions and momenta, 

and hence for the energy of a given system. In principle, there is no 

limit to the number of terms which can be calculated in these expressions; 

but in practice, it is necessary to truncate the infinite series expressions 

to some reasonable order. 

At this stage of the investigation, it is not known how effective 

a set of truncated perturbation expansions will be in approximating the 

exact general solution of a nonlinear system, for all possible sets of 

initial conditions. Therefore, some computer studies will be described in 

this chapter in which some analytic approximations, truncated to first and 

second order for small systems, are compared with corresponding numerical 

solutions of the equations of motion for some cubic-coupled systems of 

two, three and five oscillators. 

The first-order approximations are found to be reasonably effec-

tive, even for some rather extreme sets of initial conditions. However, 

some difficulties are encountered in the calculation of second-order 

approximations as formulated in Chapter VI. It is likely that a different 
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choice of arbitrary constants in the perturbation expansions will have 

to be made in order to obtain second-order approximations which consist-

ently represent improvements over the corresponding first-order approxi-

mations. 

The type of system in terms of which computer studies will be dis-

cussed in this chapter is the exactly-tuned cubic-coupled nonlinear system 

which was formulated in Chapter III° The explicit expressions for the 

coupling coefficients of this system, which have not been given so far 

in the interest of generality, will now be supplied° The hamiltonian 

introduced in Equation (1) of Chapter III, corresponding to FPU-type 

nearest-neighbor couplings between particles but having the FPU frequen-

cies replaced by a set of commensurable frequencies, may be written as 

+ z6021.1,20 
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with the convention that qi  = 0 if i 	0 or if i N + 10 
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The hamiltonian given by Equation (1) contains both resonant and 

nonresonant coupling terms. In order to construct a resonant system cor-

responding to this given system, so that the methods of analysis developed 

in Chapter VI can be used it is necessary to eliminate the nonresonant terms 

from these equations. 

To do this a transformation to action-angle variables is made, 

and the rapidly-varying terms are dropped from the coupling, in the manner 

discussed in Chapter II. The inverse transformation back to position-

momentum variables is then made. The resulting hamiltonian is 

N=LrCw#12-2-cosple-) 
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A comparison of Equations (1) and (2) shows that two distinct 

types of nonresonant coupling terms have been dropped from the given 

hamiltonian in order to construct the corresponding resonant hamiltonian. 

First, those terms for which neither relation j 	m = 0 nor rela- 

tion j 	m = 0 is true, where j, SL and m are the subscripts of 
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the three positions appearing in the coupling terms, have been dropped. 

Second, the nonresonant portions of those terms which remain have been 

eliminated. This second elimination of terms in action-angle variables 

is better interpreted in position-momentum variables as an addition of 

certain supplementary mixed terms which complete the q,p symmetry of 

those coupling terms which remain after the first step has been taken. 

In the physical application to crystal lattice vibrations, Peierls 

(1956) shows that only those coupling terms which produce three-phonon 

interactions in which energy is conserved are important in explaining lat-

tice conductivity due to anharmonicities. That is only couplings for 

which either w. + wfL- w m = 0 or w.j  wn wm  = 0 are important, for 

the reason of "internal resonances" discussed in Chapter II of this thesis. 

These phonon-energy-conserving couplings are the terms which remain after 

the first elimination described above, exclusive of the second "symmetri-

zation" elimination. 

Peierls further classifies the important coupling terms as "normal" 

terms and "umklapp" terms. Normal terms are those for which phonon quasi-

momentum as well as phonon energy is conserved. Umklapp terms are energy-

conserving terms for which the difference in quasi-momentum is equal to a 

vector in an inverse lattice. Peierls shows that the umklapp terms are the 

more important of the two types, so far as lattice conductivity due to 

anharmonicities is concerned. 

The work of Peierls is concerned with physically realistic three-

dimensional crystals, in which there are one longitudinal mode and two 

transverse modes of vibration for one atom in a unit cell. The disper-

sion curves have three branches, and although the frequencies associated 
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with each branch are of the FPU type s  interactions which conserve energy 

can be obtained by involving both longitudinal and transverse modes. Both 

normal and umklapp coupling terms are present in such a situation. 

In contrast, only normal terms are present in the one-dimensional 

system used as a model in this study. In Equation (1) 9  the first three 

coupling terms are normal terms; the last two would be umklapp terms if 

they conserved phonon energy s  but they do not. That is s  the last two 

terms are nonresonant terms, and are not important in energy sharing in 

the one-dimensional model. 

Thus the model used in this study will not exhibit the proper 

lattice thermal conductivity due to anharmonicities. This is not sur-

prising, since the present model with its commensurable frequencies rep-

resents only the lower portion of the longitudinal branch of the three-

dimensional system. 

The equations of motion which correspond to the "original" system 

given by Equation (1) are 

(3a) 
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These 2N first-order equations may, of course, be conveniently combined 

into N second-order equations, since momentum and velocity are identical 

in the "original" system. 

The equations of motion which correspond to the "resonant" system 

given by Equation (2) are 
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The technique used in the computer studies described in this chapter 

is to first calculate analytic approximations to the solutions of the 

equations of motion of the resonant system, Equations (4), by the methods 

described in Chapter V19 these same equations are then numerically inte-

grated, for the same set of initial conditions, and the two results are 

compared. 
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In the interest of accuracy and efficiency, the first computer 

program is one which constructs and punches out on cards Equations (4)0 

These cards are then used to insert the equations of motion into two other 

programs: one which calculates an approximate solution by methods already 

outlined in Chapter VI s  and one which integrates the equations of motion 

by a standard fourth-order Runge-Kutta method s  to provide the "exact" 

numerical solution. The latter is indeed not mathematically exact s  but 

it is numerically correct to considerably more significant figures than 

are needed for the graphs presented in this study. Several checks„ such 

as calculation of the hamiltonian and reversal of integration back to the 

initial conditions s  give assurance of the accuracy of the numerical solu-

tions. 

In the first section of this chapter s  the results of calculations 

of sets of initial conditions for periodic solutions of resonant exactly-

tuned systems of two, three and five nonlinear coupled oscillators will be 

given. The second section will compare some first-order approximate solu-

tions with corresponding numerical solutions 9  for several typical sets of 

initial conditions. In the third section s  a few of the corresponding 

second-order expansions will be exhibited, and some of the difficulties 

involved in using the formulation described in Chapter VI will be dis- 

cussed. 

It has been indicated previously in this thesis that the couplings 

between oscillators in any physically realistic model must include non-

resonant as well as resonant terms. The systems such as those given by 

Equations (2) and (4) of this chapter s  for which a method of solution was 

developed in Chapter VI s  contain only resonant coupling terms it is felt 
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that the effect of including nonresonant terms (as in Equations (1) and 

(3)) can be adequately treated by standard perturbation methods s  using 

the solution of the resonant system as a zeroth-order solution. Although 

no such attempt will be made in the present investigation to deal ana-

lytically with nonresonant terms, the fourth and final section of this 

chapter will present some computer studies of the effect of inclusion of 

nonresonant terms in the couplings of systems considered earlier in this 

chapter. 

Existence of Periodic Solutions 

In Chapter VI it was indicated that resonant exactly-tuned non-

linear coupled systems of N oscillators may be expected to possess N 

periodic solutions, on the basis of an assumed analogy to corresponding 

linear coupled oscillator systems. 

Although there is no general theorem which guarantees the existence 

of N periodic solutions for the nonlinear system, and although the assumed 

analogy to linear systems cannot always be relied upon, it has been pos-

sible to calculate N distinct stable periodic solutions to systems of 

the type given by Equation (4) in every case which has been attempted, 

including a system of eight oscillators. The results are presented in 

Table 3. 

The values of initial conditions for these periodic solutions were 

calculated by first obtaining approximate sets of values by analogy to the 

periodic solutions (true normal modes) of a corresponding linear system; 

these approximations were then refined by an iterative procedure, as out-

lined in Chapter VI. As may be seen from Table 3, the periodic solutions 

thus obtained are completely analogous to those of the linear system with 



Table 3. Periodic Solutions for Nonlinear Systems 

Two Coupled Oscillators 

PS1 	PS2 

b 0.11785 -0.11785 

A100 0.94281 094281 

A200 033333 -0.33333 

Three Coupled Oscillators 

PS1 PS2 PS3 

b 0.07834 0.00000 -0.07834 

A100 0.91364 0.97922 0.91364 

A200 036959 0.00000 -0.36959 

A300 016932 -0.20280 0.16932 

Five Coupled Oscillators 

PS1 PS2 PS3 PS4 PS5 

b 003452 0.01136 0.00000 -0,01136 -0.03452 

A100 0.87863 0.96204 0.98649 0.96204 0.87863 

A200 039600 023664 0000000 -0.23664 -039600 

A300 0.22181 -0.01892 -013217 -0.0i892 0.22181 

A400 0.12908 -0.09962 000000 0.09962 -0.12908 

A500 0.07299 -0.09056 0,09675 -0.09056 0.07299 

PS1 

Eight Coupled Oscillators 

PS4 PS2 PS3 

b 0.01374 0.00588 0.00147 0.00103 

A100 0.85064 0.92450 0.79320 0.89935 

A200 0.40462 0.34535 0.34781 -0.12924 

A300 0.24855 0.12421 -0.20178 0.25545 

A400 0.16608 0.11760 0.36583 -0.04854 

A500 011419 -0.04289 0.09074 -0.06043 

A600 0,07866 -0.06093 0.04067 -0.20273 

A700 0.05340 -0.05661 -0.24619 0.10059 

A800 0.03529 -0.04138 -0.06944 0.22800 

191 
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regard to frequency splitting, and have the same number of nodes with the 

exception of PS3 and PS6 for N =8. (For N =8 in Table 3, the four 

periodic solutions not given may be obtained from the four which are 

given by changing the signs of the frequency components b, and by 

changing the signs of the even-numbered coefficients, as in the case for 

N=2.) 

The results exhibited in Table 3, obtained as described, 

have been checked by numerical integration of the equations of motion 

using the values given for the AkoO  as the initial conditions. In every 

case, the solutions given in Table 3 have been verified to be stable 

periodic solutions. That is for these sets of initial conditions the 

energies in each of the harmonic normal modes remain constant at their 

initial values, to within the error expected in the numerical integra-

tions and other calculations. 

Since in every case N distinct stable periodic solutions were 

found, no special effort was made to determine whether more than N 

such solutions exist for the nonlinear systems studied. However, the fact 

that only two stable periodic solutions exist for the two-oscillator non-

linear system (for which the exact solution is known), plus the rather 

close correspondence of the nonlinear periodic solutions to those of 

the linear cases, may give some indication that there may be no more than 

N such stable periodic solutions for nonlinear systems of the type 

studied. 

In this section, the existence of periodic solutions for some 

resonant exactly-tuned cubic coupled oscillator systems has been demon= 

strated. The next section will present some results of perturbation 
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expansions about these periodic solutions, in which the expansions are trun-

cated to first order in the expansion parameters. 

First-Order Approximate General Solutions  

According to the discussions presented in Chapter VI, it should be 

possible to obtain approximations to the general solution of a resonant 

exactly-tuned nonlinear system, for all sets of initial conditions as a 

set of perturbation expansions about the periodic solutions displayed in 

the previous section. These expansions must be truncated to some fairly 

low order, and it is not known how good an approximation to a given general 

solution is obtained by such a method. 

The most severe test is obtained by truncating the expansions to 

first order in the expansion parameters, and then comparing these first-

order approximations with exact numerical solutions for extreme initial 

conditions, that is, for initial conditions which are as far away from 

the periodic solution initial conditions as possible. 

A guide to which initial conditions are most extreme is given by 

the two-oscillator nonlinear system, for which the exact energy solution 

is known. For N =2, these are the initial conditions in which one of 

the oscillators starts with all of the energy, and the other has none. 

In fact, for this two-oscillator resonant exactly-tuned system, the 

period of energy exchange is infinite for these extreme initial condi-

tions; this was noted in Chapter VI. 

For systems of more than two oscillators, the same sort of initial 

conditions in which one oscillator starts with all the energy are expected 

to be the most extreme relative to the periodic-solution initial condi-

tions. An inspection of Table 3 supports this conjecture. However, for 
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systems of more than two oscillators, no cases in which the period of 

energy exchange in infinite are expected to occur, because of the 

greater spread of energy throughout the larger systems. The two-oscilla-

tor system is probably a special case in this respect. 

In the following subsections, computer comparisons of first-order 

approximations and exact solutions will be given in graph form, for 

various selected sets of initial conditions including the extreme ones, 

for systems of two, three and five oscillators coupled as in Equation 

(4). Rather than plotting position or momentum versus time, graphs of 

energy versus time will be presented. This sort of presentation best 

displays the differences in long-term behavior of the various solutions; 

these long-term characteristics are the most difficult to approximate by 

the present method. 

Two-Oscillator Nonlinear System  

In Figure 13, the numerical and first-order approximate solutions 

are compared for the two-oscillator nonlinear system, for a rather 

extreme set of initial conditions. The long -term energy- sharing period 

is approximated to within 10%, and the amplitude to within 7%. This is a 

good approximation, considering that the set of initial conditions is 

close to that set for which the period of energy exchange is infinite in 

this two-oscillator system. Several other less extreme sets of initial 

conditions have been used, with the expected result that the first-order 

approximations were better than those for the case illustrated. 

Three-Oscillator Nonlinear System  

As in the case of the two-oscillator system, the most extreme set 

of initial conditions (in the sense of being far from any periodic solution) 
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for a system of more than two oscillators should be of the class in which 

all the energy is initially given to only and oscillator. 

Figure 14 presents results of a first-order approximation for a 

three-oscillator system started from "intermediate" initial conditions 

in which each oscillator initially has one-third of the total energy. In 

this example, the approximation to the main component of oscillation of 

E1 is within about 3% of the correct value given by the numerical solu-

tion; approximations to the other frequency components are probably about 

as good. The amplitudes are approximated to within probably 10% of their 

correct values. 

The shortcomings of graphical presentations of approximations to 

multi-component periodic data must be borne in mind while examining illus-

trations such as Figure 14. In the case of E l , in which one periodic 

component clearly dominates, a graphical presentation adequately displays 

the differences in amplitude and frequency of two slightly different periodic 

functions. But these differences are not so clear in cases such as E 2 

and E3' in which there are several components with roughly the same ampli-

tudes but different frequencies. In these latter cases, small errors in 

the determination of the approximate frequencies of the individual compo-

nents of E2  and E3  result in overall approximations to E2  and E3 

 which appear progressively worse as time increases. 

Thus in terms of a graphical presentation, the length of time over 

which an approximate solution and an "exact" numerical solution 

agree may be taken as a measure of how good the approximation 

is. 

A better way to compare an approximate solution to a numerical 
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solution would be to analyze each into its harmonic components and compare 

these frequency spectra. However, this general problem of harmonic 

analysis of functions having many components with frequencies which are 

not commensurable (unlike those of a sawtooth or similar function) is not 

a trivial one, and no harmonic analysis of solutions will be done in the 

present investigation. 

Figure 15 compares numerical and first-order solutions of a three-

oscillator system for an extreme set of initial conditions in which all of 

the energy is initially given to the first oscillator (Case 1). Figure 

16 (Case 2) is similar, with nearly all the energy being given initially 

to the third oscillator. The energies are rather simple combinations of 

only a few trigonometric components in these casesr, The approximation 

illustrated in Figure 15 is good to about 7% in frequencies and amplitudes. 

The approximation shown in Figure 16 is not as good; the errors are about 

16% in frequencies and perhaps 50% in amplitudes. 

In each of the figures in this section, solid lines such as those 

as El  = 2016, E 2  = 0.00 and E3  = 0.84 in Figures 15 and 16 have been 

drawn to indicate the energies corresponding to the periodic solutions 

about which the perturbation expansions have been made. From this it may 

be seen that the set of initial conditions used in Figure 16 are more 

"extreme" than those used in Figure 15; the results of the first-order 

approximation calculations bear this out. 

Five-Oscillator Nonlinear System 

The relative success of the first-order expansion approximations 

for two and three oscillators encourages some similar calculations for a 

slightly larger system. A five-oscillator system has been chosen as a 
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system which is probably large enough not to be a special case (as are 

systems of two and three oscillators), and yet which is small enough to be 

computationally feasible. 

In Figure 17, numerical and first-order approximate results are 

compared for a five-oscillator system started from intermediate initial 

conditions in which each oscillator has one-fifth of the energy. The 

approximation is good to probably 10% in the frequencies and amplitudes. 

The two graphs which are given are typical. 

It may be seen from the energy plots in Figure 17 that the funda-

mental frequency content is present in the first-order approximation, but 

that higher-harmonic terms are also needed and do not appear. In addition, 

the energy-sharing time scale needs to be contracted, in order to obtain 

a better approximation. 

These conclusions are confirmed by an examination of the other 

graphs presented in this section, and by the results for a five-oscillator 

system started from extreme initial conditions, as shown in Figure 180 

For this last first -order case, all the energy has been initially given 

to the first oscillator. The three graphs which are given are typical. 

The fundamental frequency is well approximated, probably to within 2%, but 

there is a considerable need for higher-harmonic terms. 

In this section, some first-order perturbation expansion approxi-

mations have been compared with the corresponding "exact" numerical solu-

tions for various selected sets of initial conditions. As anticipated 

from the discussions of Chapter VI, these approximations are best when 

the initial conditions are close to those of a periodic solution; that is, 

when the expansion parameters are the smallest. 
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For the systems investigated, the first-order truncation of the 

expansions gives fairly good approximations to the general solution for 

most sets of initial conditions. These approximations are better for 

smaller systems than for large ones, according to the trend observed here, 

However, for the most "extreme" sets of initial conditions, especially, it 

would be useful to be able to improve the first-order results so as to 

reduce the error of the approximations below, say, l0%. The difficulties 

which have been encountered in trying to carry out the necessary second 

order calculations as formulated in Chapter VI will be described in the 

following section, and some alterations which may remedy these difficulties 

will be discussed. 

Second-Order Approximate General Solutions  

The general form of a perturbation expansion about a periodic solu-

tion for a resonant nonlinear many-oscillator system, which was developed 

in Chapter VI, contains a large number of arbitrary constants. In order 

to make the calculation of second-order terms computationally feasible, a 

choice of certain of these arbitrary constants such that there are no 

second-ordercorrectionstothefrequenciesQe s made in 

Chapter VI. For lack of a better choice, the remaining arbitrary constants 

were chosen zero. 

In this formulation, the only numerical computations involved 

are inversions of matrices, which can be handled in a relatively routine 

manner by presently available techniques on presently available computers. 

In any other formulation in which the second-order corrections to the 

frequencies are nonzero, it is necessary to solve eigenvaiue-eigenvector 

problems involving unsymmetric matrices, a task which does not lend itself 
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so well to computation at present, as has been seen in the computation 

of the periodic solution frequencies and amplitudes. 

Thus the particular formulation of the calculation of second-

order terms set forth in Chapter VI was chosen for its computational sim-

plicity. In that formulation it was expected that the improvement in the 

approximation to the frequencies would come about implicitly by means of 

the second-order refinement in the value of amplitude A o , to which all 

of the frequencies are proportional. 

Several difficulties have been encountered in carrying out the 

calculations as set forth in Chapter VI. First and most important is 

that for expansions about periodic solutions in which some of the energy-

sharing frequencies (determined in the first-order calculation and 

unaltered in second order) satisfy the relation Q j  + Q . = 0, the 

matrices from which the coefficients of second-order terms of the form 

cos(Wt+O.ti-i-Lt) = cos(kQt) are to be calculated are singular, so that 

these coefficients cannot be determined. There does not appear to be a 

simple reduction of the order of these matrices, which would remove the 

redundancy which causes the singularity. 

A second difficulty, of the same nature and only slightly less 

severe, arises in conjunction with the calculation of the second-order 

termsoftheformcos(kg2t+Q
JJ
A- Q.t) = cos(kQt) and those of the form 

cos(d2t-Q.
J
t + QjA) = cos(162t). For the two-oscillator system, the 

matrix used in the calculation of the coefficients of these terms is 

singular. In the case of the three- and five-oscillator systems, these 

matrices are not singular, but the coefficients calculated from them are 

quite large, which is numerically about the same thing. 
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It was noted in Chapter VI that second-order terms of the type 

mentioned above are actually zeroth-order terms. It should also have 

been noted there that the appearance of zeroth-order terms in higher orders 

is dangerous to convergence; this is the sort of difficulty which causes 

trouble in the application of the Wigner-Brillouin perturbation method 

to exactly-tuned nonlinear systems. 

At this point it seems clear that the entire formulation of the 

calculation of second-order terms should be reconsidered; that is, a 

different choice of arbitrary constants should be made so that zeroth-order 

terms do not appear in higher orders. However, since this would probably 

involve a considerable reorganization of the computer programs for the 

second-order calculations, it will not be carried out in the present 

investigation. 

Instead, a partial remedy of the difficulties will be made by 

doing some calculations in which the second-order cos(kQt) terms are 

simply omitted from the second-order expansions. In several cases, the 

second-order approximations so obtained are better than the corresponding 

first-order approximations. In some other cases, new difficulties in 

obtaining convergence of the expansion become apparent. 

In Figure 19, numerical and second-order approximate solutions are 

compared for a two-oscillator system, using the same initial conditions as 

in Figure 13. The result is a slightly worse approximation, if any-

thing. The frequency is in error by about 12%, and the amplitude by 

about 10%, compared with 10% and 7% respectively for the first-order 

approximation. However, this is not too surprising, since the deletion 

of the cos(kQt + 2.t - 2.t) and cos( 	 terms leaves only 
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two second-order correction terms, so that the second-order expansion has 

been considerably mutilated. 

Figure 20 presents the result of calculating a second-order expan-

sion in which all terms are included, just as set forth in Chapter VI, for 

a three-oscillator system started with intermediate initial conditions. 

A comparison of this result with Figure 14 shows that the second-order 

approximation calculated in this manner is considerably worse than the 

corresponding first-order approximation. 

In contrast, Figure 21 presents the results of a second-order 

approximation calculation for the same system in which the second-order 

cos(kOt) terms have been deleted. A comparison of Figure 21 with Figure 

14 shows that this second-order calculation represents an improvement 

over the first-order approximation. The approximation to the frequen-

cies has not improved, but the approximation to the amplitudes of E 2 

 and E
3 is better. 

Figures 22 and 23 present the results of calculating second-

order approximations for the five -oscillator system started from inter-

mediate initial conditions. In the calculation given by Figure 22 9  the 

second-order cos(k2t) terms have been included; in that given by 

Figure 23, they have been deleted. The graphs are very similar; there 

is only a small difference in the two sets of numbers from which they were 

plotted. Both approximations are much worse than the corresponding first-

order approximation given by Figure 17. 

This brings to light a further difficulty in obtaining "good" 

second-order approximations; it is related to the first two. The second- 

order expansion for this case of five oscillators contains several rather 
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large terms of the form cos6 	 is quite 

small, so that these second-order terms are very nearly of the same fre-

quencies as the zeroth-order terms, This is the same problem of the 

appearance of higher-order terms with large amplitudes and frequencies 

close to those of the zeroth-order solution, which was characterized in 

previous perturbation schemes as the problem of the appearance of terms 

with small divisors, As in other perturbation schemes and as in the case 

of the higher-order cos(k2t) terms in the present scheme, this problem 

will have to be dealt with by the appropriate choice of arbitrary constants. 

The last two figures in this section, Figures 24 and 25 9  present 

the results of calculating second order approximate solutions in which 

no second-order cos(k2t) terms are included, for systems of three and 

five oscillators started from initial conditions in which the first 

oscillator has all of the energy. These two figures correspond to Fig- 

ures 15 and 18 9  respectively. Comparing Figures 24 and 15 9  there is little 

if any net improvement due to the inclusion of second-order terms for the 

three -oscillator system, The approximations to the frequencies are worse, 

but the shapes of the waveforms are better due to the inclusion of higher 

harmonics. A comparison of Figures 25 and 18 9  however, shows a definite 

improvement of the second-order approximate solution over the first-order 

solution. 

In this section, it has been demonstrated that there exist certain 

shortcomings in the procedure for calculating second-order terms as set 

forth in Chapter VI, In particular, difficulties arise when second-order 

terms having frequencies which are close to those of the periodic solution 

about which the expansion is being made appear in the solution 
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In order to overcome these difficulties, some better method of 

choosing the many arbitrary constants which appear in the formal solution 

must be found. It may be possible to develop a variational method which 

will choose these constants so as to maximize the rate of convergence of 

the perturbation expansion in a given instance. In any event, it seems 

likely that a choice of arbitrary constants for which the higher-order 

frequency corrections are nonzero will be made, so that the problem of 

numerical computation of higher-order solutions will become more diffi-

cult to carry out than it was in the present investigation. 

The net result of the computations which have been presented in 

the first three sections of this chapter is that the general method 

developed in Chapter VI is an effective one, at least in dealing with 

small nonlinear systems of the type studied here. The first-order approx-

imations obtained here are considerably better than the approximations 

which can be obtained for these exactly-tuned nonlinear systems by any 

of the other existing perturbation methods. At present, there are cer-

tain difficulties in the calculation of higher -order terms in the approxi-

mation; but these difficulties seem familiar, and it is likely that they 

can be overcome. 

Now that some evidence has been given for the effectiveness of 

a method for approximating the general solutions of resonant exactly-tuned 

nonlinear coupled oscillator systems, it is of interest to know something 

about the behavior of similar exactly-tuned systems in which nonresonant 

as well as resonant coupling terms are included. That is, it is of 

interest to investigate the solution of systems of the type given by 

Equations (1) and (3) of this chapter. This will be done in the final 
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section of this chapter. 

Effect of Nonresonant Coupling Terms  

If a good approximation to the general solution of a resonant 

exactly-tuned nonlinear coupled oscillator system can be obtained, an 

important basic step has been taken, but the result is still far from 

any application to a physical system. Physical systems contain nonresonant 

as well as resonant coupling terms, and physical systems are not generally 

exactly tuned. 

It is anticipated that both the effects due to nonresonant coupling 

terms and detuning of the frequencies can be adequately treated by the 

use of standard perturbation techniques, in which the solution of the 

basic resonant exactly-tuned system is used as the zeroth-order term. 

Neither of these effects will be treated analytically in this 

thesis. It is more appropriate to reserve these analyses for the par-

ticular physical problems which are of interest. Any general inclusion 

of nonresonant terms or general detuning for systems of more than two or 

three oscillators becomes quite complicated; in an application to a cer-

tain physical problem, a welcome limitation in the generality of the 

analysis of the effects of nonresonant terms and detuning is obtained. 

However, since some selected computer studies of the actual effects 

of detuning have already been presented, in Chapter II, some computer 

studies of the actual effect of the inclusion of nonresonant coupling 

terms will also be included in this thesis, in the present section. 

In the first subsection, the effect of nonresonant coupling terms 

on periodic solutions will be investigated. In the second subsection, 

the qualitative effect of nonresonant coupling terms on completely 
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energy-sharing solutions for systems of three and five oscillators will be 

discussed. 

Nonresonant Terms and Periodic  Solutions  

It may be noted that although the so-called nonresonant terms 

identified in Chapter II as rapidly-varying coupling terms do not con-

tribute to appreciable energy sharing in a system of coupled oscillators, 

they do cause a small amount of energy exchange among oscillators, depend-

ing upon the coupling strength for a given system. 

Therefore it is not clear what the effect of the inclusion of 

nonresonant terms in the couplings, as in the systems given by Equations 

(1) and (3) of this chapter, will be on the general solution, especially 

relative to the solution of the corresponding resonant system, Equations 

(2) and (4). A preliminary study for a two-oscillator linear coupled 

system (Chapter V) indicates that the effect of including nonresonant 

terms may be no more serious than to shift the frequencies slightly, and 

to introduce some small rapidly-varying terms in the energy solutions, due 

to the difference between the momenta of the "resonant" and "given" sys-

tems. 

As a preliminary study, the effect of nonresonant couplings on 

the existence of periodic solutions, given in this chapter in Table 3, 

will be investigated. At this point in the thesis, it is not known whether 

or not the inclusion of nonresonant coupling terms will invalidate these 

solutions. 

Figure 26 presents typical results of calculations in which the 

appropriate periodic solution initial conditions from Table 3 were applied 

to systems of three and five oscillators having both resonant and nonresonant 
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couplings, as specified by Equations (1) and (3). The solutions shown 

were obtained by numerical integration of the equations of motion. The 

results given in Figure 26 are typical of the results obtained for each 

of N sets of initial conditions. 

These results demonstrate that the periodic solutions continue to 

exist in the presence of nonresonant coupling terms. The principal effect 

is an inclusion of some small rapidly-varying energy terms. The long-term 

magnitudes of the energies, and hence the amplitudes of the positions and 

momenta, do not vary beyond the amount expected due to numerical inaccu-

racies. 

This indicates that the periodic solutions are stable, in the 

sense that their existence is not affected by the inclusion of nonresonant 

coupling terms. This is important evidence to support the conjecture that 

the effects due to nonresonant coupling terms can be adequately treated 

by standard perturbation methods, using the solution of the resonant 

system as the zeroth-order term. If periodic solutions are stable in the 

sense used here, then expansions about periodic solutions are likely to 

be stable also. 

The present subsection has dealt with periodic solutions. In the 

following section, the effect of nonresonant terms in the opposite extreme 

case, completely energy-sharing solutions, will be investigated. 

Nonresonant Terms and Completely Energy-Sharinq Solutions  

Completely energy-sharing solutions may generally be obtained for 

coupled oscillator systems in which all the oscillators are coupled, by 

starting the system with one oscillator having all of the energy. 

In such a situation, nonresonant terms may play a significant role 



221 

in the character of energy sharing, that is, in the order in which the var-

ious oscillators participate in the sharing of energy. All of the oscil-

lators in a resonant system are not coupled to all of the others; many of 

the "given" couplings are nonresonant and have been eliminated. 

In any cubic-coupled oscillator system, it is necessary for two 

oscillators to be energized in order to have a transfer of energy to a 

third oscillator, If a system is resonant, so that it is missing some 

of its couplings, and if all of the energy is started off with one oscil-

lator, then it is possible that some of the oscillators never receive any 

energy, if they are not coupled to two others which have become energized, 

At the very least, the spread of energy throughout a resonant system is 

inhibited if the complete energy-sharing type of initial conditions are 

used° 

The inclusion of nonresonant coupling terms causes a small amount 

of energy to be spread among a number of oscillators, in addition to the 

large transfers of energy among a few oscillators due to resonant couplings. 

These additional oscillators are thus brought into participation in 

energy sharing earlier than would have otherwise been the case, There is 

a more homogeneous spread of energy in a system in which nonresonant as well 

as resonant coupling terms are included, although the resonant couplings 

still control the large-scale transfers of energy. 

Even after the initial energy has spread out in the system, non-

resonant coupling terms continue to increase the participation of all of 

the oscillators in the sharing of energy, The same mechanism described 

above acts significantly whenever the energy of an individual oscillator 

becomes very small. 
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In addition to the effects just described, nonresonant terms may 

be expected to cause shifts in the energy-sharing frequencies, as was the 

case for the two-oscillator linear system discussed in Chapter V. 

As evidence which may substantiate the heuristic discussion just 

presented, several computer studies will be presented. It will be seen 

that although the preceding discussion may not be complete, nonresonant 

coupling terms do have a definite effect on the character of energy 

sharing for the complete energy-sharing cases. This is because the terms 

identified in this study as "nonresonant" terms actually contain some 

higher-order resonant portions. This is most easily demonstrated in the 

canonical formalism of Birkhoff (1927)3 the action-angle formalism used 

in this thesis identifies only the lowest-order resonant terms, whereas 

the Birkhoff method identifies all orders of resonant coupling terms. 

Further consideration of this matter is beyond the scope of the present 

investigation. 

The two-oscillator resonant exactly-tuned system has an infinite 

period of energy exchange for initial conditions in which one of the 

oscillators is started with all the energy. This may be verified from 

the exact energy solution given in Chapter VI. But the inclusion of 

nonresonant coupling terms in addition to the resonant coupling term causes 

the period to become finite. That is, the perturbation of the nonresonant 

couplings prevents the occurrence of the special situation in which the 

period is infinite. The exact solution for the N = 2 system of the type 

given in Equations (1) and (3), in which nonresonant terms appear, has 

been given in Chapter II, in the bottom plot of Figure 40 

The three-oscillator resonant exactly-tuned system with completely 
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energy-sharing initial conditions likewise has its energy-sharing charac-

teristics noticeably changed by the inclusion of nonresonant coupling 

terms, although the change is not so drastic as for the two-oscillator 

system. Figure 27 gives a comparison of the exact solutions, obtained 

by numerical integration of the equations of motion first of the resonant 

type, given by Equation (4), and second of the resonant-plus-nonresonant 

type, given by Equations (2)0 

The differences noted in Figure 27 for three oscillators are 

better displayed for five oscillators, for which Figure 28 provides some 

typical samples. The calculations presented in Figure 28 last about ten 

times as long as those for Figure 27. The principal effect of inclusion 

of the nonresonant coupling terms seems to be a shift from a rather 

oscillatory energy solution to one in which energy is shared in a more 

random manner. There is also more uniform participation of all of the 

oscillators in the system in which the nonresonant terms are included. 

In this chapter, a number of computer studies have been made to test 

the effectiveness of the method developed in Chapter VI for obtaining 

approximations to the general solutions of resonant exactly-tuned non-

linear coupled oscillator systems. This method has been found to be quite 

effective in principle, although the expected practical limitations on the 

order to which the approximation can be conveniently taken are indeed 

present. 

Also in this chapter, the effect of the inclusion of nonresonant 

coupling terms has been studied. It appears that the existence of periodic 

solutions is not invalidated by the inclusion of nonresonant terms. It 

seems likely that standard perturbation methods may be used to deal with 
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nonresonant terms, as discussed earlier. Nonresonant terms do seem to 

assume a role of some importance in altering the manner in which energy 

spreads and is shared in a nonlinear coupled oscillator system. 

The development of a method of analysis for nonlinear coupled 

oscillator systems terminates with the end of this chapter. In the fol-

lowing chapter, some studies of constants of the motion for nonlinear 

systems and the approach to equilibrium for coupled oscillator systems 

will be briefly described. A final chapter which summarizes the conclu-

sions drawn in this study will then be given. 



CHAPTER VIII 

COMPUTER STUDIES OF CONSTANTS OF THE MOTION 

AND THE APPROACH TO EQUILIBRIUM 

A brief account of two computer studies of topics which are 

related to the preceding investigations of nonlinear coupled oscillator 

systems will be given in this chapter. In the first section, studies of 

the constants of the motion will be described. In the second section, 

some studies of the approach to equilibrium of nonlinear and linear 

coupled oscillator systems will be discussed. 

Constants of the Motion for Nonlinear Systems  

It has been demonstrated in Chapter VII that the analytical method 

of obtaining approximations to the general solutions of resonant exactly-

tuned nonlinear coupled oscillator systems, developed in Chapter VI, is 

fairly effective, at least for small systems of the type considered. 

As discussed in Chapter V, there are N constants of the motion 

for a linear coupled N-oscillator system, in the form of the N true nor-

mal mode energies. These constants of the motion are analytic in the 

position and momentum variables. Since an approximation to the general 

solution of a nonlinear system is available from Chapter VI, and since 

certain analogies between linear and nonlinear systems have been noted 

previously in this thesis, there is encouragement for a belief in the 

existence of N analytic constants of the motion for a nonlinear coupled 

N-oscillator system. In particular, the analogy between N periodic 
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solutions for the nonlinear system and N true normal mode solutions 

for the linear system encourages this belief. 

However, the identification of N analytic constants of the 

motion for nonlinear systems has not been accomplished in the present 

work. The only additional constant of the motion other than the hamil-

tonian which has been identified is the total coupling energy in a reso-

nant exactly-tuned N-oscillator system. 

In Chapter VI, in conjunction with the integration of the action-

angle equations of motion of the two-oscillator resonant exactly-tuned 

nonlinear system, the total coupling energy was identified as a second 

constant of the motion. This was shown directly from the action equa-

tions of motion, Equations (5a) and (5b) of Chapter VI, in which the 

relation 

3, -4- 2..j 2. 	0 	 (1) 

directly provides a second constant of the motion, 

JI 4- 2J2  - 	 (2) 

which, when multiplied by frequency, w, is equal to the total energy 

of the individual oscillators. 

The difference between the quantity wK from Equation (2) and 

the hamiltonian H is the total coupling energy, 

K2. = I-1- (0.),1 1 -1-2.wJz), 	 (3) 

which may be identified, as an alternative to K, as the second constant 

of the motion for the two-oscillator system. 
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For resonant exactly-tuned nonlinear coupled systems of more than 

two oscillators, it is easily shown in the same manner that the sum 

J, 	3Ja 	s 	N.-i t,1 	 (4 ) 

is a constant, so that the total coupling energy can be identified as 

the second constant of the motion for such systems of any number of oscil-

lators. 

As an alternative to the simple method just described for identi-

fying the total coupling energy as a second constant of the motion, it can 

also easily be shown for these systems of N oscillators that the total 

coupling energy has zero Poisson bracket with the hamiltonian, which is 

an equivalent requirement for a constant of the motion. A quick check with 

the action-angle equations of motion shows that the total coupling energy 

has zero Poisson bracket with the sum given in Equation (4); this estab-

lishes the result. 

Probably the only computer study of interest in connection with 

this second constant of the motion involves the question of whether the 

inclusion of nonresonant as well as resonant coupling terms invalidates 

the total resonant coupling energy as a second constant. 

To answer this question, the total coupling energy and the resonant 

portion of the total coupling energy have been computed for the five-

oscillator nonlinear system with completely energy-sharing initial con-

ditions, with nonresonant as well as resonant couplings (Equations (1) 

and (3) of Chapter VII). Typical plots of energy versus time have already 

been given in Figure 28 in Chapter VII, for this case. 

A typical comparison of the time behavior of the resonant coupling 
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energy with that of the total coupling energy (resonant plus nonresonant 

terms) is presented in Figure 29. Examination of this figure shows that 

the resonant portion of the coupling energy remains essentially con-

stant, in contrast to the rapid and wide variations of the total coupling 

energy. 

The expression for the resonant portion of the coupling energy 

used in Figure 29 does not include a correction for the effect of the 

inclusion of nonresonant terms, which must be made if a true constant of 

the motion is to be obtained. However, it is expected that this correction 

can be made by standard perturbation methods (Whittaker 1944, Chapter 16). 

The result indicated in Figure 29 should be sufficient to indicate that 

the resonant portion of the coupling energy remains a valid second con-

stant of the motion even when nonresonant coupling terms are included in 

the system. 

The Approach to Equilibrium  

Since some calculations of the behavior of a system of five non-

linear coupled oscillators in which all of the energy is initially given 

to one oscillator have already been made, some discussion of the nature 

of the approach to equilibrium may be given in this section. 

Specifically, five units of energy were initially given to the 

first oscillator of an exactly-tuned five-oscillator system in which 

both resonant and nonresonant nonlinear coupling forces were present. 

This system is the one given by Equations (1) and (3) of Chapter VII. 

The spread of this energy through the system was studied for a fairly 

long time (over 60 uncoupled periods of the first oscillator, or over 
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300 uncoupled periods of the fifth). 

For comparison, five units of energy were also initially given 

to the first oscillator of an exactly-tuned five-oscillator system in 

which both resonant and nonresonant linear coupling forces were present° 

This system is the one given by Equations (17) and (18) of Chapter II. 

The spread of energy through this system was studied for over 150 

uncoupled periods of the uncoupled oscillators, all of which have the 

same frequencies° 

Typical comparisons of the results for these nonlinear and linear 

systems are presented in Figures 30 and 31. These curves present at 

least two interesting features° First, both systems appear to reach a 

steady state after the elapse of only a small number of uncoupled periods° 

Second, the energy curves for the nonlinear and linear systems show a 

rather striking similarity. Clearly there must be differences in the 

time scales of these curves for various individual oscillators, because 

of differences in the uncoupled frequencies. But considering the fact 

that totally different couplings are involved, the similarities seem more 

impressive than the differences° 

In view of this similarity, it is interesting to compare the 

single-oscillator energy distribution densities f(E) for the nonlinear 

and linear coupled systems° Here f(E) is defined to be the fractional 

amount of time which a single oscillator spends in the energy interval 

(E, E +dE) 

First, the f(E) data points were computed using AE=0.3 for 

each individual oscillator. Then, since all of the individual f(E) 

plots thus obtained were more or less the same, for presentation the 
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averages of the f(E) data over all five oscillators were taken. These 

data points are plotted as histograms for the nonlinear and linear systems 

in Figure 320 

According to equilibrium statistical mechanics, the single-

oscillator energy distribution density for a system at temperature T is 

given by 

e 	lt-T/ 	 (5) 

where kT = E , the average energy of a single oscillator. For these 

particular five-oscillator systems, this average energy is unity. Thus 

according to equilibrium statistical mechanics, f(E) = e -E . The solid 

curves in the plots of Figure 32 represent e
-E 

Thus in Figure 32 the histograms represent the time average f(E), 

while the solid curve represents the phase average f(E). It is inter-

esting to note the close agreement of the time averages and phase averages 

for both the nonlinear and the linear coupled oscillator systems. It thus 

appears that for these systems, four oscillators form an adequate heat 

bath for the fifth. 

In this chapter, brief discussions of constants of the motion and 

the approach to equilibrium for coupled oscillator systems have been 

given. The work on constants of the motion appears to show promise of 

some later development. The studies of the approach to equilibrium for 

the nonlinear and linear coupled oscillator systems serve to further 

emphasize the similarities and analogies between nonlinear systems and 

linear systems. The results for the five-oscillator systems given in 
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the last section of this chapter provide some indication that five oscil-

lators are enough to adequately represent many of the essential proper-

ties of larger systems. 

In the final chapter of study some conclusions will be drawn 

concerning the work which has been done. 



CHAPTER IX 

CONCLUSIONS 

The principal conclusion which can be drawn from this investiga-

tion is that weakly-coupled energy-sharing nonlinear coupled oscillator 

systems are amenable to analysis and that these systems have much in 

common with energy-sharing linear coupled oscillator systems. A method 

of analysis of these nonlinear systems has been presented, and the 

effectiveness of this method has been tested by comparisons with 

selected numerical solutions. There are indications that this method 

of analysis is capable of providing good first-order approximations to the 

general solutions of the nonlinear systems considered. Although certain 

difficulties have been encountered in the calculation of second-order 

terms, it seems likely that the results of the first-order approximations 

can be improved by making higher-order approximations, calculated in an 

appropriate manner. 

There are several disadvantages inherent in the method presented 

in this thesis 9  aside from difficulties in the calculation of second-order 

terms. The calculation of enough terms to give good approximations to the 

behavior of nonlinear systems of more than about ten oscillators, for all 

sets of initial conditions, is prohibitively lengthy even using the pres-

ently available high-speed digital computers. Also, the analysis of the 

effects of detuning and of nonresonant coupling terms, both of which must 

be considered when dealing with physically realistic situations, is likely 

to be quite complicated in the form suggested here, even for as many as 
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five oscillators. 

The existing perturbation methods of Krylov-Bogoliubov and 

Wigner-Brillouin, the latter as applied by Jackson, are quite success-

ful when applied to all but the most sharply tuned systems. The method 

presented in this thesis provides a moderately successful analysis of 

exactly-tuned systems, and an indication has been given of the manner in 

which detuned systems can be dealt with, starting from the exactly-tuned 

case. Therefore, the Krylov-Bogoliubov and Wigner-Brillouin methods for 

untuned systems together with the present method for tuned systems should 

provide methods of solution which are appropriate for all extremes of 

tuning for nonlinear coupled oscillator systems. 

It is hoped that the principal result of these studies, a demon-

stration that exactly-tuned weakly-coupled nonlinear oscillator systems 

are indeed susceptible to some form of analysis, will encourage the devel-

opment of more practical methods of analysis in the future. 
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