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AN INVESTIGATION OF SEVERAL SOLUTIONS

OF THE EQUATIONS OF COMPRESSIBLE FLUID FLOW
INTRODUCTION

The equations of motion of a compressible fluid, as
will be seen later, are non-linear differential equations.
Since there i1s no general method for solving such equations,
the solution depends on the equation and the boundary condi-
tions. In the supersonic case, where the non-linear equation
of the velocity potential is of the hyperbolic type, the
problem may be solved by the method of characteristics. In
the subsonic case however, the characteristics do not exist,
therefore some other approach must be made, One such approach
is to reguire that the perturbation or disturbance velocities,
due to the presence of a body in & uniform stream, be small.
The equations then become linear and the solution may be
had by ordinary means. In all pratical cases the solutions
based on this method are approximate. However, 1in many cases
the results are accurate enough for engineering work.

Chaplyginl and Molenbroek? obtained & solution to the

lchaplygin, S. H., "On Gas Jets," National Advisory
Committee for Aeronautics Technical Memorandum No. 1003, 194l.

2Molenbroek, P.,"Uber einige Bewegungen elines Gases mit
Annahame eines Geschwindigkeitspotential," Archiv., d. Math. u.

Phys.,(2), 9:157, 1890.




subsonic problem by transforming the equations from the physi-
cal plane to the "hodograph" plane in which g, the magnitude
of the velocity, and 8, the angle between the velocity and

the positive x axis, are used as the independent varilables.
The equations of motion then become linear. The difficulty

of this method 1s to obtain a set of boundary conditions in

the hodograph plane which will give a complete solution.



PUNDAMENTAL EQUATIONS

Introduction. Solution of the problem of flow from

infinity of a compressible fluid past an arbitrary body re-
quires that the relation between the stream function and the
velocity potential be known. In addition, the equations of

the conservation of mass and momentum and certain thermodynamic
relations are useful in the analysis of compressible fluid
dynamics. These relations are presented in the following
section.

Conservation of Mass. Consider the control volume V,

with volume 8xéyfz (figure 1),in a flow of velocity q with
components u, v, and w, in the x, y, and z directions respec-
tively. The mass flow through the side normal to the x axis

and nearest the origin 1s

Puéz &y

and the flow through the other side normal to the x axis

»

[4?«) + Pt )y Sx] §z by,

Where /9 is the mass density of the fluid. Therefore the

total mass increase per unit time parallel to the x axis is
pPeubz by ~ P« 8z 8y - (puix bx by §2z
—(Pec)y Ex by b2



FIGURE | ,VELOCITIES AND FORCES ON A FLUID
ELEMENT
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Likewise the mass increase per unit time parallel to the y

and z axis 1is

—‘7/»’)3 Bx %z Ny » and "Oéw); Sx 8z 8y

respectively. Then the total increase for the control volume

v per unlit time 1is

- {94«)# +§4y)j + VWJ;J §x by dz

But the total increase per unit time is also

ETETRY

Therefore the continuity equation becomes

o)y tov)y T Py 4, =0

which for a steady two dimensional flow reduces to
Pec )yt rpPvIy TG . (1)

Conservation of Momentum. Consider again the volume

V in the moving stream. The acceleration in the x direction

is

d«u _ ., Tk & oz
T =t TX 4 wy T4 U, T= <+ ¢
oz gz Yo T % g

T, * VRy 4 WUy t U,



and
oy

o = V, +VV1 + WVp "l'vt

o7
in the y and 2z directions. In the absence of external forces,

the only force acting on the volume V 1s the pressure force.

From figure 1 the resultant force in the x direction is

—'Px s‘K S" SZ

»
where p is the pressure per unit area. In the y and'z direc-

tions are
- P &x Suj 82

Then applying Newton's second law of motion,

A bx 8-., SZ{U.U-. +VUy twug + u.; )""'P,‘ bx E‘j §2,

or

[V AL Y + Vu.a +wu-2 +‘u.t b

Wvy, + vvy +wV, * Mo =7

Px
Py
Pz

\|— » )= i

Uw, +VYwy +wwy +w,~



These are the well known Eulerian equations of motion. For a

steady two dimensional flow they are simply

U, *Vuy =" Py
|

WVy =+ Vvy =“;P3 s o)

Integration of equation (2) gives Bernoulli's equation

2
1’y P _ const
2 +-‘£ ' (3)

which will be used later in the above one dimensional form.

Thermodynamic Relations. When considering the Bernoulll

equation in one dimensional form 1t is sometime useful to

write it in the form

_:: + CPT = const.

where p 1s the specific heat at constant pressure. The above
expression is true since the volume remains constant in one

dimensional flow. From the Charles-Boyle gas law

P

T

and the Bernoulll equation becomes

tAz + <p P
2 Cp—Cv 2

= CC)ﬁSt



or

u Ly P conat
2 T-1 2

)

(L)
where Cy is the sepcific heat at constant volume and ¥ 1is
cp/cv.

Now 1f the requirement that the process be isentropic

is introduced, that is

P const 2’

or

-Y
P .__(ﬁ
where the subscript o denotes the conditions at rest, /ﬁfbe-

comes |

A=A E) T .

Now substituting this expression for /lelequation (L) gives
the following relation which becomes useful in the discussion

of the characteristics method.

|
w .y PP
2 +-V-l &(Po

(‘Y—-l)/
U~2+ Yy b P) Z_-Ccnat
P Y- b \Ps

Writing equation (l) between any point and the stag-



nation point gives

LJ‘.‘-Q-_Y _E :-.-_p_! J-. i
2 =1 £ A B fd (6)

If the speed of sound, &, is given by
2 YP.
a = /// o
and the Mach number, M, is defined as the ratio of the velocity

to the local speed of sound, then equation (6) becomes

2.2 - A
Ma+2S = 22

- | A

Y-1,2 .y
F St

2

Since a,°/a = T,/T, it follows that

-

T o Y=1 m*
T-—I+ZM

The isentropic law may also be written in the form3
B~ ()T = o A
P e T

Therefore the following relations for isentropic flow may be

obtained:
Te _ Y-1 p*
- | + ZM
i Yy
P _ V=1 pal Y=1)
0 =(1v+ F™°)
s V=1 ,,2\ Y(7-1)
5 =1+ Fm) :

Liepmann, H, W,, and A. E. Puckett, Aerodynamics of a
Compressible Fluid, (New York: John Wiley and Sons, 1947),P20.
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Veloclty Potential and 3tream Function. If the condition

of irrotationality 1s satisfied, that is

R el

(two dimensional flow) then there exists a function $ , such

thet

which satisfies the condition of irrotationality. This function
® is the so-called velocity potential,
Considering equation (1) it is clear that the equation
is satisfied if there exists a function ¥ , such that
v, =W
J
t*’N :—/V
This function ¥ is the stream function.
Writing the expression for Y in a slightly different
form so that % and %Y are in the same units and combining

the two, equations (8) are obtained.

(&Gv‘j= @x::u-

f7

__@ —"—éuf—-V
Z T (8)

These are the relations between the velocity potential and
the stream function for two dimensional flow.
Investigation of equations (8) will show that they are

non-linear in the dependent variables. It is this fact which
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presents the difficulty since there is as yet no general
treatment known for such equations. In the case of the flow
velocity everywhere greater than the local speed of sound

the solution may be handled by the method of characteristics.
Since, as will be shown later, the equations of the charac-
teristic lines do not exist in the case of completely sub-
sonic flow, the solution is accomplished by the use of approxi-
mations which linearize the equations, cr by transforming the
equations into the hodograph plane where they become exact
linear equations. In the hodograph plane the velocity q and
the direction of the velocity o, are taken to be the indepen-

dent variables,
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THE HODOGRAPH TRANSFORIATION

Introduction. The fundamental equations of the stream

function and velocity potential (equations 8) are trans-
formed into exact linear equations with g and 8 as the in-
dependent variables. These equations are then simplified by
the introduction of the lMach number and the differential
operator dew . Solution of the final simplified equations 1is
then carried out by the use of the approximations of Chaplygin
and Karman-Tsien.

In order to apply these solutlons to a specific prob-
lem, a point transformation is found which transforms a known
incompressible flow pattern into the desired compressible flow
pattern.

Basic Equations. As mentioned before, the non-linear

equations (8) may be transformed into exact linear equations
by the introduction of two new variables: q, the absolute
magnitude of the velocity, and 6, the angle the velocity vector
makes with the positive x axis. These are refered to as the
hodograph variables.

To show this, let P and W be functions of the com-

plex variable §+E§¥, then

ad+iBaw= (Fdx+ dydy) w1 (Y dx+ W dy)

Substituting equations (8) and simplifying gives,
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ag+iLdy (uelx +vey) +L 2 L (Lvax+Zudy)

=(u-lv)dxr + (vriu)dy
:(u.—-iv) (nl.x+i.d9)

Now introducing the new variables q and 8,

dg+ifay = qe Tdz

or

_ Ayl et®
dz—(dé-l-l.'pdv)qe -

where Z 1s the complex variable x+1iy.
Now considering q and 6 the independent variables and
assuming /ﬂ a single valued funotion of q only, then from
equation (9) it follows that

Z =—'e (‘é +L riJe:)

and
:.-..-q-l— eie(éi"" ié'qq ) ‘
Also /
o [_ '«l—t?'_ﬁlw]
Zeq= [J’é Tt aa °



and

Since by continuity, Zeq and qu are equal, then
4
d(zg) L “
+ (229
'é Ci%l 'EIB ‘i €§‘1 fgi 9

Equating real and imaginaries

B d(,gfi)
LS e 2

@6:‘(—?‘1"."9_ '

Equations (10) are the hodograph eguations derived

(10)

by the method first used by Molenbroeku" These equations are
linear in the dependent variables.

Although equations (10) are linear, the solutlon is
rather involved. Bers and Gelbert5 developed a new X -mono-
genic function theory, &analogous to the analytic function
theory, which may be used to obtain a rigorous solution to

equations of the form

4Molenbroek, P., Op. cite.

5Bers, Lipman, and Gelbert, Abe, "On a (Class of
Differential Equations in Mechanics of Continua," Quarterly
of Applied Mathematics, 1:168, July, 1943.
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q)e = I (a) ‘qu_
i’q- =-L ()W,

But for many problems approximations may be made which
greatly simplify the solution and yet do not effect the
results enough to make them invalid for engineering use.

Simplification of Basle¢ Equations. First consider

Euler's equation for the case of one dimensional flow.

qdq ﬁ-_;;i =0
This may be written as

dp dp _
olq + 2O =
qdd+ 5 o

and since the sonic velocity, a, is

a= [9d°F
y dp

then

or

1
|
X
|

(11)
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where K is the Mach number.
Now turning to equation (10) and performing the in-
dicated differentiation, the result 1is

Q ‘l“é:"i" {%J

9 CiQ.
_"’fnsl_
T oqp P2 dq Yo .
Substituting relation (11)
&

Yo
Yo

Then the hodograph equations (10) become

9q = -T?’" o
g =—(~m) 2

oi— 23
N

_ (1-'FﬂzJ Fa
dq="q 7

These equations may be simplified further by the in-
troduction of a new variable, W5 . 'ritten'&n the differential
form, (D 1s defined by

aw-:‘/l—M" "Tq
(13)
With the use of equation (13), equations (12) become

éo"’; |- W LR
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These ars the final simplified hodograph equations.
As mentioned before approximations may be made which greatly

simplify the solution of these equations. A discussion of

these approximations 1s now in order.

The Chaplygin Approximation, Chaplygin in his discusaion

on gas jota6 notioced that the factor i? \ﬁ:;qi- differed
little from unity for moderate subsonic speeds.

To show the full meaning of this, let us look at the
factor, whioh by using the isentropic relation may be written
" a8 | |

:ﬂ\h-mz = Vi-M* (1 + BMm?) v
{15)

where Y 18 the ratio of the specific heats of the gas.
Bxpanding equation (15),

< 4
f‘ o =(I+le"— +(2-ME+...)

[ -
(-geg )

"
—~
+
2
+
»

x
3
K1
l
K4
!
3

¢ &
~(2-v)M "
X %L +:0 )

= (|- "’T"'-M‘+ a3y

6chnplygin, 8. A., Op. cit.
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Using the value of ¥ for air (1l.l4), the above series be-

P]/.. 2 2 -o03m* e
;F |= ™M I (16)

Z
Then replacing ?VI—M by one in equations (1ll) the hodo-

graph equations become simply the Cauchy-Riemann relations.

éku =y
$= Yo

comes

(17)
Hence by inspection of equation (16) it can be seen that by

Povywm® "
using r [ as unity, one is in reality neglecting all
powers of M higher than the first. That is, the iIncompressible
and moderate subsonic compressilible flow differ only by factors
proportional to Mu.

The Chaplygin approximation may also be interpreted as
the use of a hypothetical gas having a ¥ value of -1. This
can be shown by the use of equation (1l5)}. From this equation

A z
it is seen that for = | =M to equal one when M 1s less
than one, ¥ must equal ~1. Then by using the isentropic

relation
L = Canst
/01'

and letting Y = -1, the relation becomes
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p{d = const .

That is the isentrope is a straight line wlth the equation
_ (..'.__L

PmPs= €057 2) (18)

where C 1s the slope and the subscripts 2 and3 denote two

different points on the curve. With the correct cholce of C

the line given by equation (18) may be made tangent to the

true isentrope at some arbitrary point. A graphical repre-

sentation of this 1s shown in figure 2.

Chaplygin used the straight line isentrope tangent to -
the true isentrope at the point corresponding to the stagnation
condition of the fluid. That is, C must equal the slope of the
true isentrope at the point /4% and po. Therefore

g=(ely =pdb.ety

_ .2 dfP
avVv d/o aVv %

TR (%)

2 -2
= - aa
/00 (19)

Now substituting (19) in (18), the equation of the straight

line isentrope becomes

| _
Pn_p_-_--af/az(,'o‘,";) , (20)



/_q-p()a Po

1/p

Chaplygin approximation

3 Karman-Tsien approximation

FIGURE 2,APPROXIMATIONS TO THE TRUE
ISENTROPE

20
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The Karman-Tsien Approximation. Like the Chaplygin

approximation, the Karman-Tsien approximation 1s a straight
line tangent to the true isentrope. Since the Chaplygin
method is useful only for speeds up to about one-half the
speed of sound, Karman suggested that if the point of tan-
gency were shifted from the stagnation condition to the un-
disturbed condition (fﬁ,pl) the useful region of the straight
line isentrope approximation could be greatly extended. This
idea was developed Jointly with Tsien! and later become the
Karman-Tsien method used extensively in aeronautical work for
the solution of problems involving compressible flow at sub-
sonic speeds.

Because of the ¥ = -1 inferred by the Karman-Tsien
approximation, this method becomes less accurate near the
critical Mach number; that 1s the Mach number at which the
local Mach number first reaches one somewhere on the body im-
mersed 1n the stream. This will be brought out later in the
application of this method to the problem of subsonic com-
pressible flow about a circular cylinder.

Since the Chaplygin condition, given by the preceed-
ing section, holds true for the Karman-Tsien method, eguations

(17) may be used for this method also.

?Tsien, H.S., "Two Dimensional Subsonic Flow of Com-
pressible Fluids," Journal of the Aeronautical Sciences, ©6:399,
August, 1939.
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Keeping in mind the fact that the straight line gilven
by equation (18) is now tangent to the true isentrope at,df

Py (figure 2), the slope now becomes _
C--a|/f .
Then equation (18) becomes

Pi-p =- a?/‘alz(;;-t -I:I;,) .

(21)
Now returning to equations (17),
ém =- t*,lﬁ
= Y
%o “ (17)

it is seen that the complex variable @+L%W is an analytic
function of w=-L® ., But for the convenience of calculation
and for the purpose of showing the relation retween the bound-
ary conditions for incompressible and compressible flow, the
physical and hodograph planes. They are defined by equations
(22).

U=W<cos8&

V=Wsn6

w=a2a_e”

(22)

Where U and V are the components of the incompressible
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veloclity W,
For incompressible flow, q—W, M—0, and;'%—vl.

Then equations (12) become

$,= WY - (23)

These may be written in terms of the variables of equations

(22) as

b, (Vo) = W¥,Uy .

or

(2l)
Let us now look at the corresponding hodograph equations

for the Karman-Tslen method and for the incompressible condi-

tion (equations 17 and 23 respectively). Equations (23) may
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be simplified by defining & new variable £k , in the same
way that the basic hodograph equations were simplified by the

variable w . This variable [\ 1s given by

L. = |o<3 W
or -
=
aNn= -
W (25)
Substituting equation (25) in (23) the result is
__dn
éw dw gﬁ
‘i; = W
e a0 Y .
Then it follows
¢, =-Ye
‘@gg:z Ya g
(26)

Now by inspection of equations (17) and (26) it is seen that
if A=« the compressible flow, approximated by the Karman-
Tsien method, and the incompressible flow will satisfy the

same equations. Therefore the relation hetween W and q becomes

::1/\—:-4"' dq
:1

= [ f-r® da e
e !

2% =%
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Bernoulli's equation is given as

2 2
K SR P o JE' “+ :11
e -~ p Y-l A 2
or & 2
A, A o A L2 .
2 Y-1 Y= 2
Applying the Karman-Taien approximation, Y =-1,
2
2 -2 -2.

Therefore

q*-a* =-af+q°

and writing this between the astagnation condition and the

local condition,
2 2 2
= aﬂ =q_ a [} (ZB)

Substituting (28) in (27) givoa

dq
q‘-.-a‘ =+a.=
_______ﬂﬂ___ﬂ
log W = fa s,
Integrating,

lci w —-—Iej (a'+ I:'z+ af’) + K

then

W= K (a.+ fa‘?*- a:),
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where K is the constant of integration. To evalute K consider
the case when the perturbation velocity due to any distur-

bance is small; that 1s q<< a,. Then q - W, md

w=»<(%'§;

K=2a,.

Then the final relation between q and W 1s

w= ;a.q_

a,+yqiral (29

q=-4a’w
4agz"wzo (30)

and solving for q,

Now using the approximation of Chaplygin and also

of Kerman-Tsien that
ﬂ - z —

we may find the density ratio for the Karman-Tsien method.
’ﬂ
Solving for =~ and substituting equation (28) gives

P
{,f)zzl-lm" - 'iz;;-z
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2

( °)2= (4a§-w‘)z+ 16 AW
P (4a2-w?)2

- (=4al+ w??

(4a2- w?)?

or

4 . 4al+w?

2 4af-w? -

Equations (24, 29, 30) and (31) are the basic equations

of the Karman-Tsien method. They give the relation between the
incompressible velocity W and the compressible velocity q, both
in the physical plane. Equations (2l) are the Cauchy-Riemann
equations and therefore the complex potential

F=2%+ (Y
must be an analytic function of
W =U-(Vv

where W 1s the conjugate of W and F is the incompressible

complex potential chosen to give the correct complex potential
in the compressible flow when transformed, and U and V are de-
fined by equations (22). That 1is,

$+¥=F(U-iV) =F (W)

ad

$-l¥=F(U+iVv)=F(w). 3
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Now in order to use equation (32), the function P
must be found which gives the relation between U and V, and x
and y; or the transformation from the hodograph plans to the
physical plane. This 1is necessary since the hodograph plane 1is
merely & method of representing the non-linear equations as
linear ones; hence the physiocal picture of the flow is lost
when the flow is represented in the hodograph plane.
The function F is now found by writing
d¥ = ,dx + dydy
d¥ = Ve dx + V,dg

Then by using the definitions given by equations (8), these

become

d$ = qcos@dx + q sinedy
dg:-qf sindx +q;c059d9 -

Using equations (22, 30,) and (31) and solving for dx and dy,

dx =Y d A
% S T =g LY

_V y A4

4 d{a 4a:- )

£ 2
v 4ae +W )
W 4a§w (

4a2W

A
w
P
dy= XL d§ 4a. W) U gy 43‘;""*W")
| L 4a‘w tw 4a3w / -
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Then
vy 4 (1n 20 )= 0¥ (1434, )
dy= e 3 (1= 3% )+ @Y (”V;Z) |

Now using relations (32),
w2

dz = dx +ad3=('"’\:3~5)d4(unv)

(1 -
-+ ( 4 3;: d¥ (LJ-+L\/’)

wz
dz"'—“_U\;L' (dq,ndv)—xj (dé-idv)
_dF _wdF
dz‘_‘"—\,}‘ 4a’ : (33)

This is the relation between the compressible hodograph plane
and the physical incompressible plane,

Therefore, by knowing the analytic function F(W), which
is the incompressible condition, the velocity q in the com-
pressible condition may be found by using equation (30). Also
the coordinates of the point at which the velocity ocours may
be found by equation (33), the density ratio by equation (31),
and the pressure by equation (20). Using this method however,
it 1s impossible to predict whether or not the chosen function
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F(W) will give the boundary shape and flow pattern required.
This is the main difficulty of all the hodograph methods.

Transformation from the Incompressible Flow to the

Compressible Flow. However, by using a method demonstrated by

Batemans, the two flow fields are related by using equation (33),
and the final shape of the body in the physical compressible
plane may be pre-determined. In order to arrive at this trans-
formation, it is convenient to let‘}‘ and 27 be the coordi-
nates in the complex plane_Z’ s in which the incompressible
velocity components U and V are plotted.

The approximate shape of the resulting boundary may be

found by starting with the function

FliW)=3+¥ = h(r)w,

which is the complex potential of the incompressible flow in
the 5’ plane. Then

= Al g2 o
dF-wd;dg_Wd-’" : (34)

8Bateman, H., "The Lift and Drag Functions for an
Elastic Fluid in Two Dimensional Irrotational Flow," Proceed-
ings of The National Academy of Science, 2l;:2),6-51, 1938.
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Likewise,

dF = w __-d; wdzZ
dz , (39)

where the bar denotes the conjugate of the respective func-

tions. Substituting (34) and (35) in (33), dz becomes

-2
Rl )‘j(%}) dz" . (36)
Now it becomes clear that for moderate subsonic speeds (for
which this method was developed) the incompressible flow and
the compressible flow differ only by the factor A . The

correction factor A may be obtained in terms of the free

stream Mach number, M,, by use of equation (29),

2
e 35

2
i 4,
(a? + yar+ aZ)? :

Then by equation (28)

fl
faz q? + a* )’
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<

M
A= : .
((1=m2 1 )" (37)

Values of A for various Mach numbers are given in table I
and are shown graphically in figure 3.

In order to make pratical application of the Karman-
Tsien method, it 1s now neéessary to obtain an expression for

the pressure coefficient, C in terms of W and J, . By de-

p!
finition

P~ PR

2749

Ce =

b

and by equation (21),

(1)

- o za’ |_ +as-w” Cg4al+w®
Poqf 4al+wW* 4a2-W*
Z 2

Jea) | = e A 550
R A I+ A - )_(‘ﬁLQ;ﬁ )z

e 2acaa(YRe)”
2 M (i+r Q) []—)(W\,J,)z]

‘_(‘\Nr/w: )2' (38)
- (¥

=(1+ X) Z
AN, )
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MACH NUMBER

FIGURE 3, VARIATION OF A WITH FREE STREAM
MACH NUMBER

1.0



VALUES OF A FOR VARIOUS FREE STREAM MACH

TABLE I

NUMBERS

. r T w [ 2
.05 00! 55 090
10 003 .60 A
15 006 65 137
.20 010 70 167
.25 016 75 204
.30 .024 80 .250
.35 033 85 .310
40 044 90 393
.45 057 95 525
.50 072 .00 .000

34
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This method is applied to the problem of compressible
flow about & circular cylinder and is given in the appendix.
Comparisions are made with various experimental data available

on the problem in an effort to show the value of this method.
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THE METHOD OF CHARACTERISTICS

Basic Equations and Definitions. In the preceeding

section it was shown how the non-linear equations of com-
pressible fluid flow could be solved by transforming them
into a plane in which q, the magnitude of the velocity vec-
tor, and ©, the angle of inclination of the vector q, were
used as the independent variables. The outstanding advantage
of this method, with the approximations introduced, is that
it is easily applied to the case of completely subsonic flow,
However, in the case of completely supersonic flow the prob-
lem 1s conveniently solved by use of the idea of "charac-
teristic lines". These lines do not exist for the subsonic
case and therefore the method i1s useful only for the super-
sonic case.

First, the continuity and Eulerian equations are com-
bined with use of the condition of irrotational flow into a
differential equation of the Monge9 variety. Assuming a steady
two dimensional isentropic flow which is also irrotational,
the continuity equation is

(pudx + (pViy =0 , (39)

and the Eulerian equations (equations 3) may be written in

the form

9Bateman, H., Partial Differential Equations of Mathe-
matical Physics, (New York: The Maciillan Co., 1932), p 501.




(4o)

(41)

Differentiating equation (39) and using the relation

N =L
/ax_ﬁppx-azp;g
gives
Paga +unP *+Pyg + vy =©

Sloving equations (40) and (L41) for (p,u Pyv),

. (2

Prlh + Pyv =Py (Uy+ V)= p (W, + vivy

and substituting in equation (42), produces

Lx.x-i-v.,-‘-al-z Wy (us"'vl)*‘“&u-x"‘ vzvs =0
2
- _yvf N\ uv _
u.,(l a’-)"“’s(' a‘) a,_(u.,+v,)_o ,M)

Now, by the hypothesis of irrotational flow equation (6)
is satisfled. That is

(6)
Therefore, the potential function % exists such that

#,.::L‘L 45=v 2

37



38

Using these equations, equation (l3) becomes
(|—J&f ) Ep -+ (P—J!f )1%» _-jigﬁf'% =0
ar x X a* 4y a? xY . ()
This is a partial differential equation with the solution
given by the Monge equations. Three types of equation (ll)

exist: elliptic, parabolic, and hyperbolic. The type depends

on the value of the egquation

2
(- ) (-5 )- Pl T V. 1%
at
since q2=:u2+ ve. If equation (45) 1s less, equal, or

greater than zero the equation 1s of the hyperbolic, para-
bolic, or elliptic type respectively. That is, equation (ll})
is of the hyperbolic type for completely supersonic flow,
parabolic for sonic flow, and elliptic for subsonic flow.
Since equation (lly) is a second order partial differ-
ential equation, the solution will not be unique. However,
at some point the two solutions will be coincident. At this
roint the scolutions are discontinuous and the locus of these
"discontinuities or singularities" is called the characteris-
tic of equation (Ll).

Equations of The Characteristic Lines. Consider a two

dimensional flow around a corner of small deviation, such that

an isentropic expansion takes place. This disturbance, caused
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by the deviation, is propagated throughout the fluid in a
straight line called the Mach line, and is inclined at the
Mach angle to the original flow direction. Since the flow is
expanded, the direction and magnitude of the velocity must
change. Consequently the value of the potential must change
also. In the region upstream of the disturbance the potential
is §=§‘ ; In the region downstream, &= §z . But since the flow
is continuous, along the Mach line i. must equal @z and the
first derivatives must have the same absolute value. That is,
the two solutions of equation (ll}) are coincident along the
Mach line and it can be concluded that the Mach line is the
characteristic line of equation (l}). Therefore it is possible
to determine the equations of the characteristic lines on the
basis of the physical meaning of the lines.

In order to arrive at an expression for the charac-
teristic lines, consider again the case of an infinitely small
deviation causing a disturbance in the form of a plane Mach
wave and inclined at the angle }4.. Where

/u,= S]Hq—L .
M
If the solutions of equation (ll}) are represented by the lines
11 and 1, (figure ), these curves will intersect at some point

2

P on the Mach line. Tangents drawn to the lines lland 12 at

the point P will be at the angle AL to the veloclity vector g

which 1s inclined at an angle € to the positive x axis. Then
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FIGURE 4, SOLUTIONS REPRESENTED BY THE
CHARACTERISTICS LINES



L1

if 41 is an element of length along the line 1, by geo-
metry of figure L the following equations may be deduced.

(:—:)1 = tan (mt e)

dx |\ - ]
(G5, = (e (46)

Also by inspection

A,
Cose—"?f | 5'”9=‘=I“
cC .,_9]_._.5_5_ o7 =] =_d_g_
os (A ol in (p+6) i
Sm/u=ﬁ1=-_qé_

Expanding sin (AL+* 6) and substituting the above relations

gives
dx = (cosm) Y -2V
dl 949 <49
dy — a4 /(- v
a1 az ( 95/‘*)q .

Combining and eliminating cos AL ,

ax - ig_..i.&_)_&_é_!_
dl di. 4 4/y 494 4

or

dex _dy U __ Q& (5-4-\/
d1 4l V qt 'y



Multiplying by v and dividing by a,

N odx _dy U oo
ad1 gl a S (L7)

Also
(ax) + (dyr=cd)®
or 5
() +(34) -
. (4:8)
Now equating equation (48) to the square of equation (47),

2 2 2 2 2
d dy\ - [L4\“/d _2UV dxdy 2 /s dx_
(ﬁ)"'(ﬁ "(Ta") (E_?_) a* (d1)? *(a) (dt)

or
L. 2 2 -
(= RN () () 2y sy

which becomes finally

w?\/dy\? , 22UV dy v?
- ===+ (- |]=0
(' a‘) ax) * at dx ( a") . (49)

This is the equation of the characteristic lines in Car-

teslan coordinates.
Letting

H=(-32), L=(-%) k=%

equation (43) becomes a quadratic with the solutions



L3

= . | Z_HL
7= 8-k
;= Kol YK-HL
2" R H
(51)
where
/-r:.d_"-\
d x .

Therefore it 1s now evident that if the flow is subsonic (i.e.,
equation Ul 1s elliptic) the value of VK?- HL 1s imaginary
and the lines do not exiat.

Characteristic Lines in the Hodograph Plane. Using

equations (50), equation (4l;) may be written as

I+ ¥ vy +2Kva=0 . (2)

The change along the characteristic lines of the velocity

components is
du = Uydx +Uydy= (Ux +/7dy)dx

dv = v, dx + vy cia = (Ve +7 vy ) dx

or

e g =7y

av 7
v = = g v -
" dx J



By the hypothesis of irrotational flow uy Vy» &nd by
combining u, and v,

ux““‘“"‘/"—Y +/7 Vy -
(53)
Substituting equation (53) into (52),

H (2% - 79Y o 7% ) + vy +2K (5% -7 vy)

which becomes

dy - av f"_ _
HE + (2k-HITS +(H/M-2K T+ L vy =0.
(54)

Now /7 is defined as the solution of the quadratic equation

H/'z-ZK/"-t- L=0

and solving the two solutions (equations 51) together

»

2K-H/ =H/}

which when combined with equation (5)) gives the two charac-

teristics

du +./7dv=0 ) |

(55)

The equations for du and dv in terms of the coordinates
® and Q may be had by inspection of figure 5. In figure Sa, q
changes in magnitude only. Therefore,



Figure Sa

Figure 5b

FIGURE 5,POSSIBLE VARIATIONS OF q
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du=z-qde siné

av = qlda Ces ©

In figure 5b, q changes in direction only. Therefore,

du =-qde Sin6
dv = qde Cos 6

Combining the two changes gives

du =dgcCes& —q Sin6de
d\( =dq5m6+q6956d9 (56)

Substituting equations (56) and (46) in (55), the following

expressions are obtained: (equation 55a first)

. dq_CosG—quGdO +/dqSin® +/"'qCa.sGd0 =0

__d_‘.l_=_q(/f-'—-tan9) .

ab (1 +/7tanb)

By equations (L6)

tan©® -tan AL — tan B

iﬂ_ —— | +tanB tan

a9 |+ tan’® -t anutand
| + tan® tan AL .
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Substituting the relations for the functions of A and © ob-

tained previously,

.
wu MZ-= |
u.|JM -1
Simplifying,

Likewise from equation 55b

dgq
das

AL)Fq v
|+ 4/ v mei
|+ —Y
wYM2-| )
R

=-q

Therefore the two equations may be written as

aq
d6

(57)
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In order to obtain dq/q in terms of M so that equation
(57) may be integrated, consider the energy equation in the

form
2

1
2

L

a
=1

r 3
o B
Y-\

Upon substituting the relation,

4 | |
a°=|+i-_._

at 2

for al it becomes

2 3
9 o Ao Ao

CE A CON (I 2ME) oy

Simplifying,

2 Y=l %
a" _ ad 2 M 1
r3 Y- Y-l m*
| + 2 M

%
4 Z + | | = Const,
| (Y- Mt

Differentiating with respect to q gives,

2 | 2 2 d™M
S SR - e Si— =
(r-nm* | L [(Y-OM' d‘l} “

or

2

3
am _ 3 _l+ (r-1) M’J(Y")M

dq o>
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Then

(58)

or

tde ol aM
T omYM=l (- Y' mM*) .
Substituting
2 Y +I -\ 2
M = ('*ET- tIE?*) M,

de becomes

_L__ ra Y=I -

- 5 Pﬂ
- 2 2
tde= ( Tl vﬁ)
2 J™ME-T | (I.+"“M"J m_f E

Making the following substitution in order to facilate in-

tegration,



50

M =
M

See ¥ = M
dM=5ec¢‘tan¢-

S|n¢-"

Sin P d¢
os* @

equation (59) becomes
Sin &

+9 = YHJ Cos*#d¢@

_ adm
R Sineg &+ %QSec"ﬁ M VMz-l

+6 = WJ de - d M
ZCoszﬁ'ﬁ(Y"" M

Row performing the integration,

g = (Y+ﬂ[\(—- tan' Y+l sz:—l-} —Co;LNL\-t- const.

1o = J YL 4 -1 '[[vlz—l + const .
= Y+
(60)

Equation (60) gives the variation of the Mach number
along the characteristic line as a function of the direction
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of the velocity along the line. With the value of the lMach
number it is possible to determine all the flow quantities
by use of the energy equation. This method, although set up
for the case of an expansion, may also be used iIn the case
of a compression as long as the disturbances remain small
and no finite discontinuitlies such as a shock occur.

In order to fully understand the geometrical meaning

of equation (60), it is convenlent to introduce two quantities:

(1) ql,the limiting velocity or the maximum velocity attain-
able by isentropically expanding the gas through a nozzle,
(2) 4., the critical veloclity or the velocity at which the
Mach number is unity. Then by writing (60) in terms of q,
and 44 it becomes evident that they are the limits of the
characteristic lines.

To obtain the necessary relations for Qe and ql,
consider flow from a tank at a pressure p, and a densilty
/% ,» being expanded isentropically through a nozzle. At the
critical velocity g=a=4q,. Then the energy equation (equa-

tion li) may be written as

R

Y=1 Y-1 pe
R
2 - 2Y B
Ea e 7
2 27 Ps (o%)

Q=

Y+ “e
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The velocity at any point, given by (equation 5)

~(5)T

attains its maximum value when p= 0, Therefore the limiting

2_2Y P
K Y- Ao

veloclity becomes

o i, pc
‘1& -
B 4 Po (62)
and inserting equation (61),
2 . Y+
e qc .
(63)

These relations (61 and 62) are constant since Po//9¢ is
constant in an isentropic process. Now using (62) in equation

(5), the result is
2 Y-
L)
q.} Pe |

Since the constant may be replaced by

7 Po
\ G

With the isentropic flow relation

(P)7 e B0

4°/q1° becomes
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™

a4 24 (Y=)M*-2
o * 2+ (Y-ymt

or

2
9. _ ,2,+-c"r-i)r4'
ql. (Y=1) ME

(6l4)

Equation (60) may be written in terms of sin~! in-
stead of cos™! and tan~! giving the following equation of
the characteristic lines.

s Tesnyim - T s (Y=1) (M) L
*6 = ? Sin | -y} Y= Sin ‘/2*(7_‘) ML-l-C.Oﬂl .

Now inserting q, and q, as given by relations (63) and (6l),

the equation of the characteristics becomes

(65)
It 18 clear thatlo

s} [T
O &|[Sin ,/u--,,-,;;. < |

O &« Sm.l l--l—zq' ,‘\ .

10Thaao relations also bear out the fact that the
characteristics do not exist for the case of subsonic flow.
If M were less than one, the value of the radical would no
longer be & real number, Therefore the equations become
meaningless.
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Therefore when the sin'l terms are eqral to thelr maximum
value of unlty, q must be equal to a4y since p = 0 by de-
finition of the limiting velocity and M—-—<, Likewise,when
the sin'l terms are equal to their minimum value of zero,

M must equal to unity and also by definition, q must equal
Q. Then equation (60) represents a curve which is confined
to the region between ql and qc.

When equation (60) is plotted in the hodograph plane
the result is an epicycloid with its origin on the circls,

q = 4,, (figure 6) and tangent to the circle g = gq;. There
will be & corresponding curve for every value of the constant
which determines the position of the origin of the curve on
the q = qc cirecle.

These curves are constructed by first constructing
the circles qQ=q, and q =:q1 in the hodograph plane. Then
by fixing the value of the constant the origin in determined.
A circle with diameter (ql— qc) is made tangent to the q=gq,
circle at the origin and by rolling the (qy- q,) circle a-
round the gq = qc circle, two epicycloids are generated. The
two possible directions of roll correspond to the plus and
minus values of 6 in equation (60). The minus represent-
ing the expansion, and the positive the compression. By
repeating this process for various values of the constant
two families of curves are generated, there being two curves

for every constant chosen. These curves are shown in figure 7.
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FIGURE 6, GONSTRUCTION OF CHARACTERISTIC
DIAGRAM
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For every value of q in the region qc to g, there are
two curves which are symmetrical about the veloclty vector
passing through the point P, and are inclined at the angle
/A to the vector. In order to determine the epicycloid
curve for a given charscteristic family it is necessary to

return to equation (55).

Prom equation (55a), the first characteristic 1s,

) 7o-(22)

and
d -
(2}, (o)1

Likewise, from equation (55b)

dy dV)=-l
dx)z du \
The above relations require that the tangent to the epicycloid
of one family must be perpendicular to the characteristic
of the other. Therefore, the tangent to the characteristic
/? in the physical (xy) plene must be parallel to the
normal to epicycloid 2 at the point P. From this condition
it is possible to determine the correct family of epicycloids

for each family of characteristics.
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The epicycloid curves (figure 7) may be used to
graphically determine the characteristics in the physical
plane and also for the numerical calculations. A practical

example of such calcilations is shown in the appendix.
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OBLIQUE SHOCK FLOW

Introduction. In the section orn the method of charac-

teristics it was stated that the method could be applied to
the case of a compression as well as &n expansion, &8s long as
the disturbances remain small. When these disturbances are
small, the physical changes of the flow take place along the
Mach lines and the enthalpy remains constanf; that 1s, the
process 1s isentropic. However, when the disturbances become
larger and the Mach lines converge to form a finite disconti-
nuity (figure 8) or shock wave, the enthalpy no longer remains
constant and the process is not isentropic. Therefore, 1t is
in order to arrive at a solution to such a flow condition. It
is important to note that although the method of characteris-
tics 1s not applicable through & shock, it is still of great
importance since the flow on elther side of the shock wave

1s isentropic. The following section 1s devoted to the solu-
tion of oblique shock flow.

Oblique Shock Equations. Assume now that there is a

finite disturbance in a steady uniform stream, moving at a
supersonic velocity, so that a discontinuity or shock wave

is produced (figure 9). Let q be the velocity, with components
u and v, and the subscripts 1 and 2 denote conditions in
front and to the rear of the shock wave S, respectively.
Writing the continuity equation for the flow normal to S

gives
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Mach
lines
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FIGURE 8, COMPRESSION OF A SUPERSONIC FLOW



Shock front, S

qcos B qsin B
B
L
/ q
BTN AR S RN

FIGURE 9, OBLIQUE

SHOCK FLOW

q,cos (P —6)
q,sin (P-6)

9



62

P (a.SmB) = 4 9, Sn(p-8) -
(66)

The momentum equation normal to 8 1is

)
Pl ol o (‘1. Sin p)z':__ Pa [qzsln (p-eJ] + Fz(‘67)

and parallel to S

2 2
A9 SnPCesB=29, Sin(p-8)Ces (B-6),
(68)
since the pressure gradient parallel to S 1s zero. By use of

equation (66) 1t can be seen from equation (68) that the

velocities parallel to 3 are equal. Or,

q‘Casﬁ=qzCos (p-e)

Writing equation (L) between conditions 1 and 2,

CHE 2 T-1 P (69)
which in terms of qQ; and Q becomes
2
(=1.5m#)+ Y P_ YSn-0)_ o+ B
& vl A ¢ ! sz)

Dividing equation (68) by (66) gives

q, Cos P = 9, Co:(p"e) "
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which upon expanding and substituting for sin @ and cos®

from figure 9, becomes

q,Cos 3 = 9, Cosf Cos e + q_zﬁmp Sin6

=LL1COSP+V25U\§.

Therefore,
tan p= S -Ua
Va
or

- (UL-Uz)Cos P
V& B Sin ﬁ | (11)

Equations (66) through (71) are the squations of ob-
lique shock flow. Inspection of these equations shows that
when any two of the parameters are known, all flow Qquantities

are completely determined,

Solution of the Equations: Equations of Rankine and
Hugoniot. Solution of the equations above depends on the par-
ameters which are of most interest. One useful relation 1is
the relation of the pressure to the density.

In order to arrive at this relation, first divide (67)
by (66). The result is

P C« Sin (B
qasmp +/0‘q,51np - qa' ° (P e)+ Pzi?Sm(P‘e)



ol

or

) R

SnB-q,Sn(p-6) = -
1,5F "4, P fod,Sn(p-8) A 9,Snp

Now multiplying by (q; sinf + q, sin(P - 0)),

q,Snp + [qz Sin (p-—e)] y

= 1. P, s'"ﬁ . _*__PgL — P - QzRSlH(p"e) ;
Pz ﬂzsln(p-e) PZ P. A 9 Sin )

and by use of equation (66) this becomes

2
(q,Sin )2.1_ Sin(p-0) o | +._P;..._EL..._PL
9 B 9. p £ T T,

| |
—1 - —_———\ ,
Substituting (72) in (70),

)+ (5-2)

and dividing by Py and collecting the terms containing
pz/pl, this equation becomes

Pal RY _lray _\Y__ U
R R B RO b
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Which when solved for p,/p; glves

AN
p2 Y=} p{
P| = | _._f% ’
‘f—l i (73)

r+i P
—+ |
_’_%_. Y- p, ‘
Ve T*I P
-1 P (71)

Equations (73) eand (7L) are the equations of Rankine
and Hugoniot and give ratio of the pressure or density be-
fore and after the shock in terms of the other.

Shock Polars. Since two of the parameters must be

known before all flow guantities are determined, the solutiocn
of oblique shock flow lends itself nicely to graphical
means. Therefore there are a number of curves, plotted by
holding one parameter constant, which are very useful for
the solution of oblique shock waves.
The first of these curves is & plot of the wave angle,
ﬂ versus the deflection angle 8, with Ml held constant. By

use of equation (66), (67) may be written as

R 2 2
- =Rl sintp - A= e o
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Pz'P.=/0, q_lem?'ﬁ (l"z 3

251:’12 = Fe= P, ‘
9, ﬁ P‘(|_2) (75)

Substitution of equation (74) in (75) produces,

2g 2 _ (Y+O P+ (Y- P
9, £ 5 7

or

-_(__}1 4 (P.—PR)

2 2
9., S p= '
SO ¢ (76)

From equation (66)

= qZSm(ﬁ)“e) uz‘S.n(ﬁ—B)
-/52. - Cl.Smﬁ N L_L‘ﬁmpCose

(77)

But from equation (71)

uw- U.z
tan p= 22
P~ —w =
and from figure §

te= U2
co Vz
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Therefore,
tanf - QiU
cot O U,
and
u W.cotB

2  tan p+cot9
Substituting this expression in (77),

A_ cotB Sin(f-6)
2, Snpces6(tanp+cots)

= Cot Sin (p-6) .

Cos rp-e)
Then
|— A - sinB )
~s SinPCos (B-6) (78)

Now subatituting (78) in (75),
P, - P, 2 .‘SmﬁSIHQ

2, A Cos(ﬁ—ﬁ]

(79)

and combining (79) and (76),

2 2g _ a2 yel 2 Sinfp Sin6
q SP= A+ A e

Introducing the Mach number this becomes,



ML.' Sin? =

|+ Y+l Mz SnpP SnB
2 \ Cost-e)

(80)
Equation (80) gives the variation of B with e.

These ourves are shown in figure 10 for various Mach num-
bers.

Another useful curve may be obtained by substitut-
ing equation (75) in (75). This gives

LL,IStnzp= a::‘f' -Y{\ u;"szﬁ (\—- ,0.) .
(81)

A third curve may be obtained by combining equation
(81) with (T74), producing

2 2 ::t' x :.
M2SidR= 1+ TEL M sn“p || - : )
2 Y+ P2 + |
|_ -T—‘ Pl -

or

-1 P2
Y+l ) (22—
M?szﬁ= \+ -7—42.1 M?Siﬂzﬁ {'Y"l )( )
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Equation (81) permits a graph of ﬁ versus e%% and
(82) gives B versus ps/py for various free stream llach
numbers. These equations are shown in figures 11 and 12
respectively. In addition to the graphs of equations (80),
(81), and (82), a relation between pe/p1 and & may be ob-
tained by using equations (82) and (80) in parametric form.
These curves are shown in figure 13.

The arrangements given above of the oblique shock
equations are only four of the many possible combinations.
The ones given are essentially the same equations obtained
by Laitonell although they &re derived and plotted in a
different manner; the preference of the two groups depend-
ing on the value of the parameters given.

This section would not be complete without pre-
senting the classical shock polar first introduced by
Busemannl2, The equation of this polar may be obtained by

first substituting equation (66) in (67). This gives,

Po+oqfsinp=
b +auU. Sinp | (Ul +vg) Sin(p-8).

1lraitone, E. V., "Exact and Approximate Solutions of
Two Dimensional Oblique Shock Flow," Journal of the Aero-
nautical Sciences, 14:25, January, 19L7.

1l23usemann, A., "Gasdynamik," Handbuch der Zxperimen-
tal physik, Vol. IV, Akademische Verlagsgesllschaft, Leipzig,
1931.
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Expanding sin (ﬂ - ©) and substituting from figure 9 for

sin © and cos © gives,

Esuqﬁ-— c:aa:ﬂi'

A Va
Sn fp-a} = 2k P
‘/u:-s-vz‘ { Uy + vzI

Substituting the above in equation (83),
P\— Pl. =/4L‘L,Smﬁ [c uz'u-.]s:nﬁ—vzcag ﬁ]

and then substituting equation (71) for Vs equation (83)

beocomesa

P. - pz =/0, W, [quIﬂzp -, Slnzﬂ -( U.,—L.L,_) COszﬁ]
D= pw (U sinp +U,Cos?B- U Sin"B-W Cas’B )

or

P1=P| */4 LL\<L’L'-L'L7-) .
(84)

Writing equation (66) using the expression for sin (P’ -8),
pu Snp=4 (U, Sinp-v,Cosp )

Now with equation (71) this becomes

Al (Uirty) = 4 Uy (W)= 4 - (s
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Dividing equation (84) by (85) gives

B = P +
2 2 -
pz (uzu'l-uz_vz ) folun (U..-LL-,_)
or
pl P Pz LL'(L'L'-LLJ) “
P A Uy -u,2-\,? ) 2)

(86)

Now by writing equation (4) between condition 1 and
the point where q/a =1,
2 2
2
A Y- £ 2 Y-

and calling this value of &, a critical, the above equation

becomes
| 2 T KO Y+ 2
—q, +— — = =1
21 T35 2(v-) ©
(87)
Then equation (69), with use of (87), becomes
2 2
L2 *+V, +1 2
YatVe v R v ac - (88)

2 T-1 4, 2(7-0
Now, by using the three equations, (86, 87, 88), P1»
P, A » and /92 may be eliminated, leaving the equation of
the shock polar.
In order to eliminate these quantities, first substitute
equation (86) in (87), giving
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P2 —
¥
[<7+n aZ-(v-n u,_" ] (I-L.Lkz‘u-:""zz) L —wv?
2 2 2 °
2YWUL, (U -WUy)

(89)
Then by substituting (89) in (88) the following equation is

obtalined.

2= (v+nal-(y-oudz _
2 | 2y 27w, (w-UW,)

[(Y+ NaZ+(v+0 u.,_u.,] (W,=Wy)
27U,

-

2

Which when solved for v, gives

2 2
o= (U-uy) - N
:;1;7' W, -'LL‘LL2_+'21°

(90)

Now introducing the dimansionlons velocities,

LA.*.-:-E'- s V*':-—.Y-.
aSee e

equation (90) becomes finally, the equation of the shock
polar in the hodograph plane (equation 91).



F

.:;.2_ LA.EE.— LL.;(. Z w..l U:Z. —-‘ ¢
\{2 B ( ' z') 2 Y FL |
N e

(91)

When equation (91) 1s plotted for a given lach number
the result is the curve shown in figure 1, and has a double

point at u., equal u_.. Of the complete curve, only the part

Iy 2

corresponding to (u2)2-+ (VZ)Z < q, represents actual shock
transitions. With use of thils part of the curve 1t 1is possible
to determine graphically the flow quantities in the follow-
ing way:

The velocity vector q2, when drawn from the origin
will have its tip on the curve (point P, figure 1l). It will
be inclined at the angle & to the w* axis and a line drawn
perpendicular to line AP through the origin will be at the
angle 'ﬁ to the u% axls. When the tip of q2 colncildes with
point A, ql= q;z. This corresponds to the flow passing through
a Mach wave when 8 equals zero. As 6 1increases there are two
solutions to equation (91) (point P and B ) until a4, becomes
tangent to the curve. When two solutions exist, point P corres-
ponds to the weak shock transition which actually occurs in
the physical problem, and point B represents the strong shock
transition which very seldom occurs. When 8 increases beyond

the value at which A, 1s tangent to the curve, the shock be-
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comes detached; point C corresponding to the normal shock
condition.

The velocities before and after, normal to the shock
are represented by the vectors DA and PD respectively, and

the velocitles psarallel to the shock by 0D.
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THE METHOD OF SMALL PERTURBATIONS

Assumptions. The approximations mentioned in the hodo-

graph discussion were based on the hypothesis that the free
stream Mach number was lower enough that the compressible
flow pattern differed little from the incompressible pattern.
Now if the assumption is made that the perturbation or dis-
turbance velocitles due to the introduction of a body into
the stream (which may have a large Mach number ) are vanish-
ingly small, the equations may be linearized and solved.

In order to develop an approximate theory on the above

assumption, the velocities at any point may be written as

= 1
u ul+u

v=avy!l, (92)

Where u' and v'! are the perturbation velocities. Now if the

assumption that

i, %41 (93)
1s made, then the higher orders of u'/u; may be neglected.
The assumption is also made that the derivatives of
u' and v'!' are small. Here however, there.must be some refer-
ence to give meaning to the word small, In the case of the
velocities, thls reference was the undisturbed velocity uj.
In the case of the derivatives, reference will be made to

some characteristic length, such as the thickness, since the
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rate of change of the velocitles 1s dependent on the shape
of the body introduced into the stream. This length willl be

denoted by 7 . Now the assumption is made that

u, = u'_/1~={u'/u1)(u1/1')‘-‘- 1 (94)

Equations (93) and (9ly) are the assumptions upon which
the approximate theory will be based; the degree of approxi-
mation depending on the magnitude of the equations (93) and
(94) .

Approximate Equations. Using equations (92), equation

(lt3) may be written as

2 i

2 / 2 2
a _fLL‘-l-L'L) / [a _V ’
w2 u, 2 (Rl o T

- (M:W)V [(u.,-y-u')..j = Vx'} =0,

Which by equations (93) and (9l), becomes

2 2
(_a —l)u. +2 =0
(')

L&Iz x ]
or
o2 Py, =0
(-—a_"’-)q;”-‘— EI (95)
Where is defined as

4’,‘:&’ ¢H=V' .
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The speed of sound, &, is given by equation (l) as

v-| e 'y 4 R
Fealo T (uaa)hutul

which becomes

2 . 2 /
a=a—(r-nNuu A
(96)
Substituting equation (96) in (95) gives

iy 4., =0
(l- art-(v-u W' ) ¢”‘+ ek

Iz. l
| = = P x +'¢‘-)'j=o

or

In terms of the Mach number this becomes

Equation (97) is the equation of the potential funo-
tion based on the assumptions of equations (93) and (94).
This equation is linear and may be handled by ordinary methods.
Press oef 5 By the above approximations and
by the definition of AL , equations (51) become

l = tin/u.
M= |

=

= tan AL . (98)

o~ =
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Then equations (57) become

du -t getan M, .

The pressure coefficient is defined as
ap _ Pudu
I 2 2
AW A%

Ce=

Or

_ 4 2tanp29 5 .
CP""' A AE o

By use of the approximations, {4 LLl-";ﬁM-, and with equations

(98) the pressure coeficient becomes

240

=t — .
CF’ VAl
(99)

Where 408 1s the flow deviation in radians, relative to the
free stream. Equation (99) is the so-called "linear theory"

used extensively in airfoil work.
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CONCLUSIONS

It is important to remember that every method present-
ed deals exclusively wilth the solution of the non-linear
equations (8). They were first solved approximately by the
hodograph transformation, later by the method of characteris-
tics, and finally by the method of smell perturbations. On
the basis of the hypotheses and assumptions of each method,
they may be summarized by the following statements,

l. The hodograph transformation is based on the hypo-
thesis that the flow is subsonlic and 1isentroplc. By applying
the Chaplygin or Karman-Tsien approximation to the transform-
ed equations, the problem of subsonic compressible flow about
an arbitrary body may be readily solved. The solutions based
on these approximations agree very closely with experimental
results up until the critical Mach number is reached, then the
conditions of the hypotheslis are no longer met.

2, The method of characteristics is based on the hypo-
thesis that the flow is completely supersonic and isentropic.
Although the latter may be violated, as in the case of weak
shocks, without greatly affecting the accuracy of the final
results, the former must be fulfilled since the characteris-
tic lines do not exist for the case of subsonic flow.

The outstanding feature of this method is that it per-
mits a seml-graphical analysis of the flow. It also gives an

exact solution for an isentroplic compression or expansion and
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a very close approximation for small compressions when the
flow is no longer isentropic.

3. The method of small perturbation is based on the
assumptions that the flow is isentropic and that the pertur-
bation velocities perpendicular to the direction of the free
stream due to the presence of a body are small enough to be
neglected. With the above assumptions the non-linear equations
become approximate linear equations. These equatlons may be
used to give a good first approximation, but in no case is
the solution exact.

i The problem of two dimensional shock flow may be
solved exactly by use of the conservation of mass and momentum
equations and Bernoulli's equation. The resulting system of
equations involves five parameters. Therefore,the flow is
completely determined when any two of the parameters are
given.

5. No solution is, in itself, complete for all prob-
lems. Therefore, the solution to be used dependslon the prob-

lem and the accuracy required.
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APPLICATION OF THE KARMAN-TSIEN METHOD TO THE
FLOW OVER CIRCULAR CYLINDERS

As mentioned in the discussion on the Karman-Tsien
method, when transforming the incompressible flow field to
the compressible field, the resulting shape of the body may
be pre-determined by equation (36). However the correction
factor A 1s correct only for one Mach number. Therefore a
single correction may be used accurately only in two cases:
(1) when the Mach number of the undisturbed stream is low or,
(2) when the perturbation velocities due to the body are small
when compared to the free stream velocity. Most pfactical
- cases will lie somewhere between the two above cases. Then
by using only a single correction, the transformed shape will
be slightly distorted.

Also 1t is interesting to note that the correction
factors A increases very rapidly near M = 1 (figure 3); or
in effect, the distortion becomes increasingly large as the
free stream lach number approaches the value of the critical
Mach number unless the perturbation velocities are very small.

Kaplanl3 has shown that the ratio of the maximum

velocity over the body to the free stream velocity is

13Kaplan, C.,"Two Dimensional Subsonic Compressible
Flow Past Elliptic Cylinders," National Advisory Committee
for Aeronautics Technical Report No, 0205, 1930, p5.
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A max = 2 \ +_'Y-l %:

—— — ]

9. T+ M2 Y+

(100)
Since for the circular cylinder Qnax OCCUTS at © ==90°, the

ratio q,.,/q becomes

Amax _  Tafiaax | = A

=R W1 -x (VAN )E
2(-2)
| — <% (101)

The velocity at any point on the cylinder in an incompressible

flow being given by

W =2W sn& -

where © is the angle subtented by the point. Zero correspond-
ing to the leading edge. Substituting (101) in (100), and

solving for M, produces,

2-2X =[Z \ 4 Y-

I—4x  [Y+! ME v+
M= 0.402 .

Pressure Distribution at M 0.l41. This method will now

be applied to the problem of the circular cylinder at a Mach
number of 0.l1.
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Imai and Hasimatoll found that if an ellipse of thickness

ratio 0.9165 was transformed, the resultant shape was very

nearly a perfect circle. This ellipse 1s close to a circle

itself and therefore the distortion is very small. For the

| purpose of this problem this distortion will be neglected.
First the correction factor A is found from figure

3 to be 0.046. Then using the relation for the velocity at

any point on the c¢ylinder in the incompressible case clted

above, and using equation (38), the pressure coefficient is

|— (& Sin e)l

| - .08 (25m0) 2

C‘F= 1.0 46
(102)

The values are then computed for various stations. These
are shown in table II and figure 15.

It is interesting to note that the theoretical curve
compares very favorably with the experimental curve obtained
by or1inl> although it is in the region of the critical Mach
number. This is due to the fact that at the point at which
M =1 first occurs, the perturbation velocities become very

small compared to M Therefore it appears that the regults

1.

Uitma1, 1., and Hasimoto, H. "Application of the WKB
Method to the Flow of a Compressible Fluid," Journal of Mathe-
matics and Physics, 28:173, 1950,

150r1in, J. W., N. J. Linder, and J.G. Bitterly, "Ap-
plication of the Analogy Between Water Flow with a Free Surface
and Two Dimensional Compressible Gas Flow," National Advisory
Committee for Aeronautics Technical Note No.1185, 19L7.
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TABLE I
Pressure distribution about circular cylinder
M=0.41
@ |-2sin’e |i-aesine)’| o,
Q 1.00C0 1000 1046
10 0.652 0.994 0.686
20 0.312 0.978 0.334
30 0 0.954 0
40 -0.286 0.924 -0.324
50 -0.532 0.892 -0.623
60 -0.732 0.862 -0.888
70 -0.880 0.837 -1.099
80 -0.920 Q.82 -1.23%
90 -1.000 0.816 -1.28I

9%
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are not to much in error due to the neglect of the dis-
tortion caused by the transformation.

Pressure Distribution.at M 0.50. By repeating the

above process for a circular cylinder at a Mach number of
0.50, figure 16 and table III were obtained. The purpose
of this pressure distribution is to show the effect of the
critical Mach number. Examination of figure 16 will show
that at the high values of 6, where the critical velocity
is reached, the theoretical curve becomes more in error

when compared to experimental results. This 1s due to the
fact that the hypothesis, upon which this method is based,

are no longer applicable to the problem.
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Pressure distribution about circular cylinder

TABLE IO

M=0.50

2] -25in28 |- A@Sin®)" Cp

0 1000 1,000 L.O72
10 0652 099 0.705
20 0.312 0966 | 0.346
30 0 0928 0

40 -0.286 0.881 | -0.348
50 -0.532 0.831 -0.686
60 | -0732 0.784 | -1.00I
70 -0.880 0.746 | -1.265
80 -0.970 0.72! -1.442
90 -1.000 0.712 ~1.505

97
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APPLICATION OF THE CHARACTERISTICS AND
SHOCK DIAGRAMS

In order to show the principle of the application of
the characteristics and shock diagrams, they will be employed
to solve the basic problem of the veloclty and pressure dis-
tribution about & typicel diamond shaped supersonic airfoil
at an angle of attack of two degrees and at a Mach number of
two. The geometrical properties of the airfoll are shown in
figure 1l7a.

Velocity Distribution. The characteristics diagram,

figure 7, 1s used for this problem In the followlng manner.

1. From equation (6l), ql/qL is found to be 0.667
since M = 2. Therefore the characteristics diagram is
oriented so that an epicycloid curve coincides with the point
q;/a;=0.667 on the 8=20° line (figure 17b). Considering now
the region 2 and assuming that no finite discontinuities occur,
4p/q;, may be found by constructing & line at an angle 8 =5°
to the 8 20° line. The line OA then represents do,. From this
construction, qz/qL is found to be 0.630.

2. Repeat this process for regions 3 and l. , noting
that the angle of the region 3 is measured relative to the

free stream. The veloclties gq. and qL are represented by the
T

3
OB and 0C respectively. The values are: q3/qL-o.721, and

qL;/ q = 0.651.
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M=2

p=21I7 Ibs /2
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Fig. I7a

Fig. I7b

FIGURE 17, GEOMETRICAL GCHARACTERISTICS OF
DIAMOND AIRFOIL AND EPICYCLOID
GURVE
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3, Then using equation (6lL), the respective Mach

numbers are

M2= 1,82

M3=2.33

M =1.92 ’
N 9

Pressure Distribution. Using the definition of the

pressure coefficient,

c i p = Pl
PT T g%
zP3
and writing it in terms of the Mach number,
C.o 2P
P ypm*
2

the pressure distribution may now be found using figure 13
and the isentropic relations.
Pressures in reglons 2 and l are found from figure 13
to be
pg/pl= 1:27
ph/p:L =1.09

From the isentropic relation,

X
) ‘*_ _1 Fﬂ\ Y=
PP, =
i |
-1

P3/P1=.O.59h .
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The 1sentropic relation was used in this case since the flow
deviation angle, ®, is minus and an expansion occurs. Taking

p, = 2117 1bs/ sq ft (standard air ), then

p, = 2731 psf P,- Py = 61l
P3=-1257 psf Py- Py =-860
p), = 2308 psf P~ P =191 .

Finally substituting these in the equation for the pressure
coefficient gives |

Cpo = 0.10L

Cp3 =2-0.145

Gph = 0,032

As a comparison, the pressure coefficlents will also
be found by equation (99). Substituting the values of 4 8
given below in equation (99)
ae, 5°= 0,087 radians
-9°= -0.157 "
a8,~ 5
2= 0.035 "
-
gives
Cp2 = 0,101
cp3 — -O » 181
CP}-I- = 0,040 =

The distributions found by both methods are shown in
figure 18. By integrating these pressure diagrams the 1lift

coefficient, Cl, may be obtained. They are
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Characteristics and shock diagram method, Cl = 0.050

Cl = 0.076

y 0= 0.045, some
idea is obtained as to the degree of approximation involved
in both methods.

Small perturbation method,

When compared with the experimental value16

16

Ferri, A., Elements of Aerodynamics of Supersonic
Flows, (New York: The MacMillan Co., 1949), pliT.




