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AN INVESTIGATION OP SEVERAL SOLUTIONS 

OF THE EQUATIONS OP COMPRESSIBLE FLUID FLOW 

INTRODUCTION 

The equations of motion of a compressible fluid, as 

will be seen later, are non-linear differential equations. 

Since there is no general method for solving such equations, 

the solution depends on the equation and the boundary condi­

tions. In the supersonic case, where the non-linear equation 

of the velocity potential is of the hyperbolic type, the 

problem may be solved by the method of characteristics. In 

the subsonic case however, the characteristics do not exist, 

therefore some other approach must be made« One such approach 

is to require that the perturbation or disturbance velocities, 

due to the presence of a body in a uniform stream, be small. 

The equations then become linear and the solution may be 

had by ordinary means. In all pratical cases the solutions 

based on this method are approximate. However, in many cases 

the results are accurate enough for engineering work. 

Chaplyginl and Molenbroek^ obtained a solution to the 

ichaplygin, S. H., "On Gas Jets," National Advisory 
Committee for Aeronautics Technical Memorandum No. 1063, 19^4* 

2Molenbroek, P.,"Uber einige Bewegungen eines Gases mit 
Annahame eines Geschwindigkeitspotential," Archiv. d. Math, u. 
Phys.,(2), 9:157, 1890. 
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subsonic problem by transforming the equations from the physi­

cal plane to the "hodograph" plane in which q, the magnitude 

of the velocity, and 9, the angle between the velocity and 

the positive x axis, are used as the independent variables, 

The equations of motion then become linear. The difficulty 

of this method is to obtain a set of boundary conditions in 

the hodograph plane which will give a complete solution. 
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FUNDAMEIJTAL EQUATIONS 

Introduction. Solution of the problem of flow from 

infinity of a compressible fluid past an arbitrary body re­

quires that the relation between the stream function and the 

velocity potential be known. In addition, the equations of 

the conservation of mass and momentum and certain thermodynamic 

relations are useful in the analysis of compressible fluid 

dynamics. These relations are presented in the following 

section. 

Conservation of Maaa. Consider the control volume V, 

with volume Sx6y£z (figure 1),in a flow of velocity q with 

components u, v, and w, in the x, y, and z directions respec­

tively. The mass flow through the side normal to the x axis 

and nearest the origin is 

{0a 6z €y 

and the flow through the other side normal to the x axis 

is 

Sz fy# 

Where P is the mass density of the fluid. Therefore the 

total mass increase per unit time parallel to the x axis is 

fa Sz £y - fa Sz Sy - ff>*< ) x S* $y Sz 

-ff*)* £x S<j lz . 

j*«> + • £ * * ; * s* 



k 

V+6V 

P +6D 

Y 

FIGURE I , VELOCITIES AND FORCES ON A FLUID 

ELEMENT 
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Likewise the mass increase per unit time parallel to the y 

and z axis is 

Y>v)y Sx \z ^ and ~"fs**')t Sx Sz S^ 

respectively. Then the total increase for the control volume 

v per unit time is 

f*)« + ffv)^ + (ft")* £* icj &z 

But the total increase per unit time is also 

/Ox Sx Sy Si 

Therefore the continuity equation becomes 

^ ^ + fcv)^ + f/*")z + /* = 0 

which for a steady two dimensional flow reduces to 

S/?**)* + //**>} " & (1) 

Conservation of Momentum. Consider again the volume 

V in the moving stream. The acceleration in the x direction 

is 

</f *4t 3 < ? y *<** e 

- **ux •+ vc< y + Wtfz + * t 



and 

^ ^ = & ^/M + V W u + V / W Z + / / t 

in the y and z directions. In the absence of external forces, 

the only force acting on the volume V is the pressure force, 

Prom figure 1 the resultant force in the x direction is 

-p« f* h £z 
i 

where p is the pressure per unit area, in the y and z direc­

tions are 

-P,j Sx &j 52 

- pz Sx S^ *7 . 

Then applying Newton's second law of motion, 

^ S * Sij Sz ( Uu , + vu^ + w u , + u t ) * - p K &K Svj Si , 

or 

u u x + v u ^ + w u z + u t - - -̂ p* 

u v x + vv^ + w v z + v t = - " y P i j 

LLWX ^ V W j t W W t + W t ~ ~ ^ ~ P z 
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These are the well known Eulerian equations of motion. For a 

steady two dimensional flow they are simply 

u a x + v a , =-^ Px 

1 n 

J f 3 (2) 

Integration of equation (2) gives Bernoulli's equation 

- ^ +--£• = const, 
B /* (3) 

which will be used later in the above one dimensional form, 

Thermodynamic Relations. When considering the Bernoulli 

equation in one dimensional form it is sometime useful to 

write it in the form 
£ 

AA- + c B T = const. 
Z p 

where cp is the specific heat at constant pressure. The above 

expression is true since the volume remains constant in one 

dimensional flow. Prom the Charles-Boyle gas law 

T = — i 
^fCf-CyJ 

and the Bernoulli equation becomes 

l 
U + j_ r̂ cons t 
2 c p - c y ^ 
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or 
_U_2 + _J^_ JF_ -r COhit 

z t-\ f ' 
(k) 

where c is the sepcific heat at constant volume and -y is 

c„/c • p' v 

Nov/ if the requirement that the process be isentropic 

is introduced, that is 

y 
p = coi**t • f 

or 
y 

P. =(JL\ 

where the subscript o denotes the conditions at rest, y# be-

comes _\ 
y 

Now substituting this expression for J& in equation (I|.) gives 

the following relation which becomes useful in the discussion 

of the characteristics method, 

u 2
+ -i P /P \'Y 

> (JP_) 

* „ o .D >(r-'V-r 
= CO/\*t 

2 T-< />. I?. I 
(5) 

Writing equation (1|_) between any point and the stag-
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nation point gives 

-£* + JL P - P> I 
r r° (6) 

If the speed of sound, a, is given by 

*'- T>? . 
and the Mach number, M, is defined as the ratio of the velocity 

to the local speed of sound, then equation (6) becomes 

nV+ii* = 2_̂  
t-1 -y-i 

¥«'• ' = (^ ) \ 
Since a0

2/a2 — T0/T, it follows that 

The isentropic law may also be written in the form3 

y 

* - < £ ) - f f o V h " ' . 
Therefore the following relations for isentropic flow may be 

obtained: 

£« = , + a t i M * 
T Z 

3Liepmann, H. W., and A. E. Puckett, Aerodynamica of a 
Compressible Fluid, (New York: John Wiley and Sons, 19I4J),p2b, 
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Velocity Potential and Stream Function. If the condition 

of irrotationality is satisfied, that is 

vi-u^o f 

(two dimensional flow) then there exists a function 9 , such 

that 

which satisfies the condition of irrotationality. This function 

$ is the so-called velocity potential. 

Considering equation (1) it is clear that the equation 

is satisfied if there exists a function ̂ J? , such that 

• 

This function V is the stream function. 

Writing the expression for V in a slightly different 

form so that 3? and V are in the same units and combining 

the two, equations (8) are obtained. 

A v „ = *x * u. 
/ * * 

/* (8) 

These are the relations between the velocity potential and 

the stream function for two dimensional flow. 

Investigation of equations (8) will show that they are 

non-linear in the dependent variables. It is this fact which 
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presents the difficulty since there is as yet no general 

treatment known for such equations. In the case of the flow 

velocity everywhere greater than the local speed of sound 

the solution may be handled by the method of characteristics. 

Since, as will be shown later, the equations of the charac­

teristic lines do not exist in the case of completely sub­

sonic flow, the solution is accomplished by the use of approxi­

mations which linearize the equations, or by transforming the 

equations into the hodograph plane where they become exact 

linear equations. In the hodograph plane the velocity q and 

the direction of the velocity. 9, are taken to be the indepen­

dent variables, 
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THE HODOGRAPH TRANSFORMATION 

Introduction. The fundamental equations of the stream 

function and velocity potential (equations 8) are trans­

formed into exact linear equations with q and 0 as the in­

dependent variables. These equations are then simplified by 

the introduction of the Mach number and the differential 

operator dto . Solution of the final simplified equations is 

then carried out by the use of the approximations of Chaplygin 

and Karman-Tsien. 

In order to apply these solutions to a specific prob­

lem, a point transformation is found which transforms a known 

incompressible flow pattern into the desired compressible flow 

pattern. 

Basic Equations. As mentioned before, the non-linear 

equations (8) may be transformed Into exact linear equations 

by the introduction of two new variables: q, the absolute 

magnitude of the velocity, and 9, the angle the velocity vector 

makes with the positive x axis. These are refered to as the 

hodograph variables. 

To show this, let 4s and V be functions of the com-

plex variable ^ + l - ^ V , then 
r 

d$+L^¥= (*Kd* + V^i) 4-'f(V«d*+TV0 • 

Substituting equations (8) and simplifying gives, 
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d^ + i A s i y - f U - l K + v d ^ ) +iALAV4K + £UciUi) 
p r v 'O <o 

^=>(U - I v ) d * -f- ( V - f - i u ) d j 

«fu-iv) HK + idy; . 

flow introducing the new variables q and 9, 

4 i© 
<=t 4 + i *dV - <̂ e dz 

/ * 

or 

, A d z = ( d 4 + i ^ H Y ) ^ e 
ie 

(9) 

where Z is the complex variable x-t-ly. 

Now considering q and 6 the independent variables and 

assuming J0 a single valued funotlon of 4 only, then from 

equation (9) it follows that 

and 

Also 

So 

/ . 

^ma=e 91 
16 L 1 * + L 4AZ52 V 

L 1 ' 
9 

d«l 

+ e 
is - 1 4 -f J A. W 



A 

and 

Z »-L leli*,-el#-£< 

^ 

L 

I© 

**e + l-V 

Since by continuity, ZQQ and Z q Q are equal, then 

_.L * + ; ̂ XgaJ y = i i -Ay 

Equating r e a l and imaginaries 

e 1 o i l T 

(10) 

Equations (10) are the hodograph equations derived 

by the method first used by Molenbroekr,, These equations are 

linear in the dependent variables. 

Although equations (10) are linear, the solution is 

rather involved. Bers and Gelbert^ developed a new L-mono­

genic function theory, analogous to the analytic function 

theory, which may be used to obtain a rigorous solution to 

equations of the form 

kMo lenbroek, P., op. cit. 

^Bers, Lipman, and Gelbert, Abe, "On a Glass of 
Differential Equations in Mechanics of Continua," Quarterly 
of Applied Mathematics, 1:168, July, 19i|3. 
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But for many problems approximations may be made which 

greatly simplify the solution and yet do not effect the 

results enough to make them invalid for engineering use. 

Simplification of Basic Equations. First consider 

Euler's equation for the case of one dimensional flow. 

ctdq. + - ^ = 0 

This may be written as 

*-*+J££-°. 4» • 
and since the sonic velocity, a, is 

3L = dp 

then 

or 

^ + ^ a l = ° 

if - A o -__i* A 

— - M — 
4 (ii) 
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where M is the Maoh number. 

Now turning to equation (10) and performing the in­

dicated differentiation, the result is 

d = q -±2 & + J. d(V) V 

= __!_*?_ A sLf. v 
<1 /» ^ 2 d q e * 

Substituting relation (11) 

<J a __L^+An
Z y 

**- 1? + ̂  q *e 

f^-fi-m'^iy, . 

Than the hodograph equations (10) become 

, f'l-M*) £ V 

* - ' ^ v , . 
These equations may be simplified further by the in­

troduction of a new variable, OJ . Written in the differential 
* « * 

form, CO is defined by 

aco-Zi-w* ^ 
(13) 

With the use of equation (13), equations (12) become 

*-•-^•i- i-? V. 
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These are the final simplified hodograph equations* 

As mentioned before approximations may be made which greatly 

simplify the solution of these equations. A discussion of 

these approximations is now in order. 

The Chaplygln Approximation. Chaplygln in his discussion 

on gas Jets£ noticed that the factor £ Vl-M* differed 

little from unity for moderate subsonic speeds, 

To show the full meaning of this, let us look at the 

factor, which by using the lsentroplc relation may be written 

as 

^ V M ^ • ^ ^ (\ + V " a ; Y4T 

(15) 

whore 7 Is the ratio of the specific heats of the gas. 

Expanding equation (15), 

;*Vi-«* - (i + Jjf + cz—>%•*+...) 

= ( i + in* + <a- rm*_ M*_ t t K z e z A-

i« A / 
4 (|-V£iM%...j 

^Chaplygin, S. A., op* olt 
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Using the value of Y for air (I.I4.), the above series be­

comes 

3 
P r (16) 

i/|- M 2 = I - 0,3 M * -f -•• . 

P I * Then replacing -^ V ' •" ̂  by one in equations (II4.) the hodo-

graph equations become simply the Cauchy-Riemann relations. 

$ e = v w 
(17) 

Hence by inspection of equation (16) it can be seen that by 

using J5?V|-M as uni ty , one i s in r e a l i t y neglecting a l l 
1° 

powers of M higher than the first. That is, the incompressible 

and moderate subsonic compressible flow differ only by factors 

proportional to uh-. 

The Chaplygin approximation may also be interpreted as 

the use of a hypothetical gas having a "Y value of -1. This 

can be shown by the use of equation (15). Prom this equation 

it is seen that for ^ V j " " ^ to equal one when M is less 

than one, Y must equal -1. Then by using the isentropic 

relation 

P = Const 

and letting T = -1, the relation becomes 
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p /O = C o m ! . 

That is the isentrope is a straight line with the equation 

p 2 - p 3
r c(?z~i) (19) 

where C is the slope and the subscripts 2 and3 denote two 

different points on the curve. With the correct choice of C 

the line given by equation (18) may be made tangent to the 

true isentrope at some arbitrary point. A graphical repre­

sentation of this is shown in figure 2. 

Chaplygin used the straight line isentrope tangent to 

the true isentrope at the point corresponding to the stagnation 

condition of the fluid. That is, C must equal the slope of the 

true isentrope at the point /̂ > and p0. Therefore 

C = f •!_? ) = (41 Af. \ -A* *P l av u \4f> av 'a ° d(£> 

= -<?.* . 
(19) 

Now substituting (19) in (18), the equation of the straight 

line isentrope becomes 

P0~P =- a-ô o (ft -f) . (20) 
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r -r -

\ / — Po . Po 

\ 
N 

\ 
\ 

V\ 

\ s 

n 
9\ \ s 

P l ' 9\ 

\ 

V \ 
\ • • i \ • • i 

Chaplygin approximation 

Karman-Tsien approximation 

FIGURE 2, APPROXIMATIONS TO THE TRUE 

ISENTROPE 
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The Karman-Tsien Approximation* Like the Chaplygin 

approximation, the Karman-Tsien approximation is a straight 

line tangent to the true isentrope. Since the Chaplygin 

method is useful only for speeds up to about one-half the 

speed of sound, Karman suggested that if the point of tan-

gency were shifted from the stagnation condition to the un­

disturbed condition ( A ,p-,) the useful region of the straight 

line isentrope approximation could be greatly extended. This 

idea was developed jointly with Tsien? and later become the 

Karman-Tsien method used extensively in aeronautical work for 

the solution of problems involving compressible flow at sub­

sonic speeds. 

Because of the V - -1 inferred by the Karman-Tsien 

approximation, this method becomes less accurate near the 

critical Mach number; that is the Mach number at which the 

local Mach number first reaches one somewhere on the body im­

mersed in the stream. This will be brought out later in the 

application of this method to the problem of subsonic com­

pressible flow about a circular cylinder. 

Since the Chaplygin condition, given by the preceed-

ing section, holds true for the Karman-Tsien method, equations 

(17) may be used for this method also. 

'Tsien, H.S., "Two Dimensional Subsonic Plow of Com­
pressible Fluids," Journal of the Aeronautical Sciences, 6:399, 
August, 1939. 
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(21) 

Keeping in mind the fact that the straight line given 

by equation (18) is now tangent to the true isentrope at/, 

p (figure 2), the slope now becomes 

c = - *? /> , * 

Then equation (18) becomes 

P.-P«-aV.Y^,-^J • 
Now returning to equations (17)* 

§ * * Y " (17) 

it is seen that the complex variable c| + LV is an analytic 

function of OJ-L© . But for the convenience of calculation 

and for the purpose of showing the relation retween the bound­

ary conditions for incompressible and compressible flow, the 

physical and hodograph planes. They are defined by equations 

(22). 

U = Wcos B 

V= Wsm © 
Ui 

w =* «fl e 

(22) 

Where U and V are the components of the incompressible 
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velocity W. 

For incompressible flow, q -*• W, M - ^ 0 , and i-S-*~1. 

Then equations (12) become 

*w ~""w ̂ e 

§e= W Vv/ • (22) 

These may be written in terms of the variables of equations 

(22) as 

4>uUw = -^7<?.v (-V.) 

^ ( • V , ) S W Y U U W . 

Differentiating equations (22) and substituting in the above, 

«|ucos© = - ^ V . v f-Wcose) 

$.v C-Wcos e) * w Wu cos e 

or 

4>-v ="" ̂ u 
(2I4.) 

Let us now look at the corresponding hodograph equations 

for the Karman-Tsien method and for the incompressible condi­

tion (equations 17 and 23 respectively). Equations (23) may 



2*4-

be simplified by defining a new variable JCl , in the same 

way that the basic hodograph equations were simplified by the 

variable OJ • This variable XI is given by 

Si = log W 

or 

an-
aw 
W US) 

Substituting equation (2£) in (23) the result is 

oirL 
$w = 

# . e 

dW 
dW 
dn. 

V, e 

V-w 
Then it follows 

* • = * * • 

(26) 

Now by inspection of equations (17) and (26) it is seen that 

if Cl-co the compressible flow, approximated by the Karman-

Tsien method, and the incompressible flow will satisfy the 

same equations. Therefore the relation between W and q becomes 

dW 
W 

- ^ K 
dct 

rdW -
w 

- n d«i (27) 
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Bernoulli's equation Is given as 

* -•_!-_? * _* * + -li 

or 

**+JL - _*T +- l f 
a Y-I Y-» ^ 

Applying the Karman-Tslen approximation, Y = -1, 

-* * 2. * 

2 + -* * A? + 4 . 
2 -a ^ a 

Therefore 

and writing this between the stagnation condition and the 

local condition, 

-a 2 - «**- az 

*** - " * • (28) 
Substituting (28) in (27) gives 

(w w r /,_ q* di = r / *? ^i 

Integrating, 

r *;L 
j * v ^ 

M v = —, .» ** 

then 

^W--L, /"ALtJaESZ J +K 

v - * fa.Wv» a.'"). 



26 

where K is the constant of integration. To evalute K consider 

the oaaa whan the perturbation velocity due to any distur­

bance is small; that is q « aQ. Then q — W, snd 

V-Kfafc) 
k • zz, . 

Then the final relation between q end V la 

w = s £*•* 
a . + Vc^+.a* (29) 

end solving for q, 

qa 4a.V 
«4a0

a-W*. (30) 

How using the approximation of Chaplygin and also 

of Karman-Tsien that 

i {^ -1 
we may find the density ratio for the Karman-Tsien method* 

M 
Solving for s2 and substituting equation (28) gives 

2. * 2 
/ ^ 1 - I - * •*•*" 
(^ y -T^PF " a.» 

_ /ga iw 2 + 
r4-a.*-w*J2 
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( 

/i \2_ r4a«-w f ) + is a ! w 

* . .z\* 

or 

= r -4a: -<• w*J 

j* = 4a.Swz 

' 4 4*-W2 ' (31) 

Equations (24, 29, 30) and (3D are the basic equations 

of the Karman-Tsien method. They give the relation between the 

incompressible velocity W and the compressible velocity q, both 

in the physical plane. Equations (2l±) are the Cauchy-Riemann 

equations and therefore the complex potential 

F - #•*-£¥ 
must be an analytic function of 

v7=u-iv 
where V is the conjugate of W and F is the incompressible 

complex potential chosen to give the correct complex potential 

in the compressible flow when transformed, and U and V are de­

fined by equations (£2). That is, 

4 + tV =*F(U-LV) = P(vW 
md 

4-t¥=r(U+LV)=F(V/J . (32) 
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Now in order to use equation (32}, the function P 

must be found which gives the relation between U and V, and x 

and 7; or the transformation from the hodograph plane to the 

physical plane. This is necessary since the hodograph plane is 

merely a method of representing the non-linear equations as 

linear ones; hence the physical picture of the flow la lost 

when the flow is represented in the hodograph plane. 

The function P is now found by writing 

df = i^x + •}*3 
dV * Y * d A •• Vvjd^ 

Then by using the definitions given by equations (8), these 

become 

d# a «| cos#dx -*• «i sin 6 Oy 
d y = -ca^ 5 in6d* t q i c o s d d u 

Using equations (22, 30,) and (3D and solving for &x and dy, 

d,-JL ̂ /iitW'Li dvr^Ai+W1) 

d u . v d j / * * . * - W * I I V dV /*a?-hyvM 
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Then 

Now using relations (32), 

d z = d* +iolu » ! '" +*.«/e |$(U + i V ) 
"W2 

•j-ihjxyjdVtU-hiV) 

d z = i M V ( d # + i d V ) - ^ £ i (d*-tdtfj 
W* 4*0 

dz=-slX - w d f 
W 4*i ' (33) 

This is the relation between the compressible hodograph plane 

and the physical incompressible plane. 

Therefore, by knowing the analytic function P(W), which 

is the incompressible condition, the velocity q in the com­

pressible condition may be found by using equation (30). Also 

the coordinates of the point at which the velocity occurs may 

be found by equation (33)» the density ratio by equation (31)# 

and the pressure by equation (20). Using this method however, 

it is impossible to predict whether or not. the chosen function 
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F(W) will give the boundary shape and flow pattern required. 

This is the main difficulty of all the hodograph methods. 

Transformation from the Incompressible Flow to the 

Compressible Flow. However, by using a method demonstrated by 
o 

Bateman , the two flow fields are related by using equation (331* 

and the final shape of the body in the physical compressible 

plane may be pre-determined. In order to arrive at this trans­

formation, it is convenient to let JF and >^ be the coordi­

nates in the complex plane J , in which the incompressible 

velocity components U and V are plotted. 

The approximate shape of the resulting boundary may be 

found by starting with the function 

F(W)= # + L Y = hC-TJW, 

which is the complex potential of the incompressible flow in 

the 2j plane. Then 

d F = w,-^d?=w^ . (3W 

O 

°Bateman, H., "The Lift and Drag Functions for an 
Elastic Fluid in Two Dimensional Irrotational Flow," Proceed­
ings of The National Academy of Science, 2ij.s21j.6-5l, l^W. 

2ij.s21j.6-5l
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Likewise, 

dF-w;^4 4 / ~ w d / 
d 5 " , (35) 

where the bar denotes the conjugate of the respective func­

tions. Substituting (3I4.) and (35) in (33), dz becomes 

atz « d i ' - M - i i - d^W; 
4a* dr 

• d r - * $ ) ' d ^ 
- J / Wi \ 

where ^ " ^ h l ^ - / • Therefore, 

z~f-*j(£fd? • 
Now it becomes clear that for moderate subsonic speeds (for 

which this method was developed) the incompressible flow and 

the compressible flow differ only by the factor X . The 

correction factor X may be obtained in terms of the free 

stream Mach number, M^, by use of equation (29)^ 

2 

* - • • (£ ) 
* = 

0 
2 

Then by equation (28) 
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X = M 
( i-*,* + l ) (37) 

Values of X for various Mach numbers are given in table I 

and are shown graphically in figure 3. 

In order to make pratical application of the Karman-

Tsien method, it is now necessary to obtain an expression for 

the pressure coefficient, Cp, in terms of W and J^ . By de­

f in i t ion 

P-P, 
C P = * / ? % * 

and by e q u a t i o n (21) , 

C p -. 2 a, p, 

c,= - 2 * . 4-a*-w;z 

ZX 

JH-X)' 

§ 4a.z+W* 
4 a * t ^ z ' 4af--W2' 

\-X I •*- X ( ^ W , ) 

' * * ' i - M^)* 

£JL - Z X f ^ . ) 

^ /0*JO i-j if^V.) 

B ( I + X V 

(38) 
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X 

\.KJ 

.8 .8 

.6 .6 

.4 .4 

.2 .2 

n 

0 .4 

MACH 

.6 

BER 

8 1.0 

FIGURE 3, VARIATION OF X WITH FREE STREAM 
MACH NUMBER 
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TABLE I 

VALUES OF A FOR VARIOUS FREE STREAM MACH 
NUMBERS 

M, X M, X 

.05 .001 .55 0 9 0 

.10 .003 .60 .1 1 1 

.15 .006 .65 .137 

.20 .010 .70 .167 

.25 .016 .75 .204 
.30 .024 .80 .250 
.35 .033 -85 .310 
.40 . 044 .90 .393 
.45 .057 .95 •525 
. 5 0 .0 72 1.00 1.000 

5 
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This method is applied to the problem of compressible 

flow about a circular cylinder and is given in the appendix. 

Comparisions are made with various experimental data available 

on the problem in an effort to show the value of this method. 



36 

THE METHOD OP CHARACTERISTICS 

Basic Equations and Definitions. In the preceeding 

section it was shown how the non-linear equations of com­

pressible fluid flow could be solved by transforming them 

into a plane in which q, the magnitude of the velocity vec­

tor, and 0, the angle of inclination of the vector q, were 

used as the independent variables. The outstanding advantage 

of this method, with the approximations introduced, is that 

it is easily applied to the case of completely subsonic flow. 

However, in the case of completely supersonic flow the prob­

lem is conveniently solved by use of the idea of "charac­

teristic lines". These lines do not exist for the subsonic 

case and therefore the method is useful only for the super­

sonic case. 

First, the continuity and Eulerian equations are com­

bined with use of the condition of irrotational flow into a 

differential equation of the Monge9 variety. Assuming a steady 

two dimensional isentropic flow which is also irrotational, 

the continuity equation is 

(f U ) x + (^V)y
 =0 

(39) 

and the Eulerian equations (equations 3) may be written in 

the form 

'Bateman, H., Partial Differential Equations of Mathe­
matical Physics, (New York: The MacMillan Co., 1932), p 501. 
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* /> r* (40) 

(lfl) 

Differentiating equation (39) *8& using the relation 

uvx + v v a = - ^ P a 

gives 

P * ^ + a ^ + P*iv+V = 0 . (w» 
Sloving equations (lp) and (i+1) for (pxu p yv) , 

and substituting in equation (kZ), produces 

^*^v^"jk UY (U^ + Vx) + U*U^+ V^y = 0 

M ' - £ ) + V„(,--£)-^(u,4.V.)-0 • 
(1*.3) 

Now, by the hypothesis of lrrotatlonal flow equation (6) 

Is satisfied. That Is 

* (6) 

Therefore, the potential function x exists such that 

*K=u <iy=v 

,'• 
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Using these equations, equation (I|_3) becomes 

( - ^ ) * « +('-•&* l * ^ - ^ ^ - 0 . m 
This is a partial differential equation with the solution 

given by the Monge equations. Three types of equation (ijlj.) 

exist: elliptic, parabolic, and hyperbolic. The type depends 

on the value of the equation 

H)0-4)-^-^ 
z , (k-5) 

a.1 

since q2= u + v2. If equation (ij_5) is less, equal, or 

greater than zero the equation is of the hyperbolic, para­

bolic, or elliptic type respectively. That is, equation (ijlj.) 

is of the hyperbolic type for completely supersonic flow, 

parabolic for sonic flow, and elliptic for subsonic flow. 

Since equation (Ijî) is a second order partial differ­

ential equation, the solution will not be unique. However, 

at some point the two solutions will be coincident. At this 

point the solutions are discontinuous and the locus of these 

"discontinuities or singularities" is called the characteris­

tic of equation (l^) . 

Equations of The Characteristic Lines. Consider a two 

dimensional flow around a corner of small deviation, such that 

an isentropic expansion takes place. This disturbance, caused 
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by the deviation, is propagated throughout the fluid in a 

straight line called the Mach line, and is inclined at the 

Mach angle to the original flow direction. Since the flow is 

expanded, the direction and magnitude of the velocity must 

change. Consequently the value of the potential must change 

also. In the region upstream of the disturbance the potential 

is J = $j ; in the region downstream, 4 s xa . But since the flow 

is continuous, along the Mach line 4, must equal « a and the 

first derivatives must have the same absolute value. That is, 

the two solutions of equation (l\l±) are coincident along the 

Mach line and it can be concluded that the Mach line is the 

characteristic line of equation (l^.) . Therefore it is possible 

to determine the equations of the characteristic lines on the 

basis of the physical meaning of the lines. 

In order to arrive at an expression for the charac­

teristic lines, consider again the case of an infinitely small 

deviation causing a disturbance in the form of a plane Mach 

wave and inclined at the angle LL • Where 

/*s Sir" M 

If the solutions of equation (l+L\.) are represented by the lines 

1.. and 1 (figure l\.) , these curves will intersect at some point 

P on the Mach line. Tangents drawn to the lines 1 and 1 at 

the° point P will be at the angle /J. to the velocity vector q 

which is inclined at an angle 6 to the positive x axis. Then 
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Y 

FIGURE 4, SOLUTIONS REPRESENTED BY THE 

CHARACTERISTICS LINES 
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If dl la an element of length along the line 1, by geo­

metry of figure l\. the following equations may be deduced. 

(A*) - t « ( / * + • ) 

\d«j / l t 

v dn /] 
* '1, (46) 

Also by Inspection 

U 
Cos ° 1 "=L 

d l 41 

Expanding sin (/CL+ 6) and substituting the above relations 

gives 

-d_fi = (c o 5 /u)U _ a._v_ 

dl 1 1 3 

Combining and eliminating cos /U , 

d* _ / d \ j _ _ a__u \ j ,^_ a_ _v 

or 

* ^ / d ( j _ a u \ q a 
I I d l 1 1 /V 1 

djs _dJ_U _ _ a /_U%V) 
dl d l V 4 s I v / • 



kz 

Multiplying by v and dividing by a , 

Also 

a di 61 a ' (1^7) 

(dx)% (dy)2=(dOZ 

or 

Now equating equation (I4.8) to the square of equation (I4.7), 

/dM\/d*\*- |Uvz /dy \2_2UV dxd_y . ) t f , t / d«^ 

or 

which becomes finally 

C'-^KSW'^g^-S)-0. (49) 

This is the equation of the characteristic lines in Car­

tesian coordinates. 

Letting 

1 . a v 

(50) *=('-•£). L - ( H £ ) . K ~ a* 
equation (I4.9) becomes a quadratio with the solutions 



to 

^ - - J J V K * ^ 

42 H H 
(51) 

•here 

d x 

Therefore it is now evident that if the flow is subsonic (i.e., 

equation ljlj. is elliptic) the value of VK2- HL is imaginary 

and the lines do not exist. 

Characteristic Lines in the Hodograph Plane, Using 

equations (50), equation (J4J4.) may be written as 

I t U ^ L ^ t Z K v ^ - O . 

The change along the characteristic lines of the velocity 

components is 

d u - U x d x + U 3 d i j - ( U K + / T d L | ) d x 

d v = V A dx + Vcj d j = ( vK > / r vy ) d x 

or 
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By the hypothesis of irrotational flow Uy vx, and by 

combining v^ and vx, 

u K = - ^ - Z 7 - ^ + / T * ^ • 
* d * d* * (53) 

Substituting equation (53) into (52), 

H(&-/"£+'*S)•»•*,+**<*£-'-A 
which beoomes 

H ^ + (£K-/"H)^, t(H/'-ZK/,+ L)v,=0. 

(51*.) 
Now /* Is defined as the solution of the quadratic equation 

H / T * - 2 K / r + L - * 0 

and solving the two solutions (equations 5D together 

2 K - H ^ = H/1 
which when combined with equation (5k-) gives the two charac­

t e r i s t i c s 

da -r /?dv = 0 ca.i 

d u + /^dv = 0 (.»•> . 

(55) 

The equations for du and dv in terras of the coordinates 

6 and q may be had by inspection of figure 5» la figure 5*» Q 

changes in magnitude only* Therefore, 
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dq 

— du —| 

Figure 5 a 

Figure 5 b 

dv 

u 

FIGURE 5, POSSIBLE VARIATIONS OF q 



du = - q d e 5m6 

dv = qde cos © 

In figure 5b, q changes In direction only. Therefore, 

dlX = - q d e Sm6 

dv = 4o)e Cos 6 • 

Combining the two changes gives 

d a = dc^Cosd -c^6 in©d© 

dv = d c j 5 J n e -Hc^Cosed© (56) 

Substituting equations (56) and (lj.6) in (55)» the following 

expressions are obtained: (equation 55* first) 

d^cose-cj^mQde +/Td«iS»ne + " f ^ c © * e d e - 0 

dg , _ C/T-tanQ) 
d e " C'+^tane) 

By equations (I4.6) 

tan9"tAn/U — tacn e 
d<i I -HtanS ta.r\/U. 
—*- = - <=L _ 
d e

 I + Un*6-tar\/Utarve 

+ t»n9 tar\/lL 



kl 

Substituting the relations for the functions of /U and G ob­

tained previously, 

d* __ 
de 

» - 1 

i 

VM*- I 

1 + V 1 + uyi^M 

V 

u. 
It-

(Vf, Vl_ 

1 + 
UVM*-I 

Simplifying, 

i a . - a 
de 

- « a 
U * V M - ' + u v 

** fa1-
u1, V M ' - I •*• w. 

de 
-1 

c£{t^~\ 

A / M 1 - ! = i . 
d» f 

Likewise from equation 55b 

de 
a./^*: = - 1 

Therefore the two equations may be written aa 

*L.{^~i = ± 1 

± d e = ^ V ^ : (57) 



1<.8 

In order to obtain dq/q in terms of M so that equation 

(57) may be integrated, consider the energy equation in the 

form 

1* . aa _ su* 
— •+• 

Z Y-l Y-l 

Upon substituting the relation, 

a0 _ = + 
Y-l 

2. M 

for a^ it becomes 

+ A o 

2- fY-oo+ Y : 1 M I ; 7-1 

Simplifying, 

«• 2. 

5. ̂  A* 
2. 7-i 

V MZ 

+ -' M* 
or 

CT-0 M r + i s Const. 

Differentiating with respect to q gives, 

CT-OM 1 • » • I «1 - «I _ * sUn 
(T-i)yi ' d i _ 

= 0 

o/M _ 
dq 

1 + fr-i) M* . 

Z<=LZ 

( Y - O M 
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Then 

dM mm 63 
M q 

dM MS. 
M 

(y O M l + l 

[l + I J (58) 

Kow with equation (58), (57) becomes 

VV-I ±de = 
M (n-^Mfc) 

dM 

or 

t d e = MZ- I 

M V M M ( i f ^ n * ) 
dM 

Substituting 

dS become* 

±de= 

M'-^-^K, 

f h ^ - T ^ - l 
M VM*-I ( i t ^ r M l) 

± d e « x ± MdM 
% /jvfirr ( I + ^ M 1 ) HVM* 

T=r(59) 

Making the following tubs tltut ion in order to fee Hate in­

tegration, 
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S i n * 
i^ 

M 

s«c * = M 

d n = Sec ̂  "tan t* 
SVw g 

Cos2 , ^ 
d^ 

equation (59) becomes 

•5m ^ 

+ 6 - Y + l 

2-

±9 = y+ 

coa^^d^ dM 
S , n * * + tJt-OSec** 

d * r 
Sco^^ -I- (Y-0 

M V^z- I 

ifiL 
M VM*-

Row performing the integration, 

£Q =: f y + 0 
Lvy*-

tan11^/^5-." 
Y+» 

— £os '-*- + const 
M 

te • / ^ tan'V^ /r^-« + «>"•* 

(6o) 

Equation (60) gives the variation of the Maoh number 

along the characteristic line as a function of the direction 
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of the velocity along the line. With the value of the Mach 

number it is possible to determine all the flow quantities 

by use of the energy equation. This method, although set up 

for the case of an expansion, may also be used in the case 

of a compression as long as the disturbances remain small 

and no finite discontinuities such as a shock occur. 

In order to fully understand the geometrical meaning 

of equation (60), it is convenient to introduce two quantities: 

(1) q.., the limiting velocity or the maximum velocity attain­

able by isentropically expanding the gas through a nozzle, 

(2) q , the critical velocity or the velocity at which the 

Mach number is unity. Then by writing (60) in terms of qc 

and q-|_ it becomes evident that they are the limits of the 

characteristic lines. 

To obtain the necessary relations for qc and q,, 

consider flow from a tank at a pressure pQ and a density 

j0c , being expanded isentropically through a nozzle. At the 

critical velocity q^a-q . Then the energy equation (equa-

tion \\) may be written as 

q* + 1*1 = A T _Pe 
y-i T - i p0 

_ ZY R 
1 ( T-1 I T - I A 

z 
1 c = 

0 

a a-r Pe 

•Y+1 A 

(6l) 
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The velocity at any point, given by (equation 5) 

Y-
<=!*=. _*I A 
^ T-i /*• 

- fJLn -

It) 
attains its maximum value when p= 0, Therefore the limiting 

velocity becomes 

n*r_. 2.Y A 
^ T-» A (62) 

and Insert ing equation ( 6 l ) , 

q2 = H i d * 
T-l (63) 

These relations (6l and 52) are constant since p Q / 0 C Is 

constant In an lsentroplc process. Now using (62) In equation 

{$), the result is 

2 1-\ 

Iw* VPoi • 

Since the constant may be replaced by 

JL_ A 
Y-l A ' 

With the isentropic flow relation 

"Y-l 

.2 A. 2 q Aft becomes 

f?r-» ^ M * 

2, + cr-OM* 



53 

or 

^L - ^ H - o ^ - z 
i t a + cx-oM1 

1 u a-t-CT-QM' 

(64) 

Equation (60) may be written In terms of sin""* in­

stead of cos"1 and tan"1 giving the following equation of 

the characteristic lines. 

2 f M * F7-1 } 2 + Cnr-OM 1 

Now inserting qQ and q, as given by relations (63) and (61̂ ) 

the equation of the characteristics beoomes 

^'l-^Fh-% 5m' 

(65) 

It Is clear that 10 

O « 

0 * Sm'/T^fc 
"* 1 c 

10, These relations also bear out the faot that the 
characteristics do not exist for the case of subsonic flow. 
If M were less than one, the value of the radical would no 
longer be a real number. Therefore the equations become 
meaningless. 
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Therefore when the sin" terms are equal to their maximum 

value of unity, q must be equal to q-., since p = 0 by de­

finition of the limiting velocity and M-*-*30. Likewise,when 

the sin" terms are equal to their minimum value of zero, 

M must equal to unity and also by definition, q must equal 

q . Then equation (60) represents a curve which is confined 

to the region between qn and q • ° 1 c 
When equation (60) is plotted in the hodograph plane 

the result is an epicycloid with its origin on the circle, 

q = qc, (figure 6) and tangent to the circle q — q1# There 

will be a corresponding curve for every value of the constant 

which determines the position of the origin of the curve on 

the q = q circle. 
c 

These curves are constructed by first constructing 

the circles q = q and q = q in the hodograph plane• Then 
v 1 

by, fixing the value of the constant the origin in determined, 
A circle with diameter (q, - q ) is made tangent to the q = q_ 

l c ° 
circle at the origin and by rolling the (q-̂ - qc) circle a-

round the q — q circle, two epicycloids are generated. The 
c 

two possible directions of roll correspond to the plus and 

minus values of 9 in equation (6o)« The minus represent­

ing the expansion, and the positive the compression. By 

repeating this process for various values of the constant 

two families of curves are generated, there being two curves 

for every constant chosen. These curves are shown in figure 7« 
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FIGURE 6, CONSTRUCTION OF CHARACTERISTIC 

DIAGRAM 
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FIGURE 7, CHARACTERISTICS DIAGRAM 
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For every value of q in the region qc to q-j_ there are 

two curves which are symmetrical about the velocity vector 

passing through the point P, and are inclined at the angle 

/(A. to the vector. In order to determine the epicycloid 

curve for a given characteristic family it is necessary to 

return to equation (55)• 

Prom equation {^>%Q-) , the first characteristic is, 

fdji\ a-/>-/*i\ 
(dJt l ( d * l > 

and 

/ dy \ /dv\ = . | 
Ux h *flfuA 

Likewise, from equation (55b) 

ftUfc),--1 • 
The above relations require that the tangent to the epicycloid 

of one family must be perpendicular to the characteristic 

of the other. Therefore, the tangent to the characteristic 

in the physical (xy) plane must be parallel to the 

normal to epicycloid 2 at the point P. From this condition 

it is possible to determine the correct family of epicycloids 

for each family of characteristics. 
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The epicycloid corves (figure 7) *&ay be used to 

graphically determine the characteristics in the physical 

plane and also for the numerical calculations. A practical 

example of such calcilations is shown in the appendix. 
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OBLIQUE SHOCK PLOW 

Introduction. In the section on the method of charac­

teristics it was stated that the method could be applied to 

the case of a compression as well as an expansion, as long as 

the disturbances remain small. When these disturbances are 

small, the physical changes of the flow take place along the 

Mach lines and the enthalpy remains constant; that is, the 

process is isentropic. However, when the disturbances become 

larger and the Mach lines converge to form a finite disconti­

nuity (figure 8) or shock wave, the enthalpy no longer remains 

constant and the process is not isentropic. Therefore, it is 

in order to arrive at a solution to such a flow condition. It 

is important to note that although the method of characteris­

tics is not applicable through a shock, it is still of great 

importance since the flow on either side of the shock wave 

is isentropic. The following section is devoted to the solu­

tion of oblique shock flow. 

Oblique Shock Equations. Assume now that there is a 

finite disturbance in a steady uniform stream, moving at a 

supersonic velocity, so that a discontinuity or shock wave 

is produced (figure 9)• Let q be the velocity, with components 

u and v, and the subscripts 1 and 2 denote conditions in 

front and to the rear of the shock wave S, respectively. 

Writing the continuity equation for the flow normal to S 

gives 
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discontinuity front 

\\\\\\\\\\\\\\\\\\<^\v^ 

Mach 
lines 

FIGURE 8, COMPRESSION OF A SUPERSONIC FLOW 



Shock front, S 

qcos p 

q.cos (P -e) 
q2sin(p-e) 
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e 

FIGURE 9, OBLIQUE SHOCK FLOW 
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/* Cl.S'"P) = ft <̂ ST.n (p-6) • 
(66) 

The momentum equation normal to S la 

P, M M s,np)1= px Uts>« fp-ej] l+ p2• 
L J (67) 

and p a r a l l e l to S 

pK <i^i*p C o s £ = / i < 3 * »i« cp-e)c<D* cp-e), 
(68) 

s ince the pressure gradient p a r a l l e l to 3 i s zero. By use of 

equation (66) i t can be seen from equation (68) that the 

v e l o c i t i e s p a r a l l e l to 3 are equal. Or, 

^ C o i f i s c j ^ C o s (p-6) • 

Writing equation (lj.) between condit ions 1 and 2 , 

Mi" +. -X_ J5. = Cu-a + va2) + _JL A , 
a >•' * 2 T-. /»* ( 6 9 ) 

which in terms of q-̂  and ^ becomes 

Cl.Smft)2
 Y R _ <USm(S-e) -, j^ 

' r (70) 

Dividing equation (68) by (66) glvea 

e^.CBi fi -^ 8Coif6-e) , 
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which upon expanding and substituting for sin 9 and cose 

from figure 9# becomes 

<=1( Cos A = <^ Cos p Cos 6 - *»cJ^3 in f tS in0 

= U x Cos p + V2 5m p , 

Therefore, 

tarv p= U t - U » 
Vfc 

or 

>/ _ CU. -Uz lCosp 
* Smfi • (71) 

Equations (66) through (71) are the equations of ob­

lique shock flow. Inspection of these equations shows that 

when any two of the parameters are known, all flow quantities 

are completely determined. 

Solution of the Equations: Equations of Ranklne and 

Hugonlot. Solution of the equations above depends on the par­

ameters which are of most interest. One useful relation is 

the relation of the pressure to the density. 

In order to arrive at this relation, first divide (6?) 

by (66), The result is 

q 8 m f l + — = ^> ̂ inC6-©) + jk 



6^ 

or 

«J(S.np-q2S.nrp-e) = 
^«aaS,n(p-e> /?-l,5'«P 

How multiplying by (q1 ain p -t- q2 ain((b- 6 ) ) , 

a r i z 
cj4am p +• cjzs.n f(5-e)J 

L 

a •L.PtSmP ^ ^ ft _ qLtRSinff-fl) , 
/^1*sm(p-e) /°z * /*, n'SmP 

and by uae of equation (66) thia become a 

=(p,-pj(^^j (72) 

Substituting (72) in (70), 

and dividing by p^ and collecting the terma containing 

Pp/p,, thia equation becomea 
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Which when solved for P2/P1 gives 

T+l 1 _, 
p2_ -Y-IA 

Y-l /». (73) 

and when solved for HL/ft g ives 

r + i l , 
_̂ S _ 

P< 111 + A 
r - i pj (7W 

Equations (73) and (7̂ .) are the equations of Rankine 

and Hugoniot and give ratio of the pressure or density be­

fore and after the shock in terras of the other. 

Shock Polars. Since two of the parameters must be 

known before all flow quantities are determined, the solution 

of oblique shock flow lends itself nicely to graphical 

means. Therefore there are a number of curves, plotted by 

holding one parameter constant, which are very useful for 

the solution of oblique shock waves. 

The first of these curves is a plot of the wave angle, 

6 versus the deflection angle ©, with M_. held constant. By 

use of equation (66), (67) may be written as 

n-R-rti^-V'*;8"'*1' • 



P'-ft-^i^iaOv) 

or 

i c A . ft- P. 

Substitution of equation (7l|.) in (75) produces, 

2 z fY^oPzi-C-Y-OP, 
I, 5,n P = 

ZA 

or 

-« S l „ * f t - ^R.4-21' r f t d ^ L . 

Prom equation (66) 

/?_ «^2Sinfp-e) ua*m(p-s) 

/*2 ~ ^.5in£ " U^in^oftS 

But from equation (71) 

and from figure 9 

cot e= M* 
v2 

v2 
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Therefore, 

tAnft - U , -Ui 
c o t 8 U.^ 

and 

U i C o t B 
u * - tan ft + cot 6 

Substituting thla expression in (77), 

/>_ cotesmffl-e)  
/I Sm^cos© ( tanj i i -cote) 

_ C6t a s.nrp-e) 
' cos(g-e) 

Then 

p 

_ ft _- gm6 
/?2 SinpCo*fp-e) (78) 

Now substituting (78) in (7$), 

Ri-P. _ a * s , n P S l " e 

- " i 

^ *• cosCji-e) 
and combining (79) and (76), 

1 ' 5 p ' ^ ^' cosrp-e) 

(79) 

Introducing the Mach number this becomes, 
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2 f t -M, Sm p) -

7+1 Z ^,n ̂  ̂ 'n ® 
1 * — z ~ M> cosc^-e) (80) 

Equation (80) gives the variation of £ with 8. 

These ourves art shown in figure 10 for various Haoh num­

bers . 

Another useful curve may be obtained by substitut­

ing equation (75) in (7&). This gives 

U.*5,nVaS-^U:*,n*p(l-2) 
(81) 

A third curve may be obtained by combining equation 

(81) with (7lj.), produolng 

2 - a 
M^S.n'jasl-t-^infs.n2^ I -

Tv l . Jj^ 
~T-' R 

1*1 * + I 
T-i R 

or 

M a5m^=\+^^fs.^ 
r i—-
W-i 

- ' ) ( * - -o 
"T-H 

L 7-1 p. 

(82) 
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8 16 24 32 40 

9, degrees 

FIGURE 10, VARIATION OF £ WITH 9 
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Equation (81) permits a graph of (5 versus Jft and 

(82) gives A versus p^/^l f o r v a r i o u s free stream Mach 

numbers. These equations are shown in figures 11 and 12 

respectively. In addition to the graphs of equations (80), 

(81), and (82:), a relation between P2/P1 a n d e m a^ b e ob~ 

tained by using equations (82) and (80) in parametric form, 

These curves are shown in figure 13. 

The arrangements given above of the oblique shock 

equations are only four of the many possible combinations, 

The ones given are essentially the same equations obtained 

by Laitone11 although they are derived and plotted in a 

different manner; the preference of the two groups depend­

ing on the value of the parameters given. 

This section would not be complete without pre­

senting the classical shock polar first introduced by 

Busemann1^. The equation of this polar may be obtained by 

first substituting equation (66) in (67). This gives, 

a . 2 
Pi+/4V5 , n p* 

Pa+tfU.Smp \ / (uJw z
2 ) SmCp-9) . 

Laitone, E. V., "Exact and Approximate Solutions of 
Two Dimensional Oblique Shock Plow," Journal of the Aero­
nautical Sciences, ll{.:25, January, 195-7 • 

^Busemann, A., "Gasdynamik," Handbuch der Sxperimen-
talphysik, Vol. IV, Akademische Verlagsgesllschaft, Leipzig, 
1931. 
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Expanding sin ( ft -9) and substituting from figure 9 for 

sin 6 and cos 6 gives, 

Substituting the above in equation (83)* 

P.- & V ? u ' s , n £ [cuz-a.)s (np,-v2Co*p,] 

and then substituting equation (71) for v , equation (83) 

becomes 

P.~Pz'fi^' [u»s,n*P-u.s.n^-cu,-ax)Cosaji] 

P~P2-/?UL, ( u . x S i n 1 £ + U x C o s * 6 - U l S m * 6 - U . l C « « 1 p ) , 

or 

P*=P. V "••<""'U*-) ' 
( % ) 

Writing equation (66) using the expression for sin (B -8) 

^ U , S-n £ =/| ( U 2 S,n£ - V2 C O S £ ) -

Now with equation (71) this becomes 

^iairu,-a2)=/4u.z(ul-ur)-^
2
/4 (85) 
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Dividing aquation (81j.) by (85) gives 

Pz _ P. 
4 (U^-U^-V^) ^.u, (U..-U.0 

V-

or 

* A (u.u1-u,»-v1*)
 li' 

(86) 

Now by writing equation (1̂.) between condition 1 and 

the point where q/a = 1, 

T-' (*? 2 T-» 

and cal l ing this value of a, a or l t l ca l , the above equation 

becomes 

2 ^ 7 - i fr 2 C T - 0 

Then equation (69), with use of (87), becomes 

(87) 

^ ^ » Z . -jr P* _ f » i - Z 

^ ~ + ^"«4 • i r ^ o a< ' (88) 

Now, by using the three equations, (86, 8?, 88), p,, 

p., fiK , and ̂ 2
 m*y D0 eliminated, leaving the equation of 

the shook polar. 

In order to eliminate these quantities, first substitute 

equation (86) in (87), giving 
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R 
£ . 2. 

(T+0 af-c-r-0 u / ] (u,Ua.-o-t-V2 ) ^u^u.-u^-v^ 

2^U.,C Ll.-Ut) 

(89) 

Then by substituting (89) In (88) the following equation Is 

obtained. 

*l 
rr-Q _ fr + oaf - (Y-OU? _ 1 

2Y zru.,cu.rUO 

[(r+oaJ + lT+OUiO,] cu,-ufc) 

2>U 

Which when solved for v2 gives 

v/=. (u.-u,y u.uz.-a.c2, 

*— u,2-u,u,-v-a* 
•4-1 < 1 c (90) 

How Introducing the dlmenslonless velocities, 

a % ^ * v 
ole 

equation (90) becomes finally, the equation of the ehock 

polar in the hodograph plane (equation 9*)• 
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V2 = K - u . J L ) — — — :  

^^f-^z4-1 

(9D 

When equation (91) is plotted for a given Mach number 

the result is the curve shown in figure 31}., and has a double 

point at u equal u . Cf the complete curve, only the part 

corresponding to (u^) 4» (vg) ^ q̂  represents actual shock 

transitions. With use of this part of the curve it is possible 

to determine graphically the flow quantities in the follow­

ing way: 

The velocity vector q , when drawn from the origin 

will have its tip on the curve (point P, figure llj_) • It will 

be inclined at the angle 9 to the u# axis and a line drawn 

perpendicular to line AP through the origin will be at the 

angle fi to the u axis. When the tip of q coincides with 

point A, q = q . This corresponds to the flow passing through 

a Mach wave when 0 equals zero. As 9 increases there are two 

solutions to equation (91) (point P and B ) until q becomes 

tangent to the curve. When two solutions exist, point P correS' 

ponds to the weak shock transition which actually occurs in 

the physical problem, and point B represents the strong shock 

transition which very seldom occurs. When 9 increases beyond 

the value at which q2 is tangent to the curve, the shock be-
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> 0 
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comes detached; point C corresponding to the normal shock 

condition. 

The velocities before and after, normal to the shock 

are represented by the vectors DA and PD respectively, and 

the velocities parallel to the shock by OD. 



80 

THE METHOD OP SMALL PERTURBATIONS 

Assumptions, The approximations mentioned in the hodo-

graph discussion were based on the hypothesis that the free 

stream Mach number was lower enough that the compressible 

flow pattern differed little from the incompressible pattern. 

Now if the assumption is made that the perturbation or dis­

turbance velocities due to the introduction of a body into 

the stream (which may have a large Mach number ) are vanish­

ingly small, the equations may be linearized and solved* 

In order to develop an approximate theory on the above 

assumption, the velocities at any point may be written as 

u « u-. *• u1 

v*v». (92) 

Where u» and v1 are the perturbation velocities. Now if the 

assumption that 

WU-L << 1 (93) 

is made, then the higher orders of u'/u-j may be neglected. 

The assumption is also made that the derivatives of 

u' and v1 are small. Here however, there must be some refer­

ence to give meaning to the word small. In the case of the 

velocities, this reference was the undisturbed velocity u-j_. 

In the case of the derivatives, reference will be made to 

some characteristic length, such as the thickness, since the 
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rate of change of the velocities is dependent on the shape 

of the body introduced into the stream. This length will be 

denoted by T . Now the assumption is made that 

ux= ut/r = (u'/u1)(u1/r)« i (9W 

Equations (93) a^d (9̂ -) a**e the assumptions upon which 

the approximate theory will be based; the degree of approxi­

mation depending on the magnitude of the equations (93) and 

(9W. 

Approximate Equations. Using equations (9^), equation 

(l±3) may be written as 

a * (u.,+u')zi 

u* u » 
( u . - h u ' L +• K-^2k 

Lu, u* J ? 
- (u.-m')v' r c a + u ^ + vx'] = o . 

Which by equations (93) and (9lj.) , becomes 

-f.-'K4--? v^° 
or 

(l-^j^x 4-^*0 . 
(95) 

Where i s def ined as 

+ K = u ' 4 > I J B V 
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The speed of sound, a, is given by equation (Ij.) as 

af-aS * -* ""-' (u,+ u')
z
+u'-u* . 

which becomes 

az= a*-fT-Ou,u' 
(96) 

Subatltutlng aquation (96) in (95) glvas 

a, 
a*-CY-Ou, u" 

4»MM+ ^ 4 = 0 
XX 

or 

I - a, 
Ufr-QU.* U»/ 

a,z u, 

M̂  

4K. +-<^ = ° 

O - ^ , ) " ^ * ^ = 0 . 

In terma of tha Maoh numbar thia baoomaa 

(|-MZ ) 4X^ + * ^ ~Q a (97) 

Equation (97) I« the equation of the potential funo-

tion based on the assumptions of equations (93) and (9W • 

This equation is linear and may be handled by ordinary methods. 

Pressure Coefficient* By the above approximations and 

by the definition of/Ut 9 equations (51) become 

/ ! * 

I 
/I « ff^r 

= tan/u, 

=. tar\/A, . (98) 



83 

Then equa t ions (57) become 

4±± := ± de tan/U, 
u., 

The pressure coefficient is defined as 

*p ^udu, 
L D " z \ * > > t 

Or 

p s^ 2 ie^ 
+ zUryU,^ # 

By use of the approximations, ̂ UL» —^W», and with equations 

(98) the pressure coeficient becomes 

r +^££= Up--^trT 
(99) 

Where 4 8 is the flow deviation in radians, relative to the 

free stream. Equation (99) i-s the so-called "linear theory" 

used extensively in airfoil work. 
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CONCLUSIONS 

It is important to remember that every method present­

ed deals exclusively with the solution of the non-linear 

equations (8). They were first solved approximately by the 

hodograph transformation, later by the method of characteris­

tics, and finally by the method of small perturbations. On 

the basis of the hypotheses and assumptions of each method, 

they may be summarized by the following statements. 

1. The hodograph transformation is based on the hypo­

thesis that the flow is subsonic and isentropic. 3y applying 

the Chaplygin or Karman-Tsien approximation to the transform­

ed equations, the problem of subsonic compressible flow about 

an arbitrary body may be readily solved. The solutions based 

on these approximations agree very closely with experimental 

results up until the critical Maoh number is reached, then the 

conditions of the hypothesis are no longer met. 

2. The method of characteristics is based on the hypo­

thesis that the flow is completely supersonic and isentropic. 

Although the latter may be violated, as in the case of weak 

shocks, without greatly affecting the accuracy of the final 

results, the former must be fulfilled since the characteris­

tic lines do not exist for the case of subsonic flow. 

The outstanding feature of this method is that it per­

mits a semi-graphical analysis of the flow. It also gives an 

exact solution for an isentropic compression or expansion and 
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a very close approximation for small compressions when the 

flow is no longer isentropic. 

3. The method of small perturbation is based on the 

assumptions that the flow is isentropic and that the pertur­

bation velocities perpendicular to the direction of the free 

stream due to the presence of a body are small enough to be 

neglected. With the above assumptions the non-linear equations 

become approximate linear equations. These equations may be 

used to give a good first approximation, but in no case is 

the solution exact. 

Ij_. The problem of two dimensional shock flow may be 

solved exactly by use of the conservation of mass and momentum 

equations and Bernoulli's equation. The resulting system of 

equations involves five parameters. Therefore,the flow is 

completely determined when any two of the parameters are 

given. 

5. No solution is, in itself, complete for all prob­

lems. Therefore, the solution to be used depends on the prob­

lem and the accuracy required. 
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APPLICATION OP THE KARMAN-TSIEN METHOD TO THE 

PLOW OVER CIRCULAR CYLINDERS 

As mentioned in the discussion on the Karman-Tsien 

method, when transforming the incompressible flow field to 

the compressible field, the resulting shape of the body may 

be pre-determined by equation (36). However the correction 

factor 0L is correct only for one Mach number. Therefore a 

single correction may be used accurately only in two cases: 

(1) when the Mach number of the undisturbed stream is low or, 

(2) when the perturbation velocities due to the body are small 

when compared to the free stream velocity. Most practical 

cases will lie somewhere between the two above cases. Then 

by using only a single correction, the transformed shape will 

be slightly distorted, 

Also it is interesting to note that the correction 

factorn X , increases very rapidly near M — 1 (figure 3)> or 

in effect, the distortion becomes increasingly large as the 

free stream Mach number approaches the value of the critical 

Mach number unless the perturbation velocities are very small. 

Kaplan1^ has shown that the ratio of the maximum • 

velocity over the body to the free stream velocity is 

JKaplan, C.,HTwo Dimensional Subsonic Compressible 
Flow Past Elliptic Cylinders," National Advisory Committee 
for Aeronautics Technical Report No. b2l±, 193&, v5» 
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1 . 
2 

. 1 r + l 

1 + Y-l 
M* 7 + 1 

1 
z » 

(100) 

« ^ ) n « /-l n / . A l , -« « o4- n - nnO +. Since for the circular cylinder qmax occurs at 0 — 90 > the 

ratio q^ax/q becomes 

MAX -̂ /j M** 

1* w i -> . l w / w ; ) 

_ 2(1- X) 
(101) 

The veloc i ty at any point on the cylinder in an incompressible 

flow being given by 

W • &W1 S>r\& ? 

where 6 is the angle subtented by the point. Zero correspond­

ing to the leading edge* Substituting (101) in (100), and 

solving for M^ produces, 

Z-Z1< _ 

- 4*. 

I 

Y+- l M e 

Y-l 

Y-M 

T J-z 

/ 
f^c= 0.402, . 

Pressure Distribution at M 0.1|_1. This method will now 

be applied to the problem of the circular cylinder at a Mach 

number of O.I4.I. 
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Imai and Hasimato1^- found that if an ellipse of thickness 

ratio O.9165 was transformed, the resultant shape was very 

nearly a perfect circle. This ellipse is close to a circle 

itself and therefore the distortion is very small. For the 

purpose of this problem this distortion will be neglected. 

First the correction factor X is found from figure 

3 to be O.Oij.6. Then using the relation for the velocity at 

any point on the cylinder in the incompressible case cited 

above, and using equation (38), the pressure coefficient is 

I- ( Z S m 6 ) 
C p =• I.04S ,_<- ev Z 
u ° 1 _ ,0*« (Z.Sm©J 

(102) 

The values are then computed for various stations. These 

are shown in table II and figure 15. 

It is interesting to note that the theoretical curve 

compares very favorably with the experimental curve obtained 

by Orlin1^ although it is in the region of the critical Mach 

number. This is due to the fact that at the point at which 

M = 1 first occurs, the perturbation velocities become very 

small compared to M • Therefore it appears that the results 

^Imai, I., and Hasimoto, H. "Application of the WKB 
Method to the Flow of a Compressible Fluid," Journal of Mathe­
matics and Physics, 28:173, 1950. 

^Orlin, J. W., W. J. Linder, and J.G. Bitterly, "Ap­
plication of the Analogy Between Water Flow with a Free Surface 
and Two Dimensional Compressible Gas Flow," National Advisory 
Committee for Aeronautics Technical Note No.ll85, 19li7. 
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20 40 60 80 
Distance around cylinder, 9, (degrees) 

— Karman-Tsien Wind tunnel 

100 

FIGURE 15, PRESSURE DISTRIBUTION, CIRCULAR CYLINDER 

M = 0.4I 



TABLE I 

Pressure distribution about circular cylinder 

M=0.4I 

e l-2Sin28 i-A(2Sin9)2 CP 

1 ° 1.000 IOOO 1.046 

1 l0 0.652 0.994 0.686 
20 0.312 0.978 0.334 
30 0 0.954 0 
40 -0.286 0.924 -0.324 
50 -0.532 0.892 -0.623 
60 -0.732 0.862 -0.888 
70 -0.880 0.837 -1.099 I 
8t) -0.920 0.821 -1.235 

I 90 
t — = — ' 

-1.000 0.816 -1.281 | 
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are not to much in error due to the neglect of the dis­

tortion caused by the transformation, 

Pressure Distribution-at M Q»50« By repeating the 

above process for a circular cylinder at a Mach number of 

0.50, figure l6 and table III were obtained. The purpose 

of this pressure distribution is to show the effect of the 

critical Mach number. Examination of figure 16 will show 

that at the high values of 0, where the critical velocity 

is reached, the theoretical curve becomes more in error 

when compared to experimental results. This is due to the 

fact that the hypothesis, upon which this method is based, 

are no longer applicable to the problem. 
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- I.6i 1 1 - i 1 1 i — i 1 1 

1.2{ ' ' ' - J ' ' L~ ' ' ' 

0 20 40 60 80 100 

Distance around cylinder, 9,(degrees) 

Karman-Tsien —Wind tunnel 

FIGURE 16, PRESSURE DISTRIBUTION, CIRCULAR CYLINDER 

M=0.5 
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TABLE IE 

Pressure distribution about circular cylinder 

M=0.50 

e l-2Sin20 l-A(2Sin6)Z 
Cp 

0 1.000 1.000 1.072 
10 0.652 0.991 0.705 
20 0.312 0.966 0.346 
30 0 0.928 0 
40 -0.286 0.881 -0.348 
50 -0.532 0.831 -0.686 
60 -0 .732 0.784 -1.001 
70 -0.880 0.746 -1.265 | 
80 -0.970 0.721 -1.442 

[ 90 -1.000 0.712 -1.505 
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APPLICATION OP THE CHARACTERISTICS AND 

SHOCK DIAGRAMS 

In order to show the principle of the application of 

the characteristics and shock diagrams, they will be employed 

to solve the basic problem of the velocity and pressure dis­

tribution about a typical diamond shaped supersonic airfoil 

at an angle of attack of two degrees and at a Mach number of 

two. The geometrical properties of the airfoil are shown in 

figure 17a. 

Velocity Distribution. The characteristics diagram, 

figure 7, is used for this problem in the following manner. 

1. From equation (6I4.), CU/CL is found to be O.667 

since M = 2. Therefore the characteristics diagram is 

oriented so that an epicycloid curve coincides with the point 

q-L/q-r-0.667 on the e=*o° line (figure 17b). Considering now 

the region 2 and assuming that no finite discontinuities occur, 

^/^•L m a^ ^e ^oun^ by constructing a line at an angle 6 a 5° 

to the 0aO° line. The line 0A then represents q2. Prom this 

construction, qp/qT is found to be 0.630. 

2. Repeat this process for regions 3 and i\. , noting 

that the angle of the region 3 is measured relative to the 

free stream. The velocities q and q, are represented by the 
i" 

OB and 0C respectively. The values are: eu/q « 0.721, and 
j L 

q̂ / qL= 0.651. 
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FIGURE 17, GEOMETRICAL CHARACTERISTICS OF 

DIAMOND AIRFOIL AND EPICYCLOID 

CURVE 
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3. Then using equation (64), the respective Mach 

numbers are 

M2= 1.82 

M3«2.33 

% 
= 1.92 

Pressure Distribution. Using the definition of the 

pressure coefficient, 

_ P-PI p in 
and writing it in terms of the Mach number, 

r - P"p> p" yP^Z 

z 
the pressure distribution may now be found using figure 13 

and the isentropic relations, 

Pressures in regions 2 and Ij. are found from figure 13 

to be 

V^l"1*27 

P^/Pl-1.09 

Prom the isentropic relation, 

Po/P-L =• 
i + ^ \W: 7-1 

Y-l M ; 

p y ? ! * 0.5914-
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The Isentropic relation was used in this case since the flow 

deviation angle, 9, is minus and an expansion occurs. Taking 

p a 2117 lbs/ sq ft (standard air ), then 

p 2 = 2731 psf p 2 - v1 =; 61I4. 

p s -1257 psf P 3 - P ; L a-860 

p^ = 2308 psf p . - P l a 191 . 

Finally substituting these in the equation for the pressure 

coefficient gives 

c p 2 = o.iolj. 

C p 3 a -O.II4S 

Gvk r 0.032 

As a comparison, the pressure coefficients will also 

be found by equation (99)• Substituting the values of ̂  8 

given below in equation (99) 

^ 6 , 5° - 0,087 radians 
2 

A 6 4
a 

gives 

°s -0.157 

2° ar 0.035 

m -9 « -0.157 
AS,-

-,o 11 

Cp2 = 0.101 

O 3 5 -0.181 

cpif = o.oî o . 

The distributions found by both methods are shown in 

figure 18. By integrating these pressure diagrams the lift 

coefficient, C,, may be obtained. They are 
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FIGURE 18, PRESSURE DISTRIBUTION- DIAMOND 

AIRFOIL 
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Characteristics and shock diagram method, C = 0.050 

Small perturbation method, C, = 0.076 
l fi 

When compared with the experimental value , C-, = O.OI4.5, some 

idea is obtained as to the degree of approximation involved 

in both methods. 
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