Optimization of Submodular Functions Tutorial - lecture II

Jan Vondrák ${ }^{1}$
${ }^{1}$ IBM Almaden Research Center
San Jose, CA

Outline

Lecture I:

(1) Submodular functions: what and why?
(2) Convex aspects: Submodular minimization
(3) Concave aspects: Submodular maximization

Lecture II:

(1) Hardness of constrained submodular minimization
(2) Unconstrained submodular maximization
(3) Hardness more generally: the symmetry gap

Hardness of constrained submodular minimization

We saw:

- Submodular minimization is in P (without constraints, and also under "parity type" constraints).

Hardness of constrained submodular minimization

We saw:

- Submodular minimization is in P (without constraints, and also under "parity type" constraints).

However: minimization is brittle and can become very hard to approximate under simple constraints.

- $\sqrt{\frac{n}{\log n}}$-hardness for $\min \{f(S):|S| \geq k\}$, Submodular Load Balancing, Submodular Sparsest Cut [Svitkina,Fleischer '09]
- $n^{\Omega(1)}$-hardness for Submodular Spanning Tree, Submodular Perfect Matching, Submodular Shortest Path [Goel,Karande,Tripathi,Wang '09]

These hardness results assume the value oracle model: the only access to f is through value queries, $f(S)=$?

Superconstant hardness for submodular minimization

Problem: $\min \{f(S):|S| \geq k\}$.
Construction of [Goemans,Harvey,Iwata,Mirrokni '09]:

$A=$ random (hidden) set of size $k=\sqrt{n}$

$$
f(S)=\min \{\sqrt{n},|S \backslash A|+\min \{\log n,|S \cap A|\}
$$

Analysis: with high probability, a value query does not give any information about $A \Rightarrow$ an algorithm will return a set of value \sqrt{n}, while the optimum is $\log n$.

Overview of submodular minimization

CONSTRAINED SUBMODULAR MINIMIZATION

Constraint	Approximation	Hardness	hardness ref
Vertex cover	2	$2_{\text {[UGC] }}$	Khot,Regev '03
k-unif. hitting set	k	$k_{\text {[UGC] }}$	Khot,Regev '03
k-way partition	$2-2 / k$	$2-2 / k$	Ene,V.,Wu '12
Facility location	$\log n$	$\log n$	Svitkina,Tardos '07
Set cover	n	$n / \log ^{2} n$	Iwata,Nagano '09
$\|S\| \geq k$	$\tilde{O}(\sqrt{n})$	$\tilde{\Omega}(\sqrt{n})$	Svitkina,Fleischer '09
Sparsest Cut	$\tilde{O}(\sqrt{n})$	$\tilde{\Omega}(\sqrt{n})$	Svitkina,Fleischer '09
Load Balancing	$\tilde{O}(\sqrt{n})$	$\tilde{\Omega}(\sqrt{n})$	Svitkina,Fleischer '09
Shortest path	$O\left(n^{2 / 3}\right)$	$\Omega\left(n^{2 / 3}\right)$	GKTW '09
Spanning tree	$O(n)$	$\Omega(n)$	GKTW '09

Outline

Lecture I:

(1) Submodular functions: what and why?
(2) Convex aspects: Submodular minimization
(3) Concave aspects: Submodular maximization

Lecture II:

(1) Hardness of constrained submodular minimization
(2) Unconstrained submodular maximization
(3) Hardness more generally: the symmetry gap

Maximization of a nonnegative submodular function

We saw:

- Maximizing a submodular function is NP-hard (Max Cut).

Maximization of a nonnegative submodular function

We saw:

- Maximizing a submodular function is NP-hard (Max Cut).

Unconstrained submodular maximization: Given a submodular function $f: 2^{N} \rightarrow \mathbb{R}_{+}$, how well can we approximate the maximum?

Special case - Max Cut:

polynomial-time 0.878-approximation [Goemans-Williamson '95], best possible assuming the Unique Games Conjecture [Khot,Kindler, Mossel,O'Donnell '04, Mossel,O'Donnell,Oleszkiewicz '05]

Optimal approximation for submodular maximization

Unconstrained submodular maximization: $\max _{S \subseteq N} f(S)$ has been resolved recently:

- there is a (randomized) 1/2-approximation [Buchbinder,Feldman,Naor,Schwartz '12]
- $(1 / 2+\epsilon)$-approximation in the value oracle model would require exponentially many queries [Feige,Mirrokni,V. '07]
- ($1 / 2+\epsilon$)-approximation for certain explicitly represented submodular functions would imply NP = RP [Dobzinski,V. '12]

$\frac{1}{2}$-approximation for submodular maximization [Buchbinder,Feldman,Naor,Schwartz '12]

A double-greedy algorithm with two evolving solutions:
 Initialize $A=\emptyset, B=$ everything. In each step, grow A or shrink B. Invariant: $A \subseteq B$.

```
While }A\not=B 
Pick i\inB\A;
Let }\alpha=\operatorname{max}{f(A+i)-f(A),0}, \beta= max{f(B-i)-f(B),0}
With probability }\frac{\alpha}{\alpha+\beta}\mathrm{ , include i in }A\mathrm{ ;
With probability }\frac{\beta}{\alpha+\beta}\mathrm{ remove i from B;}
```


$\frac{1}{2}$-approximation for submodular maximization [Buchbinder,Feldman,Naor,Schwartz '12]

A double-greedy algorithm with two evolving solutions:
 Initialize $A=\emptyset, B=$ everything. In each step, grow A or shrink B. Invariant: $A \subseteq B$.

```
While }A\not=B 
Pick i\inB\A;
Let }\alpha=\operatorname{max}{f(A+i)-f(A),0}, \beta= max{f(B-i)-f(B),0}
With probability }\frac{\alpha}{\alpha+\beta}\mathrm{ , include i in }A\mathrm{ ;
With probability }\frac{\beta}{\alpha+\beta}\mathrm{ remove i from B;}
```


$\frac{1}{2}$-approximation for submodular maximization [Buchbinder,Feldman,Naor,Schwartz '12]

A double-greedy algorithm with two evolving solutions:

Initialize $A=\emptyset, B=$ everything.
In each step, grow A or shrink B. Invariant: $A \subseteq B$.

```
While }A\not=B 
Pick i\inB\A;
Let }\alpha=\operatorname{max}{f(A+i)-f(A),0}, \beta= max{f(B-i)-f(B),0}
With probability }\frac{\alpha}{\alpha+\beta}\mathrm{ , include i in }A\mathrm{ ;
With probability }\frac{\beta}{\alpha+\beta}\mathrm{ remove i from B;}
```


$\frac{1}{2}$-approximation for submodular maximization [Buchbinder,Feldman,Naor,Schwartz '12]

A double-greedy algorithm with two evolving solutions:

Initialize $A=\emptyset, B=$ everything.
In each step, grow A or shrink B. Invariant: $A \subseteq B$.

```
While }A\not=B 
Pick i\inB\A;
Let }\alpha=\operatorname{max}{f(A+i)-f(A),0}, \beta= max{f(B-i)-f(B),0}
With probability }\frac{\alpha}{\alpha+\beta}\mathrm{ , include i in }A\mathrm{ ;
With probability }\frac{\beta}{\alpha+\beta}\mathrm{ remove i from B;}
```


$\frac{1}{2}$-approximation for submodular maximization [Buchbinder,Feldman,Naor,Schwartz '12]

A double-greedy algorithm with two evolving solutions:

Initialize $A=\emptyset, B=$ everything.
In each step, grow A or shrink B. Invariant: $A \subseteq B$.

```
While A\not=B {
Pick i\inB\A;
Let }\alpha=\operatorname{max}{f(A+i)-f(A),0}, \beta= max{f(B-i)-f(B),0}
With probability }\frac{\alpha}{\alpha+\beta}\mathrm{ , include i in }A\mathrm{ ;
With probability }\frac{\beta}{\alpha+\beta}\mathrm{ remove i from B;}
```


$\frac{1}{2}$-approximation for submodular maximization [Buchbinder,Feldman,Naor,Schwartz '12]

A double-greedy algorithm with two evolving solutions:

Initialize $A=\emptyset, B=$ everything.
In each step, grow A or shrink B.
Invariant: $A \subseteq B$.

```
While }A\not=B 
Pick i\inB\A;
Let }\alpha=\operatorname{max}{f(A+i)-f(A),0}, \beta= max{f(B-i)-f(B),0}
With probability }\frac{\alpha}{\alpha+\beta}\mathrm{ , include i in }A\mathrm{ ;
With probability }\frac{\beta}{\alpha+\beta}\mathrm{ remove i from B;}
```


$\frac{1}{2}$-approximation for submodular maximization [Buchbinder,Feldman,Naor,Schwartz '12]

A double-greedy algorithm with two evolving solutions:

Initialize $A=\emptyset, B=$ everything. In each step, grow A or shrink B. Invariant: $A \subseteq B$.

```
While }A\not=B 
Pick i\inB\A;
Let }\alpha=\operatorname{max}{f(A+i)-f(A),0}, \beta= max{f(B-i)-f(B),0}
With probability }\frac{\alpha}{\alpha+\beta}\mathrm{ , include i in }A\mathrm{ ;
With probability }\frac{\beta}{\alpha+\beta}\mathrm{ remove i from B;}
```


$\frac{1}{2}$-approximation for submodular maximization [Buchbinder,Feldman,Naor,Schwartz '12]

A double-greedy algorithm with two evolving solutions:

Initialize $A=\emptyset, B=$ everything.
In each step, grow A or shrink B. Invariant: $A \subseteq B$.

While $A \neq B$ \{ Pick $i \in B \backslash A$;
Let $\alpha=\max \{f(A+i)-f(A), 0\}, \quad \beta=\max \{f(B-i)-f(B), 0\}$;
With probability $\frac{\alpha}{\alpha+\beta}$, include i in A;
With probability $\frac{\beta}{\alpha+\beta}$ remove i from $\left.B ;\right\}$

$\frac{1}{2}$-approximation for submodular maximization [Buchbinder,Feldman,Naor,Schwartz '12]

A double-greedy algorithm with two evolving solutions:

Initialize $A=\emptyset, B=$ everything.
In each step, grow A or shrink B. Invariant: $A \subseteq B$.

```
While }A\not=B 
    Pick i\inB\A;
    Let }\alpha=\operatorname{max}{f(A+i)-f(A),0}, \beta=max{f(B-i)-f(B),0}
    With probability }\frac{\alpha}{\alpha+\beta}\mathrm{ , include i in }A\mathrm{ ;
    With probability }\frac{\beta}{\alpha+\beta}\mathrm{ remove i from B;}
```


$\frac{1}{2}$-approximation for submodular maximization [Buchbinder,Feldman,Naor,Schwartz '12]

A double-greedy algorithm with two evolving solutions:

While $A \neq B$ \{ Pick $i \in B \backslash A$;
Let $\alpha=\max \{f(A+i)-f(A), 0\}, \quad \beta=\max \{f(B-i)-f(B), 0\}$;
With probability $\frac{\alpha}{\alpha+\beta}$, include i in A;
With probability $\frac{\beta}{\alpha+\beta}$ remove i from $\left.B ;\right\}$

$\frac{1}{2}$-approximation for submodular maximization [Buchbinder,Feldman,Naor,Schwartz '12]

A double-greedy algorithm with two evolving solutions:

Initialize $A=\emptyset, B=$ everything.
In each step, grow A or shrink B. Invariant: $A \subseteq B$.

```
While A\not=B {
    Pick i\inB\A;
    Let }\alpha=\operatorname{max}{f(A+i)-f(A),0}, \beta= max{f(B-i)-f(B),0}
    With probability }\frac{\alpha}{\alpha+\beta}\mathrm{ , include i in }A\mathrm{ ;
    With probability }\frac{\beta}{\alpha+\beta}\mathrm{ remove i from B;}
```


Analysis of $\frac{1}{2}$-approximation

Evolving optimum: $O=A \cup\left(B \cap S^{*}\right)$, where S^{*} is the optimum. We track the quantity $f(A)+f(B)+2 f(O)$:

Initially: $A=\emptyset, B=N, O=S^{*}$.
$f(A)+f(B)+2 f(O) \geq 2 \cdot O P T$.
At the end: $A=B=O=$ output. $f(A)+f(B)+2 f(O)=4 \cdot A L G$.

Analysis of $\frac{1}{2}$-approximation

Evolving optimum: $O=A \cup\left(B \cap S^{*}\right)$, where S^{*} is the optimum. We track the quantity $f(A)+f(B)+2 f(O)$:

$$
\text { Initially: } A=\emptyset, B=N, O=S^{*}
$$

$$
f(A)+f(B)+2 f(O) \geq 2 \cdot O P T
$$

At the end: $A=B=O=$ output. $f(A)+f(B)+2 f(O)=4 \cdot A L G$.

Claim: $\mathbb{E}[f(A)+f(B)+2 f(O)]$ never decreases in the process. Proof: Expected change in $f(A)+f(B)+2 f(O)$ is

$$
\frac{\alpha}{\alpha+\beta} \cdot \alpha+\frac{\beta}{\alpha+\beta} \cdot \beta-\frac{2 \alpha \beta}{\alpha+\beta}=\frac{(\alpha-\beta)^{2}}{\alpha+\beta} \geq 0
$$

Optimality of $1 / 2$ for submodular maximization

How do we prove that $1 / 2$ is optimal? [Feige, Mirrokni, V. '07]

Optimality of $1 / 2$ for submodular maximization

How do we prove that $1 / 2$ is optimal? [Feige, Mirrokni, V. '07]
Again, the value oracle model: the only access to f is through value queries, $f(S)=$?, polynomially many times.

Optimality of $1 / 2$ for submodular maximization

How do we prove that $1 / 2$ is optimal? [Feige, Mirrokni, V. '07]
Again, the value oracle model: the only access to f is through value queries, $f(S)=$?, polynomially many times.

Idea: Construct an instance of optimum $f\left(S^{*}\right)=1-\epsilon$, so that all the sets an algorithm will ever see have value $f(S) \leq 1 / 2$.

$$
f(S)=\psi\left(\frac{|S \cap A|}{|A|}, \frac{|S \cap B|}{|B|}\right)
$$

A, B are the intended optimal solutions, but the partition (A, B) is hard to find.

Constructing the hard instance

Continuous submodularity:

If $\frac{\partial^{2} \psi}{\partial x \partial y} \leq 0$, then $f(S)=\psi\left(\frac{|S \cap A|}{|A|}, \frac{|S \cap B|}{|B|}\right)$ is submodular.
(non-increasing partial derivatives \simeq non-increasing marginal values)

Constructing the hard instance

Continuous submodularity:

If $\frac{\partial^{2} \psi}{\partial x \partial y} \leq 0$, then $f(S)=\psi\left(\frac{|S \cap A|}{|A|}, \frac{|S \cap B|}{|B|}\right)$ is submodular.
(non-increasing partial derivatives \simeq non-increasing marginal values)

The function will be "roughly": $\psi(x, y)=x(1-y)+(1-x) y$.

However, it should be hard to find the partition (A, B) !

The perturbation trick

We modify $\psi(x, y)$ as follows:
(graph restricted to $x+y=1$)

- The function for $|x-y|<\delta$ is flattened so it depends only on $x+y$.

The perturbation trick

We modify $\psi(x, y)$ as follows:
(graph restricted to $x+y=1$)

- The function for $|x-y|<\delta$ is flattened so it depends only on $x+y$.
- If the partition (A, B) is random, $x=\frac{|S \cap A|}{|A|}$ and $y=\frac{|S \cap B|}{|B|}$ are random variables, with high probability satisfying $|x-y|<\delta$.
- Hence, an algorithm will never learn any information about (A, B).

Hardness and symmetry

Conclusion: for unconstrained submodular maximization,

- The optimum is $f(A)=f(B)=1-\epsilon$.
- An algorithm can only find solutions symmetrically split between $A, B:|S \cap A| \simeq|S \cap B|$.
- The value of such solutions is at most $1 / 2$.

Hardness and symmetry

Conclusion: for unconstrained submodular maximization,

- The optimum is $f(A)=f(B)=1-\epsilon$.
- An algorithm can only find solutions symmetrically split between $A, B:|S \cap A| \simeq|S \cap B|$.
- The value of such solutions is at most $1 / 2$.

More general view:

- The difficulty here is in distinguishing between symmetric and asymmetric solutions.
- Submodularity is flexible enough that we can hide the asymmetric solutions and force an algorithm to find only symmetric ones.

Outline

Lecture I:

(1) Submodular functions: what and why?
(2) Convex aspects: Submodular minimization
(3) Concave aspects: Submodular maximization

Lecture II:

(1) Hardness of constrained submodular minimization
(2) Unconstrained submodular maximization
(3) Hardness more generally: the symmetry gap

Symmetric instances

Symmetric instance: $\max \{f(S): S \in \mathcal{F}\}$ on a ground set X is symmetric under a group of permutations $\mathcal{G} \subset \mathbb{S}(X)$, if for any $\sigma \in \mathcal{G}$,

- $f(S)=f(\sigma(S))$
- $S \in \mathcal{F} \Leftrightarrow S^{\prime} \in \mathcal{F}$ whenever $\overline{\mathbf{1}_{S}}=\overline{\mathbf{1}_{S^{\prime}}}$, where
- $\bar{x}=\mathbb{E}_{\sigma \in \mathcal{G}}[\sigma(x)]$ (symmetrization operation)

Symmetric instances

Symmetric instance: $\max \{f(S): S \in \mathcal{F}\}$ on a ground set X is symmetric under a group of permutations $\mathcal{G} \subset \mathbb{S}(X)$, if for any $\sigma \in \mathcal{G}$,

- $f(S)=f(\sigma(S))$
- $S \in \mathcal{F} \Leftrightarrow S^{\prime} \in \mathcal{F}$ whenever $\overline{\mathbf{1}_{S}}=\overline{\mathbf{1}_{S^{\prime}}}$, where
- $\bar{x}=\mathbb{E}_{\sigma \in \mathcal{G}}[\sigma(x)]$ (symmetrization operation)

Example: Max Cut on K_{2}

- $X=\{1,2\}, \mathcal{F}=2^{X}, P(\mathcal{F})=[0,1]^{2}$.
- $f(S)=1$ if $|S|=1$, otherwise 0 .
- Symmetric under $\mathcal{G}=\mathbb{S}_{2}$, all permutations of 2 elements.
- For $x=\left(x_{1}, x_{2}\right), \bar{x}=\left(\frac{x_{1}+x_{2}}{2}, \frac{x_{1}+x_{2}}{2}\right)$.

Symmetry gap

Symmetry gap:

$$
\gamma=\frac{\overline{O P T}}{\overline{O P T}}
$$

where

$$
\begin{aligned}
O P T & =\max \{F(x): x \in P(\mathcal{F})\} \\
\overline{O P T} & =\max \{F(\bar{x}): x \in P(\mathcal{F})\}
\end{aligned}
$$

where $F(x)$ is the multilinear extension of f.
Example:

- $O P T=\max \{F(x): x \in P(\mathcal{F})\}=F(1,0)=1$.
- $\overline{O P T}=\max \{F(\bar{x}): x \in P(\mathcal{F})\}=F\left(\frac{1}{2}, \frac{1}{2}\right)=1 / 2$.

Symmetry gap \Rightarrow hardness

Oracle hardness [V. '09]:
For any instance \mathcal{I} of submodular maximization with symmetry gap γ, and any $\epsilon>0,(\gamma+\epsilon)$-approximation for a class of instances produced by "blowing up" I would require exponentially many value queries.

Computational hardness [Dobzinski, V. '12]:
There is no $(\gamma+\epsilon)$-approximation for a certain explicit representation of these instances, unless NP $=R P$.

Symmetry gap \Rightarrow hardness

Oracle hardness [V. '09]:
For any instance \mathcal{I} of submodular maximization with symmetry gap γ, and any $\epsilon>0,(\gamma+\epsilon)$-approximation for a class of instances produced by "blowing up" I would require exponentially many value queries.

Computational hardness [Dobzinski, V. '12]:
There is no $(\gamma+\epsilon)$-approximation for a certain explicit representation of these instances, unless NP $=R P$.

Notes:

- "Blow-up" means expanding the ground set, replacing the objective function by the perturbed one, and extending the feasibility constraint in a natural way.
- Example: $\max \{f(S):|S| \leq 1\}$ on a ground set $[k]$ $\longrightarrow \max \{f(S):|S| \leq n / k\}$ on a ground set $[n]$.

Application 1: nonnegative submodular maximization

- $\max \{f(S): S \subseteq\{1,2\}\}:$ symmetric under \mathbb{S}_{2}.
- Symmetry gap is $\gamma=1 / 2$.
- Refined instances are instances of unconstrained (non-monotone) submodular maximization.

Application 1: nonnegative submodular maximization

- $\max \{f(S): S \subseteq\{1,2\}\}:$ symmetric under \mathbb{S}_{2}.
- Symmetry gap is $\gamma=1 / 2$.
- Refined instances are instances of unconstrained (non-monotone) submodular maximization.
- Theorem implies that a better than 1/2-approximation is impossible (previously known [FMV '07]).

Application 2: submodular welfare maximization

- k items, k players; each player has a valuation function $f(S)=\min \{|S|, 1\}$, symmetric under \mathbb{S}_{k}.

Application 2: submodular welfare maximization

- k items, k players; each player has a valuation function $f(S)=\min \{|S|, 1\}$, symmetric under \mathbb{S}_{k}.
- Optimum allocates 1 item to each player, $O P T=k$.
- $\overline{O P T}=k \cdot F\left(\frac{1}{k}, \frac{1}{k}, \ldots, \frac{1}{k}\right)=k\left(1-\left(1-\frac{1}{k}\right)^{k}\right)$.

Application 2: submodular welfare maximization

- k items, k players; each player has a valuation function $f(S)=\min \{|S|, 1\}$, symmetric under \mathbb{S}_{k}.
- Optimum allocates 1 item to each player, $O P T=k$.
- $\overline{O P T}=k \cdot F\left(\frac{1}{k}, \frac{1}{k}, \ldots, \frac{1}{k}\right)=k\left(1-\left(1-\frac{1}{k}\right)^{k}\right)$.
- \Rightarrow hardness of $\left(1-(1-1 / k)^{k}+\epsilon\right)$-approximation for k players [Mirrokni,Schapira, V. '08]
- (1-(1-1/k) $)$-approximation can be achieved [Feldman,Naor,Schwartz '11]

Application 3: non-monotone submodular over bases

- $X=A \cup B,|A|=|B|=k$,

$$
\mathcal{F}=\{S \subseteq X:|S \cap A|=1,|S \cap B|=k-1\}
$$

- $f(S)=$ number of arcs leaving S; symmetric under \mathbb{S}_{k}.

Application 3: non-monotone submodular over bases

- $X=A \cup B,|A|=|B|=k$,

$$
\mathcal{F}=\{S \subseteq X:|S \cap A|=1,|S \cap B|=k-1\}
$$

- $f(S)=$ number of arcs leaving S; symmetric under \mathbb{S}_{k}.
- $O P T=F(1,0, \ldots, 0 ; 0,1, \ldots, 1)=1$.
- $\overline{O P T}=F\left(\frac{1}{k}, \ldots, \frac{1}{k} ; 1-\frac{1}{k}, \ldots, 1-\frac{1}{k}\right)=\frac{1}{k}$.

Application 3: non-monotone submodular over bases

- $X=A \cup B,|A|=|B|=k$, $\mathcal{F}=\{S \subseteq X:|S \cap A|=1,|S \cap B|=k-1\}$.
- $f(S)=$ number of arcs leaving S; symmetric under \mathbb{S}_{k}.
- $O P T=F(1,0, \ldots, 0 ; 0,1, \ldots, 1)=1$.
- $\overline{O P T}=F\left(\frac{1}{k}, \ldots, \frac{1}{k} ; 1-\frac{1}{k}, \ldots, 1-\frac{1}{k}\right)=\frac{1}{k}$.
- Refined instances: non-monotone submodular maximization over matroid bases, with base packing number $\nu=k /(k-1)$.
- Theorem implies that a better than $\frac{1}{k}$-approximation is impossible.

Symmetry gap \leftrightarrow Integrality gap

In fact: [Ene,V.,Wu '12]

- Symmetry gap is equal to the integrality gap of a related LP.
- In some cases, LP gap gives a matching UG-hardness result.

Symmetry gap \leftrightarrow Integrality gap

In fact: [Ene,V.,Wu '12]

- Symmetry gap is equal to the integrality gap of a related LP.
- In some cases, LP gap gives a matching UG-hardness result.

Example: both gaps are $2-2 / k$ for Node-weighted k-way Cut.

- \Rightarrow No $(2-2 / k+\epsilon)$-approximation for Node-weighted k-way Cut (assuming UGC).
- \Rightarrow No $(2-2 / k+\epsilon)$-approximation for Submodular k-way Partition (in the value oracle model)
- ($2-2 / k$)-approximation can be achieved for both.

Hardness results from symmetry gap (in red)

MONOTONE MAXIMIZATION

Constraint	Approximation	Hardness	hardness ref
$\|S\| \leq k$, matroid	$1-1 / e$	$1-1 / e$	Nemhauser,Wolsey '78
k-player welfare	$1-\left(1-\frac{1}{k}\right)^{k}$	$1-\left(1-\frac{1}{k}\right)^{k}$	Mirrokni,Schapira,V. '08
k matroids	$k+\epsilon$	$\Omega(k / \log k)$	Hazan,Safra,Schwartz'03

NON-MONOTONE MAXIMIZATION

Constraint	Approximation	Hardness	hardness ref
unconstrained	$1 / 2$	$1 / 2$	Feige,Mirrokni,V. '07
$\|S\| \leq k$	$1 / e$	0.49	Oveis-Gharan,V. '11
matroid	$1 / e$	0.48	Oveis-Gharan,V. '11
matroid base	$\frac{1}{2}\left(1-\frac{1}{\nu}\right)$	$1-\frac{1}{\nu}$	V. '09
k matroids	$k+O(1)$	$\Omega(k / \log k)$	Hazan,Safra,Schwartz '03

Where to go next?

Many questions unanswered: optimal approximations, online algorithms, stochastic models, incentive-compatible mechanisms, more powerful oracle models,...

Two meta-questions:

- Is there a maximization problem which is significantly more difficult for monotone submodular functions than for linear functions?
- Can the symmetry gap ratio be always achieved, for problems where the multilinear relaxation can be rounded without loss?

