## Optimization of Submodular Functions Tutorial - lecture II

### Jan Vondrák<sup>1</sup>

<sup>1</sup>IBM Almaden Research Center San Jose, CA

Jan Vondrák (IBM Almaden)

Submodular Optimization Tutorial

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

### Outline

#### Lecture I:

- Submodular functions: what and why?
- Convex aspects: Submodular minimization
- Oncave aspects: Submodular maximization

### Lecture II:

- Hardness of constrained submodular minimization
- Our Constrained submodular maximization
- Hardness more generally: the symmetry gap

## Hardness of constrained submodular minimization

#### We saw:

• Submodular minimization is in P

(without constraints, and also under "parity type" constraints).

< □ > < □ > < □ > < □ >

## Hardness of constrained submodular minimization

#### We saw:

 Submodular minimization is in P (without constraints, and also under "parity type" constraints).

**However:** minimization is brittle and can become very hard to approximate under simple constraints.

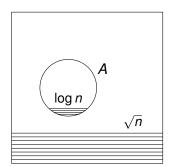
- $\sqrt{\frac{n}{\log n}}$ -hardness for min{ $f(S) : |S| \ge k$ }, Submodular Load Balancing, Submodular Sparsest Cut [Svitkina,Fleischer '09]
- n<sup>Ω(1)</sup>-hardness for Submodular Spanning Tree, Submodular Perfect Matching, Submodular Shortest Path [Goel,Karande,Tripathi,Wang '09]

These hardness results assume the value oracle model: the only access to *f* is through value queries, f(S) = ?

### Superconstant hardness for submodular minimization

**Problem:** min{ $f(S) : |S| \ge k$ }.

Construction of [Goemans, Harvey, Iwata, Mirrokni '09]:



A = random (hidden) set of size  $k = \sqrt{n}$ 

 $f(S) = \min\{\sqrt{n}, |S \setminus A| + \min\{\log n, |S \cap A|\}$ 

**Analysis:** with high probability, a value query does not give any information about  $A \Rightarrow$  an algorithm will return a set of value  $\sqrt{n}$ , while the optimum is log *n*.

### Overview of submodular minimization

#### CONSTRAINED SUBMODULAR MINIMIZATION

| Constraint          | Approximation         | Hardness                            | hardness ref            |
|---------------------|-----------------------|-------------------------------------|-------------------------|
| Vertex cover        | 2                     | 2 [UGC]                             | Khot,Regev '03          |
| k-unif. hitting set | k                     | k [UGC]                             | Khot,Regev '03          |
| k-way partition     | 2 – 2/k               | 2 - 2/k                             | Ene,V.,Wu '12           |
| Facility location   | log n                 | log n                               | Svitkina, Tardos '07    |
| Set cover           | n                     | <i>n/</i> log <sup>2</sup> <i>n</i> | lwata,Nagano '09        |
| $ S  \ge k$         | $\tilde{O}(\sqrt{n})$ | $\tilde{\Omega}(\sqrt{n})$          | Svitkina, Fleischer '09 |
| Sparsest Cut        | $\tilde{O}(\sqrt{n})$ | $\tilde{\Omega}(\sqrt{n})$          | Svitkina, Fleischer '09 |
| Load Balancing      | $\tilde{O}(\sqrt{n})$ | $\tilde{\Omega}(\sqrt{n})$          | Svitkina, Fleischer '09 |
| Shortest path       | $O(n^{2/3})$          | $Ω(n^{2/3})$                        | GKTW '09                |
| Spanning tree       | <i>O</i> ( <i>n</i> ) | Ω( <i>n</i> )                       | GKTW '09                |

イロト イ理ト イヨト イヨト

### Outline

#### Lecture I:

- Submodular functions: what and why?
- Convex aspects: Submodular minimization
- Oncave aspects: Submodular maximization

### Lecture II:

- Hardness of constrained submodular minimization
- Our Constrained submodular maximization
- Hardness more generally: the symmetry gap

## Maximization of a nonnegative submodular function

#### We saw:

• Maximizing a submodular function is NP-hard (Max Cut).

< ロ > < 同 > < 回 > < 回 >

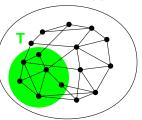
## Maximization of a nonnegative submodular function

#### We saw:

• Maximizing a submodular function is NP-hard (Max Cut).

**Unconstrained submodular maximization:** Given a submodular function  $f : 2^N \to \mathbb{R}_+$ , how well can we approximate the maximum?

Special case - Max Cut:

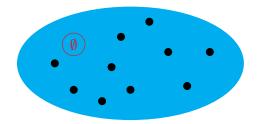


polynomial-time 0.878-approximation [Goemans-Williamson '95], best possible assuming the Unique Games Conjecture [Khot,Kindler, Mossel,O'Donnell '04, Mossel,O'Donnell,Oleszkiewicz '05]

## Unconstrained submodular maximization: $\max_{S \subseteq N} f(S)$ has been resolved recently:

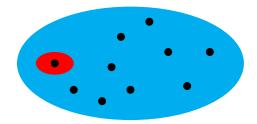
- there is a (randomized) 1/2-approximation [Buchbinder,Feldman,Naor,Schwartz '12]
- (1/2 + ε)-approximation in the value oracle model would require exponentially many queries [Feige,Mirrokni,V. '07]
- (1/2 + ε)-approximation for certain explicitly represented submodular functions would imply NP = RP [Dobzinski,V. '12]

A double-greedy algorithm with two evolving solutions:



Initialize  $A = \emptyset$ , B = everything. In each step, grow A or shrink B. Invariant:  $A \subseteq B$ .

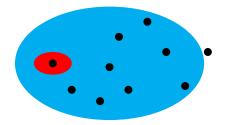
A double-greedy algorithm with two evolving solutions:



Initialize  $A = \emptyset$ , B = everything. In each step, grow A or shrink B. Invariant:  $A \subseteq B$ .

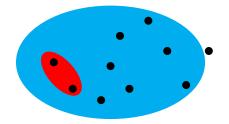
While 
$$A \neq B$$
 {  
Pick  $i \in B \setminus A$ ;  
Let  $\alpha = \max\{f(A + i) - f(A), 0\}, \beta = \max\{f(B - i) - f(B), 0\};$   
With probability  $\frac{\alpha}{\alpha + \beta}$ , include  $i$  in  $A$ ;  
With probability  $\frac{\beta}{\alpha + \beta}$  remove  $i$  from  $B$ ; }

A double-greedy algorithm with two evolving solutions:



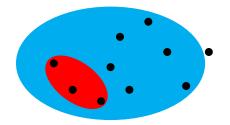
Initialize  $A = \emptyset$ , B =everything. In each step, grow A or shrink B. Invariant:  $A \subseteq B$ .

A double-greedy algorithm with two evolving solutions:



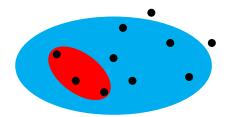
Initialize  $A = \emptyset$ , B =everything. In each step, grow A or shrink B. Invariant:  $A \subseteq B$ .

A double-greedy algorithm with two evolving solutions:



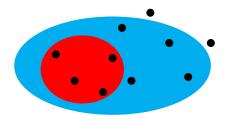
Initialize  $A = \emptyset$ , B = everything. In each step, grow A or shrink B. Invariant:  $A \subseteq B$ .

A double-greedy algorithm with two evolving solutions:



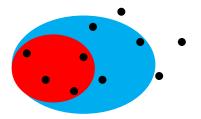
Initialize  $A = \emptyset$ , B =everything. In each step, grow A or shrink B. Invariant:  $A \subseteq B$ .

A double-greedy algorithm with two evolving solutions:



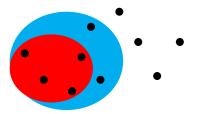
Initialize  $A = \emptyset$ , B =everything. In each step, grow A or shrink B. Invariant:  $A \subseteq B$ .

A double-greedy algorithm with two evolving solutions:



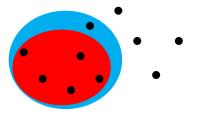
Initialize  $A = \emptyset$ , B = everything. In each step, grow A or shrink B. Invariant:  $A \subseteq B$ .

A double-greedy algorithm with two evolving solutions:



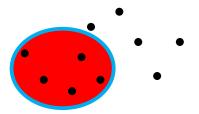
Initialize  $A = \emptyset$ , B = everything. In each step, grow A or shrink B. Invariant:  $A \subseteq B$ .

A double-greedy algorithm with two evolving solutions:



Initialize  $A = \emptyset$ , B = everything. In each step, grow A or shrink B. Invariant:  $A \subseteq B$ .

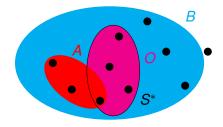
A double-greedy algorithm with two evolving solutions:



Initialize  $A = \emptyset$ , B = everything. In each step, grow A or shrink B. Invariant:  $A \subseteq B$ .

## Analysis of $\frac{1}{2}$ -approximation

*Evolving optimum:*  $O = A \cup (B \cap S^*)$ , where  $S^*$  is the optimum. We track the quantity f(A) + f(B) + 2f(O):

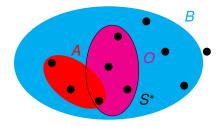


Initially:  $A = \emptyset$ , B = N,  $O = S^*$ .  $f(A) + f(B) + 2f(O) \ge 2 \cdot OPT$ .

At the end: A = B = O = output.  $f(A) + f(B) + 2f(O) = 4 \cdot ALG$ .

## Analysis of $\frac{1}{2}$ -approximation

*Evolving optimum:*  $O = A \cup (B \cap S^*)$ , where  $S^*$  is the optimum. We track the quantity f(A) + f(B) + 2f(O):



Initially:  $A = \emptyset$ , B = N,  $O = S^*$ .  $f(A) + f(B) + 2f(O) \ge 2 \cdot OPT$ .

At the end: A = B = O = output.  $f(A) + f(B) + 2f(O) = 4 \cdot ALG$ .

**Claim:**  $\mathbb{E}[f(A) + f(B) + 2f(O)]$  never decreases in the process. **Proof:** Expected change in f(A) + f(B) + 2f(O) is

$$\frac{\alpha}{\alpha+\beta}\cdot\alpha+\frac{\beta}{\alpha+\beta}\cdot\beta-\frac{2\alpha\beta}{\alpha+\beta}=\frac{(\alpha-\beta)^2}{\alpha+\beta}\geq 0.$$

### Optimality of 1/2 for submodular maximization

How do we prove that 1/2 is optimal? [Feige, Mirrokni, V. '07]

イロト イ理ト イヨト イヨト

## Optimality of 1/2 for submodular maximization

How do we prove that 1/2 is optimal? [Feige, Mirrokni, V. '07]

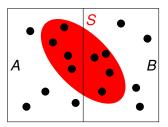
Again, the value oracle model: the only access to f is through value queries, f(S) =?, polynomially many times.

イロト イ押ト イヨト イヨト

How do we prove that 1/2 is optimal? [Feige, Mirrokni, V. '07]

Again, the value oracle model: the only access to f is through value queries, f(S) = ?, polynomially many times.

**Idea:** Construct an instance of optimum  $f(S^*) = 1 - \epsilon$ , so that all the sets an algorithm will ever see have value  $f(S) \le 1/2$ .



$$f(S) = \psi(\frac{|S \cap A|}{|A|}, \frac{|S \cap B|}{|B|})$$

A, B are the intended optimal solutions, but the partition (A, B) is *hard to find*.

### Continuous submodularity:

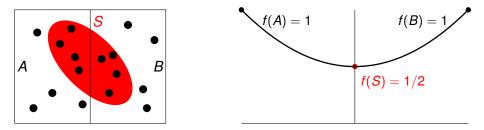
If  $\frac{\partial^2 \psi}{\partial x \partial y} \leq 0$ , then  $f(S) = \psi(\frac{|S \cap A|}{|A|}, \frac{|S \cap B|}{|B|})$  is submodular.

(non-increasing partial derivatives  $\simeq$  non-increasing marginal values)

### Continuous submodularity:

If  $\frac{\partial^2 \psi}{\partial x \partial y} \leq 0$ , then  $f(S) = \psi(\frac{|\hat{S} \cap A|}{|A|}, \frac{|S \cap B|}{|B|})$  is submodular. (non-increasing partial derivatives  $\simeq$  non-increasing marginal values)

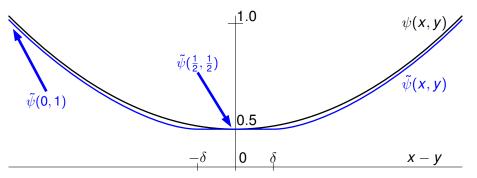
The function will be "roughly":  $\psi(x, y) = x(1 - y) + (1 - x)y$ .



However, it should be hard to find the partition (A, B)!

### The perturbation trick

We modify  $\psi(x, y)$  as follows: (graph restricted to x + y = 1)

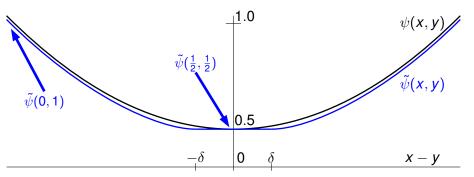


• The function for  $|x - y| < \delta$  is flattened so it depends only on x + y.

< 47 ▶

## The perturbation trick

We modify  $\psi(x, y)$  as follows: (graph restricted to x + y = 1)



- The function for  $|x y| < \delta$  is flattened so it depends only on x + y.
- If the partition (A, B) is random,  $x = \frac{|S \cap A|}{|A|}$  and  $y = \frac{|S \cap B|}{|B|}$  are random variables, with high probability satisfying  $|x y| < \delta$ .
- Hence, an algorithm will never learn any information about (A, B).

Conclusion: for unconstrained submodular maximization,

- The optimum is  $f(A) = f(B) = 1 \epsilon$ .
- An algorithm can only find solutions symmetrically split between  $A, B: |S \cap A| \simeq |S \cap B|$ .
- The value of such solutions is at most 1/2.

Conclusion: for unconstrained submodular maximization,

- The optimum is  $f(A) = f(B) = 1 \epsilon$ .
- An algorithm can only find solutions symmetrically split between  $A, B: |S \cap A| \simeq |S \cap B|$ .
- The value of such solutions is at most 1/2.

### More general view:

- The difficulty here is in distinguishing between symmetric and asymmetric solutions.
- Submodularity is flexible enough that we can hide the asymmetric solutions and force an algorithm to find only symmetric ones.

A (10) > A (10) > A (10)

### Outline

#### Lecture I:

- Submodular functions: what and why?
- Onvex aspects: Submodular minimization
- Oncave aspects: Submodular maximization

### Lecture II:

- Hardness of constrained submodular minimization
- Our Constrained submodular maximization
- Hardness more generally: the symmetry gap

### Symmetric instances

**Symmetric instance:** max{ $f(S) : S \in \mathcal{F}$ } on a ground set *X* is symmetric under a group of permutations  $\mathcal{G} \subset \mathbb{S}(X)$ , if for any  $\sigma \in \mathcal{G}$ ,

- $f(S) = f(\sigma(S))$
- $S \in \mathcal{F} \Leftrightarrow S' \in \mathcal{F}$  whenever  $\overline{\mathbf{1}_S} = \overline{\mathbf{1}_{S'}}$ , where
- $\bar{x} = \mathbb{E}_{\sigma \in \mathcal{G}}[\sigma(x)]$  (symmetrization operation)

< ロ > < 同 > < 回 > < 回 >

### Symmetric instances

**Symmetric instance:** max{ $f(S) : S \in \mathcal{F}$ } on a ground set *X* is symmetric under a group of permutations  $\mathcal{G} \subset \mathbb{S}(X)$ , if for any  $\sigma \in \mathcal{G}$ ,

- $f(S) = f(\sigma(S))$
- $S \in \mathcal{F} \Leftrightarrow S' \in \mathcal{F}$  whenever  $\overline{\mathbf{1}_S} = \overline{\mathbf{1}_{S'}}$ , where
- $\bar{x} = \mathbb{E}_{\sigma \in \mathcal{G}}[\sigma(x)]$  (symmetrization operation)

Example: Max Cut on K2



- $X = \{1, 2\}, \ \mathcal{F} = 2^X, \ \mathcal{P}(\mathcal{F}) = [0, 1]^2.$
- f(S) = 1 if |S| = 1, otherwise 0.
- Symmetric under  $\mathcal{G} = \mathbb{S}_2$ , all permutations of 2 elements.

• For 
$$x = (x_1, x_2), \, \bar{x} = (\frac{x_1 + x_2}{2}, \frac{x_1 + x_2}{2}).$$

< ロ > < 同 > < 回 > < 回 > < 回 >

### Symmetry gap:

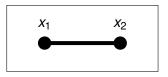
$$\gamma = \frac{\overline{OPT}}{OPT}$$

where

$$OPT = \max\{F(x) : x \in P(\mathcal{F})\}\$$
  
 $\overline{OPT} = \max\{F(\bar{x}) : x \in P(\mathcal{F})\}\$ 

where F(x) is the multilinear extension of f.

Example:



•  $OPT = \max\{F(x) : x \in P(\mathcal{F})\} = F(1,0) = 1.$ •  $\overline{OPT} = \max\{F(\bar{x}) : x \in P(\mathcal{F})\} = F(\frac{1}{2}, \frac{1}{2}) = 1/2.$ 

### Symmetry gap $\Rightarrow$ hardness

### Oracle hardness [V. '09]:

For any instance  $\mathcal{I}$  of submodular maximization with symmetry gap  $\gamma$ , and any  $\epsilon > 0$ ,  $(\gamma + \epsilon)$ -approximation for a class of instances produced by "blowing up"  $\mathcal{I}$  would require exponentially many value queries.

### Computational hardness [Dobzinski, V. '12]:

There is no  $(\gamma + \epsilon)$ -approximation for a certain explicit representation of these instances, unless NP = RP.

イロト イポト イヨト イヨト

### Oracle hardness [V. '09]:

For any instance  $\mathcal{I}$  of submodular maximization with symmetry gap  $\gamma$ , and any  $\epsilon > 0$ ,  $(\gamma + \epsilon)$ -approximation for a class of instances produced by "blowing up"  $\mathcal{I}$  would require exponentially many value queries.

### Computational hardness [Dobzinski, V. '12]:

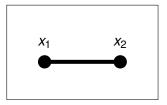
There is no  $(\gamma + \epsilon)$ -approximation for a certain explicit representation of these instances, unless NP = RP.

### Notes:

- "Blow-up" means expanding the ground set, replacing the objective function by the perturbed one, and extending the feasibility constraint in a natural way.
- Example:  $\max\{f(S) : |S| \le 1\}$  on a ground set  $[k] \longrightarrow \max\{f(S) : |S| \le n/k\}$  on a ground set [n].

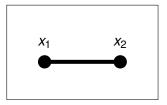
★ 聞 ▶ ★ 臣 ▶ ★ 臣 ▶ …

# Application 1: nonnegative submodular maximization



- max{ $f(S) : S \subseteq \{1,2\}$ }: symmetric under  $\mathbb{S}_2$ .
- Symmetry gap is  $\gamma = 1/2$ .
- Refined instances are instances of unconstrained (non-monotone) submodular maximization.

# Application 1: nonnegative submodular maximization



- max{f(S) :  $S \subseteq \{1,2\}$ }: symmetric under  $\mathbb{S}_2$ .
- Symmetry gap is  $\gamma = 1/2$ .
- Refined instances are instances of unconstrained (non-monotone) submodular maximization.
- Theorem implies that a better than 1/2-approximation is impossible (previously known [FMV '07]).

## Application 2: submodular welfare maximization



• *k* items, *k* players; each player has a valuation function  $f(S) = \min\{|S|, 1\}$ , symmetric under  $\mathbb{S}_k$ .

## Application 2: submodular welfare maximization

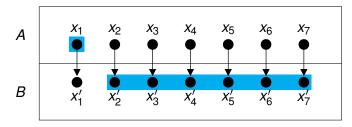
- *k* items, *k* players; each player has a valuation function  $f(S) = \min\{|S|, 1\}$ , symmetric under  $\mathbb{S}_k$ .
- Optimum allocates 1 item to each player, OPT = k.

• 
$$\overline{OPT} = k \cdot F(\frac{1}{k}, \frac{1}{k}, \dots, \frac{1}{k}) = k(1 - (1 - \frac{1}{k})^k).$$

# Application 2: submodular welfare maximization

- *k* items, *k* players; each player has a valuation function  $f(S) = \min\{|S|, 1\}$ , symmetric under  $\mathbb{S}_k$ .
- Optimum allocates 1 item to each player, OPT = k.
- $\overline{OPT} = k \cdot F(\frac{1}{k}, \frac{1}{k}, \dots, \frac{1}{k}) = k(1 (1 \frac{1}{k})^k).$
- $\Rightarrow$  hardness of  $(1 (1 1/k)^k + \epsilon)$ -approximation for k players [Mirrokni,Schapira,V. '08]
- $(1 (1 1/k)^k)$ -approximation can be achieved [Feldman,Naor,Schwartz '11]

## Application 3: non-monotone submodular over bases

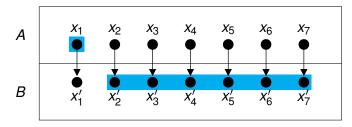


• 
$$X = A \cup B, |A| = |B| = k,$$
  
 $\mathcal{F} = \{S \subseteq X : |S \cap A| = 1, |S \cap B| = k - 1\}.$ 

• f(S) = number of arcs leaving *S*; symmetric under  $\mathbb{S}_k$ .

< 4 →

## Application 3: non-monotone submodular over bases



• 
$$X = A \cup B, |A| = |B| = k,$$
  
 $\mathcal{F} = \{S \subseteq X : |S \cap A| = 1, |S \cap B| = k - 1\}.$ 

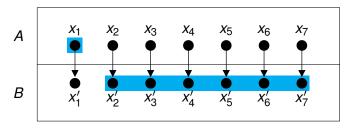
• f(S) = number of arcs leaving *S*; symmetric under  $\mathbb{S}_k$ .

• OPT = F(1, 0, ..., 0; 0, 1, ..., 1) = 1.

• 
$$\overline{OPT} = F(\frac{1}{k}, \ldots, \frac{1}{k}; 1 - \frac{1}{k}, \ldots, 1 - \frac{1}{k}) = \frac{1}{k}.$$

- ∢ ∃ ▶

# Application 3: non-monotone submodular over bases



• 
$$X = A \cup B, |A| = |B| = k,$$
  
 $\mathcal{F} = \{S \subseteq X : |S \cap A| = 1, |S \cap B| = k - 1\}.$ 

- f(S) = number of arcs leaving *S*; symmetric under  $\mathbb{S}_k$ .
- OPT = F(1, 0, ..., 0; 0, 1, ..., 1) = 1.

• 
$$\overline{OPT} = F(\frac{1}{k}, \ldots, \frac{1}{k}; 1 - \frac{1}{k}, \ldots, 1 - \frac{1}{k}) = \frac{1}{k}$$

- Refined instances: non-monotone submodular maximization over matroid bases, with base packing number  $\nu = k/(k-1)$ .
- Theorem implies that a better than  $\frac{1}{k}$ -approximation is impossible.

#### In fact: [Ene,V.,Wu '12]

- Symmetry gap is equal to the integrality gap of a related LP.
- In some cases, LP gap gives a matching UG-hardness result.

### In fact: [Ene,V.,Wu '12]

- Symmetry gap is equal to the integrality gap of a related LP.
- In some cases, LP gap gives a matching UG-hardness result.

*Example:* both gaps are 2 - 2/k for Node-weighted *k*-way Cut.

- $\Rightarrow$  No  $(2 2/k + \epsilon)$ -approximation for Node-weighted *k*-way Cut (assuming UGC).
- ⇒ No (2 2/k + ϵ)-approximation for Submodular k-way Partition (in the value oracle model)
- (2-2/k)-approximation can be achieved for both.

< □ > < 同 > < 回 > < 回 > .

# Hardness results from symmetry gap (in red)

#### MONOTONE MAXIMIZATION

| Constraint               | Approximation             | Hardness                  | hardness ref               |
|--------------------------|---------------------------|---------------------------|----------------------------|
| $ S  \leq k$ , matroid   | 1 – 1/ <i>e</i>           | 1 – 1/ <i>e</i>           | Nemhauser,Wolsey '78       |
| <i>k</i> -player welfare | $1 - (1 - \frac{1}{k})^k$ | $1 - (1 - \frac{1}{k})^k$ | Mirrokni, Schapira, V. '08 |
| k matroids               | $k + \epsilon$            | $\Omega(k/\log k)$        | Hazan,Safra,Schwartz'03    |

#### NON-MONOTONE MAXIMIZATION

| Constraint    | Approximation                  | Hardness            | hardness ref             |
|---------------|--------------------------------|---------------------|--------------------------|
| unconstrained | 1/2                            | 1/2                 | Feige,Mirrokni,V. '07    |
| $ S  \leq k$  | 1/e                            | 0.49                | Oveis-Gharan, V. '11     |
| matroid       | 1/e                            | 0.48                | Oveis-Gharan,V. '11      |
| matroid base  | $\frac{1}{2}(1-\frac{1}{\nu})$ | $1 - \frac{1}{\nu}$ | V. '09                   |
| k matroids    | k + O(1)                       | $\Omega(k/\log k)$  | Hazan,Safra,Schwartz '03 |

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

*Many questions unanswered:* optimal approximations, online algorithms, stochastic models, incentive-compatible mechanisms, more powerful oracle models,...

#### Two meta-questions:

- Is there a maximization problem which is significantly more difficult for monotone submodular functions than for linear functions?
- Can the symmetry gap ratio be always achieved, for problems where the multilinear relaxation can be rounded without loss?