Optimization of Submodular Functions Tutorial - lecture II

Jan Vondrák¹

¹IBM Almaden Research Center San Jose, CA

Jan Vondrák (IBM Almaden)

Submodular Optimization Tutorial

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

Lecture I:

- Submodular functions: what and why?
- Convex aspects: Submodular minimization
- Oncave aspects: Submodular maximization

Lecture II:

- Hardness of constrained submodular minimization
- Our Constrained submodular maximization
- Hardness more generally: the symmetry gap

Hardness of constrained submodular minimization

We saw:

• Submodular minimization is in P

(without constraints, and also under "parity type" constraints).

< □ > < □ > < □ > < □ >

Hardness of constrained submodular minimization

We saw:

 Submodular minimization is in P (without constraints, and also under "parity type" constraints).

However: minimization is brittle and can become very hard to approximate under simple constraints.

- $\sqrt{\frac{n}{\log n}}$ -hardness for min{ $f(S) : |S| \ge k$ }, Submodular Load Balancing, Submodular Sparsest Cut [Svitkina,Fleischer '09]
- n^{Ω(1)}-hardness for Submodular Spanning Tree, Submodular Perfect Matching, Submodular Shortest Path [Goel,Karande,Tripathi,Wang '09]

These hardness results assume the value oracle model: the only access to *f* is through value queries, f(S) = ?

Superconstant hardness for submodular minimization

Problem: min{ $f(S) : |S| \ge k$ }.

Construction of [Goemans, Harvey, Iwata, Mirrokni '09]:

A = random (hidden) set of size $k = \sqrt{n}$

 $f(S) = \min\{\sqrt{n}, |S \setminus A| + \min\{\log n, |S \cap A|\}$

Analysis: with high probability, a value query does not give any information about $A \Rightarrow$ an algorithm will return a set of value \sqrt{n} , while the optimum is log *n*.

Overview of submodular minimization

CONSTRAINED SUBMODULAR MINIMIZATION

Constraint	Approximation	Hardness	hardness ref
Vertex cover	2	2 [UGC]	Khot,Regev '03
k-unif. hitting set	k	k [UGC]	Khot,Regev '03
k-way partition	2 – 2/k	2 - 2/k	Ene,V.,Wu '12
Facility location	log n	log n	Svitkina, Tardos '07
Set cover	n	<i>n/</i> log ² <i>n</i>	lwata,Nagano '09
$ S \ge k$	$\tilde{O}(\sqrt{n})$	$\tilde{\Omega}(\sqrt{n})$	Svitkina, Fleischer '09
Sparsest Cut	$\tilde{O}(\sqrt{n})$	$\tilde{\Omega}(\sqrt{n})$	Svitkina, Fleischer '09
Load Balancing	$\tilde{O}(\sqrt{n})$	$\tilde{\Omega}(\sqrt{n})$	Svitkina, Fleischer '09
Shortest path	$O(n^{2/3})$	$Ω(n^{2/3})$	GKTW '09
Spanning tree	<i>O</i> (<i>n</i>)	Ω(<i>n</i>)	GKTW '09

イロト イ理ト イヨト イヨト

Outline

Lecture I:

- Submodular functions: what and why?
- Convex aspects: Submodular minimization
- Oncave aspects: Submodular maximization

Lecture II:

- Hardness of constrained submodular minimization
- Our Constrained submodular maximization
- Hardness more generally: the symmetry gap

Maximization of a nonnegative submodular function

We saw:

• Maximizing a submodular function is NP-hard (Max Cut).

< ロ > < 同 > < 回 > < 回 >

Maximization of a nonnegative submodular function

We saw:

• Maximizing a submodular function is NP-hard (Max Cut).

Unconstrained submodular maximization: Given a submodular function $f : 2^N \to \mathbb{R}_+$, how well can we approximate the maximum?

Special case - Max Cut:

polynomial-time 0.878-approximation [Goemans-Williamson '95], best possible assuming the Unique Games Conjecture [Khot,Kindler, Mossel,O'Donnell '04, Mossel,O'Donnell,Oleszkiewicz '05]

Unconstrained submodular maximization: $\max_{S \subseteq N} f(S)$ has been resolved recently:

- there is a (randomized) 1/2-approximation [Buchbinder,Feldman,Naor,Schwartz '12]
- (1/2 + ε)-approximation in the value oracle model would require exponentially many queries [Feige,Mirrokni,V. '07]
- (1/2 + ε)-approximation for certain explicitly represented submodular functions would imply NP = RP [Dobzinski,V. '12]

A double-greedy algorithm with two evolving solutions:

Initialize $A = \emptyset$, B = everything. In each step, grow A or shrink B. Invariant: $A \subseteq B$.

A double-greedy algorithm with two evolving solutions:

Initialize $A = \emptyset$, B = everything. In each step, grow A or shrink B. Invariant: $A \subseteq B$.

While
$$A \neq B$$
 {
Pick $i \in B \setminus A$;
Let $\alpha = \max\{f(A + i) - f(A), 0\}, \beta = \max\{f(B - i) - f(B), 0\};$
With probability $\frac{\alpha}{\alpha + \beta}$, include i in A ;
With probability $\frac{\beta}{\alpha + \beta}$ remove i from B ; }

A double-greedy algorithm with two evolving solutions:

Initialize $A = \emptyset$, B =everything. In each step, grow A or shrink B. Invariant: $A \subseteq B$.

A double-greedy algorithm with two evolving solutions:

Initialize $A = \emptyset$, B =everything. In each step, grow A or shrink B. Invariant: $A \subseteq B$.

A double-greedy algorithm with two evolving solutions:

Initialize $A = \emptyset$, B = everything. In each step, grow A or shrink B. Invariant: $A \subseteq B$.

A double-greedy algorithm with two evolving solutions:

Initialize $A = \emptyset$, B =everything. In each step, grow A or shrink B. Invariant: $A \subseteq B$.

A double-greedy algorithm with two evolving solutions:

Initialize $A = \emptyset$, B =everything. In each step, grow A or shrink B. Invariant: $A \subseteq B$.

A double-greedy algorithm with two evolving solutions:

Initialize $A = \emptyset$, B = everything. In each step, grow A or shrink B. Invariant: $A \subseteq B$.

A double-greedy algorithm with two evolving solutions:

Initialize $A = \emptyset$, B = everything. In each step, grow A or shrink B. Invariant: $A \subseteq B$.

A double-greedy algorithm with two evolving solutions:

Initialize $A = \emptyset$, B = everything. In each step, grow A or shrink B. Invariant: $A \subseteq B$.

A double-greedy algorithm with two evolving solutions:

Initialize $A = \emptyset$, B = everything. In each step, grow A or shrink B. Invariant: $A \subseteq B$.

Analysis of $\frac{1}{2}$ -approximation

Evolving optimum: $O = A \cup (B \cap S^*)$, where S^* is the optimum. We track the quantity f(A) + f(B) + 2f(O):

Initially: $A = \emptyset$, B = N, $O = S^*$. $f(A) + f(B) + 2f(O) \ge 2 \cdot OPT$.

At the end: A = B = O = output. $f(A) + f(B) + 2f(O) = 4 \cdot ALG$.

Analysis of $\frac{1}{2}$ -approximation

Evolving optimum: $O = A \cup (B \cap S^*)$, where S^* is the optimum. We track the quantity f(A) + f(B) + 2f(O):

Initially: $A = \emptyset$, B = N, $O = S^*$. $f(A) + f(B) + 2f(O) \ge 2 \cdot OPT$.

At the end: A = B = O = output. $f(A) + f(B) + 2f(O) = 4 \cdot ALG$.

Claim: $\mathbb{E}[f(A) + f(B) + 2f(O)]$ never decreases in the process. **Proof:** Expected change in f(A) + f(B) + 2f(O) is

$$\frac{\alpha}{\alpha+\beta}\cdot\alpha+\frac{\beta}{\alpha+\beta}\cdot\beta-\frac{2\alpha\beta}{\alpha+\beta}=\frac{(\alpha-\beta)^2}{\alpha+\beta}\geq 0.$$

Optimality of 1/2 for submodular maximization

How do we prove that 1/2 is optimal? [Feige, Mirrokni, V. '07]

イロト イ理ト イヨト イヨト

Optimality of 1/2 for submodular maximization

How do we prove that 1/2 is optimal? [Feige, Mirrokni, V. '07]

Again, the value oracle model: the only access to f is through value queries, f(S) =?, polynomially many times.

イロト イ押ト イヨト イヨト

How do we prove that 1/2 is optimal? [Feige, Mirrokni, V. '07]

Again, the value oracle model: the only access to f is through value queries, f(S) = ?, polynomially many times.

Idea: Construct an instance of optimum $f(S^*) = 1 - \epsilon$, so that all the sets an algorithm will ever see have value $f(S) \le 1/2$.

$$f(S) = \psi(\frac{|S \cap A|}{|A|}, \frac{|S \cap B|}{|B|})$$

A, B are the intended optimal solutions, but the partition (A, B) is *hard to find*.

Continuous submodularity:

If $\frac{\partial^2 \psi}{\partial x \partial y} \leq 0$, then $f(S) = \psi(\frac{|S \cap A|}{|A|}, \frac{|S \cap B|}{|B|})$ is submodular.

(non-increasing partial derivatives \simeq non-increasing marginal values)

Continuous submodularity:

If $\frac{\partial^2 \psi}{\partial x \partial y} \leq 0$, then $f(S) = \psi(\frac{|\hat{S} \cap A|}{|A|}, \frac{|S \cap B|}{|B|})$ is submodular. (non-increasing partial derivatives \simeq non-increasing marginal values)

The function will be "roughly": $\psi(x, y) = x(1 - y) + (1 - x)y$.

However, it should be hard to find the partition (A, B)!

The perturbation trick

We modify $\psi(x, y)$ as follows: (graph restricted to x + y = 1)

• The function for $|x - y| < \delta$ is flattened so it depends only on x + y.

< 47 ▶

The perturbation trick

We modify $\psi(x, y)$ as follows: (graph restricted to x + y = 1)

- The function for $|x y| < \delta$ is flattened so it depends only on x + y.
- If the partition (A, B) is random, $x = \frac{|S \cap A|}{|A|}$ and $y = \frac{|S \cap B|}{|B|}$ are random variables, with high probability satisfying $|x y| < \delta$.
- Hence, an algorithm will never learn any information about (A, B).

Conclusion: for unconstrained submodular maximization,

- The optimum is $f(A) = f(B) = 1 \epsilon$.
- An algorithm can only find solutions symmetrically split between $A, B: |S \cap A| \simeq |S \cap B|$.
- The value of such solutions is at most 1/2.

Conclusion: for unconstrained submodular maximization,

- The optimum is $f(A) = f(B) = 1 \epsilon$.
- An algorithm can only find solutions symmetrically split between $A, B: |S \cap A| \simeq |S \cap B|$.
- The value of such solutions is at most 1/2.

More general view:

- The difficulty here is in distinguishing between symmetric and asymmetric solutions.
- Submodularity is flexible enough that we can hide the asymmetric solutions and force an algorithm to find only symmetric ones.

A (10) > A (10) > A (10)

Outline

Lecture I:

- Submodular functions: what and why?
- Onvex aspects: Submodular minimization
- Oncave aspects: Submodular maximization

Lecture II:

- Hardness of constrained submodular minimization
- Our Constrained submodular maximization
- Hardness more generally: the symmetry gap

Symmetric instances

Symmetric instance: max{ $f(S) : S \in \mathcal{F}$ } on a ground set *X* is symmetric under a group of permutations $\mathcal{G} \subset \mathbb{S}(X)$, if for any $\sigma \in \mathcal{G}$,

- $f(S) = f(\sigma(S))$
- $S \in \mathcal{F} \Leftrightarrow S' \in \mathcal{F}$ whenever $\overline{\mathbf{1}_S} = \overline{\mathbf{1}_{S'}}$, where
- $\bar{x} = \mathbb{E}_{\sigma \in \mathcal{G}}[\sigma(x)]$ (symmetrization operation)

< ロ > < 同 > < 回 > < 回 >

Symmetric instances

Symmetric instance: max{ $f(S) : S \in \mathcal{F}$ } on a ground set *X* is symmetric under a group of permutations $\mathcal{G} \subset \mathbb{S}(X)$, if for any $\sigma \in \mathcal{G}$,

- $f(S) = f(\sigma(S))$
- $S \in \mathcal{F} \Leftrightarrow S' \in \mathcal{F}$ whenever $\overline{\mathbf{1}_S} = \overline{\mathbf{1}_{S'}}$, where
- $\bar{x} = \mathbb{E}_{\sigma \in \mathcal{G}}[\sigma(x)]$ (symmetrization operation)

Example: Max Cut on K2

- $X = \{1, 2\}, \ \mathcal{F} = 2^X, \ \mathcal{P}(\mathcal{F}) = [0, 1]^2.$
- f(S) = 1 if |S| = 1, otherwise 0.
- Symmetric under $\mathcal{G} = \mathbb{S}_2$, all permutations of 2 elements.

• For
$$x = (x_1, x_2), \, \bar{x} = (\frac{x_1 + x_2}{2}, \frac{x_1 + x_2}{2}).$$

< ロ > < 同 > < 回 > < 回 > < 回 >

Symmetry gap:

$$\gamma = \frac{\overline{OPT}}{OPT}$$

where

$$OPT = \max\{F(x) : x \in P(\mathcal{F})\}\$$

 $\overline{OPT} = \max\{F(\bar{x}) : x \in P(\mathcal{F})\}\$

where F(x) is the multilinear extension of f.

Example:

• $OPT = \max\{F(x) : x \in P(\mathcal{F})\} = F(1,0) = 1.$ • $\overline{OPT} = \max\{F(\bar{x}) : x \in P(\mathcal{F})\} = F(\frac{1}{2}, \frac{1}{2}) = 1/2.$

Symmetry gap \Rightarrow hardness

Oracle hardness [V. '09]:

For any instance \mathcal{I} of submodular maximization with symmetry gap γ , and any $\epsilon > 0$, $(\gamma + \epsilon)$ -approximation for a class of instances produced by "blowing up" \mathcal{I} would require exponentially many value queries.

Computational hardness [Dobzinski, V. '12]:

There is no $(\gamma + \epsilon)$ -approximation for a certain explicit representation of these instances, unless NP = RP.

イロト イポト イヨト イヨト

Oracle hardness [V. '09]:

For any instance \mathcal{I} of submodular maximization with symmetry gap γ , and any $\epsilon > 0$, $(\gamma + \epsilon)$ -approximation for a class of instances produced by "blowing up" \mathcal{I} would require exponentially many value queries.

Computational hardness [Dobzinski, V. '12]:

There is no $(\gamma + \epsilon)$ -approximation for a certain explicit representation of these instances, unless NP = RP.

Notes:

- "Blow-up" means expanding the ground set, replacing the objective function by the perturbed one, and extending the feasibility constraint in a natural way.
- Example: $\max\{f(S) : |S| \le 1\}$ on a ground set $[k] \longrightarrow \max\{f(S) : |S| \le n/k\}$ on a ground set [n].

★ 聞 ▶ ★ 臣 ▶ ★ 臣 ▶ …

Application 1: nonnegative submodular maximization

- max{ $f(S) : S \subseteq \{1,2\}$ }: symmetric under \mathbb{S}_2 .
- Symmetry gap is $\gamma = 1/2$.
- Refined instances are instances of unconstrained (non-monotone) submodular maximization.

Application 1: nonnegative submodular maximization

- max{f(S) : $S \subseteq \{1,2\}$ }: symmetric under \mathbb{S}_2 .
- Symmetry gap is $\gamma = 1/2$.
- Refined instances are instances of unconstrained (non-monotone) submodular maximization.
- Theorem implies that a better than 1/2-approximation is impossible (previously known [FMV '07]).

Application 2: submodular welfare maximization

• *k* items, *k* players; each player has a valuation function $f(S) = \min\{|S|, 1\}$, symmetric under \mathbb{S}_k .

Application 2: submodular welfare maximization

- *k* items, *k* players; each player has a valuation function $f(S) = \min\{|S|, 1\}$, symmetric under \mathbb{S}_k .
- Optimum allocates 1 item to each player, OPT = k.

•
$$\overline{OPT} = k \cdot F(\frac{1}{k}, \frac{1}{k}, \dots, \frac{1}{k}) = k(1 - (1 - \frac{1}{k})^k).$$

Application 2: submodular welfare maximization

- *k* items, *k* players; each player has a valuation function $f(S) = \min\{|S|, 1\}$, symmetric under \mathbb{S}_k .
- Optimum allocates 1 item to each player, OPT = k.
- $\overline{OPT} = k \cdot F(\frac{1}{k}, \frac{1}{k}, \dots, \frac{1}{k}) = k(1 (1 \frac{1}{k})^k).$
- \Rightarrow hardness of $(1 (1 1/k)^k + \epsilon)$ -approximation for k players [Mirrokni,Schapira,V. '08]
- $(1 (1 1/k)^k)$ -approximation can be achieved [Feldman,Naor,Schwartz '11]

Application 3: non-monotone submodular over bases

•
$$X = A \cup B, |A| = |B| = k,$$

 $\mathcal{F} = \{S \subseteq X : |S \cap A| = 1, |S \cap B| = k - 1\}.$

• f(S) = number of arcs leaving *S*; symmetric under \mathbb{S}_k .

< 4 →

Application 3: non-monotone submodular over bases

•
$$X = A \cup B, |A| = |B| = k,$$

 $\mathcal{F} = \{S \subseteq X : |S \cap A| = 1, |S \cap B| = k - 1\}.$

• f(S) = number of arcs leaving *S*; symmetric under \mathbb{S}_k .

• OPT = F(1, 0, ..., 0; 0, 1, ..., 1) = 1.

•
$$\overline{OPT} = F(\frac{1}{k}, \ldots, \frac{1}{k}; 1 - \frac{1}{k}, \ldots, 1 - \frac{1}{k}) = \frac{1}{k}.$$

- ∢ ∃ ▶

Application 3: non-monotone submodular over bases

•
$$X = A \cup B, |A| = |B| = k,$$

 $\mathcal{F} = \{S \subseteq X : |S \cap A| = 1, |S \cap B| = k - 1\}.$

- f(S) = number of arcs leaving *S*; symmetric under \mathbb{S}_k .
- OPT = F(1, 0, ..., 0; 0, 1, ..., 1) = 1.

•
$$\overline{OPT} = F(\frac{1}{k}, \ldots, \frac{1}{k}; 1 - \frac{1}{k}, \ldots, 1 - \frac{1}{k}) = \frac{1}{k}$$

- Refined instances: non-monotone submodular maximization over matroid bases, with base packing number $\nu = k/(k-1)$.
- Theorem implies that a better than $\frac{1}{k}$ -approximation is impossible.

In fact: [Ene,V.,Wu '12]

- Symmetry gap is equal to the integrality gap of a related LP.
- In some cases, LP gap gives a matching UG-hardness result.

In fact: [Ene,V.,Wu '12]

- Symmetry gap is equal to the integrality gap of a related LP.
- In some cases, LP gap gives a matching UG-hardness result.

Example: both gaps are 2 - 2/k for Node-weighted *k*-way Cut.

- \Rightarrow No $(2 2/k + \epsilon)$ -approximation for Node-weighted *k*-way Cut (assuming UGC).
- ⇒ No (2 2/k + ϵ)-approximation for Submodular k-way Partition (in the value oracle model)
- (2-2/k)-approximation can be achieved for both.

< □ > < 同 > < 回 > < 回 > .

Hardness results from symmetry gap (in red)

MONOTONE MAXIMIZATION

Constraint	Approximation	Hardness	hardness ref
$ S \leq k$, matroid	1 – 1/ <i>e</i>	1 – 1/ <i>e</i>	Nemhauser,Wolsey '78
<i>k</i> -player welfare	$1 - (1 - \frac{1}{k})^k$	$1 - (1 - \frac{1}{k})^k$	Mirrokni, Schapira, V. '08
k matroids	$k + \epsilon$	$\Omega(k/\log k)$	Hazan,Safra,Schwartz'03

NON-MONOTONE MAXIMIZATION

Constraint	Approximation	Hardness	hardness ref
unconstrained	1/2	1/2	Feige,Mirrokni,V. '07
$ S \leq k$	1/e	0.49	Oveis-Gharan, V. '11
matroid	1/e	0.48	Oveis-Gharan,V. '11
matroid base	$\frac{1}{2}(1-\frac{1}{\nu})$	$1 - \frac{1}{\nu}$	V. '09
k matroids	k + O(1)	$\Omega(k/\log k)$	Hazan,Safra,Schwartz '03

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Many questions unanswered: optimal approximations, online algorithms, stochastic models, incentive-compatible mechanisms, more powerful oracle models,...

Two meta-questions:

- Is there a maximization problem which is significantly more difficult for monotone submodular functions than for linear functions?
- Can the symmetry gap ratio be always achieved, for problems where the multilinear relaxation can be rounded without loss?