Optimization of Submodular Functions

Tutorial - lecture Il

Jan Vondrak'

1IBM Almaden Research Center
San Jose, CA

Jan Vondrak (IBM Almaden) Submodular Optimization Tutorial 1/24



Lecture I:

@ Submodular functions: what and why?
@ Convex aspects: Submodular minimization
© Concave aspects: Submodular maximization

Lecture Il:

@ Hardness of constrained submodular minimization
@ Unconstrained submodular maximization
© Hardness more generally: the symmetry gap
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Hardness of constrained submodular minimization

We saw:

@ Submodular minimization is in P
(without constraints, and also under "parity type" constraints).
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Hardness of constrained submodular minimization

We saw:

@ Submodular minimization is in P
(without constraints, and also under "parity type" constraints).

However: minimization is brittle and can become very hard to
approximate under simple constraints.

° 1/%;hardness for min{f(S) : |S| > k}, Submodular Load

Balancing, Submodular Sparsest Cut [Svitkina,Fleischer '09]

e n()-hardness for Submodular Spanning Tree, Submodular
Perfect Matching, Submodular Shortest Path
[Goel,Karande, Tripathi,Wang '09]

These hardness results assume the value oracle model: the only
access to f is through value queries, f(S) =?
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Superconstant hardness for submodular minimization

Problem: min{f(S) : |S| > k}.

Construction of [Goemans,Harvey,lwata,Mirrokni '09]:

A = random (hidden) set of size k = /n

f(S) = min{\/n,|S \ Al + min{log n,|SN A}

Analysis: with high probability, a value query does not give any
information about A = an algorithm will return a set of value /n, while
the optimum is log n.
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Overview of submodular minimization

CONSTRAINED SUBMODULAR MINIMIZATION

|| Approximation | Hardness |

hardness ref

| Constraint
Vertex cover 2 2 1uae Khot,Regev '03
k-unif. hitting set k K uac) Khot,Regev '03
k-way partition 2-2/k 2-2/k Ene,V.,Wu 12
Facility location log n logn Svitkina, Tardos '07
Set cover n n/ Iog2 n | Iwata,Nagano '09
S| > k O(v/n) Q(v/n) | Svitkina,Fleischer '09
Sparsest Cut O(v/n) Q(+v/n) | Svitkina,Fleischer '09
Load Balancing O(v/n) Q(v/n) | Svitkina,Fleischer '09
Shortest path O(n?/3) Q(n?/3) GKTW *09
Spanning tree O(n) Q(n) GKTW 09
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Lecture I:

@ Submodular functions: what and why?
@ Convex aspects: Submodular minimization
© Concave aspects: Submodular maximization

Lecture Il:

@ Hardness of constrained submodular minimization
@ Unconstrained submodular maximization
© Hardness more generally: the symmetry gap
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Maximization of a nonnegative submodular function

We saw:
@ Maximizing a submodular function is NP-hard (Max Cut).
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Maximization of a nonnegative submodular function

We saw:
@ Maximizing a submodular function is NP-hard (Max Cut).

Unconstrained submodular maximization: Given a submodular
function f : 2N — R, how well can we approximate the maximum?

Special case - Max Cut: / T

polynomial-time 0.878-approximation [Goemans-Williamson ’95],
best possible assuming the Unique Games Conjecture [Khot,Kindler,
Mossel,O’'Donnell ’04, Mossel,O’Donnell,Oleszkiewicz '05]
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Optimal approximation for submodular maximization

Unconstrained submodular maximization: maxgscy f(S)
has been resolved recently:

@ there is a (randomized) 1/2-approximation
[Buchbinder,Feldman,Naor,Schwartz '12]

@ (1/2 + ¢)-approximation in the value oracle model would require
exponentially many queries [Feige,Mirrokni,V. '07]

@ (1/2 + ¢)-approximation for certain explicitly represented
submodular functions would imply NP = RP [Dobzinski,V. '12]
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%-approximation for submodular maximization

[Buchbinder,Feldman,Naor,Schwartz ’12]
A double-greedy algorithm with two evolving solutions:
Initialize A = (), B =everything.

In each step, grow A or shrink B.
Invariant: A C B.

While A#B {

Pick i€ B\ A;

Let a=max{f(A+i)— f(A),0}, B =max{f(B—1i)—f(B),0};
With probability QLH?’ include J in A;

With probability remove [ from B;}

B
a+3
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%-approximation for submodular maximization

[Buchbinder,Feldman,Naor,Schwartz ’12]
A double-greedy algorithm with two evolving solutions:
Initialize A = (), B =everything.

In each step, grow A or shrink B.
Invariant: A C B.

While A#B {

Pick i€ B\ A;

Let a=max{f(A+i)—f(A),0}, B =max{f(B—-i)—f(B),0};
With probability CYLH?’ include J in A;

With probability aij-ﬁ remove [ from B;}
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Analysis of 1§—approximation

Evolving optimum: O = AU (BN S*), where S* is the optimum.
We track the quantity f(A) + f(B) + 2f(O):

B
Initially: A=0, B= N, O = S*.
>2

®  f(A)+f(B)+2f(0)>2-OPT.
At the end: A= B = O = output.
f(A)+ f(B) + 2f(0) = 4 - ALG.
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Analysis of 1§—approximation

Evolving optimum: O = AU (BN S*), where S* is the optimum.
We track the quantity f(A) + f(B) + 2f(O):

B
Initially: A=0, B= N, O = S*.
>2

®  f(A)+1(B)+2f(0) > 2 OPT.
At the end: A= B = O = output.
f(A)+ f(B) + 2f(0) = 4 - ALG.

Claim: E[f(A) + f(B) + 2f(O)] never decreases in the process.
Proof: Expected change in f(A) + f(B) + 2f(O) is

o B 208 (a—p)?
a—l—ﬂ'a—i_a-l—ﬁ'ﬁ_a—i-ﬁ_ a+f 2 0.
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Optimality of 1/2 for submodular maximization

How do we prove that 1/2 is optimal? [Feige, Mirrokni, V. 07]
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Optimality of 1/2 for submodular maximization

How do we prove that 1/2 is optimal? [Feige, Mirrokni, V. 07]

Again, the value oracle model: the only access to f is through value
queries, f(S) =7, polynomially many times.
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Optimality of 1/2 for submodular maximization

How do we prove that 1/2 is optimal? [Feige, Mirrokni, V. 07]

Again, the value oracle model: the only access to f is through value
queries, f(S) =7, polynomially many times.

Idea: Construct an instance of optimum f(S*) = 1 — ¢, so that all the
sets an algorithm will ever see have value f(S) < 1/2.

— ., ISDAL |SNB]
f(S) = w(IS3A, 1528

A, B are the intended optimal solutions,
but the partition (A, B) is hard to find.
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Constructing the hard instance

Continuous submodaularity:
2 SnA| |SPBy ;
If 38)(,5@, <0, then f(S) = (! |2| L |g‘ Y is submodular.

(non-increasing partial derivatives ~ non-increasing marginal values)
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Constructing the hard instance

Continuous submodularity:

02 SnA| [SnB|y ;
If 5555 <0, then f(S) = (! a | B Y is submodular.
(non-increasing partial derivatives ~ non-increasing marginal values)

The function will be "roughly”: )(x,y) = x(1 —y)+ (1 — x)y.

f(A) = 1 f(B) = 1

However, it should be hard to find the partition (A, B)!
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The perturbation trick

We modify ¢ (x, y) as follows:
(graph restrictedto x + y = 1)

-0 0 ¢ X—y

@ The function for |x — y| < § is flattened so it depends only on x + y.
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The perturbation trick

We modify ¢ (x, y) as follows:
(graph restrictedto x + y = 1)

—0

0 ¢ X—y

]
T

@ The function for |x — y| < § is flattened so it depends only on x + y.

_ [SnA| |SnB|

@ If the partition (A, B) is random, x A and y = B are
random variables, with high probability satisfying |x — y| < .
@ Hence, an algorithm will never learn any information about (A, B).
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Hardness and symmetry

Conclusion: for unconstrained submodular maximization,
@ The optimum is f(A) = f(B) =1 —e.
@ An algorithm can only find solutions symmetrically split between
A B:|SNA ~|SnB,.
@ The value of such solutions is at most 1/2.
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Hardness and symmetry

Conclusion: for unconstrained submodular maximization,
@ The optimum is f(A) = f(B) =1 —e.
@ An algorithm can only find solutions symmetrically split between
A B:|SNA ~|SnB,.
@ The value of such solutions is at most 1/2.

More general view:

@ The difficulty here is in distinguishing between symmetric and
asymmetric solutions.

@ Submodularity is flexible enough that we can hide the asymmetric
solutions and force an algorithm to find only symmetric ones.
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Lecture I:

@ Submodular functions: what and why?
@ Convex aspects: Submodular minimization
© Concave aspects: Submodular maximization

Lecture Il:

@ Hardness of constrained submodular minimization
@ Unconstrained submodular maximization
© Hardness more generally: the symmetry gap
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Symmetric instances

Symmetric instance: max{f(S) : S € F} on a ground set X is
symmetric under a group of permutations G C S(X), if forany o € G,

o £(S) = (o(S))
@ Sc F < 8§ ¢ Fwhenever 15 = 15, where
@ X = E,cglo(X)] (symmetrization operation)
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Symmetric instances

Symmetric instance: max{f(S) : S € F} on a ground set X is
symmetric under a group of permutations G C S(X), if forany o € G,
e f(S) = f(a(S))
@ Sc F < 8§ ¢ Fwhenever 15 = 15, where
@ X = E,cglo(x)] (symmetrization operation)

Example: Max Cut on Ko

X1 Xo

o9

e X ={1,2}, F=2X, P(F)=[0,1)>

@ f(S)=1if|S| =1, otherwise 0.

@ Symmetric under G = S, all permutations of 2 elements.
@ For x = (xq,X), X = (X%, xalxe)
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Symmetry gap

Symmetry gap:
OPT

7= oPT
where

OPT = max{F(x) : x € P(F)}
OPT = max{F(x) : x € P(F)}
where F(x) is the multilinear extension of f.

Example:

Xq Xo

o

@ OPT =max{F(x):x e P(F)} = F(1,0) =1.
@ OPT = max{F(x):x € P(F)} = F(,%)=1/2.
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Symmetry gap = hardness

Oracle hardness [V. '09]:

For any instance T of submodular maximization with symmetry gap -,
and any € > 0, (v + €)-approximation for a class of instances produced
by "blowing up" T would require exponentially many value queries.

Computational hardness [Dobzinski, V. '12]:

There is no (v + €)-approximation for a certain explicit representation
of these instances, unless NP = RP.
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Symmetry gap = hardness

Oracle hardness [V. '09]:

For any instance T of submodular maximization with symmetry gap -,
and any € > 0, (v + €)-approximation for a class of instances produced
by "blowing up" T would require exponentially many value queries.

Computational hardness [Dobzinski, V. '12]:
There is no (v + €)-approximation for a certain explicit representation
of these instances, unless NP = RP.

Notes:

@ "Blow-up" means expanding the ground set, replacing the
objective function by the perturbed one, and extending the
feasibility constraint in a natural way.

@ Example: max{f(S) : |S| < 1} on a ground set [k]

— max{f(S) : |S| < n/k} on a ground set [n].
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Application 1: nonnegative submodular maximization

Xq Xo

o

@ max{f(S): S C {1,2}}: symmetric under S,.

@ Symmetry gapisy=1/2.

@ Refined instances are instances of unconstrained (non-monotone)
submodular maximization.
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Application 1: nonnegative submodular maximization

Xq Xo

o

@ max{f(S): S C {1,2}}: symmetric under S,.

@ Symmetry gapisy=1/2.

@ Refined instances are instances of unconstrained (non-monotone)
submodular maximization.

@ Theorem implies that a better than 1/2-approximation is
impossible (previously known [FMV °07]).
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Application 2: submodular welfare maximization

X6
.

Xq Xo X3 X4 X

5
@ @ o @ o

@ k items, k players; each player has a valuation function
f(S) = min{|S|, 1}, symmetric under Sy.
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Application 2: submodular welfare maximization

X6
.

Xq Xo X3 X4 X

5
@ @ o @ o

@ k items, k players; each player has a valuation function
f(S) = min{|S|, 1}, symmetric under Sy.

@ Optimum allocates 1 item to each player, OPT = k.

@ OPT =k-F(}.4,....5)=k(1 — (1 = })).
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Application 2: submodular welfare maximization

Xq Xo X3 X4 X5 X6

@ k items, k players; each player has a valuation function
f(S) = min{|S|, 1}, symmetric under Sy.

@ Optimum allocates 1 item to each player, OPT = k.

@ OPT =k-F(}.4,....5)=k(1 — (1 = })).

@ = hardness of (1 — (1 — 1/k) + ¢)-approximation for k players
[Mirrokni,Schapira,V. '08]

@ (1 — (1 —1/k)¥)-approximation can be achieved
[Feldman,Naor,Schwartz '11]
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Application 3: non-monotone submodular over bases

A !?MX?H

@ X=AUB, |A=|Bl=k
F={SCX:|SNA=1,|SNB|=k-1}.
@ f(S) = number of arcs leaving S; symmetric under S.

Jan Vondrak (IBM Almaden) Submodular Optimization Tutorial 21/24
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A !?MX?H

@ X=AUB, |A =B =k
F={SCX:|SNA=1,/SNB|=k 1.

@ f(S) = number of arcs leaving S; symmetric under S.

e OPT = F(1,0,...,0;0,1,...,1) = 1.
@ OPT=F(4,...,pi1— 4,1 -1 =1
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Application 3: non-monotone submodular over bases

A !?MX?H

@ X=AUB, |A=|Bl=k
F={SCX:|SNA=1,|SNB|=k-1}.

@ f(S) = number of arcs leaving S; symmetric under S.

e OPT =F(1,0,...,0;0,1,...,1) = 1.

@ OPT=F(},...., 51 —%.....1— %) =

@ Refined instances: non-monotone submodular maximization over
matroid bases, with base packing number v = k/(k — 1).

@ Theorem implies that a better than %-approximation is impossible.
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Symmetry gap < Integrality gap

In fact: [Ene,V.,.Wu ’12]
@ Symmetry gap is equal to the integrality gap of a related LP.
@ In some cases, LP gap gives a matching UG-hardness result.
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Symmetry gap < Integrality gap

In fact: [Ene,V.,.Wu ’12]
@ Symmetry gap is equal to the integrality gap of a related LP.
@ In some cases, LP gap gives a matching UG-hardness result.

Example: both gaps are 2 — 2/k for Node-weighted k-way Cut.

@ = No (2 — 2/k + ¢)-approximation for Node-weighted k-way Cut
(assuming UGC).

@ = No (2 — 2/k + ¢)-approximation for Submodular k-way Partition
(in the value oracle model)

@ (2 — 2/k)-approximation can be achieved for both.
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Hardness results from symmetry gap (in red)
MONOTONE MAXIMIZATION

| Constraint | Approximation | Hardness | hardness ref
|S| < k, matroid 1-1/e 1-1/e Nemhauser,Wolsey '78
k-player welfare | 1 — (1 — 2)¥ |1 — (1 — })¥| Mirrokni,Schapira,V. 08
k matroids k+e Q(k/log k) | Hazan,Safra,Schwartz’03

NON-MONOTONE MAXIMIZATION

| Constraint || Approximation | Hardness | hardness ref
unconstrained 1/2 1/2 Feige,Mirrokni,V. '07
|S| < k 1/e 0.49 Oveis-Gharan,V. '11
matroid 1/e 0.48 Oveis-Gharan,V. '11
matroid base %(1 - %) 1— % V.’09
k matroids k+O(1) |Q(k/logk) | Hazan,Safra,Schwartz ‘03
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Where to go next?

Many questions unanswered: optimal approximations, online
algorithms, stochastic models, incentive-compatible mechanisms,
more powerful oracle models,...

Two meta-questions:

@ Is there a maximization problem which is significantly more difficult
for monotone submodular functions than for linear functions?

@ Can the symmetry gap ratio be always achieved, for problems
where the multilinear relaxation can be rounded without loss?
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