
DATA-DRIVEN PSP LINKAGES FOR ATOMISTIC DATASETS 
 
 
 
 
 
 
 
 
 
 
 

A Dissertation 
Presented to 

The Academic Faculty 
 
 
 
 

by 
 
 
 

Joshua A. Gomberg 
 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy in the 
School of Materials Science and Engineering 

 
 
 
 
 
 
 

Georgia Institute of Technology 
August 2017 

 
 

COPYRIGHT © 2017 BY JOSHUA A. GOMBERG 
 



DATA-DRIVEN PSP LINKAGES FOR ATOMISTIC DATASETS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved by:   
   
Dr. Surya R. Kalidindi, Advisor 
School of Mechanical Engineering 
Georgia Institute of Technology 

 Dr. David McDowell 
School of Materials Science and 
Engineering 
Georgia Institute of Technology 

   
Dr. Mo Li 
School of Materials Science and 
Engineering 
Georgia Institute of Technology 

 Dr. Ben Haaland 
School of Industrial & Systems 
Engineering 
Georgia Institute of Technology 

   
Dr. Hamid Garmestani 
School of Materials Science and 
Engineering 
Georgia Institute of Technology 

  

   
  Date Approved:  May 11, 2017 

 
  



 

iii 

ACKNOWLEDGEMENTS 

Joshua Gomberg would like to acknowledge Drs. Surya Kalidindi and Andrew 

Medford for their guidance. Additionally, Dr. Srikanth Patala and Drs. Chandler Becker 

and Zachary Trautt contributed simulated data upon which much of this work is based. 

Work was supported by the National Institute for Standards and Technology (No. 

70NANB14H191). 

 

 

 

 

 

 

 

 

  



 iv

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS iii  

LIST OF TABLES vi 

LIST OF FIGURES vii  

LIST OF SYMBOLS AND ABBREVIATIONS x  

SUMMARY xi 

CHAPTER 1. Introduction 1 

CHAPTER 2. Extensions to Existing Framework 8 
2.1 2-Point Statistics for Point Cloud Datasets 8 

2.1.1 Convolution and Cross-Correlation 8 

2.1.2 Atomic Positions as Real-Space Functions 9 

2.1.3 Cross-Correlation of Atomic Position Functions 10 

2.1.4 Accounting for Periodicity 15 

2.1.5 Accounting for Non-Orthogonal Simulation Boxes 17 

2.1.6 Evaluation on a Discrete Grid 18 

2.1.7 Accounting for Changes in Simulation Box Size 20 

2.2 Identification and Characterization of Grain Boundary Structure 22 

2.2.1 Centro-Symmetry Parameter 22 

2.2.2 Grain Boundary Atom Identification 24 

2.2.3 The Pair Correlation Function 27 

2.3 Dimensionality Reduction and Regression using PCA and ASCA 31 

2.3.1 Brief Discussion of ANOVA 31 

2.3.2 Applicability of ANOVA Additive Decomposition to Covariance Matrices 32 
2.3.3 Principal Component Analysis (PCA) 38 

2.3.4 Principal Component Regression 38 

2.3.5 ANOVA Single-Component Analysis (ASCA) 40 

2.3.6 Functional PCA and ASCA 41 

2.3.7 Smoothed PCA/ASCA for Continuous Functions 43 

2.3.8 Smoothed PCA/ASCA for Uniformly Sampled Functions 45 

CHAPTER 3. Interatomic Potential Classification from Simulated Structures 47 

3.1 Overview 47 

3.2 Description of data 47 

3.3 Quantification of atomic structure 50 

3.4 Low-Rank Model Construction 53 

3.5 Results and Discussion 54 

CHAPTER 4. Extension of PSP Paradigm to Atomistic GB Simulations 60 
4.1 Overview 60 

4.2 Description of data 61 



 v

4.3 Identification of grain boundary atoms 62 

4.4 Quantification of grain boundary structure 63 

4.5 Low-Rank Model Construction 65 

4.6 Results and Discussion 67 

CHAPTER 5. PSP Linkages in Symmetric Tilt Grain Boundaries using ASCA 71 

5.1 Overview 71 

5.2 Description of Data 71 

5.3 Quantification of grain boundary structure 73 

5.4 Low-Rank Model Construction 73 

5.5 Results and Discussion 75 

CHAPTER 6. Conclusions 80 

6.1 Relative Importance of Current Work 80 

6.2 Future Work 82 

6.2.1 Methodology 82 

6.2.2 Case Studies 82 

APPENDIX A. Application of Data Science Tools to Quantify and Distinguish 
between Structures and Models in Molecular Dynamics Datasets 85 
A.1  Abstract 85 

A.2  Introduction 86 

A.3  Background: Spatial Correlations 91 

A.4  Extension of Spatial Correlations to MD Datasets 95 
A.5  Application of Spatial Correlations to MD Datasets 101 

A.6  Conclusions 106 

A.7  Acknowledgements 107 

APPENDIX B. Extracting Knowledge from Molecular Mechanics Simulations of 
Grain Boundaries Using Machine Learning 108 
B.1  Abstract 108 

B.2  Introduction 109 

B.3  Dataset 114 

B.4  Approach for Establishing PSP Linkages at the Atomic Scale 115 
B.4.1 Quantification of the Atomic Structure in the GB 115 

B.4.2 Structure-Property Linkages 120 

B.4.3 Process-Structure Linkages 121 

B.5  Results and Discussion 121 

B.6  Conclusions 125 

B.7  Acknowledgements 125 

REFERENCES 127 

 



 vi

LIST OF TABLES 

Table 3.2.1 – List of Al force fields used and their corresponding notation and 
references 

48 

Table 4.2.1  – Details of grain boundary simulations used in this study[40, 80]. 62 

Table 4.6.1 – Regression coefficients of the process-structure models. 68 

Table 5.2.1 – Misorientation angles simulated for each axis 72 

  



 vii  

LIST OF FIGURES 

Figure 2.1.1 – Research interest in multiscale modeling. 1 

Figure 2.1.2 – Time- and length-scales of simulation techniques. 2 

Figure 2.1.1 –  Visualization of the functions ������|�	
 and ������ + ���|�
 which depict 
uniformly dense spheres of radius �	 and � centered at the origin and −���, 
respectively. The volume corresponding to the intersection of these two 
spheres is equal to ��	,����
. 

13 

Figure 2.1.2 –  Triclinic periodic unit cell with tilt factors txy, txz, and tyz., 17 

Figure 2.2.1 – Visualization of oppositely-facing displacement vectors for the centro-
symmetry parameter of an atom in an FCC crystal. 

24 

Figure 3.2.1 – Coordinates of a 4000 atom Al equilibrium simulation at 300 K at 10 ps 
using the force field "'Al-Pb_LandaA_2000." Dots represent atomic centers 
as generated by the simulation. For the purpose of 2-point statistics each 
atom was assigned a radius of 1.18 A, as depicted by the green circles.  
Though not clear in this figure, the structure is crystalline (face centered 
cubic) as expected. 

49 

Figure 3.3.1 – Cross section corresponding to Z=20.24 Å of the corresponding 
discretized microstructure signals constructed in the novel protocols 
described in this paper. The full 3-D discretized images are used to 
calculate the 2-point statistics. 

50 

Figure 3.3.2 – The cross sections of the 2-point statistics of the data set shown in Figure 
3.2.1 corresponding to (a) r1=0, (b) r2=0, and (c) r3=0. The pair correlation 
function of this same structure is depicted in (d). 

51 

Figure 3.3.3 – r3=0 cross sections of the 2-point statistics of the force field 
'Al_SturgeonJB_2000(Al)' at (a) 300 K and (b) 900 K. 

52 

Figure 3.5.1 – The 2-point statistics every 50 ps from 1.05 ns to 2.0 ns of Al simulations 
using the force fields in Table 3.2.1 projected onto the first 3 principal 
components at 300 K (a)  and 900 K (b) . 

54 

Figure 3.5.2 – The dendrograms of centroid distances of the data depicted in Figure 3 at 
300 K (a) and 900 K (b). 

56 

Figure 3.5.3 – Contour plots of the ensemble averaged spatial correlations and the PCA 
basis (eigenvectors) for the datasets shown in Figure 3.5.1(a), each shown 
as three orthogonal cross-sections. 

57 

Figure 3.5.4 – The variation of (a) first principal component and (b) second principal 
component for the averaged 2-point statistics at each temperature. Only the 
mean 2-point statistics at each temperature for each force field were 

58 



 viii  

included in this PCA. 

Figure 3.5.5 – Average atomic volumes from MD simulations of the (a) interatomic 
potentials closest to the experimental reference data, and (b) the four 
interatomic potentials exhibiting the largest deviation from the reference 
values.  The discontinuities reflect phase changes associated with melting. 

59 

Figure 4.1.1 – Workflow employed in this study for establishing PSP linkages in 
simulated ATGBs. 

61 

Figure 4.3.1 – Grain boundary selection procedure. (a) For a Σ9 asymmetric tilt grain 
boundary (ATGB) with an inclination angle (θ) of 22.99°, local quadratic 
regression fit (and corresponding local 2nd derivative) of the square root of 
the centrosymmetry parameter (CS) overlaid with atomic positions of grain 
boundary (GB) and bulk atoms. Dashed lines represent the interface 
between the GB and the bulk. (b) Pair correlation function (PCF) of this 
grain boundary in comparison to that of the perfect crystal. 

63 

Figure 4.5.1 – Structure-property model error as a function of the PCF bandwidth. 65 

Figure 4.5.2 – Principal component analysis of GB PCFs. (a) Percentage of retained 
variance corresponding to the first 10 PCs on a logarithmic scale.  (b) 
eigenvector (���) associated with PC �, for � = 1, 2, 3, and 6, (c) Scores 
associated with PCs 1 and 6.  θ is represented by the color scale. 

66 

Figure 4.6.1 – Illustration of structure-property linkages. (a) Parity plot comparing the 
GB energies from atomistic simulations and the predicted values of GB 
energy from the 2-PC regression model.  θ is represented by the color scale.  
(b) Box-Whisker plot of the mean absolute errors from 1000 instances of 3-
fold cross-validation. The box represents the interquartile range, and the 
dashed ‘whiskers’ have a length 1.5 times that of the interquartile range; 
points outside this range represented as dots are considered outliers. 

67 

Figure 4.6.2 – Illustration of process-structure linkages. (a) the score as a function of θ 
and the model-predicted values for PC 1 and (b) PC 6. Points correspond to 
actual data and the 3rd order polynomial fit is indicated by the dashed line. 

68 

Figure 4.6.3 – Illustration of PSP linkages. (a) Structure-Property linkage: A plane 
representing the fitted regression model overlaid with the GB energy from 
simulation plotted against actual scores for PCs 1 and 6. The color scale 
represents the error of the regression model in mJ/m2.  (b) Process-Structure 
linkage: Continuous value of the predicted PCF as a function of inclination 
angle for a Σ3 ATGB . The color scale represents the deviation from the 
perfect crystal PCF. 

69 

Figure 5.2.1 – GB Energies for each simulation included in the analysis. 73 

Figure 5.4.1 – Examples of ASCA eigenvectors. 74 

Figure 5.4.2 – Retained variance corresponding to the largest ASCA-PCs. 
Misorientation angle corresponds to factor A; misorientation axis serves as 

75 



 ix

factor B. 

Figure 5.5.1 – Mean absolute errors resulting from the inclusion of each next-best set of 
scores in a linear regression model, with corresponding regression 
coefficients. 

76 

Figure 5.5.2 – Parity plot of 3-component linear regression model constructed from �	�,	��, and �	�. 
77 

Figure 5.5.3 – Values of the ASCA scores associated with (a) misorientation angle, with 
corresponding structure-property model and (b) misorientation axis 

78 

 

  



 x

LIST OF SYMBOLS AND ABBREVIATIONS 

ANOVA Analysis of Variance 

ASCA ANOVA Single Component Analysis 

ATGB Asymmetric Tilt Grain Boundary 

CS Centro-Symmetry 

CSL Coincidence Site Lattice 

FEM Finite Element Method 

GB Grain Boundary 

HPC High-Performance Computing 

KDE Kernel Density Estimation 

MD Molecular Dynamics 

MKS Materials Knowledge Systems 

MM Molecular Mechanics 

PC Principal Component 

PCA Principal Component Analysis 

PCF Pair Correlation Function 

PDF Probability Distribution Function 

PSP Process-Structure-Property 

STGB Symmetric Tilt Grain Boundary 

SVD Singular Value Decomposition 



 xi

SUMMARY 

Multiscale modeling provides a class of methods that allow the behavior of 

materials to be characterized using empirical and theoretical models across many length 

scales. This is accomplished through the construction of data-driven learning models that 

distill knowledge pertaining to the relationships among a material’s processing, structure, 

and properties (the PSP paradigm) from these length-scale dependent models. Much of 

the recent progress in the field of multiscale modeling has been focused on analysis of 

mesoscale datasets, where structures are characterized by material composition in 

discretized spatial regions. In these models, the structure is typically quantified using 

descriptors such as the pair correlation function or the 2-point spatial correlations (also 

called the 2-point statistics); an ensemble of these descriptors is then typically 

represented in a low rank form.  

In this work, the multiscale modeling framework is adapted and extended to apply 

to datasets derived from atomistic simulations, with a primary focus on molecular 

mechanics (energy minimized structures) and molecular dynamics (evolution of structure 

with time). In these datasets, structure is described by a list of atomic positions in 

continuous space, which can be classified as point-cloud data. For datasets such as these, 

a method for calculating the discretized 2-point statistics is devised that is independent of 

the simulation box size, which can fluctuate over the course of a molecular dynamics 

simulation. The efficacy of this method is demonstrated in a study where interatomic 

potentials of aluminum are categorized by their resulting simulated structures. For the 

case of grain boundary simulations, an algorithm is described for identifying and 
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characterizing the structure of atoms that lie within the grain boundary. This algorithm is 

implemented in additional analytical studies on two datasets: a set of simulations of 

asymmetric and symmetric tilt grain boundaries where dimensionality reduction is 

respectively achieved using principal component analysis (PCA) and ANOVA single 

component analysis (ASCA), an extension of PCA where prior knowledge is used to 

separately evaluate the covariance structure for different sources of variance within the 

dataset. 
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CHAPTER 1. INTRODUCTION 

 

Figure 2.1.1 – Research interest in multiscale modeling. 

Multiscale modeling [1-4] gives us a class of techniques that address material 

properties ranging from the atomic scale to the continuum. When it comes time to 

manufacture new materials, more detailed structure knowledge allows for far less trial 

and error, which allows new materials to be synthesized quicker and more cheaply.[5] 

Currently, there are three primary areas of concern that hinder widespread application of 

multiscale modeling[6]: the availability of accurate and reliable models (Model 

Maturity), the seamless integrations of models covering multiple length scales (Model 

Interoperability), and the ability to tailor processes in materials synthesis to yield 
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specifically targeted properties (Model Inversion). Interest in multiscale models has been 

steadily increasing for nearly 20 years now, as evidenced by Figure 2.1.1.  

 

Figure 2.1.2 – Time- and length-scales of simulation techniques. 

Remarkable progress in the field of physics-driven models has made possible the 

ability to numerically simulate a broad range of materials phenomena [1-4, 7-17]. 

However, it should be noted that  modeling techniques governed by physics and are only 

valid over a limited range of time- and length-scales.[18]  Figure 2.1.2 above illustrates 

the relevant scales for different simulation techniques. Ab initio modeling techniques 

such as Hartree-Fock or density functional theory are based in quantum mechanics and 

governed by the physics of electrons.[19] Molecular dynamics and mechanics  (MM/MD) 

focus on interactions between atoms[20], and mesoscale models such as dissipative 

particle dynamics[21] are governed between by interactions between segments or groups 
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of atoms. At the continuum level, the finite element method (FEM)[22] solves for 

boundary values of partial differential equations defined on a mesh. It is clear that these 

classes of simulations operate under different sets of assumptions, which is the reason for 

the varying scales of accuracy. 

 A multiscale modeling approach would use simulations on a smaller scale to 

inform, in some way, the structure and properties of a model at a larger scale. This would 

get around the limitations imposed by the assumptions made by each class of simulations. 

However, for such an approach to be effectively utilized, the linkages between 

simulations of different scales should capture as much of the pertinent knowledge as 

possible while still being substantially less computationally expensive than repeatedly re-

running the smaller scale simulations that inform them.  

 An approach such as this requires the development of methods to learn from 

simulations. For the purpose of multiscale modeling of materials, two different types of 

learning models are relevant, which operate under the “process-structure-property” (PSP) 

paradigm. A process-structure model links the conditions under which a material is made 

with some structure-derived metric. A structure-property model connects the structure 

with a material property of interest. Models such as this are not concerned with the 

physics of the underlying simulations. Instead, these linkages are constructed using 

methods informed by data science.[23-26] In other words, it is the data itself and not the 

simulation physics that identifies the important features when linking process to structure, 

or structure to property. Interest in data science is primarily concentrated on distilling  

high value information from all available data, generated by either simulations or 

experiments. This emerging cross-disciplinary field is being built on the foundations of 
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applied mathematics, systems theory, and computational and statistical sciences. Since 

physics is not a factor, similar methods for constructing learning models at one length 

scale should also be applicable for learning at a different length scale. Substantial focus 

has been placed on developing learning models for materials at the mesoscale.[27-33] In 

the proposed work, these methods are adapted and extended to the regime of atomistic 

simulation data, with a particular focus on simulations of grain boundaries (GBs). 

For a variety of materials, atomic-scale modeling techniques such as MM/MD are 

commonly employed as a means of investigating fundamental properties, including both 

structural and chemical responses.[34, 35] In general, MD simulations run on high 

performance computing (HPC) infrastructures can yield vast amounts of pertinent data 

for a wide range of structures and simulation conditions. For  example, an investigation 

of GB motion among 388 simulated nickel GBs identified 15 unique trends [36]. From a 

materials science perspective, the computations underpinning MM/MD simulations can 

be cast as highly complex “process-structure” relationships. In the example of GB 

simulations, the “process” variables would describe the methods that control the 

evolution of the structure, such as the thermodynamic ensemble, force field and applied 

loads, as well as the configurational constraints governing the initial structure, such as the 

macro degrees of freedom.. The “structure” would correspond to the elements, 

configuration and bonding structure of the atoms in a given composition. The concept of 

a “process-structure” relationship for these atomistic simulations would establish a 

quantitative connection between the process inputs of the simulation and the resulting 

atomic-scale structure (output).  There has not yet been a systematic effort focused on the 

extraction of reduced-order “process-structure” linkages capable of rapidly predicting 
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atomic structures as a function of simulation inputs. This class of functions with their 

exceptionally low computational cost offer a unique practical approach for addressing 

inverse problems where one seeks to identify the process recipes that are likely to result 

in a desired atomic structure. 

Another important type of knowledge produced from molecular 

dynamics/mechanics simulations can be described by linkages between atomic-scale 

structure and a relevant property such as the overall system energy; these linkages may be 

categorized as “structure-property” relationships. In the case of GB simulations, GB 

energies play a vital role in the multiscale modeling of materials phenomena, as they 

serve as a key input to simulations at a larger scale (e.g., plasticity, failure, 

recrystallization[34]). While force-field based calculations are significantly less 

computationally expensive than their quantum-mechanical counterparts, the datasets 

often investigated are large in size (103 – 109 atoms) and high-dimensional, and thus 

cumbersome for use in multi-scale models[34, 37]. Some progress has been made in 

training neural network potentials to results of quantum mechanical methods such as 

density functional theory for use in molecular dynamics simulations[38-40] but these 

methods typically require extremely large training sets (103-104 systems).  Data-science 

techniques have also been previously applied for the systematic analysis and knowledge 

extraction from large MM/MD datasets[41-45] with a focus primarily on proteins and 

other large biomolecules. Within the materials science community, there has been 

relatively little effort devoted to a systematic analysis and dimensional reduction of force-

field based simulations. This is of particular importance given the recent rise in 

multiscale and hierarchical methods. [29, 46] 
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It is the goal of this work to adapt the methods for deriving data-driven PSP 

linkages at the mesoscale to datasets generated by atomistic simulation. As the structures 

represented in these datasets consist of atomic positions in continuous space (also called 

“point cloud” datasets), the framework as originally devised for discretized mesoscale 

structures must be modified to address the challenges posed by the nature of the data. The 

first issue to be addressed is the calculation of digitized 2-point statistics for point-cloud 

datasets. This is accomplished by exploiting the properties of convolutions and cross-

correlations, as described in Section 2.1. Focusing on the case of GB simulations, the 

next issue to be addressed is the differentiation of GB atoms from atoms in the bulk 

crystal, as well as an appropriate structure characterization, which is discussed in Section 

2.2. In the case where there exists some prior knowledge of the source of variance within 

a dataset, which is frequently the case for simulated data, dimensionality reduction may 

best be achieved by ANOVA single-component analysis (ASCA)[47, 48], an extension of 

principal component analysis (PCA)[49]. The framework for implementing ASCA, as 

well as the implementation of ASCA and PCA in linear regression models, is discussed 

in Section 2.3. 

The efficacy of these methods is demonstrated in three analytical studies. First, the 

utility of PCA analysis of 2-point statistics of atomic structures generated by MD is 

illustrated in a study where different interatomic potentials are categorized based on 

simulations performed at different temperatures (CHAPTER 3, APPENDIX A). Next, 

process-structure and structure-property models are constructed for a dataset of aluminum 

asymmetric tilt GBs (ATGBs) simulated with MM (Section CHAPTER 4, APPENDIX 
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B). Lastly, these models are further refined by the implementation of ASCA for a dataset 

of MM-simulated symmetric tilt GBs (STGBs) of aluminum (Section CHAPTER 5). 
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CHAPTER 2. EXTENSIONS TO EXISTING FRAMEWORK 

2.1 2-Point Statistics for Point Cloud Datasets 

2.1.1 Convolution and Cross-Correlation 

At a high level, the 2-point statistics function represents the probability of finding 

the structure in state 1 in one location of a material and the structure in state 2 in another 

location separated by some displacement vector ��. At the mesoscale, the states 1 and 2 

typically represent different phases of the material. At the atomic scale, most of the 

volume comprising the material consists of empty space. For these sorts of data sets, the 

states represent if a given location is occupied by vacuum or by an atom of a particular 

element. The 2-point statistics of simulated atomic structures in continuous space can be 

determined explicitly by exploiting the properties of convolution and cross-correlation. 

The convolution and cross-correlation of functions f��
 and g��
 are defined, 

respectively, for � ∈ ℝ� as[50]: 

 �f ∗ g
��
 =  f�!
g�� − !
"!ℝ#  (1) 

 �f ⋆ g
��
 =  f�!
g�� + !
"!ℝ#  (2) 

where f�!
 is the complex conjugate of f�!
. A comprehensive overview of the properties of 

convolutions is beyond the scope of this text. However, there are a few properties that are 
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important to highlight for reasons that will be examined later. Convolutions possess both the 

properties of commutativity and associativity, as demonstrated in Equations 3 and 4 below: 

 �f ∗ g
��
 = �g ∗ f
��
 (3) 

 �f ∗ g
��
 ∗ h��
 = f��
 ∗ �g ∗ h
��
 (4) 

Also, the complex conjugate of the convolution of two functions is equal to the 

convolution of the complex conjugate of two functions: 

 �f ∗ g
��
 = f��
 ∗ g��
 (5) 

Additionally, it is useful to note that a cross-correlation can be expressed in terms of a 

convolution: 

 �f ⋆ g
��
 = f�−�
 ∗ g��
 (6) 

2.1.2 Atomic Positions as Real-Space Functions 

The structure of a material resulting from an atomic simulation consists of a series 

of coordinates in continuous space. Mathematically, this structure may be represented as 

a sum of delta functions, defined such that δ�0
 = 1 and δ�)
 = 0 for ) ≠ 0. If + is the set 

of coordinates in ℝ,corresponding to atom centers of a single element, then the structure 

may be represent0ed as 
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 ι.���|+
 =/δ�‖!� − ��‖
1��∈+  (7) 

where ��� ∈ ℝ, and ‖)�‖ is the Euclidean norm of vector )�. For any practical visualization 

of atomic structure, some finite volume must be assigned to each atom. Perhaps the most 

straightforward approach would be a hard sphere model of uniform density. A uniformly 

dense sphere of radius 2 may be expressed in terms of a Heaviside step function H�)
 as 

 ι4���|2
 = H�2 − ‖��‖
 (8) 

 The continuous mathematical representation of the structure corresponding to a 

single element, where the atoms are represented by spheres, can be expressed as a 

convolution of the two functions described in Equations 7 and 8: 

 ι5���|2, +
 = ι.���|+
 ∗ ι4���|2
 =/H�2 − ‖!� − ��‖
1��∈+  (9) 

2.1.3 Cross-Correlation of Atomic Position Functions 

The unnormalized 2-point statistics function for atoms corresponding to elements 

labeled 1 and 2 (which may be the same element) can be expressed in terms of a cross-

correlation: 

 α57,8���
 = ι5���|27, +7
 ⋆ ι5���|28, +8
 (10) 
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where +7 and +8 are the sets of atomic coordinates and 27 and 28 are the atomic radii 

corresponding to elements 1 and 2, respectively. Substituting Equation 9 into Equation 10 

yields: 

 α57,8���
 = 9ι.���|+7
 ∗ ι4���|27
: ⋆ 9ι.���|+8
 ∗ ι4���|28
: (11) 

 Employing the properties described in Equations 5 and 6 allows α57,8 to be 

represented strictly in terms of convolutions: 

 α57,8���
 = ;ι.�−��|+7
 ∗ ι4�−��|27
< ∗ 9ι.���|+8
 ∗ ι4���|28
: (12) 

 Rearranging the parenthetical groups as permitted by Equation 4 yields: 

 α57,8���
 = ι.�−��|+7
 ∗ ;ι4�−��|27
 ∗ ι.���|+8
< ∗ ι4���|28
 (13) 

 The commutative property demonstrated in Equation 3 allows for the reordering 

of the terms in parenthesis: 

 α57,8���
 = ι.�−��|+7
 ∗ ;ι.���|+8
 ∗ ι4�−��|27
< ∗ ι4���|28
 (14) 

 Reapplying the associative property described in Equation 4 produces the 

following result: 
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 α57,8���
 = ;ι.�−��|+7
 ∗ ι.���|+8
< ∗ ;ι4�−��|27
 ∗ ι4���|28
< (15) 

 Finally, reapplying Equation 6 allows us to express α57,8 in terms of the 

convolution of two cross-correlations: 

 α57,8���
 = =α.7,8 ∗ α47,8>���
 (16) 

Where the functions α.7,8 and α47,8 are defined, respectively, as: 

 α.7,8���
 = ι.���|+7
 ⋆ ι.���|+8
 (17) 

 α47,8���
 = ι4���|27
 ⋆ ι4���|28
 (18) 

 α.7,8 represents the cross-correlation of the atomic centers. Using Equation 2, we 

can express this as: 

 α.7,8���
 =  ι.�!�|+7
ℝ? ι.��� + !�|+8
"!� (19) 

Substituting Equation 7 into Equation 19 yields the expression for α.7,8: 
 α.7,8���
 = / / δ�‖!�8 − !�7 − ��‖
1��@∈+@1��A∈+A

 (20) 

 α47,8 represents the cross-correlation of two spheres of radius 27 and 28: 
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 α47,8���
 =  ι4�!�|27
ℝ? ι4��� + !�|28
"!� (21) 

 In Equations 19 and 21, ι.	and ι4 are real functions, so the notation for the 

complex conjugate has been omitted. It can be intuited from Equation 21 that α47,8 is 

equivalent to the volume of the intersection of two spheres, as depicted in Figure 2.1.1. 

 

Figure 2.1.1 –  Visualization of the functions ������|�	
 and ������ + ���|�
 which depict 
uniformly dense spheres of radius �	 and � centered at the origin and −���, 
respectively. The volume corresponding to the intersection of these two spheres is 
equal to ��	,����
. 
 The volume of the intersection can be calculated geometrically. A point B� ∈ ℝ, 
defined to be on the sphere surface in the plane of intersection must satisfy the following 

conditions: 
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 B� ∙ B� = 278 (22) 

 �B� + ��
 ∙ �B� + ��
 = 288 (23) 

 Assuming there is an intersection of at least one point on the two spheres (i.e., 

‖��‖ ≤ 27 + 28), the distance from the sphere centers to the plane of intersection can be 

found by substituting Equation 22 into 23 and expanding: 

 "7 = −B� ∙ �� ‖��‖⁄ = �‖��‖8 − 288 + 278
 2‖��‖⁄  (24) 

 "8 = ‖��‖ − "7 = �‖��‖8 − 278 + 288
 2‖��‖⁄  (25) 

 The volume specified by α47,8 can be expressed as the sum of two spherical caps: 

 α47,8���
 = VHIJ�ℎ7|27
 + VHIJ�ℎ8|28
 (26) 

where the volume of a spherical cap of height ℎ taken from a sphere of radius 2 is: 

 VHIJ�ℎ|2
 = L,M@�,NOM
 (27) 

 The heights of the two caps that comprise the intersection are: 

 ℎ7 = 27 − "7 = 288 − �27 − ‖��‖
82‖��‖ H�27 + 28 − ‖��‖
 (28) 
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 ℎ8 = 28 − "8 = 278 − �28 − ‖��‖
82‖��‖ H�27 + 28 − ‖��‖
 (29) 

 Substituting Equations 27-29 into Equation 26 produces the following formula for 

α47,8: 
 α47,8���
 = P�27 + 28 − ‖��‖
ω7,8���
12‖��‖ H�27 + 28 − ‖��‖
 (30) 

Where 

 ω7,8���
 = ‖��‖8 + 2‖��‖�27 + 28
 − 3�278 + 288
 + 62728 (31) 

 In the case where 27 = 28 = 2, Equation 30 can be substantially simplified: 

 α4���
 = L78�42 + ‖��‖
�22 − ‖��‖
8H�22 − ‖��‖
 (32) 

 Using Equations 1, 16, 20, and 30, an exact expression can be found for UV7,8: 
 α57,8���
 = / / α47,8��� − !�8 + !�7
1��@∈+@1��A∈+A

 (33) 

2.1.4 Accounting for Periodicity 

Equation 33 is defined for systems of atomic coordinates in unrestricted infinite 

space. However, simulations are commonly performed using periodic boundary 
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conditions. Suppose the periodic box of a simulation is orthogonal with edges parallel to 

the WX, YX, and )̂ directions, with the displacement from the corner at the origin to the 

furthest corner of the box defined by the vector [�� = [\WX + []YX + [^)̂ = _[\ , [], [^`′ ∈ ℝ,. 
The following function describes the displacement along a single periodic direction of 

length Y: 

 Δ�W|Y
 = ;cW + 78Yd<mod Y − 78Y (34) 

where mod represents the modulus after division (also known as the modulo operation). 

For a given displacement vector �� ∈ ℝ,, the smallest equivalent displacement 

vector in orthogonal periodic three-dimensional space defined by WX, YX, and )̂ directions 

the would be: 

 D���=��i[��> = 	Δ��\|[\
WX + Δ=�]i[]>YX + Δ��̂ |[^
)̂ (35) 

 In the periodic case, the 2-point statistics can be normalized to yield the 

probability of finding a location within an atom of element 1 and another location within 

an atom of element 2 separated by ��: 
 α57,8=��i[��> = 1[\[][^ / / α47,8 cD���=�� − !�8 + !�7i[��>d1��@∈+@1��A∈+A

 (36) 
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2.1.5 Accounting for Non-Orthogonal Simulation Boxes 

Equations 35 and 36 represent the case where the periodic simulation box is 

orthogonal. Figure 2.1.2 represents the case where the periodic directions are not 

orthogonal. 

 

Figure 2.1.2 –  Triclinic periodic unit cell with tilt factors t xy, txz, and tyz., 

In this case, [�� would represent the dimensions of the smallest orthogonal box 

containing the nonorthogonal simulation box and the box edges j�k, j�l, and  j�m can be 

represented in terms of the tilt factors �\], �\^, and as 
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 n = 9j�k j�l j�m	: = o[\ − i�\]i − |�\^| �\] �\^0 [] − i�]^i �]^0 0 [^ p (37) 

 Here, the displacement vector in periodic space would be 

 D���q���|n
 = nD����nO7��|WX + YX + )̂
	 (38) 

and the 2-point statistics would be: 

 α5q7,8���|n
 = 1|det n| / / α47,8 cD���q��� − !�8 + !�7|n
d1��@∈+@1��A∈+A
 (39) 

where detn is the determinant of n. 

2.1.6 Evaluation on a Discrete Grid 

 For the purposes of analysis, it is useful to calculate the 2-point statistics on a 

discretized grid.  To do this, it is necessary to specify a vector ℓ�� ∈ ℝ, representing the 

dimensions of a voxel. If the 2-point statistics are to be represented by a 3rd-order tensor 

of size u� = 2v��� + 1, where v��� = =v\ , v] , v^> ∈ ℤ, is a vector of integers representing the 

number of voxels from the center to the edge, then the set of allowable indices of that 

tensor would be 

 xy��� = z�{, |, }
 ∈ ℤ,i0 ≤ { ≤ 2v\, 0 ≤ | ≤ 2v] , 0 ≤ } ≤ 2v^~ (40) 
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The 2-point statistics at a given set of indices ��� ∈ Σy��� would then be 

 F������7,8_���` = α57,8 c{� ∘ ℓ���[��d (41) 

 In Equation 41, the ∘ symbol represents element-wise multiplication. In addition 

to allowing for representation of the continuous function without the use of basis 

functions, discretization allows for the calculation of the 2-point statistics using the 

computationally efficient fast Fourier transform (FFT) due to the periodic nature of the 

data. The FFT and inverse FFT of a 3rd-order tensor with indices xy��� are 

 M�������_����` = / M������_���` exp=−2P�_���� ∙ ���` ⊘ u�>
�����∈������

 
(42) 

 M������_���` = 1u\u]u^ / M�������_����` exp=2P�_���� ∙ ���` ⊘ u�>
����∈������

 (43) 

The ⊘ symbol represents element-wise division and ∙ represents the dot product. 

If one wishes to calculate the full discretized 2-pt statistics for atomic structures 

simulated with a periodic box of size [��, then the corresponding voxel size is simply: 

 ℓ�� = [�� ⊘ u� (44) 

The discretized sphere and atom center cross-correlations are, respectively: 
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 A������7,8_���` = α47,8 �D��� c��� ∘ ℓ���[��d� (45) 

 C������7,8_���` = / / δc��D��� ��!�8 − !�7
 − =��� − v���> ∘ ℓ���[��� ⊘ ℓ����d	1��@∈+@1��A∈+A
 (46) 

Here, �)� is the floor function and the central peak is at ��� = v���. To calculate the 

discretized statistics for the full image, first compute 

F�������7,8_����` = 1[\[][^ C�������7,8_����` ∘ A�������7,8_����` (47) 

and then take the inverse FFT of the result. 

2.1.7 Accounting for Changes in Simulation Box Size 

For molecular dynamics simulations performed under the NPT ensemble (where 

number of atoms and the time-average of both pressure and temperature are fixed), the 

full statistics of each snapshot cannot be measured on grids with constant voxel size, 

since the fluctuating simulation box size cannot be perfectly divided into the same size 

voxels for every snapshot. To resolve this issue, partial sets of statistics are calculated. 

The full statistics are calculated for all displacement vectors that lie within an orthogonal 

box with 2 of the corners at -A@[�� and A@[�� and edges parallel to the WX, YX, and )̂ directions. The 

partial statistics, on the other hand, are computed for displacement vectors that lie within 

a smaller box with 2 corners at -�� and ��, where �� is a cutoff vector. Here, the voxel size would 

be 
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 ℓ�� = 2��⊘ u� (48) 

The discretized partial statistics are no longer periodic. To correct for potential 

errors from the FFT due to edge effects, a slightly larger tensor should be used as an 

intermediary step. Here, the range of allowable indices is defined by: 

 v���q = v��� + �78�27 + 28
u� ⊘ ��� (49) 

The set of allowable indices xy���� can be found by substituting Equation 49 into the 

value of v��� for Equation 40. The statistics tensor F�������7,8 _���` can be calculated by substituting 

this result and Equation 48 into Equations 45-47 and taking the inverse FFT. It should be 

noted that this tensor has errors in the entries near the edges due to the fact that an FFT 

operation was performed on a non-periodic tensor. However, one can discards the entries 

near the edges, retaining the tensor F������7,8_���` by keeping only the entries of F�������7,8 _���` whose 

indices lie within xy���. This matrix is free from errors resulting from edge effects. 
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2.2 Identification and Characterization of Grain Boundary Structure 

2.2.1 Centro-Symmetry Parameter 

Atomistic simulations of grain boundaries represent a class of data sets where 

data-driven PSP linkages may prove particularly useful. Since a given property of interest 

for a GB (such as GB energy) is expected to be primarily derived from the atoms near the 

interface, a systematic method for classifying atoms as either “bulk” or “GB” atoms is 

required.  The methods explained here are based upon the centro-symmetry 

parameter[51], which is defined for each atom as the sum of the squared magnitudes of 

the resultant of pairs of nearly oppositely facing displacement vectors to the atom’s 

nearest neighbors. If v7� is the number of nearest neighbors for each atom in a given 

perfect crystal structure (12 for FCC), �7� is the set of integers from 1 to v7�, and 2���, �¡
 is 

the displacement vector from the ¢£M atom in simulation � to its ¤£M nearest neighbor in 

periodic space, then the centro-symmetry parameter may be rigorously defined as: 

 ��,  = min§/ ¨/2���, �¡
¡∈� ¨8�∈+ : + ⊂ ��7«2 � , |+| = ½v7«,��∈+ = �7«® (50) 

Here, ��7«2 � is the set of all possible unordered pairs of numbers from 1 to v7�, 

and + represents a set of 6 such pairs (where |+| is the size or number of pairs in set + 

and the indexing set � represents one such pair) subject to the constraint that each index 

from 1 to v7� appears in one and only one of these pairs..Verifying this constraint is 

extremely computationally expensive. For the case of FCC, there are A@!�@!
° = 7,484,400 
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possible values of + that would have to be investigated for each atom. Thankfully, this is 

not necessary for most atomic structures of practical use. The 6 smallest values of 

�∑ 2���, �¡
¡∈� �8 almost always correspond to unordered pairs representing nearly oppositely 

facing displacement vectors, such that the magnitude of the resultant of only 
78!�8!
�7´!
 =

66 displacement vector pairs need to be computed for each atom. As such, the centro-

symmetry parameter may be reasonably computed as: 

 ��,  ≅ min §/ ¨/2���, �¡
¡∈� ¨8�∈+∗ : +∗ ⊂ ��7«2 � , |+∗| = ½v7«® (51) 

If the displacement vectors 2���, �¡
 are numbered as 2��7, … , 2��yA· such that 2��̧  and 

2��̧ ¹yA· 8⁄  are oppositely-facing vectors, ��,  may be expressed in the more traditional, 

though not mathematically rigorous, representation: 

 ��,  = / �2��̧ + 2��̧ ¹yA· 8⁄ �8
yA· 8⁄
¸º7  (52) 

 For the FCC case, the vectors 2��7, … , 2��78 are visualized in Figure 2.2.1. 
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Figure 2.2.1 – Visualization of oppositely-facing displacement vectors for the centro-
symmetry parameter of an atom in an FCC crystal. 

2.2.2 Grain Boundary Atom Identification 

The method used for classifying grain boundary atoms is based upon local 

regression[52]. Local regression is an application of weighted polynomial regression. The 

vector of coefficients »¼ = _»¼´, »¼7, … , »¼½`¾ for a weighted polynomial regression fit of 

order j with responses ¿ , weights À ,and predictors Á  can be found from: 

 =Â½¾ÃÂ½>»¼ = Â½¾ÃÄ (53) 
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where Ä is a vector whose ¢£M term is ¿ , Âj is a matrix whose ¢£M row is _1, Á , … , Á ½` 
and Ã is a diagonal matrix whose ¢£M term of the main diagonal is À . It should be noted 

that for sufficiently large values of j, scaling and mean-centering the columns of Âj may 

be necessary to avoid machine precision errors. 

For local regression, the weights À  are defined by the value of some kernel 

function with bandwidth ℎ at Á . In the case of a Gaussian kernel, which is the kernel 

employed in the GB atom identification method, the weights are: 

 À  = κÆ�Á |ℎ
 = 1√2Pℎ8 exp È− Á 82ℎ8É (54) 

where a good choice for ℎ is the lattice constant of the crystal ¢´ = 4.05Å for the case of 

FCC Al.  

 The GB atom identification employs local quadratic regression (order j = 2). The 

responses for this regression problem are: 

 ¿  = Í��,  (55) 

where the square root of the centro-symmetry parameter was chosen for scaling purposes. 

 Consider the case where there is at least one GB in a simulation performed under 

periodic boundary conditions, and all GBs are  perpendicular to the YX direction. This 

requires that the tilt factors �\] = �]^ = 0 such that the edges of the simulation box � as 

defined in Equation 37 are represented in the matrix 
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 n� = o[\ − |�\^| 0 �\^0 [] 00 0 [^ p (56) 

For this case, if ���,  represents the Cartesian coordinates of atom ¢ in simulation �, 
then the predictors of the regression problem are continuous functions of position 

�� = �\WX + �]YX + �̂ )̂, defined as: 

 Á  = S�, =�]> = Δ=���,  ∙ YX − �]i[]> (57) 

where the function Δ is defined in Equation 34. 

 Solving »¼ from Equation 53 using the values from Equations 54, 55, and 57 

shows that the terms of  »¼ can be expressed in terms of a continuous function of �]: 

 »¼ = _βÐ�´=�]>, βÐ�7=�]>, βÐ�8=�]>`¾ (58) 

where βÐ �½=�]> is the regression coefficient for simulation � corresponding to the power-j 

term inÂ8.  
 In the GB atom identification procedure outlined here, the set of positions along 

the YX direction corresponding to the GB centers and GB/bulk interfaces are defined, 

respectively, as: 

 Ñ´� = z�]i�]	is	a	local	maximum	of	βÐ�´=�]>~ (59) 

 Ñ8� = z�]i�]	is	a	local	maximum	of	2βÐ�8=�]>~ (60) 
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 The set of interface locations defined in Equation 60 correspond to the locations 

of the local maxima of the second derivative of local regression modeling equation. If the 

set of atom indices ¢ for a given simulation � is ��4 and we define functions representing 

the displacement along the YX to the next highest and lowest GB interface, respectively, as: 

 υØ=�]> = minz�̃] > 0i∃�]q ∈ Ñ8� 	s. t. �̃] = Δ=�]q − �]i[]>~ (61) 

 λØ=�]> = maxz�̃] ≤ 0i∃�]q ∈ Ñ8� 	s. t. �̃] = Δ=�]q − �]i[]>~ (62) 

then we can define the set of atom indices ¢ that are included in the GB: 

 ��Ý = z¢ ∈ ��4i∃�]∗ ∈ Ñ´� 	s. t. λØ=�]∗> ≤ S�, =�]∗> < υØ=�]∗>~ (63) 

2.2.3 The Pair Correlation Function 

 The structure of the GB may be represented as a pair correlation function (PCF), 

which may be defined as a function of a distance �: 
 γ��
 = n��
4P�8à´ (64) 

where à´ is the number density of atoms in the perfect crystal (6.02 × 10O8	ÅO, for FCC 

Al) and n��
 is the average linear number density of atoms a distance � away from a 

given atom. It is clear to see that à��
 can be defined in terms of a probability distribution 

function (PDF): 

 n��
 = vψ��
 (65) 
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where v is the number of neighboring atoms and ψ��
 is the probability density of 

finding a neighboring atom a distance away from a given atom. 

If all v�ã atoms in a given simulation are included in the PCF calculation, then 

v = v�ã − 1. If v = vä� where vä� is defined as the number of atoms in the 1å£ through 

æ£M set of nearest neighbors for a given crystal structure, then the PDF may be 

approximated using kernel density estimation (KDE): 

 ψ�,ä��
 = 1vä�i��Ýi / /κc� − �2���, �¡
� �ℎqd
yçè
¡º7 ∈�éê

 (66) 

where κ is a kernel function with bandwidth ℎq. 
The number density function would simply be  

 n��
 = vä�ψ�,ä��
 (67) 

and the PCF may therefore be expressed in terms of ψ�,æ��
 as: 

 γ�,ä��
 = vä�4P�8à´ψ�,ä��
 (68) 

 If each atom is considered to be a uniformly dense sphere of radius 2, a good 

candidate for a kernel function would be 

 κ��|2, "
 = A��|2, "
	ë,LN?  (69) 
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In Equation 69, A��|2, "
 is the portion of the surface area of a sphere of radius � 
that lies within the volume of a second intersecting sphere of radius 2, where the two 

sphere centers are separated by a distance ". then for a sufficiently large value of �, 
A��|2, "
 is approximately equal to the area of a cross-section of the second sphere a 

distance � − " away from it’s center: 

 A��|2, "
 ≅ P928 − �� − "
8: (70) 

 Using this value of A��|2, "
 and defining ì = � − " and ℎq = 2 √5⁄  produces 

the Epanechnikov kernel[53]: 

 κ=ìiℎ†> = κî=ìiℎ†> = § 34ℎ†√5È1 − ì85ℎq8É for	�ì ℎ⁄ 
8 < 5
0 otherwise

ñ (71) 

 As such, the Epanechnikov kernel is highly favorable for calculating PCFs using 

KDE. Without the approximation made in Equation 70, the kernel would change as a 

function of ": 

 κ=ìiℎ†, "> = c1 + ì"d κî=ìiℎ†> (72) 

 The kernel representation of the PCF can be thought of as a generalization of a 

traditional binned PCF. For bins of width ℓ, the distance corresponding to the center of 

the  ò£M bin would be 

 � = c78 + òd ℓ (73) 
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and the kernel function in Equation 66 would be κó=ìi ℓ 2√3⁄ > where κó is the box 

kernel function defined as: 

 κó�ì|ℎ′
 = ô 12ℎ′√3 for	|ì ℎ′⁄ | < √3
0 otherwise ñ (74) 

 The PCF as defined in Equation 64 is a one-dimensional function measuring of 

distances to single neighboring atom. The PCF can be generalized to ¤ dimensions 

representing distances to ¤ neighboring atoms: 

 γ�¡
��7, … , �¡
 = n�¡
��7, … , �¡
à¡́∏ 4P��8¡�º7  (75) 

where n�¤
 is the average number density of atoms with neighbors a distance �1, … , �¤ 
away. n�¤
 may be expressed in terms of a probability ψ�¡
 of finding an atom with these 

neighbor distances: 

 n�¡
��7, … , �¡
 = v!�v − ¤
! ψ�¡
��7, … , �¡
 (76) 

 

  



 31

2.3 Dimensionality Reduction and Regression using PCA and ASCA 

2.3.1 Brief Discussion of ANOVA 

 ASCA (ANOVA Single Component Analysis)[47, 48], also called ANOVA-

PCA[54], is a technique that generalizes PCA[49] to identify directions of maximum 

variance corresponding to sources of variance that are known prior by borrowing from 

the mathematics of ANOVA (Analysis of Variance)[55, 56]. A full overview of the uses 

and implementation of ANOVA is beyond the scope of this text; only the relevant aspects 

as pertaining to additive data decomposition are described here. A motivating example of 

two-way ANOVA would be a hypothetical hardness study of steels with different carbon 

compositions, each manufactured using the same set of heat treatments. In this example, 

carbon composition would be considered the first factor (called factor	ö); the �£M distinct 

composition being tested would be the �£M level of factor ö. Heat treatment would be the 

second factor (÷), with the ò£M distinct heat treatment employed would the the ò£M level of 

factor ÷. For each distinct combination of carbon composition and heat treatment, the ¤£M 

hardness test measurement would correspond to the ¤£M replicate. 

Suppose you have some measurement Y�¸¡ for the ¤£M replicate of the factor 

combination ��, ò
 for factors ö and ÷, respectively. It is trivial to see that: 

 Y�¸¡ − Yø∙∙∙ = �Yø�∙∙ − Yø∙∙∙
 + =Yø∙¸∙ − Yø∙∙∙> + =Yø�¸∙−Yø�∙∙ − Yø∙¸∙ + Yø∙∙∙> + =Y�¸¡ − Yø�¸∙> (77) 

  Here, Yø∙∙∙ is the average over all measurements, Yø�¸∙ is the average measurement of 

all replicates for factor combination ��, ò
, and Yø�∙∙ and Yø∙¸∙ are the averages over all 



 32

measurements of the �£M and	ò£M levels of factors ö and ÷, respectively. In this notation, a 

‘ ∙’ subscript indicates an average over that particular index. Equation 77 may be 

expressed symbolically as: 

 Y�¸¡ − ù̂ = UX� + »¼̧ + úû�¸ + ��¸¡ (78) 

 In Equation 78, UX� and »¼̧  are the 1-factor main effects, úû�¸ is the 2-factor 

interaction term, and ��¸¡ represents the residuals. 

If there are � replicates for each combination of ��, ò
, ü levels of factor ö, and ý 
levels of factor ÷, then according to ANOVA, the following equation must also hold true: 

 ///=Y�¸¡ − ù̂>8�
¡º7

þ
¸º7

�
�º7 = �ý/UX�8�

�º7 + �ü/»¼̧8þ
¸º7 + �//úû�8̧

þ
þº7

�
�º7 +///��¸¡8�

¡º7
þ
¸º7

�
�º7  (79) 

2.3.2 Applicability of ANOVA Additive Decomposition to Covariance Matrices 

In the language of ANOVA, the summations in Equation 79 are referred to as the 

sum of squares. The veracity of this equation may be demonstrated using linear 

transformations and the Kronecker product[57]. If � is an � × à matrix, and � is a j × æ 

matrix, then the Kronecker product �⊗ � is an �j × àæ matrix defined as 

 �⊗ � = �¢77� ⋯ ¢7��⋮ ⋱ ⋮¢�7� ⋯ ¢���	 (80) 

 The Kronecker product has the following useful properties: 
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 ��⊗ �
�
 ⊗ �
 = ��

⊗ ���
 (81) 

 �⊗ �� + 

 = �⊗ � + �⊗ 
 (82) 

 �� + �
⊗ 
 = �⊗ 
 + �⊗ 
 (83) 

 ��⊗ �
⊗ 
 = �⊗ ��⊗ 

 (84) 

 �à�
⊗ � = �⊗ �à�
 = à��⊗ �
 (85) 

 =�¾ ⊗ �> vec�

 = vec��
�
 (86) 

 In Equation 86, the function vec�

 represents the vectorization of the matrix 

vec�

 and �¾ is the transpose of �. Returning to the original two-way ANOVA 

problem, the measurements taken can be represented in a block matrix: 

 ��« = o277 ⋯ 2þ7⋮ ⋱ ⋮27� ⋯ 2�þp (87) 

where the vector 2�¸ represents the set of replicates for the combination of factor levels 

��, ò
 for factors ö and ÷: 

 2�¸ = _Y�¸7, … , Y�¸¡ , … Y�¸�`¾ (88) 

 Define a matrix �∙�∙ as a matrix where every Y�¸¡ element of IJK is replaced with 

the value Yø∙¸∙ corresponding to mean over all values with the same factor ÷ level. This is 

equivalent to averaging over all entries in the same column of IJK: 
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 �∙�∙ = 7�×���×���« = c7��� ⊗ 7���d��« (89) 

where �v is an v × v matrix of ones. In an analogous manner, the matrices ���∙, ��∙∙, and 

�∙∙∙,  can be defined to be the matrices where the Y�¸¡ elements of ��« are replaced with 

the corresponding Yø�¸∙, Yø�∙∙, and Yø∙∙∙ values, respectively: 

 ���∙ = c��⊗ 7���d��« (90) 

 ��∙∙ = c��⊗ 7���d��« c7þ�þd (91) 

 �∙∙∙ = c7���⊗ 7���d��« c7þ�þd (92) 

Here, �v is an v × v identity matrix.  

Using Equations 89-92 and the properties demonstrated in Equations 82 and 83, 

the terms on the right-hand side of Equation 78 can be defined as matrices: 

 �û� = ��∙∙ − �∙∙∙ = ;c�� − 7���d⊗ 7���<��« c7þ�þd (93) 

 ��� = �∙�∙ − �∙∙∙ = ;7���⊗ 7���<��« c�þ − 7þ�þd (94) 

 �û �� = ���∙ − ��∙∙ − �∙�∙ + �∙∙∙ = ;c�� − 7���d⊗ 7���<��« c�þ − 7þ�þd (95) 

 ���« = ���∙ − �∙∙∙ = ;��⊗ c�� − 7���d<��« c�þ − 7þ�þd (96) 
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 The property depicted in Equation 86 can be used to convert the 

vectorizations of Equations 93-96 into linear transformations of the vectorization of IJK. 

This vectorization of IJK is 

 | = vec=��«> = _Y777, … Y77¡ , … Y77� , … Y�7¡ , … Y�7� , … Y�¸¡ , … Y�þ�`¾ (97) 

and the vectorizations of Equations 93-96 are: 

 vec��û�
 = ;7þ�þ ⊗ c�� − 7���d⊗ 7���< | = �4| (98) 

 vec=���> = ;c�þ − 7þ�þd⊗ 7���⊗ 7���< | = �ó| (99) 

 vec=�û ��> = ;c�þ − 7þ�þd⊗ c�� − 7���d⊗ 7���< | = �4×ó| (100) 

 vec=���«> = ;�þ⊗ ��⊗ c�� − 7���d< | = ��| (101) 

 The vectorization of the left-hand side of Equation 78 may be expressed similarly 

as a linear transformation of |: 

 vec=��« − �∙∙∙> = | − vec��∙∙∙
 = c��×þ×� − 7�×þ×���×þ×�d | = �´| (102) 

where matrix �´ performs a mean-centering operation on |. It is fairly trivial to show 

that 

 �´ = �4 +�ó +�4×ó +�� (103) 

As such, Equation 77 can be expressed in terms of linear transformations of |: 
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 �´| = �4| +�ó| +�4×ó| +��| (104) 

Since all � matrices are expressed in terms of �v, A��y, �v-A��y, all of which are 

idempotent, or Kronecker products of these matrices, then due to the properties illustrated 

in Equations 81 and 84, all the � matrices are also idempotent. Additionally, they are all 

symmetric due to similar reasons. This means that 

 �¾� = �	for	�´,�4,�ó,�4×ó, and	�� (105) 

As such, the left-hand side of Equation 79 may be expressed as 

 vec=��« − �∙∙∙>¾ vec=��« − �∙∙∙> = |¾�¾́�´| = |¾�´| (106) 

Furthermore, also using the properties illustrated in Equations 81 and 84, it can be 

shown that �4, �ó, �4×ó, and �� are all mutually orthogonal. For example, 

 �4¾�ó = 7þ�þ c�þ − 7þ�þd⊗ c�� − 7���d 7���⊗ 7���7��� = ��×þ×� (107) 

where �y	is an v × v matrix of zeros. As such, by substituting Equation 103 into 

Equation 106, the following statement holds true, where each term represents a 

summation from Equation 79: 

 |¾�´| = |¾�4| + |¾�ó| + |¾�4×ó| + |¾��| (108) 

This proves the validity of the additive decomposition of the sum of squares in 

two-way ANOVA.  
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 It is important to note that since � matrices represent linear transformations, they 

may operate on matrices as well as vectors. Though | is defined as a vector, it can be 

replaced with a matrix and the conclusions from Equations 104 and 108 still hold true.  

As such, in a manner analogous to the definition of | in Equation 97, define a 

matrix �, where each row {�¸¡¾  represents a vector of some arbitrary length: 

 � = _{	777, … {	77¡ , …{	77� , …{	�7¡ , …{	�7� , …{	�¸¡ , …{	�þ�`¾ (109) 

  It can then be therefore said that: 

 �´� = �4� +�ó�+�4×ó� +��� (110) 

 �¾�´� = �¾�4�+ �¾�ó�+ �¾�4×ó� + �¾��� (111) 

 The term on the left-hand side of represents the covariance matrix of � without 

the A#�A normalization term. It represents the covariance of � from all sources of variance. 

�T�A� and �T�B� represent the covariance resulting only from changes in the levels of 

factors ö and ÷, respectively, with all other sources of variance averaged out. �T�A×B� 

equals the covariance resulting from the interaction between changes in the levels of 

factors ö and ÷, and	�¾��� depicts the covariance from all remaining sources of 

variance not explained by the interaction or main effects. Equation 111 shows that the 

method governing the additive decomposition of the sum of squares in two-way ANOVA 

can also be applied to additively decompose a covariance matrix. 
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2.3.3 Principal Component Analysis (PCA) 

  Traditional PCA, a common technique for dimensional reduction where the ò£M 

eigenvector corresponds to the direction with the ò£M largest variance, is closely related to 

the singular value decomposition (SVD) of the mean-centered matrix: 

 �´� =  ´!´�¾́ (112) 

 �¾�´� = �´!8́�¾́ (113) 

where  0 and �0 are orthonormal and !0 is a diagonal matrix of descending singular 

values ℓ̧´. Here, ò is the index corresponding to the ò£M largest singular value. The 

columns of �´, ö¸́ , represent the PC eigenvectors. The matrix of PC scores is: 

 "´ =  ´!´ (114) 

where the columns of "´, }¸́ , are the PC scores corresponding to the eigenvectors ö¸́ . 
Truncating the PCA representation of �´� at the ¤£M score/eigenvector yields the best 

possible rank-¤ approximation of the full dataset. 

2.3.4 Principal Component Regression 

The orthogonality of the PCA scores can be exploited to simplify the computation 

of principal component regression for predicting some vector of properties #. For the 

purposes of calculation, it is useful to define a scalar term: 

 $̧ = #¾%¸́  (115) 
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where %ò0 is the ò£M column of  0. 
 The regression coefficient corresponding to the PC scores }¸́  for predicting # is 

simply: 

 �̧ = $̧ ℓ̧´⁄  (116) 

 The PC scores corresponding to the largest singular values are not necessarily the 

best set of scores for predicting #. Given that the PC scores are orthogonal, the best �-

component PC model is equal to the sum of the � best 1-component PC models.  The set 

of indices included in the best �-component PC model is: 

 +� = § ∅ � = 0
+�O7 ∪ (argmax¸∉+*�A $̧8+ � > 0ñ (117) 

where ∅ is an empty set and ∪ represents a union of sets. If #ø is the mean value of #, 

then the estimated value of # predicted by the best �-component PC model is: 

 #Ð		� = #ø + / �̧ }¸́¸∈+*
= #ø + / $̧ %¸́¸∈+*

 (118) 

The 28 value and mean-squared error (,-.) and of the �-component model are 

 28 = ∑ $̧8¸∈+*#T�´	#  (119) 



 40

 ,-. = #T�´	# − ∑ $̧8¸∈+*/ −� − 1  (120) 

where / = ü × ý × � is the number of rows in the matrix �. 

2.3.5 ANOVA Single-Component Analysis (ASCA)  

Equations 110 and 111 can be used to extend PCA to locate the directions of 

maximum variance from predetermined sources. In ASCA, an alternative to traditional 

PCA as outlined in Equations 112-114, SVD is performed on each term on the right-hand 

side of Equation 110 to yield the following results: 

 �´� =  4,ó!4,ó�4,ó¾ = "4,ó�4,ó¾  (121) 

where  4,ó, !4,ó, �4,ó, and "4,ó are equal to the following block matrices: 

  4,ó = 9 4  ó  4×ó  �: (122) 

 !4,ó = 0!4 0 ⋯ 00 !ó ⋱ ⋮⋮ ⋱ !4×ó 00 ⋯ 0 !�1 (123) 

 �4,ó = 9�4 �ó �4×ó ��: (124) 

 "4,ó = 9"4 "ó "4×ó "�: =  4,ó!4,ó (125) 

where �4� =  4!4�4¾ = "4�4¾  and likewise for the matrices with subscripts B, A × B, 

and e. 
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The scores "4, "ó, "4×ó, and "� are all mutually orthogonal because their 

corresponding � matrices are all mutually orthogonal, as illustrated in Equation 107: 

 �4¾�ó = � ⇒ �¾�4¾�ó� = � ⇒ �4¾"4¾"ó�ó = � ⇒ "4¾"ó = � (126) 

 Since "4,ó is an orthogonal matrix, the simplified mathematics of PC regression 

described in Equations 115-120 hold true for ASCA as well as PCA. 

2.3.6 Functional PCA and ASCA 

PCA and ASCA can be applied to functions as well as matrices [58]. If there 

exists some vector of functions F��
 = _f7��
, … , fä��
`¾, then the PCA or ASCA 

representation of these functions can be expressed as 

 �F��
 = "A�t
 (127) 

where � is a mean-centering matrix from PCA or ASCA defined in Equations 98-102, 

"	is a æ × à matrix of scores, and A��
 = 9a7��
, … , a���
:¾ is a vector of orthonormal 

eigenfunctions. This can be solved by expressing F��
 and A��
 in terms of Φ��
 =
9ϕ7��
, … ,ϕ���
:¾, which is a vector of (not necessarily orthonormal) basis functions, 

such as B-splines: 

 F��
 = �Φ��
 (128) 

 A��
 = 
¾Φ��
 (129) 
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 If the � × à matrix of eigenfunction coefficients 
 is defined such that 
 =
_57, … ,5�` and 
6�7 corresponds to the first � columns of 
, then the eigenfunction 

coefficient vectors  can be expressed as the solutions to the following optimization 

problem: 

 5� = argmax5	8.9.
6�−17T :�0
5=0
5¾:�´
�¾��:�´
55¾:�´
5  (130) 

where 0 is a vector of zeros and the symmetric � ×� weighting matrix :�´
 is defined 

as: 

 :�´
 =  Φ��
Φ��
¾d� (131) 

 If ; is defined as the upper right-hand triangular matrix from the Cholesky 

decomposition[59] of :�´
, i.e., 

 ;¾; = :�´
 (132) 

then the matrix 
 can be found from the results of the following singular value 

decomposition: 

 ��;¾ =  !�¾ (133) 

 From here, the eigenfunction coefficients are simply: 
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 = ;O7� (134) 

and the scores are: 

 " = ��:�´

 (135) 

which can be simplified to: 

 " =  ! (136) 

2.3.7 Smoothed PCA/ASCA for Continuous Functions 

If a smoothing hyper-parameter is desired, it is possible to incorporate a 

roughness penalty into Equation 130, where the columns of the penalized eigenfunction 

coefficient matrix 
<	 = _57<, … ,5�<` are defined by: 

 5�= = argmax5	8.9.		
6�−17,λT :�0
5=0
5¾:�´
�¾��:�´
55¾=:�´
 + =:�8
>5 (137) 

where = is a scalar roughness penalty chosen by the user, 
6�7,< corresponds to the first � 
columns of 
<	, and :�8
 is defined as: 

:�8
 =  Φ′′��
Φ′′��
¾d� (138) 

 Equation 137 may be solved by selecting a matrix ��,< that has the following 

properties: 
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 ��,<¾ :�´
��,< = ��O� (139) 

 ��,<¾ :�´

6�7,< = � (140) 

 The functional subspace defined by ��,<Φ��
 corresponds to the exclusion of the 

subspace defined by 
6�7,<Φ��
 from the subspace defined by �´,<Φ��
. To restrict 

solutions of Equation 137 to linear combinations of the unsmoothed eigenfunction 

coefficients, choose �´,< = 
, where the columns of 
 correspond to solutions of 

Equation 130. To allow for additional smoothing, at the expense of the degree of 

dimensionality reduction, choose �´,< = ;O7, where ; is defined in Equation 132. ��,<  
may be found from �´,< and 
6�7,< using a weighted Gram-Schmidt process where the 

inner products are weighted by :�´
. 
 Equation 137 may be solved in terms of the following singular value 

decomposition: 

 ��:�´
��O7,<;�O7,<O7 =  �,<!�,<��,<¾  (141) 

where ;�,< is defined by the following Cholesky decomposition: 

 ;�,<¾ ;�,< = ��,<¾ =:�´
 + =:�8
>��,< (142) 

 The unnormalized vector of coefficients from Equation 137 is 

 5> �= = ��O7,<;�O7,<O7 ö7�,< (143) 
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where ö7�,< is the first column of ��,< from Equation 141. The normalization can be found 

from: 

 5�< = 1?5> �=T:�´
5> �= 5> �= 
(144) 

The scores can be found by substituting 
<	 into the value of 
 in Equation 135. 

2.3.8 Smoothed PCA/ASCA for Uniformly Sampled Functions 

The algorithm discussed in Section 2.3.7 can be adapted for the case where the 

data consists of functions sampled along fine, uniform intervals. In this case, if the data is 

represented by the æ ×� matrix � = _{7, … , {�`, then 

 {� =	F��0 + �� − 1
ℓ
 (145) 

where �´ is the smallest point sampled and ℓ is the interval width. 

 The problem defined in Equation 137 can be solved by redefining :�8
 in terms of 

the second difference instead of the second derivative. If the first difference of a vector is 

the difference between consecutive elements in said vector, then the second difference is 

the difference between consecutive elements of the first difference. Now, 

:�8
 = ��8
¾ ��8
 (146) 
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where ��8
 is the �� − 2
 ×� second difference transformation matrix. If "��̧8
 is the 

element in the �th row and òth column of ��8
, then 

"�ò�2
 = ô 1 ò = �	or	ò = � + 2	−2 ò = � + 10 otherwise ñ (147) 

 For the uniformly sampled case, the weighting matrix :�´
 is simply the identity 

matrix: 

:�´
 = �� (148) 
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CHAPTER 3. INTERATOMIC POTENTIAL CLASSIFICATION 

FROM SIMULATED STRUCTURES 

3.1 Overview 

Here, the merits of a data-driven approach for addressing the challenge of mining 

and extracting core materials knowledge at the atomic scale are presented. The approach 

presented here is built on prior successes demonstrated for mesoscale representations of 

material internal structure, and involves three key steps: (i) discretization of the atomic 

structure, (ii) characterization of structure in the form of 2-point statistics, and (iii) 

representation of the structure in low-dimensional space using PCA. These novel 

protocols, applied on an ensemble of structure datasets output from MD simulations, have 

successfully classified the datasets based on several model input parameters such as the 

interatomic potential and the temperature used in the MD simulations.   

3.2 Description of data 

The data investigated here consisted of simulations of FCC aluminum performed 

at varying temperatures with various potentials housed at the NIST Interatomic Potentials 

Repository (http://www.ctcms.nist.gov/potentials). The interatomic potentials included in 

this study are summarized in Table 3.2.1, along with the appropriate references [60-79]. 

It is important to note that these calculations include some simulations well outside the 

intended usage of the interatomic potentials (e.g., using the pure elements of a potential 

only fit for use with compounds and thus they may not give the most accurate values for 

single-element atomic volumes).  However, users often use interatomic potentials well 
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outside the range of where they were fit, and it is important to understand how that choice 

affects the answers obtained. 

 

Table 3.2.1 – List of Al force fields used and their corresponding notation and 
references 
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Figure 3.2.1 – Coordinates of a 4000 atom Al equilibrium simulation at 300 K at 10 
ps using the force field "'Al-Pb_LandaA_2000." Dots represent atomic centers as 
generated by the simulation. For the purpose of 2-point statistics each atom was 
assigned a radius of 1.18 A, as depicted by the green circles.  Though not clear in 
this figure, the structure is crystalline (face centered cubic) as expected.  

 

After selection of the interatomic potential, the methodology for performing each 

simulation is as follows: (i) determine the 0 K equilibrium FCC lattice constant via a 

molecular statics simulation, (ii) create a 10 x 10 x 10 FCC unit cell (4000 atoms) using 
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the equilibrium lattice constant, (iii) create a uniform distribution of atomic velocities at 

the desired simulation temperature, and (iv) perform an isothermal-isobaric (NPT) 

simulation at the desired temperature for 2,000,000 time steps using a 1 fs time step. Data 

analysis described here takes place within the final 1,000,000 time steps. Instantaneous 

coordinates were recorded every 50,000 fs, and these were used in the analysis presented 

here. An example of one such snapshot is visualized in Figure 3.2.1. 

3.3 Quantification of atomic structure 

 

Figure 3.3.1 – Cross section corresponding to Z=20.24 Å of the corresponding 
discretized microstructure signals constructed in the novel protocols described in 
this paper. The full 3-D discretized images are used to calculate the 2-point 
statistics.  

 

Structures were quantified in a manner similar to (though more computationally 

expensive than) the approach discussed in Section 2.1. (See Appendix A for full 

description). Briefly, the atomic coordinates of the atoms within the simulation box, as 
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well as the coordinates of atoms outside the simulation box in adjacent periodic boxes, 

were discretized in a grid with a predefined constant voxel size. All voxels whose center 

lied within an atomic radius (set as 1.18 Å) of an atom position were as assigned a value 

of 1; all over voxels were assigned a value of 0. The discretized 2-pt statistics were 

calculated using an FFT cross-correlation calculation (see Figure 3.3.1 for a visualization 

of the cross section of the discretized images included in the calculation).  

 

Figure 3.3.2 – The cross sections of the 2-point statistics of the data set shown in 
Figure 3.2.1 corresponding to (a) r1=0, (b) r2=0, and (c) r3=0. The pair correlation 
function of this same structure is depicted in (d). 
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The only statistics retained corresponded to vectors that lie within a box defined 

by a cutoff vector �� (see Section 2.1.7), with the rest discarded. The addition of extra 

atomic positions served two purposes: ensuring each snapshot (with varying simulation 

box size) can be discretized into an integer number of voxels, and to eliminate edge 

effects arising from the fact that the expanded box is no longer periodic. 

 Figure 3.3.2(a)-(c) illustrates two dimensional cross sections of the 2-pt statistics 

in ℝ,. The pattern revealed in these corss sections is roughly consistent with the atomic 

positions corresponding to the FCC crystal structure, which is to be expected. Figure 

3.3.2(d) presents the PCF, a more commonly used structure metric for MD simulations in 

the literature. The PCF corresponds to the spherically averaged 2-point statistics, and as 

such, depends strictly on the magnitude of the displacement vector, whereas the 2-point 

statistics retain both the magnitude and direction of this vector. 

 

Figure 3.3.3 – r3=0 cross sections of the 2-point statistics of the force field 
'Al_SturgeonJB_2000(Al)' at (a) 300 K and (b) 900 K. 
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The greater intensity of the central peak in the 2-point statistics shown in Figure 

3.3.2(a)-(c) in comparison to subsequent peaks is a product of the disorder due to thermal 

fluctuations (the greater the fluctuations, the greater the difference in intensity). For a 

perfectly periodic lattice, each peak will be of equal intensity. This effect is clearly 

noticeable in Figure 3.3.3, which corresponds to the 2-point statistics for the atomic 

structures at (a) 300 K and (b) 900 K. Also evident in these plots is the effect of thermal 

expansion; it can be seen from the peak positions of these two plots that the lattice 

constant at 900 K is greater than that of 300 K. 

3.4 Low-Rank Model Construction 

In this study, two different types of low rank models were investigated. First, 

simulations were grouped by equilibrium temperature, PCA (see Section 2.3.3) was 

performed separately for each group on the set of 2-point statistics characterizing the 

structures simulated by the 19 potentials at each of the 20 snapshots recorded, with 

particular emphasis on simulations performed at 300 K and 900 K. The distances in PC 

space corresponding to the first 3 principal components was used to classify the 

interatomic potentials into two distinct groups, along with a set of potentials whose 

behavior deviated greatly from the rest. 

Secondly, PCA was performed using the time average of all snapshots from all 

simulations at all temperatures. In addition to further refining the groupings of the 

interatomic potentials, the PC scores from this study were analyzed in the in relation to 

the atomic volumes as a function of temperature. 
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3.5 Results and Discussion 

 

Figure 3.5.1 – The 2-point statistics every 50 ps from 1.05 ns to 2.0 ns of Al 
simulations using the force fields in Table 3.2.1 projected onto the first 3 principal 
components at 300 K (a)  and 900 K (b) . 

 

A visualization of the classification in PCA space of the MD datasets at 300K and 

900K is depicted in Figure 3.5.1. Each data point in Figure 3.5.1 corresponds to the first 

three PC scores for each atomic structure included in the analyses.  Despite a 



 55

dimensionality reduction of 1193=1685159 to just three, this three PC score 

representation explains 99.8% of the total variance among the structures, echoing the 

substantial reduction in dimensionality experienced in analyses of mesoscale systems. As 

expected, the intra-class variance (reflected in the size of the cluster associated with each 

potential) is roughly equivalent for all potentials at the same temperature, and is 

substantially smaller than the inter-class variance. 

 

 The hierarchy of distances between clusters can be expressed as a dendrogram, 

which is depicted in Figure 3.5.2.  Broadly, the PCA has identified the following 

clustering of potentials based on the differences in the structures produced by the MD 

simulations: the first group corresponds to the force fields referenced in [61, 64, 65, 69, 

72], the second group corresponds to the force fields referenced in [60, 62, 66-68, 71, 73, 

77, 78], including both force fields referenced in [71]. The four force fields referenced in  

[63, 70, 76] and [74, 75] are distinctly far away from the two groups identified above. 

The groupings of these results will be discussed in more detail in a later section.   
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Figure 3.5.2 – The dendrograms of centroid distances of the data depicted in Figure 
3 at 300 K (a) and 900 K (b). 

Additional insights from the analysis presented here can be obtained from the 

plots of the PCs obtained in the analysis described above. Plots of the mean signal $A̅ and 

PCA eigenvectors B�A (for PC numbers �=1,2, and 3) are depicted in Figure 3.5.3. In 

these plots, black represents positive values and red represents negative. As such, a set of 

red and black spots in close proximity represents a s shift of the peak’s position compared 

to the ensemble average. The overall plot of B7A therefore captures systematic shifts in 

the interatomic distances between any selected atom and its neighbors, with the shifts 

being higher for far away neighbors compared to those that are nearby. Therefore, B7A 

appears to capture well the overall volume differences among the snapshots of the atomic 

structure. 
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Figure 3.5.3 – Contour plots of the ensemble averaged spatial correlations and the 
PCA basis (eigenvectors) for the datasets shown in Figure 3.5.1(a), each shown as 
three orthogonal cross-sections. 

 For the analysis where PCA was performed on time-averaged 2-point statistics of 

all atomic structures at all temperatures, Figure 3.5.4 presents the PC scores as a function 
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of temperature. Of particular interest are the four force fields corresponding to 

References [63, 70, 76] and [74, 75] , which show significantly different behavior 

compared to the rest of the data sets.  The force field used in Ref. [76] was strongly 

weighted to reproduce the properties of B2-NiAl, which may explain its poor behavior 

for pure aluminum. The other three interatomic potentials ([63, 70] and [74, 75]) were 

found to melt in the course of the simulations.  

 

 

Figure 3.5.4 – The variation of (a) first principal component and (b) second 
principal component for the averaged 2-point statistics at each temperature. Only 
the mean 2-point statistics at each temperature for each force field were included in 
this PCA. 

 The difference in behavior for these four force fields is also evident in the 

temperature-dependent plots of average atomic volume, depicted in Figure 3.5.5. 

Furthermore, the groupings evident in this plot map directly to the groupings revealed in 

Figure 3.5.1(a). It should be stressed that PCA clustering is completely unsupervised. The 

fact that such analysis captures all of the significant differences in the predicted MD 
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structures supports the claim that the protocols used in this study produce high value, low 

dimensional, measures of the material structure. 

 

Figure 3.5.5 – Average atomic volumes from MD simulations of the (a) interatomic 
potentials closest to the experimental reference data, and (b) the four interatomic 
potentials exhibiting the largest deviation from the reference values.  The 
discontinuities reflect phase changes associated with melting. 
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CHAPTER 4. EXTENSION OF PSP PARADIGM TO 

ATOMISTIC GB SIMULATIONS 

4.1 Overview  

In this study, it was shown that the “process-structure-property” (PSP) paradigm 

of materials science can be extended to atomistic grain boundary (GB) simulations 

through the development of a novel framework that addresses the objective identification 

of the atoms in the grain boundary regions using the centro-symmetry parameter and 

local regression, and the quantification of the resulting structure by a pair correlation 

function (PCF) derived from kernel density estimation (KDE). For asymmetric tilt GBs 

(ATGBs) in aluminum, models were successfully established connecting the GB macro 

degrees of freedom (treated as process parameters) and energy (treated as property) to a 

low-rank GB atomic structure approximation derived from principal component analysis 

(PCA) of the full ensemble of PCFs aggregated for this study. More specifically, it has 

been shown that the models produced in this study resulted in average prediction errors 

less than 13 mJ/m2, which is less than the error associated with the underlying 

simulations when compared with experiments. This demonstration raises the potential for 

the development and application of PSP linkages from atomistic simulation datasets, and 

offers a powerful route for extracting high value actionable and transferrable knowledge 

from such computations.  



 61

The workflow developed and employed in this work for establishing the structure-

property and process-structure linkages of interest is outlined in Figure 4.1.1. Broadly, 

this workflow depicts three main components: (i) low-rank quantification of the grain 

boundary atomic structure, (ii) extraction of a structure-property linkage, and (ii) 

extraction of process-structure linkages. These components are discussed below 

sequentially, explaining the rationale behind each step involved in each of these 

components. 

 

Figure 4.1.1 – Workflow employed in this study for establishing PSP linkages in 
simulated ATGBs. 

4.2 Description of data 

The dataset used in this study was produced by Tschopp et. al [40] and 

disseminated in an open repository hosted by the NIST Computational File 
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Repository[80]. The use of a publicly available dataset such as this allows multiple 

research groups (including ours) to apply different techniques and strategies, and to 

objectively compare the models produced. The reader is referred to previously published 

papers in literature[81] for details of how this dataset was generated.  

The dataset available for the study contained a total of 106 molecular mechanics 

(MM) simulations that included ATGBs with Σ values of 3, 5, 9, 11, and 13  in aluminum 

(see Table 4.2.1), which reflect the level of coincidence of the atomic structure at the 

grain boundary. For example, a Σ of 3 indicates that 1/3 of the lattice sites of the two 

grain orientations that meet at the GB are coincident. All of the simulations employed 

periodic boundary conditions, with GB planes perpendicular to the YX direction.[40]  

 Misorientation 
Axis No. of GBs No. of atoms 

Inclination 
Angle (θ) 

GB Energy 
(mJ m-2) 

Σ 3 [110] 26 284 – 8,096 0 – 90° 75 – 365 

 Σ 5 [001] 16 600 – 10,328 0 – 45° 465 – 542 

Σ 9 [110] 27 852 – 14,624 0 – 90° 331 – 490 

Σ 11 [110] 27 512 – 22,646 0 – 90° 151 – 431 

Σ 13 [001] 10 1,040 – 7,668 0 – 45° 433 – 511 

Table 4.2.1 – Details of grain boundary simulations used in this study[40, 80]. 

4.3 Identification of grain boundary atoms 

A quantification of the structure of a GB must be independent of the volume of 

bulk crystal surrounding the GB, since there are more atoms in the bulk than at the GB 

yet these atoms contribute little to the GB energy. As such, a systematic way of 

classifying atoms as belonging to either the GB or the bulk must be employed. The 

method outline in Section 2.2 was employed for this study (see Figure 4.3.1a) 
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Figure 4.3.1 – Grain boundary selection procedure. (a) For a Σ9 asymmetric tilt 
grain boundary (ATGB) with an inclination angle (θ) of 22.99°, local quadratic 
regression fit (and corresponding local 2nd derivative) of the square root of the 
centrosymmetry parameter (CS) overlaid with atomic positions of grain boundary 
(GB) and bulk atoms. Dashed lines represent the interface between the GB and the 
bulk. (b) Pair correlation function (PCF) of this grain boundary in comparison to 
that of the perfect crystal. 

4.4 Quantification of grain boundary structure 

A rigorous characterization of atomic structure such as 2-point statistics would be 

informed by both the positions of the atoms and the orientation of the structure. The latter 

poses a challenge for GB simulations as each side of the GB corresponds to a different 

crystal orientation. Only the relative orientation of atoms with respect to other atoms 

would potentially be of interest, not the absolute orientation with respect to a reference 

frame, since any property predictive model based on the structure of a GB should be 

independent of the GB’s orientation in space. Solutions to this problem may be found in 
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the field of computer vision[82], but for simulations such as this where energy is derived 

from the Embedded Atom Model (EAM), information retaining to orientation need not be 

retained in a structure characterization, allowing for structures to be quantified using  

PCFs, as explained in the next paragraph. KDE-derived PCFs with an Epanechnikov 

kernel, as described in Section 2.2.3 using neighbor distances up to the set of 7£M nearest 

neighbors (æ = 7,vä� = 134) and sampled for 512 equally spaced points from 0 – 6.3Å, 

were used as the structure characterization metric in this study. Figure 4.3.1b depicts an 

example of one such PCF, in this case a Σ9  simulation with an inclination angle (C) of 

22.99°. For ATGBs, the inclination angle is the angle between the GB plane and the 

plane of reflection symmetry between the two crystal lattices. 

Under EAM, the total energy for a group of atoms is: 

 .9D9 = 12	//ΦIIE��  E
IEFI  +/ η  H/ ρ E��  E
 EF  J   (149) 

where .9D9 is the energy of the system, ΦIIE  is an interatomic pair potential, ρ E  is 

the “atomic electron density” function, η  is the embedding energy function, and �  E 	is 

the distance between atoms ¢ and ¢E. Inspection of the expression reveals that the 

interatomic distance, �  E , is the fundamental variable of both summation terms. The PCF 

is a function of the probability distribution of �  E , which provides a strong mathematical 

justification for its ability to accurately predict energies based on the Embedded Atom 

Model, and suggests that the accuracy of the approach will generalize to other similar 

potentials where the interatomic distance is the fundamental variable.[83, 84] However, it 

should be noted that a regression model constructed using PCFs calculated by a 
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traditional binning technique had relatively weak predictive power. This means that a 

predictive model must be robust against structural variance as pertaining to small local 

changes in atomic position, which are diminished by the smoothing parameter in KDE-

derived PCFs.  

4.5 Low-Rank Model Construction 

The Epanechnikov kernel bandwidth ℎq serves as a modeling hyperparameter, 

and the value chosen for the PCF calculation (0.42 Å) corresponds to the error minimum 

in the full PSP model and full dataset, as illustrated in Figure 4.5.1. 

 

Figure 4.5.1 – Structure-property model error as a function of the PCF bandwidth. 

After subtracting the mean PCF from the entire ensemble of discretely sampled 

PCFs of all simulations, PCA[49] was performed via the singular value decomposition 
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(see Section 2.3.3).  The variance corresponding to the first 10 PCs are depicted in Figure 

4.5.2a; Figure 4.5.2b depicts eigenvectors 1, 2, 3, and 6 of the dataset. 

 

Figure 4.5.2 – Principal component analysis of GB PCFs. (a) Percentage of retained 
variance corresponding to the first 10 PCs on a logarithmic scale.  (b) eigenvector 
(���) associated with PC �, for � = 1, 2, 3, and 6, (c) Scores associated with PCs 1 and 
6.  θ is represented by the color scale.  

In order to establish a quantitative structure-property relationship in this work, PC 

regression as outlined in  was applied. For this data set, the predictors of best two-

component structure-property regression model for predicting GB energy are the scores 

associated with PCs 1 and 6 (see Figure 4.5.2c).  

Next, the model was analyzed to create a process-structure linkage. Employing 

the terms of a 3AK order polynomial of C as predictors, separate regression models were 

constructed for each Σ value to estimate the scores of PC 1 and 6. 
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4.6 Results and Discussion 

 

Figure 4.6.1 – Illustration of structure-property linkages. (a) Parity plot comparing 
the GB energies from atomistic simulations and the predicted values of GB energy 
from the 2-PC regression model.  θ is represented by the color scale.  (b) Box-
Whisker plot of the mean absolute errors from 1000 instances of 3-fold cross-
validation. The box represents the interquartile range, and the dashed ‘whiskers’ 
have a length 1.5 times that of the interquartile range; points outside this range 
represented as dots are considered outliers. 

Figure 4.6.1a shows a parity plot of the GB energies predicted by the regression 

model plotted against the values computed from the full simulations. The regression 

coefficients for this model �7, �L are -548.66 and -1070.89, respectively. The mean 

absolute value of the error in prediction is roughly 11.4 mJ/m2. This is substantially less 

than the error in prediction of simulation versus experiment over a large range of C as 

shown in the original dataset (see Ref. [40], Fig 1). Figure 4.6.1b shows a Box-Whisker 

plot of the mean absolute errors from 1000	instances of  3-fold cross-validation. This 
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shows that, even in the case of extreme outliers, the prediction error is still fairly small 

(< 13 mJ/m2). 

 

Figure 4.6.2 – Illustration of process-structure linkages. (a) the score as a function of 
θ and the model-predicted values for PC 1 and (b) PC 6. Points correspond to actual 
data and the 3rd order polynomial fit is indicated by the dashed line. 

 #5	Á�M�N	 ≈ öC, + ÷C8 + 5C + P 
Coefficient 
 

PC # Σ = 3 5 9 11 13 

ö 1 8.71 × 10OR 4.77 × 10OS 1.83 × 10OL −6.82 × 10OS −5.16 × 10OL 
 6 1.45 × 10OS 5.95 × 10OS −6.10 × 10OS 1.09 × 10OS 1.9 × 10OL ÷ 1 7.29 × 10OT 6.21 × 10OT −2.64 × 10Oë 1.64 × 10Oë 4.4 × 10Oë 
 6 −2.38 × 10OT −2.31 × 10OT 9.46 × 10OT −1.62 × 10OT −1.14 × 10Oë 5 1 7.7 × 10OT 5.87 × 10O, 8.25 × 10O, −1.29 × 10O8 −9.75 × 10O, 
 6 7.17 × 10Oë 3.78 × 10Oë −4.73 × 10O, −1.67 × 10OT 1.84 × 10O, P 1 −2.16 × 10O8 −1.43 × 10O7 −5.98 × 10O8 3.11 × 10O7 −6.9 × 10O8 
 6 6.84 × 10O, −6.99 × 10OT 6.76 × 10O8 2.16 × 10O8 −2.54 × 10O8 
Table 4.6.1 – Regression coefficients of the process-structure models. 

Figure 4.6.2 shows the PC 1 and 6 scores along with the scores predicted from the 

regression models; the regression coefficients are listed in Table 4.6.1. For both PC 1 and 

6, the regression fit for Σ =5 and 13 are much poorer than the fit for Σ = 3, 9, and 11. 
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ATGBs with for Σ = 5 and 13 and Σ = 3, 9, and 11 have misorientation axes of 9001: and 

9110:, respectively. The misorientation axis is the axis about which the lattices on either 

side of the GB are rotated to bring them into coincidence. This suggests that different 

misorientation axes influence the orientation of the PC vectors in a complex manner that 

is not fully described in this simple model.  However, this added complexity does not 

manifest itself in the previously described structure-energy relation. 

 

Figure 4.6.3 – Illustration of PSP linkages. (a) Structure-Property linkage: A plane 
representing the fitted regression model overlaid with the GB energy from 
simulation plotted against actual scores for PCs 1 and 6. The color scale represents 
the error of the regression model in mJ/m2.  (b) Process-Structure linkage: 
Continuous value of the predicted PCF as a function of inclination angle for a Σ3 
ATGB . The color scale represents the deviation from the perfect crystal PCF. 

The method outlined here provides a framework for efficiently extracting 

quantitative and transferable PSP linkages from molecular mechanics/dynamics 

simulations. Figure 4.6.3 illustrates the continuous nature of these linkages. The 

structure-property relationship illustrated in Figure 4.6.3a can predict the GB energy for 
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any Al ATGB with a reasonably similar structure to those in the model.  The process-

structure relationship can predict the structure itself as a function of C and Σ  (see Figure 

4.6.3b).  These linkages will aid in the coupling of complex GB boundary structures into 

multiscale models where hundreds or thousands of different GB structures may arise. 
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CHAPTER 5. PSP LINKAGES IN SYMMETRIC TILT GRAIN 

BOUNDARIES USING ASCA 

5.1 Overview 

The methods for establishing PSP linkages in GB simulations defined previously 

are further refined though the incorporation of ASCA (ANOVA single-component 

analysis), an extension of PCA that incorporates the additive decomposition of ANOVA 

to separately analyze variance from different known sources. In this work, 150 symmetric 

tilt GBs (STBGs) were analyzed with varying misorientation angles, axes, and micro-

degrees of freedom in a manner consistent with two-way ANOVA.  A 3-component 

structure-property regression model for predicting GB energy constructed using the first 

two sets of angle-PC scores and the first set of axis-PC scores had an average prediction 

error of 15.4 mJ/m2. Regression models using a third order polynomial of the  

misorientation angle served as the structure-property models for predicting the first two 

angle-PC scores.  These models had 28 values of 0.95 and 0.93 and were robust against 

leave-one-out cross-validation (LOOCV). 

5.2 Description of Data 

A dataset of symmetric tilt GBs (STGBs) was generated by Srikanth Patala and 

Arash Banadaki. In this dataset, the misorientation axis of each GB was either [001], 

[011]. or [111]. The misorientation angles selected are enumerated in Table 5.2.1. 
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[001] [011] [111] 
2.2466° 2.2505° 2.2551° 
5.2649° 5.2807° 5.289° 
8.2552° 8.2539° 8.2556° 
11.235° 11.218° 11.241° 
14.25° 14.226° 14.249° 
17.231° 17.232° 17.236° 
20.249° 20.257° 20.248° 
23.223° 23.202° 23.225° 
26.268° 26.261° 26.249° 
29.242° 29.265° 29.255° 

Table 5.2.1 – Misorientation angles simulated for each axis 

Here, all angles are spaced 3±0.05° apart, and the range of corresponding angles 

across the different misorientation axes is less than 0.025°. They can therefore be treated 

as the same equally spaced angles to within a rounding error. For each combination of 

axis and angle, GB structures were generated corresponding to the different possible 

configurations of the micro-degrees of freedom, and 5 of these GBs were selected at 

random, with probabilities estimated by inputting the total energy of each GB 

(normalized GB Energy × cross-sectional area) into a Boltzmann distribution at 300 K. 

The GB energies of the replicates selected are depicted in Figure 5.2.1. 
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Figure 5.2.1 – GB Energies for each simulation included in the analysis. 

5.3 Quantification of grain boundary structure 

Grain boundary atoms were identified using the procedure outline in Section 

2.2.2. Due to the highly organized nature of the variance structure of this dataset, no 

smoothing was required for the structure quantification, which was characterized with a 

traditional binned PCF using 95 bins from 0 to 6.3 Å. The PCF, thusly described, was 

calculated for each of the 150 GBs selected for analysis. 

5.4 Low-Rank Model Construction 
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Figure 5.4.1 – Examples of ASCA eigenvectors. 

The basis for the low-rank model established for this data set is ASCA (see 

Section 2.3.5). Here, misorientation angle served as factor A and misorientation axis 

served as factor B. A few of the corresponding ASCA eigenvectors are illustrated in 

Figure 5.4.1.  The fraction of retained variance is illustrated in Figure 5.4.2 for a few sets 

of scores. From the ANOVA-style decomposition, it can be seen that structure 

differences corresponding to changes in misorientation angle account for 50.4% of the 

total variance. Changes in misorientation axis represent 33.1% of the variance with angle-

axis interaction accounting for 15.3% of the variance and the remaining 1.2% 

corresponding to structure changes among the replicates within the same axis-angle 

grouping.  
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Figure 5.4.2 – Retained variance corresponding to the largest ASCA-PCs. 
Misorientation angle corresponds to factor A; misorientation axis serves as factor B. 

Since the ASCA scores are orthogonal, the best k-component regression model 

consists of the sum of the k best 1-component models for the purposes of establishing a 

structure-property linkage. As such, separate regression models for predicting GB energy 

were constructed for each set of angle, axis, interaction, and replicate scores. 

5.5 Results and Discussion 
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Figure 5.5.1 – Mean absolute errors resulting from the inclusion of each next-best 
set of scores in a linear regression model, with corresponding regression coefficients.  

 Figure 5.5.1 lists the best ASCA scores for predicting energy in descending order, 

along with the corresponding mean absolute error and corresponding regression 

coefficient. From here it can be seen that a 3-component model is optimal, consisting of 

angle-PC 1 and 2  scores, along with axis-PC 1 scores. Inclusion of additional PC scores 

yields a negligible marginal improvement in the model error. From the ordering of the 

scores in Figure 5.5.1, it can be seen that changes in misorientation angle have a greater 

influence on GB energy than changes in misorientation axis (consistent with the Read-

Shockley model of low-angle GBs[85, 86]), and that both of these types of changes have a 

larger impact on GB energy than axis-angle interaction effects.  Furthermore, structure 

changes among the replicates corresponding to each axis-angle pair have a negligible 
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effect on predicted GB energy. The parity plot of the 3-component model is depicted in 

Figure 5.5.2. From here, it can be seen that the model is more accurate for lower angles 

than for higher angles.  

 

Figure 5.5.2 – Parity plot of 3-component linear regression model constructed from �	�,	��, and �	�. 

 The 3-component model is constructed from the first 2 sets of angle-PC scores 

and the first set of axis-PC score. The values of these scores are shown in Figure 5.5.3. 

From here, process-structure models regression models based on a third-order polynomial 

of the misorientation angle B can be constructed for angle-PC scores included in the 

model.  
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Figure 5.5.3 – Values of the ASCA scores associated with (a) misorientation angle, 
with corresponding structure-property model and (b) misorientation axis 

 The LOOCV error is small for most angles included in this study, with the 

exception of the highest and two lowest angles included in the study. This suggests that 

these structure-property models can be used to interpolate the angle-PC scores for 

misorientation angles toward the middle of the range of angles used here. 

 This study illustrates the benefits of ASCA over PCA for cases where there exists 

some prior knowledge of the sources of variance in a given data set. To obtain a 

structure-property model at least as good in terms of error  as the 3-component regression 

model found here using traditional PCA regression, 7 PCs would need to be included in 

the model. Furthermore, process-structure models can be established that are valid for 

multiple misorientation axes. The 28 value for the structure-property models for }74 
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and	}84 are 0.95 and 0.93, respectively. In contrast, a 3rd-order polynomial of B for 

predicting the PC 1 scores from traditional PCA has an 28 of 0.53. The methods outlined 

here, coupled with those from CHAPTER 3, can further aid in the incorporation of GB 

structures into multiscale models. 
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CHAPTER 6. CONCLUSIONS 

6.1 Relative Importance of Current Work 

Perhaps the most important contribution described within this document is the 

method for calculating 2-point statistics for atomistic data outline in Section 2.1. 2-point 

statistics represent the primary structure characterization metric used within the 

multiscale modeling framework pioneered by the MINED Materials group; a 

computationally efficient method for calculating the 2-point statistics for atomistic data 

allows for the facile integration of atomic simulations into this framework. While defined 

here for the hard-sphere model, this method can be readily adapted for any meaningful 

spherically-symmetric descriptor of an image of an atom, such as a multivariate Gaussian 

distribution.  

Furthermore, it was shown in CHAPTER 3 that atomistic 2-point statistics data can 

be used to categorize interatomic potentials based upon the results of simulations 

implemented with these potentials. Intelligent force field selection is a major barrier to 

more widespread usage of atomistic simulations in materials research, and this 

classification scheme can simplify the task of comparing the relative merits of different 

force fields. 

The incorporation of ASCA, currently a little-used technique, into the data-driven 

materials modeling framework also holds great promise. In traditional PCA, associating 

the principal component eigenvectors with a particular source or sources of variance is a 

non-trivial task. In contrast, this is a quite simple matter in ASCA. As such, stronger 
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process-structure models can be constructed that link ASCA scores to the values of these 

known variance sources. Additionally, ASCA allows for more qualitative knowledge to 

be gleaned from structure-property models; a claim that a particular source of variance is 

more influential in determining a particular material property than another can be made 

based upon the relative predictive power of regression models constructed using the 

appropriately sourced ASCA scores as predictors. 

The strength of the models constructed for the simulated grain boundary case 

studies described in CHAPTER 4 and CHAPTER 5 reinforces the notion that data-driven 

models operating under the PSP paradigm are a viable way to characterize material 

behavior regardless of length scale. Models such as these have the potential to improve 

the accuracy and efficiency of future simulations. The ability to rapidly predict a GB 

structure from a given set of simulation conditions using a process-structure model has 

the potential to reduce the number of computations required for future energy 

minimization simulations. To find the global energy minimum corresponding of a grain 

boundary corresponding to a given description of the macroscopic degrees of freedom, 

numerous structures based upon variations of the micro degrees of freedom must be 

investigated; the number of such structures might be reduced by restricting the potential 

structures examined to those sufficiently close to the structure predicted by the learning 

model. Additionally, GB energies predicted structure-property models have the potential 

to enhance mesoscale simulations of material properties influenced by GB energy, such 

as recrystallization, plasticity, and failure[34]. 
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6.2 Future Work 

6.2.1 Methodology 

For the truncated 2-point statistics algorithm described in Section 2.1, the 

methodology for calculating and binning the displacements between atom centers in 

continuous space (described in Equation 46) may be improved. The simplest (but most 

computationally expensive) method for calculating these displacements prior to binning 

would involve using the modulo operator (see Equations 34 and 38) and then discarding 

the results that lie outside the required cutoff region. Rather than discarding long vectors, 

a method for only calculating displacements within the cutoff regime may be 

implemented. Possible candidate algorithms include range trees[87], octrees[87, 88], and 

local sensitivity hashing[89].  

The method for calculating orthonormal eigenfunctions from smoothed functional 

PCA and ASCA (see Sections 2.3.7-2.3.8) may prove quite useful to the establishment of 

process-structure and structure-property linkages due to the introduction of a smoothing 

hyperparameter into the calculation of eigenvectors.  The problem as is defined here for 

the case of one-dimensional functions, making it ideal for structural representations such 

as the PCF. Further refinement of the problem to define smoothing in multiple 

dimensions will allow for this technique to be implemented for structures characterized 

by 2-point statistics or higher-order PCFs (see Section 2.2.3). 

6.2.2 Case Studies 
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All studies described here have focused on simulations involving only a single 

type of atom. A natural extension of this work would be to examine simulations with 

multiple types of atoms, such as aluminum and copper.  For this sort of study, the 

structure would need to be characterized with multiple sets of 2-point statistics or PCFs to 

sufficiently characterize Al-Al, Cu-Cu, and Al-Cu displacements. 

The methods employed to establish PSP linkages in GBS outline in  Section 2.2.2 

exploited the fact that force fields like the one used in these studies based on the 

Embedded Atom Model, a popular class of force fields for hard materials based 

exclusively on interatomic distances, to justify the use of PCF as the chosen structure 

metric; since the force-fields employed in the studies do not depend on the relative 

orientation of the atomic bonding structure in terms of angular positions, the structure 

metric need not retain information pertaining to orientation. However, force fields for soft 

material simulations such as AMBER[90], CHARMM[91] and MM2[92] incorporate 

dihedral and torsional angles of atomic bonds into the energy calculation. As such, the 

PCF would likely prove to be an insufficient structure metric in these cases. For soft 

materials, the n-point statistics of the atomic structure would be a potential satisfactory 

structure metric. Additionally, a higher-order PCF (described in Section 2.2.3) may be 

useful as it implicitly contains orientation information despite only characterizing 

neighbor distances. 

The case study incorporating ASCA into process-structure and structure-property 

models (see CHAPTER 5) used a dataset of simulated STGBs arranged in a manner 

similar to a two-way ANOVA problem. To do this, the two factors selected to be varied 

were the misorientation angle and the misorientation axis, the latter of which was treated 
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as a categorical variable. As such, a meaningful process-structure model for predicting 

the ASCA scores associated with changes in the misorientation axis could not be 

constructed. However, the misorientation axis need not be treated as a categorical 

variable; the normalized vector defining the axis can be described in terms of the 

azimuthal and elevation angles, or an equivalent 2-degree-of-freedom representation. As 

such, it is possible to follow up the work done in CHAPTER 5 with a study using a new 

STGB dataset arranged in the manner of a three-way ANOVA problem. Here, the three 

factors would be the misorientation angle, the misorientation axis azimuthal angle, and 

the misorientation axis elevation angle. For this problem, the factor levels should be as 

evenly spaced as possible, and the angles corresponding to the same factor level should 

be as close to equal as possible, given the constraints of rational numbers. 
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APPENDIX A. APPLICATION OF DATA SCIENCE TOOLS TO 

QUANTIFY AND DISTINGUISH BETWEEN STRUCTURES AND 

MODELS IN MOLECULAR DYNAMICS DATASETS 

A.1  Abstract 

Structure quantification is key to successful mining and extraction of core materials 

knowledge from both multiscale simulations as well as multiscale experiments. The main 

challenge stems from the need to transform the inherently high dimensional 

representations demanded by the rich hierarchical material structure into useful, high 

value, low dimensional representations. In this paper, we develop and demonstrate the 

merits of a data-driven approach for addressing this challenge at the atomic scale. The 

approach presented here is built on prior successes demonstrated for mesoscale 

representations of material internal structure, and involves three main steps: (i) digital 

representation of the material structure, (ii) extraction of a comprehensive set of structure 

measures using the framework of n-point spatial correlations, and (iii) identification of 

data-driven low dimensional measures using principal component analyses. These novel 

protocols, applied on an ensemble of structure datasets output from molecular dynamics 

(MD) simulations, have successfully classified the datasets based on several model input 

parameters such as the interatomic potential and the temperature used in the MD 

simulations.  

Keywords: multiscale modeling, principal component analysis, and molecular dynamics 
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A.2  Introduction 

Multiscale modeling [1-4] has been identified as the most promising avenue for 

accelerating the design, development, and deployment of new/improved materials in 

emerging technologies [93-97]. A number of recently announced national research 

strategic initiatives (e.g., [93, 96, 97]) are being built on the premise that an increased use 

of multiscale materials modeling can dramatically reduce the need for extensive (and 

often expensive) experimentation that dominates the current materials development 

efforts. However, the main factors impeding the highly desired increased utilization of 

multiscale modeling can be collected into three groups [6]: (i) Model Maturity (i.e., the 

accuracy and reliability of available models), (ii) Model Interoperability (i.e., ability of 

the models covering multiple scales and physics to be strung together to work 

seamlessly), and (iii) Model Inversion (i.e., ability to address high value problems of 

interest in materials and process design that target improvements in specific performance 

needs). It should be noted that tremendous progress has indeed been made in being able 

to numerically simulate a broad range of materials phenomena using sophisticated 

physics-based modeling approaches [1-4, 7-17]. However, it is essential to address the 

main impediments described above, if we are to realize the full benefits from these 

modeling approaches in advanced materials development efforts. 

Modern data science tools and concepts offer a promising new avenue for 

addressing most of the impediments described above. Data science [23-26] is mainly 

focused on extracting high value information (might be labeled as knowledge or wisdom) 

from all available data (generated by either experiments or computations). This emerging 

cross-disciplinary field is being built on the foundations of statistical sciences, 
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computational sciences, systems theory, and applied mathematics, and is envisioned to 

have a broad range of potential applications. Indeed, data science has already enjoyed 

many remarkable successes in disparate application domains, including recommendation 

systems (e.g., Amazon [98]), personal informatics (e.g., [99]), drug discovery (e.g., 

[100]), decision systems (e.g., [101]), and healthcare (e.g., [102]). At its core, data 

science is comprised of two primary components. The first component can be broadly 

identified as Data Management and includes robust and reliable storage, aggregation, 

archival, retrieval, and sharing protocols for all kinds of data (potentially generated in the 

broadest variety of formats possible). The second component (more pertinent to the 

present discussion) centers around Data Analytics, and is aimed at mining hidden 

(embedded) high value knowledge or understanding from large collections of data.  

In the context of advanced materials development efforts, the central goal of Data 

Analytics is the extraction of robust and reliable process-structure-property (PSP) 

linkages that capture quantitatively the roles of different unit manufacturing (or 

processing) steps on the salient measures of the material hierarchical structure that in turn 

control the properties of interest (or performance characteristics desired in service). In 

this regard, it is extremely important to cast the desired PSP linkages in computationally 

efficient forms that allow direct integration into the tools typically employed by 

practitioners in the product design and manufacturing fields. In other words, the PSP 

linkages of interest are not likely to be employed in the forms developed in the advanced 

numerical tools [1-4] or the sophisticated homogenization theories [103-108], but more 

likely in the reduced-order forms (also called surrogate models or metamodels) that allow 

practical solutions to inverse problems of materials and process design. In recent years, a 
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data-centered framework has emerged for capturing highly accurate PSP linkages 

relevant to a broad range of materials phenomena [109-120]. Almost all of the 

applications demonstrated so far have focused on meso-length scales in the material 

internal structure. For example, the relationship of mesoscale porous structures on 

effective transport properties has been investigated [33, 109, 121-123]. In this paper, we 

extend this prior framework to atomic-scale molecular dynamics (MD) datasets and 

demonstrate its viability as a tool for improved hierarchical modeling and as a means to 

characterize and distinguish between datasets used in atomistic simulations. Indeed, our 

goal is to use the same structure quantification techniques at the atomic scale as those 

used previously at the mesoscale. Consequently, the approach presented here paves the 

way for the development of an universal approach for the rigorous quantification of the 

material structure at multiple hierarchical length/structure scales.  

A distinctive feature of the materials data science approach presented here is its 

focus on a rigorous, statistical, quantification of the material structure and its usage in 

arriving at PSP linkages. The underlying hypothesis in such an approach is that only a 

sufficiently comprehensive description of the material structure can facilitate the capture 

of robust and reliable PSP linkages (e.g., [6, 110, 124-126]). The central challenge, 

therefore, lies in the quantification of the material internal structure. A complete and 

rigorous description of the material internal (hierarchical) structure can be very complex, 

demanding very high dimensional representations. This challenge is readily appreciated 

when one recognizes the need to include not only the details of an idealized structure in 

the materials of interest, but also the inherent defects (including disorder) and their spatial 

distribution in the structure. For example, most materials being explored for structural 
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applications exhibit multiphase polycrystalline microstructures at the mesoscale [127-

130]. A rigorous description of such material structures should include quantification of 

the spatial distributions of the chemical composition, thermodynamic phases, crystal 

lattice orientations and various hierarchical defect populations (e.g., point defects, 

dislocations, grain boundaries, phase boundaries, pores, microcracks). Fortunately, the 

field of materials science and engineering has already taught us that only certain salient 

features of the material internal structure dominate the macroscale performance 

characteristics of interest for any selected application. Therefore, the main challenge in 

the development of materials with improved/enhanced properties reduces to identifying 

and tracking only the salient microstructure features that are important to a specific 

engineering or technology application. In general, these salient features of the material 

structure are not known a priori, and need to be identified from an extremely large list of 

potential measures. This is precisely where a data-driven approach offers many 

advantages. In a data-driven approach, the decision on exactly what constitutes the set of 

important salient features is not taken in a static manner – instead it is taken objectively 

based on the actual available data. It is continuously refined as more data becomes 

available. 

A major goal of this work was to test whether the methods previously developed for 

mesoscale structure quantification could be applied to atomistic “samples” produced by 

MD simulations. In particular, our goal was to explore if these methods can objectively 

distinguish between atomic configurations in a way that would support multiscale 

modeling.  In this work, the results using different interatomic potentials (models of 

energies and forces between atoms) were considered a surrogate for different processing 
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methods.  It is important to distinguish objectively between results generated by different 

models and/or under different simulation conditions.  Another important factor is that, by 

making use of robust global characterization methods, it is possible to establish greater 

confidence in the multiscale use of the results from classical MD simulations.   

The structure quantification approach presented in this paper, and applied 

rigorously to MD datasets for the first time, comprises three essential steps. In the first 

step, the output from the MD simulations presented as expected positions of the atom 

centers, is transformed into a digital (uniformly tessellated) structure. In the second step, 

the digital representation of the material structure is quantified using the framework of n-

point spatial correlations (or n-point statistics) [110, 127, 131-134]. Although a number 

of other ad-hoc measures of material structure are possible, only the n-point spatial 

correlations provide the most complete set of measures that are naturally organized by 

increasing amounts of structure information. For example, the most basic of the n-point 

statistics are the 1-point statistics, and they reflect the probability of finding a specific 

discrete local state of interest at any randomly selected single point (or voxel) in the 

material structure. In other words, they essentially capture the information on volume 

fractions of the various distinct local states present in the material system. The next 

higher level of structure information is contained in the 2-point statistics, denoted $AMMU
, 

which capture the probability of finding discrete local states ℎ and ℎV at the tail and head, 

respectively, of a prescribed vector � randomly placed into the microstructure. This idea 

is closely related to the commonly used concept of pair correlation functions [73] that 

reflect, for a selected or representative atom, the probability of finding atoms (generically 

or of a given type) as a function of radial distance.  The main difference between the pair 
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correlation functions and the 2-point correlation functions is that the latter capture the 

directional dependence, i.e., the difference between the points examined is expressed as a 

vector and not just a simple scalar distance. 

The third and final step of structure quantification involves the objective 

identification of reduced-order representations of the structure using techniques such as 

the principal component analysis (PCA) [110, 135]. PCA provides a linear transformation 

of high dimensional data in a new orthogonal frame where the axes are ordered according 

to the observed variance among the elements of the dataset. Consequently, a truncated 

PCA representation provides an objective (data-driven) reduced-order representation of 

the original data. It is emphasized here that although PCA dimensionality reduction 

techniques have been explored in materials problems in prior literature [12, 136], they 

have only recently been employed on 2-point spatial correlations of microstructure in 

attempts to successfully extract high fidelity PSP linkages [109, 110, 135, 137]. The main 

contribution of this paper is a demonstration of the application of these computational 

toolsets on MD datasets, and to compare and contrast the results with those obtained 

using the simpler structure measures used currently.  Although further development of 

the ideas presented here is needed before they can be broadly adopted, this work 

demonstrates the viability and advantages of employing spatial statistics and PCA 

protocols on the MD datasets. 

A.3  Background: Spatial Correlations 

As noted earlier, structure quantification is central to the extraction of transferrable 

materials knowledge needed in multiscale materials modeling efforts. A digital signal 
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representation of the material structure serves as a natural starting point for the ensuing 

discussion. In particular, it has been proposed to represent the discretized material 

internal structure as �åM [138], which denotes the probability that a specified spatial bin 

(or voxel) indexed by Á is physically occupied by a potential local state indexed by	ℎ. 

Since the values of � are bounded between zero and one (in many cases it can be just 

binary [138]), it produces a generalized representation for a broad range of materials 

systems at different length/structure scales. The information on the different length scales 

is encoded into the properties associated with the spatial bins, while the information on 

the local state of the material (e.g., chemical composition, phase identifiers, order 

parameters, tensorial representations of different defect configurations of interest) is 

encoded into the properties associated with the bins in the local state space. The digital 

signal representation of structure offers many computational advantages in a broad range 

of materials data transformations and knowledge extractions [110, 113-116, 123, 127, 

129, 133, 134, 137, 139-143]. 

The material structure representation described above is particularly well suited for 

the computations of spatial correlations (i.e., information on the relative placement of 

local states in the material structure) [110, 127, 131-134]. Based on the earlier 

definitions, the 2-point spatial correlations (or 2-point statistics) can be mathematically 

expressed as [133, 134] 

 $AMMU = 1-A/�åM�å¹AMUWX
åº7  (150) 
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where � indexes the bins in the space of vectors (generally the same binning scheme as 

that was used for the spatial domain). In Eq. 150, -A denotes the number of spatial bins 

for which the bins indexed Á and Á + � both lie within the spatial domain of the material 

structure instantiation being studied. If assumptions of periodicity of the material 

structure are invoked (as routinely done in MD simulations), then -A = -, where - is the 

total number of spatial bins in the microstructure instantiation. It is also pointed out that 

computationally efficient schemes for computing the spatial correlations using Discrete 

Fourier Transforms (DFTs) have been developed and utilized successfully [133, 134].  

 For most structural material systems of interest in advanced technologies, the set 

of n-point statistics is an extremely large unwieldy set even for n = 2. Rigorous analysis 

of these datasets is only possible with the application of data science tools. For example, 

it was recently demonstrated that techniques such as principal component analysis (PCA) 

[144-146], can be used to obtain objective low dimensional representations of the 2-point 

statistics [110, 135]. PCA provides a linear transformation of high dimensional data in a 

new orthogonal frame where the axes are ordered according to the observed variance 

among the elements of the dataset. Consequently, a truncated PCA representation 

provides an objective (data-driven) reduced-order representation of the original data. It is 

emphasized here that although PCA dimensionality reduction techniques have been 

explored in materials [12, 136] and biology [42, 147-150] problems in prior literature, 

they have only recently been employed on 2-point spatial correlations of microstructure 

in attempts to successfully extract high fidelity structure-property linkages [109, 110, 

135, 137]. 
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 As an example, let 6 ñ$A|� = 1,2, … , 27 denote the truncated set of independent 2-

point statistics [133] of interest in a specific application. Let � = 1,2, … , ü	enumerate the 

elements of an ensemble of material structures being studied. It is generally expected that 

ü	 ≤ 2. In such situations, PCA identifies a maximum of �ü − 1
 orthogonal directions in 

the 2-dimensional space that are arranged by decreasing levels of variance in the given 

ensemble of structures. Mathematically, the PCA representation of any member of the 

selected ensemble (of structures), labeled by superscript �¤
, can be expressed as 

 $A�¡
 = / U��¡
B�AYØZ	���O7
,N

�º7 + $A̅ (151) 

where $A̅ is simply the averaged 2-point statistics for the entire ensemble, and U��¡
 
(referred as PC weights) provide an objective representation of the �¤
£M structure in the 

new orthogonal reference frame identified by B�A (from PCA). Another important output 

from the PCA is the significance of each principal component, [�, obtained in the 

eigenvalue decomposition performed as a part of the PCA [144-146]. The values of 

[� 	provide important measures of the inherent variance among the members of the 

ensemble of structures [135]. More importantly, by retaining only the components 

associated with the most significant eigenvalues, it is often possible to obtain an objective 

reduced-order representation of the structure with only a handful of parameters. 

Mathematically, this reduced-order representation can be expressed as 

 $A�¡
 ≈ /U��¡
B�AN∗
�º7 + $A̅ (152) 
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where 2∗	 ≪ min=�ü − 1
, 2>.		Selection of  2∗	will depend on the specific properties that 

need to be correlated to the structure metrics. Note also that the concepts described above 

can be easily extended to include higher-order statistics of the structure (e.g., 3-point 

spatial correlations). The PCA representations of the n-point statistics have been 

successfully used in automated and efficient classification of various ensembles of 

structures [110, 137].  

 In most prior examples presented to date in literature, the local state was defined 

at the continuum scale and identified as a specific thermodynamic phase found in the 

micrograph. However, the same methodology can be applied to material structures at 

other length scales. In a recent paper, this approach was successfully applied to quantify 

the semi-crystalline polymer structure datasets produced by molecular dynamics (MD) 

simulations [151]. 

A.4  Extension of Spatial Correlations to MD Datasets 

 One challenge of applying 2-point statistics to atomistic configuration datasets is 

the subjective choice of how to transform the discrete set of atomic points into a regular 

three-dimensional (3-D) grid of voxels. This choice is likely to be driven by the nature of 

the application. For example, in simulations encompassing a relatively large number of 

atoms, it may be preferable for a single voxel to encompass multiple atoms and the local 

state in each voxel is defined by measures such as the density or the mean orientation of 

the enclosed atoms (e.g., [151]). Alternatively, it may be preferable to quantify structural 

variations at the atomic scale, in which case the voxel size should be selected to be 

smaller than the atomic radius; we will focus our discussion here to these cases. 
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 As a proxy for more complex atomic structures, we here consider MD simulations 

of atomic volumes with a single chemical species as a function of temperature. These 

simulations represent relatively simple MD calculations that are being used as part of the 

NIST Interatomic Potentials Repository project to help establish a set of reference 

calculations to help researchers select interatomic potentials (models of how the atoms 

interact, also called force fields) that are most appropriate for a given application [152]. 

Except for choice of interatomic potential, the methodology is kept fixed for every 

simulation, which is: (i) determine the 0 K equilibrium FCC lattice constant via a 

molecular statics simulation, (ii) create a 10 x 10 x 10 face centered cubic (FCC) unit cell 

(4000 atoms) using the equilibrium lattice constant, (iii) create a uniform distribution of 

atomic velocities at the desired simulation temperature, and (iv) perform an isothermal-

isobaric (NPT) simulation at the desired temperature for 2,000,000 time steps using a 1 fs 

time step. Data analysis described here takes place within the final 1,000,000 time steps. 

Instantaneous coordinates were recorded every 50,000 fs, and these were used in the 

analysis presented here. Average reported pressures, volumes, temperatures, energies, 

etc., reach steady state well within that equilibration time for all simulations. The long 

simulations were done (instead of shorter ones that may have been adequate), primarily 

for two reasons. The first was to minimize the chance of a particular trajectory not being 

in equilibrium while running the same duration for all simulations (to make comparisons 

more robust).  The second was to allow more time for first-order phase transitions to 

occur to thermodynamically favorable states.  While this is not an issue for low 

homologous temperatures (T/TM), it is more significant near the melting temperature of 

the interatomic potential where phase transitions (melting) were observed for several of 
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the interatomic potentials.  Melting is identified by local structural disorder and a 

significant increase in atomic volume.  The python scripts used to generate the 

simulations and the data itself are available on the NIST Interatomic Potentials 

Repository site (http://www.ctcms.nist.gov/potentials).  While calculations have been 

performed for a number of different interatomic potentials defining elemental interactions 

for Al, Ni, Cu, Ag, and Au, here we are focusing on just the Al results. The interatomic 

potentials included in this study are summarized in Table 1, along with the appropriate 

references [60-79]. 

 It is important to note that these calculations include some simulations well 

outside the intended usage of the interatomic potentials (e.g., using the pure elements of a 

potential only fit for use with compounds and thus they may not give the most accurate 

values for single-element atomic volumes).  However, users often use interatomic 

potentials well outside the range of where they were fit, and it is important to understand 

how that choice affects the answers obtained.  This is discussed in much more detail in 

Refs. [152-154].  In this work, several interatomic potentials have melting temperatures 

for pure aluminum that are significantly lower than the experimental value of 933 K, 

which will be discussed in more detail later.   

Figure 3.2.1 shows a MD simulation dataset typical of those included in this study. 

In this dataset, the center positions of the atoms were taken directly from the results of 

the MD simulations (as instantaneous coordinates) and a sphere of radius a = 1.18 Å was 

constructed around the center to denote the atom. The entire volumetric domain used in 

the simulation was then discretized into a uniform grid and the material structure was 

converted to a simple digital signal, denoted as �åM (as introduced earlier). In this 
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notation, the local state descriptor, ℎ, was allowed only two values: ℎ = 1 was used to 

refer to the atomic species and ℎ = 0 was used to refer to the empty space between the 

atomic species. As mentioned earlier, Á serves as an index for the spatial bin. For 3-D 

space, it is convenient to think of Á as an integer array, i.e. Á = 6Á7, Á8, Á,7, with each Á� 
taking only integer values. The level of discretization employed is typically a variable 

parameter in the data-driven explorations. In the present study, based on a few trials we 

established a spatial bin size of approximately 0.252 Å  = 0.214a since further refinement 

did not influence the computed spatial correlations in any significant manner. The value 

assigned to �åM denotes the volume fraction of local state ℎ found in the spatial bin Á. 
Although, in principle, the value of �åM can range between zero and one, we have only 

allowed this variable to take either the value zero or one in this study; such structures 

have been referred as eigen structures in prior literature [138].  More specifically, if the 

distance between the center of a given voxel and the center of the voxel containing the 

coordinates of the atom center is less than or equal to the radius, that voxel is assigned a 

value of one (i.e., the voxel is included in the atom). For eigen microstructures, $́77 
would actually be the volume fraction occupied by the atomic species in the total volume 

being studied. Furthermore, since there are only two local states in the datasets 

considered here, only one autocorrelation is enough to capture all of the non-redundant 2-

point spatial correlations [124, 131, 133, 141, 155]. In this paper, we will therefore only 

focus on  $A77, and simply refer to these as $A. 

 Next, we discuss the computation of $A from �å7. A specific challenge 

encountered arises from the fact that the overall simulation volume in the MD results is 

not kept constant. In other words, results from different potentials or even different 
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snapshots from a single potential are expected to result in different simulation volumes. 

Since we have fixed the spatial bin size (described above), this would lead to fractional 

voxels at the edges of the volume. Furthermore, since the MD simulations conducted for 

this study have employed periodic boundary conditions, we wish to rigorously account 

for these boundary conditions in computing the spatial correlations. The strategy devised 

and employed in this study, to address the considerations described above, consisted of 

the following steps: (i) The microstructure signal, �å7, is expanded by employing the 

same periodic boundary assumptions that were utilized in the MD simulations. As an 

example, this expansion is shown in Figure 3.3.1 for a representative 2-D section through 

the simulation volume in Figure 3.2.1. For this example, the domain volume size is 

increased from L]=40.5 Å to L^=73.08 Å (in each of the three dimensions). Note that this 

expansion serves two purposes: (a) While the initial volume size (output from the MD 

simulation) is unlikely to be an exact integer multiplier of the selected spatial bin size, the 

size of expanded region is selected to ensure that it is indeed an exact multiplier of the 

spatial bin size (this feature is essential to allow the use of DFT algorithms). (b) The 

increase in size is needed to allow the placement of all vectors of interest in computing 

the spatial correlations (the tails of the vectors of interest will lie within the original 

volume, but the heads of these vectors may lie in the expanded volume). For all the MD 

volumes included in the study, the expansion size was selected to include all vectors up to 

a size of 59 spatial bins (this number was selected after a few trials and noting that 

vectors larger than this do not carry any additional salient information in the computed 2-

point statistics for the volumes studies here); the corresponding number of statistics will 

be 1193 (59 positive, 59 negative, and the zero vector components in each of the three 
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dimensions). Discretization using finer grids was seen to have a negligible effect on the 

clustering (i.e., classification) of interest for the present study (visualized later as 

dendrograms; cf. Figure 3.5.2). It is important to note that the discretization level is an 

important parameter of the protocols described here, and has to be adjusted suitably for 

different studies. (ii) A second microstructure signal �_å7 of the same extent as �å7 is 

created by copying the values of �å7 for all of the spatial bins corresponding to atoms 

whose centers fit inside the original volume (of size L]) and assigning zeros for the rest 

of the spatial bins (also shown in Figure 3.3.1). The number of spatial bins copied from 

the original volume is denoted as -A. (iii) The 2-point spatial correlations of interest are 

computed as the convolution of the two microstructure signals, �å7 and �_å7 (i.e., using 

these instead of �åM and �åMU
in Eq. 150), truncated to include only vectors whose 3-D 

components are smaller than 2. 

Figure 3.3.2(a)-(c) presents selected 2-D sections of the 3-D contour plots of 2-

point spatial correlations (these are visualized as the contours of the values of $A in the 3-

D vector space of  �, with � = �0,0,0
 at the center of the plot). The sections shown in 

this figure depict, as expected, a roughly periodic pattern consistent with the crystalline 

structure reflected in the spatial positioning of the atoms in the actual volumetric domain 

analyzed by the MD simulations (shown in Figure 3.2.1). It is important to recognize that 

the $A values plotted in Figure 3.3.2(a)-(c) are actually statistics denoting the probability 

of finding two voxels separated by the vector � and occupied by the atomic species. As a 

reference, the reader might take note that in a perfectly disordered (i.e., random) spatial 

distribution of local states (not shown), the 2-point spatial correlations show a single 

spike at the center (for � = �0,0,0
) and then immediately asymptote to an uniform value 
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as one moves away from the center.  The reader should also note that the value of $�´,´,´
 
at the center of these plots corresponds to the atomic volume fraction. 

Figure 3.3.2(d) presents the more familiar pair correlation function (PCF) used 

extensively in literature for quantifying the material structure in the MD simulation 

results. As one might infer, the peaks in the PCF plot correspond to suitably integrated 

(and normalized) values of the 3-D 2-point spatial correlations over the orientation 

variables defining the vector �. In other words, PCF is expressed only as a function of the 

magnitude of �, while the 2-point spatial correlations retain explicitly the dependence on 

both magnitude and direction of �. 
A.5  Application of Spatial Correlations to MD Datasets 

 Figure 3.5.1 presents a classification of the MD simulation datasets in the PCA 

space (following the protocols described earlier) for the MD simulated atomic structures 

at 300K and 900K, respectively, using the 19 potentials selected for this study. For each 

potential, the study included twenty atomic structures (taken at different times in the 

simulation after reaching an equilibrium state). Therefore, a total of 380 atomic structures 

were included in this analysis at each simulation temperature. Each data point in Figure 

3.5.1(a) and (b) represents the first three PC scores (or weights) for each MD simulated 

atomic structure included in the analyses. The computation of course provides many 

more dimensions (or PC scores), but it also indicated that these three PC scores account 

for 99.8 % of the important differences in the entire ensemble of atomic structures 

included in the study. This massive degree of dimensionality reduction is fully consistent 

with the prior experience involving mesoscale systems. In this regard, it is also satisfying 
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to note that the range of the PC scores is systematically decreasing for the higher-ranked 

PC scores (for example, the range for PC1 was about -90 to about 20, whereas the range 

for PC2 was about -15 to about 15), further confirming that the higher-ranked PC scores 

are indeed less important in capturing the salient features of the structures included in the 

ensemble. 

 Keeping in mind that the PCA representation in Figure 3 denotes a dimensionality 

reduction from 1193=1685159 to just three, it is indeed remarkable that this 

representation effectively captures both the intra-class and the inter-class variations 

within the entire ensemble. This result is even more remarkable when one notes that this 

classification was performed in a completely unsupervised manner. In other words, the 

PCA computation was not informed in any way about the different potentials used in the 

MD simulations in producing the atomic structures included in the study. This is a clear 

testament to the power of the 2-point spatial correlations and principal component 

analyses in capturing the salient features of the material structure in a rigorous stochastic 

framework. It is also very satisfying to note that the intra-class variance (reflected in the 

size of the cluster associated with each potential) in the simulated structures is 

significantly smaller than the inter-class variance. Moreover, the intra-class variance 

seems to be of roughly the same order of magnitude for all the different potentials 

included in this study, and is slightly higher for the datasets produced at the higher 

simulation temperature. All of these observations are consistent with expectations, and 

provide strong support to our claim that the protocols used in this study produce high 

value, low dimensional, measures of the material structure. 
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 An effective tool for visualizing distances in high-dimensional spaces is a 

dendrogram, which depicts the hierarchy of the distances between the data points. Figure 

3.5.2(a) and (b) depict the inter-class distances (between the cluster-means) as 

dendrograms for the same dataset that was depicted in Figure 3.5.1. Broadly, the PCA has 

identified the following clustering of potentials based on the differences in the structures 

produced by the MD simulations: the first group corresponds to the force fields 

referenced in [61, 64, 65, 69, 72], the second group corresponds to the force fields 

referenced in [60, 62, 66-68, 71, 73, 77, 78], including both force fields referenced in 

[71]. The four force fields referenced in  [63, 70, 76] and [74, 75] are distinctly far away 

from the two groups identified above.  The groupings of these results will be discussed in 

more detail in a later section.  Here we reiterate that interatomic potentials are fit with 

different types of reference data and optimized for particular applications.  Potentials fit 

for particular compounds, e.g., the B2 phase in Ni-Al, may not be the best option for 

treating the full Ni-Al phase diagram, though they may be the best available for the 

intended application. 

 Additional insights from the analysis presented here can be obtained from the 

plots of the PCs obtained in the analysis described above. Plots of $A̅ and B�A (for 

different values of �; see Eq. 152 are presented in Figure 3.5.3(a)-(d). As with the plots 

shown in Figure 3.3.2(a)-(c), � indexes the discretization of the vector space used in 

defining the 2-point spatial correlations.  The plots of $A̅ (Figure 3.5.3(a)) simply reflect 

the averaged auto-correlations for the entire ensemble of atomic structures included in the 

study. As expected, the averaged auto-correlation reflects an arrangement of the atoms on 

a highly periodic lattice. One can judge the degree of periodicity by comparing intensities 
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of the different peaks in these plots with the intensity of the center peak. For a perfectly 

periodic arrangement, the peak intensity will be the same for all peaks in the entire plot. 

As the arrangement becomes less periodic, the peak intensities drop systematically as one 

moves away from the center peak. As mentioned earlier, for a random arrangement, this 

drop in the peak intensity will be rather abrupt. In the present study, we will see a more 

significant drop in the peak intensities for the atomic structures simulated at higher 

temperatures (described later) compared to the ones simulated at lower temperature. 

 The plots of B�A in Figure 3.5.3(b)-(d) reflect a prioritized set of orthogonal 

deviations from the averaged autocorrelation. In other words, B7A reflects the most 

dominant deviation, B8A is the next most dominant deviation, and so on. Note the 

difference in signs between the red and black peaks in these plots. Consequently, a 

combination of closely placed pair of red and black spots on these plots reflects shift of 

the peak from its position in the ensemble average. The overall plot of B7A therefore 

captures systematic shifts in the interatomic distances between any selected atom and its 

neighbors, with the shifts being higher for far away neighbors compared to those that are 

nearby. Therefore, B7A appears to capture well the overall volume differences among the 

snapshots of the atomic structure. In the most general case, each of the B�A captures a 

certain scaled deviation in the intensities of all of the statistics included in the PCA 

analyses. Because of the large number of the statistics included in the PCA (each 

structure is characterized by 1,685,159 2-point statistics), it is often very difficult to 

assign a simple interpretation for what detail of the structure is captured by each 

individual B�A. It should also be noted from Figure 3.5.3 that the structure detail captured 

by the different B�A exhibit different levels and types of directional dependence. 
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 As implied in Eq. 152, one can construct the autocorrelation of any specific 

atomic structure included in the study by starting with the averaged autocorrelation and 

adding weighted contributions from each of the principal components. These weights are 

precisely the weights depicted in the low dimensional PCA representations of Figure 

3.5.1(a) and (b). It should be noted that such a reconstruction typically involves a 

truncation error when the higher-order principal components are ignored. However, since 

PCA provides a prioritized list of principal components, one can make the decision on an 

appropriate truncation level for a specific study in a very objective manner. 

 Figure 3.3.3(a) and (b) compare the 2-point statistics for the atomic structures 

predicted by one force field at two temperatures, respectively: 300 K and 900 K. As 

mentioned earlier, one of the salient differences in these plots is in the rate of decay of the 

peak intensities as one moves from the center peak, indicating the existence of a higher 

level of disorder (thermal noise) in the atomic structure at the higher temperature. It 

should be noted that this is a statistically rigorous evaluation of the difference in the 

atomic structures at the two temperatures. There is also a difference in the lattice 

parameter at the two temperatures, which can be easily inferred by looking closely at the 

positions of the peaks (with respect to the center) in the plots presented in Figure 3.3.3. 

 It is also instructive to examine the variation of the PC scores as a function of 

temperature for the different force fields. This is shown in Figure 3.5.4(a) and (b) after 

performing a PCA on all of the averaged 2-point statistics for each force field at each 

simulation temperature.  Of particular interest are the four force fields corresponding to 

References [63, 70, 76] and [74, 75] , which show significantly different behavior 

compared to the rest of the data sets.  Indeed, as shown in Figure 3.5.5, this difference in 
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the predicted results from these four force fields is also evident in the plots of the 

averaged atomic volume.  The force field used in Ref. [76] was strongly weighted to 

reproduce the properties of B2-NiAl, which may explain its poor behavior for pure 

aluminum. The other three interatomic potentials ([63, 70] and [74, 75]) were found to 

melt in the course of the simulations. Further investigation is needed to determine the 

cause of the low temperature melting phenomenon predicted by these force fields. If one 

looks at the volumes in Figure 3.5.5 at 300 K, there are several bands of volumes.  Close 

examination of Figure 3.5.1(a) and Figure 3.5.5 reveals that the groupings of average 

atomic volumes, determined from overall simulation size fluctuations, map directly to the 

groupings determined from the n-point statistics and PCA analysis.  Similar clustering is 

evident at 900 K, where there is a greater spread in average volumes for the simulations 

conducted with the different interatomic potentials. The fact that the PC scores 

automatically capture this effect, without a priori information about the phases, bodes 

well for their utility in capturing high values structure-property linkages. While a simple 

measure such as the atomic volume would also capture a similar effect, there is no 

guarantee that it captures all of the significant differences seen in the predicted MD 

structures. The protocols presented here ensure that all of the salient differences in the 

ensemble of predicted structures are indeed captured to a high degree of completeness 

(note that the two PCs referenced in Figure 3.5.4 capture 96.3 % of the differences in the 

elements of the ensemble). 

A.6  Conclusions 

 This initial study demonstrates the utility and the viability of utilizing rigorous 

structure quantification protocols to results predicted by MD. Of particular significance is 
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the fact that similar protocols were previously applied successfully to material structure 

datasets at the mesoscale. This study reinforces the possibility that a consistent set of 

structure quantification tools can be designed and applied to a broad range of materials 

systems at vastly different length/structure scales, and paves the way forward for the 

formulation and validation of such a universal framework. Furthermore, since the 

framework employs data-driven approaches, it leads to rigorous, practically useful, low 

dimensional, representations and visualizations. These are central to our goals for 

creating high value materials knowledge systems.  
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B.1  Abstract 

In this paper, we demonstrate that the “process-structure-property” (PSP) paradigm 

of materials science can be extended to atomistic grain boundary (GB) simulations 

through the development of a novel framework that addresses the objective identification 

of the atoms in the grain boundary regions using the centro-symmetry parameter and 

local regression, and the quantification of the resulting structure by a pair correlation 

function (PCF) derived from kernel density estimation (KDE). For asymmetric tilt GBs 

(ATGBs) in aluminum, models were successfully established connecting the GB macro 

degrees of freedom (treated as process parameters) and energy (treated as property) to a 

low-rank GB atomic structure approximation derived from principal component analysis 

(PCA) of the full ensemble of PCFs aggregated for this study. More specifically, it has 

been shown that the models produced in this study resulted in average prediction errors 

less than 13 mJ/m2, which is less than the error associated with the underlying 
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simulations when compared with experiments. This demonstration raises the potential for 

the development and application of PSP linkages from atomistic simulation datasets, and 

offers a powerful route for extracting high value actionable and transferrable knowledge 

from such computations.  

 

KEYWORDS: grain boundaries; materials informatics; molecular dynamics; pair 

correlation function; principal component analysis; process-structure-property linkage 

B.2  Introduction 

One of the fundamental challenges in materials science is the establishment of high 

value correlations between the process parameters of a given material and its associated 

performance characteristics, while accounting for the hierarchical nature of the material’s 

internal structure[29].  Such correlations form the foundations of the field of materials 

science and engineering, and are generally referred as PSP (process-structure-property) 

linkages. These linkages are central to all efforts aimed at the development and 

deployment of new or improved materials for advanced technologies[5, 29, 156-160].  

The main hurdle in the establishment of the PSP linkages comes from the fact that 

the material internal structure spans multiple hierarchical length/structure scales. 

Furthermore, the rich complexity of features exhibited by different materials at different 

length/structure scales has greatly impeded the efforts aimed at developing a universally 

applicable framework. Furthermore, in spite of the tremendous advances made in the 

experimental characterization of the material internal structure[161, 162], currently 

available techniques are not yet capable of producing sufficiently large ensembles of 
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experimentally measured datasets that can be mined for PSP linkages. For this and many 

other reasons, multiscale models[163-165] offer the most practical path forward for 

establishing and demonstrating the critical methodologies needed for extracting and 

validating high value PSP linkages spanning the multiple length/structure scales involved, 

i.e., the atomic scale to the continuum.  

Emerging toolsets of data science and informatics offer tremendous potential for 

mining the high value PSP linkages from aggregated and curated materials datasets[166-

169]. A large fraction of such effort in current literature has only considered relatively 

simple definitions of the material that included mainly the overall chemical composition 

of the material. In recent work[28, 30, 170, 171], our research group has championed a 

new materials data science framework that explicitly accounts for the complex 

hierarchical material structure. Called Materials Knowledge Systems (MKS)[126, 172-

174], this new framework employs spatial correlations to quantify the material structure 

(at each structure/length scale of interest) and principal component analyses (PCA) to 

obtain the salient low-dimensional measures needed to represent the complex material 

structure in the PSP linkages of interest. This new framework has been successfully 

demonstrated with several case studies dealing with the mesoscale structure of the 

material [27, 109, 175-178]. Only recently, the application of this framework is being 

extended to the atomic structure of materials [28, 151].    

There is tremendous value in casting the rich, physics-driven, results of the 

molecular mechanics (MM) or molecular dynamics (MD) simulations as PSP linkages. 

However, it is not immediately obvious what variables should be selected to describe the 

process parameters in such linkages. We argue that the process variables selected should 



 111

describe the conditions imposed to control or modify the material structure. These might 

include the thermodynamic ensemble, force fields, and applied loads. At the atomic scale, 

these can also be captured effectively by the configurational constraints imposed on the 

material structure. More specifically, the macro degrees of freedom imposed as input in 

the GB simulations would constitute the process variables. The “structure” would 

correspond to the elements, configuration and bonding structure of the atoms in a given 

composition. For atomistic simulations, a commonly employed metric for quantifying 

structure is the pair correlation function (PCF). The application of MKS framework relies 

on discretized representation of the material structure, both for quantification of the 

statistics (i.e., spatial correlations) as well as obtaining low dimensional representations 

(i.e., PCA). In prior work using microscopy images (e.g., optical, SEM)[31], discrete 

representations were obtained easily because the image itself is often stored as pixelated 

values. For point-cloud data such as the results of MD simulations studied here, we need 

to pay careful attention to how this is accomplished. If the PCFs are computed using the 

atomic positions directly, they would exhibit very sharp peaks (since the PCF is 

essentially a weighted sum of Dirac-delta functions located at the specific distances 

realized in the given atomic structure). This poses two main challenges: (i) The discrete 

representations of the PCF become very sensitive to the binning, especially as the bin size 

decreases (in efforts to capture the PCF accurately in their discretized representations). 

(ii) The discretized representation of the PCF would exhibit a large number of zero values 

for many of the bins (because of the Dirac-delta nature of the PCFs). Furthermore, if the 

PCF value for a bin is zero for all the atomic structures studied (this is very likely to 

happen with any point-cloud datasets), then the PCA can be hindered by rank deficiency 
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because there is simply no information on that specific bin to compute the corresponding 

component in all of the orthonormal eigen vectors comprising the  PCA basis. Therefore, 

it is clear that some form of smoothing is essential for the application of the MKS 

framework on the point-cloud atomic structure datasets. In the present work, this was 

accomplished using Epanechnikov kernels, which effectively amounts to placing a sphere 

around each atomic position and then discretizing the volumetric space to obtain 

discretized, but robust, representations of the PCF useful to establishing the desired PSP 

linkages. 

The concept of a “process-structure” relationship for these atomistic simulations 

would establish a quantitative connection between the process inputs of the simulation 

and the resulting atomic-scale structure (output). Previous work has established that 

molecular force-fields can be classified by the resulting atomic structure using 2-point 

statistics[28], but there has not been a systematic data-driven effort focused on the 

extraction of reduced-order “process-structure” linkages capable of rapidly predicting 

atomic structures as a function of simulation inputs. If such functions can be established 

in forms that require exceptionally low computational cost for their usage, they offer a 

unique practical approach for addressing inverse problems where one seeks to identify 

the process recipes that are likely to result in a desired atomic structure. 

Another important type of knowledge produced from molecular 

dynamics/mechanics simulations can be captured effectively in linkages between atomic-

scale structure and a relevant property such as the overall system energy; these linkages 

may be categorized as “structure-property” relationships. In particular, GB energies play 

a vital role in the multiscale modeling of materials phenomena, as they serve as a key 
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input to simulations at a larger scale (e.g., plasticity[34], failure[37], 

recrystallization[179]). While force-field based calculations are significantly less 

computationally expensive than their quantum-mechanical counterparts, the datasets 

often investigated are large in size (103 – 109 atoms) and high-dimensional, and thus 

cumbersome for use in multiscale models[34, 37]. Some progress has been made in 

training machine-learning force fields to results of quantum mechanical methods such as 

density functional theory for use in molecular dynamics simulations[38, 39, 180, 181], 

but these methods typically require large training sets (103-104 systems), and ultimately 

MD simulations are still necessary to extract knowledge regarding a system.  Data-

science techniques have also been previously applied for the systematic analysis and 

knowledge extraction from large MM/MD datasets[41-45] with a focus primarily on 

proteins and other large biomolecules. Within the materials science community, there has 

been relatively little effort devoted to a systematic analysis and dimensional reduction of 

the results of force-field based simulations. This is of particular importance given the 

recent rise in multiscale and hierarchical methods[29, 46]. 

It is emphasized here that one of the main benefits of the data science approaches 

explored in this work is that they facilitate a systematic and effective learning of the 

deeply embedded knowledge in the numerical datasets produced by MM/MD 

simulations. In other words, while MM/MD computations are commonly employed to 

account for the atomic-scale degrees of freedom within a GB structure[40, 182], there is 

no systematic, data-driven, formalism to capture the knowledge gained from these 

simulations in forms that allow easy application of the knowledge to new problems. 

Given the unimaginably large materials space (including all material chemistries and 
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process variables) that could be covered by the multitude ongoing disparate efforts of 

researchers everywhere, it behooves us to consider formalisms that allow extraction, 

fusion, and curation of the knowledge gained from such efforts. Indeed, such an advance 

is essential to enhance and interpret experimental data, pass information between 

computational models, and rapidly explore large design spaces (by facilitating solutions 

to inverse problems of interest). The ability to navigate the potential diversity of GB 

structures in a low-dimensional space would provide a facile route to rapidly identify 

structural regions of interest for additional molecular simulations and connect 

information between the atomic scale simulations and models at larger length scales. 

Furthermore, recent developments in microscopy have led to the ability to probe directly 

the atomic scale structures[183], and diffraction techniques that can be used to measure 

the PCFs;[184, 185] rapid estimation of the energy of an arbitrary GB or atomic structure 

will allow on-the-fly analysis of these experimental results, providing valuable real-time 

feedback to the equipment operator[186, 187]. This work aims to establish a foundational 

data science framework that will facilitate these types of future explorations. 

B.3  Dataset 

The dataset used in this study was produced by Tschopp et. al [40] and 

disseminated in an open repository hosted by the NIST Computational File 

Repository[80]. The use of a publicly available dataset such as this allows multiple 

research groups (including ours) to apply different techniques and strategies, and to 

objectively compare the models produced. The reader is referred to previously published 

papers in literature[81] for details of how this dataset was generated. Here, we summarize 

only the main details relevant to our study.  
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The dataset available for the study contained a total of 106 MM simulations that included 

ATGBs with Σ values of 3, 5, 9, 11 and 13 in aluminum (see Table 4.2.1 – Details of 

grain boundary simulations used in this study[40, 80].), which reflect the level of 

coincidence of the atomic structure at the grain boundary. For example, a Σ of 3 indicates 

that 1/3 of the lattice sites of the two grain orientations that meet at the GB are 

coincident. All of the simulations employed periodic boundary conditions, with GB 

planes perpendicular to the Y direction[40]. 

B.4  Approach for Establishing PSP Linkages at the Atomic Scale 

The workflow developed and employed in this work for establishing the structure-

property and process-structure linkages of interest is outlined in Figure 4.1.1. Broadly, 

this workflow depicts three main components: (i) low-rank quantification of the grain 

boundary atomic structure, (ii) extraction of a structure-property linkage, and (ii) 

extraction of process-structure linkages. These components are discussed below 

sequentially, explaining the rationale behind each step involved in each of these 

components. 

B.4.1 Quantification of the Atomic Structure in the GB 

The first step in the quantification of the GB atomic structure is the objective 

identification of the atoms belonging to the GB region in each simulation set. Of the total 

number of atoms within a given GB simulation (~102 to105), only a fraction of the total 

atoms lie in the GB, while the remainder depict the crystalline structure of the bulk. Since 

only the GB atoms contribute to the GB energy, it is imperative to develop an objective 

and automated protocol for their identification. Although it might seem that this should 
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be easy, a set of protocols for differentiating GB atoms from bulk atoms is non-trivial due 

to the large variety of GB structures and relatively smooth transition between GB and 

bulk regions.   

In this work, the regions associated with the GBs were identified for each 

simulation using a method based on a local quadratic regression model[52] for the centro-

symmetry parameter[51]. This approach relies on centro-symmetry parameter serving as 

a good surrogate measure of the distortions in the GB atomic structure, and looks at the 

variation of this scalar parameter as a function of the distance from the GB plane using a 

local quadratic regression model.  The predictor terms used in this regression were the 

displacements in periodic space (from a given y-plane to each atom) raised to both the 

1st and 2nd power, as well as an intercept. The regression weights were taken as the 

probability densities of these displacements being drawn from a normal distribution 

(equivalent to a Gaussian kernel) with a standard deviation of 4.05 Å. The response 

variable for this regression model was the square root of the centro-symmetry (CS) 

parameter of each atom, calculated in a manner consistent with LAMMPS[188]. Taking 

the square root ensures that both the predictor (displacement) and the response were in 

units of distance. This can be modeled by the following weighted regression function for 

each simulation i: 

 ?ω�, �Y
��,  = ?ω�, �Y
=βÐ´Ø + βÐ7Øδ�Y
 + βÐ8Øδ�, �Y
8> + �error	terms
 (153) 

where ci,a is the centro-symmetry parameter of atom a, ωi,a(y) is the regression weight as 

a function of position, and δi,a(y) is the displacement function in periodic space. In the 
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notation used here, the bolded text used for the regression coefficients refers to the fact 

that the regression coefficients can be stored in a matrix. 

The GB/bulk interfaces were defined to be the local maxima of the 2nd derivative 

of the modeling equation (the polynomial in parentheses in the right-hand size of 

Equation 153), or twice the regression coefficient ��8�. An atom was said to be in the GB 

if it lies within the boundaries defined by the GB/bulk interfaces corresponding to the 

closest GB. This approach provided computationally fast, objective, and well-defined GB 

interfaces that aligned well with intuition (see Figure 4.3.1(a)). 

The GB atomic structures can be complex and varied, with hundreds or thousands 

of atoms in the GB per simulation. These structures can be quantified with PCFs[184, 

185] or more rigorously with 2-point statistics[28], which are equivalent to directionally 

resolved PCFs. For atomistic GB simulations, the PCF is a good candidate for use as a 

structure metric as it is invariant to relative crystal orientation with respect to the 

reference frame. Only the atoms identified as GB atoms were included in the PCF 

computation.  As PCFs calculated with a traditional binning technique proved too rough 

(sharp) for model fitting, we employed here a smoothing technique based on kernel 

density estimation (KDE), as explained next.  

For each GB atom, the distances to the 134 nearest neighboring atoms (GB or 

bulk) were found using the k-Nearest Neighbors algorithm[52], and a probability 

distribution function (PDF) of all neighbor distances for all GB atoms was estimated 

using KDE[53] with an Epanechnikov kernel. The use of a kernel introduces a smoothing 

parameter into the PCF; to within a small approximation, a PCF calculated with the 
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Epanechnikov kernel is equivalent to treating each atom as a uniformly dense sphere of 

finite radius. The Epanechnikov kernel for bandwidth h and distance u along the PDF is: 

 κ��ì, ℎ
 = § 34√5ℎ8 È1 − ì85ℎ8É for	�ì ℎ⁄ 
8 < 5
0 otherwise ñ (154) 

This kernel can be used to construct a PDF using the following equation: 

 ψ���
 = 1134 × v�̀ / /κ� c� − �2���, �¡
� , ℎ�d7,ë
¡º7 ∈�éa

 (155) 

In this equation, ��Ý represents the set of atoms in the GB, v�Ý represents the 

number of atoms in this set, he is the Epanechnikov kernel bandwidth, and  �2���, �¡
� is the 

magnitude of the displacement vector from atom a to its kth nearest neighbor. A PCF can 

be expressed in terms of this PDF scaled by the inverse squared distance and appropriate 

constants. The formulation of the PCF used in this study can be expressed as: 

 	γ���
 = 1344P�8à´ψ���
 (156) 

where, n0 is the atomic number density of bulk crystalline Al (6.02×10-2 Å-3).  For each 

simulation, the value of the PCF was calculated for 512 equally spaced points from 0 to 

6.3 Å.  The cutoff radius of 6.3 Å was chosen as it corresponds to the cutoff distance 

associated with the interatomic potential used in these simulations.[189] Figure 4.3.1(b) 

depicts an example of one such PCF, in this case a Σ9 simulation with an inclination 
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angle (θ) of 22.99°. For ATGBs, the inclination angle is the angle between the GB plane 

and the plane of reflection symmetry between the two crystal lattices. 

Although the PCF represents a detailed quantification of the atomic structure, this 

is still a high-dimensional data structure (equal to the number of points where the PCF is 

sampled) to allow computationally efficient comparison of different GBs and the 

establishment of correlations with either the GB energy or the GB macro degrees of 

freedom. This is where dimensionality reduction techniques can prove valuable. After 

subtracting the mean PCF from the discretely sampled PCFs of all simulations, principal 

component analysis (PCA) [49] was performed via the singular value decomposition. 

PCA is a common technique for dimensional reduction that determines an orthogonal 

basis for the data where ith eigenvector corresponds to the direction with the i th largest 

variance, as illustrated in Figure 4.5.2(a).  

In this case, the input dataset for PCA is the entire ensemble of PCFs for all Al 

ATGB simulations, and Figure 4.5.2(b) depicts eigenvectors 1,2,3, and 6 of the dataset. 

Truncating a PCA representation of a structure at the kth value/vector yields the best 

possible rank-k approximation to the full dataset. This provides a systematic way to 

represent a high-dimensional structure in a low-dimensional space while still preserving a 

well-defined amount of variance from the entire system. After a low-dimensional 

subspace has been defined, all datasets can naturally be projected onto this subspace; the 

new coordinates provide their PC scores. Furthermore, given any arbitrary point in this 

PC space it is straightforward to reconstruct the PCF corresponding to the point by using 

a linear combination of the appropriate PC vectors weighted with the scores 

corresponding to the point in low-dimensional space. Thus, the low-dimensional 
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representation of the atomic structure provides a route for not only analyzing existing 

datasets, but also for predicting full atomic structures with properties interpolated 

between the given data using, e.g., reverse Monte Carlo methods. 

B.4.2 Structure-Property Linkages 

In order to establish a quantitative structure-property relationship in this work, 

multivariate linear regression was applied. While the PCs are ranked in descending order 

by the amount of retained variance in the PCF, this is not necessarily the same order for 

best explaining the variance of GB energy in a predictive regression model. In this model, 

the GB energy associated with the structure serves as the response variable. First, 

separate 1-PC regression models for predicting GB energy from each PC individually 

were constructed. Since the PCs are orthogonal, the best 2-PC regression model in terms 

of mean squared error is the sum of the two 1-PC models with the smallest individual 

mean squared errors; as such, the regression coefficients for each PC in the 2-component 

model are identical to the regression coefficients for each of the corresponding 1-

component models. For this data set, the predictors of best two-component structure-

property regression model for predicting GB energy are the scores associated with PCs 1 

and 6 (see Figure 4.5.2(c)). 

In order to verify the robustness of the model, 3-fold cross validation was applied. 

In 3-fold cross validation, the data set is first randomly divided into three roughly equal 

groups. Next, three separate models are fitted to the data within every possible 

combination of two groups. The absolute prediction error is calculated for each model 

using the data from the group excluded from model fitting. The mean absolute cross-
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validation error is the sum of the total prediction error from the three models divided by 

the total number of data points. This cross-validation procedure also ensures that 

overfitting of the model is not an issue. 

B.4.3 Process-Structure Linkages 

For the purpose of establishing process-structure linkages, the “process” of 

simulation is represented by θ, which corresponds to one of the five macro degrees of 

freedom, and Σ value, which constrains another three degrees of freedom.[190] As the twist 

angle is fixed at zero for ATGBs, the resulting model accounts for all five degrees of 

freedom.  To establish the process-structure relationship, for every set of simulations with 

the same Σ value, separate 3rd order polynomial regression models were constructed that 

use GB inclination angle (θ) to predict the PC scores. The use of separate models for each 

Σ value can be justified because for this data set, each Σ is represented by a single 

coincidence site lattice (CSL). For data sets where this is not the case, separate models 

should be constructed for each unique CSL. 

B.5  Results and Discussion 

The Epanechnikov kernel bandwidth serves as a modeling hyperparameter, and the 

value chosen for the PCF calculation (0.42 Å) corresponds to the error minimum in the 

full PSP model and full dataset, as illustrated in Figure 4.5.1. This is roughly equivalent 

to treating each atom as a uniformly dense sphere with a radius of 0.42*√5=0.94Å (about 

2/3 the atomic radius of crystalline Al) rather than as a point particle. However, given the 

relatively wide well depicted in Figure 4.5.1, any bandwidth from ca. 0.35 – 0.5 would 
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increase the error by < 1 mJ/m2, indicating that overfitting is not a concern for this 

hyperparameter selection. 

 We first examine the structure-property model obtained by regression between the 

PC values and the associated grain boundary energy. The R2 value associated with our 

two-component (PCs 1 and 6) structure-property regression model is 0.98, with PC 1 

accounting for 96% of the explained variance. The inclusion of the third-best principal 

component in terms of fitting (PC 4) did not appreciably improve the fit. The fitting 

function is presented in Equation 157, where Êi  is the predicted energy and T i1 and T i6 

are the scores corresponding to PCs 1 and 6, respectively.  

 E�Ø	�mJ	mO8
 ≈ −548.66 ∙ TØ7 − 1070.89 ∙ TØc + 387.55 (157) 

Figure 4.6.1(a) shows a parity plot of the GB energies predicted by the regression 

model plotted against the values computed from the full simulations. The mean absolute 

value of the error in prediction is roughly 11.4 mJ/m2. This is substantially less than the 

error in prediction of simulation versus experiment over a large range of θ as shown in 

the original dataset (see Ref. [40], Fig 1). 

Figure 4.6.1(b) shows a Box-Whisker plot of the mean absolute errors from 1000 

instances of 3-fold cross-validation. The box represents the interquartile range, and the 

dashed ‘whiskers’ have a length 1.5 times that of the interquartile range; points outside 

this range represented as dots are considered outliers. This shows that, even in the case of 

extreme outliers, the prediction error is still fairly small (<13 mJ/m2). Given that the 

accuracy of GB energies computed with force-field models can be on the order of 50 
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mJ/m2 when compared to experiment,[40] this result indicates that the method will be able 

to serve as an efficient and reliable surrogate to expensive molecular mechanics models 

for GB energies. Additionally, this plot confirms that the model has not been over-fitted. 

The accuracy of the structure-property relationship is remarkable given its 

simplicity. The PCF represents a substantial compression of information from the full 

atomic structure, and the fact that the PCF is correlated to the energy through a linear 

model with only two principal components is noteworthy. However, inspection of the 

underlying interatomic potential yields some insight into this finding. The potential 

applied in this work is based on the embedded atom model[191, 192]: 

 .9D9 = 12	//ΦIIE�rIIE
IEFII +/ ηI H/ ρIE�rIIE
IEFI JI  (158) 

where Etot is the energy of the system, Φaã is an interatomic pair potential,  ρã  is the 

“atomic electron density” function, ηa is the embedding energy function, and r aã is the 

distance between atoms a and ã. Inspection of the expression reveals that the interatomic 

distance, r aã, is the fundamental variable of both summation terms. The fact that the PCF 

is a function of the probability distribution of r aã (see Equation 156) provides a strong 

mathematical justification for its ability to accurately predict energies based on the 

embedded atom model, and suggests that the accuracy of the approach will generalize to 

other similar potentials where the interatomic distance is the fundamental variable[83, 

84]. However, it should be noted that a regression model constructed using PCFs 

calculated by a traditional binning technique had relatively weak predictive power. This 

means that a predictive model must be robust against structural variance as pertaining to 
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small local changes in atomic position, which are diminished by the smoothing parameter 

in KDE-derived PCFs. 

Next, we analyze the model used to create a process-structure linkage. Employing 

the terms of a 3rd order polynomial of θ as predictors, separate regression models were 

constructed for each Σ value to estimate the scores of PC 1 and 6 (see Table 4.6.1). 

Figure 4.6.2 shows the PC 1 and 6 scores along with the scores predicted from the 

regression models. For both PC 1 and 6, the regression fit for Σ = 5 and 13 are much 

poorer than the fit for Σ = 3, 9 and 11. ATGBs with Σ = 5 and 13 and Σ = 3, 9 and 11 

have misorientation axes of [001] and [110], respectively. The misorientation axis is the 

axis about which the lattices on either side of the GB are rotated to bring them into 

coincidence. This suggests that different misorientation axes influence the orientation of 

the PC vectors in a complex manner that is not fully described in this simple model.  

However, this added complexity does not manifest itself in the previously described 

structure-energy relation. 

The method outlined here provides a framework for efficiently extracting 

quantitative and transferable PSP linkages from molecular mechanics/dynamics 

simulations. Figure 4.6.3 illustrates the continuous nature of these linkages. The 

structure-property relationship illustrated in Figure 4.6.3(a) can predict the GB energy for 

any Al ATGB with a reasonably similar structure to those in the model.  The process-

structure relationship can predict the structure itself as a function of θ and Σ  (see Figure 

4.6.3(b)).  These linkages will aid in the coupling of complex GB boundary structures 

into multiscale models where hundreds or thousands of different GB structures may arise. 
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The applicability of models such as the ones discussed here is not limited to force-field 

based simulations. Both force-field based and ab initio atomic simulation techniques are 

designed to model a highly nonlinear landscape of potential atomic structures. However, 

if a data set is limited to a sufficiently restricted set of potential atomic structures, linear 

regression models should be able to accurately explain their properties, although we note 

that properties with strong directionality (such as covalent bonding) will likely require 

descriptors which can directionally resolve the atomic environments[28, 151, 181]. The 

PCF’s used here are spherically symmetric and are hence expected to perform best for the 

relatively homogenous bonding of metals. 

B.6  Conclusions 

Here, data-driven learning models such as those employed in MKS have been 

successfully adapted to MD simulations of aluminum ATGBs. Quantitative linkages such 

as those established in this work present opportunities for advanced GB engineering, 

faster global optimization of GB structures, and real-time integration of computational 

and experimental results. Future work will focus on establishing the generality of the 

technique for GBs in other common structural materials (e.g., Cu, Fe), exploring the 

possibility of analyzing more chemically heterogeneous systems (e.g., alloys, oxides), 

and quantification of uncertainty. Given the success of the current model which includes 

only two principal components and a linear regression model, it is anticipated that the 

approach will be widely applicable. 
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