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SUMMARY 

 

Peer-to-peer systems eliminate the bottleneck caused by centralized entity 

management. Mobile peer-to-peer systems are especially challenging because their 

dynamic nature introduces new problems in areas such as disseminating information and 

predicting future behaviors. These two problems are very important in Dynamic Data 

Driven Applications Systems (DDDAS) that use online information to optimize system 

performance. One important aspect of DDDAS concerns the incorporation of data into an 

application. Distribution of data from sensors to mobile applications becomes an 

important problem in DDDAS. Data distribution management (DDM) controls the 

distribution of data among data producers and data consumers in a distributed application. 

Prediction of the future behavior of a complicated system is also an important part of a 

DDDAS deployment. Predictions can be used to dynamically adapt the operation of a 

complex system to steer the system toward more desirable states. 

This thesis focuses on two important problems related to DDDAS: interest 

management (data distribution) and prediction models. In order to reduce communication 

overhead, we propose a new interest management mechanism for mobile peer-to-peer 

systems. This approach involves dividing the entire space into cells and using an efficient 

sorting algorithm to sort the regions in each cell. A mobile landmarking scheme is 

introduced to implement this sort-based scheme in mobile peer-to-peer systems. The 

design does not require a centralized server, but rather, every peer can become a mobile 

landmark node to take a server-like role to sort and match the regions. Experimental 



 xi 

results show that the scheme has better computational efficiency for both static and 

dynamic matching.  

In order to improve communication efficiency, we present a travel time prediction 

model based on boosting, an important machine learning technique, and combine 

boosting and neural network models to increase prediction accuracy. We also explore the 

relationship between the accuracy of travel time prediction and the frequency of traffic 

data collection with the long term goal of minimizing bandwidth consumption. Several 

different sets of experiments are used to evaluate the effectiveness of this model. The 

results show that the boosting neural network model outperforms other predictors. 

 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

 Much research to date has examined peer-to-peer architectures and applications in 

the context of fixed and wired network infrastructures. Recently developed wireless 

communication technologies and the new available capacities presented in mobile 

devices have enabled a novel peer-to-peer paradigm to emerge that focuses mainly on 

mobile and dynamic environments. This type of system is referred to as a mobile peer-to-

peer system. Mobile peer-to-peer systems [26] are especially challenging relative to peer-

to-peer systems built over wired infrastructures because their dynamic nature introduces 

new problems in areas such as disseminating information and prediction of the future 

behavior of the system. 

In a complex system it is difficult to analyze and accurately predict future 

behaviors. Application simulations that can dynamically incorporate new data from 

historical statistics or on-line measurement can, in principle, result in more accurate 

analysis and prediction. These capabilities are central to the Dynamic Data Driven 

Applications Systems (DDDAS) paradigm [2]. DDDAS relies on the ability to 

incorporate additional data into an executing application as well as the ability to utilize 

the analysis and prediction capabilities of application simulations.   

One important aspect of DDDAS concerns the incorporation of data into an 

executing application. Distribution of data from sensors to mobile applications is an 

important problem in DDDAS. Data distribution management (DDM) controls the 

distribution of data among data producers and data consumers. The DDM system must 

determine the consumers that are interested in receiving data generated by producers and 

deliver the corresponding message to these consumers.  
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Prediction of the future behavior of a complex system is an important component 

of a DDDAS deployment. Predictions are needed to help users and the DDDAS system 

itself to manage and optimize the system being managed. The predictions can be used to 

dynamically adapt the operation of a complex system to steer the system toward more 

desirable states.  

One motivating application for DDDAS concerns infrastructure-less intelligent 

transportation systems. While most existing intelligent transportation system (ITS) 

deployments rely on a fixed communication and traffic management infrastructure, 

infrastructure-less systems offer the possibility to create ITS deployments at a much 

lower cost. This is one example application of a mobile peer-to-peer system. Vehicles 

with computing and communication capabilities communicate with each other without 

centralized entity management and share information throughout their movement. Interest 

management (data distribution) is essential for reducing communication overhead by 

filtering irrelevant messages in infrastructure-less intelligent transportation systems. In 

addition to interest management, travel time prediction is another important problem in 

intelligent transportation systems because such predictions can potentially enable drivers 

to make decisions and plan their routes to reduce congestion and delay.  

The major elements of this thesis include: peer-to-peer architecture, Dynamic 

Data Driven Applications Systems (DDDAS) and distributed simulation. The High Level 

Architecture (HLA) provides a context for data distribution management. Travel time 

prediction models in intelligent transportation systems are also examined. Each of these 

is discussed next.  

1.1 Peer-to-Peer Architecture 

 Peer-to-peer (P2P) architecture has been a topic of growing interest in recent 

years. Peer-to-peer applications that have been studied include file sharing [16], 

distributed computing [12] and P2P networked virtual environments [14, 15, 26]. 
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It is instructive to contrast the peer-to-peer software architecture with the client-

server architecture. The client-server architecture is a computing model that is usually 

implemented as a distributed application that partitions tasks or workloads between the 

providers of a resource or service, called the servers, and service requesters, called clients 

[8]. A server machine is a host that is running one or more server programs that serve the 

needs of the clients and share the resources with them. A client initiates communication 

sessions with a server and generates service requests to the server; the server awaits 

incoming requests, accepts and processes them, and then returns the results or 

information to the client.  

Figure 1 depicts communications between a server and a client as well as between 

two clients in the client-server architecture. Client 1 first initiates a communication 

session with the server. The server receives and processes incoming requests. After 

processing the requests, the server replies to the client, typically providing requested 

information or confirmation of completion of the requested service. If two clients would 

like to exchange information, they must communicate through the centralized server. For 

example, in Figure 1, client 2 must first upload content to the server so it can be retrieved 

from the server by client 1. 

Although client-server models are useful in many situations, there are several 

challenges with this type of architecture.  

1) Scalability: If there are a large number of clients, a large number of requests from the 

clients may be generated, leading to overloading the servers. 

2) Robustness: A server failure may lead to client requests that cannot be fulfilled. 

Additional mechanisms are required to address this problem. 

3) Cost: Servers can be very expensive to install and maintain. 

 

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Distributed_application
http://en.wikipedia.org/wiki/Server_%28computing%29
http://en.wikipedia.org/wiki/Client_%28computing%29
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Figure 1. Communication Model in Client-Server Architecture 

 

Peer-to-peer architectures offer the potential to address these concerns. Such 

architectures are now being utilized for many real-world applications such as distributed 

computing, content sharing and instant messaging. 

The peer-to-peer model refers to an architecture where each computer in the 

network can act as a client or server for the other computers in the network, allowing 

shared access to files and peripherals without the need for a central server [4]. In peer-to-

peer architectures all of the tasks are distributed among the peers. Each peer has the same 

privileges and capabilities and can initiate a communication session. Peers are both 

suppliers and consumers of resources, in contrast to the traditional client–server model 

where only servers supply, and clients consume [4]. 

1.1.1 Peer-to-Peer Categories 

 Peer-to-peer architectures can be categorized as being structured or unstructured. 

Unstructured peer-to-peer networks can be further classified into three different 

http://en.wikipedia.org/wiki/Client%E2%80%93server
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architectures: centralized architecture, decentralized architecture and hybrid architecture 

(semi-centralized architecture). Peers communicate directly with each other in all of these 

architectures. Differences among them concern the logical network topologies and how 

information is located within the network [27]. Figure 2 depicts a hierarchy of peer-to-

peer models. 

 

      

Figure 2. Peer-to-Peer Categories 

 

In structured peer-to-peer models, peers are organized following specific criteria 

and algorithms, which lead to overlays with specific topologies and properties [4]. They 

typically use distributed hash table-based (DHT) indexing, which can ensure that any 

node can efficiently route a search to some peer that has the desired file. 

Distributed hash tables are a class of decentralized distributed system that 

provides a lookup service similar to a hash table: (key, value) pairs are stored in the DHT, 

and any participating node can efficiently retrieve the value associated with a given key 

[5]. Figure 3 shows the architecture of distributed hash tables. In a file sharing system the 

value corresponds to the content of the file, and the key to a hash of the filename. (key, 

value) pairs are stored in P2P nodes. Any participating node can retrieve the value 

http://en.wikipedia.org/wiki/Distributed_hash_table
http://en.wikipedia.org/wiki/Distributed_hash_table
http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Node_%28networking%29
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associated with a given key by using a peer-to-peer overlay network to map keys to nodes. 

There are two important operations: insertion will add a (key, value) pair into the peer-to-

peer overlay network while lookup returns the ID of the node that stores the (key, value) 

pair. 

 
Figure 3. Distributed Hash Tables 

 

In unstructured peer-to-peer architectures, peers connect with each other in an ad-

hoc fashion without imposing any structure on the overlay networks. Unstructured peer-

to-peer systems have different degrees of centralization, although ideally, systems should 

have no centralized management. In decentralized systems (pure peer-to-peer systems), 

all the peers are equipotent and there is absolutely no centralization. Semi-centralized 

systems (hybrid peer-to-peer systems) allow Super-Peers to exist, which have some 

special infrastructure function. In centralized peer-to-peer systems, a central server is 

used as a centralized database to locate resources (indexing function).  

The decentralized architecture, also called a pure peer-to-peer architecture, only 

consists of equipotent peers. Searches in pure peer-to-peer architecture are done by 

forwarding queries from node to node, using broadcasting to send out the search request 

(e.g. in Gnutella 0.4), or by a more intelligent routing method (e.g. Freenet) which builds 

a heuristic key-based routing table, but the heuristic method does not guarantee the file 

will be found after search. In both approaches, if some node has the requested file, it 

http://en.wiktionary.org/wiki/equipotent
http://en.wiktionary.org/wiki/equipotent
http://en.wikipedia.org/wiki/Key-based_routing
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replies to the original querying peer via the same path as the original query route [27]. 

For example, in Figure 4, the queries from peer 1 are forwarded from node to node. Peers 

2 and 4 reply to peer 1 via the same path as the original query route. Peer 1 then 

communicates with peer 2 and downloads the file from peer 2. 

 

 
 

Figure 4. Decentralized Architecture (Pure Peer-to-Peer Model) 

 

The centralized peer-to-peer architecture allows a centralized server, a Super-Peer 

(SP), to be used as a centralized database to store the information about all the files in the 

entire system. Ordinary peers upload information about their files to this server and the 

server holds the information for future queries. A node will send query request to the 

centralized server when it searches for files; the server checks its internal database, 

locates the peers that have the requested files and replies to the querying node with this 

information. The querying node then communicates directly with one peer in the reply 

without the SP involvement. For example, in Figure 5, peer 1 queries the central server 

and then the server replies indicating that peer 2 has the requested resource. After that, 

peer 1 and peer 2 communicate with each other directly without the involvement of the 

server.  
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The centralized peer-to-peer architecture is different from the client-server 

approach. In the centralized peer-to-peer architecture, the centralized server operates as a 

centralized database to locate resources, and peers communicate directly with each other. 

In the traditional client-server models, peers do not communicate with each other at all, 

but only with the centralized server.  

 

Figure 5. Centralized Peer-to-Peer Architecture 
 
 

The semi-centralized architecture (hybrid architecture) is a combination of the 

centralized and the pure peer-to-peer architectures. The hybrid models have several 

Super-Peers and these Super-Peers form a pure peer-to-peer architecture. Ordinary peers 

connect to Super-Peers as in the centralized architecture. Each Super-Peer has a database 

to record the information about the files held in the ordinary peers connected to it. 

Ordinary peers initiate queries and queries are forwarded to the Super-Peer connected 

with the ordinary peers. Super-Peers then query each other if any of their ordinary peers 

has the searched files. If there is a match, all the future communication is performed 

among ordinary peers without the involvement of Super-Peers [27].  
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Figure 6. Semi-Centralized Architecture (Hybrid Peer-to-Peer Model) 
 

No matter which type of architecture is used, the computation and communication 

overhead is shared among joining peers in the peer-to-peer architecture, so the bottleneck 

due to centralized entity management is removed. This is the main advantage of the peer-

to-peer architecture relative to the client-server architecture. 

1.2 Dynamic Data Driven Application Systems 

It is difficult to accurately analyze and predict the behavior of complex systems. 

Application simulations that can dynamically incorporate new data, no matter whether 

the data is from historical statistics or from on-line measurements of the actual systems, 

can result in more accurate analysis and more accurate prediction. These capabilities are 

utilized with the Dynamic Data Driven Applications Systems (DDDAS) paradigm [2]. 

DDDAS exploits the ability to incorporate additional data into an executing application 

as well as the ability to augment the analysis and prediction capabilities of the application 

simulations. 

Dynamic Data Driven Applications Systems have been widely studied and applied 

to various science and engineering disciplines. A typical application is to enhance the 
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simulation by additional data incorporated into the computation. For example, for crisis 

management applications such as fire propagation in buildings [28], data-driven 

simulation of fire propagation dynamics can be modeled since the situation may evolve 

with new unforeseen events arising. These enhanced modeling and simulation approaches 

can provide more accurate information to firefighting personnel and an effective response 

[2]. Other dynamic data driven applications include prediction of regional scale weather 

phenomena [31], modeling of subsurface and ambient atmosphere pollutants [29, 30], 

optimization of surface transportation systems [32, 33], management of semiconductor 

manufacturing systems [34], and recognization of image-based human stress [35]. 

1.3 Distributed Simulation 

A computer simulation is a computer program that attempts to model the behavior 

of a physical system over time. Simulation is a multi-disciplinary field, with research 

dispersed across multiple fields of study. Distributed simulation refers to technologies 

that enable a simulation program to execute on multiple computers interconnected by a 

communication network. 

Distributed simulation provides multiple potential benefits: 

1) Integrating geographically distributed simulators: This capability allows simulators to 

be executed on computers at distinct geographical locations to create virtual worlds 

with participants located at different sites. 

2) Integrating proprietary simulators (e.g., commercial-off-the-shelf tools): This may 

require the simulation computation to be distributed across multiple computers (or 

virtual machines) if the simulators require different operating systems. 

3) Composing multiple disparate models: It is often more cost effective to interconnect 

existing simulators, each executing on a different computer, rather than to create an 

entirely new simulator.   
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1.3.1 Distributed Interactive Simulation 

 Distributed interactive simulation (DIS) is a set of standards for creating 

distributed virtual environments. A principal objective of DIS (and subsequently the High 

Level Architecture effort) is to enable interoperability among separately developed 

simulators. 

A DIS exercise may include the following different types of simulators [1]: 

1) human-in-the-loop systems (also called virtual simulators, such as tank simulators) 

2) computation only elements (also called constructive simulations, such as wargame 

simulations) 

3) live elements (such as instrumented missiles)  

One principle feature of DIS is that the simulation nodes are autonomous. This 

simplifies development since developers of one simulator can focus the design and 

implementation of their own simulator without being overly concerned with the detailed 

information of other simulators. Autonomy among simulation nodes should be 

maintained in two ways. One is concerned with time management while the other with 

data distribution management. Time management refers to the management services to 

coordinate the advancement of simulation time, while data distribution management 

controls the distribution of state updates and interactions among simulators. 

1) No synchronization among simulators is used to advance simulation time in DIS. 

Each simulator in DIS advances simulation time autonomously in synchrony with 

wallclock time. 

2) There is no need to specify the recipients of messages in DIS. The simplest approach 

is to broadcast each message to all the simulators; then each simulator decides for 

itself whether the message is relevant to itself. Other approaches include the 

publication and subscription services used in the High Level Architecture, as will be 

discussed in detail later.  
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In DIS, simulation nodes only transmit information concerning state changes. 

Information concerning objects that do not change need not be transmitted to other 

simulators. For example, in transportation systems, the current location, speed and 

direction in which a vehicle is moving should be transmitted over the network. However, 

it will incur an excessive amount of communication overhead if an entity sends each 

update to these variables. Rather, one can have each entity send state update information 

periodically or using dead reckoning techniques where an entity sends the information to 

other simulation nodes only if its position deviates from an extrapolation of the last 

update by some threshold. Dead reckoning algorithms can reduce the amount of required 

communication significantly. 

1.3.2 High Level Architecture 

The High Level Architecture (HLA) is a general purpose architecture for 

distributed computer simulation systems. Like DIS, the principal goal of the High Level 

Architecture is to support interoperability and reuse of simulations. The purpose behind 

the development of HLA is described as follows on the US Defense Modeling and 

Simulation Website (DMSO) [3]: 

 

The Department of Defense (DoD) Modeling and Simulation (M&S) Master Plan 

calls for the establishment of a common high-level simulation architecture to 

facilitate the interoperability of all types of models and simulations including C4I 

systems, and to facilitate the reuse of simulation components. The HLA, 

developed in response to the Master Plan, provides a systematic and consistent 

basis for addressing simulation system design and implementation issues, 

facilitates interoperability and reuse through a set of common rules, and furnishes 

a framework for making policy decisions. 

 

http://en.wikipedia.org/wiki/Computer_simulation
http://en.wikipedia.org/wiki/Systems
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The HLA designers had five principle goals [6]: 

1) It should be possible to decompose a large simulation problem into smaller parts; 

smaller parts are easier to define, build correctly, and verify. 

2) It should be possible to combine the resulting smaller simulations into a larger 

simulation system. 

3) It should be possible to combine the smaller simulations with other, perhaps 

unanticipated simulations to form a new system. 

4) Those functions that are generic to component-based simulation systems should be 

separated from specific simulations. The resulting generic infrastructure should be 

reusable from one simulation system to the next. 

5) The interface between simulations and generic infrastructure should insulate the 

simulations from changes in technology used to implement the infrastructure, and 

insulate the infrastructure from technology in the simulations. 

 

In HLA terminology, each individual simulator is called a federate and the 

combined distributed simulation system is known as a federation. The High Level 

Architecture consists of three components: 

1) Rules that define the underlying design principles in the HLA. 

2) Object Model Template (OMT) that specifies a common format to record the 

information in the object models including objects, attributes and interactions. 

3) Interface Specification that defines how HLA compliant simulators interact with the 

Run-Time Infrastructure (RTI). The RTI is analogous to a distributed operating 

system providing distributed simulation services.  

 

The HLA rules are technical principles that must be followed to make federates 

interact with each other properly during a federation execution. They describe the 

responsibilities of federates (simulators of different type, which will be illustrated later) 

http://en.wikipedia.org/wiki/Run-Time_Infrastructure
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and federations (distributed simulation system consisting of multiple federates). For 

federates, the rules specify the requirement of a Simulation Object Model (SOM), time 

management requirement, and functionalities of updating or reflecting attributes as well 

as transferring or accepting attributes ownership. For federations, the rules specify the 

requirement of a Federation Object Model (FOM), functionalities and constraints related 

to RTI and Interface Specification.   

HLA requires each federate and federation to have an object model describing the 

objects used in the simulations as well as attributes and interactions. Object models in the 

HLA are documented using a set of tables that are collectively referred to as the object 

model template (OMT) [1]. The HLA OMT specifies how to record the information in 

the object models, but it does not define the specific data (such as vehicles, positions and 

so on). For example, each federate must have a SOM which has a tabular format with an 

object class structure table, an attribute table and an interaction class structure table. The 

object class structure table specifies the class hierarchy of objects, the attribute table 

provides information about object attributes while the interaction class structure table 

describes the object actions and interactions. Each federation must have a FOM which 

has the same structure as the SOM and identifies the attributes and interactions supported 

by the federation. All participating federates must use the same FOM [36]. 

In HLA, federates interact with an RTI to support efficient information exchange 

among each other. Federates here may be software simulations (such as vehicle 

simulators), live components (such as instrumented tanks), or passive data viewers. The 

HLA interface specification is the specification of the interface between federates and the 

RTI (see Figure 7). 
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Figure 7. Components of an HLA Federation 

 

In the HLA, the state variables for the federation are stored within federates rather 

than the RTI, and the RTI is a general software component that is applicable to any 

federation. The interface specification defines a set of services provided by simulations or 

by the RTI during a federation execution. There are six categories of services [1]: 

1) Federation Management: These services create and delete federation executions, and 

allow federates to join or resign from existing federations. 

2) Declaration Management: These services allow federates to establish their intent to 

publish object attributes and interactions, and to subscribe to updates and interactions 

produced by other federates. 

3) Object Management: These services allow federates to create and delete object 

instances, and to update attributes (send messages) and receive updates to attributes 

(receive messages) produced by other federates. 
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4) Ownership Management: These services enable the transfer of ownership of object 

attributes during the federation execution. 

5) Time management: These services control the advancement of simulation time within 

each federate, and prevent federates from receiving messages in their simulated past. 

6) Data distribution management: These services control the distribution of information 

among federates so that federates receive all of the information relevant to them and 

(ideally) no other information. 

 

These services can be illustrated by a typical federation execution, which includes 

four major steps: initializing the federation; declaring objects of common interest among 

federates; exchanging information and terminating execution. The process is shown in the 

Figure 8. 

 

Figure 8. Services in a Typical Federation Execution 
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1.4 Data Distribution in the High Level Architecture 

Data distribution management (DDM) controls the distribution of information 

among information producers and information consumers in a distributed simulation 

application. For the information produced, the DDM system must determine who is 

interested in the information and deliver the message containing the information to the 

right receivers (information consumers). To be able to do this, the DDM system must 

include a way to describe the information produced by information producers as well as a 

way for consumers to express the type of information they wish to receive.  

In general, the DDM framework includes a name space and a language to specify 

expressions which are subsets of the name space [1]. The name space is a common 

vocabulary used to describe the produced information and to express interests in 

information. An interest expression is a subset of the name space; it is used to specify 

what information a consumer is interested in receiving. A description expression is also a 

subset of the name space; it is used to describe the information generated by a producer. 

When the description expression of a message containing some information overlaps with 

an interest expression of an information consumer, the message should be sent to that 

consumer. 

More formally, the basic concepts in DDM framework are defined as follows: 
 

Name space: The name space is a set of all possible values of interest expressions 

and description expressions. The name space is a set of tuples (V1, V2 , ... , VN) where 

each Vi is a value of some basic type, or another tuple. For example, in a school bus 

service system, school buses may be interested in the number of passengers of other 

buses in order to adjust future schedules. The name space could be defined as a tuple (V1, 

V2), where V1 is an enumerated type specifying the different types of school buses (for 

example, red route bus, blue route bus and green route bus, each of which services a 

different route in the campus), and V2 is an integer type specifying the number of 
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passenger in a school bus. 

Interest Expressions: An interest expression is a subset of the name space. It is 

used to specify what information is to be received. For example, the interest expression 

for all red route buses with more than X passengers beyond the maximum load X0 is all 

tuples (red route buses, X) such that X > X0. 

Description Expressions: A description expression is also a subset of the name 

space. It is associated with each message and used to describe the contents of the message. 

For example, a simulator modeling a green route bus with 30 passengers may generate a 

message with description expression (green route bus, 30).  

 

The name space, interest expressions, and description expressions are important 

elements in DDM. DDM is necessary for interconnecting applications in distributed 

simulations. For example, in HLA, two types of data distribution services are provided: 

static data distribution (also called class-based data distribution) and dynamic data 

distribution (also called value-based data distribution). 

1.4.1 Static Data Distribution in HLA 

In the HLA the federation must define a FOM that specifies a hierarchy indicating 

object classes and their attributes. For example, in the above transportation simulation 

example, one can define a class called school bus, with subclasses called red route bus, 

blue route bus and green route bus. These class definitions are used for class-based data 

distribution (also called static data distribution). Specifically, each federate should 

subscribe to attributes of a specific class in the class hierarchy tree. For example, a 

federate may subscribe to the passenger number attribute of the school bus class and it 

will be notified whenever a school bus sends updates of its passenger number attribute. 
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Figure 9 shows a sample class hierarchy tree for this school bus simulation system. 

Besides defining its own attributes, a class inherits all the attributes from its parent class. 

For example, an attribute passenger number can be defined in the school bus class, and 

inherited by all three subclasses: red route bus, blue route bus and green route bus. Thus 

the name space consists of the tuples (school bus, passenger number), (red route bus, 

passenger number), (blue route bus, passenger number) and (green route bus, passenger 

number).  

There are at least two approaches to implement class-based data distribution. The 

first approach is based on the following idea: when a federate subscribes to an attribute of 

a class, it automatically subscribes to that attribute inherited by the subclasses in the 

subtree rooted at that class [1]. For example, in Figure 9, a subscription to (school bus, 

passenger number) becomes an interest expression enumerating a set of tuples (school 

bus, passenger number), (red route bus, passenger number), (blue route bus, passenger 

number), and (green route bus, passenger number). The description expression for an 

update to an attribute of a class includes only one tuple, such as (red route bus, passenger 

number) when the passenger number of a red route bus object is updated. Federates 

subscribed to (school bus, passenger number) and (red route bus, passenger number) will 

receive updates associated with this description expression, while those only subscribed 

to (blue route bus, passenger number) and (green route bus, passenger number) will not 

be notified of the updates. 
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Figure 9. Class-Based Data Distribution (Approach I) 

 

Another approach defines an interest expression containing only a single tuple, 

while a description expression for an attribute of a class contains multiple tuples 

including the classes along the path from this class up the class hierarchy tree to the class 

where this attribute was originally defined [1]. For example, in Figure 10, an interest 

expression (school bus, passenger number) indicates the interest in the passenger number 

attribute of class school bus. An update to the passenger number attribute of a red route 

bus object contains the description expression (red route bus, passenger number) and 

(school bus, passenger number). This approach will yield the same result as the first 

approach: federates subscribed to (school bus, passenger number) and (red route bus, 

passenger number) will be notified of the updates, but those only subscribed to (blue 

route bus, passenger number) and (green route bus, passenger number) will not receive 
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the updates. 

 

Figure 10. Class-Based Data Distribution (Approach II) 

 

1.4.2 Dynamic Data Distribution in HLA 

The dynamic data distribution is also called value-based data distribution,which is 

based on an n-dimensional coordinate system called a routing space. For example, a two-

dimensional routing space might be used to represent the geographical area covered by 

the virtual environment. Interest and description expressions in the HLA define areas 

called regions of a routing space. Interest expressions are referred to as subscription 

regions, and description expressions are referred to as update regions. For example, the 

routing space in Figure 11 includes one update region U and two subscription regions Sl 

and S2. 
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The basic rule about value-based data distribution is as follows: If the update 

region associated with a message overlaps with a federate's subscription region, the 

message should be routed to the subscribing federate [1]. For example, suppose that the 

routing space in Figure 11 corresponds to the geographic area of a virtual environment 

that includes moving vehicles of an intelligent transportation system. Assume that the 

update region U indicates a vehicle inside this region that can send updates to this area. 

S1 and S2 are the subscription regions created by federates F1 and F2, respectively. Both 

F1 and F2 model moving vehicles. F1 is interested in vehicles’ updates within S1 while 

F2 is interested in vehicles’ updates within S2. If the vehicle inside U moves to a new 

position, a message about the updated position will be sent to F1 because its subscription 

region Sl overlaps with U, while F2 will not receive the updates since its subscription 

region S2 does not have an overlapping area with U. 

 

Figure 11. Subscription Region and Update Region in Routing Space 

 

There are multiple approaches to implement dynamic data distribution, such as the 

grid-based approach, region-based approach, hybrid approach and sort-based approach. 

Each approach will be described in detail in Chapter 2. 
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1.5 Intelligent Transportation Systems 

A motivating application of the research described here is infrastructure-less 

intelligent transportation systems [23]. They are an example application of mobile peer-

to-peer systems.  

Intelligent transportation systems (ITS) utilize computational and communications 

technology in the transportation infrastructure and vehicles with the goal of improving 

mobility, enhancing safety, reducing pollution, and reducing travel times. Interest in ITS 

is motivated by the problems caused by traffic congestion and emergence of  new 

information technology for simulation, communications networks as well as real-time 

control. The current trend in ITS involves making vehicles and roadways “smarter” 

through advanced technologies.  

 

Intelligent transportation systems include a wide and growing suite of 

technologies and applications. ITS applications can be grouped within five main cat-

egories [7]:  

1) Advanced Traveler Information Systems provide drivers with real-time information, 

such as transit routes and schedules, navigation directions, and information about 

delays due to congestion, accidents, weather conditions, or road repair work.  

2) Advanced Transportation Management Systems include traffic control devices, such as 

traffic signals, ramp meters, variable message signs, and traffic operations centers.  

3) ITS-Enabled Transportation Pricing Systems include systems such as electronic toll 

collection (ETC), congestion pricing, fee-based express (HOT) lanes, and vehicle 

miles traveled (VMT) usage-based fee systems.  

4) Advanced Public Transportation Systems, for example, allow trains and buses to report 

their position so passengers can be informed of their real-time status (arrival and 

departure information).  

http://en.wikipedia.org/wiki/Information_and_communications_technology
http://en.wikipedia.org/wiki/Information_and_communications_technology
http://en.wikipedia.org/wiki/Transport
http://en.wikipedia.org/wiki/Infrastructure
http://en.wikipedia.org/wiki/Vehicle
http://en.wikipedia.org/wiki/Traffic_congestion
http://en.wikipedia.org/wiki/Information_technology
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5) Fully integrated intelligent transportation systems, such as vehicle-to-infrastructure 

(VII) and vehicle-to-vehicle (V2V) integration, enable communication among assets in 

the transportation system, for example, from vehicles to roadside sensors, traffic lights, 

and other vehicles. 

 

In this thesis work, we focus on the first and fifth categories of ITS applications. 

One goal is to provide the drivers real-time information such as travel time prediction to 

help them make decisions, e.g., to plan routes. We also explore communication in 

infrastructure-less intelligent transportation systems that utilize vehicle-to-vehicle (V2V) 

communication. 

 

ITS offers five potential classes of benefits [7]: 

1) Improving operational performance, particularly by reducing congestion 

2) Enhancing mobility and convenience 

3) Increasing safety 

4) Delivering environmental benefits 

5) Boosting productivity and expanding economic and employment growth 

The contribution of this thesis work is centered on the first two benefits. The 

details will be illustrated in later chapters. 

1.6 Research Problem and Contribution 

This thesis will focus on two important problems in intelligent transportation 

systems: interest management and travel time prediction. In order to reduce the 

communication overhead in intelligent transportation systems, we propose a new interest 

management mechanism for peer-to-peer mobile systems. This approach involves 

dividing the entire space into cells and using an efficient sorting algorithm to sort the 

regions in each cell. A mobile landmarking scheme is introduced to implement this sort-
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based scheme in infrastructure-less transportation systems. The design does not require a 

centralized server, but rather, every peer can become a mobile landmark node to take a 

server-like role to sort and match the regions. 

In order to improve the communication efficiency in intelligent transportation 

systems, we present a prediction model based on boosting, an important machine learning 

technique, and combine boosting and neural network models to increase prediction 

accuracy. We also explore the relationship between the accuracy of travel time prediction 

and the frequency of traffic data collection with the long term goal of minimizing 

bandwidth consumption. The principal contributions of the thesis can be summarized as 

follows: 

1. Propose a new interest management scheme with dynamic sorting. The proposed 

approach is well-suited for dynamic region modifications. If region changes occur, the 

scheme does not need to resort to the list of projections and repeat the entire matching 

process. Rather, it requires sorting and matching only for a subset of the regions. 

2. Propose mechanism to improve computation efficiency for non-uniform 

distribution case. Random sampling is first used to determine the boundaries of the 

bucket sort. And then the rest of the data is distributed into buckets with the boundaries 

obtained in the first phase. During the runtime, merging and splitting buckets are 

performed to maintain equi-depth buckets.  

3. Introduce and evaluate mobile landmarking as a means to implement interest 

management in mobile peer-to-peer systems. The design is distributed and does not 

utilize fixed servers. Rather, each peer can become a mobile landmark node to assume a 

server-like role to sort and match regions. 
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4. Propose a travel time prediction model based on boosting. The boosting approach 

is used as a method for travel time prediction in conjunction with neural network models 

to help capture characteristics of traffic and increase prediction accuracy.  

5. Propose an approach to compute the lower bound of the data collection frequency. 

We examine the relationship between data collection frequency and travel time prediction 

accuracy, and propose an approach to compute the lower bound of the collection 

frequency while maintaining high prediction accuracy; to our knowledge, this is the first 

time Quality of Service is included as a factor in travel time prediction. 

6. Demonstrate the influence of various factors on travel time prediction accuracy. 

We explore the influence of various factors on prediction accuracy such as monitoring 

interval times for historical data and the number of iterations used by the boosting 

algorithm. 

1.7 Roadmap to This Document 

The remainder of the thesis is organized as follows. Chapter 2 reviews the interest 

management schemes in the literature and presents an effective interest management 

scheme for mobile peer-to-peer systems. Chapter 3 reviews traditional and modern travel 

time prediction models and details a new online prediction model based on boosting. In 

chapter 4, we propose future research directions and propose an approach for exploiting 

parallel processing for interest management. 
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CHAPTER 2 

INTERST MANAGEMENT SCHEME 

 

2.1 Introduction 

In peer-to-peer systems, the computation and communication overhead is shared 

among peers, removing the bottleneck caused by centralized entity management. Among 

peer-to-peer systems, mobile peer-to-peer systems [26] are especially challenging. One 

example application is infrastructure-less intelligent transportation systems [23]. Vehicles 

with computing and communication capabilities communicate with each other without 

centralized entity management and share information during movement. Broadcasting the 

data will consume far too many network resources. Message filtering schemes, or interest 

management schemes, must be used to effectively distribute data among peers. 

The objective of interest management is to have all peers only receive data that 

are of interest to them. The data distribution management services of the High Level 

Architecture are based on identifying overlaps among pairs of subscription and update 

regions as explained in Chapter 1, and form the basis for the work described here. 

Implementation approaches include grid-based mechanisms (cell-based mechanisms) [11, 

18] and region-based mechanisms (area-based mechanisms) [13, 25]. The grid-based 

algorithms divide the entire space into a grid of cells. An update region and a subscription 

region may overlap if they share at least one common grid cell. The overlapping 

information obtained by grid-based algorithms is not exact and unnecessary 

communication may be introduced. Region-based algorithms use a brute force approach. 

They compare all pairs of regions to determine overlaps. The computational process is 

straightforward but may incur a significant amount of computational overhead. The 
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hybrid approach [20] improves performance by exploiting the advantages of these two 

approaches. It first uses the grid-based approach to map all the regions to the grid cells. 

Then the region-based approach is used to determine the exact matching between update 

and subscription regions within each cell.  

Sort-based algorithms [17, 21] have been used to compute the intersection 

between update and subscription regions. They project the regions on each dimension and 

sort the projections in order to determine overlaps. After obtaining the overlap 

information on each dimension, the matching between update regions and subscription 

regions can be computed because two regions overlap if the projections of the two 

regions intersect along each dimension. However, current sort-based algorithms have 

certain drawbacks. First, some algorithms statically process all regions in one round and 

must resort all regions again if any region changes, which can be very time consuming 

and does not scale. Second, current sort-based algorithms are based on comparison sorts, 

such as heapsort or insertion sort, whose computational complexity is O(nlogn). Third, 

current sort-based algorithms are all run in a centralized fashion where information 

concerning update and subscription regions are stored. This makes these algorithms 

poorly suited for peer-to-peer systems. 

To address these drawbacks, we propose an interest management scheme for 

mobile peer-to-peer systems. Our interest management scheme has three advantages over 

other sort-based algorithms: 1) The algorithm is well suited for dynamic scenarios where 

region modifications are relatively frequent. The process of sorting and matching in 

dynamic scenarios is called dynamic sorting and matching. If region modifications occur, 

the algorithm does not need to resort the list of projections and conduct the entire 

matching again. It can do the dynamic sorting and matching without processing all of the 

regions. 2) Our scheme is based on bucket sort. Bucket sort is not a type of comparison 

sort and the average running time will be linear if not many projections fall into the same 

bucket. 3) We introduce the mobile landmarking design to implement this sort-based 
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scheme in mobile peer-to-peer systems. The design is distributed and does not utilize 

fixed servers. Rather, each peer can become a mobile landmark node to take the server-

like role to sort and match regions. 

In this chapter, we will describe major existing interest management schemes. We 

then present our interest management mechanism for mobile peer-to-peer systems. In this 

part, we illustrate our sorting and matching algorithm first, followed by the mobile 

landmarking scheme for implementing the sorting and matching algorithm in mobile 

peer-to-peer systems. Experiments and results are presented in later sections, which 

indicate that this approach yields better performance than several alternate interest 

management schemes. 

2.2 Related Work 

There are several major existing interest management schemes. These can be 

categorized as region-based approaches, grid-based approaches, hybrid approaches and 

sort-based approaches. 

2.2.1 Region-based Approaches 

The region-based or area-based scheme [13, 25] checks each update region (the 

region to which a node can send messages) with each subscription region (the region in 

which a node is interested) to derive the exact overlapping information. Figure 12 shows 

two update regions (U1 and U2) and two subscription regions (S1 and S2). In this 

example, U1 and S1 overlap and the updates from the object associated with U1 will be 

routed to the object of S1. However, U1 and S2 do not overlap and thus U1’s updates will 

not be routed to S2. U2 overlap with both S1 and S2, and the updates from the object of 

U2 will be routed to both S1 and S2. 
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Figure 12. Region-based Approach 

 
 

The main advantage of the region-based approach is its simplicity of 

implementation, since the algorithm is straightforward. The main problem of this 

mechanism is the high computational overhead and poor scalability. Since the matching 

requires each update region to be compared with all the subscription regions, the 

complexity is still O(N2). This approach is particularly inefficient if there are many 

regions but few intersections between regions. For this scenario, a significant amount of 

overhead will be introduced. Another problem is that it does not scale very well, except 

when there are many intersections between regions. 

2.2.2 Grid-based Approaches 

The grid-based approach [11, 18] is also known as the cell-based approach. The 

entire routing space is partitioned into a grid of cells. Each region is then mapped to the 

grid cells. A subscription region and an update region are assumed to overlap if they 

intersect with the same grid cell. The advantage of this approach is that the computational 

overhead is much less than that of the region-based approach and it is much more 

scalable. The main drawback of this scheme is that the overlap information is not 

accurate because entities will receive irrelevant information when their subscription 

regions cover the same grid cell as the update region, but the two regions do not overlap. 
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Obviously, some communication overhead will be introduced due to delivering irrelevant 

information; additional receiver-side filtering is also needed to filter the irrelevant data. 

Figure 13 shows an example of the grid-based approach. In this example, U1 and 

S1 intersect with the same grid cell while U1 and S2 intersect with another grid cell. 

Therefore, the updates from the object associated with U1 will be routed to both S1 and 

S2. However, U1 and S2 do not actually overlap although they are assumed to overlap 

since they intersect with the same cell. S2 will receive irrelevant information and extra 

network resources will be consumed. Similarly, the updates from the object of U2 will be 

routed to S2 since U2 and S2 intersect with the same grid cell. 

The grid cell size is an important factor in this approach. Large cell size may 

result in a large amount of irrelevant information transferred while for a smaller grid size, 

more resources will be consumed in maintaining the lists of each cell. Therefore, the 

choice of the cell size has a significant impact on the performance of the grid-based 

mechanism [24]. Some researchers have proposed a method to determine the optimal cell 

size [9]. 

 
Figure 13. Grid-based Approach 
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2.2.3 Hybrid Approaches 

Hybrid approach [10, 24] combines the region-based and grid-based approaches. 

It is an improvement over both approaches. It first maps all the regions to the grid cells 

with the grid-based approach. Then the region-based approach is used to determine an 

exact matching between update and subscription regions within each cell. For example in 

Figure 13, after using the grid-based algorithm, the updates from the object of U1 will be 

routed to both S1 and S2. However, U1 and S2 do not overlap although they intersect 

with the same cell. If the hybrid approach is used, the region-based approach should be 

used after the grid-based scheme is applied to compute the exact matching within each 

cell. Then the fact that U1 and S2 do not overlap will be examined and the updates from 

the object of U1 will only be routed to S1, which obviously overlaps with U1.  

In this approach, the advantages of both the region-based and grid-based 

approaches are exploited. The overlap information is exact and the matching overhead is 

much lower than that of the region-based approach. The major problem is the same as 

that of the grid-based approach: the size of the grid cell is very important for the 

performance of the algorithm. 

 

2.2.4 Sort-based Approaches 

Sort-based algorithms [17, 21] are another popular approach for interest 

management. This algorithm has been used to compute the intersection between update 

and subscription regions. It projects the regions on each dimension and sorts the 

projections in order to determine the overlap information. After obtaining the overlap 

information on each dimension, the matching between update regions and subscription 

regions can be computed because two regions overlap if the projections of the two 

regions intersect along each dimension. For example in Figure 14, regions are projected 
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along x-axis and the projections are sorted for identifying the overlaps on x-axis between 

update and subscription regions.  

 

Figure 14.Projects of Regions to X-Axis 

 

Raczy [21] proposed a sort-based interest management scheme. After projecting 

the regions on each axis, the scheme uses heap-sort to sort the projections. The 

computational complexity of such sorting is O(nlogn). An N-by-N bit-matrix is used to 

maintain the overlapping information assuming there are N update regions and N 

subscription regions. In Raczy’s work, sort-based algorithm has been shown to yield 

favorable results compared with the region-based and hybrid algorithms. Pan [19] also 

proposed a sorted-based matching algorithm and argued that it has better storage and 

computational scalability than Raczy’s algorithm in many cases. 

2.3 Interest Management Scheme 

In this section, we present our interest management mechanism for mobile peer-

to-peer systems. We illustrate our sorting and matching algorithm first, and then present 

the mobile landmarking scheme for implementing the sorting and matching algorithm in 

mobile peer-to-peer systems. 
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2.3.1 Bucket Sort-based Algorithm 

Our interest management scheme combines the advantages of grid-based and sort-

based algorithms. This scheme first divides the multidimensional space into a grid of 

cells. Then a sort-based algorithm is used within each cell to compute the exact 

intersection between update and subscription regions. Specifically, our sort-based 

algorithm projects the regions on each dimension and uses bucket sort to sort the 

projections in order to find overlaps. This bucket sort-based algorithm is expected to have 

better computational efficiency than other algorithms based on comparison sorts if there 

are not many projection values falling into the same bucket. Our algorithm is applicable 

to dynamic sorting and matching of region modifications without resorting all regions 

and matching them again. 

In the sort-based algorithm, a dimension reduction approach is used to reduce the 

multidimensional problem to a one-dimensional problem. A pair of regions overlaps if all 

of their projections on each dimension intersect. For example, in Figure 15, the 

projections of subscription region A and update region B on both the x-axis and y-axis 

have a non-empty intersection, so regions A and B overlap. The projections of 

subscription region C and update region D on the y-axis overlap while the projections of 

C and D on x-axis have no intersection, so regions C and D do not overlap. 

The most important step in the scheme is to sort the projections on each 

dimension. For the regions residing in multiple cells, we need to record the lower and 

upper bounds of these regions for each cell. For example, the lower bound of subscription 

region E is XE1(1) and upper bound of E is XE2(1) in cell 1 for the projection sorting on x-

axis, while the lower bound of E is XE1(2) and upper bound of E is XE2(2) in cell 2 (XE2(1) 

and XE1(2) are cell boundary values).  
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Figure 15. Dimension Reduction Approach 

 

In our algorithm, we use bucket sort to sort the projections of subscription regions 

for each dimension. We store the lower bound and upper bound of all the subscription 

regions in one cell in an array, and then distribute these projections into the buckets. 

Bucket i holds values in the half-open interval [CellBoundValue+(i/k)*CellLength, 

CellBoundValue+((i+1)/k)*CellLength), where k is the number of buckets and 

CellBoundValue is the lower bound of each cell. For example, the CellBoundValue is 0 

for cell 1, CellLength for cell 2, 2*CellLength for cell 3 and so on. Suppose CellLength is 

L and k is chosen to be 10, then bucket 0 for the cell 1 holds values in the interval [0, 

0.1L). For the sorting of the elements in each bucket, since there are not many elements 

in each one, we can use bucket sort or other sort algorithms, such as insertion sort. The 

bucket sort-based algorithm works best if the distribution is uniform. In Figure 16(a), we 

show the bucket sort result for sorting the lower bounds of subscription regions A, C and 
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E in cell 1. The upper bounds can be inserted into buckets similarly and the result is 

shown in Figure 16(b). 

 

(a) 

 

 

(b) 
 

Figure 16(a) and 16(b): Sorting the Projections of Subscription Regions 
 

 

After distributing the projections of subscription regions into buckets, we need to 

process the update regions. If an update region does not overlap with a subscription 

region, there are only two possibilities: 
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(1) The lower and upper bounds of the subscription region are less than this update 

region, which means the upper bound of the subscription region must be less than the 

lower bound of the update region. 

(2) The lower bound and the upper bound of the subscription region are greater than this 

update region, which means the lower bound of the subscription region must be 

greater than the upper bound of the update region. 

 

Based on case (1), we first determine the bucket index if we insert an update 

region lower bound into the buckets used to sort subscription region upper bounds. Then 

all the subscription regions whose upper bounds are in the bucket preceding this bucket 

do not overlap with the update region; all the subscription regions whose upper bounds 

are in the same bucket but less than this update region lower bound do not overlap with 

this update region. Similarly, we can also determine the bucket index if we insert an 

update region upper bound into the buckets used to sort subscription region lower bounds. 

Then all the subscription regions whose lower bounds are in the bucket after this bucket 

do not overlap with the update region; all the subscription regions whose lower bounds 

are in the same bucket but more than this update region upper bound do not overlap with 

the update region. 

Consider the above example illustrated in Figure 17. Suppose XB1 = 0.12L, XB2 = 

0.36L, XD1 = 0.62L, XD2 = 0.79L. XC1 and XE1 (the lower bounds of subscription regions 

C and E) are more than XB2 (the upper bound of update region of B), so B does not 

overlap with C and E on the x-axis, as shown in Figure 17(a). Similarly in Figure 17(b), 

XA2 and XC2 (the upper bounds of subscription regions A and C) are less than XD1 (the 

lower bound of update region of D), so D does not overlap with A and C on the x-axis. 
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(a) 

 

(b) 

Figure 17(a) and 17(b): Determining Overlap Information 

After we have determined if there are overlaps for each dimension, we can 

combine them to determine overlaps for the multidimensional space. The algorithm for 

static matching of all regions is shown in Figure 18. As mentioned before, some sort-

based algorithms cannot deal with dynamic matching of a region modification without 

repeating the static matching of all regions. Here, if the modified region R is a 

subscription region, the original overlap information related to R and the projections of R 
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are removed. Then the scheme inserts the new bounds of R into the list of the 

corresponding sorting buckets. Then the new overlap information is obtained by 

comparing the lower bound of each update region with the upper bound of R as well as 

comparing the upper bound of each update region with the lower bound of R. If the 

modified region R is an update region, the original overlap information related to R is 

removed. Then the scheme determines the overlap information between R’s new 

projections with the bounds of each subscription region. The algorithm for dynamic 

matching of one region modification is shown in Figure 19. 
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1.  for each subscription region 

2.    for each dimension 
3.    { 

4.       insert its lower bound into SRegionLowerBoundSet; 

5.       insert its upper bound into SRegionUpperBoundSet; 

6.    } 

7.  for each update region 

8.    for each dimension 

9.    { 

10.      insert its lower bound into URegionLowerBoundSet; 

11.      insert its upper bound into URegionUpperBoundSet; 

12.   } 

13.  for each dimension 

14.  { 

15.    insert each element in SRegionLowerBoundSet into the list of the corresponding bucket for 

lower bound sorting; 

16.    insert each element in SRegionUpperBoundSet into the list of the corresponding bucket for 

upper bound sorting; 

17.    for each bucket 

18.       sort the list with insertion sort; 
19.   } 

20.   for each dimension 

21.  { 

22.       for each update region lower bound in URegionLowerBoundSet 

23.       { 

24.          determine the bucket index if this update region lower bound is inserted into the  

buckets used to sort subscription region upper bounds;  

25.          all the subscription regions whose upper bounds are in the bucket before this bucket  

do not overlap with this update region; 

26.          all the subscription regions whose upper bounds are in the same bucket but less than  

this update region lower bound do not overlap with this update region; 

27.     } 

28.  } 

29.   for each dimension 

30.  { 

31.    for each update region upper bound in URegionUpperBoundSet 

32.     { 
33.       determine the bucket index if this update region upper bound is inserted into the buckets  

used to sort subscription region lower bounds;  

34.       all the subscription regions whose lower bounds are in the bucket after this bucket do not  

overlap with this update region; 

35.       all the subscription regions whose lower bounds are in the same bucket but more than  

this update region upper bound do not overlap with this update region; 

36.     } 

37.  } 

 

Figure 18. Algorithm for Static Matching of All Regions 
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1. if (R is a subscription region)                           
2. {  

3.    for each dimension 

4.    { 

5.       remove the overlap information related to subscription region R; 

6.       remove the original lower bound and original upper bound of R in the list of the   

corresponding sorting bucket; 
7.       insert the new lower bound and new upper bound of R in the list of the corresponding  

sorting bucket; 

8.     } 

9.     for each dimension 

10.        for each update region 

11.        { 

12.           if the lower bound of the update region is more than the upper bound of R, 

13.             this update region does not overlap with R; 

14.           if the upper bound of the update region is less than the lower bound of R, 

15.             this update region does not overlap with R; 

16.        } 

17.   } 

18.   else                         // if R is an update region 

19.   { 
20.       for each dimension 

21.          remove the overlap information related to update region R; 

22.       for each dimension 
23.       { 

24.          determine the bucket index if the lower bound of R is inserted into the buckets used  

to sort subscription region upper bounds;  

25.          all the subscription regions whose upper bounds are in the bucket before this bucket  

do not overlap with R; 

26.          all the subscription regions whose upper bounds are in the same bucket but less  

than this update region lower bound do not overlap with R; 

27.       } 

28.       for each dimension 

29.       { 

30.          determine the bucket index if the upper bound of R is inserted into the buckets used  

to sort subscription region lower bounds;  

31.          all the subscription regions whose lower bounds are in the bucket after this bucket  

do not overlap with R; 

32.          all the subscription regions whose lower bounds are in the same bucket but more  

than this update region upper bound do not overlap with R; 

33.       } 
34.    } 

 

 

Figure 19. Algorithm for Dynamic Matching of One Region Modification 
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2.3.2 Mobile Landmarking 

When dividing the entire space into cells and sorting within each cell in a mobile 

peer-to-peer system, one important question concerns where the sorting and matching 

computation is performed. Conventional landmarking technology [22] suffers from the 

limitation that it assumes a set of fixed, stationary landmark nodes. All entities are 

expected to know the landmark nodes and communicate with other entities through the 

landmark nodes. This requires a server, but in mobile peer-to-peer systems there are 

usually no sets of fixed nodes available. Therefore, we introduce the mobile landmarking 

concept into mobile peer-to-peer systems.  

This scheme works without any fixed landmark nodes. Instead, it uses a set of 

landmark keys. For example, a landmark key can be defined as the center point of a cell. 

Rather than having dedicated landmark nodes, those nodes which are currently closest to 

one of the landmark keys become mobile landmark nodes. When one of the current 

mobile landmark nodes leaves this cell, another node (which is now closest to the 

landmark key) will automatically become the new mobile landmark node, and the 

original mobile landmark node should transmit the overlapping information in that cell to 

the new mobile landmark node. 

An example is shown in Figure 20. The entire environment is partitioned into 

sixteen cells and each landmark key is responsible for each cell. The node which is 

currently closest to one of the landmark keys becomes a mobile landmark node. In cell 16, 

the current mobile landmark node resigns and another node which is now closest to the 

landmark key becomes the new mobile landmark node automatically. 

At the initialization stage, each entity will send a message about their subscription 

and update regions to the mobile landmark node responsible for the cell in which the 

entity resides. The data format of the message is (EntityID, EntityLocation, 
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URLowerBound, URUpperBound, SRLowerBound, SRUpperBound), where 

URLowerBound refers to the lower bound of the update region, URUpperBound  

 

 

Figure 20. Mobile Landmarking 

 

refers to the upper bound of the update region, SRLowerBound refers to the lower bound 

of the subscription region, and SRUpperBound refers to the upper bound of the 

subscription region. Then the mobile landmark node performs the static sorting and 

matching. The mobile landmark node then sends a message to each entity in the cell 

about other entities whose subscription regions overlap with this entity’s update region. 

The data format of the message is (EntityID1, EntityLocation1, EntityID2, 

EntityLocation2, EntityID3, EntityLocation3,…). When entities receive the information, 

they will transmit state update messages to these entities listed in the message. In this 

scheme, we assume all communications are reliable. 

When there is an update or subscription region modification, the entity will send 

the modification information to the mobile landmark node responsible for the cell in 
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which the entity resides. However, it will incur too much communication overhead if an 

entity sends the updates each frame. We can have each entity send the modification 

information periodically or in a space-driven manner, where an entity sends the  region 

modification information to the mobile landmark node only when its position shifts from 

the last update by an amount exceeding a DistanceThreshold in either dimension. The 

data format of the message is (EntityID, EntityLocation, OldURLowerBound, 

OldURUpperBound, OldSRLowerBound, OldSRUpperBound, NewURLowerBound, 

NewURUpperBound, NewSRLowerBound, NewSRUpperBound).  

After the mobile landmark node receives the message, it will perform the dynamic 

matching of this region modification. If the modified region is an update region, the 

mobile landmark node will return a message to the entity about the subscription regions 

that overlap with either the original update region or the new update region but not both. 

The data format is (EntityID1, EntityLocation1, Removed, EntityID2, EntityLocation2, 

Removed,…, EntityIDk, EntityLocationk, Added, …). The removed entity refers to the 

entity whose subscription region overlaps with the original update region while the added 

entity refers to the entity whose subscription region intersects with the new update region. 

Then the entity will transmit its update information to the  overlapped subscription 

regions. If the modified region is a subscription region, the mobile landmark node will 

record the information of update regions that overlap with either the original subscription 

region or the new subscription region but not both and send the information to the entities 

to which these update regions belong. The data format of the message to each update 

region is (EntityID, EntityLocation, Removed) if the update region only overlaps with the 

original subscription region or (EntityID, EntityLocation, Added) if the update region 

only intersects with the new subscription region. Then the affected entities will send the 

update information based on the new overlap information. The algorithm for mobile 

landmark node is shown in Figure 21. 
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Since peer nodes communicate continuously with mobile landmark nodes, they 

will have knowledge of the mobile landmark nodes. For that purpose, each mobile 

landmark node sends beacons periodically within the cell in which this mobile landmark 

node resides. Whenever a node hears a beacon, it stores the information of this mobile 

landmark node. Nodes periodically examine whether they have moved closer to a new 

mobile landmark node, for example, when they have moved into a new cell.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Experiments and Results 

To evaluate the performance of the proposed interest management mechanism, a 

mobile peer-to-peer transportation system is simulated as a routing agent in the ns2 

simulator. All simulations that we carried out modeled wireless networks over the course 

of one (simulated) hour. The simulated system is a two-dimensional space of 1000 

At Initialization: 
1. Receive information from peers in the cell about the subscription and update   

 Regions; 

2. Sort all the regions and perform the static matching; 

3. Send a message to each peer in the cell about the overlap information; 

 

After One Region Modification: 
4. Receive region modification information from the peer in the cell; 

5.  if (the modified region is an update region) 
6.  { 

7.    Perform the dynamic sorting and matching for update region modification; 

8.     Send back a message to the peer about the subscription regions who   

overlap with either the original update region or the new update region  

but not both; 

9.  } 

10.  else               // the modified region is a subscription region 
11. { 
12.    Perform the dynamic sorting and matching for subscription region  

modification; 

13.    Send a message to each peer whose update region overlap with   

either the original subscription region or the new subscription  

region but not both; 

14.  } 

Figure 21. The Algorithm for Mobile Landmark Nodes 
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distance units by 1000 distance units. Its input is the traces obtained from VISSIM (PTV 

Vision VISSIM), a microscopic multi-modal transportation simulator. The simulated 

traffic network has 10*10 intersections with each intersection under two-phase signal 

control. The cycle  length of the traffic signal is 120 seconds. Vehicles entering an 

intersection will maintain a straight path with 95% probability, or turn left with 2% 

probability or turn right with 3% probability. Each roadway is a two-way arterial, with 

one lane in each direction. Vehicles enter this network from each entrance (in total 40 

entrances) at initialization.  

In this simulated mobile peer-to-peer transportation system, vehicles 

communicate with each other without infrastructure. Each vehicle is associated with a 

update region and a subscription region. Our scheme is used to obtain the overlap 

information between update regions and subscription regions in order that each vehicle 

only receives the information of interest. We conducted three sets of experiments to 

evaluate our scheme: Comparison of communication cost with other schemes; 

Comparison of execution time of static matching using different schemes; Comparison of 

execution time of dynamic matching under region modifications with other schemes. For 

the first set of experiments, the range per dimension is randomly generated with a 

uniform probability density function between 50 distance units and 150 distance units. 

We use the space-driven manner when sending the region modification information and 

the DistanceThreshold is  chosen  to be 10 distance units here. For the second and third 

set of experiments, the region definition is related to overlapping rate, which will be 

defined below. All our experiments run on a single PC with Intel (R) Core(TM) 2 Duo 

CPU P7550 2.26GHz, 2GB RAM and Windows XP OS. 

 

2.4.1 Comparison of Communication Cost 
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First, we evaluate the communication cost of our scheme and compare it with 

another three schemes: region-based, cell-based and hybrid schemes. The communication 

cost refers to the number of messages that are sent by all vehicles at each frame. The grid 

cell size for the cell-based scheme is 100 distance units in this set of experiments. 

As is shown in Figure 22, the communication cost increases linearly with the 

number of vehicles, as expected. The cell-based scheme has the highest communication 

cost. The reason is that the overlapping information computed by the cell-based 

algorithm is not exact, and this lack of precision creates unnecessary data communication. 

A relatively large grid cell size also causes more irrelevant data to be received by entities. 

The hybrid scheme has lower communication cost than the cell-based and region-based 

schemes. That is because the hybrid scheme reduces the communication cost in the 

region-based mechanism by utilizing the cell-based mechanism. The figure also shows 

that the communication cost of the proposed scheme is slightly higher than that of the 

hybrid approach, which suggests that the mobile landmarking design does not introduce 

an excessive amount of communication overhead in order to improve the computation 

performance. Although the mobile landmark node periodically sends beacons, the beacon 

message is restricted to be transmitted within the cell rather than the entire system. 

Therefore, the communication cost is only slightly higher than that of the hybrid 

approach.  
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Figure 22. Comparison of Message Number 

Since our proposed approach and hybrid approach have similar performance, we 

would like to use a paired t-test to access statistically the difference between the two 

means. The test statistic is calculated as: 
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The sample size is 100 and the degree of freedom is 99. Table 1 displays the 

results. 

Table 1. Paired t-test for Two Means of Message Numbers 

Vehicle 

Number 

1000 2000 3000 4000 5000 

t statistic 1.5679 1.6991 1.8326 1.9958 2.0319 

p-value 0.1201 0.0924 0.0699 0.0487 0.0448 
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From the results, the p-value associated with t is high (> 0.05) when the total 

vehicle number is less than 4000, which indicates that there is no significant difference 

between the two means. When the vehicle number is increasing beyond 4000, the p-value 

decreases to about 0.05 indicating that the means may be different. This makes sense 

because when the traffic network becomes more congested, more communication 

overhead will be introduced due to mobile landmarking design.  

2.4.2 Comparison of Execution Time of Static Matching 

In this set of experiments, each scheme (region, hybrid, sort and our proposed 

scheme) performs static matching of all regions and the execution time of static matching 

is recorded. One of the important factors affecting the performance is the overlapping rate, 

which is defined as follows.  

area of regions
Overlapping rate

area of the entire space




 

If the space is 1000*1000, and one region is 10*10, where the number of regions 

is fixed at 1000, the overlapping rate is 

1000 (10 10)
0.1

1000 1000

 


  

 

The higher overlapping rate implies greater probability of region overlap. Two 

different values 0.01 and 1 are used in the experiments. 

Figure 23(a) shows the execution time of three schemes with the overlapping rate 

set to be 0.01. The hybrid and the proposed algorithms have similar performance, while 

the region-based approach yields very poor results, especially when the number of 

vehicles is increased. Both the proposed algorithm and the hybrid algorithm with grid cell 

size 100 distance units perform well because the regions are very small and usually they 

do not cover more than one cell when the overlapping rate is 0.01. The execution time of 
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the proposed algorithm is half of that of the hybrid approach. Hence the proposed scheme 

is the best choice among the three schemes in this scenario. 

Figure 23(b) shows the experiment results when the overlapping rate is 1. Our 

proposed algorithm also performs best with higher overlapping rate because it is less 

affected by the overlapping rate. The hybrid algorithm with grid cell size 100 distance 

units has high overhead when the regions become large and covering more than one cell. 

The region-based algorithm still shows poor results because it exhaustively compares all 

regions to determine the overlap information.  

 
    (a) 

 
(b) 

 

Figure 23. Comparison of Execution Time of Static Matching 
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Since our proposed approach and hybrid approach have similar performance when 

the overlapping rate is 0.01, we also used a paired t-test to examine whether there is 

significant difference between the two means. Table 2 shows the results for an increasing 

number of vehicles. From the results, the p-values are relatively low (< 0.05) for all the 

cases, which indicates significant difference in means across the two designs. Our 

proposed approach is more efficient than hybrid approach. 

Table 2. Paired t-test for Two Means of Execution Time 

Vehicle 

Number 

1000 2000 3000 4000 5000 

t statistic 1.9987 2.1567 2.4851 2.8803 3.0613 

p-value 0.0484 0.0335 0.0146 0.0049 0.0028 

2.4.3 Comparison of Execution Time of Dynamic Matching 

For dynamic matching, a random subscription or update region is modified in one 

iteration and each scheme (region-based algorithm, Raczy’s sort-based algorithm [21] 

and the proposed algorithm) performs dynamic matching of a region modification for 100 

iterations and calculates the average performance of the 100 iterations. Figure 24 shows 

that the dynamic matching time of region-based and Raczy’s sort-based algorithm is 

almost the same as the static matching time of all regions. This is because they cannot 

perform dynamic matching without processing all the regions again. The dynamic 

matching time of the proposed algorithm is almost zero no matter whether the 

overlapping degree is 0.01 or 1 because our proposed algorithm only removes the overlap 

information related to original region bounds and obtains the overlap information related 

to new region bounds without resorting all the regions.  
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(a) 

 

 
(b) 

Figure 24. Comparison of Execution Time of Dynamic Matching 

 

2.5 Non-Uniform Distribution for Bucket Sort 

For the non-uniform distribution, if we use bucket sort as usual, the performance 

may decrease dramatically. Therefore, we use a three-phase process to sort all the 

projections of subscription regions and update regions. The first phase is called random 

sampling, which is used to determine the boundaries of the bucket sort. The second phase 
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uses the bucket boundaries obtained in the first phase to sort the regions. We hope to get 

equi-depth buckets also after putting all the data items into buckets. The third phase 

keeps splitting and merging buckets during runtime to maintain equi-depth buckets. 

The approach to determine the boundaries of buckets can be derived from 

algorithms for equi-depth histograms. Given a data set, the B-bucket equi-depth 

histogram algorithm seeks to find a sorted sequence of B − 1 boundaries over the sorted 

list of the data, such that the number of data between each two consecutive boundaries is 

approximately N/B, where N is the data set size [75]. This goal can only be achieved 

within a certain approximation given time and space constraints.  

One well-known approach is to use random sampling [73]. The idea is to obtain n 

(n < <N) samples from the data set randomly and uniformly, without replacement. (Such 

a sample is called a simple random sample.) Samplesort [74] is a popular approach using 

random sampling. It uses the partitioning paradigm: it uses a set of m pivots sampled 

from the given set to partition n keys. It selects and sorts m < n pivots, and then 

associates a bucket with each interval dictated by the pivots. The next step is to use 

binary search to distribute the rest of the keys into buckets (m + 1 buckets). We use 

similar procedures in our algorithm as samplesort. The first step is to use an efficient 

algorithm [76] to do the random sampling. The population size N can be unknown at the 

beginning of the algorithm. At the conclusion of the algorithm, N is contained in k as 

follows and n random samples are obtained, provided that nN [76]. 

 

1. Set k <- 0. 

2. Are there any remaining members in the population? If no, terminate. Otherwise, 

obtain the next member and set k <- k+1. 

3. (a)  If k<n or k=n, the kth population member becomes the kth member of the sample. 

Go to Step 2. 
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(b)  If k>n, generate a uniform (0,1) random variable U and set j <- 1+ [Uk] where [.] 

denotes the integer part. If j<n or j=n, the jth member of the current sample is 

replaced by the kth population member. Go to Step 2. 

 

Now we need to compute the sample size which is sufficient enough to make the 

sample distribution close to the underlying distribution. 

If the sample distribution is close to the underlying distribution, then 

t tS X

S X
   

where tS  denotes the number of the data items in the bucket t after random sampling, 

tX  denotes the number of the data items in the bucket t for the whole data set, 

S denotes the total number of samples and X denotes the number of all the data items. 

For all the data items, we hope we can get equi-depth buckets after putting them 

all into the buckets to make sure the running time is linear, which means 
1tX

X k
  (k is 

the bucket number). We know that t tS X

S X
   and we can define 

1

10k
  in our 

experiment. 

We define the following indicator variable: 
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where m= S  is the number of the data items in the sample. 

Based on the Hoeffding Bounds (Concentration Inequalities), we have  
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make the sample distribution close to the underlying distribution.  

The third phase is regarding the runtime updates of bucket boundaries. The 

approach is based on merging and splitting buckets [77]. We record the number of data 

items in each bucket and when there are updates about subscription regions or update 

regions, we revise the count for affected bucket also. When a bucket count reaches the 

threshold T (T = (1+)N/k, where N is the size of the whole data set, K is the bucket 

number and >0 is a tunable performance parameter), we split the bucket in half. We can 

also merge some two adjacent buckets whose total count does not exceed the threshold T  

[77].  

We conduct experiments to evaluate the effectiveness and efficiency of our 

proposed approach and examine the impact of different  value on performance. We 

compare the execution time of original approach and current approach with random 

sampling and runtime merging and splitting. Figure 25 shows the execution time of 500 

region modifications under different vehicle numbers. Current approach takes less 
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execution time than original approach no matter whether the  value is low or high. This 

indicates that current approach with random sampling and runtime merging and splitting 

increases the algorithm efficiency. When  value is 0.6, the execution time is the lowest 

among three scenarios. We explore the impact of  value on execution time and operation 

number further in the following experiments.  

Figure 26 shows the impact of different  values on execution time. When the  

value is very low, such as 0.2, the execution time is relatively high since many merging 

and splitting operations will be needed when the threshold T is low, which will introduce 

operation overhead. When the  value increases from 0.6 to 1.4, execution time increases 

also, since equi-depth buckets are difficult to maintain if the threshold T is high. The 

buckets will become unbalanced if insufficient merging and splitting operations are used. 

Figure 27 shows the number of merging and splitting operations with different  values. 

The operation number decreases sharply when  value increases from 0.2 to 0.6. After 

the  value reaches 1.0, operation number almost remains the same. Based on the 

experimental results in Figure 26 and Figure 27, 0.6-0.8 is a good tradeoff for  value. 

 

Figure 25. Comparison of Execution Time of Original and Current Approaches 
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Figure 26. Comparison of Execution Time with Different  values 
 

 

Figure 27. Comparison of Operation Number with Different  values 
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2.6 Conclusion 

In this work, we have proposed an interest management scheme for mobile peer-

to-peer systems, that divides the entire space into cells and uses bucket sort to sort the 

regions in each cell. The interest management scheme is applicable to dynamic sorting 

and matching of region modifications. If region modifications occur, the algorithm does 

not need to re-sort the projections and conduct the entire matching again. The bucket 

sort-based scheme is expected to have better computational efficiency than other 

algorithms based on comparison sorts. We also introduce the mobile landmarking design 

to implement this sort-based scheme in mobile peer-to-peer system simulation. The 

design does not have servers, but every peer can become a mobile landmark node to take 

the server-like role to sort and match the regions. To evaluate the new scheme, a mobile 

peer-to-peer 10*10 transportation system is simulated. The performance results show that 

the scheme has better computational efficiency for both static matching and dynamic 

matching.  Furthermore, it is also shown that the mobile landmarking design does not 

introduce a lot of communication overhead in order to improve the computation 

performance. 

 

 

 

 

 

 

 

 

  



 59 

CHAPTER 3 

TRAVEL TIME PREDICTION MODEL 

 

3.1 Introduction 

Travel time prediction is one of the most important problems in intelligent 

transportation system research. It allows the travelling public to be proactive in routing 

decisions and planning. Researchers have proposed various types of prediction models. 

Regression-based approaches [40] make use of variables closely related to travel time, 

such as traffic flow, speed and occupancy to predict travel time. Other traditional models 

include time series [38] and Kalman filtering models [39]. These techniques explore the 

characteristics of historical data and utilize them to predict future values. Recently, many 

machine learning techniques have been examined. For instance, Artificial Neural 

Network (ANN) [37, 43] is a popular method, and many variations of basic models have 

been studied. Other techniques include support vector machine (SVM) [44], Bayesian [42] 

and K-Nearest Neighbors (KNN) [41]. 

Although several traditional approaches examine the characteristics of traffic flow, 

achieving high prediction accuracy has been elusive. Bayesian and KNN are basic 

machine learning approaches that must usually be combined with other methods such as 

ANN to obtain accurate prediction results. For SVM, it is important but very difficult to 

select proper kernel functions and optimal parameters. Theoretically, ANN can capture 

any relationship between output and input values, however, it can suffer from over-fitting, 

and prediction accuracy can also be improved.  

Boosting is a very effective machine learning technology for classification [45, 48, 

51, 52] and regression [46, 47, 52]. To our knowledge, it has not been previously applied 

to the travel time prediction problem. The proposed algorithm considers travel time 
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prediction as a classical regression problem, and uses a neural network as the basic 

learner to capture the characteristics of traffic. We then use boosting to augment this 

learning approach to increase prediction accuracy. 

Collecting raw traffic data such as vehicle speed is very important for any 

prediction approach. When data are transmitted from sensors or probe vehicles to other 

vehicles, bandwidth resources will be consumed. It is reasonable to expect that increased 

collection frequency results in more accurate predictions, but bandwidth is a limited and 

expensive resource, especially in wireless networks. Therefore, finding a suitable 

minimum collection frequency that achieves good accuracy is important. In this thesis, 

we also explore the relationship between data collection frequency and travel time 

prediction accuracy. We use a binary search-like approach to compute the lower bound 

on the collection frequency while maintaining optimal prediction accuracy. To the 

authors’ knowledge, this is the first attempt to consider QoS factors (bandwidth) in travel 

time prediction. 

The contributions of this work are threefold. First, the boosting approach is 

introduced as a method for travel time prediction in conjunction with neural network 

models to help capture characteristics of traffic and increase prediction accuracy. Second, 

we examine the relationship between data collection frequency and travel time prediction 

accuracy, and propose an approach to compute the lower bound of the collection 

frequency while maintaining high prediction accuracy, thereby introducing QoS as a 

factor in travel time prediction for the first time. Finally, we explore the influence of 

various factors on prediction accuracy such as monitoring interval time for historical data 

and the number of iterations used by the boosting algorithm. 

The rest of this chapter is organized as follows: related work about travel 

prediction models is introduced first. The boosting-based travel time prediction approach 

is then described in detail. Experimental results are presented in Section 3.4. Discussions 
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about the basic learner for boosting are presented in Section 3.5. Finally, the chapter is 

concluded in Section 3.6.  

3.2 Related Work 

Several researchers have proposed various types of travel time prediction models. 

Among these models, time series models and machine learning models are two popular 

approaches. Most studies show that prediction accuracy is often compromised by the 

underlying mechanism of prediction models more than other influencing factors [53]. 

Several prediction methodologies and techniques are presented as follows.  

3.2.1 Time Series Models 

Travel time can be predicted from historical data by analyzing traffic information 

from fields. For instance, the traffic data, such as the speed, direction and traffic volume 

are one example of historical data. Various techniques, such as statistical approaches and 

mathematical methods can then be used for developing the travel-time prediction model. 

One method used by many researchers [78, 79, 80] is stated as follows: 

                                               (1) 

where xl+1 – xl is the link length, v(xl, t-) is the speed at the start of the link and L is the 

total number of links. This approach is intuitively appealing since T* (t, ) is based on the 

available data that are closest to t temporally. T* (t, ) represents our initial guess of T(t) 

given the available data v(xl, t-). 

Based on this method, we use the speed information at the same time point for 

each link. For example, if we want to predict the speed v(t), we will use the speed 

information at the following time series: t-nk, t-(n-1)k, …, t-2k, t-k for each link. For link 

l, v (xl, t) is computed based on v(xl, t-nk), v(xl, t-(n-1)k), …, v(xl, t-2k), v(xl, t-k). For 
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link l+1, v (xl+1, t) is computed based on v(xl+1, t-nk), v(xl+1, t-(n-1)k), …, v(xl+1, t-2k), 

v(xl+1, t-k). 

In the above equation, v(xl, t-) is the predicted speed based on historical data, 

such as v(xl, t--nT0), v(xl, t--(n-1) T0),…, v(xl, t--2T0), v(xl, t-- T0) (T0 is the update 

period). Now the question is how to predict the speed. 

Let T0 be the period of speed updating, namely a speed data point is generated 

every T0 time units, and f0 is the data update frequency (f0 = 1/ T0). We want to predict 

vn+1 based on historical speed data measured by sensors, and using vn+1 to predict the 

traffic time. Suppose we set the monitoring interval time is T, then total sampling number 

n = T/T0. So the prediction of vn+1 will be based on the v1, v2, … , vn. 

Suppose for each prediction, we consider the historical information from Tcurrent 

– T to Tcurrent. During the time period T, we can collect speed information from sensors 

v1, v2, … , vn. Then we want to compute vn+1 based on the historical speed information 

and substitute v(xl, t) by vn+1 in equation (1) . 

vn+1  =  f(v1, v2, … , vn) 

that is: 

                                         vT/T0 +1 = f(v1, v2, … , v T/T0)                                        (2)                                                       

The following are several popular methods to predict vn+1 based on time series 

analysis [54, 55, 56, 57]: 

3.2.1.1 Means of K-Nearest Neighbors 

This method is a straightforward means of K- nearest neighbors:  

                                                        (3) 
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3.2.1.2 Exponential Smoothing Method 

The exponential smoothing method is proven in [58] and applied in [54]. Suppose 

we already collect the speed data v1, v2, … , vn from sensors, where vn represents the 

average travel-speed during the last period of T0 time units, vn-1 represents the average 

travel-speed during the second last period of T0 time units, and so on. The one-step-ahead 

speed, namely the average travel-speed for the next T0 time units, is predicted to be 

                                                     (4)                          

where 0 ≤  ≤ 1 is the smoothing constant. Selection of the proper smoothing constant  

is an important problem. A widely used technique is introduced in [58]. 

In order to keep the predictions realistic, a maximum speed is used for each link 

and it can be determined by the speed limit on the street. If a predicted speed is higher 

than the maximum speed, it is revised down to the maximum speed.  

3.2.1.3 Extrapolation through Several Values 

We can use an extrapolation method, such as given vn and vn-1. 

      vn+1 = avn + bvn-1                                                         (5)                                                             

where a, b can be constant or dynamic coefficients.  

For example, we can use the form [55]. 

                                                                                       (6)                                                            

where  is referred to as the local Hölder exponent [59]. It has the following form: 

                                                                              (7)                                                 

From this equation, the value of  for a point n (n) on the time series is based on 

speed values at the points n-1, n, and n+1. Speed at point n+1 (vn+1) is unknown and in 
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practice, n must be predicted first before predicting vn+1. This procedure includes three 

steps. Given a time series v0 ,...,vn: 

(1) Compute the values of 1,..., n-1.  

(2) Predict the value of n. The nonlinear operation, , is assumed to be a Markov chain 

and a method [59] based on conditional probabilities is used to predict the value of n. 

Since this method is beyong the scope of this thesis, we will not illustrate the details here.  

(3) Perdition using . 

 

3.2.2 Machine Learning Models 

Machine learning, a branch of artificial intelligence, is the study of computer 

algorithms that improve automatically through experience. These techniques have been 

applied in many fields. Also, machine learning has received much attention in the 

transportation area [60]. One of the most popular techniques in machine learning is 

Artificial Neural Network (ANN). ANN model has become one of the major machine 

learning approach to help improve transportation problems, such as travel time prediction 

[61, 62].      

With this approach, we view the simulator as a nonlinear function of its n-

parameter configuration and employ nonlinear regression to approximate it. We 

repeatedly use the sample data to train the ANNs to approximate the function. At each 

teaching (training) step, we obtain highly accurate error estimates of our approximation. 

We continue refining the approximation by training the ANNs further until error 

estimates become sufficiently small. Figure 28 shows the basic structure of an Artificial 

Neural Network. The input of this neural network is the average vehicle speed and traffic 

flow for each link, where the output is the predicted travel time. The hidden layers 

represent the non-linear regression process to approximate the relationship. 
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Figure 28. Basic Structure of ANN for Travel Time Prediction 

 

 

Many research studies have used ANN techniques to predict travel-time that 

includes Advanced Neural Network [61] and Mix-structure Neural Network [62]. 

In Wei’s study [61], ANN has been shown to be an effective approach for travel 

time prediction. Also, the experimental results in [64] showed that the expected travel 

time prediction accuracy with ANN is approximately 96%, which can be considered as 

high prediction accuracy in most cases. 

The Mixed-structure NN model has the capacity to use the data from detector 

segments to predict travel time of non-detector segments [63]. Therefore, we can reduce 

the number of detectors by the improvement of travel time prediction technology.  

Other machine learning techniques used in travel time prediction include support 

vector machine (SVM), Bayesian and K-Nearest Neighbors (KNN). Bayesian and KNN 

are basic machine learning approaches that must usually be combined with other methods 

such as ANN to obtain accurate prediction results. For SVM, it is important but very 
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difficult to select proper kernel functions and optimal parameters. Theoretically, ANN 

can capture any relationship between output and input values, however, it can suffer from 

over-fitting, and prediction accuracy can also be improved.  

3.3 Boosting Neural Network for Travel Time Prediction 

In this section, we will present our travel time prediction algorithm based on a 

boosting neural network. This algorithm contains two parts: the preliminary and the 

prediction components. We will introduce the framework of the prediction part first, and 

then give an overview of the preliminary step. In later subsections, details of the 

prediction algorithm and the preliminary step are presented.  

3.3.1 Algorithm Framework 

Boosting is a general and provably effective approach of producing a very 

accurate prediction rule by combining rough and moderately inaccurate rules-of-thumb 

[45]. Boosting has been shown to be effective for classification [45, 48, 51, 52] and 

regression [46, 47, 52]. Travel time prediction can be considered as a classical regression 

problem. Therefore, we propose the boosting-based travel time prediction algorithm. In 

this thesis, our model is based on AdaBoost [45], but we modify specific steps of the 

existing boosting algorithms to suit our regression problem in traffic prediction. 

We begin with a neural network “basic” learner that is responsible for finding the 

rough rules of thumb. It then repeatedly applies a different weight distribution over the 

training data for attributes such as traffic flow and average speed [43]. Each time it is 

called, the basic learning algorithm generates a new weak prediction rule, and after many 

rounds, the boosting algorithm combines these weak rules into a single prediction rule 

that will be more accurate than the weak rules. The framework of the proposed prediction 

algorithm is described as follows: 
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Input:  a basic learner called BaseLearn (a feed-forward neural network is used here), an 

integer T specifying the number of iterations, and N labeled training data samples in the 

format of time series. Each data sample is a vector ( , , )i i iX T C , and iX is also a vector 

including collected average speed and traffic flow for each link of a pre-defined 

path aP during the collection period ( , )a bt t .  iT  is the actual travel time for the travel on the 

path aP whose travel beginning time is bt t . During the each iteration of training, 

predicted value ( ) ( )p

t iT X  will be compared with iT , where t is the current iteration number. 

iC  is the cost used for measuring the importance of each sample. 

Output:  a strong learner with improved prediction accuracy. 

1.  Initialize the weight distribution of all the data samples in the training set: 
1

1
( )D i

N
  

where N is the total number of data samples in the training set.  

2.   Do for iteration 1,2,...,t T  

2.1 Call BaseLearn using distribution tD on the training set, returning a weak 

hypothesis th .     

2.2  Evaluate the error (weight) ( )tr i for every data sample i  in the training set using 

the weak hypothesis th . 

2.3 Compute the error t of the weak hypothesis th . 

2.4 Choose ta to measure the weight of the weak hypothesis th . 

2.5 Update the weight distribution of all the samples in the training set, returning 1tD  . 

3.   Output the final strong hypothesis by combining the weak hypotheses: 

 , 1,2,...th t T H   
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There are two types of weights in the algorithm: one for each data sample in the 

training set and one for the hypothesis. Boosting maintains a weight ( )r i for each sample 

i in the training set. The higher the weight ( )r i , the more the instance i influences the next 

learned hypothesis. For each iteration, the weights are adjusted to reflect the performance 

of the corresponding hypothesis, with the result that the weight of hard instances is 

increased. For the weight of the hypothesis, higher weight should be distributed to the 

hypothesis which has higher prediction accuracy, so the hypothesis can have increased 

influence on the final strong hypothesis. The detailed approach of weighting training data 

samples and hypotheses will be illustrated in subsection B. 

Traffic data such as vehicle speed information is necessary to drive the algorithm. 

The frequency of traffic data collection influences the consumption of bandwidth, which 

is a limited and expensive resource in vehicle networks. Therefore, finding the lower 

bound of the data collection frequency is desirable to minimize bandwidth requirements 

while maintaining accurate travel time predictions. This step is the preliminary part for 

the boosting neural network approach. After determining the lower bound of the data 

collection frequency, we can use this lower bound to obtain the input for the neural 

network. The framework of this preliminary step is shown below: 

 

Input:  Raw traffic data such as average vehicle speed for each link collected at some 

rate. The value of the rate should be very small, such as several seconds, which ensures a 

sufficient target range for finding the lower bound of the collection frequency. 

Output:  The lower bound of the data collection frequency while maintaining high 

prediction accuracy. 

1. Initialize the data collection frequency 0f  and total sampling number n . 

2.   Do for iteration 1,2,...,t T  

2.1 Predict travel time TY  based on the boosting neural network approach. 
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2.2 Compute prediction error i  using the current data collection frequency 0if . 

2.3 Compare the prediction error i  with 1i  , 2i   , …, i k   and determine if the 

stopping criterion is met. If it is, then we determine the approximate target range.  

3. Search further in the approximate target range and obtain the lower bound on the data 

collection frequency.  

 

3.3.2 Prediction Algorithm Details 

The prediction algorithm is composed of three major steps: initialization, 

computation and combination. The computation step includes several important minor 

steps, such as evaluating error for each data sample, measuring the weight of the weak 

hypothesis and updating the weight distribution of all the samples. The details for each 

step of the prediction algorithm will be illustrated as follows. 

1) Determination of the cost for each sample (Preparing for input data): The cost 

items are used to measure the importance of samples [48]. Suppose the historical data 

collection period or monitoring interval is 
( , )a bt t

. The data sample collected around bt  

should be given more cost than that collected around at , since the former one has more 

influence on the prediction result. For example, if the collection period is from 3pm to 

4pm, and we would like to predict the total time of travel whose beginning time is 4:10pm, 

then the data collected at 3:50pm should be given higher cost than that collected at 3:10pm. 

It is computed as: 

                                                  

1

( )

b a i a

i N

b a
j a

j

t t t t
C

t t
t t



 
 




                                                  (8) 

where it  is the collection time of sample i .  
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2) Initialization (Step 1): One of the main ideas of the algorithm is to maintain a 

distribution or set of weights over the training set. The weight of this distribution on the 

data sample i  in round t is denoted ( )tD i . Initially, all weights are set equally, but on each 

round, the weights of the examples with large errors in the later iteration are increased so 

that the basic learner is forced to focus on the hard examples in the training set. 

3) The basic learner (Step 2.1): The proposed boosting algorithm can use any basic 

learner. In this thesis, we utilize a feed-forward neural network (FFNN) [49], which has 

the same structure as that in Figure 24. The input to the feed-forward neural network is the 

average speed and traffic flow measured for each link, where jv
 denotes the input vector 

of average speed collected during a pre-defined period for link j , and jf
denotes the input 

vector of traffic flow collected during the same period for link j .The output of the neural 

network is the predicted travel time.  

4) Evaluation of error (weight) for each data sample (Step 2.2): The error of each 

data sample is different from the cost of each sample. The cost is a constant value which 

reflects the uneven identification importance among samples, while the error is a variable 

changed each iteration to reflect how well the weak hypothesis makes prediction for this 

sample. The higher the difference between prediction value and actual value, the more 

error will be distributed to this sample, which forces the weak hypothesis to focus on the 

samples with large error called hard samples in the next iteration. The simplest form to 

evaluate the error is the linear form [46]. 

( )| ( ) |
( )

p

t i i

t

T X T
r i

S




                                                 (9) 

 

where
( )tr i

is the error of data sample i  in the training set in the 
tht iteration, 

( )sup | ( ) |, 1,2,...p

t i iS T X T i N   , iT
is the actual output for the 

thi example and 
( ) ( )p

t iT X  is the 

predicted value of iT
 in the 

tht iteration.  
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Here, we adopt another form called the saturated law, which is expected to be 

more accurate than the linear form because it is less prone to over-fitting.   

( )| ( ) |
( ) 1 exp( )

p

t i i

t

T X T
r i

S


  

                                   (10) 

 

5) Computation of the error for each weak hypothesis (Step 2.3): The training error 

i  of the basic regressor 
ih  is determined by the weight and error of each example in the 

training set. It can be computed as:  

1

( ) ( )
N

t t t

t

D i r i


 
                                         (11) 

 

6) Computation of the weight for each weak hypothesis (Step 2.4): The weight of 

weak hypothesis measures its influence on the final strong hypothesis. The weak 

hypothesis having higher prediction accuracy should be given higher weight, so this weak 

hypothesis can have increased influence on the final strong predictor. The weight of each 

weak hypothesis in the standard AdaBoost [45] is computed as: 

11
ln( )

2

t

t

t

a





 

                                             (12) 

 

However, the method of weighting hypotheses should be adjusted for different 

application environments. For example, since we consider the factor of cost iC
for each 

sample i , the parameter iC
should be added to our weighting method. Yanmin Sun [48] 

proposed a boosting algorithm called AdaC2, where he computed the weight of each 

hypothesis as follows:  

( )

( )

, ( )

, ( )

( )
1

log
2 ( )

p
t i i

p
t i i

i t

i T X T

t

i t

i T X T

C D i

a
C D i













                                (13) 

 



 72 

However, this approach is applied to the classification problem. For our 

regression problem, considering only whether the computation result is the same as the 

actual value is not sufficient. We should know the size of the difference between the 

computated result and actual value. So the following method is used to measure the 

difference:  

( )| ( ) |
( ) 1 exp( ) ( arg ) ,

p

t i i

t

T X T
If r i is smaller l er than

S



     

then sample i is counted in the numerator (denominator) 

 

where   is a threshold. 

Therefore, the approach for weighting hypothesis in our work is as follows: 

, ( )

, ( )

( )
1

log
2 ( )

t

t

i t

i r i

t

i t

i r i

C D i

a
C D i

















                                                (14) 

7) Updates of weight distribution (Step 2.5):  There are many methods to update 

the weight distribution. Some extra parameter can be introduced to improve the prediction 

performance [46], but how to select a proper parameter is difficult. In H. Drucker’s work, 

the following method is proposed for the regression problem. 

( ( ) 1)

1

( )
( )

tr i

t t

t

t

D i a
D i

Z






  

(15) 

 

where ( ( ) 1)
( ) tr i

t t t

t

Z D i a


   is a normalization factor. 

 To address the above issues, we propose the following approach of weight 

distribution updating: 

( ( ) 1)

1

( )
( )

tr i

i t t

t

t

C D i a
D i

Z





 
  

(16) 

 

http://dj.iciba.com/denominator/
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where ( ( ) 1)
( ) tr i

t i t t

t

Z C D i a


    is a normalization factor.  

8) Combination of weak hypotheses to a strong predictor (Step3): One way to 

obtain the final strong hypothesis is to use the weighted average of weak hypotheses. 

Although this approach has some advantages in practice, it is not a natural extension of 

AdaBoost [50]. So we adopt the weighted median method which extends AdaBoost 

natually. 

          
: ( ) 1

/ (1 )

1
( ) inf : log(1/ ) log(1/ )

2
t i

t t t

T

f i t t

t h X Y t

h X Y R

  

 
 

 

  
    

  
 

                    (17) 

 

9) Choice of the number of iterations (Error Upper Bound of the Final Hypothesis): 

The stopping criterion of the proposed algorithm is very important. It can be determined 

by examining the error of the weak hypothesis, and checking if the error is reduced to an 

acceptable value. Usually for AdaBoost [45], if t is larger than ½, then the loop should be 

terminated. In order to avoid slow convergence, we also set the maximum iteration 

number maxT
. So on each round, after calculating the error of the weak hypothesis; we must 

check if the following stopping criterion is met. 

max

1
, 1

2
tIf orT T thenT t    

 

and abort loop 

 After this criterion is met, the weak hypotheses should be combined to a strong 

hypothesis, whose prediction accuracy can be expected to improve compared to the weak 

learners. 
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3.3.3 Preliminary Step Details 

Traffic data collection and transmission consume bandwidth resources. It is not 

unreasonable to expect that increased data collection frequency, and thus increased 

bandwidth consumption will result in more accurate prediction results. But bandwidth is 

a limited and expensive resource in networks, especially wireless networks. Hence it is 

important to find the lower bound of the data collection frequency which minimizes 

bandwidth requirements while maintaining high prediction accuracy. We compute the 

lower bound of the data collection frequency as the preliminary step with a binary search-

like approach, and then apply the lower bound to obtain the input for the boosting neural 

network approach. The details are presented as follows: 

1.  Choose the monitoring interval T  and the range of the data collection period 

0T
based on empirical statistics. For example, choosing T to be 30 minutes means the 

travel time prediction for the travel whose beginning time is 4:00 pm is based on traffic 

data collected from 3:30 pm to 4:00 pm. 0T
 is typically chosen to be 1, 3, or 5 minutes. 

So the range of 0T
can be chosen from 10 minutes to 1 second ( 0maxT

= 10 minutes). Then 

we use the following steps to decide the appropriate value. 

 2. Compute the initialized data collection frequency 0min 0max1/f T
 and total 

sampling number 0max/n T T
. The travel time prediction will be based on the raw traffic 

data from time step 1t to nt .  

3.  Predict travel time using the boosting feed-forward neural network approach 

illustrated in the previous section. 

4.  Compute the prediction error using this data collection frequency. There are 

several methods to compute the prediction error, such as using the following equation to 

compute Percentage Prediction Error (PPE). 
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  
   

 
,

PRED

PRED
T t T t

t T t
T t






                                (18) 

where 
 T t

denotes the actual travel time,
 PREDT t

denotes the predicted travel time 

computed with the boosting-based approach, and t denotes the beginning time of a travel 

that we make travel time prediction for . Now we can get one pair of data collection 

frequency and prediction error 0min( , )f 
. 

5.  Use a binary search approach to find the minimal data collection frequency. 

For example, 0max / 2T
is used as the data collection period for the next step. Then the 

sampling number n is changed to  0max2 /T T
. So the prediction will be based on 

0max1 2 2 /, ,..., T Tv v v
. Repeat steps 3 and 4. After that new prediction error is computed and 

compared with that of the last iteration. If the prediction error is less than that of the last 

time, use 0max / 4T
 for the next iteration. 

6. Determine the approximate target range. Repeat step 5 until we find the 

prediction error change becomes sufficiently small. For instance, if the prediction error is 

the same for update periods less than 0max / 2mT  (
1

0max / 2mT 

, 
2

0max / 2mT 

, …), we can focus on 

the target range
1

0max 0max( / 2 , / 2 )m mT T 

.  

7. Search further in the range 
1

0max 0max( / 2 , / 2 )m mT T 

to find the required data 

collection period 0HBT
and thus 0LBf

 (the lower bound of the data collection frequency 

which minimizes bandwidth requirements while maintaining high prediction accuracy). 

Repeat the above steps until the difference of prediction errors for two adjacent iterations 

is small enough to meet the requirement:  

10 t t    
                                             (20) 

where t  is the prediction error of the 
tht  iteration, and   is the a threshold, which is 

between 0 and 1, such as 0.001. 
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3.4 Experiments and Results 

To evaluate the boosting-based neural network approach, we conducted several 

experiments. The experiment environment and data collection will be presented first, 

followed by the experimental results. 

We conducted experiments using simulated data from the microscopic simulator 

VISSIM. The simulated traffic network has 10*10 intersections. Two data sets are 

collected: the average speed and traffic flow for each link (with a collection interval of 1 

second), and the travel time through a selected path. The first data set is the input to the 

prediction algorithm. After predicting the travel time, the output of the prediction 

algorithm (the predicted travel time) is compared with the actual travel time (second data 

set) and the prediction accuracy is the ratio between the predicted time and the actual 

time. 

In order to evaluate the effectiveness of the proposed algorithm, we conducted 

three kinds of evaluation: comparisons of accuracy using different prediction methods, 

comparisons of prediction accuracy using different numbers of iterations of the boosting 

approach, and comparisons of prediction accuracy under different data collection 

frequencies. 

3.4.1 Comparisons of Different Prediction Methods 

We conduct comparative experiments of three different prediction approaches. 

One is our boosting feed-forward neural network approach (BFFNN), the second is feed-

forward neural network method (FFNN), and the third is an historical mean prediction 

approach (HMP). FFNN uses neural networks to predict travel time without boosting. 

HMP method uses the average travel time of the historical traffic data. Here, we conduct 

20 simulation runs (replications) to collect the historical data. The experimental results 

for these three prediction methods are shown in Figure 29.  
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Figure 29. Comparisons of Different Prediction Approaches 

The results in Figure 29 show the prediction is more accurate as the monitoring 

interval time is increased for all three approaches. The prediction accuracy of BFFNN is 

higher than FFNN and HMP across the different monitoring interval times used for these 

experiments. The boosting neural network algorithm improves prediction accuracy by 

approximately six percent over the historical mean and approximately three to four 

percent over the forward-feed neural network. 

3.4.2 Comparisons of Different Iteration Number of Boosting 

The number of iterations of boosting has an important influence on the prediction 

accuracy. The prediction error should decrease with a large number of iterations. The 

experimental results with different number of iterations are shown in Figure 30. 

As shown in Figure 30, ten iterations are not sufficient to obtain high prediction 

accuracy. Iterating 30 times improves travel time prediction by approximately two 

percent. If the number of iterations is 50, the prediction accuracy increases somewhat, but 

it requires a longer running time and consumes more resources than that with 30 

iterations. 
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3.4.3 Comparisons of Different Data Updating Frequency 

In our experiments, we initialize the minimum data collection frequency. We then 

double the collection frequency, and if the prediction accuracy becomes higher than before, 

we change the collection frequency to the new value. We repeat this process, and obtain 

the lower bound of the data collection frequency, while maintaining accurate travel time 

predictions. The experimental results are shown in Figure 31 and Figure 32. 

 

Figure 31. Comparisons of Different Data Updating Frequency 

Figure 30. Comparisons of Different Iteration Number 
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Figure 32. Predicted Travel Time vs. Actual Travel Time 

The results show the following trends. First, BFFNN has higher prediction 

accuracy than FFNN for any of the tested updating periods. This demonstrates the 

improved accuracy of the boosting approach; it can increase the prediction accuracy of the 

basic neural network approach. Second, the optimal data updating period is approximately 

37 seconds for both of the algorithms, which shows for this network example, we should 

collect data about every 37 seconds to maintain high prediction accuracy while 

minimizing the use of bandwidth resources.  

The result also shows the impact of signal timing on performance. When the data 

collection period is less than around 120 seconds (which is the cycle time of traffic 

controllers), the prediction accuracy begins to increase. The reason is because we have 

collected data samples for different phases of traffic controllers with a 120-second 

collection period, including both green phase and red phase, and these data samples are 

relatively sufficient to make predictions. When the data collection period is less than 

around 30 seconds, the prediction accuracy is high, since the data samples include more 

data for different phases of traffic controllers, which makes the prediction more accurate.  
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In order to explore the impact of signal timing further, we collect data from 

VISSIM and examine the trend of actual travel time related to signal timing. In Figure 33, 

the travel time shows some cycles and the cycle is around 130 seconds, which is highly 

similar as the cycle of traffic controllers. In each cycle, travel time decreases to the trough 

gradually and then jump to the crest at the beginning of next cycle. This is because in the 

red light phase, travel time is relatively high and when it turns into the green light phase, 

travel time decreases gradually until the next red light phase comes. 

 
(a) 
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                              (b) 

Figure 33. Travel Time in VISSIM 
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3.4.4 Comparisons of Different Vehicle Numbers 

In the real world, rush hour or non-rush hour will have a great impact on travel 

time. In congested situations, vehicles will have a longer travel time to arrive at the 

destination. We use different vehicle numbers in VISSIM to simulate rush hour and non-

rush hour and record both the actual travel time and predicted travel time. Two prediction 

approaches are evaluated: neural network approach and boosting neural network approach. 

The results are shown in Figure 34. From the figure, it is obvious to see that after boosting, 

the prediction accuracy is much higher than that of the neural network without boosting 

approach. Another trend is that as the number of vehicles increases, the travel time 

increases also, which indicates that vehicles will take longer time to arrive at the 

destination in the congested scenario.  

 

 
(a) 
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(b) 

Figure 34. Comparisons of Different Vehicle Numbers 

3.5 Discussion - Basic Learner Setting 

Theoretically, the proposed boosting algorithm can use any basic learner. Here, 

we utilize a feed-forward neural network (FFNN). We are interested in exploring the 

impact of different neural network settings on performance. 

3.5.1 Neural Network Structure 

We vary the number of hidden layers and the number of neurons to identify the 

appropriate FFNN structure, which can provide relatively good prediction accuracy 

before the boosting procedure. We use cross validation (which will be explained in detail 

in the section for avoiding overfitting) to do the model selection. Our neural network is 

first run with a single hidden layer and the number of neurons in the hidden layer is 

varied from 3 to 30. The best number of hidden neurons is decided based on the 
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performance of the proposed models. The prediction results are shown in the following 

figure in which Percentage Prediction Error (PPE) (in equation 18) is shown on the Y-

axis.  

Figure 35 shows the percentage prediction error with different numbers of 

neurons. The FFNN model with 15 neurons for the hidden layer gives the best results in 

the experiment. As the number of neurons increases from 3 to 15, the PPE decreases and 

its value is 6.1% with 15 neurons. The low prediction accuracy with low number of 

neurons indicates that a too simple model won’t learn the specificities of the data well. 

When the number of neurons reaches 20, the PPE increases dramatically, which indicates 

that a too complex model will learn irrelevant details of the data and eventually its noise 

[84] (which may cause overfitting, we will discuss this issue in detail later). From this 

experiment, 15 is a good choice for the number of neurons for one hidden layer case.  

 

 

Figure 35. Different Neuron Numbers for Single Hidden Layer 

The FFNN with a single hidden layer may not be a satisfactory universal function 

approximator in practice. This is particularly true when the function approximated is 

highly nonlinear and multidimensional, which are typical of the problems experienced in 
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many transportation applications [81]. It has been found in practice that FFNN capacity 

increases as the number of hidden layers increases. Therefore, the FFNN architecture is 

also run using two hidden layers and we vary the number of neurons for the two hidden 

layers from 3 to 15 and examine their performance.  

Figure 36 shows the percentage prediction error of different numbers of neurons 

in two hidden layers. When we fix the number of neurons of one hidden layer and 

increase the number in another layer, the percentage prediction error decreases first and 

then after some value, the percentage prediction error starts to increase. This trend is 

similar to the case for a single hidden layer, since the neural network model cannot be too 

simple or too complex to get high prediction accuracy. A too simple model won’t learn 

the specificities of the data well and will result in low prediction accuracy. A too complex 

model will learn irrelevant details of the data and eventually its noise [84]. The best 

FFNN with two hidden layers has five neurons in the first hidden layer and seven neurons 

in the second hidden layer (the point pointed by red arrow in Figure 36). As expected, the 

two hidden layer FFNN gives better results when compared with the single layer FFNN. 

The best FFNN with single layer has 15 neurons and the percentage prediction error is 

6.1%, while the best FFNN with two hidden layers has percentage prediction error 4.2%. 
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Figure 36. Different Neuron Numbers for Two-Hidden Layer  

If more than two hidden layers are incorporated into the model, we may obtain 

better FFNN capacity and more accurate prediction accuracy; however, training such a 

FFNN may require significantly increased effort and time for selecting the best 

architecture [81]. Therefore, two hidden layer FFNN is a good choice for our model. 

3.5.2 Stopping Criteria 

There is an important question of how many iterations are required to train a 

neural network. There are mainly two paradigms, late stopping and early stopping. Late 

stopping means that the network is trained until a minimum error on the training set is 

reached (the network is clearly overfitted). Then different techniques are used to 

exterminate nodes in the network (known as pruning). By doing so eventually a good 

generalization ability is reached [82]. There are many different pruning algorithms, but 
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this is beyond the scope of our discussion. In our work, we use late stopping first to see 

when a minimum error on the training set is reached, and then we will use early stopping 

to avoid overfitting. Figure 37 shows the impact of iteration number on training error for 

both best FFNN with one hidden layer and two hidden layers. The results show the 

following trends. First, with the same iteration number, the best FFNN with two hidden 

layers has higher prediction accuracy than that with one hidden layer. Second, the best 

FFNN with two hidden layers uses fewer iterations to reach the minimum learning error. 

After 2000 iterations, the training error of the best FFNN with a single hidden layer 

remains the same; while the best FFNN with two hidden layers only uses 1600 iterations 

to reach the minimum training error.  

 

 

Figure 37. The Impact of Different Neuron Numbers for Two-Hidden Layer Case 

Compared to late stopping, early stopping is a way to avoid overfitting. The 

learning process with the early stopping method is monitored all the time and training is 

terminated as soon as signs of overfitting appear [82]. In early stopping, the training set is 

split into a new training set and a validation set. The validation error rate is computed 

periodically during training and we should stop training when the validation error rate 

http://en.wikipedia.org/wiki/Training_set
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starts to increase. The results for early stopping will be presented in the next section 

regarding “approaches to avoid overfitting”. 

3.5.3 Overfitting and Regularization 

Overfitting occurs when a model begins to memorize training data rather than 

learning to generalize from trend.  Such a model will typically fail when making 

predictions about new data, since the model has not learned to generalize [83]. There are 

different approaches to avoid overfitting and we will evaluate the following methods: 1) 

early stopping; 2) adding L1 norm; 3) adding L2 norm; 4) cross validation. 

 

3.5.3.1 Early Stopping 

We split the original training set into a new training set (80% percent of the 

original training set) and a validation set (20% percent of the original training set) and 

monitor the performance of the validation set. Figure 38 shows the trend of learning error 

and test error as the iteration number increases. Learning and test errors for the best 

FFNN with single hidden layer is shown in Figure 38(a) while Figure 38(b) presents the 

results for the best FFNN with two hidden layers. In Figure 38(a), the test error starts to 

go up after 1200 iterations while the learning error still decreases at that time. This 

indicates that we should stop training before 1200 iterations to avoid overfitting. 
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(a) 

 

(b) 

 

In Figure 38(b), the results show the following trends. First, the learning error 

keeps increasing until after approximately 1600 iterations while the test error begins to 

Figure 38. Learning Error and Test Error 
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increase after approximately 800 iterations. The algorithm should halt when the 

performance with the validation test stops improving, so in order to avoid overfitting, we 

should stop training before 800 iterations. Second, it takes fewer iterations for FFNN 

with two hidden layers to reach the point for early stopping than FFNN with a single 

hidden layer, which means we should stop earlier if we use two hidden layer neural 

network model. 

3.5.3.2 L1Norm and L2 Norm 

In this section, we compare two different regularization methods for preventing 

overfitting: L1 regularization and L2 regularization. The first, L1 regularization, uses a 

penalty term which encourages the sum of the absolute values of the parameters to be 

small. The second, L2 regularization, encourages the sum of the squares of the 

parameters to be small. Besides comparing L1 and L2, we also use cross validation to 

determine optimal regularization parameters.  

Figure 39 shows the test error of different regularization parameters for L1 and L2 

in the best FFNN model with two hidden layers. There are several trends in this figure. 

First, L2 norm has a lower test error than that of L1 norm for our data, regardless of the 

regularization parameter. Second, both L1 and L2 yield good recommendations for the 

value of the regularization parameter. The optimal regularization parameter is around 

0.001 for L2 norm while the optimal regularization parameter is around 0.01 for L1 norm.  
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Figure 39. Optimal Regularization Parameter for L1 and L2 

3.5.3.3 Cross Validation 

Besides regularization, there are other algorithms to avoid overfitting. The 

simplest algorithm is the Test-Set Method [84]: we divide the data into a Learning Set 

(large) and a Test Set (smaller). We train our neural network on the Learning Set and 

measure the error made predicting on the Test Set. This technique, however, cannot be 

applied when the amount of data is small because then we need the whole data set for 

training. Moreover, if the data set is small (which is often the case), the generalization 

error depends heavily on the choice of the Learning and Test sets [84]. 

We can use cross validation to prevent overfitting in our training. The training 

sample is split into multiple subsets or folds, for example K folds. For each fold, we use it 

as Test Set and use the whole data set except it as Learning Set. We are interested in 

finding an appropriate K for training, so we examine the cross validation error with 

different K values. The result in Figure 40 shows that K between 4 and 10 is a good 
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trade-off. If K is chosen to be less than 4, the cross validation error is too large; If K is 

larger than 10, it makes no difference for our results.  

 

Figure 40. Cross Validation Error with Different Fold Number 

We have explored different approaches to avoid overfitting. Early stopping is a 

very common practice in neural network training and often produces networks that 

generalize well. However, while often improving the generalization it does not do so in a 

mathematically well-defined way [85]. L2 norm is a popular approach to avoid 

overfitting and it produces better results in our experiment than L1 norm, which is known 

to generally give sparse feature vectors. Besides avoiding overfitting, cross validation is 

very useful for model selection, which has been shown in section 3.5.1. We use cross 

validation to determine the optimal number of hidden layers and number of neurons.  

 

3.6 Conclusion 

Boosting has demonstrated its success for binary classification problems, but little 

work has targeted traffic data analysis. In this research, boosting is introduced to travel 
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time prediction. Several different experiments are used to evaluate the feasibility of this 

algorithm. After comparing it with other approaches and implementing it under different 

iterations and data collection frequency, the applicability of boosting neural networks to 

travel time prediction is demonstrated.  

Currently, this performance is based on experiments limited to travel time 

variation resulting from replicated simulated trials, potentially accounting for the 

relatively high prediction accuracy.  Future work includes expanding the experimental 

design to include traffic demand variations typical of that found at similar time periods 

across different days and that found within a single day.  The ultimate goal is to develop 

an algorithm sufficiently robust to capture non-recurring congestion and incidents. 
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CHAPTER 4 

PARALLEL INTEREST MANAGEMENT AND FUTURE WORK 

 

4.1 Summary and Future Direction 

Motivated by two important requirements of Dynamic Data Driven Applications 

Systems (DDDAS) that incorporate on-line data into an executing application and utilize 

the analysis and prediction capabilities of simulations, this thesis has investigated 

research issues regarding interest management (data distribution) and prediction models.  

In order to reduce communication overhead, we have proposed an interest 

management mechanism for mobile peer-to-peer systems that divides the entire space 

into cells and uses a bucket sort algorithm in each cell. The algorithm is applicable to 

dynamic sorting and matching of region modifications. If region modifications occur, the 

algorithm does not need to re-sort the list of projections and conduct the entire matching 

again. It can perform dynamic sorting and matching without re-processing all of the 

regions. This thesis also introduces the mobile landmarking design to implement this 

sort-based scheme in mobile peer-to-peer systems. The design is distributed and does not 

utilize fixed servers. Rather, each peer can become a mobile landmark node to take the 

server-like role to sort and match regions.  

We have also explored the non-uniform distribution case. For the non-uniform 

distribution, random sampling is used to determine the boundaries of the bucket sort first. 

Then we use the bucket boundaries obtained in the random sampling phase to sort all the 

regions. During runtime, merging and splitting buckets are performed to maintain equi-

depth buckets. Our new interest management mechanism is expected to have better 

computational efficiency for both static and dynamic matching. Experimental results 
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indicate that this approach yields better performance than several alternate interest 

management schemes. 

In order to improve communication efficiency, the boosting approach is 

introduced as a method for travel time prediction in conjunction with neural network 

models to help capture characteristics of traffic and increase prediction accuracy. We 

have also examined the relationship between data collection frequency and travel time 

prediction accuracy, and proposed an approach to compute the lower bound of the 

collection frequency while maintaining high prediction accuracy, thereby introducing 

QoS as a factor in travel time prediction for the first time. Several different sets of 

experiments are used to evaluate the effectiveness of this model. After comparing it with 

other approaches and implementing it under different iterations and data collection 

frequencies, the results show that the boosting neural network model outperforms other 

predictors. 

We have also examined the impact of different neural network settings on 

performance. We vary the number of hidden layers and the number of neurons to identify 

the appropriate FFNN structure and as expected, the two hidden layer FFNN gives better 

results when compared with the single layer FFNN. Different stopping criteria are 

applied to our model. Late stopping is used first to see when a minimum error on the 

training set is reached, and then early stopping is applied to avoid overfitting. Other 

approaches to avoid overfitting are also examined, incluing adding L1 norm, adding L2 

norm and cross validation. Experimental results indicate that appropriate FFNN structure 

can provide better prediction accuracy before the boosting procedure. Results regarding 

regularization show that these approaches are efficient to make the model learn to 

generalize from trend rather than memorize training data. 
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There are several open issues with respect to interest management and travel time 

prediction models, some of which are listed as follows: 

 

 Mobile Server Mechanism Design 

In our current work, we have made several assumptions regarding mobile server 

mechanisms. At any time of the simulation, there is only one mobile landmark node 

(mobile server) for each cell. Before a mobile server leaves the cell, it will send messages 

to all the nodes in that cell requesting their distance to the landmark key. The mobile 

server will choose another node (which is now closest to the landmark key) to become 

the new mobile server and transmit the overlapping information in that cell to the new 

one. However, the current mechanism is based on the assumption that the mobile server 

is robust and communication with the mobile server is reliable. In real world scenarios, 

the mobile server itself and the communication with the mobile server may fail, thus 

multiple mobile servers should be allowed to exist in the same cell. In this case, many 

issues are interesting to explore, such as how to make multiple mobile servers have the 

same copy for one node (synchronization problem), how to distribute the workload to 

multiple mobile servers (load balancing problem), and what to do when a message is lost 

or when a mobile server fails (fault tolerance problem).  

We also assumed the network is dense, meaning there is always a new mobile 

server available in each cell. If originally there is no mobile server in a cell, we need 

some mechanism to create mobile servers. In our current scheme, each mobile server 

sends beacons periodically within the cell in which this mobile server resides. Whenever 

a node hears a beacon, it stores the information of this mobile server. If there is no mobile 

server in a cell, when a node enters that cell, it will wait for some time for beacons 

(according to a threshold). If it does not receive any beacon within that period, it will 

become a new mobile server automatically and start to send beacons periodically within 

that cell. The exploration and analysis of this scenario is another direction of future work. 
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 Parallel Interest Management 

Many existing interest management schemes focus on providing excellent message 

filtering accuracy, as well as seeking to reduce the computational overhead of matching. 

Computational performance is important, especially for some real-time applications where 

runtime performance is essential (such as massive multiplayer online games) and highly 

dynamic environments (such as intelligent transportation systems). For intelligent 

transportation systems, vehicles constantly move causing subscription and update regions 

to change quickly. Therefore, reducing the computational overhead for dynamic scenarios 

such as region modifications becomes an important problem.  

Current interest management schemes are mainly designed for serial processing 

within each object. As the problem size grows, these algorithms do not scale well because 

serial processing may eventually become a bottleneck, especially for large-scale mobile 

systems. Therefore, implementing interest management schemes using parallel 

computation is a possible approach. A possible parallel interest management scheme will 

be presented in Section 4.3. 

 

 Including Traffic Demand Variations in the Prediction Model 

In our research, boosting is introduced for travel time prediction. Several different 

experiments are used to evaluate the feasibility of this algorithm. After comparison with 

other approaches and evaluating boosting under different iterations and data collection 

frequencies, the applicability of boosting neural networks to travel time prediction 

appears to have merit. Currently, this performance is based on experiments limited to 

travel time variation resulting from replicated simulated trials, potentially accounting for 

the relatively high prediction accuracy.  Future directions include expanding the 

experimental design to include traffic demand variations typical of that found at similar 

time periods across different days and that found within a single day.  The ultimate goal 
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is to develop an algorithm sufficiently robust to capture non-recurring congestion and 

incidents. 

 

 Exploring Different Basic Predictors 

Theoretically, the proposed boosting algorithm can use any basic learner. In our 

work, we utilize a feed-forward neural network (FFNN) and we also explored the impact 

of different neural network settings’ on performance. One future direction is to use other 

machine learning methods as the basic learner and examine how they affect the final 

results. For instance, support vector machine (SVM) and linear regression are popular in 

machine learning research and they may be appropriate to use as the basic learner for 

boosting. Their prediction accuracy and training time compared to neural networks is 

another area of exploration.  

4.2 Parallel Interest Management 

4.2.1 Introduction 

As discussed in chapter 2, interest management is essential for reducing 

communication overhead by filtering irrelevant messages in mobile distributed systems. 

Many existing interest management schemes focus on providing excellent message 

filtering accuracy, as well as seeking to reduce the computational overhead of matching. 

Computational performance is important, especially for some real-time applications where 

runtime performance is essential (such as massively multiplayer online games) and highly 

dynamic environments (such as intelligent transportation systems). For intelligent 

transportation systems, vehicles constantly move causing subscription and update regions 

to change quickly. Therefore, reducing the computational overhead for dynamic scenarios 

such as region modifications becomes an important problem.  
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We have proposed an interest management mechanism for mobile peer-to-peer 

systems using intelligent transportation systems as a motivating application. This 

mechanism is expected to have better computational efficiency for both static and 

dynamic matching. Experimental results indicate that this approach yields better 

performance than several alternate interest management schemes. However, for both our 

scheme and other existing interest management mechanisms, they are designed for serial 

processing within each object, such as serial processing in each mobile server in our 

mechanism. As the problem size grows, these algorithms do not scale because serial 

processing may eventually become a bottleneck, especially for large-scale mobile systems. 

Several researchers have proposed parallel approaches for interest management 

mechanisms. In [65], the authors propose a parallel algorithm which can be run on shared-

memory multiprocessors that improves the overall runtime efficiency of the filtering 

process. The process include two stages: the spatial decomposition stage and the interest 

matching stage. Spatial decomposition is used to divide the virtual space into a number of 

subdivisions and the interest matching process within one space subdivision is called a 

work unit (WU). WUs will be distributed across different processors for interest matching. 

For the interest matching stage, when a WU is being processed, a sort algorithm such as 

quick sort or insertion sort is used to determine the overlapping areas between subscription 

regions and update regions. While the second stage is similar with existing serial interest 

management algorithms, spatial decomposition is used to distribute the tasks among 

multiple processors, which is very important in parallel implementations.  

In the spatial decomposition stage, a hash table is constructed so that each slot of 

the hash table represents a space subdivision. Then the subscription regions and update 

regions in that subdivision are inserted into the corresponding slot of the hash table. After 

this stage, each slot of the hash table represents a WU and all the WUs will be placed into 

a task queue. This facilitates load balancing. Each processor pops WUs from the task 

queue and performs the sorting and matching for the subscription regions and update 
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regions in the corresponding space subdivision. Figure 41 shows that the processors fetech 

from the head of the task queue. 

 

 

Figure 41. Task Queue for Load Balancing in Parallel Implementation 

 

The algorithm in [66] is an extension of the above parallel algorithm that is 

suitable for distributed-memory systems. The proposed algorithm is designed to be 

generic and can run on different communication architectures, such as client-server with 

several nodes assisting the master server, multi-server and peer-to-peer architecture. No 

matter which architecture is used, since the algorithm runs on a cluster of computers that 

enables them to work simultaneously, the overall runtime efficiency of the sorting and 

matching process is enhanced. Experiments are based on MPI and show that this 

algorithm is more computationally scalable than one of the fastest serial algorithms. 

An efficient parallel algorithm [67] for continuous interest management has also 

been proposed. The algorithm captures the missing events by using swept volumes to 

bound the trajectory of the regions and perform space-time overlap tests over each time 

interval. The workload of interest matching is distributed across multiple processors by 

this parallel algorithm. Since continuous interest management, swept volumes and space-

time overlap tests are beyond the scope of the thesis, we will not discuss them further here. 

Although current parallel interest management algorithms have much better 

computational efficiency than serial algorithms, they have drawbacks. First, current 
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parallel algorithms use CPU rather than GPU implementations. Second, current parallel 

algorithms use a task queue for load balancing, which does not scale. The blocking task 

queue performs poorly when faced with increasing numbers of processing units [68]. A 

non-blocking task queue yields better performance, but still scales poorly because the 

central queue remains a bottleneck when the number of processing units is increased. 

Third, the hash table is a redundant data structure. One work unit is placed into one slot of 

the hash table, and then placed into one position of the task queue from the hash table. 

All the relationships are one-to-one; one can store the information for one work unit into 

one position of the task queue directly. 

To address these drawbacks, new approaches for parallel interest management may 

be considered. 1) Graphics processors rather than CPUs to speedup the implementation 

may improve scalability. 2) Task stealing is a popular load balancing mechanism, which 

performs very well and outperforms alternative approaches [68, 69]. 3) Double ended 

queues (deques) is an appropriate data structure. Deques are necessary for the task stealing 

scheme, and can be used in the space decomposition stage. After dividing the space into 

multiple divisions, the information corresponding to one processing unit can be put into 

one deque that will later be used in task stealing. 

4.2.2 Parallel Interest Management Scheme 

In this section, the design of the parallel interest matching scheme is presented. 

This scheme divides the interest matching process into initialization and runtime stages, 

and each stage includes multiple steps: initialized task distribution, task stealing and 

sorting and matching. 

4.2.2.1 Initialized Task Distribution 

As discussed in chapter 2, mobile landmarking is used in mobile peer-to-peer 

systems for sorting and matching. In Figure 42, the environment is partitioned into sixteen 
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cells and each landmark key is responsible for one cell. The node that is currently closest 

to a landmark key becomes a mobile landmark node. Then the second level space 

decomposition is used. Each cell is divided into M subcells and the tasks in M/N subcells 

will be distributed into one processing unit during the initialized task distribution stage (N 

is the number of processors). For example in Figure 42, M is equal to 16, which means 

each cell is divided into 16 subcells. Suppose N is equal to 4, then the tasks in 4 subcells 

will be processed in one processing unit. For instance, the tasks in subcells 1, 2, 3, 4 will 

be processed in processor 1, the tasks in subcells 5, 6, 7, 8 will be processed in processor 2 

and so on. 

Suppose N deques are used. The information related to subscription and update 

regions in M/N cells should be placed in one deque. For example, the projections on the x-

axis and the y-axis of the subscription regions and update regions may be placed in deques, 

which is necessary for the following sorting and matching phase. 

4.2.2.2 Task Stealing 

Task stealing is an effective approach for load balancing [68, 69, 70]. Load 

balancing is very important for parallel implementation. If the workload is highly 

unbalanced, the advantage of parallel implementation cannot be exploited. In mobile peer-

to-peer systems such as intelligent transportation systems, objects move continuously and 

dynamically and unbalanced workloads can occur with a high probability. For example, in 

intelligent transportation systems vehicles and their update regions may be grouped on the 

large arterial roads or ramp areas of highways while there are fewer vehicles and regions 

on small roads. Then the workload is unbalanced for different subdivisions in the space 

and load balancing schemes should be used among processors. In this scheme, each 

processing unit will process tasks in its local queue first. When the local queue is empty, it 

will try to steal a task from another processor’s queue called the foreign queue. If a 
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processing unit creates a new task in the process, the new task is added to its own local 

queue. 

 

 
 

Figure 42. Initialized Task Distribution 

 

The lock-free task stealing scheme [71] implemented with deques is an appropriate 

mechanism to use. The information about the objects in one subcell such as the projections 

of subscription regions and update regions will be pushed into the tail of its local deque. 

The information in the local deque will be poped from the tail and processed by the 
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corresponding processing unit. When the local deque is empty, the processing unit will try 

to steal from the head of another processor’s deque.  

To access the local deque, no lock or synchronization is needed since only the 

owner of this deque has the right to access it from the tail. However, with task stealing, 

multiple processing units may try to access the dequeue at the same time, necessitating 

synchronization [68]. But task stealing is only necessary when the local deque is empty 

and usually there are only few simultaneous accesses to a particular deque on systems 

with moderate parallelism [69], and hence the overall waiting time is small. However, if 

all the subscription regions and update regions reside in one subdivision, all the sorting 

and matching tasks will be located in one deque and performed in one single processor. 

The advantage of task stealing cannot be exploited in this scenario. This is the worst case, 

but also an extremely rare case. 

The global round robin mechanism can be used for stealing the tasks. When 

processing unit i completes its own tasks and the local deque is empty, it looks at 

processing unit i+1. If the local deque of processing unit i+1 is also empty, processing 

unit i will check processing unit i+2. The process is repeated until a deque with 

uncompleted tasks is found. Then process unit i will steal tasks from this foreign deque. 

The algorithm for task processing and task stealing is shown in Figure 43. 
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4.2.2.3 Sorting and Matching 

During the sorting and matching phase, our interest management mechanism 

presented earlier can be used. A bucket sort-based algorithm is used for each subcell to 

compute the exact intersection between update and subscription regions. Specifically, our 

sort-based algorithm projects the regions on each dimension and uses bucket sort to sort 

the projections in order to find overlaps. 

 

struct Task { Object Type, Attributes}; 
 

// 1. Initialization Phase 

for (each subdivision i of the input data) 

correponding deque j.init(task.Object Type, 

task.Attributes); 
 

// 2. Working Phase 

each processing unit j: 

loop 

{ 

Task T deque j.get(); 

if (!T)  
    { 

   for (k = processing unit j+1 to N-1) 
     { 
    Task T_new deque k.get(); 

    If(T_new) 
    { 
     T_new.execute(); 
        T_new.free(); 
    } 
   } 
   exit; 
  } 

T.execute();  

T.free(); 

} 

 

Figure 43. Task Processing and Task Stealing 
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4.2.2.4 Runtime Stage 

During the runtime stage, there may be dynamic modifications of subscription 

regions and update regions. Our previous scheme has the advantage of completing the 

dynamic sorting and matching without processing all of the regions, but unbalanced loads 

can still arise. For example, the objects in the corresponding subcells of processing unit i 

do not have region modifications while processing unit i+1 is very busy with multiple 

region modifications, motivating the need for load balancing. One advantage of the task 

stealing mechanism is that it supports dynamic load balancing, which should be used in 

this dynamic scenario of region modifications. For dynamic load balancing, new tasks 

such as resorting the modified regions will be inserted to local deques and task stealing 

mechanism can process both initialized tasks and new tasks. For example, one deque is 

empty and the processing unit begins to steal tasks from another processing unit. At this 

time, new tasks are inserted into this deque and this processing unit will stop stealing tasks 

and give priority to its local tasks. 

4.2.3 Proposed Implementation and Experiments 

The parallel interest management scheme can be implemented using CUDA, which 

can compile C code into binary that can be executed on CUDA-enabled graphics 

processors. The NVIDIA 8600GTS and newer graphics processors support atomic 

operations such as CAS (Compare-And-Swap) and FAA (Fetch-And-Add) which can be 

used to implement efficient parallel data structures for the load balancing scheme [68].  

The proposed scheme should be evaluated with several alternative mechanisms, 

such as 1) Parallel interest management with the blocking task queue load balancing 

approach. 2) Parallel interest management with the non-blocking task queue method. [65]. 

3) Serial interest management scheme in our previous work [72]. The execution time and 

speed using each of the parallel methods should be recorded and compared while varying 
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the number of threads per block and blocks per grid. How the value of speedup changes 

with different numbers of threads and blocks can indicate the performance and scalability 

of each parallel mechanism.   

The parallel scheme with blocking task queue is expected to have poor 

performance when the number of processing units increases because of spinning on the 

lock variable. These repeated attempts to acquire the lock cause the bus to be locked for 

large amounts of times [68]. The non-blocking queue method is expected to perform much 

better than the blocking task queue approach but the scalability will probably still be an 

issue due to the inherent central queue-based method. We expect that the proposed parallel 

scheme with task stealing has the best performance and scales well, since task stealing 

performs well for highly unbalanced workload scenarios and vehicle distribution as well 

as region distribution in intelligent transportation systems that have a high probability of 

being unbalanced. 

4.3 Conclusion 

This thesis has investigated two important research issues of Dynamic Data 

Driven Applications Systems (DDDAS): interest management (data distribution) and 

prediction models. This thesis has proposed an interest management mechanism for 

mobile peer-to-peer systems. A mobile landmarking design is also introduced to 

implement this sort-based scheme in mobile peer-to-peer systems. Experimental results 

indicate that this approach yields better performance than several alternate interest 

management schemes. This thesis has also presented the boosting approach as a method 

for travel time prediction in conjunction with neural network models to increase 

prediction accuracy. An efficient approach is also introduced to compute the lower bound 

of the data collection frequency while maintaining high prediction accuracy. The 

evaluation results show that the boosting neural network model outperforms other 

predictors. 
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There are several open issues which need to be explored with respect to interest 

management and travel time prediction models, such as mobile server mechanism design 

and parallel interest management. Including traffic demand variations in the prediction 

model and examining the performance of different basic learners are also interesting 

directions of future work. 
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