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SUMMARY

The typical control objective for a sequential resource allocation system (RAS)

is the optimization of some (time-based) performance index, while ensuring the log-

ical/behavioral correctness of the underlying automated processes. There is a rich

set of results on logical control, and these results are quite effective in their abil-

ity to control RAS with very complex structure and behavior. On the other hand,

the existing results on the performance-oriented control, i.e., the scheduling, of RAS

are limited. The research program presented in this document seeks to provide a

complete and systematic methodological framework for the RAS scheduling problem

with the integration of the logical control, by leveraging the formal representations

of the RAS behavior. These representations enable (i) the formulation of the RAS

scheduling problem in a way that takes into consideration the RAS behavioral con-

trol requirements, and (ii) the definition of pertinent policy spaces that provide an

effective trade-off between the representational and computational complexity of the

pursued formulations and the operational efficiency of the derived policies. Although

the presented methodological framework can be applied to any general RAS, this re-

search mainly focuses on a class of RAS that abstracts the capacitated re-entrant line

(CRL) model, and it uses this RAS class to demonstrate the overall methodology.

The presented framework is divided into two parts: a “modeling” and an “al-

gorithm” part. The “modeling” part consists of the procedures to model the RAS

dynamics as a generalized stochastic Petri net (GSPN), that supports a seamless inte-

gration of, both, the logical and performance control problems. This part also formu-

lates the scheduling problem of the performance optimization of a logically controlled

xii



GSPN as a mathematical programming (MP) problem that is derived from the semi-

Markov process (SMP) modeling the timed dynamics of this GSPN. In the resulting

MP formulation, the decision variables are parameters that can adjust the embedded

transition probabilities of the SMP, and the objective function is the steady-state

average reward with respect to a given immediate reward function.

The problem of the explosive size of the MP formulation with respect to the size

of the underlying RAS is addressed by (re-)defining the target policy space and its de-

tailed representation. More specifically, three steps of complexity control are applied

on the original policy space: The first step is a “refinement” process that simplifies

the representation of the original policy space but does not harm its performance

potential. The second step is a “restriction”, which further reduces the number of

decision variables by coupling the decision-making logic that corresponds to “similar”

states. Numerical studies show a dramatic reduction on the dimension of the solution

space with the implementation of the first two steps. The third step of the proposed

complexity control method is a partial “disaggregation” process that tries to break

certain couplings formed in the second step, and thus obtain more degrees of freedom

to pursue a further improvement on the optimized system performance under the

applied aggregation. This third step is the mechanism that explicitly controls the

trade-off between the representational and computational complexity of the target

policies and their operational efficiency.

Since the complexity control that is adopted in the “modeling” part is applied only

on the policy space, the analytical solution of the resulting MP is still intractable be-

cause the evaluation of the objective function requires the underlying steady-state

distribution of the system sojourn at each state. As a consequence, this MP is solved

through a simulation optimization method called stochastic approximation (SA) in

the “algorithm” part. To this end, the adopted GSPN representation has provided a

xiii



succinct and efficient simulation platform, and it has facilitated the systematic esti-

mation of the necessary gradients. At the same time, the adopted SA algorithms have

been strengthened by the integration in their basic evaluation and exploration logic

of results coming from the area of statistical inference. These results have enabled

our SA algorithms to proceed to a near-optimal region in a robust and stable way,

while avoiding the expenditure of computational resources in areas of the underlying

response surface with little potential gain.

xiv



CHAPTER I

INTRODUCTION

Complex resource allocation takes place in the operational context of various contem-

porary technological applications. These applications range from manufacturing to

transportation and IT systems. For instance, in a manufacturing cell with a number

of machines, different kinds of arriving parts may require processing by the machines

in different but specified orders. On the other hand, each machine is capable of pro-

cessing different part types, or the same part type at different stages, but one machine

cannot process multiple parts at the same time. This flexibility gives rise to “compe-

titions” among the parts for the processing capacity of these machines and leads to a

“scheduling” problem. In other words, when two or more parts, diversified either by

their types or stages, are presented at the same machine, a decision must be made

to exclusively allocate the machine to one of the parts in a way that optimizes some

performance measure of interest.

Complex resource allocation in a manufacturing system may also happen beyond

the scope of the fabrication process itself. An example can be seen in [83]: in the

domain of material handling systems (MHS), such as the zone-controlled automated

guided vehicle (AGV) system, the links of the guide path network are split into a

number of segments called “zones”. To avoid possible collisions among the traveling

vehicles, at any time each zone can be occupied by at most one vehicle. Mean-

while, the zones must be allocated to the vehicles in an efficient way so that some

performance-oriented goals are achieved; for instance, each vehicle can finish its tasks

in a timely manner or the supported transfer rate is maximized. Furthermore, the

1



above application in the MHS domain can be extended to more general traffic sys-

tems involving the circulation of a number of autonomous agents in a confined area

[78, 91].

In the IT area of multithread computing [64, 33, 34], a number of simultaneously

running computing tasks – or the “threads” of a computer program – require access

to some common resources such as memory registers and/or data files. Accessing a

certain resource by a thread must be negotiated with the system controller to make

sure that the program execution is correct and efficient.

In summary, all the aforementioned applications share these common character-

istics: (i) there exist a set of reusable but limited resources , such as the machines,

the guide path zones, the memory registers and the data files; (ii) there exist a set

of processes , such as the parts, the vehicles and the program threads, which require

exclusive accessibility to some resources for a certain time span, in order to perform

some tasks, such as the processing of the parts, the moving of the vehicles, and the

computing of the program threads; (iii) the tasks of each process should be per-

formed in a sequential manner, such as the “specified orders of the machines” for

the parts, the routes of the vehicles, and the organization of the code behind the

program threads; finally (iv) the resource requests from different tasks may overlap,

but the shared requested resources are not sufficient, and in such a case, an arbitra-

tion is needed to assign priorities to the different tasks competing for the insufficient

resources. Typically, the objective for such arbitrations is the optimization of some

(time-based) performance index , like the maximization of the production rate of the

aforementioned manufacturing cell, and the control of the travel and computing times

in the other two applications.

An additional characteristic of the previously cited examples is that all these sys-

tems are fully automated. For such systems, an additional task of the system “con-

troller” is to maintain the smoothness and the logical correctness of the automated

2
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Figure 1.1: An event-driven RAS control framework [86]

operation. For example, in a manufacturing cell, if the buffers of all the machines are

full, but none of the parts is at its final stage to be eligible to exit the system, then

no part can proceed further and the operation of the system becomes permanently

stalled, or deadlocked. The operational policies aiming to prevent the formation of

such states are typically called logical or behavior control in the relevant literature.

In an effort to address both control objectives of logical correctness and perfor-

mance optimization for the complex resource allocation functions that were discussed

in the previous paragraphs, the relevant research community has introduced the for-

mal abstraction of the sequential Resource Allocation System (RAS) [86]. Further-

more, the RAS dynamics have been modeled and analyzed through a set of modeling

frameworks and techniques provided by the Discrete Event System (DES) theory [16].

More specifically, Figure 1.1 gives an integrated event-driven control framework for

the considered RAS model. The controller responds to the events taking place in

the controlled RAS by maintaining a representation of the system state. This state

3



representation allows the controller to determine the set of feasible actions . From

these feasible actions, the logical controller filters out the set of admissible actions , to

prevent the system from reaching any logically incorrect (i.e., deadlock) states. Fi-

nally, the performance controller selects an admissible action to be commanded on the

system for performance optimization. This selection essentially defines a scheduling

problem.

During the past two decades, a rich set of results on logical control has become

available, and these results are quite effective in their ability to control RAS with

very complex structure and behavior [102, 89, 87]. On the other hand, the existing

results on the performance-oriented control of RAS are limited. Especially, there is

a lack of a complete and systematic methodology for the RAS scheduling problem

with the integration of the logical control. The research program presented in this

document seeks to provide such a complete and systematic methodological framework

for the RAS scheduling problem, by leveraging the formal DES-based representations

of the RAS behavior. These representations will enable (i) the formulation of the

RAS scheduling problem in a way that takes into consideration the RAS behavioral

control requirements, and (ii) the definition of pertinent policy spaces that provide

an effective trade-off between the representational and computational complexity of

the pursued formulations and the operational efficiency of the derived policies.

More specifically, the tool for the representation of the RAS dynamics that is

employed in this work is the generalized stochastic Petri net (GSPN). The GSPN

is an extension of the Petri net (PN), a widely applied modeling and analysis tool

[73], especially in the domain of DES [16]. It is well known that a PN can model the

qualitative behavior of a RAS and the necessary logical control policies [5, 29, 79, 62].

In addition, by introducing timing features to the dynamics of the PN, a GSPN can

model the timed dynamics of a RAS. As a result, in a GSPN, the typical performance

measures of a RAS (such as process throughputs, delays and concentrations) can

4



be modeled and analyzed in a way that is also considering the qualitative aspects

of the RAS behavior and the corresponding logical control policies; i.e., the GSPN

representation of a RAS is able to support a seamless integration of, both, the logical

and performance control problems.

Furthermore, the considered GSPN models inherit the ability of the basic PN

model to express additional requirements for the behavior / operational logic of the

underlying system, such as “fairness” requirements with respect to the various pro-

cesses or throughput-ratio constraints for a production line with more than one prod-

ucts. One can implement these additional requirements with appropriate augmenta-

tion of the net structure.

The performance optimization of the developed GSPN models, in principle, can be

based on a set of classical methods borrowed from the theory of Markov decision pro-

cesses (MDPs) [82]. More specifically, the performance of a GSPN can be analyzed

through a Markovian model [2]. And this performance evaluation method enables

the eventual formulation of the performance optimization problem of the considered

GSPNs as an average-reward Markov decision process (AR-MDP) whose objective is

the maximization of the steady-state average reward. In fact, an AR-MDP formu-

lation of the considered scheduling problem of the logically-controlled RAS can also

be derived more directly from the underlying RAS model [86]. In either way, it is

essentially an AR-MDP model that is applied to the selection of “admissible actions”

in the event-driven control scheme of Figure 1.1. Classical AR-MDP approaches, such

as linear programming, value iteration or policy iteration, will specify an optimal so-

lution for the scheduling problem considered in Figure 1.1 in the form of a look-up

table that pairs the RAS decision states with action choices [82].1 Unfortunately,

all these approaches enumerate explicitly the underlying state space, and therefore,

1More details for building the “communicating” AR-MDP model for the performance optimiza-
tion of a RAS can be found in Appendix A.
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suffer from the “curse of dimensionality” [8]. Indeed, the size of the state space of the

considered AR-MDPs may be intractable even for a moderately sized RAS.2 Further-

more, the representation of an optimal policy itself ends up being a hard task since

a look-up table representation of this policy requires the specification of the selected

action at each state.

A number of approaches have been developed to solve MDPs with large state

spaces. These approaches try to approximate some aspects of the large state space

MDPs so that the representational and computational complexity for their solution

can be significantly reduced. In particular, the explicit enumeration of the state space

should be avoided and the solution should be represented in a more parsimonious way

than a look-up table. But the attained complexity reduction often comes at the cost

of a deterioration in performance, or a reduction of the operational efficiency. Hence,

there is a trade-off between complexity and optimality.

The aforementioned methods are collectively known as approximate dynamic pro-

gramming (ADP) [11, 81]. The most common ADP methods rely on the approxima-

tion of the (relative) value of the various states, which can be seen as the potential

or expected benefit of being at the considered state under operation by the optimal

policy.3 And the optimal policy given by these ADP methods is a “greedy” choice

of the admissible action in a way that maximizes a certain functional of the relative

value function. The relative value function itself can be approximated by taking lin-

ear combinations of some pre-defined feature functions of the states; the coefficients

2In fact, the state space of the considered AR-MDPs is a composition, thus a Cartesian product,
of the state spaces of the various interacting components in the system. Hence, if the system contains
n components and each component has a state space of size m, then the size of the state space of
the entire system is O(mn).

3In a finite horizon or discounted MDP, the value function typically reflects the expected total
reward in the future for a given state. But in an AR-MDP, this value is infinite due to absence of
the discount factor. Thus, the notion of “relative value function” is used instead. A relative value
function contrasts the original values of the different states; in particular, the relative value between
any two given states is the difference of the accumulated reward when starting the stochastic process
from the corresponding states. In this document, the optimization problem is an AR-MDP, so only
relative value functions are used in the sequel.
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of these linear combinations can be tuned through some simulation-based learning

algorithms, such as temporal difference (TD), that make the corresponding Poisson

equations hold in an approximate sense. This kind of value function approximation

is also known as a version of Neuro-Dynamic Programming (NDP) [13]. In [21] such

a method is applied to solve a scheduling problem in a capacitated re-entrant line

(CRL), which can be seen as a special type of RAS. But typically, the definition of

a good set of feature functions remains a hard problem and is usually relatively ad-

hoc. In addition, in the above ADP methods, the trade-off between complexity and

optimality is not explicitly controlled.

Therefore, this research program takes a different perspective than the ADP

approaches discussed in the previous paragraph. More specifically, the considered

scheduling problem is formulated as a mathematical programming (MP) problem

that is derived from the semi-Markov process (SMP) modeling the timed dynamics

of the logically controlled GSPN, and the association of certain states of this SMP

with the reward rates that model the performance elements of interest. For instance,

the states that involve part completion and unloading in the SMP modeling the op-

erations of a manufacturing cell can be associated with some positive reward if the

objective is the maximization of the cell throughput. In the resulting MP formulation,

the decision variables are parameters that can adjust the underlying performance con-

trol policy, and the objective function is the steady-state average reward of the SMP.

However, similar to the MDP model, the size of the MP formulation, in terms of, both,

the numbers of the decision variables and the constraints, is still super-polynomial

with respect to the size of the underlying RAS.4 This problem is addressed by (re-

)defining the target policy space and its detailed representation. More specifically,

three steps of complexity control are applied on the original policy space: The first

4Generally speaking, the RAS size is the size of any parsimonious representation of its structure.
More technical definitions of all these concepts are provided in later parts of this document.
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step is a “refinement” process that simplifies the representation of the original policy

space but does not harm its performance potential; i.e., the policy space after this

refinement contains at least one optimal policy from the original policy space. The

second step is a “restriction”, which further reduces the number of decision variables

by coupling the decision-making logic that corresponds to “similar” states. From an

operational standpoint, the introduced restriction will keep all the “static-priority”

policies that are popular in the industrial practice. From the perspective of MDP

and ADP theory, this second step constitutes an approximation of the policy space

through the imposition of an aggregation scheme on the underlying state space, and

it can be seen as a special type of ADP. The third step of the proposed complex-

ity control method is a partial “disaggregation” process that tries to break certain

couplings formed in the second step, and thus obtain more degrees of freedom to pur-

sue a further improvement on the optimized system performance under the applied

aggregation. This third step is the mechanism that explicitly controls the trade-off

between the representational and computational complexity of the target policies and

their operational efficiency. In other words, a higher degree of aggregation gives a

lower complexity but also a lower operational efficiency of the derived policies; and a

higher degree of disaggregation has the opposite effect.

Since the complexity control that is described in the previous paragraph is applied

only on the policy space, the analytical solution of the resulting MP is still intractable

because the evaluation of the objective function requires the underlying steady-state

distribution of the system sojourn at each state. As a consequence, this MP is solved

through a simulation optimization method called stochastic approximation (SA).

The aforementioned methodological framework is summarized in Figure 1.2. The

depicted framework is divided into two parts: A first “modeling” part consists of the

procedures to formulate the scheduling problem of a RAS into an MP, which have

been briefly discussed in the previous paragraphs. The second, “algorithm” part, is
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Figure 1.2: The methodological framework

focused on the SA. This part mainly seeks an adaptation to the considered problem

of existing tools and results from the current literature on simulation optimization.

Although the presented methodological framework can be applied to any general

RAS, this research will mainly focus on a class of RAS that abstracts the capacitated

re-entrant line (CRL) model [20], and it will use this RAS class to demonstrate

the overall methodology. Also, in some parts, the presented methodology will be

further customized from its more general development to take advantage of the special

structure of the CRL model. The CRL model itself is an abstraction of a special type

of the manufacturing cell that was mentioned in the opening paragraph. In particular,

this manufacturing cell supports the processing of only one type of arriving parts. So,

there is one fixed order of machines, called the corresponding part “route” or “process

plan”. However, there is still some indeterminism coming from the fact that certain

machines will support the processing of more than one stage. In other words, in the

considered manufacturing cells, the route will contain some revisits, or re-entrances ,

to certain machines. Furthermore, the total number of parts at each processing
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station, including those being processed, is limited by the available buffer slots at

those stations. Hence, the re-entrant line is capacitated . Then, the problem does not

involve only the allocation of the machine servers, which perform the processing of

the part, but the allocation of the buffer slots as well.

From a theoretical standpoint, the throughput maximization of re-entrant lines

without buffer-size limits has been well-studied: the throughput, which is decided by

the feeding rate in steady state, can be maximized to (almost) the bottleneck rates

among all the workstations, as long as the applied scheduling policies maintain the

“stability” of the system [52]. And it has been proved that some simple policies, like

the last-buffer-first-served (LBFS) and first-buffer-first-served (FBFS) policies, are

stable [66, 24].

However, when the buffer sizes become finite, the introduced possibility of block-

ing and deadlocking effects necessitates the structural or behavior control of these

systems, and simple policies such as LBFS or FBFS may not be throughput-optimal

[84]. As a result, the CRL scheduling problem retains the two key objectives of a

general RAS scheduling problem of logical and performance control, and it can be

used as a testbed for the considered methodology. Meanwhile, the CRL is a simplified

RAS since it supports only a single route, and therefore, a single process type. In the

considered research program, we shall focus primarily on the problem of maximizing

the CRL performance as defined by the long-term throughput of the corresponding

part type. This is an open scheduling problem in the current literature.

On the more practical side, the re-entrant line model is widely applied as an

abstraction of the fabrication operations in semiconductor manufacturing [52], and as

this industry moves to higher levels of integration through the deployment of the, so

called, “cluster tools” [97], the constraints on the buffer capacities that are considered

in this work extend the power of the original re-entrant line model by allowing the

modeling and analysis of the blocking phenomena and their consequences.
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In summary, the formal models and the methods developed in this work contain

the following important features:

1. the leveraging of formal DES-based representations of the RAS behavior for the

systematic characterization of the target policy spaces;

2. the ability of the aforementioned representations to support a seamless integra-

tion of the RAS logical and performance-control problems;

3. the ability to integrate, in the pursued analysis, additional requirements on the

behavior of the underlying system through the appropriate augmentation of the

DES-based representation of the underlying RAS;

4. the ability to control explicitly the trade-off between the representational and

computational complexity of the target policies and their operational efficiency;

and

5. the customization of the more general developments to the CRL scheduling

problem of throughput maximization, an interesting and open scheduling prob-

lem in the current literature.

Apart from the forementioned features, this work also seeks to explore deeper

the practical side of the SA algorithms. Such an investigation is necessary given the

complexity and the intended scale of the formulations to be addressed in this work.

Hence, while acknowledging all the current results on the asymptotic analysis of the

SA algorithms, we put more emphasis on the practical side, seeking to integrate to

the standard SA algorithm some methods based on statistical inferences, in order to

strengthen the ability of this algorithm to identify a (near-)optimal scheduling policy

in a reliable, expedient and computationally cost-efficient manner.

The rest of the thesis is organized as follows: Chapter 2 formally defines the RAS

model and its performance optimization problem, and also gives necessary background
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information to build the methodological framework. Chapter 3 addresses the “mod-

eling” part in Figure 1.2 except for the complexity control, which is the topic of

Chapter 4. Chapter 3 also addresses the RAS-based modeling of the considered CRL

operations. Chapter 4 addresses the complexity problems discovered in the process

of building the MP formulation for the considered RAS scheduling problem. Chap-

ter 5 covers the “algorithm” part in Figure 1.2. Both Chapters 4 and 5 also report

results from a number of numerical experiments that demonstrate the efficacy of

the presented methods. Finally, Chapter 6 concludes the thesis and discusses some

remaining open issues and possible extensions.
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CHAPTER II

BACKGROUND

This chapter introduces the necessary background information for the foundation of

the methodological framework that was outlined in Chapter 1. First, the modeling

abstraction of a sequential resource allocation system is formally defined, and some

key assumptions that underlie the specification of this model are explicitly stated.

Next, there is an overview of the available methodologies for the RAS logical control

problem, and the implementation of these methodologies in the context of the PN

structure. The third section gives the necessary basic knowledge on the GSPN, which

will be the major modeling tool for the presented methodological framework. Finally,

the chapter concludes with the formal definition of the CRL scheduling problem of

throughput maximization and its characterization as a RAS performance optimization

problem.

2.1 Formal definition of the sequential resource allocation
system

The common characteristics of the sequential resource allocation systems that are

considered in this work have already been introduced in a more intuitive manner in

Chapter 1. In this section, a formal description of those characteristics is cited from

[86] (c.f. Section 2.1 in Chapter 1):

Definition 1 A sequential resource allocation system (RAS) is defined by a quintuple

Φ = 〈R, C,P ,A, T 〉 where:

1. R = {R1, . . . , Rm} is the set of the system resource types.
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2. C : R 7→ Z+ – the set of strictly positive integers1 – is the system capacity

function, characterizing the number of identical units from each resource type

available in the system. Resources are considered to be reusable, i.e., each

allocation cycle does not affect their functional status or subsequent availability,

and therefore, C(Ri) ≡ Ci constitutes a system invariant for each i.

3. P = {Γ1, . . . ,Γn} denotes the set of the system process types supported by the

considered system configuration. Each process type Γj is a composite element

itself, in particular, Γj =< Sj,Gj >, where: (a) Sj = {∆j1, . . . ,∆j,l(j)} denotes

the set of processing stages involved in the definition of process type Γj, and

(b) Gj represents some data structure communicating some sequential logic that

applies to the execution of any process instance of type Γj. The sequential logic

should be defined in a way such that no re-visit to any stage happens in any

paths.2 For further reference, we also set S ≡
⋃n
j=1 Sj.

4. A : S 7→
∏m

i=1{0, . . . , Ci} is the resource requirement function3 associating

every processing stage ∆jk with a resource allocation request A(j, k) ≡ Ajk.

More specifically, each Ajk is an m-dimensional vector, with its i-th component

indicating the number of resource units of resource type Ri necessary to support

the execution of stage ∆jk. It is further assumed that Ajk 6= 0 for any processing

stages, where 0 denotes the column vectors of appropriate dimension, with all its

components equal to 0.4 Obviously, in a well-defined RAS, Ajk(i) ≤ Ci, ∀j, k, i.

5. T : S 7→ D is the timing function, corresponding to each processing stage ∆jk

1In the sequel, Z+ will represent the set of strictly positive integers, while Z0+ will represent the
set of non-negative integers. And the space of the superscript will be reserved for the dimension
display. Similar notations will be applied to the set of real numbers R.

2This condition excludes the situations in which a process instance can entangle itself in an
indefinite loop among its processing stages.

3To distinguish from the actual decision made when facing the competition among the process
instances for some insufficient required resource, the expression “resource requirement function” is
used instead of “resource allocation function” in the original text of [86].

4Similar notations such as “1” will be applied in the sequel.
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a distribution Djk that characterizes the statistics of the “processing time” tjk,

experienced during the execution of stage ∆jk. It is possible that for some j, k,

P{tjk = 0} = 1; for instance, the use of “buffer” resources.

Furthermore, for purposes of complexity considerations, the size |Φ| of RAS Φ is

defined as |Φ| ≡ |R|+ |S|+
∑m

i=1Ci.

Next, the above definition is further elaborated by some additional assumptions

that are also discussed in [23]. These assumptions are typically known as the “mu-

tual exclusion”, “wait-for”, “no preemption” and “circular wait” conditions, and they

constitute necessary and sufficient conditions for deadlock formation. In many appli-

cations, the first three of these conditions are determined by the system configuration

itself, and the deadlock can be avoided only by avoiding the development of the fourth

condition. In this document, the first three of these conditions will be expressed by

the following assumptions, with the corresponding statements adapted to Definition

1. These assumptions can be seen as the “pre-conditions” where deadlock may arise.

Furthermore, Assumption 1 is quite essential for the considered resource allocation

function.

Assumption 1 The resource allocation that is implied by item 4 of Definition 1 is

mutually exclusive, i.e., if a resource unit is allocated to some stage ∆jk of a process

instance, then it is not available for allocation to other process instances until it is

released. Or, stated differently, in the considered RAS, the resources cannot be shared.

Assumption 2 Once a resource is allocated to some non-terminal stage ∆jk of a

process instance, it cannot be released until the process instance has been allocated the

necessary resource differential (A(∆jk′)−A(∆jk))
+ with respect to one of its successor

stages ∆jk′, and has advanced to ∆jk′.

Assumption 2 implies that (i) the process instance cannot be removed from the sys-

tem temporarily to accommodate the requirements from other process instances (i.e.,
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no preemption), and (ii) the release of the currently allocated resource units should

wait for the allocation of the next required resources. This “hold-while-waiting” ef-

fect applies naturally to certain resources, such as the resources corresponding to the

buffer slots in the manufacturing cell that were mentioned in Chapter 1. On the

other hand, this assumption does not restrict the modeling power of the RAS. In the

case that a resource unit can be released without requiring the resource allocation of

any additional resource units, one can insert “fictitious” processing stages with: (i)

a resource requirement vector obtained from the current resource requirement vector

by removing the resource(s) to be released, and (ii) zero processing time.

As discussed in Chapter 1, the resource allocation taking place in the considered

RAS must be performed in a way that ensures logical correctness and operational

efficiency. In this work, the notion of logical correctness refers only to the absence of

partial deadlock. The following definition characterizes the state of the system when

a partial deadlock happens [23]. And it can be seen as the system state that should

be avoided via the logical control policy adopted in this research program.

Definition 2 A sequential RAS partial deadlock is defined by a RAS state containing

a set of process instances that cannot advance to any of their next processing stages

because each such advancement requires a set of resources that are currently held by

the remaining processes in this set.

The objective of operational efficiency for any given RAS refers to the optimization

of some time-based performance criteria, through the specification of a policy that

is defined on the state space of the RAS-modeling DES and will guide the selection

among the set of admissible actions as in the control scheme in Figure 1.1. For the

purpose of such time-based performance considerations, the following assumption,

which complements item 5 of Definition 1, makes sure that no process instance can

finish in zero time:
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Table 2.1: A RAS taxonomy [86]
Based on the structure of the Based on the structure of the
Process Sequential Logic Resource Requirement Function
Linear: Each process is defined Single-Unit: Each stage requires
by a linear sequence of stages. a single unit from a single resource
Disjunctive: A number of type.
alternative process plans encoded Single-Type: Each stage requires
by an acyclic digraph. a single resource type, but might
Coordinating: Each process is engage more than one unit of it.
an acyclic fork-join network.
Complex: A combination of Conjunctive: An arbitrary number
the above behaviors. of units from different resources.

Assumption 3 For any process type Γj, in any possible realization path in the cor-

responding Gj, there must exist a processing stage ∆jk, such that the processing time

distribution Djk satisfies P{tjk = 0} = 0.

The introduced RAS concept can model a rich set of structures with respect to

(i) the process sequential logic and (ii) the resource requirement function that defines

the resource allocation requests of the various processing stages. In particular, [86]

gives the taxonomy summarized in Table 2.1.

2.2 The RAS deadlock avoidance problem

The RAS logical control problem in this research refers only to the avoidance of the

partial deadlock states characterized in Definition 2. The corresponding qualitative

behavior of a RAS Φ can be modeled as a finite state automaton (FSA) G(Φ) [86].

And the effective avoidance of all these deadlock states can be equivalently defined as

the avoidance of the states that do not possess a path back to the “empty” state in

the corresponding state transition diagram (STD). The empty state itself corresponds

to the state where the RAS is empty of any activated processes, and it naturally

defines the initial and the marked state of the corresponding FSA. More generally, in

the literature on deadlock avoidance, the RAS state is typically defined as a vector
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s ∈ Z|S|0+, where each component of s gives the number of process instances in its

corresponding processing stage.5

A “naive” solution to the RAS deadlock avoidance problem enumerates the STD

of the underlying FSA corresponding to the subspace that is reachable from the empty

state, and then eliminates the events that result to unsafe states, i.e., to states with

no paths to the empty state. As a result, the STD of the logically controlled RAS is

a strongly connected digraph. Each node of this digraph is called a safe state.6 Since

this method eliminates only the unsafe states and keeps all the safe states, it gives a

maximally permissive deadlock avoidance policy (DAP), which is an optimal solution

for the considered logical control problem.

However, this naive solution requires enumeration of the state space and it is not

practical. Furthermore, although the presence of partial deadlock in any given RAS

state is polynomially detectable with respect to the RAS size |Φ| [86], the “prediction”

of deadlock, or deciding whether a state is safe or not, is an NP-complete problem

for most RAS classes [39, 90]. The NP-completeness of the state-safety assessment

can be proved even for the simplest RAS class, characterized by linear sequential

logic and a single-unit resource requirement function [58]. Hence, the computation of

the maximally permissive DAP is an NP-hard problem in general, and a number of

methodologies are proposed in the relevant literature to address this issue.

The above remarks further imply that for these RAS classes where the assessment

of state-safety is NP-complete, the corresponding difficulty stems from the existence

of “deadlock-free unsafe” states, i.e., states that do not contain any partial deadlocks

5This definition is proper only in the logical control problems. When timing is introduced, the
dimension of s is larger than |S|, as different process instances at the same processing stage may
be in different status: some are in processing, while others are waiting for advancement to the next
stage.

6The discussion in this document is limited to the enumeration of the state space that can be
reached from the empty state. Hence, the whole state space is the set of reachable states. And the
set of “safe” states in this document refers to the intersection of the sets of safe and reachable states
in the terminology of most of the relevant literature.
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but will definitely lead to some “partial-deadlock” states. This remark will be essential

in some of the subsequent developments.

One solution to the computational challenges that are described in the previous

paragraphs is the relaxation of the requirement of maximal permissiveness. In the

corresponding policies [5, 54, 55, 32, 56, 57, 79, 31], some constraints on the state

vectors are applied so that only safe states satisfy these constraints. But the resulting

policy might be sub-optimal if the region of safe states cannot be represented by

the employed constraints, and thus, some safe states are also eliminated by these

constraints. In the design of such more restrictive policies, one should pay additional

attention to the policy-induced, or restricted deadlock; a restricted deadlock is a

policy-admissible (and therefore safe) state, where no further progress is possible due

to the blockage of feasible actions by the policy itself [5, 32].

On the other hand, if the RAS falls into the special categories where there are no

deadlock-free unsafe states, then RAS state safety becomes equivalent to absence of

partial deadlock. Therefore, a one-step look-ahead method which tests whether the

state that results from the execution of a feasible action is deadlocking, is able to

avoid any possible unsafe states. Some examples of such RAS classes can be found in

[88, 32, 58, 86]. Furthermore, the “safety region”, i.e., the set of safe states, can be

specified by a set of linear constraints on the RAS state in some special RAS classes.

In [77], the problem of building an optimal linear classifier representing the maximally

permissive DAP was modeled as a mixed integer program (MIP).

Another line of research converts the RAS deadlock avoidance problem into the

problem of liveness enforcement for a RAS-modeling Petri net (PN). In fact, the

problem of liveness enforcement for various PN classes is a broader problem in the

DES literature that transcends the class of RAS-modeling PNs. Some of the most

interesting results in this direction seek to associate the absence of liveness to the

formation of certain structures in the PN state (or “marking”), and eventually prevent
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these formations through the superimposition of additional structure on the original

PN. Frequently, this additional structure takes the form of monitor , or supervisor,

places [37, 72, 47]. In the case of RAS-modeling PNs, the underlying special structure

has led to stronger structural characterization of the net liveness, and more powerful

synthesis methods for the necessary supervisors. Relevant results can be traced in

[29, 99, 79, 48, 85, 64, 63, 65].

Since a PN constitutes a representation of the underlying RAS that is polynomially

related to the corresponding size |Φ|, the aforementioned methods, when applicable,

can lead to the synthesis and the deployment of the maximally permissive DAP while

avoiding the (explicit) enumeration of the underlying state space. In most of these

cases, the obtained policy also has a quite compact representation as a fairly small

number of supervisor places. But representation of a policy by a set of supervisor

places implies that it can be expressed as a set of linear constraints on the net marking

[37], and this fact constitutes a substantial limitation for the aforementioned methods

when it comes to the characterization and deployment of the maximally permissive

DAP. So, next we turn to another approach that allows for a more general, and

therefore, more complete and more effective representation of the target supervisory

control policies, and constitutes the primary method of choice for the considered

research program.

2.2.1 A classifier-based method for deadlock avoidance

Recently, the work presented in [74, 89] developed a method that supports the syn-

thesis of the maximally permissive DAP for the various RAS classes considered in the

work, and has promising empirical representational and computational complexity.

This method contains three major phases:

The first phase is a computation of the sets of the safe and unsafe states in the
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underlying STD, with methods that are similar to these employed by the aforemen-

tioned “naive” solution. However, the corresponding complexity issues are addressed

in two ways:

1. This first phase is performed “offline”, and the derived information will be

stored for later usage in a more efficient manner. Given the offline nature of this

operation, the constraints on the employed computational resources, especially

the corresponding time budgets, are more relaxed.

2. In many cases, the performed enumeration is only “partial”, i.e., it does not

expand on the whole state space. Indeed, an effective implementation of the

maximally permissive DAP can be based only on the knowledge of the “bound-

ary” unsafe states, i.e., the unsafe states which are reachable from a safe state

by one event. Furthermore, due to the monotone nature of state (un)safety in

many RAS classes (i.e., the fact that if a state vector su is unsafe, then any

vector s′u that is componentwise no less than su is also unsafe), the entire set

of boundary unsafe states can be characterized by its minimal elements. These

(minimal) boundary unsafe states can be obtained through a backwards search

on the underlying state space that starts with a programmatic construction of

all the (minimal) deadlocks [76].

The second phase is also performed offline, and concerns the representation of the

dichotomy of the RAS state space into its safe and unsafe spaces, that was computed

in the first phase, by a pertinent classifier. This classifier can be either “parametric”

or “non-parametric”.

The parametric classifier is represented by a linear combination of a number of

indicator functions. Each indicator function specifies whether the state vector is in a

specific polyhedron. The coefficients of the linear combination and the polyhedra are

determined through some computational techniques that employ the sets of maximal
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safe and minimal boundary unsafe states. In the special case that the safety region

can be represented by a set of linear constraints, the above classifier collapses to a set

of linear inequalities and it is characterized as “linear”. The linear combination of

indicator functions may be replaced by other relationships on the underlying polyhe-

dra, but, in any case, the basic requirement is the effective expression of the potential

non-convexity of the safety region of the underlying state space. The reader is referred

to [89] for more details.

The non-parametric classifier encodes more directly the set of all the minimal un-

safe states. For instance, [75] introduced the method of (n-ary) decision diagrams,

which can effectively store the entire set of the minimal unsafe states in an acyclic

digraph, while avoiding significant levels of redundancy that take place in the typical

storage of these vectors in an array-based representation. In fact, the representa-

tional compression that is obtained by this approach is usually at a logarithmic level.

Furthermore, these data structures can also support efficient search processes for any

given vectors.

Finally, the third phase in the method of [74, 89] is an online phase that enforces

the maximally permissive DAP through a classical one-step look-ahead scheme. More

specifically, during the operation of the considered RAS, whenever a resource allo-

cation action is contemplated, the state resulting from the considered action will be

calculated and then tested through the developed classifier. If the test determines

the state as unsafe – or more generally, as inadmissible – then this action is blocked

by the implemented DAP.

As already mentioned, in the methodological framework presented in this research

program, the logical controller will generally adopt the one-step look-ahead scheme of

the classifier-based method. However, we shall also encounter some special structures

that may simplify the representation and the deployment of the applied DAP. In

particular, if a RAS can be verified to contain no deadlock-free unsafe states, then
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the “offline” phases that build the aforementioned classifier can be skipped, and the

employed one-step look-ahead scheme will only test for deadlock states. Furthermore,

if the safety region of a given RAS can be represented by a set of linear constraints,

then a PN-based representation of the maximally permissive DAP through supervisor

places is also possible. In this case, the one-step look-ahead filter on the admissible

actions is no longer necessary. Instead, a control subnet, consisting of the necessary

supervisor places, is added to the original RAS-modeling PN. Some examples of such

results will be provided in Section 3.2, where the logical control schemes that are

considered in this section are customized to the GSPN that models the CRL.

2.3 The GSPN reward model and its performance evalua-
tion

This section gives some necessary background information on the Petri net (PN),

the generalized stochastic Petri net (GSPN), and the GSPN reward models, and on

the performance evaluation of the GSPN. The main focus is on the basic concepts

and the corresponding notations. The reader is refered to [73] and Chapter 2 of [61]

for a complete discussion on the PN properties and their underlying structural and

behavioral analysis, to [1] for a complete and detailed methodology for the GSPN-

based modeling, and to [1, 22] for the performance evaluation of the GSPNs.

2.3.1 Definition and basic properties of Petri nets

The Petri net (PN) is a modeling tool that is widely applied in the area of DES.

The definition of a PN includes a weighted bipartite digraph N and a vector M0. In

particular, N defines the structure of the PN as a quadruple 〈P , T ,F ,W〉, where:

the node set is the union of two mutually exclusive subsets, the place set P and the

transition set T ; the arc set F ⊆ P × T ∪ T × P models the flow structure that is

supported by the net; and the weight set W : F 7→ Z+ specifies an amount of flow

for each arc. On the other hand, the behavior of the PN is modeled by the dynamics
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of the tokens that circulate among the places. In particular, the state of the PN is

defined by the number of tokens at each place, and the vector M ∈ Z|P|0+ composed

by these numbers is called the net marking. A special marking M0, called the initial

marking, defines the initial state of the PN. If the PN is used to model a DES, then

the marking corresponds to the state of the DES.

In the graphical representation of a PN, the places are depicted as circles, the

transitions are depicted as bars, and the flow between the places and the transitions

is represented by weighted directed arcs, where the weights are explicitly stated only

if they are greater than one. Tokens are depicted as black dots in the circles of the

corresponding places. An example PN in graphical representation can be found in

the left side of Figure 2.1 in the next section.

For a place p ∈ P and a transition t ∈ T , if (p, t) ∈ F , then p is an input place

of the transition t, and t is an output transition of the place p; if (t, p) ∈ F , then p

is an output place of the transition t, and t is an input transition of the place p. The

set of all input transitions of p is the preset •p; the set of all output transitions is the

postset p•. The notations •t and t• have similar meanings. A transition t is enabled

at a marking M if M [p] ≥ W(p, t), ∀p ∈ •t. The set of all the enabled transitions

at a marking M is denoted as E(M). Since the enabling of a transition at a given

marking M is determined by the PN structure, the set E(M) can be seen as the set of

feasible actions at M , according to the general semantics of the DES control scheme

of Figure 1.1. When a transition is enabled at a marking M , then it can be fired and

the marking will be changed to M ′, where

M ′[p] =



M [p]−W(p, t) if p ∈ •t \ t•

M [p] +W(t, p) if p ∈ t• \ •t

M [p]−W(p, t) +W(t, p) if p ∈ •t ∩ t•

M [p] otherwise
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In other words, the firing of an enabled transition t first will consume W(pi, t) to-

ken(s) from each input place pi ∈ •t and subsequently it will releaseW(t, po) token(s)

to each output place po ∈ t•. In the perspective of DES, the firing of a transition

can be perceived as an event that changes the state of the system. In the following,

we shall use the notation M ′ = tr(M, t) or M
t−→ M ′ to denote that marking M ′ is

the result of firing transition t at marking M . In this case, we shall also say that

marking M ′ is reachable from marking M . The notions of “enabled” and “reachable”

can be further extended to transition sequences in an inductive way: if M1
t1−→ M2,

M2
t2−→ M3, . . . , Mi−1

ti−1−−→ Mi, then the transition firing sequence σ ≡ t1t2 . . . ti−1 is

feasible at marking M1, and Mi is reachable from M1, denoted as Mi = tr(M1, σ) or

M1
σ−→ Mi. The transition firing sequence can be an empty sequence, denoted by ε;

therefore, a marking is always reachable from itself, i.e., M = tr(M, ε), ∀M . For a set

of transitions T̃ , T̃ ∗ is the Kleene closure, which is the set of all the finite sequences

composed by transitions in T̃ , including the empty sequence ε. For a transition se-

quence σ ∈ T̃ ∗, ~σ is the Parikh vector, whose dimension is |T̃ | and its components

count the occurrences of the corresponding transitions in σ. The set of all the mark-

ings that are reachable by a given marking M is denoted by R(M). Particularly, the

set R(M0) is also denoted as R(PN ); and this set constitutes the state space of the

PN. In the sequel, the dependency on PN will be suppressed, and the notation R

will be adopted to denote the state space. For a PN with a given initial marking M0,

if the number of tokens of all its places can be upper-bounded for all the markings in

R, then the PN is said to be bounded. Obviously, the boundedness of a PN implies

the finiteness of the state space, since the marking vectors are integer-valued.

The reachability relationship of all the markings of the PN can be represented

by a digraph, called a reachability graph. In the reachability graph, a marking M is

represented by a node, and the firing relationship M
t−→ M ′ is represented by an arc

from the node representing M to the node representing M ′. If the reachability graph
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is finite, then it is the STD of the FSA that represents the PN dynamics.

Next, let us define the notions of “reversibility” and “liveness” of a PN:

Definition 3 A bounded PN, PN = 〈N ,M0〉, is reversible if its reachability graph is

strongly connected, i.e., for every marking that is reachable from the initial marking

M0, there exists a feasible transition firing sequence σ ∈ T ∗ such that M
σ−→M0.

Definition 4 A PN, PN = (N ,M0), is live if for every transition t̂ ∈ T and every

marking M ∈ R, there exists a feasible transition firing sequence σ ∈ T ∗ such that

M
σ−→M ′ and t̂ ∈ E(M ′).

Remark For RAS-modeling PNs, both reversibility and liveness are equivalent to

the absence of partial deadlock in the underlying RAS. Also, for a PN modeling the

behavior of a RAS under the control of a given DAP, reversibility and liveness imply

the “correctness” of that DAP, in the sense that the DAP keeps the state of that

RAS in its safe region and does not induce restricted deadlock. For a more extensive

discussion connecting the RAS deadlock and deadlock avoidance to the properties of

reversibility and liveness of the RAS-modeling PN, the reader is referred to [85] and

Chapter 5 of [86].

2.3.2 The extension of a PN to GSPN

A generalized stochastic Petri net (GSPN) extends the definition of PN by (i) par-

titioning the set of transitions T into the set of immediate or untimed transitions

Tu, and the set of timed transitions Tt; and (ii) adding a new mapping r : Tt 7→ R+,

defining the firing rate of the timed transitions.7 The firing of a timed transition t

will experience a delay with an exponentially distributed random time length; and

the rate of this exponential distribution is r(t). Also, for any marking M , the set of

7In the original definition of the GSPN that is provided in [1], the mapping r may have the
domain T × R, which allows dependency of the firing rates on the net markings. However, this
feature is not particularly relevant to the GSPN models that are pursued in this work.
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Figure 2.1: An example PN and its conversion to a GSPN

enabled transitions E(M) can be partitioned into the sets of enabled untimed transi-

tions Eu(M) and enabled timed transitions Et(M). In the graphical representation of

a GSPN, the untimed and timed transitions are respectively depicted by black and

white bars. Sometimes the timed transitions are also labeled with their firing rates.

The right part of Figure 2.1 is an example GSPN where the transitions t1, t4 and

t7 of the PN on the left part have been converted to timed transitions; the other

transitions remain untimed. In fact, the PN and the GSPN depicted in Figure 2.1

model respectively the logical and the timed dynamics of an example RAS that will

be introduced later in this chapter and will be used as a vehicle for demonstrating

the various concepts and techniques that are developed in this document.

The dynamics of a GSPN can be described as follows: at a marking M , if only

timed transitions are enabled, i.e., Et(M) 6= ∅ and Eu(M) = ∅, then: (i) M is called a

tangible marking; (ii) the transition t to be fired will be selected through an exponential
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race defined by the firing rates of the enabled timed transitions; and (iii) there is a

time span between the realization of marking M and the realization of the marking

tr(M, t), which is also defined by the random variable generated from the exponential

race. On the other hand, if at least one untimed transition is enabled at marking M ,

i.e., Eu(M) 6= ∅, then: (i) M is called a vanishing marking; (ii) the enabled untimed

transitions have higher priorities than the timed transitions,8 since they have zero

firing time; and (iii) in case that more than one untimed transitions are enabled, an

externally determined probability distribution must be provided for the selection of

the untimed transition to be fired; this distribution is known as a “random switch” in

the GSPN terminology. The set of markings reachable from a given marking M can

be partitioned into the sets of tangible and vanishing markings, denoted by RT (M)

and RV(M), respectively. For the special case of M = M0, RT and RV denote the

respective sets of all tangible and all vanishing markings that partition the state space

R of the GSPN.

The timed transitions of the GSPN model enable the modeling of DES with Marko-

vian behavior. For instance, if the processing time of each workstation in a manufac-

turing cell is exponentially distributed, then each processing stage can be modeled as

a timed transition. Even more interestingly, some more general distributions, such as

the Erlang distribution, the hypoexponential and the hyperexponential distributions,

and the more general phase-type distribution, can also be modeled by an appropri-

ately structured GSPN with its timed transitions corresponding to the exponential

stages of these distributions [17]. Also, more general distributions with positive sup-

port can be approximated to any desired accuracy by a phase-type distribution [3].

Therefore, a GSPN structure can approximate these more general distributions at the

cost of some additional complexity for the structure of the resulting network.

8It should be clarified that even if the untimed transitions have the higher priorities at a vanishing
marking M , it is possible that some timed transitions are also enabled; i.e., Et(M) 6= ∅. But the
timed transitions are never fired at the vanishing markings.
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A random switch corresponding to a vanishing marking M contains two pieces of

information: (i) the enabling pattern E ≡ Eu(M) ⊆ Tu, which is the set of enabled

untimed transitions, and (ii) the associated selection probability distribution that is

specified by a vector ZM ∈ R|Tu|0+ , i.e.,

P{t is fired | current marking is M} = ZM [t]

Note that in the vector ZM , the components ZM [t] where t ∈ Eu(M) can be either

zero or positive, while the other components are all zero.

2.3.3 GSPN reward models and their performance evaluation

The performance measures of GSPNs vary according to their applications. In the

original literature that introduced the GSPN model [2], the reward model is not

explicitly defined. Nevertheless, the typical GSPN performance evaluation often refers

to the evaluation of the long-run, or “steady-state”, performance measures.

In [22] more specific examples of steady-state performance measures are given,

such as the frequency of firing of a particular transition, the probability that a set of

places are all empty, the probability that a set of transitions are all enabled, etc. In

general, two types of rewards can be adopted as the basis for the steady-state perfor-

mance measures. One type associates the reward rates to tangible markings, and this

type of reward model can be applied in the case where the reward rate is related to the

numbers of tokens at some places or the enabling status of a set of transitions. The

other type associates the rewards to transitions, and the association can be defined

as either an immediate reward when a transition is fired, or a reward rate9 associated

with a timed transition. In this work, the immediate rewards associated with untimed

transitions are not considered. Then, the remaining types of reward models can be

unified: both the reward rates and one-time rewards associated to timed transitions

9The reader should notice that this can be a different rate than the firing rate.
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can be converted in the form of reward rates at tangible markings, in addition to orig-

inal reward rates defined on these markings (e.g., the reward rates associated to the

numbers of tokens). Therefore, the GSPN reward model to be employed in this work

eventually can be represented as the GSPN model described in Section 2.3.2, plus a

vector r̂ ∈ R|RT | whose components are the reward rates of the tangible markings.

We note that the reward rates can be negative, which should be interpreted as cost

rates. Finally, the steady-state average reward η of the GSPN is the inner product

between the vectors defining the reward rates r̂ and the steady-state distribution π

of the tangible markings, i.e., η ≡
∑

M∈RT r̂[M ]π[M ].

To obtain the steady-state distribution of the tangible markings, the first step is

modeling the timed behavior of a GSPN as a stochastic process. More specifically, if

all the components of a GSPN, including the bipartite digraph net structure N , the

initial marking M0, the sets Tu and Tt of the timed and untimed transitions, the firing

rates r and the pricing (or some mechanisms that can determine the pricing) of all

the random switches, are given, then its behavior can be modeled as a semi-Markov

process (SMP). In such an SMP, there is a one-to-one relationship between the state

spaces of the GSPN and the SMP. The sojourn times of the SMP states corresponding

to vanishing markings are zero, while the sojourn times of the tangible markings are

exponentially distributed random variables defined by the exponential race among the

enabled timed transitions at this marking. And the embedded Markov chain (EMC)

of the SMP is defined by the exponential races running on the tangible markings and

the random switches defined on the vanishing markings. Furthermore, it is obvious

that the following two conditions are sufficient for the steady-state distribution of the

corresponding SMP to be well-defined:

Condition 1 The GSPN is bounded, or equivalently, the state space is finite, i.e.,

|R| = |RT |+ |RV | <∞.

Condition 2 The EMC of the SMP is ergodic.
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[1] calculates the steady-state distribution of the EMC of the SMP first, and then

obtains the steady-state distribution of the SMP as the proportion of the average

sojourn time that is spent in each state by the SMP during a regenerative cycle.

It is also possible to reduce a given GSPN to a stochastic Petri net (SPN) which

consists of only timed transitions with exponentially distributed delays for their firing

times [18].10 The timed dynamics of this SPN define naturally a continuous-time

Markov chain (CTMC), denoted byM. The state space ofM consists of the tangible

markings of the original GSPN. Furthermore, for any two markings M and M ′ in the

state space of M, if there exists a timed transition t such that M
t−→ M ′, then the

transition rate from M to M ′ is the rate of t; otherwise, the transition rate from M to

M ′ is zero. With the infinitesimal generator Q of the CTMCM readily obtained, the

procedure to evaluate the steady-state distribution π is standard and straightforward

[93]:

πTQ = 0T

πT1 = 1

In fact, the step of SPN modeling can be bypassed, and a CTMCM can be defined

on the tangible markings of the GSPN while the vanishing markings are eliminated

from the state transition diagram (STD) of the SMP built from the GSPN. Some

algorithms of building the CTMC M from a GSPN are summarized in [22]. In this

research program, and in an effort to cope with the potentially explosive size of the

underlying state space, we focus on “online” algorithms that enable a sample-path

based transition rate evaluation and do not require the complete enumeration of the

state space. Such algorithms eliminate the vanishing markings between two tangible

markings and compute the transition rates for the corresponding “macro-transition”

10To reduce a GSPN with fixed random switches into an SPN, some additional requirements on
the structure of the GSPN are needed, since GSPNs can model a broader range of DES than SPNs.
These requirements can be found in [18].
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through a partial reconstruction of the underlying STD. Therefore, the different visits

to tangible markings are de-coupled, i.e., the computation of the transition rates

from a visited tangible marking to other tangible markings is independent from any

previous similar computation. These algorithms limit the computer memory usage

when the size of the state space is intractable.11 In our work, the development of

such algorithms is further facilitated by the following condition:

Condition 3 In the considered GSPN, for any vanishing marking M ∈ RV , there

does not exist a feasible non-empty untimed transition firing sequence σ ∈ T ∗u such

that M = tr(M,σ).

Under Condition 3, the transition rate from a tangible marking MT to other

tangible markings, which is a row of the corresponding infinitesimal generator matrix

Q, can be determined in three steps:

1. For each enabled timed transition t ∈ Et(MT ), there is a rate r(t) and the

resultant marking M̂ ≡ tr(MT , t), where M̂ can be either tangible or vanishing.

2. For each marking M̂ obtained from the previous step, we enumerate every

feasible untimed transition firing sequence σ ∈ T ∗u such that M ′
T ≡ tr(M̂, σ) ∈

RT . We also compute the products xM̂,σ of the selection probabilities for the

transitions that appear in the aforementioned sequences σ; these probabilities

are defined by the random switches at the corresponding markings that are

visited by each transition sequence σ.

3. Finally, we calculate the transition rate

Q[MT ,M
′
T ] =

∑
t∈Et(MT )

r(t)
∑

σ:M̂=tr(MT ,t)∧M ′T =tr(M̂,σ)

xM̂,σ (1)

11However, the storage space saving is not a “free lunch”: the visited vanishing markings are
eliminated immediately and this transition information cannot be used in the future when these
vanishing markings are visited again. This effect will impact negatively the computational efficiency.
There is a trade-off between storage and execution time [22].
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Algorithm 1 Recursively explore the feasible untimed transition firing sequences
from a marking M to tangible markings

Input: The GSPN structure and random switches, current marking M .
Output: The set of firing sequence and probability pairings pair = {(σ, x)}.

1: while |Eu(M)| = 1 do
2: t← the only untimed transition in Eu(M).
3: M ← tr(M, t).
4: end while
5: if M ∈ RT then
6: return {(ε, 1)}.
7: else
8: pair ← ∅.
9: for each t ∈ Eu(M) do

10: pair′ ← recursively call this procedure with M substituted by tr(M, t).
11: for each (σ, x) ∈ pair′ do
12: pair ← pair ∪ {(tσ, ZM [t] · x)}.
13: end for
14: end for
15: return pair.
16: end if

The second step can be implemented through a recursive algorithm, which is listed

in Algorithm 1.

2.4 The capacitated re-entrant line, its RAS-based repre-
sentation, and the CRL scheduling problem of through-
put maximization

As already mentioned in Chapter 1, the capacitated re-entrant line (CRL) is a work-

flow model that modifies the original re-entrant line model of [52]. A CRL is a system

with m workstations, indexed with 1, . . . ,m. Workstation i, i = 1, . . . ,m, has a single

server and Bi buffer slots. The system supports one process type with n > m stages.

The process type can be expressed by a mapping WS : {1, . . . , n} 7→ {1, . . . ,m},

where WS(j) returns the index number of the workstation that supports the pro-

cessing of the j-th stage. A job instance loaded to the system should complete all

the processing stages sequentially to be unloaded as a final product from the system.

At each processing stage Jj, the job instance should be processed at the server for
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a random time span with a distribution Dj with positive support. Since the CRL

model is mainly used for demonstration of the proposed methodology, Dj is supposed

to be an exponential distribution with rate µj, for simplicity.

Assumption 4 For the CRL class considered in this document, the processing times

of the servers are exponentially distributed. And the rate for the processing stage Jj

is denoted as µj.

The job instance is processed in situ, i.e., when it is being processed at a work-

station, it is also occupying one buffer slot. On the other hand, the transfer times

among the different workstations are assumed zero, since usually they are negligible

with respect to the aforementioned server processing times.

From the perspective of the sequential RAS model discussed in the previous sec-

tions of this chapter, a CRL can be modeled as a RAS Φ(CRL). This RAS contains

2m resource types, which are the servers and the buffer slots at the m workstations.

And the capacity of each server is 1, while the capacity of the buffer slots for work-

station i, i = 1, . . . ,m, is Bi. To define the resource requirement function regarding

the servers, each original stage Jj of the CRL is further divided into three RAS

stages, ∆jw,12 ∆jp and ∆jb, which respectively capture the three phases of “waiting

for processing”, “being processed” and “blocked and waiting for transfer”, that a job

instance may experience at each CRL stage. Among the three types of the newly de-

fined RAS stages, only the stages of “being processed” type require the allocation of

the servers, i.e., the stage ∆jp requires the server resource of the workstation WS(j)

in addition of one buffer slot; while the stages ∆jw and ∆jb require only one buffer

slot of workstation WS(j). Due to the assumption of zero transfer time, the last

RAS stage ∆nb can be merged into the stage ∆np, which reflects the fact that the job

12In the subscript “jw”, “j” is a variable that represents the index number of the stage, while “w”
is a label-type value representing the status of “waiting”. In the sequel, the letters for the label-type
values are non-italic to distinguish from the letters representing the variables.
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instances that have completed their last CRL processing stages can be unloaded from

the system immediately. For each CRL processing stage Jj, the timing distributions

of the corresponding RAS stage representing “waiting” or “blocked” phases are the

constant zero, while the timing of the stage ∆jp is exponentially distributed with rate

µj. The RAS Φ(CRL) is linear and conjunctive in the RAS taxonomy depicted in

Table 2.1.

The objective of the CRL scheduling problem is the maximization of the long-run

throughput, while avoiding the formation of the deadlock.

The definition of the maximum long-run throughput is not exactly the same as

defined in the context of the classical re-entrant line literature. For instance, [52]

defines the maximum throughput as the upper bound of the feeding rate of the raw

materials such that the manufacturing system remains stable, or there is no accu-

mulation of jobs in the system in the long term. However, the finite buffer sizes of

the CRL imply that the total number of jobs in the system has already been upper

bounded and will not accumulate in the long term. Therefore, this work adopts the

notion of the “maximum long-run throughput ”defined in [20]: this is the maximum

possible steady-state production rate of the CRL when infinite jobs are waiting out-

side of the system to be loaded. Since there are always infinite jobs waiting before the

first CRL stage, it is not necessary to use the buffer slots of the workstation WS(1)

to accommodate the job instances waiting to be processed in the first CRL stage.

Therefore, the RAS stage ∆1w can be merged into the RAS stage ∆1p. Finally, the

RAS Φ(CRL) contains a single process type with 3n− 2 processing stages, where n

is the number of CRL stages.

On the other hand, while solving for the deadlock avoidance policy (DAP) in the

CRL context, a simpler RAS model than Φ(CRL) can be abstracted. More specifi-

cally, the release of the server resources in Φ(CRL) takes place upon the transition

from a stage ∆jp to ∆jb, and it should be noticed that no new resources are required
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to be allocated during this transition. Therefore, the “hold-while-waiting” condition

will never happen in the allocation of the server resources, and therefore, deadlock

cannot happen due to the server allocation. As a result, the server allocation can be

omitted in the RAS model that considers only the logical control. The RAS model

that considers only the buffer allocation is denoted as Φ̂(CRL), and it contains m

resource types corresponding to the buffer slots of the m workstations. Furthermore,

the only process type is a linear process with n processing stages, corresponding to

the n stages of the CRL; the advancement to processing stage j requires one unit of

buffer slot at workstationWS(j) and will release one unit of buffer slot at workstation

WS(j − 1) if j is not the first stage. Modeling of timing is not necessary since only

logical control is considered in the RAS model Φ̂(CRL). The RAS Φ̂(CRL) will be

referred to as the simplified RAS in the sequel.

Note that there is a function defined between the state spaces of the RAS models

Φ(CRL) and Φ̂(CRL) that are constructed from the same CRL. If the state s of

Φ(CRL) is represented by a (3n − 2) dimensional vector whose components are the

numbers of job instances at each RAS stage, then for each such state, a corresponding

state ŝ of Φ̂(CRL) can be found with the same allocation of job instances among

the CRL stages. But it is also possible that different Φ(CRL) states map to the

same Φ̂(CRL) state. More importantly, any DAP generated from the state space

of Φ̂(CRL) is applicable to the state space of Φ(CRL), through the aforementioned

mapping. Determining a DAP for Φ̂(CRL) is much simpler than performing the same

task in the context of Φ(CRL), since the resource requirement function of Φ̂(CRL)

is single-unit, according to the RAS taxonomy introduced at the end of Section 2.1.

The next example intends to illustrate the above definition regarding the CRL

concept and its RAS-based modeling. The same example will also be used to illustrate

the entire methodology that is developed in the rest of this document.

Example 1 [59, 60] A small flexibly automated production cell.
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Process route:
WS1 -> WS2 -> WS1

Figure 2.2: The CRL model of Example 1

We consider a flexibly automated production cell with two different machines that

can process parts, and a robot that can transfer the parts among the machines and

the I/O port of the cell in negligible time. Each machine has a single server and two

buffer slots, and the jobs are processed in situ. This production cell supports only one

process plan with three sequential steps. Once a part is loaded to the cell, it should

be processed by machine 1; then the robot will move the part to machine 2 for the

second step of processing; after the part finishes processing at machine 2, it will be

moved back to machine 1, and the third processing step performed by machine 1 is

applied on the part; finally, the part that completes all the three steps can be unloaded

from the cell. The processing times for the three processing steps are exponentially

distributed with rates µ1, µ2 and µ3, respectively.

The production cell can be modeled as a CRL with m = 2 workstations and

n = 3 stages, where B1 = B2 = 2, WS(1) = WS(3) = 1, WS(2) = 2, and Dj is

exponentially distributed with rates µj, j = 1, 2, 3. For the objective of maximization

of the cell throughput, it is assumed that an infinite number of outstanding parts are

waiting outside the system. The CRL model is depicted in Figure 2.2.
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Furthermore, the RAS model Φ(CRL) contains 2m = 4 resource types. Two of

them are server resources with capacities 1, and the two others are buffer slot resources

with capacities 2. There is one process type in Φ(CRL) containing 3n − 2 = 7

stages, including 3 stages with ∆jp, j = 1, 2, 3, that correspond to the phase “being

processed” and have exponentially distributed processing time; 2 zero-processing-time

stages ∆jw, j = 2, 3, that correspond to the phase “waiting for processing” and 2 other

zero-processing-time stages , ∆jb, j = 1, 2, that correspond to the phase “blocked and

waiting for transfer”. For a given processing stage Jj with j = 1, 2, 3, the RAS stages

∆jx, x = w, p, b, require one unit of buffer slot resource of workstation WS(j),

while the RAS stage ∆jp requires, in addition, one unit of the other set of the RAS

resources, namely, the server of workstation WS(j). The state of the Φ(CRL) can

be represented by a vector s ∈ Z7
0+, where each component of the vector represents

the number of job instances at the corresponding stage.

The simplified RAS model Φ̂(CRL), which will be employed for logical control

only, contains m = 2 buffer slot resource types. The process type contains 3 stages.

Stages 1 and 3 require one unit of the buffer slots of workstation 1, while Stage 2

requires one unit of the buffer slots of workstation 2. The state of Φ̂(CRL) can be

represented by a vector ŝ ∈ Z3
0+. The mapping from a state s of the complete RAS

model Φ(CRL) to the state ŝ of the simplified RAS model Φ̂(CRL) is as follows:

ŝ[j] =


s[1p] + s[1b] if j = 1

s[2w] + s[2p] + s[2b] if j = 2

s[3w] + s[3p] if j = 3

In the above development of Example 1, a CRL is abstracted from an industrial

application of a flexibly automated production cell. And from the CRL model, a

complete and a simplified RAS models are constructed. A mapping between the

state spaces of the two RAS models is also established. Example 1 will be revisited
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and expanded several times in the sequel, as the methodology for RAS performance

optimization is being developed.
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CHAPTER III

FORMAL MODELING OF THE TIMED RAS DYNAMICS

AS A GSPN, AND THE CORRESPONDING

PERFORMANCE CONTROL PROBLEM

In this chapter, first we model the timed dynamics of the considered RAS as a GSPN,

and we integrate to the developed GSPN model the necessary logical and performance

control policies. Subsequently, this modeling method is customized in the context of

the CRL scheduling problem of throughput maximization. In the third part of the

chapter, we provide a formal description of the performance optimization problem ad-

dressed in this work as a mathematical programming problem, and we also discuss the

representational and computational complexity of this formulation. Finally, the chap-

ter concludes with some more technical remarks regarding a potential sub-optimality

that can be incurred by the solution space of the aforementioned formulation, and

the presentation of a method that can address this issue.

3.1 GSPN-based modeling of the timed behavior of the RAS

As discussed in Chapter 2, the qualitative behavior and the necessary logical control of

a RAS Φ of Definition 1 can be modeled as a Petri net (PN). Some early efforts in this

direction have led to the definition of the PN classes of Systems of Simple Sequential

Processes with Resources (S3PR) [29] and linear S3PR (L − S3PR) [30], while a

more recent and more general model is that of S∗PR [31]. And the considered GSPN

models inherit the ability of the basic PN model to express additional requirements

for the behavior / operational logic of the underlying system. One can implement

these additional requirements with appropriate augmentation of the net structure.
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More generally, the introduction of the GSPN model to be developed in this chapter

formalizes the RAS scheduling problem with a more extensively studied model (i.e.,

PN models) and a more complete set of structural and behavioral semantics than the

original RAS abstraction defined in Section 2.1.

However, although the methodological framework based on the GSPN model es-

tablishes a foundation and enables the potential to perform the integration of the

applied logical control, in the work presented in this document, the logical control

is not derived from a PN-based representation of the underlying RAS and this pol-

icy itself will not necessarily be represented in the PN modeling framework. On the

other hand, we shall use the GSPN structure in order to capture and analyze the

impact of the underlying RAS structure on the performance-oriented control. So,

the presumed constraints for the structure and the behavior of the considered RAS

are only the ones assumed in Definition 1 and the three assumptions in Section 2.1.

Furthermore, the basic method that will model the aforementioned RAS to a GSPN

is similar to the standard methods that have been employed in the past literature for

the same purpose [86]. Next, we provide a detailed account of this modeling method,

and highlight it with some examples.

PN modeling of RAS This modeling can be performed in three steps:

1. Each process type Γj is modeled as an independent network. In particular, each

stage ∆jk can be modeled as a place; each disjunctive immediate precedence re-

lationship can be modeled as a transition; and the places and the transitions are

connected according to these precedence relationships. Furthermore, a “split”

(resp., “merge”) relationship among a set of processing stages can be modeled

by a single transition with multiple output (resp., input) places. All the places
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created in this step are called process places in the sequel.1 Finally, the ini-

tial marking for those process-type modeling networks contains no tokens, to

represent the empty state of the RAS.

2. Each resource type is modeled as a place, which is called a resource place in the

sequel. The initial marking for these places assigns a number of tokens equal

to the corresponding resource capacities.

3. The resource requirement function can be modeled by connecting the resource

places with the corresponding transitions that model the resource allocation

and release, in the process-type networks. It should be noted that the resource

allocations and releases are not exactly the same with those implied by the

resource requirement function, but they model the differential allocation and

deallocation, as defined by the resource requirements of consecutive processing

stages, due to Assumption 2. More specifically, for a transition t that models

the advancement from stage ∆jk to stage ∆jk′ of the same process type Γj, the

input places in •t include the process place for ∆jk and all the resource places

corresponding to the positive components of (A(∆jk′)−A(∆jk)); furthermore,

the weights for the corresponding arcs are exactly the value of these components.

On the other hand, the output places in t• include the process place for ∆jk′ and

the places corresponding to the positive components in (A(∆jk)−A(∆jk′)). Fi-

nally, there are no connections between t and the resource places corresponding

to the zero components in (A(∆jk)−A(∆jk′)).
2

1In some literature, these places are also called “operation” places [6, 62].
2This may happen even if the corresponding components of the resource requirement vector is

non-zero. For instance, if the consecutive stages ∆jk and ∆jk′ of the same process type Γj require
the same number of units of the same type of resource Ri, then according to Assumption 2 the
advancement from ∆jk to ∆jk′ does not require extra units of Ri. As a result, there should be no
connection between the resource place for Ri and the transition that models this advancement.
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A more concrete illustration of the above PN structure can be found at the end

of Section 3.2, where the CRL of Example 1 is modeled as a GSPN. However, since

a CRL is essentially a linear RAS, Example 1 cannot illustrate the PN structure

modeling RAS cases with more complex sequential logic. Therefore, next we provide

Example 2. The main purpose of this example is to illustrate the PN modeling of

complex sequential logic in the considered RAS.

Example 2 A RAS process type with complex sequential logic.

Consider a RAS process type with the sequential logic depicted in the left side of

Figure 3.1. More specifically, a “split” follows the first processing stage ∆0, where

a process instance that completes the stage ∆0 will split into two process instances.

One process instance goes into the stage ∆1; the other instance goes into the stage

∆5. For a process instance that completes stage ∆1, one of the stages ∆2 or ∆3 can

be the next stage. Process instances that complete the stages ∆2 or ∆3 will proceed

to the stage ∆4. Finally, a process instance that completes stage ∆4 must merge

with another process instance that has completed stage ∆5 to one process instance.

This new process instance must proceed to stage ∆6 and eventually exit the system,

terminating the whole process.

In the PN model depicted in the right side of Figure 3.1, the “split” relationship

is modeled by the presence of multiple output process places p1 and p5 for transition

t1. The “disjunctive” relationships are represented by the multiple output transitions

t2 and t3 for the process place p1 and the multiple input transitions t4 and t5 for the

process place p4. The “merge” relationship is represented by the multiple input pro-

cess places p4 and p5 for transition t6. With respect to modeling the relevant resource

requirement for each transition t0, . . . , t7, we further notice that since the merge/split

relationships are modeled by a transition with multiple input/output process places,

as in the case of transitions t6 or t1, the resource requirement differential that was
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(b) The PN model for the sequential
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Figure 3.1: The sequential logic for the RAS process type considered in Example 2,
and its PN model

discussed in the previous paragraph must be determined with respect to the total

resource requirement over these places. On the other hand, since the disjunctive re-

lationship is modeled by one transition for each option, as in the case of transition

t2, t3, t4 or t5, the corresponding resource requirement differential can be modeled

independently on each transition for each option.

The introduction of timed dynamics to the RAS-modeling PNs Given a

processing stage ∆jk, if the timing distribution Djk is the constant zero, then the

modeling of this stage by a single process place, as in the case of the untimed PN

model, is sufficient also for modeling the timed dynamics of this stage. Otherwise, an

additional transition or a subnet structure is needed to model the actual “processing”

of the stage. Note that if the considered processing time is exponentially distributed,

then it can be modeled by a single timed transition in the GSPN framework. Other
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distributions can be approximated by some phase-type distributions to any desired

degree of accuracy, and the latter can be modeled by a subnet structure that will

replace the timed transition in the developed GSPN model.

Next, let us suppose that the positive processing time Djk of the stage ∆jk is

exponentially distributed, and this processing activity is modeled by a timed tran-

sition tjkp with rate equal to the rate of Djk. Then, due to the assumption of the

“hold-while-waiting” effects, the place that models the processing stage ∆jk, denoted

as pjk, can be split into two process places, pjkp and pjkb, which are respectively the

input and output places of transition tjkp. The place pjkp models the status under

which the process instance has been allocated the necessary resources and begins pro-

cessing; all the input transitions of pjk are inherited by pjkp. Meanwhile, the place

pjkb models the status where the process instance has completed its processing but

it still occupies the resources of the stage ∆jk since it is blocked and waiting for the

allocation of the resources to advance to its next processing stage(s); all the output

transitions of pjk are inherited by pjkb. Example 2 illustrates this modeling procedure

in a more concrete manner.

Example 2 revisited Suppose that stage ∆1 in the RAS of Example 2 has an

exponentially distributed processing time with rate r1. Thus, a timed transition t1p

is added to the network structure. Furthermore, the place p1 is split into p1p and p1b,

which are respectively the input and output places of t1p. Then, the input transition

t1 of p1 becomes the input transition of p1p, and the output transitions t2 and t3 of

p1 become the output transitions of p1b. Meanwhile, all the arcs that represent the

resource allocation or release, or the sequential logic with respect to the precedent

or subsequent stages, are kept on the corresponding transitions. This procedure that

introduces the timed dynamics is depicted in Figure 3.2. In this figure, resource

allocations and releases are omitted in the left subfigure for the original PN.
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Figure 3.2: Introduction of the timed behavior in Example 2

Remark A reachable marking of a RAS-modeling GSPN is uniquely determined

by the numbers of tokens in the process places, while the numbers of tokens in the

resource places are determined by the resource capacity function C, the numbers of

tokens in the process places, and the resource requirement function A.3 Because of

this feature, in the sequel, we shall define a GSPN marking by providing only its

submarking that corresponds to the process places. 2

Next, we turn to some important aspects of the RAS-modeling GSPNs in prepa-

ration for the further developments of this document. These aspects include the

integration of the RAS logical control, the specification of the performance con-

trol/scheduling policies and policy spaces, and some features that can simplify the

further analysis of the underlying stochastic process.

3.1.1 Control elements for the RAS-modeling GSPN

Integrating the RAS logical control to the GSPN model The major RAS

logical control methods have already been discussed in Section 2.2. To apply these

3In more technical terms, this possibility is due to the fact that the connectivity of each resource
place to the transitions of the RAS-modeling GSPN defines an invariant for the net marking that
involves this resource place and the process places that utilize the resource [86].
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logical control methods on a RAS-modeling GSPN, we consider two forms of the

representation for the RAS logical controller. The first one is applicable to the FSA-

based RAS-modeling framework, but it can be easily adapted to the PN-based RAS-

modeling context due to the one-to-one relationship between a PN marking and the

FSA state of any given RAS. And this method is the one that is adopted in this work,

in general, since it applies to the RAS whose safe and unsafe regions might not be

linearly separable. The second form is only applicable when the applied control policy

can be expressed as a set of linear constraints on the marking of the RAS-modeling

PN, but it is valuable due to the simplicity of the resultant behavioral analysis.

1. One-step look-ahead test: Each enabled untimed transition of the current

marking M is tested, whenever |Eu(M)| ≥ 1.4 The test is through a simulated

firing of the transition, and the examination of the policy admissibility of the

resultant marking. In some special RAS configurations with no deadlock-free

unsafe states, the above test can be a deadlock-detection test, which has a

polynomial complexity [86]. In more general RAS configurations, the above

test can be based on a “classifier” representation of the applied policy along the

line discussed in Section 2.2.1.

2. PN-based policy representation: The “behavioral filter” represented by the

logical control policy is automatically imposed on the dynamics of the RAS-

modeling PN through the superimposition to this net of additional structure

representing the policy logic. In other words, after the RAS is modeled as

a GSPN, some additional places with connections to the existing transitions,

called supervisors, are added to impose the constraints that guarantee the live-

ness of the augmented net. For instance, if the liveness-enforcing constraints

can be represented in the form of a set of linear inequalities
∑

i aixi ≤ b, where

4Note that any t ∈ Et(M) models only the processing of the job instances, not any resource
allocation behavior. Hence, no logical control is necessary for these timed transitions.
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xi are numbers of job instances in some processing stages in the RAS, and ai

and b are integers, then the constraints can be modeled by the addition of some

supervisors, one for each constraint. Each of these supervisors enforces the cor-

responding linear constraint by establishing an invariant in the net dynamics

similar to the invariants that are defined by the resource places. In fact, these

supervisors can be perceived as additional “fictitious” resource types for the

original net. The reader is referred to [37, 72, 47] for the corresponding analysis

and the specific methods for the construction of the supervisors from: (i) the

corresponding linear constraint, and (ii) the structure and the initial marking

of the “plant” PN.

Policies and policy spaces When the deadlock avoidance policy (DAP) is in-

tegrated to the GSPN via one-step look-ahead control, the notions of policies and

policy spaces can be introduced for the formalization of the imposed restriction on

the behavior of the GSPN. More specifically, a (stationary) policy is a composite rule

typically containing two tiers: the first tier is a disabling rule, which specifies the

untimed transitions t ∈ Eu(M) to be disabled at each vanishing marking M ∈ R;

the second tier comprises the probability distributions, or the “random switches”,

that must be applied to all those vanishing markings with more than one untimed

transitions enabled after the application of the disabling rule.5 A policy with such a

structure will be denoted by Z, and it is defined by the set of values of all the random

switches that are employed by it. More formally,

Z ≡ {ZM ∈ R|Tu|0+ : M ∈ RV} (2)

5A policy can be non-stationary, if the composite rule depends also on the timing of the various
decision points, besides the vanishing markings. But in this research context, only stationary policies
will be considered. And the term “stationary” will be omitted in the sequel.
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where the vectors ZM satisfy the following additional constraints:

∑
t∈Tu

ZM [t] ≤ 1, ∀M ∈ RV ∧ ZM [t] = 0, ∀M ∈ RV , ∀t /∈ Eu(M) (3)

A policy space Π is a set of policies that satisfy some constraints. The largest policy

space for a GSPN is the full policy space Π0, which contains any policies satisfying

the conditions specified in (3). The inequality appearing in (3) enables the modeling

of deliberate idleness. On the other hand, the one-step look-ahead DAP discussed

previously applies the following additional constraint:

ZM [t] = 0, ∀M ∈ RV , ∀t ∈ Eu(M) s.t. tr(M, t) is inadmissible (4)

The restriction of the policy space Π0 through the constraint of Equation (4) defines

the policy space Π1 ⊆ Π0. Clearly, every policy Z in a policy space Π1 which is

defined by a correct DAP, is a deadlock and restricted deadlock-free policy.

Another constraint is applied on the policy space Π1 to prevent higher priorities

of the timed transitions over the untimed transitions (i.e., deliberate idleness other

than that enforced by the applied DAP):

∑
t∈Tu

ZM [t] = 1, ∀M ∈ RV s.t. ∃t ∈ Eu(M), tr(M, t) is admissible (5)

The policy space that results from Π1 through the addition of constraint (5) will be

denoted by Π2 ⊆ Π1. Although this constraint enforces the GSPN convention that

untimed transitions have higher priorities than timed transitions, the reduction on the

policy space that it incurs may lead to a potential sub-optimality of the new policy

space [38]. However, in Section 3.5 we show that this issue can be easily addressed

by properly augmenting the underlying GSPN structure.

The concept of policy-space-conditioning can be defined for the set of enabled

untimed transitions, the feasible sequences, the reachable markings and the state

space. More specifically, for a marking M , the set of Π-enabled untimed transitions
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is defined as:

EΠ
u (M) =

{
t|∃Z ∈ Π, s.t. ZM [t] > 0

}
Then, accordingly, a Π-feasible firing sequence σ = t1t2 . . . tl ∈ T ∗u at marking M is

a firing sequence such that t1 ∈ EΠ
u (M), and for the ith transition in the sequence,

i = 2, . . . , l, ti ∈ EΠ
u (tr(M, t1 . . . ti−1)). Furthermore, a marking M ′ is Π-reachable

from M if there exists a Π-feasible firing sequence σ ∈ T ∗u at marking M such that

M
σ−→M ′. Finally, the notations RΠ, RΠ

V and RΠ
T denote the conditional state spaces

of all reachable markings, vanishing markings and tangible markings, respectively.

Note that for a given policy space Π, due to the application of disabling rules for

some untimed transitions, it is possible that some unconditional vanishing markings

become Π-conditional tangible markings. Yet, it can be verified that ∀Π ⊆ Π0,

RΠ
V ⊆ RV . When there is no superscript, the notation means “unconditional” and is

under the setting of the full policy space Π0.

In the sequel, most of the sets of enabled untimed transitions, the feasible firing

sequences, the reachability from one marking to another, and the state spaces involved

are Π2-conditional, where Π2 is the deadlock-free and non-idling policy space.

3.1.2 Some additional features of the RAS-modeling GSPN

To simplify the further analysis, it is convenient to confirm that the Conditions 1, 2

and 3 in Section 2.3.3 are satisfied in the considered class of GSPNs. As a first step,

note that the total number of job instances is bounded, because (i) the total number

of processing stages ∆ of a RAS Φ is finite, and (ii) the total number of job instances

at each processing stage is finite since in item 4 of Definition 1 it is assumed that at

least one unit of at least one type of resource is required by any given process stage.

Then, it can be further inferred that:

Proposition 1 The RAS-modeling GSPN is bounded. Furthermore, its state space

is finite, i.e., |R(GSPN (Φ))| <∞.

50



The second step seeks to establish the ergodicity of the stochastic process repre-

senting the timed dynamics of the GSPN, i.e., the satisfaction of Condition 2. As

long as the GSPN is logically controlled by applying a correct DAP, it is reversible.

In other words, the conditional reachability graph of the GSPN is strongly connected

with respect to the policy space Π1 or Π2. Furthermore, for every policy Z from these

two policy spaces that retains the corresponding conditional reachability graph as the

STD of the induced SMP, we can infer that the EMC of this SMP is ergodic. Such

policies Z can be obtained by employing random switches that assign a positive lower

bound to the selection probability of each enabled untimed transition. In this way,

we obtain the policy space Π3 that is characterized by the addition of the following

constraint to the policy space Π2:

ZM [t] ≥ δ/|EΠ2
u (M)|, ∀M ∈ RΠ2

V , ∀t ∈ E
Π2
u (M); 0 < δ < 1 (6)

In Equation (6), the parameter δ ∈ (0, 1) can be seen as a randomization factor. And

the addition of the above constraint can be seen as the application of an exploration

mechanism on the whole state space.

The next proposition follows directly from the above developments:

Proposition 2 Consider a RAS-modeling GSPN and a policy Z ∈ Π3. Then, the

EMC of the corresponding SMP that represents the timed dynamics of the GSPN, is

ergodic.

The remaining step is the confirmation of Condition 3, which is given by Propo-

sition 3:

Proposition 3 The RAS-modeling GSPN, i.e., GSPN (Φ), satisfies Condition 3. In

other words, for any vanishing marking M ∈ RV(GSPN (Φ)), there does not exist a

feasible non-empty transition firing sequence σ ∈ T ∗u such that M = tr(M,σ).
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Figure 3.3: The set of transitions that “offset” the changes on the marking M that
are incurred by the firing of transition t1

Proof: The validity of this proposition mainly lies on the following two assumptions:

(i) the no-revisit assumption for the sequential logic that is defined in item 3 of Defi-

nition 1, and (ii) the non-zero processing time assumption for any possible realization

path of each process type (Assumption 3 in Section 2.1).

For the sake of contradiction, consider a RAS-modeling GSPN with a vanishing

marking M ∈ RV and a feasible non-empty firing sequence σ ∈ T ∗u such that M =

tr(M,σ). Then, since σ is non-empty, there is a first transition t1 in σ. According to

the semantics of the RAS-modeling GSPN, the firing of a transition implies the stage

advancement of one job instance j. Let us further assume that the job instance j is

of process type Γj.

Without loss of generality, suppose that transition t1 corresponds to the advance-

ment of job instance j from process place pjk to process place pjk′ (the corresponding

argument is similar for the remaining cases). Then, the firing of t1 consumes one

token at place pjk and releases one token at place pjk′ . Since, by the no-revisit as-

sumption of item 3 of Definition 1, the GSPN subnet modeling the process type Γj is

acyclic, the considered sequence σ must contain two transition subsequences σ1 and

σ2 that respectively replenish place pjk with one token and abduct the extra token in

place pjk′ out of the network. Furthermore, the combined sequence σ1tσ2 corresponds

52



to a complete realization path for process type Γj (c.f. Figure 3.3 for a visualization

of this argument). Hence, by Assumption 3 in Section 2.1, σ must contain a timed

transition, which contradicts the working assumption.

3.2 Specialization of the GSPN-based modeling of the RAS
performance control problem to the CRL scheduling
problem

The RAS performance control problem has been customized to a CRL scheduling

problem in Section 2.4. And in this section, this line of customization will be further

extended by constructing the corresponding GSPN model from a CRL configuration.

GSPN-based modeling of the considered CRL We start by noticing that the

general procedures of Section 3.1 are still applicable, since the CRL operations are

modeled as a RAS Φ(CRL). Next, consider a CRL stage Jj, which is modeled by the

three processing stages of Φ(CRL): ∆jw, ∆jp and ∆jb. Note that stages ∆jw and ∆jb

have zero processing time and each of them can be modeled by one process place. On

the other hand, stage ∆jp has exponentially distributed processing time (or some more

generally distributed processing time with positive support), so it should be modeled

by two process places and an untimed transition (or resp., a subnet approximating

the general distribution). All these four places can be connected with necessary

untimed transitions that model the status change of the job instances. Finally, the

resource places that model the availabilities of the server and the buffer slots of the

different workstations can be connected to those untimed transitions according to the

resource requirement function. The GSPN structure that models the CRL stage Jj

is illustrated in the left side of Figure 3.4.

However, a simplification can be applied due to the special structure of the CRL.

Consider the second process place that models the RAS stage ∆jp. It models the

blocking effect: a job finishes processing but it is blocked and cannot release the
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Figure 3.4: The GSPN model of a CRL stage Jj, before and after simplification

allocated resource. However, the blocking cannot happen here, because its next stage

∆jb does not require the allocation of new resources and any jobs finishing processing

at ∆jp can immediately proceed to ∆jb. This conclusion comes from the fact that the

processing of CRL happens in situ, and the server will not be occupied by the job that

finishes processing. As a result, the second place that models the stage ∆jp can be

eliminated, and its input and output transitions can be combined. The simplification

is depicted in the right side of Figure 3.4. Thanks to this simplification, there is a

one-to-one relationship between the processing stages of the RAS Φ(CRL) and the

process places of its GSPN model. And this relationship also defines the one-to-one

relationship between the states of Φ(CRL) and the markings of the GSPN.

Finally, the reward function r̂ on the set of tangible markings M of the GSPN

built from the CRL model can be defined as

r̂(M) =


r(tnp) if tnp ∈ Et(M)

0 otherwise

(7)

In Equation (7), tnp is the timed transition that models the processing of the last CRL

stage. According to Assumption 4, the timing distribution for this last processing

stage is exponential in the considered class of CRLs.
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Deadlock avoidance in the CRL and the GSPN representation of the cor-

responding policy When dealing with deadlock avoidance problems in the CRL

context, the simplified RAS model Φ̂(CRL) can be used for analysis purposes. After

the offline part of the logical control problem is solved, i.e., a classifier that imple-

ments the applied DAP becomes available, the classifier can be tailored to the state

space of the complete RAS model, Φ(CRL), through the existing mapping between

the state spaces of the two RAS models (c.f. Section 2.4).

As already discussed in this work, the employed DAP is enforced through the

one-step look-ahead method that tests the admissibility of an enabled transition by

running the resultant state through the constructed classifier. A special case for such

tests is the deadlock-detection test for RAS which have no deadlock-free unsafe states.

For this type of RAS, if the test gives a result of no deadlock, then it also implies

the state safety. Since Φ̂(CRL) is a linear and single-unit RAS, it contains, indeed,

instantiations that possess no deadlock-free unsafe states. More specifically, Section 1

of Chapter 3 of [86] provides two theorems (Theorems 3.2 and 3.5) that characterize

two types of single-unit RAS where no deadlock-free unsafe state exists. Both of

these theorems are applicable to the linear and single-unit RAS, to which the class

of the Φ(CRL) belongs. The theorems in [86] can be restated in the context of the

simplified RAS Φ̂(CRL) as follows:

Theorem 1 [88, 32] A simplified RAS Φ̂(CRL), that abstracts the buffer allocation

in a given CRL, has no deadlock-free unsafe states, if every workstation i in the

underlying CRL satisfies one of the following four conditions:

(i). its number of buffer slots Bi ≥ 2;

(ii). there is only one CRL stage j such that WS(j) = i.

(iii). ∀j < j′ such that WS(j) = WS(j′) = i, either j′ is the final stage n, or

WS(j + 1) =WS(j′ + 1);
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(iv). ∀j < j′ such that WS(j) = WS(j′) = i, either j = 1, or WS(j − 1) =

WS(j′ − 1).

Theorem 2 [58] A simplified RAS Φ̂(CRL), that abstracts the buffer allocation in

a given CRL, has no deadlock-free unsafe states, if there exists an indexing of the

line workstations, such that every CRL stage j satisfies one of the following three

conditions:

(i). j is the last stage n or the next last stage n− 1;

(ii). j ≤ n− 2 and WS(j + 1) =WS(j) + 1;

(iii). j ≤ n− 2, WS(j + 1) <WS(j) and WS(j + 2) >WS(j + 1).

The conditions of these two theorems are quite common in most applications of

CRL. Furthermore, if a CRL has no deadlock-free unsafe states, then, the maximally

permissive DAP can be represented by a linear classifier. To see this, consider any

partial deadlock state sd which is reachable from a safe state ss by advancing a

job instance to its next CRL stage or by loading a new job instance to the CRL.

According to Definition 2, at state sd, there exists a set of job instances J d(sd), such

that each of them holds one buffer slot and prevents the advancement of other job

instances in J d(sd). Furthermore, since RAS Φ̂(CRL) concerns only the allocation

of the buffer slots of the line workstations, it further follows that all the buffer slots

requested by the jobs in J d(sd) must correspond to buffers allocated to capacity.

Hence, the considered deadlock can be prevented in a maximally permissive manner

by the enforcement of the following inequality upon the state ŝ of the simplified RAS

Φ̂(CRL): ∑
j∈J d(sd)

ŝ[j] ≤
∑

i∈WSd(sd)

Bi − 1 (8)

In Equation (8), WSd(sd) is the set of all the workstations involved in the partial

deadlock, i.e., WSd(sd) ≡ {i : ∃j ∈ J d(sd) s.t. WS(j) = i}.
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The complete development of the constraints (8) requires the enumeration of all

the reachable deadlocks, and falls into the category of the classifier-construction prob-

lem that was discussed in Section 2.2.1.

Example 1 revisited The GSPN model of the RAS Φ(CRL) constructed at the

end of Chapter 1 is depicted in Figure 3.5, and the relevant semantics, modeling the

corresponding process plan and the resource requirement function, are shown in Table

3.1. In particular, the figure and the table explain very clearly how the transitions

that model the stage advancement of the job instances, are connected to the resource

places, to model the resource allocation and release. Table 3.1 also provides the one-

to-one relationship between the GSPN process places and the Φ(CRL) processing

stages.

In Figure 3.5, the place p11 and its affiliated arcs are depicted in gray color and

dashed lines. This place has not been included in Table 3.1 because it is a “supervisor”

place that imposes the maximally permissive DAP for this CRL. More specifically,

it can be easily checked that the simplified RAS Φ̂(CRL) of this example satisfies

the conditions of Theorem 1.6 Therefore, this CRL does not possess any deadlock-

free unsafe states, and the safety region can be characterized with linear constraints.

Furthermore, it can be seen that for the simplified RAS Φ̂(CRL), the only possible

deadlock state is ŝd = (2 2 0)T and the corresponding constraint of (8) takes the

form:

ŝ[1] + ŝ[2] ≤ 3

This constraint can be mapped to the complete RAS Φ(CRL) state s as follows:

s[1p] + s[1b] + s[2w] + s[2p] + s[2b] ≤ 3

6We remind the reader that the CRL contains two workstations and each of them has two buffer
slots, which satisfies condition (i) of Theorem 1. In fact, this CRL also satisfies the condition of
Theorem 2, as it supports the route among workstations (WS): WS1 → WS2 → WS1. Of course,
only one of these two theorems is enough for the conclusion.
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Figure 3.5: The GSPN model for the CRL scheduling problem in Example 1
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Table 3.1: The operational semantics encoded by the GSPN in Figure 3.5
Process place Description of the job status and the mapping to Φ(CRL) stages
p0 (resp., p3, p6) Being processed at workstation WS(1) (resp., WS(2), WS(3))

Φ(CRL) stages: ∆1p (resp., ∆2p, ∆3p)
p1 (resp., p4) Having completed processing at workstation WS(1) (resp.,

WS(2)) and waiting for the advancement to the workstation
required by the next stage
Φ(CRL) stages: ∆1b (resp., ∆2b)

p2 (resp., p5) Waiting for processing at workstation WS(2) (resp., WS(3))
Φ(CRL) stages: ∆2w (resp., ∆3w)

Resource place Description
p7 (resp., p9) Server availability at workstation 1 (resp., 2)
p8 (resp., p10) Buffer slot availability at workstation 1 (resp., 2)

Transition Description of the actions that change job status
t0 Load and start processing a new job at workstation WS(1);

Allocate the corresponding buffer slot and server
t1, (reps., t4) Complete processing a job at workstation WS(1) (resp.,

WS(2));
Release the corresponding server

t2, (reps., t5) Advance a completed job at workstation WS(1) (resp., WS(2))
to the workstation required by the next stage;
Allocate and release the relevant buffer slots

t3 (resp., t6) Start processing a job at workstation WS(2) (resp., WS(3));
Allocate the corresponding server

t7 Complete processing a job at workstation WS(3) and unload
the job from the system,
Release the corresponding server and buffer slot

Then, according to the one-to-one relationship between the Φ(CRL) stages and the

GSPN process places, the constraint can be represented as a marking inequality

M [p0] +M [p1] +M [p2] +M [p3] +M [p4] ≤ 3

Finally, according to the theory of [72, 47], this marking inequality can be enforced

by the addition of the supervisor place p11 as depicted in Figure 3.5.

As mentioned before, the supervisor places are not necessary if the employed DAP

is implemented through a one-step look-ahead scheme. In this example, since the

considered CRL satisfies the condition of Theorem 1, there is no deadlock-free unsafe

state in Φ̂(CRL). Hence, the test on whether an untimed transition t is admissible
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at a vanishing marking M can be the test of whether the corresponding state ŝ of

Φ̂(CRL) which is obtained from the marking tr(M, t), is deadlocking.

3.3 The performance optimization of the RAS-modeling
GSPN and its mathematical programming formulation

After the GSPN that models the logically controlled dynamics of the RAS is estab-

lished, the remaining tasks are (i) the construction of the connection between the RAS

scheduling/performance-oriented control objective and the performance optimization

of the GSPN reward model, and (ii) the solution of the GSPN performance optimiza-

tion problem. The first step essentially associates the reward rates to the tangible

markings of the GSPN, according to the optimization objective and the application

context of the underlying RAS. In this document, only throughput maximization is

discussed. However, the methodological framework is compatible for any RAS per-

formance optimization objectives that can be modeled as reward rates of tangible

markings of the GSPN.

For the objective of throughput maximization, an indicator reward function Ir(·)

is defined on the set of timed transitions: the function Ir(t) returns one if the firing

of the timed transition t models the completion of a last non-zero-time processing

stage of some process type, since the firing of such a transition guarantees one unit of

output from the RAS in zero time; and the function returns zero for any other timed

transitions. This instantaneous reward subsequently can be changed to the form of a

reward rate on any tangible marking M , denoted as the reward rate r̂(M):

r̂(M) ≡
∑

t∈Et(M)

Ir(t)r(t)

where r is the mapping that defines the firing rates of the timed transitions (c.f.

Section 2.3.2).

The performance optimization for the GSPN reward model was first addressed

in [59], which gives the procedures for building a mathematical programming (MP)
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formulation. In this document the procedures will be described in more detail.

After the GSPN is abstracted from a fully defined RAS, the set of decision variables

are the vectors ZM that can specify a policy Z as discussed in Section 3.1.1. When

a correct DAP (including the maximally permissive DAP) is applied, no deliberate

idleness is allowed, and the exploration mechanism of Equation (6) is applied, the

policy Z is confined to the policy space Π3, and the decision variables in ZM can be

restricted only to M ∈ RΠ3
V : |EΠ3

u (M)| ≥ 2, since the values of other vectors in Z

have already been fixed by the constraints that define Π2 ⊇ Π3.7

Also, as mentioned in the definition of the policy space Π3 in Section 3.1.1, the

components of each ZM are lower bounded by a positive scalar that is determined

by the policy-space-defining parameter δ, in an effort to establish the ergodicity of

the EMC of the underlying SMP. The transition rates of the underlying CTMC M

corresponding to the GSPN can be obtained through the procedures illustrated at the

end of Section 2.3.3. Therefore, the infinitesimal generator matrix Q ∈ R|R
Π2
T |×|R

Π2
T | of

the CTMCM can be expressed as a matrix depending on Z, i.e., Q(Z). Furthermore,

a vector of auxiliary variables π ∈ R|R
Π2
T |

0+ will denote the steady-state distribution of

the CTMC M. In this way, the problem of the performance optimization for the

considered GSPN can be formulated as [59]:

maximize η = πT · r̂ (9)

subject to πTQ(Z) = 0 (10)

πT1 = 1 (11)∑
t

ZM [t] = 1 ∀M ∈ RΠ2
V : |EΠ2

u (M)| ≥ 2 (12)

ZM [t] ≥ δ

|EΠ2
u (M)|

∀M ∈ RΠ2
V : |EΠ2

u (M)| ≥ 2; ∀t ∈ EΠ2
u (M) (13)

7Since the additional constraint (6) defining Π3 from Π2 does not disable any untimed transitions,
EΠ2
u (M) = EΠ3

u (M), for any M ∈ R. Therefore, the state spaces defined by Π2 and Π3 are the same.
In the sequel, all the concepts related to the underlying state space or reachability will be denoted
as Π2-conditional instead of Π3-conditional.
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Equation (9) expresses the objective of maximizing the steady-state average re-

ward.8 The system of equations (10)–(11) in the set of constraints defines the steady-

state distribution. Finally, the inequality constraints (12)–(13) ensure that the pricing

of the decision variables specifies legal probability distributions with the desired de-

gree of randomization.

The problem formulation of Equations (9)–(13) can be further simplified with the

removal of all the equality constraints in the formulation and the reduction of the

corresponding decision variables. More specifically, let vector ζ̄ be the set of decision

variables after removing the equality constraints, and define an index-searching func-

tion idx : RΠ2
V × Tu 7→ Z+ ∪ {NULL} as follows: with input of a vanishing marking

M and an untimed transition t, if |EΠ2
u (M)| ≥ 2 and t is not the last element in

EΠ2
u (M) according to the lexicographic order that is based on the natural numbering

of the transition set T , then idx(M, t) returns the index number i in the vector ζ̄ such

that ζ̄[i] is the probability that t is fired at M , i.e., ZM [t] ≡ ζ̄[idx(M, t)]; otherwise,

idx(M, t) returns NULL. Also suppose that the objective function can be expressed as

η = η(ζ̄). Then, the MP formulation of Equations (9)–(13) can be re-written as

maximize η(ζ̄) (14)

subject to
∑

t:idx(M,t)6=NULL

ζ̄[t] ≤ 1− δ

|EΠ2
u (M)|

∀M ∈ RΠ2
V : |EΠ2

u (M)| ≥ 2 (15)

ζ̄[idx(M, t)] ≥ δ

|EΠ2
u (M)|

∀M ∈ RΠ2
V , ∀t ∈ Tu : idx(M, t) 6= NULL (16)

The input to the formulation of Equations (14)–(16) includes: the PN structure

N , the initial marking M0, the partition of the transitions Tu and Tt, the function r

that defines the transition rates of the timed transitions, and the vector or function

r̂ that defines the reward rate. The solution of this formulation consists of a vector

ζ̄∗ that specifies the optimal pricing of the selection probabilities in the policy space

8Similar to the steady-state distribution vector π and the infinitesimal generator Q, the reward
vector r̂ is a bit different from its original definition in Section 2.3.3. In this formulation, r̂ is defined
on the set of Π2-conditional tangible markings RΠ2

T , not the original set of tangible markings RT .
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Π3, and the value of the objective function η∗ = η(ζ̄∗). As δ ↓ 0, Π3 converges to the

deadlock-free and non-idling policy space Π2, and thus, η∗ converges to the maximum

steady-state average reward of the GSPN and the RAS with no deliberate idleness.9

Uniformization The dependency of η on ζ̄ can be either resolved through the

system of equations (10)–(11), or the steady-state distribution of the discrete-time

Markov chain (DTMC) M̂ after the uniformization of the CTMC M. Though the

uniformization does not render easier the (direct) solution of the MP formulation

of Equations (14)–(16), it is useful when this formulation is approached through

the numerical methods coming from Markov-chain theory, such as the computing

methods for Markov decision processes (MDPs), or simulation optimization. The

uniformization can be applied in the following way:

1. Compute a rate ru, which is an upper bound to the sum of the rates of all

the simultaneously processed job instances in the underlying RAS plus a small

positive scalar. This rate ru can be adopted as the uniformization rate. For

the special case of a CRL satisfying Assumption 4, the aforementioned upper

bound can be set to maxi
∑

j:WS(j)=i µj. The small positive scalar is used to

give positive transition probabilities for the self-loop transitions, and guarantee

the aperiodicity of this Markov chain, which is a desirable feature.

2. Change the reward rate vector r̂ to the vector r̂
ru

. These rewards can be

perceived as one-step immediate rewards in the operation of the uniformized

Markov chain. Change the average reward η to the expected reward per tran-

sition in steady state: η
ru

.

3. Generate the non-diagonal components of the transition probability matrix P

of the DTMC M̂, by dividing by ru the components at the same position in the

9The constraints (15) and (16) make the policy space Π3 a proper subset of the policy space Π2,
as long as δ > 0.
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infinitesimal generator Q of the CTMC M.

4. Generate the diagonal components of P of the DTMC M̂, by subtracting from

one the sum of the other components in the same row.

In the sequel, the notation r̂ and η may have either their original meaning or the

quantities that are divided by ru, depending on the context. It is well known that the

steady-state distribution π is not changed by the presented uniformization process

[16].

Example 1 revisited We remind the reader that the GSPN model for this exam-

ple CRL was constructed at the end of Section 3.2. At that point, the maximally

permissive DAP was also implemented. Here we address the MP formulation for the

performance optimization of the GSPN corresponding to this example.

The Π2-conditional STD of the SMP corresponding to the GSPN of this exam-

ple is presented in Figure 3.6. The token distribution in the process places of the

net at each reachable marking, can be found in Table B.1 of Appendix B. In the

depicted STD, the nodes model all the reachable markings. Among them, the single-

circled nodes model the vanishing markings, while the double-circled nodes model the

tangible markings. And the arcs from the tangible nodes model the enabled timed

transitions, while the arcs from the vanishing nodes model the Π2-enabled untimed

transitions. The branching probabilities from the tangible markings are determined

by the exponential race taking place among the timed transitions that are enabled

at these markings, and are presented as labels on their corresponding arcs. However,

the branching probabilities from the vanishing markings M depicted as gray nodes,

which are “decision points”, should be determined by the corresponding vectors ZM

of the random switches. In this example, there are 20 random switches with 27 total

degrees of freedom for the policy space, which are modeled by 27 decision variables.
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Figure 3.6: The Π2-conditional state transition diagram of the underlying semi-
Markov process for Example 1
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Furthermore, the reward rates are defined on M ∈ RT as follows:

r̂(M) =


µ3 if t7 ∈ Et(M)

0 otherwise

In Figure 3.6, the tangible markings with non-zero reward rates are depicted in thicker

double-circled nodes, and the enabling of transition t7 is depicted by thicker arrows.

In fact, in any CRL scheduling problems that maximize the steady-state throughput,

the tangible markings with positive reward rates also have equal reward rates.

Finally, the uniformization rate ru is max{µ1 +µ3, µ2} plus a small positive scalar.

And then, the reward rates on the tangible markings where t7 is enabled become the

immediate reward µ3

ru
.

In summary, the MP formulation for this example is controlling the branching

probabilities at the gray nodes in order to maximize the sum of the steady-state

probabilities corresponding to the thicker double-circled nodes. The reader may also

observe that some decision points are redundant (e.g., the selection between markings

3 and 4 at marking 2, since either choice leads deterministically to tangible marking

7); the elimination of such redundancy and the formalization of this process will be

the topic of Section 4.1 in the next chapter.

3.4 Complexity considerations

While the NP hardness of the deadlock avoidance problem for the sequential RAS

considered in this work has been successfully addressed through the various meth-

ods that were discussed in the earlier parts of this document, there are challenging

complexity issues that remain open when it comes to the performance optimization

of these RAS. More specifically, it should be evident to the reader that the “size”

of the MP formulation of (14)–(16) in terms of the employed decision variables and

constraints, is super-polynomial with respect to |Φ|. In this section, we take a closer

look at this “super-polynomial” complexity and its implications.
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If the state of the considered RAS is represented by the number of job instances at

each stage, then the size of the whole state space, including the unsafe and possibly

some infeasible states, should be the product of the number of possibilities at each

stage, i.e., ∣∣RΠ1 ∪Runsafe ∪Rinfeasible

∣∣ = O

(∏
j,k

min
i:Ajk[i]>0

Ci
Ajk[i]

)
(17)

Equation (17) adopts the RAS notations rather than their GSPN counterparts. More

specifically, i is the index number of the resource type, Ci is capacity of resource type i,

and Ajk is the resource requirement vector for processing stage ∆jk of process type Γj.

The product in Equation (17) implies that the size of the whole state space is in a form

of |Φ||Φ|. Hence, the size of the whole state space is super-polynomial with respect

to |Φ|. Furthermore, it is also true that the confinement of the system operation

to the set of its safe states (and possibly also to its non-deliberately-idling states)

leads to a new state space that is of the same order of magnitude with the original

state space. Therefore, the numbers |RΠ1| and |RΠ2| are still super-polynomial with

respect to |Φ|. Such a super-polynomial complexity causes two types of difficulties in

the solution of the MP formulation:

1. The number of vectors ZM that are employed by any candidate policy Z is

the number of Π2-conditional vanishing markings which enable more than one

untimed transitions. In the worst case, this number is polynomial with respect

to |RΠ2|, and therefore, the number of vectors ZM is super-polynomial with

respect to |Φ|. This fact can raise significant complications not only in the

computation of an optimized policy Z, but also in the mere representation of

this policy.

2. In order to evaluate the value of the objective function (9), the system of equa-

tions (10)–(11) must be solved. However, an explicit representation of the so-

lution of this system of equations can also be intractable due to the explosive
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size of the underlying state space.

These two issues are addressed in the rest of this document. In particular, Chapter

4 applies several steps to refine and approximate the solution space, in a way that

reduces the dimension of the solution space to a manageable level. This chapter also

introduces a mechanism that can explicitly control the representational complexity

of the employed policy spaces. Chapter 5 addresses the second of the aforementioned

problems by taking advantage of the fact that the objective function (9) constitutes an

expectation with respect to the steady-state distribution π. Therefore, a simulation

optimization algorithm is adopted to solve the problem.

3.5 A closing remark

There are some cases where the feature of deliberate idleness can be removed from the

RAS operation without impacting the optimality of its performance. Some of these

cases in the CRL context have been identified in [19] (c.f. Lemmas 3–9 in Section

4.2.2). However, there is no guarantee that the elimination of deliberate idleness will

maintain, in general, the “performance potential” of the policy space [38]. As a result,

the enforcement of the non-deliberately-idling constraint (5) in the policy space Π2,

might render this policy space sub-optimal with respect to the policy space Π1.

However, next we show that deliberate idleness can be implemented by properly

augmenting the net structure of the RAS-modeling GSPN, in a way that eventually we

shall be able to address this element in the policy space Π2 of the modified GSPN. The

required structure includes (i) an untimed transition tidle that models the decision for

deliberate idleness, and (ii) a place pidle that models the conflict between an untimed

transition in the original net and the transition tidle. More specifically, the place pidle

is contained in the pre-set •t of every untimed transition t, including the transition

tidle; it is also contained in the post-set t• of every timed or untimed transition t in the

original net, i.e., Tu ∪Tt \ {tidle}. In the initial marking M0, which is vanishing, there
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Figure 3.7: An illustration of the net structure that integrates the action of deliberate
idleness in the RAS-modeling GSPN

is one token in the place pidle. The above structure is illustrated in Figure 3.7, which

depicts a RAS-modeling GSPN at a Π1-reachable vanishing markingM1. In the GSPN

of this figure, only a part of the process-type modeling subnet is depicted, and the

resource-modeling and DAP-implementation subnets are omitted. We suppose that

EΠ1
u (M1) = {tidle, tu}, and Et(M1) = {tt}. It is also true that tu ∈ EΠ1

u (tr(M1, tt)).

At marking M1, the firing of transition tidle implies an action of deliberate idleness,

since the untimed transition tu is disabled by the removal of the token in the place

pidle, and the resultant marking M2 ≡ tr(M1, tidle), which is essentially equal to M1

except that M2[pidle] = 0, becomes a tangible marking. Once the enabled timed

transition tt is fired, a token is released to place pidle and the untimed transition tu is

enabled again since tu ∈ EΠ1
u (tr(M1, tt)).

10 On the other hand, if the enabled untimed

transition tu is fired first, then the token in the place pidle is not consumed and the

transition tidle remains enabled; therefore, the resultant marking M3 ≡ tr(M1, tu) is

vanishing with EΠ1
u (M3) = {tidle}. After the only enabled untimed transition tidle is

fired, the resultant marking tr(M3, tidle) is tangible. Finally, it is also important to

notice that since the enabled timed transitions can be fired only one at a time, and all

10We remind the reader that the firing of a timed transition modeling the completion of a pro-
cessing stage (or of a certain phase of a processing stage) does not involve the allocation of any new
resource units.
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enabled untimed transitions have precedence over timed ones, the place pidle cannot

hold more than one token at any time.

It should be clear from the above description that the introduction of the place pidle

and the transition tidle as indicated in Figure 3.7, enables the handling of deliberate

idleness through the specification of the random switches of the augmented GSPN by

means of the MP formulation of Section 3.3. However, the proper functioning of this

modeling scheme requires an additional deadlock-avoidance constraint:

ZM [tidle] = 0, ∀M ∈ R s.t. Et(M) = ∅ (18)

Otherwise, the firing of tidle can disable all the transitions, and the GSPN gets in a

deadlock state.

70



CHAPTER IV

CONTROLLING THE REPRESENTATIONAL

COMPLEXITY

As discussed in Section 3.4, the RAS performance optimization problem that is con-

sidered in this work can become intractable due to the explosive increase of the size of

the underlying RAS state space. And this intractability is manifested with respect to,

both, the representational and the computational complexity of the target policies.

This chapter seeks to address the issues related to the representational complexity of

the target policies by introducing three important mechanisms: refinement, restric-

tion, and partial disaggregation of the considered policy spaces. All these mechanisms

seek to address the representational complexity of the considered optimization prob-

lem by adjusting the number of the primary decision variables in the corresponding

MP formulation. The remaining intractability issue that pertains to the computa-

tional complexity of estimating the value of the objective function of Equation (14),

is addressed through the simulation optimization techniques that are introduced in

the next chapter.

4.1 A random-switch refinement process

We remind the reader that, in the GSPN context, a random switch is defined as a

probability distribution that regulates the firing of a set of enabled untimed transitions

at a vanishing marking. In the context of the performance optimization problem that

is considered in this work, it is possible that the selection among some enabled untimed

transitions at certain vanishing markings of the RAS-modeling GSPN does not impact

the attained performance. The topic of this section is the identification and removal
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of such “redundant” options in random switches. The presented ideas and methods

were first introduced in [60]. This section adapts these earlier developments to the

“policy space” structures that were introduced in Section 3.1.1. We provide a formal

treatment of this material, starting from the next subsection.

However, before we delve into these developments, we also want to point out

that, from a more conceptual standpoint, the line of the results that are presented

in this section was motivated by concepts and results pertaining to the notions of

“conflict” and “conflicting behaviors” in DES theory at large [94], and in PN theory,

in particular [25]. Along these lines, we remind the reader that in DES theory two

enabled events are said to be in conflict at a certain state, if the execution of one of

them leads to the disablement of the other. Events that are not in conflict can be

executed consecutively in any sequence, and without any need for arbitration among

them. Furthermore, the work of [38] associates the lack of conflict in the dynamics of

any given DES with the ability of a “greedy” policy that executes every event upon

its enablement, to expedite the (repeated) execution of the various events that can

take place in this system.

Based on these results and insights, it is tempting to try to control the number of

variables that appear in various random switches of the pursued GSPN models, by

avoiding to control transitions that are not in conflict. It turns out, however, that

in the context of the performance optimization problems that are undertaken in this

work, the aforementioned classical notion of conflict is not completely appropriate

for supporting the suggested “thinning” of the employed random switches, and it

must be replaced by a modified version. We shall introduce this new version, and we

shall discuss its explanatory role for the structural results that are developed in this

section, at a later point, as we progress through the corresponding developments.
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4.1.1 Formalization of the random-switch refinement process

Since the objective that is undertaken in this section is the identification and removal

of the “redundant” options in random switches, we need to define the employed notion

of redundancy in a clear and pertinent manner.

For that, first we notice that according to the developments of Section 2.3.3, the

performance criteria for the considered RAS optimization problem only depend on the

CTMC M defined on the sub-space of the tangible markings of the RAS-modeling

GSPN. In other words, it is the Markovian “macro-transitions” among the set of

tangible markings that will decide the steady-state average reward of the underlying

RAS. This remark motivates the following definition.

Definition 5 Given a RAS-modeling GSPN, two policies Z and Z ′ are performance-

equivalent if their corresponding CTMCs, calculated using the steps that are described

at the end of Section 2.3.3, are the same.

In the light of Definition 5, our objective is the construction of a subset of the

original policy space Π, to be called a refined policy space and be denoted by Π̂, such

that the policy space Π̂ contains a policy Ẑ that (i) is performance-equivalent to some

optimal policy Z∗ ∈ Π and (ii) admits a simpler representation than policy Z∗. The

next two definitions formalize this requirement.

Definition 6 In the context of this work, a policy space Π̂ ⊆ Π refines the original

policy space Π if it is derived from Π through the addition of the constraint

ZM [t] = 0 (19)

for some vanishing markings M ∈ RΠ
V and some untimed transitions t ∈ EΠ

u (M).

Definition 7 Given an original policy space Π, a refined policy space Π̂ ⊆ Π main-

tains the performance potential of Π, if there exist an optimal policy Z∗ ∈ Π and a

policy Ẑ ∈ Π̂ such that Z∗ and Ẑ are performance-equivalent.
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Remark The original policy space Π that is employed in the subsequent develop-

ments is the deadlock-free and non-deliberately-idling policy space Π2. As a result,

in the subsequent deliberations the refined policy space will be denoted by Π̂2. We

restrict our attention to the policy space Π2 for the following two reasons: (i) First,

we remind the reader that the developments of Section 3.5 have established that it

is possible to model deliberate idleness in the underlying RAS while working in the

policy space Π2, through the introduction to the original RAS-modeling GSPN of

the additional structure that is depicted in Figure 3.7. Hence, there is no particular

advantage in working with the policy space Π1. (ii) On the other hand, the results

that we establish in this section will hold only in an approximate sense in the policy

space Π3; we shall discuss the details of this approximation as we progress with the

technical development of the corresponding material. 2

In view of the modeling objectives that have been set for this section, we are

particularly interested in refined policy spaces Π̂2 that maintain the performance

potential of the original policy space Π2 and minimize the number of the free decision

variables that are employed by the corresponding policies Ẑ. However, the effective

computation of such a refined policy space requires a holistic view of the state space

of the corresponding SMP, and therefore, it will be intractable for exactly the same

reasons that render intractable the original RAS optimization problem. Hence, in

the subsequent developments, we compromise with refined policy spaces Π̂2 that can

be claimed “minimal” according to some more local criteria. The notion of this

“minimality” is detailed in the next section.

4.1.2 Construction of a “minimal” refined policy space

The departing point for the developments that are presented in this section, is the

realization that, in the context of the original policy space Π2, the removal of a tran-

sition t from the set EΠ2
u (M), at any given vanishing marking M , will not compromise
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the performance potential of Π2, as long as this removal will not impact the set of

tangible markings that are Π2-reachable from M . The next two definitions will help

provide the necessary formal statements and develop rigorously the aforementioned

result.

Definition 8 The Π-untimed reach of a marking M of a RAS-modeling GSPN, de-

noted as URΠ(M), is the set of markings M ′ that are reachable from M by firing

some Π-feasible transition sequence in T ∗u .

Definition 9 The Π-untimed tangible (resp., vanishing) reach of a marking M of

a RAS-modeling GSPN, denoted as URΠ
T (M) (resp., URΠ

V (M)), is the subset of Π-

conditional tangible (resp., vanishing) markings in the Π-untimed reach URΠ(M),

i.e., URΠ
T (M) = URΠ(M) ∩RΠ

T (M) (resp., URΠ
V (M) = URΠ(M) ∩RΠ

V (M)).

The notion of the untimed tangible reach of any given marking M is connected

to the aforestated objective of developing refined policy spaces Π̂2 that will main-

tain the performance potential of the original policy space Π2, through the following

proposition:

Proposition 4 Let Π̂2 be a refined policy space of Π2 such that 1

∀M ∈ RΠ2 , URΠ2
T (M) = URΠ̂2

T (M) (20)

Then, Π̂2 maintains the performance potential of the original policy space Π2.

Proof: We will construct an optimal policy Ẑ ∈ Π2 and prove also that Ẑ ∈ Π̂2.

1Since the constraints imposed by the policy space Π̂2 are applicable to any markings in the full

state space RΠ0 (or simply R), the calculation of URΠ̂2

T (M) is possible even if M ∈ RΠ2 \ RΠ̂2 .
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For this, first we notice that the considered performance optimization problem,

defined on the original policy space Π2, can be modeled as an average-reward semi-

Markov decision process defined on the state space RΠ2 .2 If the state M is a van-

ishing marking, then the set of available actions A(M) = EΠ2
u (M); once an action

t ∈ EΠ2
u (M) is taken, the system goes to the state tr(M, t) with probability one. Oth-

erwise, the state M is a tangible marking with the corresponding action set A(M)

being the singleton “do nothing”, and the transition probabilities to the next states

being defined by the exponential race that takes place at this tangible marking. Then,

thanks to the communicating structure that is implied by the policy space Π2, there

exists a (relative) value vector h∗ ∈ R|RΠ2 | that solves the optimality equation [11]

(c.f. Equation (5.43), pg. 312):

h∗[M ] = max
a∈A(M)

G(M,a)− η∗τ̄M(a) +
∑

M ′∈RΠ2

p(M,M ′; a)h∗[M ′]

 , M ∈ RΠ2

(21)

In Equation (21), G(M,a) is the expected immediate reward of the state-action

pair (M,a); τ̄M(a) is the expected sojourn time at state M when action a is taken;

η∗ is the maximum steady-state average reward; and p(M,M ′; a) is the transition

probability from state M to M ′ under action a.

Let us derive some further useful characteristics of the vector h∗. If M is a

vanishing marking, then G(M,a) = τ̄M(a) = 0, regardless of the action taken.

Also, the action a is the firing of a Π2-enabled untimed transition t at M . Thus,

P (M,M ′; a) = I{M ′=tr(M,t)}, where IE denotes the indicator function of event E. But

then, for any vanishing marking M :

h∗[M ] = max
t∈EΠ2

u (M)

h∗[tr(M, t)] (22)

2This Markov decision process is different from the one in Appendix A, since the model con-
structed here is on the state space of all the markings, and the stochastic process induced by any
given stationary policy is a semi-Markov process rather than a Markov process.
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Furthermore, a simple inductive argument on the untimed vanishing reach URΠ2
V (M)

of M will establish that

h∗[M ] = max
MT ∈UR

Π2
T (M)

h∗[MT ] (23)

According to Equation (23), the h∗ value of any vanishing marking M ∈ RΠ2
V

is equal to the highest h∗ value among the h∗ values of the tangible markings in

URΠ2
T (M).

Then, we have enough information for the construction of the sought policy Ẑ ∈

Π2. More specifically, for any vanishing marking M ∈ RΠ2
V , we select the untimed

transition t̂ to be fired at M as any transition

t̂ ∈ arg max
t∈EΠ2

u (M)
h∗[tr(M, t)] ∩ E Π̂2

u (M) (24)

where the vector h∗ is the aforementioned solution of the optimality equation with

respect to the original policy space Π2.

The definition of such a policy is possible, thanks to (i) Equation (19) that defines

the refining process providing the policy space Π̂2, and (ii) the presumed condition

in Proposition 4, which guarantees the non-emptiness of the intersection in the right-

hand-side of Equation (24). Furthermore, the policy Ẑ specified by Equation (24) is

an optimal policy in Π2 since it is a greedy policy with respect to the vector h∗. Also,

it is obvious that Ẑ ∈ Π̂2. Therefore, the policy space Π̂2 maintains the performance

potential of Π2. 2

Obviously, the refinement of the random switches that is attempted in this section

pertains only to the vanishing markings of the underlying GSPN. For such a vanishing

marking M , the right-hand-side of the condition of Proposition 4 can be equivalently

expressed as
⋃
t∈EΠ̂2

u (M)
URΠ̂2

T (tr(M, t)), leading to the following restatement of this
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condition:

URΠ2
T (M) =

⋃
t∈EΠ̂2

u (M)

URΠ̂2
T (tr(M, t))

=
⋃

t∈EΠ̂2
u (M)

URΠ2
T (tr(M, t)) (25)

An algorithm for the computation of the sought policy space Π̂2 The con-

dition of Equation (25) provides the basis for the development of an algorithmic

procedure for the construction of the sought policy space Π̂2. More specifically, next

we shall develop an algorithm that, for any given vanishing marking M , will select

a minimal-cardinality transition subset E Π̂2
u (M) ⊆ EΠ2

u (M) that satisfies this condi-

tion. Then, in view of Proposition 4 and the above discussion, the constructed policy

space Π̂2 will maintain the performance potential of the original policy space Π2. We

formalize this construction through the following definitions:

Definition 10 Given a vanishing marking M of a RAS-modeling GSPN, a set of un-

timed transitions E will be characterized as Π-irreducible with respect to the considered

vanishing marking M , if

1. E ⊆ EΠ
u (M),

2. URΠ
T (M) =

⋃
t∈E UR

Π
T (tr(M, t))

3. and there does not exist an untimed transition t̂ ∈ E such that

URΠ
T (M) =

⋃
t∈E\{t̂}

URΠ
T (tr(M, t))

Definition 11 For an original policy space Π, a refined policy space Π̂ ⊆ Π that

maintains the performance potential of Π is of Π-irreducible support, if for any van-

ishing marking M ∈ RΠ
V , the set E Π̂

u (M) is Π-irreducible with respect to M .
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Algorithm 2 Computing the target set E Π̂2
u (M) for a given vanishing marking M

Input: The GSPN structure, Π2, vanishing marking M .
Output: The transition set E Π̂2

u (M).
1: E ← EΠ2

u (M)
2: for i = 1→ |E| do
3: for j = 1→ Ci

|E| do
4: E1 ← the j-th subset of E of cardinality i, where these subsets are enumerated

according to some rules that order the subsets of E with the same cardinality.
5: if

⋃
t∈E1 UR

Π2
T (tr(M, t)) = URΠ2

T (M) then
6: return E1

7: end if
8: end for
9: end for

Algorithm 2 provides a general procedure for the identification of a Π2-irreducible

set E Π̂2
u (M) at any given marking M . Essentially, Algorithm 2 enumerates the subsets

of the corresponding set EΠ2
u (M) in increasing cardinality, and for each constructed

subset, it checks the satisfaction of the condition of Equation (25). Subsets of equal

cardinality are enumerated according to some pre-specified order; a lexicographic

ordering based on the natural numbering of the elements of EΠ2
u (M) can be used in

lack of any other more pertinent order. The algorithm terminates when it encounters

the first subset that satisfies the condition of Equation (25).

To alleviate the employed notation, and in line with the notation that is adopted in

the statement of Algorithm 2, in the subsequent discussions, we shall use the notation

E1 as an “alias” of E Π̂2
u (M); and accordingly, we shall also define E2 ≡ EΠ2

u (M) \ E1.

Complexity considerations for the general refinement algorithm Algorithm

2 includes the enumeration of the Π2-untimed reaches, which is a task with super-

polynomial worst-case complexity with respect to the RAS size |Φ|. Furthermore, the

algorithm involves an enumeration of the subsets of EΠ2
u (M), which are exponentially

many with respect to |EΠ2
u (M)|.

However, when viewed from a more practical standpoint, the enumeration of the
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Π2-untimed reach of any given marking M is a local computation in the context of

the underlying STD. These sub-graphs encode the potential evolution of the marking

of the RAS-modeling GSPN in response to the completion of some processing task.

This evolution involves the potential advancement of the process corresponding to

the completed task, and possibly the advancement and/or the initiation of some

additional processes that were blocked in the previous RAS operational state. The

extent of this blocking depends on the structure of the underlying RAS, but in most

practical cases, it will be limited to localized dependencies that are defined by the

underlying RAS structure and the logic of the applied supervisory control policy.

For all these reasons, the enumeration of the Π2-untimed reaches by Algorithm 2 is

expected to be a pretty tractable task, a fact that is confirmed by our computational

experience.

Furthermore, these Π2-untimed tangible reaches need not be calculated every time

that Algorithm 2 is called. More specifically, in the implementation of the simulation-

based optimization methods to be considered in Chapter 5, once a timed transition

tt is fired at a tangible marking MT and a marking M is reached by this firing, the

computer program can record the Π2-untimed tangible reaches for all the markings in

the Π2-untimed vanishing reach of M , i.e., it can compute the set {URΠ2
T (MV) : MV ∈

URΠ2
V (M)}, and then employ this information at every invocation of Algorithm 2 as

the system advances to the next tangible marking. Once the next tangible marking

is reached, a new computational phase will begin; this computational phase will

correspond to a new “macro-transition” of the underlying CTMC M, and, thus, the

previously constructed set of the Π2-untimed tangible reaches will be discarded.

As for the enumeration of the subsets of the set EΠ2
u (M), the reader should notice

that it is only partial, since it is terminated as soon as Algorithm 2 identifies a set

that satisfies the condition of Equation (25). Also, as it will be explained in the

next example, the minimal cardinality of these successful sets is strongly dependent
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upon the extent of the “conflict” that exists among the transitions of EΠ2
u (M). If it is

possible to identify a small set of conflicting transitions that are, however, in a non-

conflicting relation with the rest of the transitions in EΠ2
u (M), then, Algorithm 2 will

not need to enumerate a large number of subsets of EΠ2
u (M); and the computational

experiments that are reported in later parts of this chapter indicate that this is

actually the case for most vanishing markings M .

Example 3 Applying Algorithm 2 at a specific vanishing marking of the GSPN of

Example 1.

A first role of this example is to illustrate the implementation of Algorithm 2.

Furthermore, the provided elaborations on this example will also reveal a connection

of the refining process that is pursued in this section and of the defining logic of Al-

gorithm 2 with a notion of “(non-)conflict” that will be articulated in the subsequent

discussion.

The GSPN structure and the particular marking considered in this example are

those depicted in Figure 4.1. In fact, the reader might notice that the depicted

GSPN and the applied policy space are the same as in Example 1 of Section 3.2.

In particular, the marking presented in Figure 4.1 corresponds to vanishing marking

#25 in Table B.1 of Appendix B, and it will be denoted by M1 in the sequel.

The local STD that is defined by the Π2-untimed reach of marking M1 is depicted

in Figure 4.2. This figure adopts the same semantics as Figure 3.6, i.e., the nodes

depicted as single-bordered correspond to vanishing markings, and those depicted as

double-bordered correspond to tangible markings. Furthermore, for each vanishing

marking M in the Π2-untimed reach, the set URΠ2
T (M) is shown next to the node

corresponding to M . In the implementation of Algorithm 2 in this example, subsets

of the same cardinality are enumerated in the lexicographical order that is defined by

the natural numbering of the transition set in the GSPN. Then, the nodes and arcs
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Figure 4.1: The marking M1 of Example 3

that are boldfaced in Figure 4.2 represent the untimed reach of the considered van-

ishing marking M1 under the refined policy space Π̂2 that applies the aforementioned

implementation of Algorithm 2 for the refinement process.

From Figure 4.2 we can see that the refined policy space Π̂2 employs only one non-

trivial random switch for the transition of the underlying GSPN from marking M1 to

its untimed tangible reach; this is the random switch at the marking M3, where the

set E Π̂2
u (M3) contains the enabled untimed transitions t0 and t5. These two transitions

lead respectively to the tangible markings MT1 and MT2 that constitute the untimed

tangible reach of M1.

It is evident from the above discussion that the random switch refinement that

is effected by Algorithm 2 at the various vanishing markings where this algorithm is

applied, can be quite dramatic. Next, we take a closer look at the refinement process

that is depicted in Figure 4.2, in an effort to reveal the detailed computation that

is effected by Algorithm 2 at the various visited markings in Figure 4.2. But this
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Figure 4.2: The local state transition diagram of URΠ2(M1) in Example 3 and the
sets of untimed tangible reaches of the vanishing nodes

discussion will also define a notion of “transition (non-)conflict” that can interpret

the various choices that are made by the algorithm.

Hence, starting at marking M1, we can see that EΠ2
u (M1) = {t2, t6}, and the

first subset of {t2, t6} in the enumeration of increasing cardinality and lexicographical

order is the singleton {t2}. The set {t2} passes the test at Line 5 of Algorithm 2, since

URΠ2
T (tr(M1, t2)) = {MT1,MT2} = URΠ2

T (M1). Therefore, the algorithm outputs the

refined set E Π̂2
u (M1) = {t2}. At this point, the reader should also notice that the

transitions t2 and t6 are not in conflict, in the classical sense of the DES / PN theory

[94], since •t2 = {p1, p10}, and •t6 = {p5, p7}. However, in the considered context,

the selection between these two non-conflicting transitions is still quite subtle. More

specifically, it can be observed that in the GSPN structure of Figure 4.1, the firing

of transition t2 enables transition t0 by releasing a token into place p8. Meanwhile,

t0 shares place p7 as a common input place with transition t6. And this shared input
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place with only one token implies a conflict between the transitions t0 and t6. Hence,

if transition t6 is given arbitrary precedence over transition t2 at marking M1, then

the only token in place p7 is consumed and transition t0 cannot become enabled

before the considered GSPN reaches a tangible marking. As a result, the untimed

tangible reach of the marking tr(M1, t6) loses the tangible marking MT1 that requires

transition t0 to be contained in the firing sequence from M1 to MT1. On the other

hand, the firing of transition t6 only releases one token to place p6, which is not an

input place of any untimed transitions. Hence, there is no potential conflict of the

nature that was discussed above between any other untimed transition and transition

t2, and the dropping of transition t6 from the refined set E Π̂2
u (M1) keeps unaltered the

untimed tangible reach of M1.

The second invocation of Algorithm 2 takes place at marking M2 that results from

firing transition t2 at marking M1. The entire set EΠ2
u (M2) is equal to {t0, t3, t5, t6},

and the refined set E Π̂2
u (M2) is set equal to {t3} in two steps: (i) the first candidate set,

{t0}, fails the test of Equation (25), since URΠ2
T (tr(M2, t0)) = {MT1} 6= URΠ2

T (M2);

(ii) on the other hand, the second candidate set, {t3}, passes the test. From the

perspective of the potential conflicts that was discussed in the previous paragraph,

first we notice that none of the transitions in EΠ2
u (M2) = {t0, t3, t5, t6} can enable new

untimed transitions upon its firing, according to the Π2-conditional STD depicted in

Figure 4.2. Next, it can also be seen that the two subsets {t3} and {t0, t5, t6} are not

in conflict, since •t3 = {p2, p9}, and •t0∪•t5∪•t6 = {p4, p5, p7, p8, p11}. Hence, in this

case, either of the sets {t3} and {t0, t5, t6} can be selected as the refined set E Π̂2
u (M2)

and the untimed tangible reach will not change. Algorithm 2 picks the set {t3} since

it has the smaller cardinality.

Finally, at marking M3, all the singleton subsets fail the test, but {t0, t5}, the first

subset of cardinality two, passes the test and it is set as E Π̂2
u (M3). Under this refined

random switch, from marking M3 we can reach either the tangible marking MT1 by
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firing transition t0, or the vanishing marking M4 (and finally the tangible marking

MT2) by firing transition t5. From the perspective of the potential conflicts that

were discussed in the previous paragraphs, we can see that transition t0 is in conflict

with transitions t5 and t6, but t5 and t6 are not in conflict. Therefore, only one of

the transitions t5 and t6 should be kept in the refined set E Π̂2
u (M3). And Algorithm

2 removes transition t6 from E Π̂2
u (M3) due to the application of the lexicographical

order.

The next section will elaborate further on the connection that was illustrated

by this example, between the notion of “(non-)conflict” and the refinement criterion

employed at Line 5 of Algorithm 2.

4.1.3 Some sufficient conditions on E Π̂2
u (M) that maintain the correspond-

ing untimed tangible reach

The main theme of this section is the development of some sufficient conditions on

E Π̂2
u (M) that can guarantee the satisfaction of the condition of Equation (25) while

foregoing the complete enumeration of the corresponding untimed reach. Ideally, we

would like these conditions to have a structural character, i.e., they should be able

to infer the ability of a candidate set E1 to maintain the untimed tangible reach of

the corresponding vanishing marking M based only on the structural information of

the underlying GSPN and the marking M itself, instead of employing a process that

involves the enumeration of all the possible firing sequences of untimed transitions

emanating from marking M . The conditions that are derived in this section do not

possess exactly the structural flavor that was described above, but, as we shall see in

some subsequent parts of this chapter, they provide a foundation for such an effective

structural analysis when adapted in the context of some specially structured RAS,

like the CRL that is considered in this document.

Furthermore, the subsequent developments are based on the notion of “(non-

)conflict” that was introduced in the discussion of Example 3. In particular, at any
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vanishing marking M , we are seeking a partition of the transition set EΠ2
u (M) into

two subsets E1 and E2, such that transitions in E1 are not in conflict either with

the transitions in E2, or with any untimed transitions that become enabled by firing

some feasible transition sequences composed by untimed transitions not in E1. The

following proposition, that first appeared in [60], provides a formal characterization

for the notion of “conflict” that is pertinent in the context of our application, and

reveals its connection to Equation (25).

To formally state and prove this proposition, we also need a new operator EΠ
u (·, ·).

For a vanishing marking M , a set of untimed transitions T̃ , and a policy space Π,

the operator EΠ
u (M, T̃ ) denotes the set containing the untimed transitions that are

not Π-enabled at M but get enabled after firing some Π-feasible untimed transition

sequences in T̃ ∗; i.e., ∀t ∈ EΠ
u (M, T̃ ): (i) t /∈ EΠ

u (M); and (ii) ∃σ ∈ T̃ ∗ such that σ is

Π-feasible and t ∈ EΠ
u (tr(M,σ)).

Proposition 5 [60] Consider a vanishing marking M and a partition (E1, E2) of

EΠ2
u (M), and let Ê2 ≡ E2 ∪ EΠ2

u (M, Tu \ E1). Suppose that for each Π2-feasible se-

quence σ ∈ Ê∗2 , there exists a transition sequence σ̂ ∈ Ê∗2 and a transition t̂ ∈ E1, such

that both sequences σσ̂t̂ and t̂σσ̂ are Π2-feasible at M . Then, setting E1 as E Π̂2
u (M)

can satisfy the condition of Equation (25).

Proof: We shall show that URΠ2
T (M) =

⋃
t∈E1 UR

Π2
T (tr(M, t)). The inclusion URΠ2

T (M)

⊇
⋃
t∈E1 UR

Π2
T (tr(M, t)) is obvious, since E1 ⊆ EΠ2

u (M). So, next we show that

URΠ2
T (M) ⊆

⋃
t∈E1 UR

Π2
T (tr(M, t)).

Consider any tangible marking MT ∈ URΠ2
T (M). Then, there exists a Π2-feasible

untimed transition sequence σn = t1t2 . . . tn such that M
σ−→ MT . To show that

MT ∈
⋃
t∈E1 UR

Π2
T (tr(M, t)), we distinguish the following two cases:

Case 1: t1 ∈ E1. Then, MT ∈ URΠ2
T (tr(M, t1)) ⊆

⋃
t∈E1 UR

Π2
T (tr(M, t)).

Case 2: t1 ∈ E2. Then, by the last assumption of Proposition 5, there exists

ti ∈ E1 in the sequence σn such that the transition sequence σi−1 = t1 . . . ti−1 ∈ Ê∗2 .
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According to the same assumption, the firing order of ti and σi−1 can be exchanged

and get the transition sequence tit1 . . . ti−1 which is Π2-feasible at M .

But then, the sequence tit1 . . . ti−1ti+1 . . . tn is a Π2-feasible sequence leading from

marking M to MT , so MT ∈ URΠ2
T (tr(m, ti)) ⊆

⋃
t∈E1 UR

Π2
T (tr(m, t)). 2

The result of Proposition 5 is not a fully structural condition since it necessitates

an enumeration of the Π2-feasible untimed transition sequences in Ê∗2 . However, some

special cases where this condition might be easily tested, is when it is possible to

guarantee that the firing of any transition in E2 will not enable any new untimed

transitions in Tu \ EΠ2
u (M). The next proposition establishes such a special case.

Proposition 6 Consider a vanishing marking M and a partition (E1, E2) of EΠ2
u (M),

and further suppose that:

(i). ∃t̂ ∈ E1 such that ∀t ∈ E2, •t̂ ∩ •t = ∅.

(ii). ∀t ∈ E2 and ∀p ∈ P, p ∈ t• =⇒ p • ∩ Tu = ∅.

(iii). The constraints imposed by the policy space Π2 do not impact the fireability of

any transitions in {t̂} ∪ E2 at any vanishing marking reachable by some Π2-

feasible sequence of {t̂} ∪ E2; i.e., let E ′2 = {t̂} ∪ E2, then for any Π2-feasible se-

quence σ ∈ E ′∗2 at M , and any t ∈ E ′2, t ∈ EΠ0
u (tr(M,σ))⇒ t ∈ EΠ2

u (tr(M,σ)).3

Then, setting E1 as E Π̂2
u (M) can satisfy the condition of Equation (25).

Proof: We shall prove the result of Proposition 6 by showing that the three condi-

tions stated in this proposition are sufficient to satisfy the requirements of Proposition

5.

3We remind the reader that an important set of the constraints defining policy space Π2 pertains
to the liveness-enforcement of the underlying RAS-modeling GSPN. We also notice that condition
(iii) of this proposition will be redundant in the case that the applied supervisory control policy is
encoded through the structure of the RAS-modeling GSPN along the lines that were discussed in
Section 3.1.1.
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We start by noticing that condition (ii) guarantees that the firing of any sequence

σ ∈ E∗2 does not add any tokens to the input places of any untimed transition.

Therefore, under this condition, Ê2 = E2, where the set Ê2 is defined in the statement

of Proposition 5, and we only need to show that ∀σ ∈ E∗2 , there exist σ̂ ∈ E∗2 and

t̂ ∈ E1 such that both sequences σσ̂t̂ and t̂σσ̂ are Π2-feasible at M .

Consider any sequence σ = t1t2 . . . tn ∈ E∗2 that is Π2-feasible at M . From con-

dition (i), •t̂ ∩ •ti = ∅, ∀i ∈ {1, 2, . . . , n}. Therefore, firing σ does not decrease the

number of tokens in any input place of t̂ . This last remark, when combined with

condition (iii) of the considered proposition, implies that t̂ is feasible in the marking

M ′ = tr(M,σ), or, in other words, that the transition sequence σt̂ is Π2-feasible at

M . The feasibility of t̂σ can be proved in a similar manner. Therefore, the condition

of Proposition 5 is met by setting σ̂ = ε. 2

In the next section, we employ Proposition 6 in order to define a very efficient and

pertinent policy space for the GSPN that models the CRL operations.

4.1.4 Specialization to the CRL case

As discussed in the previous section, in general, it is difficult to find a generic refine-

ment algorithm that can maintain the performance potential of the original policy

space while avoiding the enumeration of the firing sequences of untimed transitions

at each visited vanishing marking. However, for the specialized setting of the CRL,

the requested refinement can be performed through some structural analysis.

We start the presentation of the corresponding developments by reminding the

reader that in the CRL-modeling GSPN that was described in Section 3.2, the untimed

transitions can be classified into three types:

Type I – buffer transfer: This subset of Tu consists of the untimed transitions
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modeling the advancement of jobs that have completed processing at their cur-

rent workstation to their next workstation. These advancements must be en-

abled by the applied deadlock avoidance constraints, and involve the allocation

of a buffer slot in the requested workstation and the eventual release of the held

buffer slot at the current workstation. For further reference, the set of all Type

I transitions will be denoted by TI .

Type II – process start: This subset of Tu consists of the untimed transitions

modeling the server allocation to a job waiting for processing at one of the

line stations. The reader should notice that no resources are released upon the

firing of these transitions. The set of all Type II transitions will be denoted by

TII .

Type III – load: This subset of Tu is the singleton TIII containing only the untimed

transition that models the loading of a new job into the line and the allocation

to this job of one buffer slot and the server of workstationW(1); this transition

will be denoted as t0 in the sequel. Furthermore, the corresponding event must

be admissible by the applied DAP. Finally, the reader should also notice that

the firing of the transition t0 does not involve any release of previously allocated

resources.

If a transition t is Type II or Type III, then it satisfies condition (ii) of Proposition

6 and it may become a candidate for the subset E2, which collects the enabled untimed

transitions that can be treated as “redundant options” in the corresponding vanishing

marking. A simpler case is that where all the enabled untimed transitions of the

current marking M are Type II or Type III:

Proposition 7 For a vanishing marking M , if EΠ2
u (M)∩TI = ∅, and the set E Π̂2

u (M)
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collects all the transitions corresponding to the server allocation of a single worksta-

tion,4 then

(i). E Π̂2
u (M) satisfies the condition of Equation (25), and

(ii). E Π̂2
u (M) is a Π2-irreducibly refined set with respect to M .

In order to prove the result of Proposition 7, we need the following lemma:

Lemma 1 Consider a marking M of a CRL-modeling GSPN N , and suppose that

there exist two untimed transition sequences, σ1, σ2 ∈ T ∗u , that are both Π2-feasible at

M and result at the same marking M ′. Then, ~σ1 = ~σ2, where ~σi, i = 1, 2, denotes

the Parikh vector of the corresponding sequence σi.

Proof: According to the remark at the end of the opening part of Section 3.1,

in a RAS-modeling GSPN any reachable marking M is uniquely defined by the sub-

marking M̂ of the process places of the net.

Furthermore, in a CRL-modeling GSPN, each transition t ∈ Tu can increase (reps.,

decrease) the token content of at most one place in the aforementioned place subset,

and these places are distinct for different transitions. But then, the validity of Lemma

1 results from the additional fact that, in the considered GSPN class, any Π2-feasible

sequence in T ∗u does not involve any cyclic behavior (c.f. Proposition 3 in Section

3.1.2). 2

Next, we proceed with the proof of Proposition 7.

Proof of Proposition 7: Let E1 ≡ E Π̂2
u (M) as defined in Proposition 7, and E2 ≡

EΠ2
u (M) \ E1. Without loss of generality, suppose E2 6= ∅.

To prove the first conclusion in Proposition 7, we can verify the three conditions

of Proposition 6.

4We remind the reader that the only transitions that involve buffer allocation are the Type I
transitions and transition t0. Therefore, given the absence of Type I transitions in the set EΠ2

u (M),
transition t0 can be in conflict with other transitions only through the server allocation.
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The transitions in E2 correspond to server allocation in other workstations than

the transitions in E1, and thus, they do not have any common input places with the

transitions in E1; so, condition (i) is satisfied. Condition (ii) is satisfied since, under

the working assumptions, (a) the tokens that are advanced by the firing of some

transition in E2 are moving to a process place p with only one output transition which

is timed, and furthermore, (b) no transitions in EΠ2
u (M) can release any resources.

For the following needs of this proof, we also remark / emphasize the following:

The previous discussion established that the firing of the transitions in E2 cannot

enable new untimed transitions. Furthermore, the single-server assumption for the

considered CRL configurations also implies that the fired transitions cannot be en-

abled again until a tangible marking is reached. When taken together, the above

remarks imply that ∀M ′ ∈ URΠ2
V (M) \ {M}, EΠ2

u (M ′) is a proper subset of EΠ2
u (M).

To verify condition (iii) of Proposition 6, first note that the deadlock avoidance

policy cannot affect the enabling of Type II transitions. Next we consider the verifica-

tion of condition (iii) for the case that t0 ∈ EΠ2
u (M), where t0 is the unique element in

TIII . In this case, the deadlock avoidance policy permits the loading of a new job in-

stance into the CRL at marking M . For any given M ′ ∈ URΠ2
V (M) and t0 ∈ EΠ0

u (M ′),

we shall prove that t0 ∈ EΠ2
u (M ′).

Suppose that σ is a Π2-feasible sequence from M to M ′. Since t0 ∈ EΠ2
u (M ′) and

t0 allocates the single server of workstation W(1), t0 cannot be in sequence σ. And

from the fact that ∀M ′′ ∈ URΠ2
V (M), EΠ2

u (M ′′) ⊆ EΠ2
u (M), σ contains only Type II

transitions. Therefore, the simplified RAS states ŝ corresponding to M and M ′ are

the same. But then, the deadlock avoidance policy also permits the firing of t0 at

marking M ′, i.e., t0 ∈ EΠ2
u (M ′), and condition (iii) is verified.

For the second conclusion of Proposition 7, since all transitions in E Π̂2
u (M) corre-

spond to the server allocation at one workstation, the firing of any transition in this

set will allocate the corresponding server and will disable all the other transitions.
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Furthermore, as established in the earlier parts of this proof, the firing of any tran-

sitions in EΠ2
u (M) cannot enable new untimed transitions. Therefore, the disabled

untimed transitions in E Π̂2
u (M) cannot become enabled before reaching a new tangi-

ble marking. In other words, if an untimed transition of E Π̂2
u (M) is not fired at M ,

then it cannot be fired later in any sequence of untimed transitions that leads to a

tangible marking. This conclusion, when combined with Lemma 1, establishes the

sought result. 2

Next we consider the case where Type I transitions are also enabled at the current

marking. Intuitively, since conflicts cannot happen between Type I and Type II

transitions, and the firing of any Type II transitions cannot enable new untimed

transitions, it is always “safe” to eliminate Type II transitions when EΠ2
u (M) has only

Type I and Type II transitions. In the case that t0 ∈ EΠ2
u (M) and it is not in conflict

with any Type I transition, then t0 can be eliminated as well. Otherwise, t0 should

be kept in E Π̂2
u (M).

The next condition will help us formalize the above remarks.

Condition 4 For a given vanishing marking M , t0 ∈ EΠ2
u (M), and there exists a

transition t̂ ∈ EΠ2
u (M) ∩ TI , such that t̂ ∈ EΠ2

u (tr(M, t0)) and t0 ∈ EΠ2
u (tr(M, t̂)).

Condition 4 enables the following formal statement of the more intuitive sugges-

tions that were provided above regarding the structuring of the set E Π̂2
u (M) in the

case that the corresponding set EΠ2
u (M) contains type I transitions.

Proposition 8 For a vanishing marking M , if EΠ2
u (M) ∩ TI 6= ∅, and

E Π̂2
u (M) =


EΠ2
u (M) ∩ TI if t0 /∈ EΠ2

u (M) or Condition 4 holds

(EΠ2
u (M) ∩ TI) ∪ {t0} otherwise

(26)

then E Π̂2
u (M) satisfies the condition of Equation (25).
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Proof: If Condition 4 holds, then this proposition can be proved by verifying

the condition of Proposition 5. More specifically, let E2 ≡ EΠ2
u (M) \ E Π̂2

u (M) and

Ê2 ≡ E2∪EΠ2
u (M, Tu\E Π̂2

u (M)). Then, we shall prove that for any Π2-feasible sequence

σ ∈ Ê∗2 , there exists a transition t̂ ∈ E Π̂2
u (M) and a sequence σ̂ ∈ Ê∗2 such that both

σσ̂t̂ and t̂σσ̂ are Π2-feasible at M . Furthermore, from Equation (26), the set E2 does

not contain any Type I transitions. Hence, no new untimed transitions can be enabled

by firing any transition sequence in E∗2 at M , and thus, we can set Ê2 = E2.

Consider any transition sequence σ = t1t2 . . . tn ∈ E∗2 that is Π2-feasible at M . We

will show that the transition t̂ of Condition 4 is enabled at marking M ′ ≡ tr(M,σ), or,

in other words, the transition sequence σt̂ is Π2-feasible at M . Indeed, if transition

t0 is not contained in the sequence σ, then transition t̂ is enabled at marking M ′

since (i) t̂ does not share any common input places with any Type II transitions,

and (ii) the firing of any Type II transitions does not change the simplified RAS

state corresponding to the GSPN marking. Even if transition t0 is contained in the

sequence σ, t̂ is still enabled at marking M ′, because t0 can appear only once in σ,

and Condition 4 implies that the common input places of the transitions t̂ and t0 have

enough tokens for firing both of them. Furthermore, Condition 4 also implies that

the applied DAP permits the firing of t̂ at the simplified RAS state corresponding

to the marking tr(M, t0), and this marking does not change by firing the remaining

transitions in the considered sequence σ. The Π2-feasibility of the sequence t̂σ can

be proved in a similar manner. Therefore, the condition of Proposition 5 is met by

setting σ̂ = ε.

On the other hand, if Condition 4 does not hold, then the proposition can be

proved by verifying the three conditions of Proposition 6. In this case, either t0 /∈

EΠ2
u (M) or t0 ∈ E Π̂2

u (M). Condition (ii) can be verified in the same way as in the

proof of Proposition 7. And condition (i) of Proposition 6 is satisfied since Type I

and Type II transitions have no common input places. Finally, since the firing of any
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Algorithm 3 Computing the target set E Π̂2
u (M) at a vanishing marking M of the

CRL-modeling GSPN

Input: The GSPN structure, Π, vanishing marking M .
Output: The transition set E Π̂2

u (M).
1: E ← EΠ2

u (M)
2: if E ∩ TI = ∅ then
3: return {t ∈ E : t models the server allocation at the workstation correspond-

ing to the first transition in E}.
4: end if
5: if t0 /∈ E then
6: return E ∩ TI .
7: end if
8: for all t ∈ E ∩ TI do
9: if t ∈ EΠ2

u (tr(M, t0)) ∧ t0 ∈ EΠ2
u (tr(M, t)) then

10: return E ∩ TI .
11: end if
12: end for
13: return E ∩ (TI ∪ {t0}).

Type II transitions cannot change the simplified RAS states, the validity of condition

(iii) is obvious. 2

The refined set E Π̂2
u (M) that is defined in Proposition 8 will successfully remove

the redundancy that is due to the presence of non-conflicting options in the original

set EΠ2
u (M) in most cases. But it may fail to identify some redundancy that takes the

form of a “pseudo”-conflict. Therefore, unlike Proposition 7, the result of Proposition

8 does not guarantee Π2-irreducibility. An example demonstrating this lack of Π2-

irreducibility, and revealing the corresponding notion of “pseudo”-conflict mentioned

above, is provided in the example of Appendix C.

The results of Propositions 7 and 8 can be integrated in an algorithm that provides

an alternative to Algorithm 2 for the CRL case. The main advantage of this algorithm

is that it is no longer necessary to compute and record the untimed tangible reaches

for the specification of the refined random switches. Furthermore, since the rules

that generate the CRL-modeling GSPN have been well-defined, Algorithm 3 can take

either the original CRL or the corresponding GSPN as part of its input.

94



t6

t6

t6

t3

M5

M2

M1

M4

MT2

MT1

t3

t5

t0

t3

t6

t2

 

Figure 4.3: The local STD of URΠ̂2(M1) in Example 3 under Algorithm 3

Example 3 revisited In this example we go back to Example 3, where the marking

M1 in Figure 4.1 is a vanishing marking of the GSPN that models the CRL of Example

1. Figure 4.3 depicts the implementation of Algorithm 3 on marking M1 and the Π̂2-

untimed reach that is returned by this algorithm. The reader should notice that this

time the Π2-untimed reach is not enumerated, and the non-boldfaced arcs without

destination nodes are the eliminated options of enabled transitions from the original

policy space Π2.

In the considered GSPN, there are five untimed transitions: t0, t2, t3, t5, t6.

According to the description in Table 3.1, TI = {t2, t5}, TII = {t3, t6}, TIII = {t0}.

At marking M1, EΠ2
u (M1) = {t2, t6}; hence, t6 is removed from E Π̂2

u (M1), since t6 ∈ TII

and t2 ∈ TI . As a result, only M2 = tr(M1, t2) is reachable in the policy space Π̂2.

At marking M2, EΠ2
u (M2) = {t0, t3, t5, t6}. Since t3, t6 ∈ TII and t5 ∈ TI , t3 and t6

are removed from E Π̂2
u (M1) and t5 is kept. With respect to the inclusion of transition

t0, since t5 /∈ EΠ2
u (tr(M2, t0)), Condition 4 does not hold, and thus, t0 is also kept

in E Π̂2
u (M1). The firing of t0 at M2 leads to the tangible marking MT1 without any
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further possible branching. On the other hand, the firing of t5 at M2 leads to a

vanishing marking M5, where EΠ2
u (M5) = {t3, t6}. Both of the two enabled untimed

transitions are Type II. Thus, Algorithm 3 picks the transitions that share the same

workstation as the first transition in the set EΠ2
u (M5). In this case, the first transition

is t3 and it is associated with Workstation #2. Therefore, t3 is kept and t6 is removed

from E Π̂2
u (M5), since t6 is associated with Workstation #1.

The untimed reach of M1 obtained from Algorithm 3 is different from the one

obtained from Algorithm 2 but it is equally good: there remains only one random

switch of two options, corresponding to the two markings in the corresponding un-

timed tangible reach URΠ2
T (M1).

Even though the equivalence highlighted in the previous paragraph is not always

true (c.f. the example in Appendix C), Algorithm 3 is a competitive algorithm to Al-

gorithm 2 since its lack of Π2-irreducibility with respect to certain vanishing markings

does not impact substantially the effectiveness of the corresponding refinement pro-

cess; this assessment is clearly corroborated by the results of an empirical study that

is presented in the next section. Furthermore, since Algorithm 3 always maintains

the untimed tangible reach of the processed marking and it executes fast due to the

structural nature of the information that it employs about this marking, one can also

envision the application of this algorithm as a pre-processing stage that will remove

a significant part of the originally enabled untimed transitions before Algorithm 2 is

eventually applied, ensuring thus the Π2-irreducibility of the final result. Finally, in a

later section of this chapter we shall also see that Algorithm 3 can even out-perform

Algorithm 2 when they are both applied in a new policy space that is obtained from

the further restriction of the policy space Π2.
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4.1.5 A numerical experiment for the random-switch refinement pro-
cesses developed in this chapter

In this section we assess and validate the effectiveness of the algorithms that were

developed in this chapter through a numerical experiment that employs the 20 CRL

configurations in Table 4.1. These configurations were also used as a testbed for the

developments in [60]. In Table 4.1, “WS” refers to “workstation(s)” and “JS” refers

to “job stage(s)”. The sizes of the included configurations span from the size of the

small CRL in Example 1, to a moderate size of 5 workstations supporting 8 processing

stages. These sizes have been selected so that the underlying state spaces remain fairly

easily enumerable, for comparison purposes. We also note that Table 4.1 does not

specify the processing rates of the various stages of the enlisted configurations, since

the sizes of the state spaces and the numbers of the primary decision variables for the

corresponding MP formulations are not dependent on these rates.5

The results of the applications of the two refinement algorithms on all the 20 CRL

configurations are reported in Table 4.2. The column entitled “ Tangible Markings”

in this table reports the numbers of tangible markings for each CRL configuration, as

a measure of the size of the corresponding state space, since the refinement process

does not actually change the set of tangible markings. On the other hand, the last

four columns in Table 4.2 show the results of the refinement process where the policy

space Π2 is replaced by the corresponding refined policy space Π̂2, in the definitions

of the decision variables ζ̄, the index-searching function idx(·), and the objective

function of the MP formulation (14)–(16).

Both of the refinement Algorithms 2 and 3 incur considerable reduction of the

employed random switches and decision variables. Since Proposition 8 does not sup-

port the Π2-irreducibility requirement, Algorithm 2 performs better than Algorithm

5However, if Assumption 4 is not true, then the sizes of the corresponding state spaces will
be affected by the employed timing distributions due to the Markovian approximation of the non-
Markovian timing distributions.
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Table 4.1: The CRL configurations employed in the numerical experiment that is
reported in Sections 4.1.5 and 4.2.2 [60].

Conf. WS
job stages (JS) workstation
and job routes buffering capacities

1 2 3JS (WS1 → WS2 → WS1) (B1, B2) = (2, 2)
2

2 3JS (WS1 → WS2 → WS1)

(B1, B2) = (1, 2)
3 (B1, B2) = (3, 2)
4 (B1, B2) = (4, 4)
5 (B1, B2) = (10, 10)
6

3 4JS (WS1 → WS2 → WS3 → WS1)

(B1, B2, B3) = (1, 2, 2)
7 (B1, B2, B3) = (3, 2, 2)
8 (B1, B2, B3) = (4, 3, 2)
9 (B1, B2, B3) = (5, 5, 6)

10 4
7JS (WS1 → WS2 → WS4 (B1, B2, B3, B4) = (3, 2, 1, 2)→ WS1 → WS2 → WS3 → WS1)

11 3
5JS (WS1 → WS2 → WS3 (B1, B2, B3) = (3, 4, 3)→ WS1 → WS2)

12 3
5JS (WS1 → WS2 → WS3 (B1, B2, B3) = (3, 3, 3)→ WS2 → WS3)

13
3

5JS (WS1 → WS2 → WS1 (B1, B2, B3) = (3, 4, 1)
14 → WS3 → WS2) (B1, B2, B3) = (2, 2, 2)
15

3
6JS (WS1 → WS2 → WS3 (B1, B2, B3) = (2, 3, 2)

16 → WS1 → WS2 → WS3) (B1, B2, B3) = (2, 2, 2)

17 4
7JS (WS1 → WS2 → WS4 Bi = 3, i = 1, 2, . . . , 5→ WS1 → WS2 → WS3 → WS1)

18 5
7JS (WS1 → WS2 → WS1 B1 = B2 = B3 = 2

→ WS3 → WS4 → WS5 → WS4) B4 = B5 = 3

19 4
8JS (WS1 → WS2 → WS3 → WS2 Bi = 3, i = 1, 2, 3, 4→ WS3 → WS4 → WS3 → WS4)

20 5
8JS (WS1 → WS2 → WS3 → WS2 Bi = 3, i = 1, 2, . . . , 5→ WS3 → WS4 → WS5 → WS3)
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Table 4.2: Comparison of the numbers of random switches (R.S.) and decision vari-
ables (D.V.) for the CRL configurations of Table 4.1 that result from (i) no refine-
ment, (ii) Algorithm 2 (general refinement), and (iii) Algorithm 3 (CRL-customized
refinement)

Conf.

No Refinement Algorithm 2 Algorithm 3
Tangible
Markings

Num.
of

R.S.

Num.
of

D.V.

Num.
of

R.S.

Num.
of

D.V.

Num.
of

R.S.

Num.
of

D.V.
1 19 20 27 5 5 7 7
2 7 4 4 1 1 1 1
3 33 40 56 11 11 16 16
4 87 128 177 35 35 46 46
5 579 1,007 1,374 269 269 331 331
6 42 71 84 9 9 12 12
7 148 346 463 49 49 67 67
8 301 742 966 112 112 149 149
9 1,593 4,304 5,498 677 677 849 849
10 4,245 13,302 20,948 2,083 2,290 2,732 3,000
11 2,511 7,573 11,368 1,513 1,513 1,817 1,817
12 1,162 2,781 4,018 678 678 734 734
13 1,045 2,468 3,759 609 609 765 765
14 261 519 693 106 106 124 124
15 1,518 4,256 5,887 759 759 811 811
16 694 1,851 2,534 243 243 258 258
17 41,097 163,695 270,738 30,805 35,420 38,653 44,755
18 20,389 74,655 109,948 12,313 12,313 17,047 17,047
19 98,133 322,052 525,166 80,142 85,117 88,479 94,034
20 198,231 788,731 1,270,562 139,496 154,069 186,617 208,312

3 in terms of the attained reduction of the numbers of random switches and deci-

sion variables. However, due to its structural nature, Algorithm 3 is computationally

lighter, especially in the context of the larger CRL configurations. Also, as remarked

in the previous section, Algorithm 3 can be applied in combination with Algorithm 2

in the following way: for any reachable Π2-conditional vanishing marking M , Algo-

rithm 3 will be first applied to a “crude” set EΠ2
u (M) as a “filter”. Then, thanks to

the refinement that is effected by Algorithm 3, the corresponding random switch be-

comes smaller before computing the Π2-untimed tangible reach for M for the eventual

application of Algorithm 2.
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4.1.6 The policy space Π̂3

For any refined policy space Π̂2, let us define the policy space Π̂3 as the subset of Π̂2

that is induced by the application of the additional constraint (6) in Section 3.1.2.

Then, as the randomization factor δ goes to zero, the difference in the performance

potential between the policy spaces Π̂2 and Π̂3 becomes negligible. Thus, the policy

space Π̂3 will be the policy space adopted in the rest of this document, with the under-

standing that the set of enabled untimed transitions at any given vanishing marking

M is the corresponding set E Π̂2
u (M). On the other hand, in the subsequent devel-

opments, we shall not pay particular attention to the specific refinement algorithm

applied (i.e., Algorithm 2, Algorithm 3, or even their combination).

4.2 Static random switches

Even though some refinement that maintains the performance potential of the pol-

icy space is applied, the numbers of random switches and decision variables are still

proportional to the size of the underlying state space, as we can observe in Table

4.2. Furthermore, as the proof of Proposition 4 has established, the considered opti-

mization problem can be seen as a semi-Markov decision process, with its state space

containing all the tangible and all the vanishing markings in RΠ2 (or RΠ̂2), and with

the action space being defined by the set of all the tangible markings. Appendix

A also shows how to define a simpler MDP for the RAS performance optimization

problem, and the MDP obtained through this method provides a tight lower-bound

to the number of decision variables of the refined policy space that maintains the

performance potential.

The above remarks reveal that the refinement process alone is not enough for

effectively controlling the complexity of the underlying MP formulation, and there-

fore, we must resort to approximation. More specifically, an intuitive way to reduce

the number of the primary decision variables involved, is by making the probability
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distributions of the random switches independent from the corresponding vanish-

ing markings. In this way, the number of decision variables involved will not be

proportional to the size of the corresponding state space. A possible realization of

this independence is by setting the probability distributions of the various random

switches dependent only upon the sets of the enabled untimed transitions, and not

the vanishing markings themselves. In the relevant PN literature, this type of random

switches is characterized as static [100, 20].

4.2.1 Applying static random switches

The notion of the “static random switch” can be formally applied in the MP formu-

lation (9)–(13) by adding to the policy space Π̂3 the constraint:

ZM = ZM ′ , ∀M,M ′ with E Π̂2
u (M) = E Π̂2

u (M ′) (27)

The resulting policy space will be denoted by Π̂S
3 and, as it will be revealed in the

following, it admits a much more parsimonious representation than the policy space

Π̂3.

More specifically, in the corresponding implementation of the formulation (14)–

(16), no extra constraints are needed, but we should re-define the variable vector ζ̄

and the corresponding index-searching function as follows: Let Ξ be the set of all the

possible enabling patterns of the random switches in the refined policy space Π̂2, i.e.,

Ξ ≡ {E ⊆ Tu : |E| ≥ 2 ∧ ∃M ∈ RΠ̂2
V s.t. E Π̂2

u (M) = E}. Then, ζ̄ ∈ R
∑
E∈Ξ |E|−|Ξ|

+ . Also,

the corresponding index-searching function is defined as: idxS : Ξ×Tu 7→ Z+∪{NULL}.

For the input E ∈ Ξ and t ∈ Tu, if t ∈ E and t is not the last element in E according to

lexicographic order, then idxS(E , t) returns the index number i in the vector ζ̄ such

that ζ̄[i] is the probability that t is fired in the static random switch with enabling

pattern E ; otherwise, it returns NULL. On the other hand, in the context of static

random switches, we also retain the index-searching function idx(·) that was defined

in Section 3.3, with its original domain RΠ̂2
V ×Tu, but with the further understanding
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that idx(M, t) ≡ idxS(E Π̂2
u (M), t). Finally, the objective function should also be

changed accordingly to reflect the new set of the refined decision variables. But in

the following, we shall still apply the notation η(ζ̄) for the objective function.

Unlike the refined policy space Π̂2 introduced in the previous section, the pol-

icy space Π̂S
3 does not maintain the performance potential of Π̂3. However, we can

observe that Π̂S
3 still contains a large number of policies. More specifically, when

δ ↓ 0, Π̂S
3 contains all the static-priority policies,6 but it adds the flexibility that

the priorities assigned by these policies may change when different sets of untimed

transitions are enabled. In the context of the MDP-based modeling of the considered

optimization problem that was discussed at the beginning of this section, the policy

space Π̂S
3 essentially defines an aggregation of the underlying state space, by enforcing

a correlation of the decisions that are made at states that belong to the same state

aggregate.

The worst-case complexity in terms of the number of the primary decision variables

that are employed by the policy space Π̂S
3 , is still super-polynomial. More specifically,

the vector ζ̄ has the dimension of
∑
E∈Ξ |E|−|Ξ|, with a worst possible value ofO(2|Tu|).

But in the more practical application context of RAS, it is rare that all the processing

stages of all the process types compete for the same resource. Therefore, since the

refinement in Section 4.1 maintains only conflicting options in any employed random

switch,7 the empirical representational complexity of the policy space Π̂S
3 can be quite

benign.

6Static-priority policies are defined as the policies that set priorities to each processing stage in
the RAS, or to each untimed transition in the case of the RAS-modeling GSPN. Note that some
widely applied heuristics in the industrial practice, such as first-buffer-first-serve (FBFS) and last-
buffer-first-serve (LBFS), are all static priority policies.

7It is also possible that some processing stages may not require the same resource type, but they
are actually in competition due to some deadlock avoidance consideration. This issue may make the
set of static random switches a bit larger than all the possible combinations of resource competition
patterns (i.e., the possible combinations of processing stages that are in conflict for the various
resource types), but still much smaller than the power set of Tu.
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4.2.2 A numerical experiment for the application of static random switches

The empirical representational complexity for the policy space Π̂S
3 , that employs the

static random switch concept, is demonstrated with some numerical results that are

obtained from the same testbed that was used in the previous section. Table 4.3

shows the reductions in the numbers of random switches and decision variables that

are attained by redefining the decision variables with respect to the static random

switches of the 20 CRL configurations of Table 4.1. The table also lists, for compari-

son purposes, the numbers of random switches and decision variables of the original

policy space Π2, which have already been reported in Table 4.2. Then, in the re-

maining columns the table reports the numbers of the static random switches and

their corresponding decision variables under three different refinement settings: no

refinement, general refinement with Algorithm 2, and CRL-customized refinement

with Algorithm 3.

The reader may observe that the complexity reduction caused by the application

of static random switches is more significant in larger state spaces, particularly when

combined with the refinement process of Section 4.1.

Another interesting observation concerns the comparison of the numbers of the de-

cision variables that result by employing static random switches under the two refine-

ment processes that were introduced in the previous sections. The CRL-customized

refinement process (Algorithm 3) leads to a higher reduction of the numbers of the

employed random switches and decision variables than the reduction that is effected

by the general process (Algorithm 2), since it can correctly identify the fundamental

conflicts in the allocation of servers and buffer slots in CRL, and it aggregates effec-

tively conflicts of similar type appearing in different markings. On the other hand,

the general refinement process, by picking the set of the enabled untimed transitions

in lexicographic order, fails to pronounce the aforementioned essential conflicts, and

this is reflected in the eventual aggregation that is defined by the corresponding policy
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Table 4.3: Comparison of the numbers of random switches (R.S.) and decision vari-
ables (D.V.) for the CRL configurations of Table 4.1 when applying the static random
switches

Conf.

No static Applying static random switches
random switches No refinement Algorithm 2 Algorithm 3
Num.

of
R.S.

Num.
of

D.V.

Num.
of

R.S.

Num.
of

D.V.

Num.
of

R.S.

Num.
of

D.V.

Num.
of

R.S.

Num.
of

D.V.
1 20 27 11 16 2 2 2 2
2 4 4 4 4 1 1 1 1
3 40 56 12 18 2 2 2 2
4 128 177 12 18 2 2 2 2
5 1,007 1,374 12 18 2 2 2 2
6 71 84 20 27 1 1 1 1
7 346 463 35 61 2 2 2 2
8 742 966 35 61 2 2 2 2
9 4,304 5,498 38 68 2 2 2 2
10 13,302 20,948 397 1,104 13 15 10 12
11 7,573 11,368 113 251 4 4 4 4
12 2,781 4,018 89 181 4 4 4 4
13 2,468 3,759 81 165 5 5 4 4
14 519 693 73 136 5 5 4 4
15 4,256 5,887 188 414 6 6 6 6
16 1,851 2,534 164 342 6 6 6 6
17 163,695 270,738 579 1,827 15 17 10 12
18 74,655 109,948 191 497 4 4 4 4
19 322,052 525,166 771 2,456 19 22 12 14
20 788,731 1,270,562 739 2,342 14 17 10 12

space Π̂S
3 .

4.2.3 The potential performance losses incurred by the employment of
static random switches and a plan for their retrieval

The application of static random switches reduces the representational and the com-

putational complexity of the corresponding scheduling problem at the cost of com-

promising the optimality of this problem, or some of the operational efficiency of the

underlying RAS. However, part of this cost can be retrieved in a controlled manner,

through a partial disaggregation of (some of) the state aggregates that are defined by
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the static random switches. This possibility defines an effectively manageable trade-

off between the tractability of the pursued approximation and the sub-optimality of

the derived solutions: at one extreme point of this spectrum, namely that of the com-

plete aggregation that is defined by all the static random switches, the policy space

is exactly Π̂S
3 ; on the other extreme point, corresponding to the complete disaggre-

gation of all the static random switches, the policy space maintains the performance

potential of the original policy space Π̂3.

From an operational standpoint, the aforementioned partial disaggregation can be

effected by allowing the random switches with the same enabling pattern E to have

different probability distributions, but correlate these distributions in some ways so

that there are fewer degrees of freedom and a fewer number of decision variables for

regulating these probability distributions. The correlated random switches in these

intermediate cases will be called partially disaggregated random switches in the sequel.

On the other hand, the random switches that correspond to the two aforementioned

extreme cases will be respectively characterized as static and dynamic. In the next

section, we present a random-switch representation for partial disaggregation that is

based on the notion of “feature functions”. And this representation has the potential

to become a control mechanism for the trade-off between complexity and optimality.

4.3 An alternative representation for random switches that
facilitates partial disaggregation

In order to accommodate increasing degrees of freedom for correlated random switches,

the decision variables of the MP formulations of the considered scheduling problem

should impact the selection probabilities that are regulated by random switches in a

more indirect way. In this section, first we introduce such an indirect representation

for static random switches, and then we employ this indirect representation in order

to develop a partial disaggregation scheme. In the resulting policy spaces, the new
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representation to be introduced in this section will be applied to any partially disag-

gregated random switches. However, the old representation that was introduced in

Section 4.2 will still be used to represent those static random switches that are not

selected to be disaggregated.

An indirect representation for static random switches The most common

way to effect such a representation is by using a random switch that has the form

of a Gibbs measure [50]. More specifically, consider a random switch (either static

or non-static) of a vanishing marking M and let the corresponding vector of decision

variables be v ∈ R|E
Π̂2
u (M)|. In this new regime, the probability of firing an untimed

transition t̂ ∈ E Π̂2
u (M) is no longer the value of the decision variable v[ t̂ ] itself, but

the exponent of this value, divided by a normalization factor in order to establish a

probability distribution; i.e.,

ZM [ t̂ ] =
exp(v[ t̂ ])∑

t∈EΠ̂2
u (M)

exp(v[t])
(28)

Since the definition of the selection probabilities through Equation (28) introduces

naturally a certain degree of randomization for the corresponding random switches,

we propose to remove from the formulation (14)–(16) the constraints (15) and (16)

that correspond to these random switches.8 Next, we discuss how we shall employ

the concept of the Gibbs measure that is defined by Equation (28) in order to effect

the proposed partial disaggregation scheme.

A feature-based partial disaggregation scheme Consider an enabling pattern

E ⊆ Tu, and further suppose that either it is a static random switch, or it generates

8 From a more practical standpoint, the elimination of the relevant randomization requirement
that is expressed by the constraints (15) and (16) of formulation (14)–(16), is necessitated by the
fact that the enforcement of these constraints for the partially disaggregated random switches in the
computation scheme that is presented in Chapter 5, would be an intractable task; we shall return
to this issue when we discuss the corresponding results in that chapter.
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a set of correlated, partially disaggregated random switches.9 The corresponding

decision variables are encoded to the vector of decision variables ζ̄. Let K ∈ Z+

be a pre-determined parameter that controls the degree of disaggregation. Then, for

each enabling pattern E that generates partially disaggregated random switches, ζ̄

will allow |E| × K components, each of which is associated to a pair of an option

in E and a feature function. An index-searching function idxDA : E × Tu 7→ ZK+ is

applied to locate the indices of these components. For the input E ∈ Ξ and t̂ ∈ Tu, if

t̂ /∈ E , then idxDA(E , t̂) = NULL; otherwise, idxDA(E , t̂) returns the index numbers of

the K components in the vector ζ̄ corresponding to t̂ in E (note that for some E ′ 6= E ,

it is possible that t̂ ∈ E ′, but this time idxDA(E ′, t̂) will return a different set of K

index numbers). These K components of ζ̄ form a set of tunable parameters for a

particular option t̂ ∈ E . More specifically, there is a set Ψ of K feature functions, i.e.,

Ψ ≡ {ψk(·) : RV 7→ R, k = 1, . . . , K}. The feature functions are linearly independent

with respect to each other in the vanishing state space. In other words, for any

particular function ψk̂(·), there does not exist a set of real coefficients ck, k = 1, . . . , K,

such that for any vanishing marking M ∈ RΠ̂2
V , ψk̂(M) =

∑
k 6=k̂ ckψk(M). Then,

we can express the probability of firing a particular untimed transition t̂ ∈ E at a

vanishing marking M , when E = E Π̂2
u (M) and the corresponding random switch is

partially disaggregated, as follows:

ZM [ t̂ ] =
exp

(∑K
k=1 ψk(M) · ζ̄

[
idxDA(E , t̂)[k]

])
∑

t∈E exp
(∑K

k=1 ψk(M) · ζ̄
[
idxDA(E , t)[k]

]) (29)

For a given GSPN with state space RΠ̂2 = RΠ̂2
V ∪ R

Π̂2
T , as K ↑ |RΠ̂2

V | and the

functions ψk(·), k = 1, . . . , K, maintain their linear independence, the aforementioned

mechanism of random switches tends to give the probability distributions for the

various vanishing markings that are linearly independent vectors. In particular, if

9The hybrid of the two types for one enabling pattern is possible, but the allocation of ζ̄ and the
index-searching function will not be the same as in this paragraph. In the current research work,
only non-mixed enabling patterns are considered.
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K = |RΠ̂2
V | and the feature functions are the corresponding indicator functions for each

vanishing marking, then the variable ζ̄
[
idxDA(E , t)[k]

]
in Equation (29) is effective

only if ψk(·) is the indicator function for the current marking M and it plays the role

of the variable v[t] in Equation (28). More generally, the degrees of freedom between

the static and dynamic random switches can be adjusted by controlling the number

and the content of the feature functions.

It is clear from the above discussion that the Gibbs measure materialized by Equa-

tion (29) constitutes a general representation mechanism for policy spaces that are

defined through a combination of static and partially disaggregated random switches.

But the complete exploitation of this mechanism in the considered problem context

needs the systematic investigation of a host of additional issues. For instance, we

need to specify criteria that will lead the selection of the enabling pattern(s) to be

disaggregated. These criteria could be either static or dynamic, i.e., either taking into

consideration only certain attributes of the underlying RAS, or further considering

the structure of the optimized policies that are computed for a sequence of previously

defined policy spaces. Some additional issues include the development of the algo-

rithms that will determine the optimized policies in the context of the mixed policy

spaces that were defined above, and the selection of a good set of feature functions

that will also provide sufficient levels of linear independence along the line that was

discussed in the previous paragraphs. We shall address some of these issues in the

next chapter where we discuss the broader problem of solving the MP formulation

for the randomized policy spaces that were defined in this section, through stochastic

approximation algorithms.
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CHAPTER V

SOLVING THE FORMULATED SCHEDULING

PROBLEM WITH STOCHASTIC APPROXIMATION

As mentioned in the previous parts of this document, it is hard to estimate the

value of the objective function for the MP formulation (14)–(16) when the size of

the considered RAS increases, since the size of the underlying state space and the

corresponding vector of the steady-state distribution become very large. The methods

presented in the previous chapter only control the representational complexity of the

solution space, in terms of the number of decision variables, to a tractable level; but

the objective function itself is still hard to evaluate. Furthermore, due to the coupling

effects on the random switches that were introduced by some of the complexity control

methods of Chapter 4, the classical MDP modeling method of Appendix A is no

longer applicable. Additional substantial increases of the state space of the stochastic

processes involved can result from the phase-type approximation of any general timing

distributions that might appear in the RAS-modeling GSPN (c.f. Section 2.3) since the

corresponding Markovian subnets will enlarge the GSPN structure. To cope with all

the aforementioned difficulties, in this chapter we resort to simulation optimization in

order to solve the MP formulations that were derived in the previous chapters. More

specifically, since the objective function is differentiable and all the decision variables

are continuous, the method of stochastic approximation (SA) is appropriate for the

considered simulation optimization problem, and this is the method to be employed

in the subsequent developments.

Hence, in this chapter, first we shall introduce the basic framework of the SA
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algorithms, and some general conditions for the asymptotic convergence of these al-

gorithms. Next, the general framework of the SA algorithms will be customized to the

performance optimization problem that was formulated in the previous chapters. In

particular, we shall develop the necessary formulae for the calculation of the improve-

ment directions to be employed by the sought algorithm(s), and we shall establish

the aforementioned conditions for asymptotic convergence. Furthermore, since the

policy spaces to be employed by the considered algorithms are only implicitly defined

by the underlying GSPN structure, the applied DAP, and the remaining operational

conditions that characterize these policy spaces, an additional important task to be

supported by the sought algorithms is (i) the detection of the particular structure that

defines the considered policy spaces, in terms of the employed random switches and

the corresponding decision variables, through the performed simulation, and (ii) the

encoding of the identified structure by means of some pertinent data structures that

are defined and maintained during the algorithm execution. The second part of the

current chapter will address this algorithmic functionality, as well. In the third part

of the chapter, the developed SA algorithms will also be considered from the more

practical standpoint of their transient behavior, and we shall seek to enhance the

corresponding performance through some results drawn from the area of statistical

inference. Finally, we also address the necessary extensions so that the developed al-

gorithms are applicable in the setting of the partially disaggregated random switches

discussed in Section 4.3.

5.1 The basic stochastic approximation framework

Consider a general nonlinear optimization problem

max
ζ̄∈H

η(ζ̄) (30)

where the feasible region H ⊆ Rp. Furthermore, let us assume that the evaluation of

the function η(ζ̄) for any given value ζ̄ is not practically tractable; in particular, in
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the sequel we shall assume that there exists a random variable X whose probability

distribution depends on the parameters specified by ζ̄, and η(ζ̄) = E[X|ζ̄]. Then,

a stochastic approximation (SA) algorithm is essentially a search process for a local

optimum of the aforementioned optimization problem that is based on the following

recursion [53]:

ζ̄n+1 = projH
(
ζ̄n + γnYn

)
, n ≥ 0 (31)

In the recursion of Equation (31), ζ̄n and ζ̄n+1 are the values of the problem decision

variables at iterations n and n+1, respectively. In particular, ζ̄0 is the initial solution

for the SA algorithm, which can be either randomly sampled from the feasible region

H, or determined through some heuristics. γn is a non-negative and deterministic

scalar, called the step size at iteration n.1 Yn is a random vector that together with

the step size γn determine the perturbation that is added to the original variable

vector ζ̄n in order to obtain the new variable vector ζ̄n+1. In the considered problem

context where η(ζ̄) = E[X|ζ̄], Yn will be obtained from the simulation of a stochastic

process that can determine the statistics of the random variable X with parameter

ζ̄n. Finally, projH(·) : Rp 7→ H is the projection operator of Euclidean norm that

keeps ζ̄n always in the feasible region H; more specifically, for any vector v ∈ Rp,

projH(v) ≡ arg min v′∈H
∑p

k=1(v′[k]− v[k])2.

As observed from the recursion (31), the dynamics of the stochastic process

{ζ̄n}, n = 0, 1, . . . is guided by the sequence {Yn}. Intuitively, we expect that some

movement along the direction of Yn can incur some improvement in terms of η(ζ̄n) in

the optimization problem (30). Hence, Yn is typically called the improvement direc-

tion. If the objective function η(·) is differentiable, or more formally, the optimization

problem satisfies Condition 5 below, then, for the maximization problem (30), Yn is

1It is also possible that γn is determined not only by n and the initial input of the algorithm but
also by some information from the previous iterations. In this case, γn is a random variable. Then,
the convergence condition of (31) is a little different from the deterministic case. More discussions on
the different settings of the step size can be found in Chapter 17 of [27]. However, in this document,
only deterministic step sizes are considered.
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often an estimator of ∇η(ζ̄).

Condition 5 The objective function η : H 7→ R is a continuously differentiable real-

valued function.

Under Condition 5, once the value of ζ̄ reaches a (local) maximum, the improve-

ment direction Yn with expectation ∇η(ζ̄) cannot incur any further improvement,

and the algorithm should terminate. Obviously, if H = Rp, then, any local optimum

must be sought among the values ζ̄∗ with ∇η(ζ̄∗) = 0. On the other hand, it is also

possible that ∇η(ζ̄ ′) 6= 0 at some solution point ζ̄ ′, but the restriction imposed by

H does not allow any improvement along the direction of ∇η(ζ̄ ′) (or more precisely,

any directions that are in acute angle with the vector ∇η(ζ̄ ′)). In the latter case, ζ̄ ′

is also a local optimum, but the corresponding condition on the vector ∇η(ζ̄ ′) is not

as simple as in the case where H = Rp. However, some pertinent condition can be

derived if H satisfies the following condition:

Condition 6 H is connected, compact and non-empty, and it is defined by H ≡

{ζ̄ ∈ Rp : cj(ζ̄) ≤ 0, j = 1, . . . , lc}, where each constraint function cj(·) is a continu-

ously differentiable real-valued function. Furthermore, when a constraint function is

binding, its gradient is non-zero, i.e., ∀j, ∇c(ζ̄) 6= 0 if cj(ζ̄) = 0.

Given the satisfaction of Condition 6, the vectors ∇η(ζ̄∗) corresponding to some

(constrained or unconstrained) local optimum ζ̄∗ are characterized by the following

condition which is an adaptation of the famous Karush-Kuhn-Tucker (KKT) condition

of the nonlinear optimization theory [67] to the considered problem context:

Condition 7 Let B(ζ̄∗) ≡ {cj(·) : cj(ζ̄
∗) = 0} be the set of the binding constraint

functions at ζ̄∗. Then there exists a set of non-negative scalars λj, j ∈ B(ζ̄∗), such

that

∇η(ζ̄∗) =
∑

j∈B(ζ̄∗)

λj∇cj(ζ̄∗) (32)
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The scalars λj, j ∈ B(ζ̄∗), appearing in Condition 7 above, are called Lagrange

multipliers. Condition 7 can be explained in the following intuitive way. Consider a

solution point ζ̄∗, where the gradient ∇η(ζ̄∗) is either zero, or can be represented as

a conic combination of the vectors ∇cj(ζ̄∗), j ∈ B(ζ̄∗). Furthermore, notice that any

movement along the direction of ∇cj(ζ̄∗), for any j ∈ B(ζ̄∗), will cause the violation

of the constraint cj(ζ̄) ≤ 0. Therefore, if Condition 7 is satisfied, we cannot move ζ̄∗

along any directions that form an acute angle with the gradient vector ∇η(ζ̄∗) and

keep the solution point ζ̄∗ in the feasible region H. Hence, ζ̄∗ can be declared as a

local maximum since there are no points nearby with higher η value.

In the sequel, we are interested in implementations of the SA algorithm of Equa-

tion (31) on the optimization problem (30) that can make the stochastic process

{ζ̄n} move towards some local maxima that satisfy Condition 7 with probability 1,

as n → ∞. And these dynamics are characterized as asymptotic convergence of the

SA algorithm.

In [53], several sets of conditions for asymptotic convergence were introduced. In

the next section, we present one set of such conditions. This condition set will be

employed later, in Section 5.2, for establishing the asymptotic convergence of the SA

algorithm that we shall define for the solution of the MP formulation (14)–(16), which

is the focus of this work.

5.1.1 An asymptotic convergence result for the considered SA algorithm

In this section first we introduce an additional set of conditions that qualify further

the optimization problem (30) and the recursion (31), and subsequently, we present

a theorem that establishes the asymptotic convergence of the corresponding SA algo-

rithm.

The next two conditions can be considered as stronger versions of Conditions 5

and 6.
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Condition 8 The objective function η : H 7→ R is a twice continuously differentiable

real-valued function.

Condition 9 Condition 6 holds, and each constraint function cj(·) is a twice contin-

uously differentiable real-valued function.

On the other hand, the next condition qualifies further the feasible region of the

optimization problem (30).

Condition 10 The set of all feasible solutions that satisfy Condition 7, denoted by

SH , can be partitioned into disjoint compact and connected subsets Sj, j = 0, 1, . . .

Finally, there are also some requirements on the step size γn and the improvement

direction Yn of the SA recursion (31).

Condition 11 γn ≥ 0, n = 0, 1, . . .,
∑∞

n=0 γn =∞, and
∑∞

n=0 γ
2
n <∞.

Condition 12 The expectation of the Euclidean norm of each Yn is bounded, i.e.,

sup
n

E[

p∑
k=1

Yn[k]2] <∞

Condition 13 Condition 5 holds, and {Yn} is a stochastic process such that

E[Yn|ζ̄0, Yi, i < n] = ∇η(ζ̄n) + βn

and limn→∞ βn = 0 with probability 1.

Given the aforementioned conditions, the next theorem establishes the asymptotic

convergence of recursion (31):

Theorem 3 [53] If Conditions 8–13 hold, then, as n → ∞, the sequence {ζ̄n} gen-

erated by recursion (31) converges with probability 1 to a unique subset Sj of the set

SH that was defined in Condition 10.

In the next section, we will customize the basic SA algorithm that was described

above to the performance optimization problem that was developed in the previous

chapters.

114



5.2 Customizing the basic SA algorithm to the considered
performance optimization problem

The key components of the optimization problem (30) and the SA recursion (31)

include: the decision variables ζ̄n, the feasible region H, the objective function η(ζ̄),

the improvement direction Yn, the step size γn, and the projection operator projH(·).

On the other hand, the asymptotic convergence of the recursion (31) is based on

the further qualification of those components through additional conditions, like the

conditions involved in the statement of Theorem 3. In this section, we shall customize

the SA recursion (31) in order to develop an asymptotically convergent SA algorithm

for the performance optimization problem considered in this work, where the latter

is defined by the uniformized version of the MP formulation (14)–(16). Hence, the

following subsections provide a detailed description of the considered problem and the

key ingredients of the proposed SA Algorithm. The section concludes with a formal

statement of the proposed algorithm and its asymptotic convergence.

5.2.1 The considered optimization problem

The particular optimization problem that is considered in this section is the maxi-

mization of the steady-state average reward of the DTMC M̂ that results from the

uniformizing procedure that was discussed in Section 3.3. Using the notation that

was introduced in the previous chapters, this maximization problem can be formally

stated as follows:

maximize η(ζ̄) = πT · r̂ (33)

subject to
∑

t:idx(M,t)6=NULL

ζ̄[t] ≤ 1− δ

|E Π̂2
u (M)|

∀M ∈ RΠ̂2
V : |E Π̂2

u (M)| ≥ 2 (34)

ζ̄[idx(M, t)] ≥ δ

|E Π̂2
u (M)|

∀M ∈ RΠ̂2
V , ∀t ∈ Tu : idx(M, t) 6= NULL (35)

We remind the reader that in the above formulation, the decision variables ζ̄ de-

fine the selection probabilities of the various (dynamic or static) random switches.
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The constraints (34) and (35) define the feasible region H in terms of the simplices

that correspond to these random switches. Hence, H is a closed polytope, and there-

fore, connected, bounded and non-empty. Constraints (34) and (35) also define the

constraint functions cj that appear in Condition 6 of Section 5.1.1, as some affine

functions of the vector ζ̄. As a result, all the constraint functions cj of the con-

sidered formulation are twice continuously differentiable. The next lemma results

immediately from the previous remarks.

Lemma 2 The feasible region H defined by Equations (34) and (35) satisfies Con-

dition 9 in Section 5.1.1.

Remark We also notice, for completeness, that if the alternative representation

in Section 4.3 is applied to some random switches, the feasible region H will become

unbounded with respect to the corresponding components. Then, H is no longer

compact, and Conditions 6 and 9 will be no longer satisfied. We shall return to

this issue in Section 5.4.1 where we address the relevant variation of the considered

optimization problem. 2

Next, let us focus on the objective function η(ζ̄) of the considered MP formulation,

which is defined in Equation (33). More specifically, Equation (33) defines η(ζ̄) as

the inner product of the steady-state distribution π of the corresponding DTMC M̂

and the vector of immediate rewards r̂, which is a constant vector.2 Thus, η(ζ̄) is

essentially a weighted sum of the components of the vector π.

On the other hand, the steady-state distribution vector π is a set of “auxiliary”

variables that depends on the value of ζ̄. More specifically, π is the solution of the

2The reader is referred to Section 2.3.3 for the initial definition of the vector r̂, and to Section
3.3 for the final modification of this vector under the applied uniformization.
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following linear system of equations:

πTP = 1T

πT1 = 1

(36)

In Equation (36), P is the transition probability matrix of the DTMC M̂ that

depends on the value of ζ̄. The CTMC-construction procedures that were presented

at the end of Section 2.3.3, together with the uniformization procedure that was

discussed in Section 3.3, imply that each element of the matrix P is a polynomial

function of the selection probabilities of the employed random switches, and thus, of

the decision variables ζ̄.

Furthermore, π is well-defined for any ζ̄ in the randomized policy spaces that

are considered in this chapter, since it is known to be equal to the steady-state

probability of the corresponding CTMCM that models the continuous-time dynamics

of the RAS-modeling GSPN (c.f. the paragraphs on unformization in Section 3.3).

But then, Equation (36) implies that each component of π can be expressed as a

rational function (i.e., the ratio of two polynomials) of ζ̄. And this remark further

applies to the objective function of Equation (33), since it is a weighted sum of the

aforementioned functions. But then, we have the following result:

Lemma 3 The objective function η(ζ̄) defined by Equation (33) is twice continuously

differentiable in the feasible region H defined by Equations (34)–(35).

Next we argue that the problem formulation (33)–(35) satisfies also the Condition

10 of Section 5.1.1. Indeed, every local optimum of η(ζ̄) in the interior of H will be

located on a “plateau” of this continuously differentiable function which constitutes

a compact and connected set. On the other hand, the regions that might contain

constrained local optima for the considered optimization problem are defined by the

intersections of the objective function η(ζ̄) with some of the facets of the polyhedron

that corresponds to the feasible region H. Therefore, they will also be compact and
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connected sets. The next lemma gives a formal expression to these remarks.

Lemma 4 The optimization problem defined by Equations (33)–(35) satisfies Con-

dition 10 in Section 5.1.1.

Up to this point, we have concretized the main MP formulation that is addressed

in this chapter, and we have established that it possesses the key properties that are

required by the Conditions 8, 9 and 10 of Section 5.1.1. Next, we turn to the most

important ingredient of the SA recursion (31): the specification and computation of

the improvement direction Yn in a way that also satisfies Conditions 12 and 13 of

Section 5.1.1.

5.2.2 Determining the improvement direction

The general problem of estimating the gradient of a function η(ζ̄) = E[X|ζ̄] with

respect to the parameter vector ζ̄ through simulation-based methods is addressed in

[35]. That work overviews a number of methods that have been proposed for this

problem, and classifies them into direct and indirect .

Indirect methods, also characterized as “black-box” methods, estimate the consid-

ered gradient from the basic definition of this concept, by generating estimates of the

objective function at appropriately perturbed values of the vector ζ̄. Typically, these

methods are characterized by a large variance and they are computationally costly.

The work of [98] proposes some variance reduction techniques that are appropriate

for these methods and they are based on the notion of the simultaneous perturbations

stochastic approximation (SPSA). But, in general, indirect methods are usually ap-

plied when little information is known about the stochastic process that determines

the objective function η(ζ̄).

On the other hand, direct methods can control better the variance of the corre-

sponding estimators, but they require additional information and structure for the

underlying stochastic process that determines the objective function. Since the timed
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dynamics that are considered in this chapter can be modeled by the ergodic DTMC

M̂ with computable transition probabilities, the direct methods of [35, 36] seem more

appropriate. In the rest of this section, we focus on a particular such method that is

known as the method of likelihood ratio (LR) estimation [4]. This method is enabled

by the regenerative nature of the aforementioned DTMC M̂, and it can provide an

asymptotically unbiased estimator for the sought gradient.

Likelihood-ratio-based gradient estimator In order to establish the sought es-

timator of the gradient of the objective function η(ζ̄) that is defined by Equation

(33), let us first pick arbitrarily a tangible marking M∗ from the state space RΠ̂2
T of

the finite-state ergodic DTMC M̂ mentioned in Section 5.2.1; in the sequel we shall

refer to this marking as the reference marking. Furthermore, consider a sample path

{X(t) : t = 0, 1, . . .} of the DTMC M̂ starting from marking M∗ at time period

t = 0. Then, due to the ergodicity of M̂, the marking M∗ will be visited in this

sample path for an infinite number of times. Let us also define the stopping times

τk ≡


0 if k = 0

inf{t > τk−1 : X(t) = M∗} if k = 1, 2, . . .

(37)

Due to the memoryless property of Markov chains, each visit to M∗ can be seen

as a “regeneration point” of the stochastic process. Therefore, for any j = 1, 2, . . .,

the sample path segments {X(τj−1) = M∗, X(τj−1 + 1), . . . , X(τj − 1)} are called

regenerative cycles; these segments are independent from each other and can be seen

as individual sample paths. Furthermore, the steady-state average reward of process

M̂ can be expressed as a ratio of two expectations that are based on the regenerative

cycles mentioned above:

η(ζ̄) =
E
[∑τ1−1

t=0 r̂[X(t)]|ζ̄ ,M∗]
E[τ1|ζ̄ ,M∗]

(38)

In the sequel, we will suppress the dependence on the decision variables ζ̄ whenever

there is no risk of confusion. Also, in order to facilitate the subsequent developments,
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we introduce the following notation:

z(r̂) ≡ E[

τj−1∑
t=τj−1

r̂[X(t)]|M∗]

z(1) ≡ E[

τj−1∑
t=τj−1

1|M∗] = E[τj − τj−1|M∗]

(39)

Then, from Equation (38) we have:

∇η = ∇
(
z(r̂)

z(1)

)
=
z(1) · ∇z(r̂)− z(r̂) · ∇z(1)

z(1)2
(40)

The expectations z(r̂) and z(1) can be estimated according to their definition in

Equation (39). On the other hand, to estimate the gradients ∇z(r̂) and ∇z(1), the

theory of the LR method for ergodic DTMCs [4] implies that 3

∇z(r̂) = E

[
τ1−1∑
t=0

r̂[X(t)]
t∑
l=1

∇P [X(l − 1), X(l)]

P [X(l − 1), X(l)]
| M∗

]

∇z(1) = E

[
τ1−1∑
t=0

t∑
l=1

∇P [X(l − 1), X(l)]

P [X(l − 1), X(l)]
| M∗

] (41)

We remind the reader that P is the transition probability matrix of the uniformized

DTMC M̂, and its elements are functions of the decision variables ζ̄. Furthermore,

∇P [x, y] denotes the gradient vector with respect to ζ̄ of the element P [x, y] of the

3For a complete justification of the formulae in the right-hand-side of Equation (41), the reader
is referred to [4]. However, a brief explanation of the structure of these formulae, that also justifies
the name of the considered method, has as follows: Let z ≡ E[g(X(0), X(1), . . . , X(τ1))|M∗] be
defined on the considered sample paths of the DTMC M̂, and τ1 be the stopping time defined
in Equation (37). Also, fix a policy ζ̄0 in the underlying policy space, and let P (ζ̄0) denote the
corresponding one-step transition probability for M̂. Finally, for any other policy ζ̄ and t ∈ Z+,
define Lt ≡

∏t
i=1 P (ζ̄)[X(i − 1), X(i)]/P (ζ̄0)[X(i − 1), X(i)]. Then, it can be checked that z =

E0[g(X(0), X(1), . . . , X(τ1))Lτ1 |M∗], where the notation E0[·] indicates that the expectation is taken
with respect to the probability measure on the sample paths of M̂ that is defined by the policy ζ̄0.
Function Lτ1 , that facilitates this change of measure in the computation of z, is characterized as the
corresponding likelihood ratio. Furthermore, it can be shown that under some regularity assumptions
for the function Z = g(X(0), X(1), . . . , X(τ1)), ∇E[Z] = ∇E0[ZLτ1 ] = E0[Z∇Lτ1 ] = E[Z∇Lτ1/Lτ1 ],
where the gradient is taken with respect to ζ̄. Equation (41) is essentially the application of this
last result to the sample-path functions of M̂ that define z(r̂) and z(1).
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matrix P ; as already established in Section 5.2.1, each element of P is a polynomial

function of ζ̄, so the gradient exists.

It follows from the above discussion that an estimator of ∇η can be obtained from

Equation (40) with the necessary estimates for z(1), ∇z(1), z(r̂) and ∇z(r̂) being

obtained according to Equations (39) and (41). Let us denote those intermediate

estimators by ẑ(ω,1), ∇̂z(ω,1), ẑ(ω, r̂) and ∇̂z(ω, r̂), where the employed sample

path ω is included as an additional parameter of the estimators. Then, an estimator

for the gradient can be derived as follows:

∇̂η =
ẑ(ω1, 1) · ∇̂z(ω2, r̂)− ẑ(ω3, r̂) · ∇̂z(ω4, 1)

ẑ(ω5, 1)ẑ(ω6, 1)
(42)

However, the estimator of (42) is biased, in general, even if the six intermediate

estimators in Equation (42) are obtained from independent sample paths.4

Fortunately, for the asymptotic-convergence result of Theorem 3, Conditions 12

and 13 in Section 5.1.1, which are related to the employed improvement directions Yn,

do not require the unbiasedness of the corresponding estimator for each iteration n of

the algorithm; in particular, Condition 13 requires the unbiasedness of this estimator

only as n → ∞. This condition can be satisfied by establishing an “asymptotically

unbiased” estimator (i.e., an estimator with its bias converging to zero as the sample

size increases to infinity), and then setting the sample size as an increasing function

of the iteration number n with no upper bounds. Furthermore, the direction defined

by ∇̂η will be of an ascending nature if it is in acute angle with the vector ∇η;

but the angle between those two vectors is independent from the denominator of

the right-hand-side of Equation (42). Hence, in the subsequent developments, we

will (i) establish an estimator Y such that E[Y ] is proportional to the numerator

4This bias is explained from the fact that for a function that is a ratio of two expectations, the
corresponding estimator that takes the ratio between two respective estimators for the numerator
and the denominator, will be biased [4]. The reader may observe this bias in the following example:
There are two independent random variables X and Y with P{X = 1} = P{X = 2} = P{Y = 1} =
P{Y = 2} = 0.5. Then, E[X]/E[Y ] = 1, but E[X/Y ] = 0.25× 0.5 + 0.5× 1 + 0.25× 2 = 1.125!
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part of the right-hand-side of Equation (40), i.e., E[Y ] = C(z(1) · ∇z(r̂) − z(r̂) ·

∇z(1)) for some C ∈ R+; and (ii) adjust this estimator to an asymptotically unbiased

estimator of ∇η by selecting appropriately the positive scalar C. We will also call

the estimator established in the first step above as an unbiased estimator of the

improvement direction.

An unbiased estimator of the improvement direction can be derived straightfor-

wardly from the numerator part of the right-hand-side of Equation (40). More specif-

ically, given two independent sample paths ω1 and ω2, the sought estimator can be

built as

Ỹ = ∇̂z(ω1, r̂) · ẑ(ω2,1)+∇̂z(ω2, r̂) · ẑ(ω1,1)−∇̂z(ω2, r̂) · ẑ(ω1,1)−∇̂z(ω1, r̂) · ẑ(ω2,1)

(43)

Obviously, E[Ỹ ] = C∇η with C = 2E[τ1]2. Hence Ỹ is indeed an unbiased estimator

for the improvement direction.

If N consecutive regenerative cycles are sampled and each regenerative cycle is

treated as an independent sample path, then by grouping these sample paths into

bN/2c pairs, we can construct bN/2c estimates of the improvement direction accord-

ing to Equation (43), and eventually obtain the average of all these estimates:

YA =
1

bN/2c

bN/2c∑
j=1

(
∇̂z(ω2j−1, r̂) · ẑ(ω2j,1) + ∇̂z(ω2j, r̂) · ẑ(ω2j−1,1)

− ẑ(ω2j−1, r̂) · ∇̂z(ω2j,1)− ẑ(ω2j, r̂) · ∇̂z(ω2j−1,1)
)

(44)

Since E[YA] = E[Ỹ ] = 2E[τ1]2∇η, we propose to set

∇̂η =
YA

2
(

1
N
τN
)2

=
N2

2τ 2
N

YA (45)

where τN is the stopping time that corresponds to the N -th revisit of the reference

marking M∗ (c.f. Equation (37)). Obviously, ∇̂η is an asymptotically unbiased esti-

mator for the gradient ∇η; i.e., as N →∞, E
[
N2

2τ2
N
YA

]
→ ∇η.
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It is also possible to use more than one regenerative cycle as a single sample

path in the above computation. For instance, let each sample path in the estimator

of Equation (43) contain K regenerative cycles, and divide the total budget of N

regenerative cycles into N/2K non-overlapping groups (to facilitate the following

exposition, also suppose that N/2K is an integer). Then, a single sample can be

drawn from group i with mean E[Ỹ K
i ] = K2E[Ỹ ] = 2K2E[τ1]2∇η:

Ỹ K
i =

 Ki∑
j=K(i−1)

∇̂z(ω2j−1, r̂)

 Ki∑
j=K(i−1)

ẑ(ω2j,1)

+

 Ki∑
j=K(i−1)

∇̂z(ω2j, r̂)


 Ki∑
j=K(i−1)

ẑ(ω2j−1,1)

−
 Ki∑
j=K(i−1)

ẑ(ω2j−1, r̂)

 Ki∑
j=K(i−1)

∇̂z(ω2j,1)


−

 Ki∑
j=K(i−1)

ẑ(ω2j, r̂)

 Ki∑
j=K(i−1)

∇̂z(ω2j−1,1)

 (46)

And the sample average obtained from all N cycles is

Y K
A =

1

N/2K

N/2K∑
i=1

Ỹ K
i (47)

with E[Y K
A ] = E[Ỹ K

i ] = 2K2E[τ1]2∇η. Therefore, we have an estimator of ∇η as

∇̂η =
Y K

A

2K2
(

1
N
τN
)2

=
N2

2K2τ 2
N

Y K
A (48)

As in the case of Equation (45), the estimator ∇̂η obtained from Equation (48) is

asymptotically unbiased. In fact, (45) is a special case of (48) where K = 1.

For a given number of regenerative cycles N , it is an interesting problem to deter-

mine the number K of regenerative cycles contained in each sample path of Equation

(46) so that the variance of the estimator in (48) is minimized. In general, a small

value for K will provide more samples Ỹ K
i for the estimator Y K

A , and according to

the Central Limit Theorem [71], will render the distribution of Y K
A more similar to

the Normal distribution, which is favorable in a statistical sense. On the other hand,
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if K is too small, our empirical studies indicate that the variance of the resulting

estimator ∇̂η will become larger for a fixed N .

Selecting the reference marking M∗ Due to the employment of the randomiza-

tion factor δ by the considered policy spaces, the Markov chain M̂ is irreducible, and

any tangible marking, such as the first reachable tangible marking from the empty

state, can be picked as the reference marking M∗. However, the markings with shorter

recurrent times are preferred, since more samples can be drawn under a fixed budget

of total transitions. Therefore, a good selection policy is to start the simulation from

the empty state and run it for a certain number of transitions, recording the frequency

of the visits of the generated sample path to each reached tangible marking. Then,

the marking that has been visited most is picked as the reference marking M∗, since

it is likely to have a shorter regenerative cycle.

The simulation running for the selection of M∗ that was described in the previous

paragraph will be called a trial run in the following. The reader should also notice

that since the values of the decision variables ζ̄ change at each iteration, the recurrent

times of the corresponding Markov chain M̂ will also be different. Thus, a new trial

run should be performed at each iteration, and the reference markings at different

iterations might be different.

Computing the one-step transition probabilities P [X(k − 1), X(k)] of the

uniformized DTMC M̂ and their gradients It is evident from all the previous

discussion in this section, that in order to compute the gradient estimators, or more

essentially, the improvement directions for the SA recursion (31), we must be able

to compute the intermediate estimators ẑ(ω,1), ∇̂z(ω,1), ẑ(ω, r̂) and ∇̂z(ω, r̂) that

were defined in the previous paragraphs. ẑ(ω,1) can be obtained immediately from

the counter of the DTMC transitions at the completion of a regenerative cycle. Also,

ẑ(ω, r̂) is the accumulation of the immediate rewards of the visited states, r̂[X], during
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such a cycle. But the computation for the LR gradient estimators ∇̂z(ω,1) and

∇̂z(ω, r̂) requires the computation of the ratio ∇P [X(k−1),X(k)]
P [X(k−1),X(k)]

for the visited tangible

markings at DTMC periods k − 1 and k, and this is the topic to be discussed next.

We start by reminding the reader that the computation of the transition rate from

a given tangible marking MT to any other tangible marking M ′
T has already been

addressed in Section 2.3.3. After the application of the uniformization procedure with

uniformizing rate ru that was discussed in Section 3.3, we can also obtain the one-step

transition probability from a tangible marking MT to another tangible marking M ′
T

in the resulting DTMC M̂, as follows:

P [MT ,M
′
T ] =

∑
t∈Et(MT )

r(t)

ru

∑
σ:M̂=tr(MT ,t)∧M ′T =tr(M̂,σ)

xM̂,σ (49)

In (49), σ denotes a (possibly empty) Π̂2-feasible firing sequence of untimed tran-

sitions leading from some marking M̂ that results from the firing of an enabled transi-

tion t in marking MT , to the tangible marking M ′
T . And the quantity xM̂,σ is defined

as the probability P{σ is fired|M̂, ζ̄}. The detailed computation of xM̂,σ, for any given

pair of M̂ and σ, is supported by Algorithm 1 at the end of Section 2.3.3.

Next we will focus on the computation of the vector ∇P [MT ,M
′
T ] for a given pair

of tangible markings MT and M ′
T that constitute consecutive tangible markings in

the simulation sample paths that are employed by the considered estimator. Applying

the gradient operator with respect to ζ̄ on Equation (49), we have:

∇P [MT ,M
′
T ] = ∇

 ∑
t∈Et(MT )

r(t)

ru

∑
σ:M̂=tr(MT ,t)∧M ′T =tr(M̂,σ)

xM̂,σ


=

∑
t∈Et(MT )

r(t)

ru

∑
σ:M̂=tr(MT ,t)∧M ′T =tr(M̂,σ)

∇xM̂,σ (50)

The second equation above applies since neither the firing rates of timed transitions

nor the uniformization rate depends on ζ̄. From Equation (50) we can see that the

remaining task is the calculation of the gradient of xM̂,σ.
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Suppose that σ = t̂1 . . . t̂m and m ≥ 0. First define a sequence of markings

M̂i, i = 1, . . . ,m, where M̂1 ≡ M̂ and M̂i ≡ tr(M̂i−1, t̂i−1) for i ≥ 2. Then, according

to Proposition 3 in Section 3.1.2, these markings are different from each other. Next,

define two sets of transition probabilities p̃i and p̂i, for i = 1, . . . ,m, where:

p̃i ≡ P{t̂1 . . . t̂i is fired|M̂1, ζ̄}

p̂i ≡ P{t̂i is fired|M̂i, ζ̄}

For i = 0, we also set p̃0 = p̂0 = 1. Obviously, xM̂,σ = p̃m =
∏m

i=0 p̂i. Also, the

probability p̃i can be expressed in an inductive way:

p̃i = p̃i−1p̂i, i = 1, . . . ,m (51)

with the initial condition p̃0 = p̂0 = 1.

Next, let us focus on the partial derivative
∂xM̂,σ

∂ζ̄[k̂]
= ∂p̃m

∂ζ̄[k̂]
, where ζ̄[k̂] is some specific

component of ζ̄. Then, from Equation (51), the corresponding partial derivative on

p̃i can be obtained through the following recursion:

∂p̃i

∂ζ̄[k̂]
=
∂p̃i−1

∂ζ̄[k̂]
p̂i + p̃i−1

∂p̂i

∂ζ̄[k̂]
, i = 1, . . . ,m (52)

with the initial condition p̃0 = 1 and ∂p̃0

∂ζ̄[k̂]
= 0.

More specifically, the items p̃i and ∂p̃i
∂ζ̄[k̂]

in the above equation can be obtained

recursively through Equations (51) and (52). On the other hand, for the computation

of p̂i and ∂p̂i
∂ζ̄[k̂]

, we notice the following: If |E Π̂2
u (M̂i)| = 1, then the transition t̂i

corresponds to the only available option of a “degenerate” random switch, and p̂i =

1, ∂p̂i
∂ζ̄[k̂]

= 0. Otherwise, p̂i is determined by the corresponding random switch, i.e.,

p̂i = ZM̂i
[t̂i], and ∂p̂i

∂ζ̄[k̂]
is determined according to the expression of ZM̂i

[t̂i] in the

adopted policy space.

In the following discussion we assume that the considered random switch is a static

or dynamic random switch that is defined directly by the corresponding transition

selection probabilities. The case of random switches of the partially disaggregated
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type will be discussed in Section 5.4 at the end of this chapter, that addresses the

development of the corresponding SA algorithm. Then, for the considered set of

random switches, the probability p̂i takes the form:

p̂i =


ζ̄[idx(M̂i, t̂i)] if idx(M̂i, t̂i) 6= NULL

1−
∑

t:idx(M̂i,t)6=NULL ζ̄[idx(M̂i, t)] otherwise

(53)

From the structure of the right-hand-side of Equation (53) we can infer that

∂p̂i

∂ζ̄[k̂]
=


1 if idx(M̂i, t̂i) = k̂

−1 if idx(M̂i, t̂i) = NULL

0 otherwise

(54)

The first branch in Equation (54) corresponds to the case where the untimed

transition associated to ζ̄[k̂] is the fired transition t̂i; hence, the corresponding se-

lection probability p̂i is characterized by the first branch in Equation (53) and the

corresponding partial derivative is equal to 1. The second branch in Equation (54)

corresponds to the case where the untimed transition associated to ζ̄[k̂] is different

from the fired transition t̂i, but it appears in the specification of the corresponding

selection probability p̂i which is characterized by the second branch in Equation (53);

hence, the corresponding partial derivative is equal to −1. Finally, the third branch

in Equation (54) covers all the remaining cases. More specifically, in these cases, the

untimed transition associated to ζ̄[k̂] is not involved in the computation of p̂i; hence,

the corresponding partial derivative is equal to 0.

Remark When the selection probabilities of all random switches are represented

by Equation (53), as is the case that was discussed above, then, it is obvious that

P [MT ,M
′
T ] is a polynomial function of the decision variables ζ̄. Therefore, in this

case ∇P [MT ,M
′
T ] can also be expressed in closed-form (c.f. [59]). However, if the

underlying problem formulation employs also partially disaggregated random switches

according to the representation forms that were discussed in Section 4.3, then the
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Algorithm 4 Implementing a single (possibly self-loop) transition from one tangible
marking to another tangible marking in the simulation of the DTMC M̂ that is
employed by the proposed SA algorithm

Input: GSPNS, Π, ru, ξ, MT , Ξ, ζ̄, idx(·).
Output: M ′

T , P [MT ,M
′
T ], ∇P [MT ,M

′
T ], Ξ, ζ̄, idx(·).

1: dest← {MT }; p̃[MT ]← 1− 1
ru

∑
t∈Et(MT ) r(t); ∇p̃[MT ]← 0.

2: for each t ∈ Et(MT ) do
3: M̂ ← tr(MT , t).
4: Get pair from modified Algorithm 1, also update Ξ, ζ̄.
5: for each (σ, x) ∈ pair do
6: M ′

T ← tr(M̂, σ).
7: if M ′

T /∈ dest then
8: dest← dest ∪ {M ′

T }; Extend p̃ and ∇p̃ with zero components.
9: end if

10: Compute ∇x according to Eqs. (51)–(54).

11: p̃[M ′
T ]← p̃[M ′

T ] + r(t)
ru
x; ∇p̃[M ′

T ]← ∇p̃[M ′
T ] + r(t)

ru
∇x;

12: end for
13: end for
14: Select M ′

T according to probability defined in p̃[·].
15: return M ′

T , p̃[M ′
T ], ∇p̃[M ′

T ], Ξ, ζ̄, idx(·).

expression of P [MT ,M
′
T ] is no longer a polynomial function. And things become

more complicated if the same enabling pattern for the partially disaggregated random

switches appears more than once along the sequence σ.5 From this perspective, the

computation of P [MT ,M
′
T ] and ∇P [MT ,M

′
T ] based on the recursive schemes that are

defined by Equations (51) and (52), are more convenient in numerical implementation.

Algorithm 4 supports the implementation of a single (possibly self-loop) transi-

tion from one tangible marking to another tangible marking in the employed simula-

tions of the DTMC M̂, returning also the corresponding one-step transition proba-

bility and its gradient. This algorithm takes as input the following parameters that

are extracted from the tuple 〈P , Tu, Tt,F ,W ,M0, r, r̂〉, the augmentation of the cor-

responding GSPN model with the relevant reward functions: the GSPN structure

GSPNS = 〈P , Tu, Tt,F ,W , r〉; the constraints imposed by the policy space Π (e.g.,

5The reader should notice that even though the markings Mi that are visited by the considered
sequence σ are guaranteed to be different, it is still possible that the sets of the enabled transitions
in these markings are the same.
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the DAP, the non-deliberately-idling requirement, the refinement, etc.), represented

by the application of the Π-conditional notation; the uniformization rate ru. Besides

the above, the input to this algorithm also includes: a mechanism denoted as ξ that

initializes the new random switches that are discovered during the enumeration of

the corresponding local subspace of vanishing markings; the current tangible mark-

ing MT ; the current set of all the random switches Ξ and their corresponding decision

variables coded in a vector ζ̄ according to the index-searching function idx(·).

The output obtained from the algorithm includes: the destination tangible mark-

ing M ′
T ; the updated set of Ξ, the extended vector ζ̄ and the extended function

idx(·), if new random switches are discovered during the implementation of the al-

gorithm; the transition probability P [MT ,M
′
T ] under the current policy ζ̄ and the

gradient ∇P [MT ,M
′
T ] with respect to ζ̄. If static random switches are applied, then

the update can be on idxS(·) instead of idx(·).

The variables p̃ and ∇p̃ in Algorithm 4 are labeled arrays with dynamic lengths,

and their lengths are always equal to the size of the set dest that is defined in Algo-

rithm 4 and holds all the tangible markings M ′
T that have been recognized as possible

successors of MT . Each element in p̃ is a scalar, recording the transition probability

from MT to the corresponding destination tangible marking in the set dest; Each

element in the array ∇p̃ is a vector, recording the gradient of the corresponding

transition probability.6

Validation of Conditions 12 and 13 in Section 5.1.1 As already mentioned,

the estimator ∇̂η obtained from Equation (48) (or Equation (45)) is asymptotically

6 Also, Algorithm 1 must be slightly modified before it can be called in Algorithm 4. First, the
input random switches include the information of the random switches already defined in Ξ with ζ̄
and idx(·), and the initialization mechanism ξ; besides the GSPN structure and the current marking
M , the input also includes the constraints introduced from policy space Π; the output includes the
updates on the random switches besides the set of pairs. Next, the Π-conditional sets EΠ

u (M) and
RΠ
T replace the original sets Eu(M) and RT . Finally, at Line 8, an extra operation is performed

for the newly discovered random switches: update the set Ξ, extend the vector ζ̄ and the function
idx(·), and initialize the new components of ζ̄.
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unbiased. In the developed SA algorithm, the employed improvement direction Yn will

be the estimator ∇̂η that is obtained from Equation (48). Also, the employed sample

size N/2K will be a function g(n) of the iteration number n with limn→∞ g(n) =

∞ (notice that the growth of this function can be sublinear with respect to n; for

instance, we can set g(n) =
√
n). Then, limn→∞ E[Yn] = ∇η(ζ̄n), and the next lemma

results immediately from the previous remarks.

Lemma 5 Consider the improvement direction Yn obtained by Equation (48) by set-

ting N = 2K · g(n), where g(n) is a function of the iteration number n in the SA

recursion (31), and further assume that limn→∞ g(n) = ∞. Then, the sequence

{Yn : n ∈ Z+} satisfies Condition 13 in Section 5.1.1.

Furthermore, from the previous developments regarding the calculation of the

estimator ∇̂η in the context of the MP formulation (33)–(35), it is obvious that the

variance of ∇̂η is finite. Therefore, the next lemma also holds.

Lemma 6 The improvement direction defined by Equation (48) satisfies Condition

12 in Section 5.1.1.

It remains to specify the step size schedule for the SA recursion (31) in a way

that satisfies Condition 11 of Section 5.1.1, and the implementation of the projection

operator projH(·). These two topics will be addressed in the next section.

5.2.3 Specification of the remaining ingredients of the SA recursion

There are a number of alternative schedules for the step size γn that satisfy Condition

11 in Section 5.1.1. Some of the most commonly used are those defined by the

sequences 1
n+1

and a
n+b

, where the positive scalar parameters a and b can adjust

respectively the amplitude and the speed for the decrease of the step size γn. In the

subsequent developments, we shall use the function γ(n) to denote any function that

returns the step size at iteration n and satisfies Condition 11 in Section 5.1.1.
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The implementation of the projection operator projH(·) with respect to the poly-

hedron that is defined by the constraints (34) and (35) is a well addressed topic in

the existing literature. An algorithm that implements this projection is provided

in Appendix D for completeness. This algorithm is derived from the standard MP-

based characterization of the notion of projection, and fairly standard arguments and

techniques coming from the area of nonlinear programming.

5.2.4 An asymptotically convergent SA algorithm for the considered op-
timization problem

By this point, we have detailed all the key ingredients that are involved in the imple-

mentation of the basic SA algorithm of Section 5.1, and we have also established that

the specification of all these ingredients abides to Conditions 8–13 that are required

by Theorem 3 that establishes the asymptotic convergence of that algorithm. Next,

we provide a detailed articulation of the adaptation of the basic SA algorithm to the

considered problem context, and establish formally its asymptotic convergence.

The considered algorithmic implementation is presented in Algorithm 5. The input

to this algorithm includes a RAS instance Φ, the randomization factor δ, the random

switch initialization mechanism ξ, and some additional algorithmic parameters that

include: the parameter trial which is the number of transitions used to identify the

reference marking M∗ at each iteration; the function γ(·) that determines the step

size at each iteration; the function g(·) that determines the extent of sampling to

be employed in the various simulation runs; the parameter K that is employed in

the gradient estimation according to Equation (48); and the parameter nmax that

specifies the total number of iterations. We also notice that since the sample size

g(n) for computing the improvement direction ∇̂η essentially specifies the number of

the Ỹ samples, i.e., the value of N/2K in the discussion of Section 5.2.2, the number

of the sampled regenerative cycles N in Equation (48) should be set equal to 2K ·g(n).
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Algorithm 5 An implementation of the basic stochastic approximation algorithm
for the considered optimization problem

Input: RAS Φ, δ, ξ, trial, γ(·), g(·), K, nmax.
Output: GSPN, DAP, Ξ, ζ̄, idxS(·).

1: Model RAS Φ as GSPN with the methods in Section 3.1.
2: Solve for the DAP of Φ with the methods in Section 2.2 and code the DAP and the

non-deliberately-idling constraint into GSPN as Π2. The finally adopted policy
space should be Π̂S

3 .
3: for n = 1→ nmax do
4: Starting from the initial marking M0, simulate the GSPN for trial non-self-loop

transitions to get the most visited tangible marking M∗. Also extend Ξ, ζ̄ and
idxS(·) with any newly encountered random switches, and initialize the new
components of ζ̄ according to ξ.

5: t← 0; x← odd.
6: for i = 1→ g(n) do
7: Set the 8 counters for the respective 8 sums in Eq. (46) to 0 or 0; Set the

single samples ẑ(ω,1), ∇̂z(ω,1), ẑ(ω, r̂) and ∇̂z(ω, r̂) to 0 or 0; pair ← 0.
8: while pair < K do
9: t← t+ 1.

10: Evolve the GSPN to its next tangible marking M ′ according to Algorithm
4, and update the single samples ẑ(ω,1), ∇̂z(ω,1), ẑ(ω, r̂) and ∇̂z(ω, r̂)
according to Eqs. (39) and (41).

11: if M ′ = M̄ then
12: Depending on whether x is labelled “odd” or “even”, update the 4 out

of 8 sums of Eq. (46) with odd or even subscripts.

13: Set the single samples ẑ(ω,1), ∇̂z(ω,1), ẑ(ω, r̂) and ∇̂z(ω, r̂) to 0 or 0.
14: if x = odd then
15: x← even.
16: else
17: x← odd; pair ← pair + 1.
18: end if
19: end if
20: end while
21: Compute Ỹi using Eq. (46).
22: end for
23: Compute YA using Eq. (47), then ∇̂η using to Eq. (48) with N = 2K ·g(n) and

τN = t.
24: ζ̄ ← ζ̄ + γ(n) · ∇̂η.
25: Project ζ̄ with respect to every random switch onto the feasible region defined

by Eqs. (34) and (35), using Algorithm 7 in Appendix D.
26: end for
27: return GSPN, DAP, Ξ, ζ̄, idxS(·).
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As for the computation that is performed by Algorithm 5, it can be briefly de-

scribed as follows: The algorithm starts with a “pre-processing” phase that includes

(i) the conversion of the input RAS performance optimization problem to a GSPN

reward model, (ii) the computation and the deployment of a correct DAP for the

obtained GSPN model, and (iii) an initialization process for the underlying policy

space that (a) sets the vector of the decision variables ζ̄ to a zero-dimensional vector,

(b) sets the set containing the identified static random switches Ξ equal to the empty

set, and also (c) sets the index-searching function idxS(·) to a “null” mapping, since

at this point the domain of this function is the empty set.

Then, the “main” phase of Algorithm 5 consists of nmax iterations of the SA

recursion of Equation (31), that seek to obtain an optimized pricing of the (so far

discovered) static random switches of the underlying GSPN model that was generated

in the pre-processing phase. At a typical SA iteration n, a “trial” simulation is initially

implemented to determine the reference marking M∗ to be used in the evaluation of

the current policy ζ̄n with respect to the applying objective function η(ζ̄) and its

gradient. Subsequently, another simulation samples (2K · g(n)) regenerative cycles

with respect to the selected reference marking M∗ in order to estimate the gradient of

the objective function η(ζ̄) with respect to the decision variables ζ̄; more specifically,

the aforementioned simulation and the processing of its output are performed in

Lines 6–23 of Algorithm 5 and they culminate in the estimates YA and ∇̂η of the

improvement direction and the gradient of the objective function η(ζ̄), according to

the logic that was presented in Section 5.2.2. Finally, the estimated gradient ∇̂η is

employed in the SA recursion of Equation (31) in order to generate the policy ζ̄n+1,

to be considered in the next iteration.

During the aforementioned simulations that are employed in the main phase of

Algorithm 5, every time that a vanishing marking M with a new enabling pattern

Eu(M) is visited, the algorithm also updates the data structures that encode ζ̄, Ξ
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and idxS(·), and initializes the corresponding static random switch according to the

prespecified mechanism ξ (c.f. Lines 4 and 10 of Algorithm 5 and Footnote 6 in the

description of Algorithm 4).

The output returned by Algorithm 5 includes the GSPN (reward) model, the

applied DAP for the GSPN, the set of the static random switches Ξ encountered by

the algorithm, the vector ζ̄ that defines the randomized policy that is computed by

the algorithm, and the corresponding index-searching function idxS(·).

The next theorem provides a formal statement for the asymptotic convergence of

Algorithm 5. A formal proof of this theorem can be based on Theorem 3, Lemmas

2–6, and the further specification of the function γ(·) in Section 5.2.3.

Theorem 4 Consider the implementation of Algorithm 5 on a given instance Φ from

the RAS class that was defined in Section 2.1. Then, as n→∞, the algorithm iterate

ζ̄n will converge with probability 1 to a compact and connected set of points satisfying

Condition 7 for the corresponding MP formulation of Equations (33)–(35).

5.2.5 Some additional considerations

Local vs. global optimality Another issue regarding Algorithm 5 that needs some

further attention, pertains to the fact that the (asymptotic) results of this algorithm

are local optima for the MP formulation of Equations (33)–(35). This is a general

limitation for all gradient-based algorithms for non-convex nonlinear optimization

problems. A typical remedy to this problem is the repetitive execution of this algo-

rithm while starting from many different points in the feasible region H.

In particular, if the set S0 of these starting points is selected from the solution

space H randomly according to a uniform distribution, and the number of the al-

gorithm executions is sufficiently large, then there are considerable chances that the

estimated best solution in S0 is also a good solution with respect to the whole solu-

tion space H. More formally, for any point ζ̄ ∈ S0, let ζ̄∗ denote the (asymptotic)
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solution that is returned by Algorithm 5 when initialized at ζ̄. Then, if each point

in set S0 is picked from H through a uniform distribution, the point ζ̄∗S0
correspond-

ing to ζ̄S0 ≡ arg maxζ̄∈S0
η(ζ̄∗) will be among the top 100β% solutions in H (i.e.,

P{η(ζ̄∗S0
) > η(ζ̄) | ζ̄ is uniformly picked from H} > 1 − β) with a certain confidence

100(1 − α)%, by choosing appropriately the cardinality of S0. Problems of this na-

ture are currently addressed by an area that is called ordinal optimization [43], and

it can be seen as a pre-processing stage to be executed before the initiation of the

so-called cardinal optimization stage, which involves the (repetitive execution of the)

SA algorithm that has been developed for our problem.

Some alternative SA algorithms Algorithm 5 adopts the rather typical approach

where, at any iteration n, the decision variables ζ̄ are kept fixed to their current values

ζ̄n during the simulations of the DTMC M̂ that are necessary for the generation of

the improvement direction Yn. The literature also avails of some more aggressive

updating schemes, where the decision variables ζ̄ are updated more frequently and

simultaneously with the data that provide the employed improvement directions.

Such SA schemes can be found in [68, 51, 28], where they are also proven to be

asymptotically convergent for problem structures and conditions similar to those that

apply to the considered optimization problem. Furthermore, the policy updating

schemes that are employed by these algorithms render them much less intrusive to the

operation of the underlying system, and therefore, they can be implementable in an

“on-line” mode, effecting a “learning capability” for the overall operation. But those

algorithms often present a very large fluctuation in the specification of the applied

policies due to the large variance of the improvement direction estimator [68], or they

require the availability of additional information for the underlying value functions

for a more stable execution [51, 28]. Our own experience with the testing of these

algorithms on the problem that is considered in this work confirms the above remarks.
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Hence, we have decided to defer the potential implementation of these algorithms to

the considered problem as a topic for future research.

5.3 A more practical implementation of the SA algorithm

Theorem 4 in the previous section established the asymptotic convergence of Algo-

rithm 5. However, no information can be retrieved from that result on the transient

behavior of the algorithm. Yet, this behavior is really important when SA algorithms

are considered from a more practical standpoint. In any practical implementation of

these algorithms, the key requirement is the ability of the algorithm to move in a reli-

able and expedient manner towards policies that have a better performance than the

running policy and can be reached from the current solution in the stepwise manner

that is adopted by this class of algorithms. This reliability and expediency are espe-

cially important when the algorithm is “climbing its way” towards the corresponding

locally optimal solution, while it is also recognized that once the algorithm gets to

a solution that exhibits a performance pretty comparable to that of the considered

local optimum, further progress might be difficult due to the flatness of the response

surface in that neighborhood. In the following, we shall refer to such flat areas around

a local optimum as a “plateau”. Then, making use of this concept, we can summa-

rize the above discussion about the practical considerations for our algorithm as a

requirement that the algorithm will be able to reach a plateau of the response surface

that is accessible from its starting solution ζ̄0, in a reliable and expedient manner.

Furthermore, in order to avoid the waste of valuable computational resources, we also

require that the algorithm should be able to detect its access of a plateau in a timely

manner, and terminate its exploration at that point.

In this section, we present a modified version of Algorithm 5 that seeks to satisfy

the aforestated requirements. More specifically, we seek to meet these requirements

by making the following changes and additions to the algorithm: (i) First, we replace
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the original step-size schedules γ(n), that were discussed in Section 5.2.3, with a

small but constant step size γ, since past research has established that such small

but constant step sizes can guarantee the progress of the algorithm towards a local

optimum in a more reliable manner [9]. (ii) We also introduce additional methodology

based on the theory of sampling and statistical inference that will help us determine

the amount of sampling to be performed in the computation of the improvement

direction in a way that controls the variability in the outcome of this computation.

(iii) Finally, we also employ statistical inference in combination with Condition 7 of

Section 5.1 in order to develop a statistical test for detecting the algorithm access to

one of the aforementioned plateaus.

We start the presentation of these developments by introducing in the next section

a first variation of Algorithm 5 that operates with a constant step size and also a con-

stant sample size for the estimation of the improvement direction. The presentation

of this algorithm and some ensuing experimentation with it intends to (i) reveal the

practical advantages of the adoption of a constant step size, and (ii) function as a

“baseline” for the developments of the subsequent sections that resolve the determina-

tion of the necessary sampling and the design of the employed termination condition

through the more sophisticated statistical analysis that was mentioned above.

5.3.1 A “baseline” experiment

In this section we perform a numerical experiment with an adaptation of Algorithm 5

that employs a constant step size and also a constant sample size for the determination

of the improvement direction. In the sequel, this adapted version of Algorithm 5 will

be called the“baseline algorithm”. The baseline algorithm and the aforementioned

experiment are meant to provide a benchmark for the subsequent developments that

were outlined in the opening part of Section 5.3. Although the baseline algorithm

is not convergent in the asymptotic sense, our empirical study will show that it is
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still able to lead to improved solutions, and eventually have the returned solution

wandering at some near-optimal region.

In the considered experiment, the baseline algorithm is implemented on the first

16 smaller CRL configurations of Table 4.1, under the further assumption that the

rates of all the timing distributions involved are set equal to one. Furthermore, the

adopted policy space is Π̂S
3 , with the employed DAP being the maximally permissive

DAP for each CRL, and the corresponding refinement of the original policy space Π2

being performed by means of Algorithm 3 in Section 4.1.4. We fix the algorithm step

size to γ(·) ≡ 2, and we also set the number of the sampled regenerative cycles, N ,

(c.f. Equation (48) in Section 5.2.2) to N = 10, 000, for all SA iterations. The initial

solution ζ̄0 is a “totally random” policy that equalizes the firing probabilities for all

the Π̂2-enabled untimed transitions in every static random switch that is encountered

by the algorithm. Finally, we also impose a randomization factor δ = 0.1, and we

further set trial = 3, 000, K = 100, and nmax = 500.

The 16 CRL configurations selected for this experiment are still small enough

to have their steady-state average reward for any given policy ζ̄ evaluated through

value iteration [82], to any desired precision. Table 5.1 reports the long-run average

throughput η, evaluated through value iteration, at the solutions ζ̄0, ζ̄100 and ζ̄500

returned by the baseline algorithm at the corresponding iterations 0, 100 and 500,

with a precision of 5 digits after the decimal point. Particularly, the value at ζ̄0

is the objective value at the initial solution, i.e., the CRL throughput under the

totally random policy; on the other hand, the value at ζ̄500 is the true value of the

objective function at the solution that is returned by the baseline algorithm upon its

completion.7 Furthermore, the second column of Table 5.1, that is entitled “Max”,

7Obviously, in the application of the considered SA algorithms on more general CRL / RAS
configurations, the evaluation of the returned solution through value iteration will not be practically
possible, since the underlying state space may become intractable, and we must resort to simulation
for the support of this task.
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Table 5.1: The values of the objective function at the solutions obtained in the
baseline experiment for the first 16 CRL configurations of Table 4.1

Conf.
Objective values Trans. Time

Max η(ζ̄0) η(ζ̄100) η(ζ̄500) (×106) (sec)
1 0.48000 0.47333 0.47991 0.47995 28.53 56
2 0.44444 0.43478 0.44324 0.44324 23.29 42
3 0.49254 0.48495 0.48927 0.48926 70.84 191
4 0.49959 0.49811 0.49865 0.49874 152.27 369
5 0.50000 0.50000 0.50000 0.50000 283.28 680
6 0.46411 0.45250 0.46195 0.46208 53.45 99
7 0.49310 0.48348 0.48565 0.48664 258.97 530
8 0.49820 0.49225 0.49462 0.49539 291.03 642
9 0.49999 0.49969 0.49966 0.49984 544.38 1,282
10 0.32234 0.30649 0.30825 0.31180 2863.49 8,186
11 0.43734 0.43359 0.43514 0.43535 1213.33 3,386
12 0.42225 0.41539 0.42074 0.42113 356.46 1,118
13 0.43212 0.41808 0.42351 0.42422 684.71 1,889
14 0.41063 0.39231 0.40095 0.40291 263.97 673
15 0.37667 0.37359 0.37448 0.37536 2813.46 9,210
16 0.35729 0.35453 0.35549 0.35655 1481.54 4,405

reports the maximum value of the objective function η that is obtained through the

solution of the MDP that is developed in Appendix A; these values can be considered

as an upper bound of η that is attained in the policy space Π2.8 The last two columns

report the number of Markovian transitions and the running time in seconds for the

simulation of the total 500 iterations for each CRL configuration. The computing

time for each configuration is evaluated on a Windows 7 PC with Intel CPU E5-2680

v3, 2.5 GHz and 6 GB of memory (RAM).

8 We remind the reader that the refinement that defines the policy space Π̂2 from the original
policy space Π2 maintains the performance potential of the latter, but, in general, the policy space Π̂S

3

does not maintain the performance potential of Π̂2. This compromise of the performance potential
is due to (i) the employment of the randomization factor δ that distinguishes Π̂3 from Π̂2, and (ii)
the coupling effects among the decision variables that are introduced by the static random switches,
as we move from the policy space Π̂3 to Π̂S

3 . The performance degradation due to the randomization
factor δ is expected to be rather minor as long as the value of δ is kept at pretty small levels. On
the other hand, the performance degradation due to the introduction of static random switches can
be addressed through the partial disaggregation that was discussed in Section 4.3 and it is further
revisited in Section 5.4 at the end of this chapter.
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We can observe from Table 5.1 that even with such a straightforward implemen-

tation of the considered SA algorithm, we can attain significant improvement against

the initial solution, except for configurations #5 and #9 where the “performance

gaps” between the corresponding initial solutions and the maxima obtained from the

MDP solutions are too small. On the other hand, we should also point out, for

completeness, that the values reported in column “Max” might not be attainable by

the considered algorithm due to (i) the reasons discussed in Footnote 8, and (ii) the

constant step size that is employed by the algorithm and will prevent it from settling

to the locally optimal solution.

A careful observation of the data reported in Table 5.1 gives rise to the following

two issues regarding the behavior of the baseline algorithm. The first of these issues

has to do with the fact that some configurations do not need as many as 500 iterations

for the computation of a good scheduling policy, since almost no improvement is made

during the iterations from 100 to 500; such specific configurations in the considered

experiment are those of #1–#4, #6, #11–#13. And for some other configurations,

such as configurations #7, #8 and #14, even though some improvement is made

from iteration 100 to 500, the majority of the improvement has already been attained

during the first 100 iterations. A clearer understanding and appreciation of the above

remarks can be obtained through Figure 5.1, where the performance differences be-

tween the current solutions (η100 or η500) and the initial solution (η0) are shown as the

columns named “improvements”. Thus, a naturally arising and interesting problem is

how to identify conditions like those described above, and stop the algorithm before

the completion of the pre-specified iterations. It is also important to notice that the

availability of such a test will also help guarding against the opposite effect where

the algorithm is terminated prematurely, i.e., before getting close to a local optimum,

due to an insufficient iteration budget. Finally, we must also notice that the sought

test should not rely on an estimation of the objective values reported in Table 5.1,
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Figure 5.1: Comparison of the throughput improvements made through the first 100
and 500 iterations of Algorithm 5 for the 16 CRL configurations

since, for large(r) RAS configurations, the employed simulations might not be able to

return sufficiently precise estimates for these values.

The second issue that is revealed by the data of Table 5.1 regarding the behavior

of the baseline SA algorithm, is a particular consumption pattern of computational

resources that is reflected in the last two columns of this table. As it can be seen

in these columns, the CRL configurations with larger state spaces (c.f. Table 4.2

for the information on the size of these state spaces) usually will take significantly

more time for the execution of the same number (500) of iterations. The reason

mainly lies on the longer recurrent time for the employed reference marking. As

mentioned in the previous paragraph, the timely identification of the access of a

“plateau” can save some simulation effort. Additional gains can be achieved by trying

to allocate the sample budget more efficiently across the performed iterations. In the

aforementioned experiment, the number of regenerative cycles at each iteration is

uniformly 10,000. But it is possible that at some iterations fewer regenerative cycles

are adequate for obtaining a good estimation of the improvement direction, while at
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some other iterations more iterations are actually needed.

In the next two subsections, we address each of the two issues described above,

starting with the second one.

5.3.2 Sample-size control in the estimation of the improvement direction

Adaptive sample size selection schemes for sampling-based and simulation optimiza-

tion algorithms is an issue that has received certain attention within the simulation

optimization and the machine learning communities. Hence, for instance, the works of

[45, 7, 26] have proposed adaptive sample size selection schemes that are appropriate

for the computational context of sample average approximation (SAA) algorithms –

these are algorithms that try to solve a stochastic optimization problem by construct-

ing, through adequate sampling, a surrogate deterministic version of the problem and

eventually solving this new problem through standard mathematical programming

methods. On the other hand, the particular sampling problem that is of interest in

this work – i.e., the adaptive determination of the sample size to be employed by

the gradient estimator so that the obtained estimate can really improve the current

solution with a certain probability – can be addressed through the analysis and the

results that are presented in [95, 15]. More recently, the work of [80, 41] has sought

the development of a more comprehensive scheme for the dynamic management of the

various parameters that define the considered SA recursion, including the employed

step size schedule, the sample size scheme, and the stopping criterion; the initial re-

sults seem interesting and promising, but more work needs to be done for a complete

specification of this method.

In this section, we integrate adaptive sampling capability to the basic SA recursion

(31) that was presented in the previous sections of this chapter, by employing and

adapting results similar to those developed in [95] and [15]. More specifically, for the

sample average Y K
A of the improvement direction that is obtained from Equation (46),
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1. Given a tentative sample size N = N0, where N0/2K is an integer, run the
simulation for N0 regenerative cycles, and compute some sample statistics, such
as the sample average YA and the sample covariance Σ̂.

2. Compute a lower bound Nnew of the sample size according to the sample statis-
tics. If Nnew ≤ N/2K, then output YA as the final result for the improvement
direction; otherwise continue to the next step.

3. Run the simulation for additional (2KNnew−N) regenerative cycles, update the
sample statistics accordingly, replace N with 2KNnew, and then repeat Step 2
that computes an updated version of Nnew and performs the tests with the
updated data.

Figure 5.2: A generic scheme for sample-size control in the computation of the sample
average YA

there is a relationship between the sample size N/2K and the variation of Y K
A ; and

with a fixed K, N can be seen as a control parameter that determines the variation

– or the “noise” – of Y K
A . Hence, the topic of this section is the determination of N

in order to control the noise level in the estimates Y K
A , so that they can lead robustly

to the correct improvement direction. In the sequel, the superscript K for the sample

average Y K
A and the single sample Ỹ K

i will be suppressed whenever there is no risk of

confusion.

In general, the procedures for sample-size control in the computation of the sample

average YA can be summarized in the steps presented in Figure 5.2. These three steps

will be integrated in the adapted version of Algorithm 5, and the resulting algorithm

is presented as Algorithm 6 in Section 5.3.4. In the rest of this subsection we discuss

the necessary implementational details for the three steps that are depicted in Figure

5.2.

We start by observing that for practical purposes, one must impose a limit for

the loop between Steps #2 and #3 in the generic sample-size control scheme that

is presented in Figure 5.2. In the presented work, this limit is realized by setting

an upper bound tmax on the total number of transitions that are allowed for each
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iteration.

Also, in the sequel, the computation of the lower bound Nnew of the necessary

sample size that takes place in Step #2 of the procedure in Figure 5.2, will be based

on the available values for the sample average YA and the sample covariance Σ̂; and

these last two quantities will be maintained in a recursive manner.

More specifically, for the recursion of the sample average, let YA(Ng) denote the

sample average from 2KNg regenerative cycles, or Ng samples of Ỹi. Then, the

iterative update is as follows:

YA(Ng + 1) =
Ng

Ng + 1
YA(Ng) +

1

Ng + 1
ỸNg+1 (55)

In the case of the sample covariance, the corresponding update cannot be expressed

as a simple iteration. Instead, we can keep track of another iteratively updated sample

statistic - the matrix YSq(Ng) defined by

YSq(Ng) =

Ng∑
i=1

(Ỹi) · (Ỹi)T (56)

This last statistic is updated by

YSq(Ng + 1) = YSq(Ng) + (ỸNg+1) · (ỸNg+1)T (57)

and the sample covariance can be updated as follows:

Σ̂ =
YSq(Ng)−Ng(YA(Ng)) · (YA(Ng))T

Ng − 1
(58)

With the estimates YA and Σ̂ readily available, next we consider different methods

to define and calculate the lower bound of the sample size, Nnew, in Step 2 of Figure

5.2.

In [95], Nnew is established based on the notion of the “confidence region”. Ac-

cording to the Central Limit Theorem [71], the sample average YA is approximately

multi-normally distributed if the sample size is big enough. Then, this fact can be
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used for constructing confidence regions that will contain the vector E[YA], that de-

fines the gradient direction, with some specified probability. Furthermore, for the

direction of YA to be an ascending direction, the angle between the vectors YA and

E[YA] must be acute, i.e., the inner product Y T
A · E[YA] must be positive. Hence, the

sampling method of [95] first determines a certain region for E[YA] that would satisfy

this acuteness condition for the angle of the vectors YA and E[YA], and subsequently

computes the required sample size Nnew so that the aforementioned region will be a

confidence region for E[YA] with a specified level of confidence.

On the other hand, the work of [15] seeks to satisfy a similar “acuteness” condition

for the angle of the vectors YA and E[YA], but it tries to determine the minimal

required sample size Nnew through a different line of analysis. More specifically, the

approach proposed in [15] is motivated from the following sufficient condition for

the vector YA to be an improvement direction: The Euclidean distance between the

estimated and the true gradients should be no larger than a scaled Euclidean norm

of the estimated gradient with the scaling factor less than one. In the context of our

sampling problem, this condition translates to:

||YA − E[YA]|| ≤ θ||YA||, 0 ≤ θ < 1

Equivalently,

||YA − E[YA]||2 ≤ θ2||YA||2, 0 ≤ θ < 1 (59)

But since the vector E[YA] is an unknown quantity, the authors of [15] propose to

use the l1-norm of the “component-wise” variance estimator in the place of the left-

hand-side of Equation (59), and the corresponding condition is redefined as follows:
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||YA − E[YA]||2 ≈ E
[
||YA − E[YA]||2

]
= ||VAR(YA)||1

=

p∑
j=1

VAR(YA[j])

=
1

Nnew

p∑
j=1

VAR(Ỹi[j])

≈ 1

Nnew

p∑
j=1

1

N0/2K − 1

N0/2K∑
i=1

(Ỹi[j]− YA[j])2

≤ θ2||YA||2, 0 ≤ θ < 1 (60)

A drawback of the work in [15] is that it does not quantify the chance for potential

error that is brought about by the above approximations; i.e., there is a non-negligible

but unknown probability that the last inequality of (60) holds but the original in-

equality of (59) does not hold. From this standpoint, the method of [95] is a more

attractive choice for our application context, since this method establishes an explicit

level of confidence that YA is an ascending direction. As a result, in the following

we shall focus on the method of [95], which will be referred to as the Shapiro-Mello

sample-size control method (based on the last names of its originators).

On the other hand, while defining clearly the confidence for a “correct” improve-

ment direction, the Shapiro-Mello method can result in very high sample sizes in

regions where the norm of the estimate YA is quite small. This fact will be revealed

in the following technical deliberations, and it is also manifested in the results of a

numerical study that is presented in a later part of this section. The latter also shows

a large variation in the resultant Nnew values that are computed with this method.

These effects are caused by the acuteness requirement on the angle between the esti-

mator YA and E[YA], which is used to control the variance of YA as well as the direction

and the norm of the estimate itself. In response to these challenges, two other meth-

ods are also introduced in the sequel. These two methods solely control the level of
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the variance of YA; for this reason, they will be collectively categorized as variance-

based sample-size controls in the sequel.9 As it will be explained in the following,

the variance-based methods essentially will tolerate an arbitrarily large probability of

selecting a “wrong” direction in certain parts of the underlying solution space (i.e.,

a direction YA that fails to form an acute angle with the vector E[YA]), in an effort

to control the variability of the sampling effort that is required for the computation

of the estimator YA at the different points ζ̄ that are visited by the SA algorithm.

This negative effect is moderated by a single parameter that is employed in the de-

sign of the variance-based methods, and acts as a scaling mechanism that specifies

the discriminatory power of the method. From a more conceptual standpoint, the

relaxed resolution / discriminatory power of the proposed variance-based methods is

motivated by the realization that the actual loss of this power will take place at points

where the norm of the vector YA is pretty small, and therefore, a potential move in

an erroneous direction will not have a very significant impact on the overall progress

of the underlying SA algorithm. Next, we proceed with a detailed description of the

three methods and the underlying motivation for each of them.

The Shapiro-Mello method The Shapiro-Mello sample-size control method was

first proposed in [95] and it is discussed in higher detail in [44]. Here, we will outline

the main developmental guidelines of this method, and customize it to the estimator

of the improvement direction that was developed in Section 5.2.2; for a complete

exposure of the method, the reader is referred to Section 4, Chapter 3 of [44].

As already pointed out in the previous discussion, for a gradient estimator ∇̂η

and a given confidence level 1− α, we can build an ellipsoid as the confidence region

for the true value ∇η. Furthermore, there is a relationship between the size of the

confidence region and the sample size that was employed in the computation of the

9On the other hand, the original Shapiro-Mello method and the method of [15] can be categorized
as angle-based sample-size controls.

147



The desired confidence region




Figure 5.3: The gradient estimate ∇̂η, the true gradient vector ∇η, and the desired
confidence region (adapted from [44])

estimate ∇̂η. The Shapiro-Mello sample-size control method determines the lower

bound Nnew so that the ellipsoid of the corresponding confidence region is tangent

with the hyperplane that is orthogonal to the gradient estimate ∇̂η. The relationship

between the gradient estimate ∇̂η, the true value ∇η, and the ellipsoid of the confi-

dence region obtained with the lower-bound sampling size Nnew is depicted in Figure

5.3.

In more specific terms, suppose that there are n independent and identically dis-

tributed random vectors vi with dimension p, and their mean and covariance are

respectively µ and Σ, where Σ is positive definite. Then, according to the theoretical

developments in [69], as n→∞:

n · (v̄n − µ)T · Σ−1 · (v̄n − µ)
D−→ χ2

p (61)

In Equation (61), v̄n is the sample average of the vectors vi, i = 1, . . . , n, the notation

“
D−→ ” denotes converge in distribution, and χ2

p is the chi-squared distribution with

p degrees of freedom.

From Equation (61), a 100(1−α)% confidence region for µ can be represented by

the ellipsoid

Eα(n) ≡
{
x ∈ Rp : (x− v̄n)T · Σ−1 · (x− v̄n) ≤

χ2
p(α)

n

}
(62)

where χ2
p(α) is the right-tail critical value for the chi-squared distribution, i.e., P{χ2

p >

χ2
p(α)} ≡ α.
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Furthermore, the aforementioned requirement for an acute angle between the vec-

tors v̄n and µ can be expressed as follows:

v̄Tn · x ≥ 0, ∀x ∈ Eα(n) (63)

Finally, the condition of Equation (63) can be converted to the following specifi-

cation for the sample size n [44]:

n ≥
⌈
χ2
p(α) · v̄

T
n · Σ · v̄n

(v̄Tn · v̄n)2

⌉
(64)

Although in the original method of [44] the lower bound for the sample size n that

is specified in Equation (64) is only applied to the gradient estimator, the method

is also applicable to other estimators with their expectations proportional to the

gradient. In the case of the estimator YA of Equation (47), the implementation of the

above method requires the covariance matrix Σ of the single sample Ỹi. But since

this matrix is not available, we shall replace it by the estimated covariance matrix Σ̂.

Then, Equation (64) can be customized to the estimation of the lower bound Nnew,

as follows:

Nnew =

⌈
χ2
p(α) · Y

T
A · Σ̂ · YA

(Y T
A · YA)

2

⌉
(65)

The lower bound Nnew that is specified by Equation (65), is a function of the sam-

ple statistics that are obtained from the regenerative cycles of the running simulation

of the underlying GSPN. As a result, Nnew itself is a random variable with a certain

variance. Next, we assume a known covariance matrix Σ and we obtain a lower bound

for the expected value of Nnew. For that, first we notice that for the given covariance

matrix Σ, Nnew can be written as

Nnew =

⌈
χ2
p(α) · Y

T
A · Σ · YA

(Y T
A · YA)

2

⌉

=

⌈
χ2
p(α)

||YA||2
·
(

Y T
A

||YA||
· Σ · YA

||YA||

)⌉
(66)
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where ||YA|| denotes the Euclidean norm of the vector YA. Let ρ̂ > 0 denote the

minimal eigenvalue of matrix Σ.10 Then, since YA/||YA|| is a unit-norm vector, we

have that

Y T
A

||YA||
· Σ · YA

||YA||
≥ ρ̂ (67)

and therefore,

E[Nnew] ≥ χ2
p(α) · ρ̂ · E

[
1

||YA||2

]
≥ χ2

p(α) · ρ̂ · 1

E [||YA||]2
(68)

The last inequality above is an application of Jensen’s inequality [92]. Equation

(68) implies that the amount of sampling specified by Nnew will be particularly high

for policies ζ̄ that are in the region of an (interior) local optimum, and therefore,

the magnitude of the gradient vector ∇η is quite small. In fact, at such points of

the algorithm evolution, the sampling requirements may not be practically feasible

within the scope of the available computational resources.

Besides the possibility of a very large magnitude of Nnew, another issue of concern

with the Shapiro-Mello method that was outlined in the previous paragraphs, is the

potential large variations of Nnew. This variation results from the presence of the inner

product of the multi-normally distributed quantity YA at the denominator of Equation

(66), and it can even lead to an infinite expectation for the random variable Nnew when

the dimension of the underlying solution space is p = 1. More specifically, when the

problem consists of only one decision variable, the right-hand-side of Equation (65)

approximately degenerates to the square of a reciprocal normally distributed random

variable (cf., page 171 of [49]), or equivalently, an inverted-chi-squared distributed

random variable (cf., pages 119 and 431 of [10]) with one degree of freedom; and such

a random variable is known to have no expectation.11 The numerical study that is

10We remind the reader that the covariance matrix Σ has been assumed positive definite.
11A reciprocal normally distributed random variable is a random variable obtained by taking the
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presented in a later part of this section will also demonstrate the possibility for such

a divergent behavior.

The aforementioned remarks, together with the realization that, in areas where

the response surface is rather flat, small steps (even in the wrong direction) do not

have a particularly strong impact on the performance of the underlying algorithm,

motivates the variance-based methods for the determination of the sample size Nnew

that are discussed next.

Variance-based sample-size control As discussed in the previous paragraphs,

variance-based sample-size methods are employed in an effort to control the potential

explosion and the high variation of the sample sizes that are specified by the Shapiro-

Mello method. In order to effect this control, let us consider the formula that provides

the volume V of the confidence ellipsoid Eα(n) defined by Equation (62). This formula

is (c.f. Section 3.1 in [40]):

V = C(p)(det Σ)1/2

(
χ2
p(α)

n

)p/2
(69)

where det Σ is the determinant of matrix Σ, and C(p) is the volume of a p-dimensional

ball with unit radius, i.e.,

C(p) ≡ πp/2

Γ
(
p
2

+ 1
) =


πk

k!
p = 2k, k = 1, 2, . . .

2(k!)(4π)k

(2k+1)!
p = 2k + 1, k = 0, 1, 2, . . .

(70)

Suppose that we impose a limit for the maximum possible volume for these con-

fidence ellipsoids equal to Vmax. Then, from Equation (69) we get:

n ≥

⌈
χ2
p(α)

(
C(p)2 det Σ

V 2
max

)1/p
⌉

(71)

reciprocal of a normally distributed random variable. An inverted-chi-squared distributed random
variable is a random variable obtained by taking the reciprocal of a chi-squared distributed random
variable. The expectation for Nnew in case of p = 1 does not exist, since for a normally distributed

random variable with mean µ and variance σ2, the integral
∫∞
−∞ exp

(
(x−µ)2

2σ2

)
1
x2 dx does not converge.
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The right-hand-side in Equation (71) is the smallest sample size that, with prob-

ability 1 − α, will keep the point that is defined by the gradient vector ∇η within

an ellipsoid of volume Vmax and shape defined by the covariance matrix Σ, that is

centered at the point defined by the corresponding gradient estimate ∇̂η.

In the context of the gradient estimation problem that is considered in this section,

an important property of the sample size that is defined by the right-hand-side of

Equation (71) is that it is independent from the estimate YA. In particular, Equation

(71) implies that, for any given policy ζ̄, the aforementioned sample size will depend

only upon the determinant of the corresponding covariance matrix Σ, or equivalently,

upon the product of all the eigenvalues of Σ [70]; these eigenvalues correspond to the

variances of the projections of the vectors YA on the p axes of the considered ellipsoid.

Of course, as in the case of the Shapiro-Mello sample-size control method, in

order to apply the result of Equation (71) to the estimation problem considered in

this section (i.e., the construction of the estimator YA in Equation (47)), we need

to substitute the covariance matrix Σ with the sample covariance Σ̂, a fact that will

increase the variability in the obtained estimates for Nnew. We should also notice

that the corresponding ellipsoid essentially constitutes a confidence region for the

vector 2K2E[τ1]2∇η, which defines E[YA] and depends on E[τ1] as well as on ∇η.

And the space dimensions, p, are different for different RAS since the numbers of

the decision variables involved will be different. Therefore, instead of imposing an

explicit limit on the volume of the ellipsoid that represents the confidence region

as discussed above, we propose to define this quantity in more implicit terms, by

specifying a control parameter that pertains to a single dimension. Let us denote this

parameter as l0. Then, considering (i) the fact that our algorithm will eventually use

the estimate ∇̂η for the specification of the improvement direction, and (ii) the scaling

factor 2K2E[τ1]2 that relates the mean of the estimator YA and ∇̂η, we also define

the volume (2l0K
2E[τ1]2)p as a “nominal” volume that is induced by the selection of
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the parameter l0, and eventually we use this last quantity as the maximal volume

Vmax. Furthermore, during the actual evaluation of this volume, the expectation E[τ1]

must be replaced by its estimator τN/N , where N is the total number of regenerative

cycles that is used to obtain the sample statistics YA and Σ̂. Then, when adapted to

the above developments, Equation (71) gives the following estimation of the sought

lower bound Nnew:

Nnew =

⌈
χ2
p(α)

(2l0K2τ 2
N/N

2)
2

(
C(p)2 det Σ̂

)1/p
⌉

(72)

In general, the calculation of the determinant of a dense p-dimensional matrix

has a complexity of O(p!). Obviously, this complexity becomes unacceptable even if

p is at a relatively small level (like several tens). This remark motivates the third

method for the computation of the sought lower bound Nnew, that can be perceived

as a simplifying scheme for the previous method. More specifically, this approach

will ignore the non-diagonal elements of the covariance matrix Σ and approximate

the ellipsoids considered by the previous method as cuboids. Let v̄ be the vector

consisting of the diagonal components of Σ. Then, this new method will substitute

the original covariance matrix Σ by the diagonal matrix V ≡ diag[v̄[i], i = 1, . . . , p].

The ellipsoid that is defined by the matrix V has its axes parallel to the axes of

the original coordinate system, and each diagonal element v̄[i], i = 1, . . . , p, defines

the variance of the estimated vector with respect to the corresponding coordinate

axis. Hence, following a logic similar to that used in the specification of the previous

variance-based method, for a given confidence level 1−α, we may seek to confine the

maximum length of the confidence intervals that are built for each component of the

estimated vector to a certain level lmax ≡ 2K2E[τ1]2l0; i.e., we can try to select the

sample size n in a way that satisfies

z(α′/2)

√
1

n
||v̄||∞ ≤

lmax

2
(73)

where α′ ≡ 1 − (1 − α)1/p, and z(α′) is the right-tail critical value for the standard
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normally distributed random variable Z (i.e., P{Z > z(α′)} ≡ α′).

Then, using the diagonal elements of the sample covariance matrix Σ̂ as an esti-

mate of v̄, to be denoted by v̂, and also taking into consideration the scaling aspects

that were discussed in the presentation of the previous method regarding the deter-

mination of the limiting volume Vmax, we can obtain the following value for the lower

bound Nnew from Equation (73):

Nnew =

⌈(
z(α′/2)

l0K2τ 2
N/N

2

)2

||v̂||∞

⌉

=

⌈(
z(α′/2)

l0K2τ 2
N/N

2

)2

max
i=1,...,p

∣∣v̂[i]
∣∣⌉ (74)

Remark Both Equations (72) and (74) define the corresponding estimates of

Nnew as functions of the sample covariance Σ̂ and of the stopping time τN , and

this fact determines the stochastic nature of these quantities. Yet, the lower bound

obtained from Equation (74) is expected to be more demanding, in terms of the

stipulated amount of sampling, than the lower bound obtained from Equation (72),

since Equation (74) essentially confines the ellipsoid that represents the confidence

region for the gradient estimator into a cube. More specifically, if all the parameters

in Equations (72) and (74) are set at the same values, then the value for Nnew specified

by Equation (74) should be statistically larger than the corresponding value that is

specified by Equation (72). This effect can be validated by observing the µ̂(Nnew)

data of Tables B.3 and B.4 in Appendix B: The reader can see that the µ̂(Nnew)

values reported in Table B.4 are always greater than the corresponding µ̂(Nnew) values

reported in Table B.3.

A numerical comparison of the three sample-size control methods As al-

ready mentioned, all the three methods for sample-size control that are defined by

Equations (65), (72) and (74) specify the lower bound Nnew as a random variable
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with a certain variance. To investigate the variability in the estimates that are gen-

erated by each method, we performed a numerical experiment on the first 16 smaller

CRL configurations of Table 4.1, while maintaining pretty much the same settings

that were employed in the “baseline” experiment of Section 5.3.1. But this time, we

preselect an applied policy ζ̄ and a sample-size control method, and while keeping the

policy fixed, we run 100N0 regenerative cycles of the underlying simulation in order

to draw 100 samples of the corresponding random variable Nnew. In these runs, the

significance level for the confidence regions and the confidence intervals involved was

set to α = 0.2, and the tentative number of regenerative cycles to N0 = 10, 000. Also,

as in the baseline experiment, the group size K applied in the generation of the sam-

ples Ỹi was set to 100 pairs of regenerative cycles. Hence, the tentative initial sample

size is N0/2K = 50, which is sufficiently large for the invocation of the Central Limit

Theorem. Finally, for the variance-based methods, the control parameter l0 was set

to l0 = 0.01.

Each data entry, or observation, of the experimental output is classified by three

factors: the CRL configuration, the applied policy ζ̄, and the sample-size control

method. In particular, for each of the 16 CRL configurations, we perform our experi-

ment on two policies and the three sample-size selection methods that were introduced

in this section. The two employed policies include the totally random policy ζ̄0 that

was defined in the baseline experiment in Section 5.3.1, and the “near-optimal” solu-

tion characterized as policy ζ̄500 in the previous experiment; the two policies will be

labeled as “Point 1” and “Point 2” in the following. The three methods under test are:

the Shapiro-Mello control method, labeled as “S-M”; the variance-based method that

restricts the volume of the confidence ellipsoid, labeled as “Volume”; and the method

that restricts the maximum length of the confidence intervals for each component of

the gradient estimate, labeled as “Max CI”.

Since this experiment is designed to draw conclusions on the variability of the
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Table 5.2: Comparison of the coefficients of variation for the three sample-size control
methods on the first 16 CRL configurations of Table 4.1

Conf.
Point 1 (complete random) Point 2 (near-optimal)
S-M Volume Max CI S-M Volume Max CI

1 0.77705 0.15117 0.19005 3.13572 0.18885 0.24182
2 0.59753 0.18707 0.20066 8.40951 0.22600 0.22256
3 3.06774 0.17485 0.25644 4.28964 0.17540 0.24144
4 2.00966 0.14525 0.20865 3.74781 0.16341 0.23769
5 5.53503 0.18464 0.24502 1.90922 0.15793 0.24996
6 1.83828 0.20258 0.18668 9.95461 0.24879 0.24605
7 1.59014 0.23626 0.25452 4.90151 0.17988 0.25282
8 2.68928 0.20825 0.30671 5.78407 0.20716 0.30961
9 2.98093 0.27938 0.37871 3.04971 0.25818 0.34605
10 0.47452 0.11054 0.28324 0.66420 0.09725 0.24652
11 1.07488 0.11040 0.16024 3.55511 0.10817 0.20616
12 1.08522 0.12463 0.19949 1.01185 0.10465 0.17375
13 0.75306 0.09921 0.15596 0.94941 0.10294 0.18427
14 0.71545 0.13483 0.16997 1.21458 0.12810 0.21715
15 1.15613 0.11397 0.19971 0.65112 0.11213 0.23033
16 0.74673 0.10098 0.14700 0.67287 0.09019 0.18162

Avg. 1.69323 0.16025 0.22144 3.36881 0.15931 0.23674

Nnew estimates that are generated by the considered methods at different operational

settings of the SA algorithm, first we consider the sample coefficient of variation

(i.e., the sample standard deviation divided by the sample average) for Nnew at each

setting. The corresponding results are presented in Table 5.2, while Tables B.2–B.4 in

Appendix B also report the values of the corresponding sample means and standard

deviations.

Table 5.2 reports the coefficients of variation, itemized by the CRL configurations,

the employed sample-size selection methods, and the applied policies. In general, the

variability observed in the Shapiro-Mello method is larger than the variability that is

observed in the variance-based sample-size control methods. On the other hand, when

comparing the reported results for the two variance-based methods, we can see that

the omission of the non-diagonal elements of the covariance matrices Σ in the “Max

CI” method, generally causes an increase of the variability, but the corresponding

156



Table 5.3: Comparison of the growth of the Nnew estimates between the two policies
ζ̄0 and ζ̄500 for the three sample-size control methods on the first 16 CRL configura-
tions of Table 4.1

Conf. S-M Volume Max CI
1 31.39467 4.26153 3.33152
2 49.59404 10.89854 9.68864
3 1.30993 2.80268 2.06336
4 5.17075 1.21479 1.48393
5 0.18823 0.44476 0.50893
6 86936.37387 6.17236 5.81308
7 0.33870 2.69329 3.15603
8 2.32290 2.86709 2.70935
9 1.05174 0.81078 1.01438
10 1.79780 1.84603 5.38172
11 3.64390 1.25065 1.39112
12 2.74744 2.17358 3.17267
13 7.23524 2.50105 4.13061
14 5.11668 5.78965 8.56895
15 0.99184 1.31295 2.03813
16 1.76763 1.66969 3.39030

Avg. 5440.69034 3.04434 3.61517

coefficients of variation are still quite small (below 0.4). Hence when considered from

this standpoint, the variance-based selection methods have an advantage over the

Shapiro-Mello control method, while the omission of the non-diagonal elements of Σ

by the “Max CI” method does not define any substantial disadvantage for it with

respect to the “volume”-based method.

Table 5.3 reports the ratios of the sample sizes Nnew generated at each of the two

points ζ̄0 and ζ̄500, for each sample-size selection method and each CRL configuration.

From the results that are reported in this table, we can see that, in most CRL

configurations, the required sample sizes increase as the SA algorithm proceeds closer

to the near-optimal regions; in particular, all three methods generally require more

samples at Point 2. Furthermore, the sample sizes specified by the Shapiro-Mello

method at this point are more variable than those specified by the variance-based

157



methods.12

An intuitive explanation for the increase of the sampling requirements in the

case of solutions that are in near-optimal regions, has as follows: When the current

solution of the SA algorithm is approaching to a plateau, the selection probability

distributions of the static random switches are more “biased” to certain options.

Therefore, the steady-state distribution of the underlying DTMC is also highly biased

towards certain states with higher one-step immediate rewards, and although the

DTMC is still irreducible (due to the imposed randomization), some states are rarely

visited. Then, the behavior of the DTMC in each possible sample path that can be

followed in a single regenerative cycle can be very different, and this variability is

also reflected in the higher variance of the estimates Ỹi that are obtained from the

simulation of these sample paths. Since all the three methods are dependent on the

covariance matrix Σ for the determination of the specified Nnew, they will tend to

return larger values for Nnew at the aforementioned points.

Of course, for the Shapiro-Mello method, Equation (68) provides an additional

explanation for the high sampling requirements that are posed by this method for

points in near-optimal regions. Figure 5.4 illustrates this last reason for the larger

ratio of the Shapiro-Mello method in Table 5.3 in a more intuitive way, with an

example case of two decision variables x1 and x2. In both the left and right figures,

the gradient estimates are depicted in boldfaced arrows, and the one on the left figure

12The reader may notice that CRL configuration #6 has an extremely large ratio under the
Shapiro-Mello method. This is due to some very large Nnew values obtained at Point 2. The reason
is the unbounded expectation of Nnew, since the corresponding scheduling problem involves only one
decision variable (c.f. the corresponding remarks at the end of the description of the Shapiro-Mello
method). As shown in Table 4.3 in Section 4.2.2, the CRL configurations #2 and #6 have only one
decision variable, so they are susceptible to experiencing some extremely large Nnew values when
the Shapiro-Mello method is used in the corresponding SA algorithm. And the quantity of ||∇η|| at
Point 2 of CRL configuration #6 is the smallest among the corresponding values at Points 1 and 2
for CRL configurations #2 and #6; this, in turn, implies a lower value of E[YA] and a higher risk
of some extremely large values for Nnew. On the other hand, for problem instances with a higher
dimension for their solution space, the distribution of Nnew is similar to an inverted-chi-squared
distribution with higher degrees of freedom, whose expectation exists.
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Figure 5.4: Comparison of the confidence regions specified by the Shapiro-Mello and
the variance-based methods for different norms of the gradient estimates.

has a larger norm. The confidence regions required by the variance-based methods

have the same areas, which are depicted in the ellipses with dashed lines. On the

other hand, the confidence regions required by the Shapiro-Mello method, which are

depicted in the ellipses with solid lines, should always be tangent with the hyperplanes

orthogonal to the gradient estimates. Therefore, the area of this ellipse on the left

figure is larger, which implies a more relaxed requirement on the corresponding sample

size than the respective requirement specified by the constant ellipse; in contrast, the

sample size requirement becomes more demanding when the norm of the gradient

estimate is smaller.

But as already pointed out, for solutions with small-norm gradient estimate, it

is not necessary to keep an acute angle under the conservative constant-step-size

schedules considered in this work, since the corresponding step will not move the

solution too much. On the other hand, if the gradient estimate has a large norm, then

forcing an angle between this estimate and the points of the constructed confidence

region that is smaller than “just acute”, can give better performance.

Based on all the above remarks and findings, we have chosen the “maximum

length of confidence intervals” method as the method to be employed by the proposed

Algorithm 6 in our empirical studies. This method presents much less variability in its

estimates of Nnew than the variability that is exhibited by the Shapiro-Mello method,
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and furthermore, by avoiding the computation of the determinant of Σ̂, it is more

practical for larger numbers of decision variables. This last feature becomes especially

important when Algorithm 6 is applied under the partial disaggregation scheme that

is introduced in Section 4.3.

5.3.3 A statistical test for the terminating condition

As we have already seen, from a practical standpoint, an SA algorithm terminates

either because the allocated computation resource is exhausted, or the current solution

is considered good enough and the computation cost for making further progress is

too high. In the latter case, the algorithm is in a plateau of the solution space of

the maximization problem. In this section, we are interested in the development of

statistical tests able to identify that the current solution is in the plateau.

Some of the earliest efforts for the identification of such conditions have been

based on the development of an asymptotic distribution characterizing the algorithm

behavior around the sought optima. And they are based on the fact that, as the SA

recursion (31) proceeds to a near-optimal region under an appropriately decreasing

schedule for the step size γ(n), the solutions returned by the algorithm are confined

in a small region that can be described as a (time-)non-homogeneous stochastic pro-

cess {ζ̄n} with an approximately constant mean and a decreasing variance. Hence, in

[96], the decision variables generated in all past iterations, from the very beginning to

the current iteration, are used to estimate the asymptotic variance, and the algorithm

stops when this variance estimate results in a confidence interval for the current mean

that is sufficiently small. Also, the work of [101] developed the multi-dimensional ver-

sion of the aforementioned method. On the other hand, the work of [46] has improved

upon the ideas and methods of [96] and [101] by introducing a “surrogate” process

that approximates the distribution of the current solution in a better manner, and

therefore, improves the discerning power of the corresponding termination condition.
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In the case of the constant step-size algorithms like the one that is eventually

proposed in this work, all the aforementioned methods must be adjusted to account for

the fact that the variance of the asymptotic distribution characterizing the algorithm

motion around the target optimal solution will not decrease to zero but will remain

at a constant level. Instead of pursuing this possibility, in this work we seek to

recognize the algorithm access of a plateau, or more generally, its proximity to an

optimal solution, by considering the distribution of the improving direction Yn, and

developing statistical tests that will ascertain the inability of this vector to define any

further substantial progress for the algorithm. In particular, inability to reject the

null hypothesis of these tests implies that the variance of the Yn estimator dominates

the true value of the gradients, and the algorithm begins to wander on a plateau.

Termination hypothesis tests based on the KKT optimality condition From

a more technical standpoint, the last approach for the development of a terminating

condition mentioned above can be based on a pertinent assessment of Condition 7 in

Section 5.1. In particular, this assessment must effectively account for the noise that

exists in the estimation of the improvement direction. The works of [95, 44] proposed

some methods for the development of such a hypothesis test for the gradient estimator

employed in the context of the SAA algorithm that is developed in that work. Next,

we adapt these methods to the context of the SA algorithm that is pursued in this

document.

More specifically, the methods of [95, 44] start with the observation that, for a

given solution ζ̄∗, the expression in the right-hand-side of Equation (32) defines a cone,

to be called the optimal cone C in the sequel. Since the true value ∇η is unknown,

the null hypothesis is that ∇η ∈ C; and the test is based on the distance d between

the cone C and the gradient estimate ∇̂η, where E[∇̂η] ≡ ∇η. If the null hypothesis

is not rejected, then we can infer that the current solution is not distinguishable from
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the set of solutions that satisfy the optimality condition. Note that the improvement

direction estimator YA obtained from Equation (44) or (47) can also be put to this

test since there exists a positive scalar a such that E[YA] = a∇η. Then ∇η ∈ C if

and only if E[YA] ∈ C. Therefore, in the sequel, the notation Y will replace ∇̂η.

In the following, we present two methods for supporting the test that was described

in the previous paragraph, using two different norms for characterizing the involved

distance. Both of these methods require an additional assumption for the solution

space of the problem that is called the strict complementarity assumption, and it is

stated as follows:

Assumption 5 For all local optimal solutions ζ̄∗ ∈ H, the corresponding Lagrange

multipliers λj in the decomposition of the gradient at this solution, ∇η(ζ̄∗), along the

directions that are defined by the gradients of the binding constraints, are all strictly

positive.

Remark For the problem defined in Equations (33)–(35), the constraints are lin-

early independent. Thus, Assumption 5 holds if the changes of the decision variables

along the gradient directions of any binding constraints changes the objective value.

But Assumption 5 will not hold if the objective value is independent from some ran-

dom switches. The possibility and the effective identification of such cases needs some

further investigation, and the decision variables associated to such random switches

should be removed during the execution of the considered tests. In the following, we

shall assume that the strict complementarity assumption holds at all the points of

interest. 2

For a given estimated improvement direction Y at a solution ζ̄∗ with estimated

covariance Σ̂, the distance between Y and C can be expressed as either

d1 ≡ min
λ∈R|B|0+

(Y −Wλ)T Σ̂−1(Y −Wλ) (75)

162



or

d2 ≡ min
λ∈R|B|0+

(Y −Wλ)T (Y −Wλ) (76)

where B is the index set of the binding constraints at ζ̄∗, λ is a |B|-dimensional vector

whose components are the Lagrange multipliers, and W is a p × |B| matrix whose

columns are the gradients of the binding constraints ∇cj, j ∈ B.

As the sample size N/2K → ∞, Y → a∇η w.p. 1, and then the solution of (75)

and (76) also converges to a∇η w.p. 1. Therefore, if at the current solution ζ̄∗: (i)

∇η can be expressed as a linear combination of ∇cj, j ∈ B (Condition 7); (ii) all

the coefficients in this linear combination are positive (Assumption 5); and (iii) the

sample size is large enough; then, all the Lagrange multipliers in the solution of (75)

and (76) are strictly positive. Therefore, the cone C can be replaced by a subspace

L without changing the solutions corresponding to the minimal values d1 and d2. In

other words, the unconstrained quadratic programming problems

d̂1 ≡ min
λ∈R|B|

(Y −Wλ)T Σ̂−1(Y −Wλ) (77)

and

d̂2 ≡ min
λ∈R|B|

(Y −Wλ)T (Y −Wλ) (78)

have the same solutions as the constrained problems (75) and (76), respectively.13

A key advantage of the formulations defined by Equations (77) and (78) over the

corresponding formulations defined by Equations (75) and (76) is that the former can

be perceived as projections of the vector Y to the subspace that is defined by the

columns of the matrix W , and, therefore, the corresponding optimal solutions can be

expressed in closed-form through the employment of appropriate projection matrices.

13On the other hand, if the formulations of Equations (77) and (78) do not have the same optimal
solutions with their respective formulations of Equations (75) and (76), then the optimal solution of
Equation (75) or (76) should have at least one zero coefficient, and Assumption 5 will be violated.
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A hypothesis test using the distance d̂1 The optimal solution of the formulation

of Equation (77) is

(W T Σ̂−1W )−1W T Σ̂−1Y

Let Q1 ≡ W (W T Σ̂−1W )−1W T Σ̂−1. Then the test statistic d̂1 can be expressed as

d̂1 = Y T (I −Q1)T Σ̂−1(I −Q1)Y (79)

where I is the identity matrix with the proper dimension.

If the null hypothesis is true, i.e., E[Y ] ∈ C, then d̂1 is central-chi-squared dis-

tributed with p − |B| degrees of freedom. This conclusion can be proved from the

following result in [69] (c.f. Corollary 5.1.3a, pg. 201):

Proposition 9 Consider a multi-normally distributed random vector Y with mean µ

and positive definite covariance matrix Σ, and also let A be a symmetric matrix. Then,

a set of necessary and sufficient conditions for Y TAT to be a non-central chi-square

random variable with ν degrees of freedom and non-centrality parameter δ2 = µTAµ

is as follows:

(i). trace(AΣ) = ν.

(ii). AΣA = A.

Before checking the conditions of Proposition 9, let us get some more properties

of the matrix Q1. First, it can be checked that

QT
1 Σ̂−1Q1 = Σ̂−1Q1 = QT

1 Σ̂−1 (80)
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More specifically,

QT
1 Σ̂−1Q1 =

(
W (W T Σ̂−1W )−1W T Σ̂−1

)T
· Σ̂−1 ·W (W T Σ̂−1W )−1W T Σ̂−1

= Σ̂−1W (W T Σ̂−1W )−1W T Σ̂−1W (W T Σ̂−1W )−1W T Σ̂−1

= Σ̂−1W (W T Σ̂−1W )−1
(
W T Σ̂−1W (W T Σ̂−1W )−1

)
W T Σ̂−1

= Σ̂−1W (W T Σ̂−1W )−1W T Σ̂−1

= Σ̂−1
(
W (W T Σ̂−1W )−1W T Σ̂−1

)
= Σ̂−1Q1

and

Σ̂−1Q1 = Σ̂−1
(
W (W T Σ̂−1W )−1W T Σ̂−1

)
=
(

Σ̂−1W (W T Σ̂−1W )−1W T
)

Σ̂−1

=
(
W (W T Σ̂−1W )−1W T Σ̂−1

)T
Σ̂−1

= QT
1 Σ̂−1

A further result implied by Equation (80) is that

(I −Q1)T Σ̂−1(I −Q1) = Σ̂−1(I −Q1) = (I −Q1)T Σ̂−1 (81)

In the context of the test statistic d̂1 expressed in Equation (79), Y is approx-

imately multi-normally distributed with mean a∇η and covariance Σ̂. Also, A =

(I − Q1)T Σ̂−1(I − Q1), and it can be equivalently expressed in the two other forms

in (81). Using these alternative expressions of A, condition (ii) in Proposition 9 can

be validated as follows:

AΣA = (I −Q1)T Σ̂−1Σ̂Σ̂−1(I −Q1) = (I −Q1)T Σ̂−1(I −Q1) = A

Another property of Q1 that results from its nature as a projection operator is

that the trace of Q1 is equal to its rank, which is the number of binding constraints
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|B| [70]. Then, the trace of the matrix AΣ is:

trace(AΣ) = trace((I −Q1)T Σ̂−1Σ̂) = trace(I −Q1) = p− trace(Q1) = p− |B|

Finally, under the null hypothesis considered in this part of the discussion, the non-

centrality parameter δ2 of Proposition 9 can be shown to be equal to zero, which, when

combined with the above results, implies that d̂1 is central-chi-squared distributed

with trace(AΣ) = p − |B| degrees of freedom. Indeed, under the null hypothesis,

E[Y ] = a∇η = Wv for some vector v, and therefore,

δ2 = vTW T · Σ̂−1(I −Q1) ·Wv

= vTW T Σ̂−1Wv − vTW T Σ̂−1
(
W (W T Σ̂−1W )−1W T Σ̂−1

)
Wv

= vTW T Σ̂−1Wv − vTW T Σ̂−1W
(

(W T Σ̂−1W )−1W T Σ̂−1W
)
v

= vTW T Σ̂−1Wv − vTW T Σ̂−1Wv

= 0

In conclusion, the above discussion has established that for a sufficiently large

sample size N/2K (or sufficiently large N for a fixed K), and under the assumption

that the null hypothesis∇η ∈ C holds, the distance d̂1 follows a chi-square distribution

with p− |B| degrees of freedom. Therefore, it can function as a test statistic for the

null hypothesis with p-value

P1 ≡ P
{
χ2
p−|B| ≥ d̂1

}
(82)

However, d̂1 involves the computation of the inverse matrix Σ̂−1, an operation of

rather high complexity and potential numerical instability. This last remark motivates

the development of a second hypothesis test that is based on the distance d̂2.

An alternative termination hypothesis test using the distance d̂2 The op-

timal solution for the formulation of Equation (78) is (W TW )−1W TY . Let Q2 ≡
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W (W TW )−1W T . Then, the test statistic defined by Equation (78) is

d̂2 = Y T (I −Q2)Y (83)

The computation of d̂2 does not involve any matrix inversion, but the distribution

of d̂2 is no longer chi-squared. However, from [69], if a random vector Y is multi-

normally distributed with mean µ and positive definite covariance matrix Σ, then,

for any given symmetric matrix A, the quadratic form Y TAY can be written as

Y TAY =

p∑
j=1

βj(Uj + bj)
2 (84)

=

p∑
j=1

βjU
2
j + 2

p∑
j=1

bjUj +

p∑
j=1

b2
j (85)

In Equations (84) and (85), β1, . . . , βp are the eigenvalues of the matrix Σ
1
2AΣ

1
2 , and

U1, . . . , Uj are independent standard normally distributed random variables. Further-

more, the constant term
∑p

j=1 b
2
j = µTAµ. Therefore, all the bj’s are zero if and only

if µTAµ = 0.

If the null hypothesis holds, then we can prove E[Y ]T (I −Q2)E[Y ] = 0, in a way

similar to that we used for proving δ2 = 0 in the development of the hypothesis test

for d̂1. Therefore, the distribution of d̂2 is the weighted sum of independent central

chi-squared distributed random variables with one degree of freedom:

d̂2 =

p∑
j=1

βjU
2
j (86)

And the weights βj’s are eigenvalues of Σ
1
2 (I −Q2)Σ

1
2 , or equivalently, eigenvalues of

(I −Q2)Σ.14

The distribution of d̂2 can be approximated with a chi-squared distribution using

Pearson’s approach in [69] (c.f. pages 164-165). More specifically, for any positive

14This equivalence comes from the notion of similarity between matrices. More specifically, for
any square matrices A and B, if there exists an invertible matrix P such that B = P−1AP , then
the matrices A and B are called similar, and they have the same eigenvalues [70].
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integer k, let

ω(k) ≡
p∑
j=1

βkj

= trace
(

Σ̂k
)

(87)

and

ν = ω(2)3/ω(3)2

a0 = ω(1)− ω(2)2/ω(3)

a1 = ω(3)/ω(2)

(88)

Then,
p∑
j=1

αjU
2
j ≈ a1χ

2
ν + a0 (89)

where χ2
ν is a chi-squared distributed random variable with ν degrees of freedom.

Finally, the p-value for this hypothesis test is:

P2 ≡ P

{
χ2
ν ≥

d̂2 − a0

a1

}
(90)

2

Some practical considerations Both of the test statistics that we presented in

the previous paragraphs will provide us with a p-value. However, next we discuss some

more practical aspects for the terminating condition that is eventually employed in

the proposed SA algorithm. These aspects intend to strengthen the discerning power

of the original tests, and also address some cases of a more pathological nature.

More specifically, for a given confidence level 100(1 − α)%, besides the rejection

(p < α) and non-rejection (p ≥ α) of the null hypothesis, there are two additional

possible outcomes that can arise during the execution of these tests:

1. The number of binding constraints equals to the number of decision variables.

In this case, both hypothesis tests involve a projection on the single point that
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represents the intersection of all the binding constraints, and the expression

p−|B| that defines the degrees of freedom involved will be equal to zero. Hence,

these hypothesis tests are not functional. However, the aforementioned points

can be recognized as “corner” – or more formally, extreme – points for the

underlying solution space, and persistence of the algorithm to remain (or return)

to these points can be taken as a signal of the optimality of these points, and a

reason for the termination of the algorithm.

2. Some coefficients of the projection of Y are not positive, i.e., Q1 · Y 6> 0 for the

d̂1-test or Q2 · Y 6> 0 for the d̂2-test. If the strict complementarity assumption

for the solution space holds, then this outcome implies either that the sam-

ple size is not large enough or that the null hypothesis does not hold. Since

these two reasons are not distinguishable, the corresponding test is inconclusive

about potential satisfaction of the KKT optimality conditions by the considered

solution.

In view of all the above remarks, the eventual implementation of the tests for the

termination condition that were presented in this section, involves two counters i1,

i2 and two thresholds n1, n2. Counter i1 keeps track of the number of the consecu-

tive non-rejections by the applied hypothesis test, while counter i2 keeps track of the

number of the consecutive visits of the algorithm at some corner point. More specifi-

cally, if a visit to a corner point takes place, then counter i1 remains unchanged, and

counter i2 increases by one; if Q1,2 · Y 6> 0 during the execution of the corresponding

test, then both counters remain unchanged; if a rejection of the null hypothesis oc-

curs, then both i1 and i2 are reset to zero; finally, if the test simply fails to reject the

corresponding null hypothesis, then i1 increases by one, and i2 is reset to zero. The

algorithm terminates if any of the counters ii, i = 1, 2, reaches the corresponding

limit ni. The values of n1 and n2 should be carefully designed for each test.
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Furthermore, there is an overall upper bound nmax for the total number of it-

erations that are executed by the algorithm. This upper bound is imposed by the

practical limitation on the available computational resources. Hence, after complet-

ing nmax iterations, the algorithm will terminate even if the hypothesis test indicates

that the algorithm can make further progress.

5.3.4 The practical version of the proposed SA algorithm

In this section we present the complete SA algorithm that integrates the statistical

enhancements that were introduced in the previous two sections, and we also present

some numerical results indicating the efficacy of these enhancements.

Compared to the implementation of the basic and asymptotically convergent SA

algorithm in Section 5.2.4, this new algorithm has some different input. The step size

is not a function of the iteration number n but a constant γ. The sample size is also

not a function of n, but it is determined in an adaptive way that also employs as

input the initial number of the regenerative cycles N0 (that must be divisible by 2K).

Two additional inputs are the parameters α1 and α2 that define, respectively, the

confidence levels for the sample-size control and the termination hypothesis test. The

parameter tmax is used to set a hard limit on the sample size, so that the simulation in

one iteration can terminate earlier in case that the estimated Nnew is too large.15 The

parameters nmax, n1 and n2 are those introduced in the concluding part of Section

5.3.3. Finally, the questionmark at Line 15 of the presented algorithm implies that

the value returned by the expression Nnew > N/2K is of Boolean type.

The significance and the efficacy of the algorithmic enhancements that were pre-

sented in the previous sections are assessed against the performance of the baseline

algorithm in Section 5.3.1, through a numerical experiment that employs the same

16 CRL configurations used in the baseline experiment of that section. In fact, this

15But the constraint t < tmax is not integrated in the loop condition at Line 9 of Algorithm 6, so
that the simulation always samples complete groups of 2K regenerative cycles.
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Algorithm 6 A practical implementation of the stochastic approximation algorithm
for the considered optimization problem

Input: RAS Φ, δ, ξ, trial, γ, K, N0, nmax, tmax, α1, l0, α2, n1, n2.
Output: GSPN, DAP, Ξ, ζ̄, idxS(·).

1: Model RAS Φ as GSPN with the methods in Section 3.1.
2: Solve for the DAP of Φ with the methods in Section 2.2 and code the DAP and the

non-deliberately-idling constraint into GSPN as Π2. The finally adopted policy
space should be Π̂S

3 .
3: for n = 1→ nmax do
4: Starting from the initial marking M0, simulate the GSPN for trial non-self-loop

transitions to get the most visited tangible marking M∗. Also extend Ξ, ζ̄ and
idxS(·) with any newly encountered random switches, and initialize the new
components of ζ̄ according to ξ.

5: t← 0; x← odd; N ← N0; i← 1; sampleMore← true.
6: while sampleMore ∧ t < tmax do
7: while i < N/2K ∧ t < tmax do
8: Set the 8 counters for the respective 8 sums in Eq. (46) to 0 or 0; Set the

single samples ẑ(ω,1), ∇̂z(ω,1), ẑ(ω, r̂) and ∇̂z(ω, r̂) to 0 or 0; pair ← 0.
9: while pair < K do

10: Implement the same block as Lines 9–19 of Algorithm 5, for calcula-
tions of the single samples ẑ(ω,1), ∇̂z(ω,1), ẑ(ω, r̂) and ∇̂z(ω, r̂), and
the updates the counters for the 8 sums in Eq. (46). Also update the
transition counter t and the regenerative cycle pair counter pair.

11: end while
12: Compute Ỹi using Eq. (46); Update YA and YSq using Eqs. (55) and (57);

i← i+ 1.
13: end while
14: Compute Σ̂ using Eq. (58); Compute Nnew using Eq. (65), (72) or (74).
15: sampleMore← (Nnew > N/2K?); N ← 2KNnew.
16: end while
17: Test for termination condition and update the counters i1, i2 as Section 5.3.3.
18: if i1 ≥ n1 ∨ i2 ≥ n2 then
19: return GSPN, DAP, Ξ, ζ̄, idxS(·).
20: end if
21: Compute ∇̂η using Eq. (48) with τN = t.

22: ζ̄ ← ζ̄ + γ · ∇̂η.
23: Project ζ̄ with respect to every random switch onto the feasible region defined

by Eqs. (34) and (35), using Algorithm 7 in Appendix D.
24: end for
25: return GSPN, DAP, Ξ, ζ̄, idxS(·).
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new experiment has the same parameter settings as the baseline experiment, with

some differences that can be described as follows: nmax = 500, but it has the modified

meaning that the executed iterations may be either 500 or smaller, according to the

results of the employed termination hypothesis test. The number of the regenerative

cycles sampled at each iteration is no longer fixed to N = 10, 000. Instead, it is

determined according to the methodology described in Section 5.3.2. The parameters

K and α1 that are employed by that methodology are set to the values K = 100 and

α1 = 0.2, which are the same values as those used in the experiment in Section 5.3.2.

On the other hand, the initial number of regenerative cycles N0 is set to 6, 000, in

order to control further the effort expended on this preliminary sampling phase. In

a similar spirit, l0 is set to l0 = 0.02 to relax a little more the precision requirement

on the sample size. On the other hand, the ratio N0/2K implies 30 samples of Ỹi

during the initial phase of the aforementioned methodology, and this number is still

sufficiently large to ensure the normal approximation of YA. With regards to the

options that are provided by Algorithm 6 about the implementation of the various

alternative statistical inference methods, in the presented experiment, we employed

Equation (74) in Line 14 of the algorithm, and the hypothesis test based on the dis-

tance d̂2 was selected for Line 17. Finally, some other parameters were set as follows:

tmax = 5× 107, α2 = 0.7, n1 = 4, and n2 = 3.

The layout of Table 5.4 is the same as that of Table 5.1 with some slight differences:

an extra column nstop reports the iteration number when the algorithm terminated,

either because of the hypothesis testing in Section 5.3.3 or by reaching the upper

bound nmax; furthermore, since not all the instances stop at nmax = 500, but they

may stop at some nstop < 500, the column η(ζ̄500) is replaced by the column η(ζ̄nstop).

We can see in Table 5.4 that the solutions returned by Algorithm 6 have almost

the same objective values; this result is indicated even more emphatically in Figure

5.5. On the other hand, thanks to the enhancements implemented in Algorithm 6, the
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Table 5.4: The values of the objective function at the solution points returned by
Algorithm 6 for the first 16 CRL configurations of Table 4.1

Conf.
Objective values

nstop
Trans. Time

Max η(ζ̄0) η(ζ̄100) η(ζ̄nstop) (×106) (sec)

1 0.48000 0.47333 0.47988 0.47993 131 5.65 11
2 0.44444 0.43478 N/A 0.44324 28 0.88 2
3 0.49254 0.48495 0.48933 0.48940 111 14.33 42
4 0.49959 0.49811 0.49872 0.49883 500 98.94 241
5 0.50000 0.50000 0.49999 0.49999 500 240.06 593
6 0.46411 0.45251 N/A 0.46208 46 3.82 7
7 0.49310 0.48348 0.48623 0.48658 500 187.50 400
8 0.49820 0.49225 0.49441 0.49541 500 240.26 559
9 0.49999 0.49969 0.49979 0.49968 500 459.71 1,256
10 0.32234 0.30649 0.30794 0.31139 500 1891.05 5,500
11 0.43734 0.43359 0.43505 0.43541 361 682.27 1,958
12 0.42225 0.41539 0.42034 0.42114 500 351.84 1,101
13 0.43212 0.41808 0.42365 0.42425 372 492.71 1,381
14 0.41063 0.39231 0.40055 0.40293 479 230.87 626
15 0.37667 0.37359 0.37453 0.37539 469 1596.22 5,438
16 0.35729 0.35453 0.35550 0.35638 263 491.15 1,526

total number of executed transitions presents an average reduction by 43.10%, and

the required computing times are reduced by 40.64%. The reduction of the Markovian

transitions and computing time for each configuration are depicted in Figure 5.6.

In summary, the presented results indicate that alterations that were performed

on the baseline SA algorithm with respect to the determination of the necessary

sampling and the terminating condition, have led to considerable reductions of the

computational cost involved in the algorithm execution on any given RAS configura-

tion, and they have maintained the same level of optimality of the returned solutions.

However, these alterations have also introduced some new control parameters in the

algorithm logic, and the values of these parameters should be carefully determined

for a successful realization of the aforementioned enhancements.
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Figure 5.5: Comparison of the throughput improvements obtained from the basic
and the enhanced SA algorithms for the 16 CRL configurations of Table 4.1
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5.4 Extensions for partially disaggregated random switches

The first part of this section discusses the necessary extensions for the SA algorithm

in order to cope with random switches that are partially disaggregated under the

representation of Equation (29) in Section 4.3. Subsequently, a numerical experiment

is performed to demonstrate the potential improvement that can be brought by partial

disaggregation.

5.4.1 Modifying the SA algorithm to cope with partial disaggregation

The introduction of partially disaggregated random switches under the representation

of Equation (29) in Section 4.3 does not alter the fundamental structure and logic of

the presented SA algorithms, but it impacts the computation of the one-step transi-

tion probabilities for the underlying DTMC M̂ and their gradients with respect to

the decision variables ζ̄. Also, from the discussion of Section 4.3, it should be evident

that the decision variables that correspond to this class of random switches are totally

free variables. Hence, there is no need for the projection operation of Appendix D for

this class of random switches.16 Next, we will derive the changes in the computation

of the one-step transition probabilities and their gradients that are necessitated by

the introduction of partially disaggregated random switches.

As mentioned above, the introduction of partially disaggregated random switches

leaves unchanged the basic scheme for the computation of the one-step transition

probabilities from one tangible marking MT of the DTMC M̂ to another – i.e., the

elements P [MT ,M
′
T ] in the transition probability matrix of the DTMC M̂ – and

of their gradients. More specifically, the computation of the elements P [MT ,M
′
T ]

16Returning to the content of Footnote 8 in Section 4.3, we notice that the explicit enforcement
of the randomization that is implied by the constraints (15) and (16) of formulation (14)–(16),
would necessitate the introduction of one such set of constraints for every marking that is covered
by the disaggregated random switches, and this can easily be an intractable proposition even for
moderately small RAS configurations. In particular, the projection of the vectors of the relevant
decision variables to the subspaces defined by these constraints would be computationally intractable.
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is still based on the double summation of Equation (49) in Section 5.2.2. And the

gradient of these probabilities is still characterized by the sum of Equation (50).

Furthermore, for any untimed transition firing sequence σ leading from a marking

M̂ that results from the firing of a timed transition t to a tangible marking M ′
T , the

inductive expressions (51) and (52) that can compute xM̂,σ and ∇xM̂,σ do not change

as well. The only necessary change in the case that the enabling pattern E = E Π̂2
u (M̂i)

corresponds to a partially disaggregated type, is for the expressions (53) and (54) that

provide respectively the selection probability p̂i and the partial derivatives ∂p̂i
∂ζ̄[k̂]

. More

specifically, the selection probability ZM̂i
[t̂i] of Equation (53) must be replaced by

p̂i =
exp

(∑K
k=1 ψk(M̂i) · ζ̄

[
idxDA(E , t̂i)[k]

])
∑

t∈E exp
(∑K

k=1 ψk(M̂i) · ζ̄
[
idxDA(E , t)[k]

]) (91)

Let

A(M, t) ≡ exp
( K∑
k=1

ψk(M) · ζ̄
[
idxDA(E Π̂2

u (M), t)[k]
])

B(M) ≡
∑

t∈EΠ̂2
u (M)

A(M, t)
(92)

Then, Equation (91) can be expressed more compactly as

p̂i =
A(M̂i, t̂i)

B(M̂i)
(93)

For the calculation of the corresponding partial derivatives, first we notice that if

the considered decision variable ζ̄[k̂] is not related to this random switch, i.e., @t̂, k̃

such that idxDA(E , t̂)[k̃] = k̂, then ∂p̂i
∂ζ̄[k̂]

= 0. Otherwise, ζ̄[k̂] is related to this random

switch, and suppose that idxDA(E , t̂)[k̃] = k̂. Then, the formulae that provide the

corresponding partial derivatives are different depending on whether t̂ is fired at M̂i.

Using the relevant notation of Section 5.2.2, the easier case is that where t̂ 6= t̂i.

Then, the term exp
(
ψk̃(M̂i)ζ̄[k̂]

)
appears only in the denominator of Equation (93).

Let

x̂ ≡ exp
(
ψk̃(M̂i)ζ̄[k̂]

)
(94)
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Then,

∂p̂i

∂ζ̄[k̂]
=

∂

∂ζ̄[k̂]

 A(M̂i, t̂i)(
B(M̂i)− A(M̂i, t̂)

)
+ A(M̂i,t̂)

x̂
· x̂


=

d

dx̂

 A(M̂i, t̂i)(
B(M̂i)− A(M̂i, t̂)

)
+ A(M̂i,t̂)

x̂
· x̂

 · ∂x̂

∂ζ̄[k̂]

=
−A(M̂i, t̂i) · A(M̂i,t̂)

x̂(
B(M̂i)

)2 ·
(
ψk̃(M̂i) · x̂

)

=

(
A(M̂i, t̂i)

B(M̂i)

)
·

(
−ψk̃(M̂i)A(M̂i, t̂)

B(M̂i)

)

= p̂i ·

(
−ψk̃(M̂i)A(M̂i, t̂)

B(M̂i)

)
(95)

The computation of the derivative with respect to x̂ in the third step above is based

on the fact that the items A(M̂i, t̂i),
(
B(M̂i)− A(M̂i, t̂)

)
, and A(M̂i,t̂)

x̂
are independent

from x̂.

Next, we consider the case where t̂ = t̂i. Then, with x̂ still defined as in (94), the

sought partial derivative is computed as follows:

∂p̂i

∂ζ̄[k̂]
=

∂

∂ζ̄[k̂]

 A(M̂i,t̂)
x̂
· x̂(

B(M̂i)− A(M̂i, t̂)
)

+ A(M̂i,t̂)
x̂
· x̂


=

d

dx̂

 A(M̂i,t̂)
x̂
· x̂(

B(M̂i)− A(M̂i, t̂)
)

+ A(M̂i,t̂)
x̂
· x̂

 · ∂x̂

∂ζ̄[k̂]

=
A(M̂i,t̂)

x̂
·B(M̂i)− A(M̂i, t̂) · A(M̂i,t̂)

x̂(
B(M̂i)

)2 ·
(
ψk̃(M̂i) · x̂

)

= p̂i · ψk̃(M̂i)

(
1− A(M̂i, t̂)

B(M̂i)

)
(96)

As a closing remark, we notice that Equations (95) and (96), when combined with

Equation (92), imply that the corresponding partial derivatives ∂p̂i
∂ζ̄[k̂]

are well defined

and their absolute values are bounded by the absolute values of the corresponding

parameters ψk̃(M̂i). This bounding further implies the bounding of the vectors ∇̂η
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that will be employed by the corresponding SA algorithm. On the other hand, we

cannot establish a bound for the corresponding decision variables ζ̄,17 but it is also

true that we have not encountered any numerical instability with respect to these

variables in our numerical experimentation.18

5.4.2 Demonstrating the improvement potential of partial disaggregation

In this section we illustrate the potential performance improvements that can be

brought about by the proposed partial disaggregation of the static random switches.

The presented experiment employs the CRL configuration #13 in Table 4.1. This

configuration was selected because (i) it has a manageable number of random switches

for the needs of the pursued demonstration, and (ii) the results of Table 5.4 indicate

significant potential for performance improvement through the employed relaxation

(c.f., the two columns “Max” and “η(ζ̄nstop)” in that table).

More specifically, the considered CRL configuration consists ofm = 3 workstations

and n = 5 processing stages. The route that is defined by these processing stages

through the line workstations (WS), is WS1 → WS2 → WS1 → WS3 → WS2. If

the corresponding GSPN is constructed according to the method presented in Section

3.2, 19 then the random switches of the underlying Π̂2-conditional state space can be

categorized into four enabling patterns, or four static random switches; these four

enabling patterns are denoted as E1 ≡ {t0, t6}, E2 ≡ {t3, t12}, E3 ≡ {t0, t5} and

E4 ≡ {t2, t11}. E1 and E3 model the conflicts at workstation 1 between processing

stages 1 and 3. Among them, E1 models the conflict with respect to the server

17One way to explain the inability to bound the decision variables ζ̄ that are employed by the
proposed partial disaggregation scheme, is by noticing that the translation of the variable vector ζ̄
that corresponds to a disaggregated static random switch by a certain constant α will retain the
values for the selection probabilities p̂i that are defined by Equation (91).

18A possible stabilizing factor for the values of the decision variables ζ̄ might come from the fact
that they need to establish efficient distributions for all the markings M that correspond to the
disaggregated static random switch, and this requirement implies some “antithetic” trends in the
corresponding pricing.

19More specifically, the numbering of the places and the transitions of this GSPN model parallels
the corresponding logic that was introduced in Table 3.1 of Example 1.
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allocation, and E3 models the conflict with respect to the buffer allocation. E2 and E4

model the conflicts at workstation 2 between processing stages 2 and 5, respectively

for the server and the buffer allocation.

The feature functions ψk(·) that we considered in this experiment are the com-

ponents of the submarking that corresponds to the process places of the underlying

GSPN. Since there are 3 × 5 − 2 = 13 such process places in the considered GSPN,

and two enabled transitions in each of the four enabling patterns E1 – E4 mentioned

above, each partially disaggregated random switch will employ 13× 2 = 26 free deci-

sion variables. This, in turn, implies that the scheduling formulation that is obtained

by substituting (only) one of the four static random switches by a partially disaggre-

gated random switch, will have 4 − 1 + 26 = 29 decision variables; 3 corresponding

directly to selection probabilities for the three employed static random switches, and

26 free variables will define the selection probability distribution for the fourth random

switch, according to the logic of Equation (29). The above discussion also renders

clear that, for a fixed set of features to be used in the considered disaggregation pro-

cess, the increase in the number of the decision variables that will result from the

disaggregation of N static random switches is only O(N).

We ran Algorithm 6 five times on the considered CRL configuration, under the

following five policy spaces: Π̂S
3 and the variations of this policy space that are ob-

tained by the replacement of one of the four static random switches with the partially

disaggregated scheme that was described above. In all these runs, the starting solu-

tion was the totally random policy that was described in the previous sections of this

chapter, and the algorithm was executed for 500 iterations.20

The obtained results are summarized in Figure 5.7. This figure reveals that the

20In other words, the presented experiment did not employ the terminating mechanism that was
presented in Section 5.3.3; this choice was made in an effort to decouple the obtained results from
any potential sensitivities that might be present in the statistical tests that are employed by that
mechanism.
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Figure 5.7: The performance improvements attained for the CRL configuration that
is considered in the performed experiment, through the partial disaggregation of the
static random switches of the original policy space Π̂S

3

partial disaggregation of the enabling pattern E3 leads to the highest performance

improvement; the partial disaggregation of E1 and E2 gives less improvement than

the disaggregation of E3; and the partial disaggregation of E4 does not incur any

significant performance improvement with respect to the original policy space Π̂S
3 .

A plausible explanation of these results can be based on the structure of the

optimal policy ζ̄∗ that was obtained for the initial formulation on the policy space

Π̂S
3 . This structure can be described as follows:

P{t0 is fired|t0 and t6 are enabled} = 0.058883

P{t3 is fired|t3 and t12 are enabled} = 0.065869

P{t0 is fired|t0 and t5 are enabled} = 0.410361

P{t2 is fired|t2 and t11 are enabled} = 0.948579

(97)

It can be seen in the above listing that the random switches corresponding to

the enabling pattern E3 involves the highest level of randomization among the four
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random switches that are specified by ζ̄∗. But under the coupling logic of a static

random switch, a substantial level of randomization can be an indication of a need to

“compromise” antithetic trends at different markings with respect to the underlying

enabling pattern, that might appear in the selection logic of the unconstrained optimal

policy of the policy space Π̂2. In this case, the partial relaxation introduced in this

section can enable a differentiated selection logic at different markings, and thus, it

can remove the corresponding stress and enhance the attained performance. It is also

true, however, that currently the impact of the proposed disaggregation scheme upon

the performance of the underlying system is not fully understood.

5.4.3 Some further observations on the experiment of Section 5.4.2

In this section we take a closer look at the optimized values that were obtained in the

experiment of the previous subsection, for the partially disaggregated random switch

that results from the disaggregation of the static random switch corresponding to the

enabling pattern E3 = {t0, t5}. These values, as determined at the 500-th iteration of

the SA algorithm that computed the optimized policy, are reported in Table 5.5. Our

primary intention in this study is to obtain some perspective on the selection logic

among the corresponding transitions t0 and t5 that is defined by these values.

We remind the reader that in the implementation of the partial disaggregation

scheme that was employed by the considered experiment, the “feature” functions for

every vanishing marking M of the underlying GSPN model were the sub-markings of

the process places of this GSPN model. Hence, in Table 5.5, the decision variables

for the partial disaggregation of the static random switch that was defined by the

enabling pattern E3 = {t0, t5}, have the values that are reported in the two right

columns of this matrix, with each column reporting the values of the coefficients that

determine the selection probability of the corresponding transition ti, i = 0, 5 (c.f.,

Equation (91).) On the other hand, the first two columns of Table 5.5 report the
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Table 5.5: The values at the 500-th SA iteration of the decision variables employed
by the partially disaggregated random switch of E3

WS JS Place t0 t5

1 1
p0 0.00000 0.00000
p1 -0.07845 0.07845

2 2
p2 -0.13720 0.13720
p3 -0.04658 0.04658
p4 -0.00432 0.00432

1 3
p5 -0.10993 0.10993
p6 0.00000 0.00000
p7 0.20000 -0.20000

3 4
p8 0.06181 -0.06181
p9 0.04317 -0.04317
p10 -0.01528 0.01528

2 5
p11 -0.01777 0.01777
p12 -0.00141 0.00141

indices of the workstations (WS) and the job stages (JS) of the corresponding GSPN

places.

The first thing we notice in the values that are reported in Table 5.5, is that

the decision variables reported in each row of this table have opposite values. This

phenomenon can be explained by the fact that the disaggregated static random switch

involves only two untimed transitions.

To establish the above result for the general case, let us consider the enabling

pattern E ≡ {tx, ty}, and let px and py denote, respectively, the selection probabilities

of the transitions tx and ty at some vanishing marking M̂ with E Π̂2
u (M̂) = E . Further-

more, for a certain feature φk̂(M̂), we denote by x and y the decision variables that

multiply the feature function φk̂(·) in the respective determination of the selection

probabilities px and py. Then, referring back to Equation (96), we can derive the

partial derivative of px with respect to the decision variable x, as follows:

∂

∂x
px = px · ψk̂(M̂) ·

(
1− A(M̂, tx)

B(M̂)

)
= px · ψk̂(M̂) · (1− px) (98)
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Similarly, referring back to Equation (95), we can have the partial derivative of

px with respect to y:

∂

∂y
px = px ·

(
−ψk̂(M̂)A(M̂, ty)

B(M̂)

)
= −px · ψk̂(M̂) · P{ty is fired|M̂}

= −px · ψk̂(M̂) · (1− px) (99)

Comparing Equations (98) and (99), we can see that the partial derivatives ∂
∂x
px

and ∂
∂y
px have opposite values. Therefore, if all the decision variables are initialized

to zero (as is the case in the considered experiment), we will always obtain pairs

of opposite numbers for the decision variables corresponding to the disaggregated

random switches, at each iteration of the SA algorithm.

The next interesting observation in Table 5.5 concerns the zero values for the

decision variables corresponding to the places p0 and p6. Since we are considering

the partially disaggregated random switches with enabling pattern E3 = {t0, t5}, any

vanishing markings M associated with this set of random switches must have the

untimed transition t0 enabled; i.e., the system at these states should be able to load

a new job. Therefore, the server of workstation 1 must be idle, which implies that,

in the underlying GSPN model, there must be no tokens at places p0 and p6; i.e.,

M [p0] = M [p6] = 0. The observed results then follow from the above Equations (98)

and (99), and the employment of these two marking values as feature functions.

Next, we shall attempt to explain the overall pricing of the decision variables

that is reported in Table 5.5, as the source of a near-optimal policy with respect to

the pursued objective of throughput maximization. With this objective in the mind,

intuitively, we would like (i) to maintain a sufficient number of jobs in the system

to avoid the excessive starvation of the workstation servers, and also (ii) to see jobs

leaving the system as quickly as possible.

To understand how the values reported in Table 5.5 serve these two intentions,
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first we notice that according to the definition of the selection probabilities of partially

disaggregated random switches in Equation (91), and the employed feature functions

in the experiment of Section 5.4.2, a positive value of a decision variable corresponding

to an untimed transition t̂ and a place p̂ implies an inclination of selecting t̂ at a

marking with more tokens at the place p̂. Hence, the results of Table 5.5 imply that

the probability of selecting transition t5 over t0 increases along with an increase of

the numbers of tokens in any of the places p1 – p5 and p10 – p12. Recalling that

the firing of t0 models the loading of a new job to the system, and the firing of t5

models the advancement of an already initiated job from stage 2 to stage 3, we see

that the underlying scheduling policy overall has a “last-buffer-first-served” tendency

when it comes to the resolution of this particular random switch; i.e., it tends to serve

objective (ii) above. At the same time, the re-entrance patterns of the considered CRL

indicate that the aforementioned decision serves well objective (i), as well, especially

with respect to the server of workstation 1, which is one of the “nominal” bottlenecks21

of this line.

But there are exceptions to the aforementioned “general” trend: places p0, p6 – p9.

The reason of the zeros corresponding to places p0 and p6 has already been explained.

To understand the deviation of the decision pattern that was discussed in the previous

paragraph when it comes to places p7, p8 and p9, let us first recall the meanings of

these places in the original CRL configuration #13: Place p7 models a job status

where the processing has been finished at stage 3 but the job waits to be transferred

to workstation 3 for its 4th processing stage. On the other hand, places p8 and p9

model the job status of waiting to be processed and being processed, respectively, at

workstation 3 for processing stage 4. Therefore, the tokens at these 3 places model

jobs that either seek the allocation of the single buffer slot at workstation 3, or they

21In this discussion, by “nominal” bottlenecks we imply the estimated bottlenecks when not ac-
counting for the blocking effects that take place in the system.
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have been allocated this buffer slot for the execution of processing stage 4. But then,

when any of these places has a high value, a job advancement from stage 2 to stage

3 cannot really help with the depletion of existing jobs from the system, since, in

this case, all jobs executing processing stages 1 to 3 must wait upon the jobs in the

places p7, p8 and p9; in fact, under these particular circumstances, a job advancement

corresponding to transition t5 will simply create further cluttering in workstation 1.

So, in this case, transition t0 is more preferable than transition t5.

We conclude this section by noticing that the investigation that was presented in

the above paragraphs is of a more intuitive nature, and, of course, it concerns only

the (near-)optimal policy that is defined by the partial disaggregation of the static

random switch that was singled out in the relevant experiment of Section 5.4.2. A

more profound understanding of the structure of the optimal scheduling policy for the

CRL model that is considered in this thesis, under the partial disaggregation schemes

that were discussed in this section, as well as the design of a complete algorithm for

the management of the overall disaggregation process, are part of the future work

that is discussed in the next chapter.
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CHAPTER VI

A SUMMARY OF THE MAJOR CONTRIBUTIONS AND

POSSIBLE FUTURE EXTENSIONS

6.1 The major contributions

In the previous chapters of this work we have provided a complete, integrated frame-

work for solving the performance optimization problems that arise in the operational

context of many contemporary complex resource allocation systems. In particular,

this framework is based on the effective utilization and the integration of the rep-

resentational and computational frameworks depicted in Figure 1.2 of Chapter 1,

according to the key workflow and the dependencies that are indicated in that figure.

Hence, in Chapter 2, our work has drawn from the DES supervisory control the-

ory, and its specialization and extension for the problem of deadlock avoidance in

resource allocation systems, in order to establish a correct behavior for the underlying

resource allocation function. Furthermore, the corresponding results were eventually

integrated in a time-based representation of the RAS operation that relies upon the

modeling framework of the generalized stochastic Petri nets.

The definitive and concise semantics of the GSPN modeling framework subse-

quently enabled a succinct characterization of the considered performance control

problem, in Chapter 3. But this characterization possesses a super-polynomial repre-

sentational and computational complexity with respect to the underlying RAS struc-

ture, a manifestation of the “curse of dimensionality” that has haunted most schedul-

ing problems of the type that is addressed in this work. In more practical terms, the

negative complexity results mentioned above render intractable the effective resolu-

tion of the considered optimization problem for most RAS instantiations.
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Acknowledging these complications, and keeping in line with the emerging theory

of Approximate Dynamic Programming, in Chapter 4 we resorted to approximating

schemes for the original formulation, focusing in particular upon a scheme that is

known as “approximation in the policy space”. This approximation scheme enables

an explicit specification of the employed policy spaces, and a more direct control of

the parameterization and the representational complexity of the candidate policies.

In the application context of the RAS scheduling that is considered in this work, the

specification of the target policy spaces was further facilitated by the formal represen-

tation of the RAS dynamics by the GSPN modeling framework. This representation

has also enabled a systematic characterization of the sources and the nature of the

suboptimality that is incurred by the problem restriction to the employed policy

spaces, and it has provided effective mechanisms for establishing a systematic and

controllable trade-off between the representational and computational complexity of

the pursued solutions and their operational efficiency.

The solution of the resultant (approximating) formulations of the considered opti-

mization problem was addressed in Chapter 5. The corresponding developments have

sought the pertinent adaptation to the considered problem of some stochastic approx-

imation algorithms. To this end, the adopted GSPN representation has provided a

succinct and efficient simulation platform, and it has facilitated the systematic esti-

mation of the necessary gradients. At the same time, the adopted SA algorithms have

been strengthened by the integration in their basic evaluation and exploration logic

of results coming from the area of statistical inference. These results have enabled

our SA algorithms to proceed to a near-optimal region in a robust and stable way,

while avoiding the expenditure of computational resources in areas of the underlying

response surface with little potential gain.

From a more practical standpoint, the developments that are presented in this

thesis enable the realization of the DES-based real-time control framework that is
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depicted in Figure 1.1, and thus contributes substantially the corresponding theory

of the real-time management of sequential resource allocation systems. As remarked

in the opening chapter of this work, the effective control of these RAS structures is

tantamount to the control of stochastic networks with extensive blocking and dead-

locking effects, an area with very limited results in operations research and stochastic

control theory.

Finally, the presented developments have been further customized for the partic-

ular operational context of the capacitated re-entrant line, a workflow model that

has drawn extensive attention in the recent years in, both, the theoretical investiga-

tions of production scheduling and the industrial practice. This customization has

also revealed the adaptability of the more general theory to the special structure and

dynamics that are defined by various RAS sub-classes.

6.2 Possible future extensions

Being a first attempt to provide a complete solution to the aforementioned RAS

performance optimization problems, this work has also identified a host of additional

research problems that pertain to the further extension and the strengthening of the

methodological base that is defined herein. Most of these problems have already been

discussed in the earlier chapters of this document, but they are reviewed, organized

and further expanded in this section for the benefit of the reader.

A first possible extension of this work can be along the direction of developing a

more complete disaggregation algorithm based on the structure of the optimal policies

obtained for the policy space Π̂S
3 . This work has provided only some insights on the

proposed disaggregation schemes by means of some examples, while the correspond-

ing numerical study that is performed in Section 5.4.2 illustrates the efficacy and

the potential performance improvements that can be obtained from such disaggre-

gation. However, these developments are far from a complete partial disaggregation
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scheme. To fully materialize such a scheme, we need an efficient algorithm able to

automatically identify the static random switches that constitute the best options

for disaggregation by providing the highest potential for performance improvement.

The algorithm must also integrate additional logic that quantifies the sought trade-

off between the operational efficiency of the derived policies and the computational

and representational complexity involved; this capability will be especially useful for

implementing a termination condition. In regards to the aforementioned trade-off

between the complexity and the operational efficiency of the derived policies, we also

need a more systematic approach for selecting the feature functions to be employed

in the representational scheme of Section 4.3.

Another open problem that relates to the aforementioned partial disaggregation

problem, but can have much broader ramifications for the proposed methodological

framework, concerns the further investigation of the structure of the response surface

of the original performance optimization problem and the impact upon this structure

of the various aggregation schemes that are defined by the policy spaces introduced in

this work. A similar issue is the better understanding of the (relative) value function

of the corresponding MDP problems. Besides providing a clearer understanding of

the quality and the trade-offs that are established by the pursued approximations,

the availability of the aforementioned information can be effectively exploited towards

the application of potentially more efficient SA algorithms in the solution of the op-

timization problems that were formulated in this work. As a more specific example

of this possibility, we mention the actor-critic algorithm that is presented in [51]; this

algorithm is considered as a pretty competitive algorithm within the broader class of

SA algorithms in terms of its robustness and expediency of convergence to an optimal

solution, but this potential is contingent upon the availability of a pertinent (approxi-

mating) representation of the underlying value function by a set of “feature” functions

that complements a functional base that is employed by the original definition of the
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algorithm.

Another interesting direction for solving the performance optimization problem

of stochastic networks is through the continuous approximation of the discrete event

system with a fluid model. In this set of methods, the scheduling decisions are made

based on the structure of the optimal flows that are derived for the fluid model.

Examples of such kind of approaches can be found in [42, 14]. With the integration

of the optimal control theory, there will be a rich set of well-developed approaches

for the optimization problem. In particular, the fluid-based scheduling approach of

[14], that integrates elements from the theory of robust optimization, seems to be

quite competitive, but it needs further adaptation to the RAS scheduling problems

considered in this document.

From a more practical standpoint, the current work can be extended by applying

the derived methods to RAS classes more general than the capacitated re-entrant lines

that were used in this research. Two particular extensions along this line concern the

application of the derived methodology on (i) RAS with more than one process type,

and (ii) RAS with non-exponential processing times. As discussed in the previous

parts of this document, both of these elements can be addressed by the proposed

methods quite straightforwardly, but some further experimentation along these lines

will strengthen the underlying implementational details, help understand better the

nature of optimality in the considered policy spaces, and further demonstrate the

practical potential of the methodology.

Also, in the case of performance objectives like the throughput maximization of

RAS with many process types, it will be necessary to introduce additional “fairness”

constraints that will contribute to the well-posedness of the corresponding optimiza-

tion problem. These “fairness” constraints are essentially additional behavioral con-

straints that must be integrated in the structure of the RAS-modeling GSPN and be

accounted for in the design of the corresponding deadlock avoidance policies.
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Finally, the results developed in this work, and their further expansion along the

lines that are suggested above, must be further assessed for their scalability potential,

and be tested and “showcased” on some pertinent case studies drawn from the relevant

industrial practice.
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APPENDIX A

A MARKOV DECISION PROCESS FOR THE

CONSIDERED PERFORMANCE OPTIMIZATION

PROBLEM

At least in principle, the theory of Markov decision processes (MDPs) can also be used

for the RAS performance optimization problem considered in this document. More

specifically, the RAS performance optimization problem can be first modeled as a

GSPN performance optimization problem using the method in Section 3.1, including

the application of, both, a correct DAP through the one-step look-ahead scheme

and the constraint that imposes the absence of deliberate idleness.1 Then, the state

space of the GSPN can be enumerated, for both the vanishing and tangible markings.

Based on the enumerated state space, a discrete-time communicating MDP will be

built, with the objective of maximizing the steady-state average reward. Classical

solution methods for this problem can be found in [82], as long as the state space is

tractable.2 This appendix will focus on the construction of the communicating MDP.

The classical discrete-time MDP dynamics can be summarized in the following

steps:

1. At period t, the system state is st, and there is a set of available actions A(st).

2. A decision is made to select an action at ∈ A(st) with probability p(at|st).

1Similar to the case of the solution method through the MP formulation of Section 3.3, the
deliberate idleness is prohibited by the GSPN semantics, but the sub-optimality that might be
caused by this prohibition can be addressed with the method in Section 3.5.

2According to Section 9.5 of [82], an average reward MDP is communicating if the underlying
state space of the AR-MDP is strongly connected, i.e., there exist policies under which each state is
accessible from each other state. Such a property makes the classical unichain methods applicable
and can give optimal solutions.
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3. The system evolves to period t + 1 and the system state becomes st+1 with

probability p(st+1|st, at). Meanwhile, an immediate reward of r(st, at, st+1) is

realized.

The (infinite-horizon) average reward problem defines the objective as the limit

(if it exists)

lim
T→∞

1

T

T−1∑
t=0

r(st, at, st+1)

The temporary “state” that results from the second step above, i.e., the state

where the action at has been selected at the system state st, can be called a post-

decision state [81]. In contrast, the original system states are called pre-decision

states.

The process dynamics at a post-decision state are not impacted by any policy

information. This characteristic is the same as in the case of the tangible markings

of the RAS-modeling GSPNs. Therefore, in the considered MDP, all these tangible

markings can be perceived as post-decision states. And the uniformization at the end

of Section 3.3 can be applied on the tangible markings, to get the corresponding tran-

sition probabilities. In the considered optimization problem, the immediate rewards

are defined by the uniformized reward rates of the tangible markings, and there is no

immediate reward related to pre-decision states.

Next, we will specify the pre-decision states, the set of available actions for each

pre-decision state, and the transition probabilities from post-decision states to pre-

decision states. One natural consideration for specifying the pre-decision states are

the vanishing markings. But this natural consideration is not the best way and

will not be adopted in this document. Instead, the pre-decision states are defined

as the markings that can be reached from post-decision states through a Markovian

transition.3 This Markovian transition can be either the firing of a timed transition in

3The term “Markovian transition” refers to a transition in a Markov chain. This concept is
different from a “transition” in the Petri-net related concepts.
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the GSPN, or a self-loop transition which is introduced by the uniformization process

and leaves the discretized Markov chain at the same state. Furthermore, the pre-

decision states are distinguished from each other only by their Π2-untimed tangible

reaches.4 In other words, if two markings have the same Π2-untimed tangible reach,

then they are considered as the same pre-decision state. We must also notice at this

point that the thus specified set of pre-decision states contains both vanishing and

tangible markings. In particular, the treatment of tangible markings as pre-decision

states is further necessitated by the dynamics that are generated by the self-loop

transitions that are introduced by the uniformization process.

As a result of the previous definition of the pre-decision states, the sets of available

actions at the various pre-decision states are exactly the Π2-untimed tangible reaches,

from which a tangible marking can be selected as the action taken, and thus, the next

post-decision state can be determined. On the other hand, the conditional transition

probabilities for any chosen action can be computed from the unformized transitional

dynamics of the corresponding GSPN tangible marking. In the revisit of Example

1 below, we provide a detailed illustration of the construction of (i) the pre-decision

states and (ii) the transition probabilities from post-decision states to pre-decision

states.

Finally, due to the application of the relevant DAP, there exist policies establishing

the accessibility of each pre-decision state from any other pre-decision state. Thus,

the MDP is communicating.

Example 1 revisited In this example, we will show in detail the procedures for

building all the necessary components that can define a complete communicating

MDP for the performance optimization problem considered in this work, from the

4The application of constraint (6) of the policy space Π3 is not necessary, since the communicating
property is sufficient to define an effective exploration mechanism like those used in any MDP
method, and thus, no randomization factor δ is needed.
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Π2-conditional STD of the corresponding GSPN. All the reachability-related concepts

to be mentioned next are conditional with respect to the deadlock-free and non-

deliberately-idling policy space Π2.

Consider the Π2-conditional STD presented in Figure A.1, which has already

been introduced at the end of Section 3.3. The 19 tangible markings depicted in the

double-circled nodes correspond to the post-decision states for the MDP depicted in

the STD of Figure A.2. For instance, the tangible marking M7 in the highlighted

region in Figure A.1 corresponds to the post-decision state s7 in Figure A.2. In the

sequel, each marking in Figure A.1 will be denoted by Mi, where i is the number

on the node corresponding to the marking. Also, similar notations apply in Figure

A.2, with notation sj denoting any post-decision or pre-decision state corresponding

to the node labeled with j.

As already mentioned, while the immediate rewards for the pre-decision states

are zero, the immediate rewards for the post-decision states are exactly the reward

rates of their corresponding tangible markings divided by the uniformization rate ru

that was computed for this example RAS in Section 3.3. Particularly, the immediate

rewards of the 8 post-decision states that are depicted in boldfaced lines in Figure

A.2, are all equal to µ3/ru, since at those tangible markings, the timed transition t7

is enabled and the corresponding reward rate is equal to µ3. The immediate rewards

of all other post-decision states are zero.

Next, we will construct the pre-decision states. As already explained, the pre-

decision states are the states resulting either from the firing of a timed transition

in the GSPN or from a uniformization induced self-loop transition. Obviously, the

second type of pre-decision states contains all the tangible markings. In this example,

each of the 19 post-decision states can be duplicated as a pre-decision state with the

corresponding post-decision state as the only available action, and the transition

probability from the post-decision state is exactly the self-loop transition probability.
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Figure A.1: The Π2-conditional state transition diagram of the underlying semi-
Markov process for Example 1 with a highlighted region on the local STD related to
the construction of the example pre-decision state s2,6,7′
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Figure A.2: The Π2-conditional state transition diagram of the Markov decision
process for Example 1
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For instance, the tangible marking M7 in the highlighted region of Figure A.1 is

modeled as a pre-decision state called s7′ in the MDP, with its set of available actions

A(s7′) = {s7}. Also, the corresponding transition probability from the post-decision

state 7 is (1 − µ1+µ2

ru
), where µ1 and µ2 are respectively the firing rates of timed

transitions t1 and t4 that constitute the set Et(M7).

The other type of pre-decision states collects all the markings (either vanishing

or tangible) that result immediately from the firing of timed transitions. The sets of

available actions for these pre-decision states are the corresponding untimed tangible

reaches, and the corresponding transition probabilities from post-decision states are

determined by the rates of the corresponding timed transitions and the uniformization

rate. For instance, the vanishing marking M2 in the highlighted region of Figure

A.1 is the result of firing the timed transition t1 at the tangible marking M1 in

Figure A.1 and it is modeled as the pre-decision state s2 in the MDP. The transition

probability from post-decision state s1 to pre-decision state s2 is µ1

ru
, characterized by

the firing rate µ1 of transition t2 and the uniformization rate ru. The Π2-untimed

tangible reach URΠ2
T (M2) = {M7}, which implies that the set of available actions

A(s2) = {s7}, and thus, is equal to A(s7′). Similar concepts apply to vanishing

marking M6 in the highlighted region of Figure A.1. It results from the firing of

timed transition t7 at tangible marking M15, so the relevant transition probability

is r(t7)
ru

= µ3

ru
, and M6 can be modeled as the pre-decision state s6. Furthermore,

A(s6) = {s7} = A(s7′) = A(s2).

As we have discussed before, in the constructed MDP, all the pre-decision states

with the same set of available actions (or the untimed tangible reach) will be rep-

resented by a single pre-decision state. Therefore, the “single-marking” pre-decision

states obtained from the above procedures can be aggregated according to their sets

of available actions. For instance, the pre-decision states s7′ , s2 and s6 defined in

the previous paragraphs have the same singleton set of available actions, and thus,
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they are aggregated into one state s2,6,7′ , as depicted in Figure A.2. The transition

probabilities from the post-decision states to the pre-decision state s2,6,7′ should also

be aggregated. As a result, the transition probabilities from the post-decision states

s1, s7 and s15 to s2,6,7′ are µ1

ru
, (1 − µ1+µ2

ru
) and µ3

ru
, respectively, while the transition

probabilities from other post-decision states to s2,6,7′ are zero.

In this example, after the application of the aforementioned aggregation process to

all the single-marking pre-decision states, there will be 24 pre-decision states. These

pre-decision states are depicted by single-circle nodes in Figure A.2. Among them,

there are 5 pre-decision states with non-singleton sets of available actions. These

states are depicted in gray, and they can be perceived as the “decision points”. Each

of these decision points has two options, or “one degree of freedom”. Therefore, the

total degrees of freedom for this example CRL scheduling problem is 5.

Remark The total degrees of freedom five is equal to the number of decision vari-

ables for the CRL Configuration 1 under the refinement Algorithm 2, that is reported

in Table 4.2. This implies that the refinement implemented by Algorithm 2 is opti-

mal, in the sense that it keeps only the 5 necessary decision variables corresponding

to the minimum degrees of freedom specified by the MDP model.
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APPENDIX B

SUPPLEMENTARY DATA

This appendix provides some supplementary data for some examples and numerical

experiments that are discussed in the main part of this document.

B.1 Additional data for Example 1

Table B.1 lists the token distributions of all the Π2-reachable markings of the GSPN

in Example 1. Note that only the token distributions in process places are listed since

they can uniquely define the corresponding markings.

Table B.1: Markings enumerated from the GSPN in Example 1
M p0p1 p2p3p4 p5p6 M p0p1 p2p3p4 p5p6 M p0p1 p2p3p4 p5p6

0 0 0 0 0 0 0 0 22 1 0 0 1 0 1 0 44 0 1 0 0 2 0 0
1 1 0 0 0 0 0 0 23 0 1 0 1 0 1 0 45 0 1 0 1 1 0 1
2 0 1 0 0 0 0 0 24 1 0 0 0 1 1 0 46 0 1 0 1 1 0 0
3 1 1 0 0 0 0 0 25 0 1 0 0 1 1 0 47 0 0 1 1 0 1 0
4 0 0 1 0 0 0 0 26 0 0 1 0 1 1 0 48 0 1 0 1 0 0 1
5 1 0 1 0 0 0 0 27 0 1 0 0 1 0 1 49 0 0 1 1 0 0 1
6 0 0 0 1 0 0 0 28 0 0 1 0 1 0 1 50 0 0 1 1 0 0 0
7 1 0 0 1 0 0 0 29 0 0 0 1 1 0 1 51 1 0 1 1 0 0 0
8 0 1 0 1 0 0 0 30 0 0 1 0 0 1 1 52 0 1 1 1 0 0 0
9 1 0 0 0 1 0 0 31 0 0 0 1 0 1 1 53 1 0 1 0 1 0 0
10 1 0 0 0 0 1 0 32 0 0 0 0 1 1 1 54 1 0 0 1 1 0 0
11 0 1 0 0 0 1 0 33 0 0 0 0 1 1 0 55 0 1 1 0 1 0 0
12 0 0 1 0 0 1 0 34 0 0 0 0 0 2 0 56 0 1 1 0 0 1 0
13 0 1 0 0 0 0 1 35 1 0 1 0 1 1 0 57 0 0 2 0 0 1 0
14 0 0 1 0 0 0 1 36 0 0 0 1 1 1 0 58 0 1 1 0 0 0 1
15 0 0 0 1 0 0 1 37 0 0 1 0 0 2 0 59 0 0 2 0 0 0 1
16 0 0 0 0 1 0 1 38 0 0 0 1 0 2 0 60 1 0 2 0 0 1 0
17 0 0 0 0 0 1 1 39 1 0 0 1 1 1 0 61 1 0 1 1 0 1 0
18 0 0 0 0 0 1 0 40 0 1 0 1 1 1 0 62 0 1 1 1 0 1 0
19 0 0 0 0 0 0 1 41 1 0 0 0 2 1 0 63 0 1 1 1 0 0 1
20 1 0 1 0 0 1 0 42 0 1 0 0 2 1 0 64 0 1 1 0 1 0 1
21 0 0 0 1 0 1 0 43 0 1 0 0 2 0 1 65 1 1 0 1 0 0 0
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B.2 Detailed sample statistics for the experiment in Sec-
tion 5.3.2

The tables in this section report the sample averages and the sample standard devi-

ations of the estimates for Nnew in the experiment of Section 5.3.2. The three tables

correspond respectively to the results obtained from each of the three sample-size con-

trol methods. In each table, the sample averages (µ̂(Nnew)) and the sample standard

deviations (σ̂(Nnew)) are organized into two groups, one group for each policy under

test. For each CRL configuration, the first policy, Point 1, is the totally random

policy that is adopted as the initial solution of the baseline experiment in Section

5.3.1. The second policy, Point 2, is the near-optimal solution obtained through the

baseline algorithm in that experiment.

Table B.2: The sample averages and standard deviations for Nnew estimates under
the Shapiro-Mello control method

Conf.
Point 1 (totally random policy) Point 2 (near-optimal policy)
µ̂(Nnew) σ̂(Nnew) µ̂(Nnew) σ̂(Nnew)

1 16.90 13.13 530.57 1663.72
2 5.37 3.21 266.32 2239.62
3 367.31 1126.81 481.15 2063.96
4 247.56 497.51 1280.07 4797.46
5 2599.37 14387.60 489.29 934.16
6 8.88 16.32 771995.47 7684909.16
7 2428.66 3861.91 822.58 4031.88
8 271.54 730.25 630.76 3648.36
9 442.58 1319.30 465.48 1419.58
10 102.82 48.79 184.85 122.78
11 55.49 59.65 202.20 718.84
12 60.62 65.79 166.55 168.52
13 33.71 25.39 243.90 231.56
14 27.34 19.56 139.89 169.91
15 116.41 134.59 115.46 75.18
16 82.80 61.83 146.36 98.48
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Table B.3: The sample averages and standard deviations for Nnew estimates under
the control method that restricts the volume of the confidence region

Conf.
Point 1 (totally random policy) Point 2 (near-optimal policy)
µ̂(Nnew) σ̂(Nnew) µ̂(Nnew) σ̂(Nnew)

1 26.88 4.06 114.55 21.63
2 9.56 1.79 104.19 23.55
3 102.37 17.90 286.91 50.32
4 45.72 6.64 55.54 9.08
5 110.51 20.40 49.15 7.76
6 19.90 4.03 122.83 30.56
7 105.05 24.82 282.93 50.89
8 137.54 28.64 394.34 81.69
9 219.27 61.26 177.78 45.90
10 11.95 1.32 22.06 2.15
11 23.06 2.55 28.84 3.12
12 25.06 3.12 54.47 5.70
13 14.33 1.42 35.84 3.69
14 21.25 2.87 123.03 15.76
15 16.68 1.90 21.90 2.46
16 7.72 0.78 12.89 1.16

Table B.4: The sample averages and standard deviations for Nnew estimates under
the control method that restricts the maximum length of the confidence intervals

Conf.
Point 1 (totally random policy) Point 2 (near-optimal policy)
µ̂(Nnew) σ̂(Nnew) µ̂(Nnew) σ̂(Nnew)

1 44.16 8.39 147.12 35.58
2 10.92 2.19 105.80 23.55
3 188.76 48.40 389.48 94.03
4 68.44 14.28 101.56 24.14
5 226.12 55.40 115.08 28.77
6 21.40 3.99 124.40 30.61
7 136.64 34.78 431.24 109.03
8 195.56 59.98 529.84 164.04
9 344.84 130.60 349.80 121.05
10 54.28 15.37 292.12 72.01
11 46.84 7.51 65.16 13.43
12 54.44 10.86 172.72 30.01
13 30.32 4.73 125.24 23.08
14 36.84 6.26 315.68 68.55
15 36.72 7.33 74.84 17.24
16 17.32 2.55 58.72 10.66
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APPENDIX C

AN EXAMPLE FOR THE VIOLATION OF THE

Π2-IRREDUCIBILITY OF THE REFINED TRANSITION

SETS RETURNED BY ALGORITHM 3

This appendix provides an example demonstrating that the refinement attained by

Proposition 8 fails to output a Π2-irreducible subset of enabled untimed transitions

with respect to the underlying marking.

The CRL considered in the example has m = 3 workstations and n = 5 process-

ing stages. The processing route through the line workstations is WS1 → WS2 →

WS3 → WS1 → WS2, and the workstation buffer sizes are (B1, B2, B3) = (3, 4, 3)

(c.f. the CRL configuration #11 of Table 4.1). In the dynamics of the GSPN modeling

this CRL, the maximally permissive DAP is applied according to the one-step look-

ahead method. Also, in the following discussion, the GSPN marking is represented

by the sub-marking of the process places p0− p12. More specifically, places p0 and p1

model respectively the processing and the blocking that take place at CRL stage 1;

places p2 − p10 model the waiting, processing and blocking at the CRL stages 2− 4;

and places p11 and p12 model respectively the waiting and processing phases at the

final CRL stage 5. In the adopted representation for the aforementioned sub-marking,

the place groups corresponding to distinct CRL stages are indicated by the insertion

of separating spaces among them.

Next, we consider the application of Proposition 8 on the vanishing marking

MV 1 ≡ (01 201 003 011 00). From the token distribution of this marking and the

above description of the structure of the considered CRL, it can be inferred that
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t2 t11

t8 t8

t8

t5 t5

t11 t2

t3 t12

t6
t6

01 201 003 011 00

00 301 003 011 00

00 301 002 111 00

00 300 102 111 00

00 300 102 110 10

00 300 101 210 10

00 210 101 210 10

00 210 011 210 10 00 300 011 210 01

00 300 101 210 01

01 201 003 010 10

01 201 002 110 10

01 200 102 110 10

Figure C.1: The application of Propositions 7 and 8 on the untimed reach of the
marking MV 1 in the example that is considered in this appendix.
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EΠ2
u (MV 1) = {t2, t11}, and these two transitions correspond to the respective ad-

vancement to the single free buffer slot of workstation 2 of the blocked jobs in the

first and the fourth processing stage (and therefore, these two transitions are in con-

flict in the considered marking MV 1). Also, transition t0 is not in the set EΠ2
u (MV 1).

Hence, according to Proposition 8, E Π̂2
u (MV 1) = {t2, t11}. Let tr(MV 1, t2) = MV 2 and

tr(MV 1, t11) = MV 3. It can be checked that both of these markings are vanishing,

and Figure C.1 depicts the Π̂2-untimed vanishing and tangible reaches of these two

last markings under the application of Propositions 7 and 8. From the figure it can

be seen that URΠ̂2
T (MV 2) = URΠ̂2

T (MV 3), and thus, one of the two transitions t2 and

t11 can be dropped from the set E Π̂2
u (MV 1) without compromising the Π̂2-untimed

tangible reach of MV 1.

This example reveals the interesting fact that even if two Type I transitions are

in conflict in more conventional terms – i.e., the tokens in their shared input places

are not enough to fire both of them – they might lead to the same behavior for the

underlying CTMC when assessed with respect to the condition of Proposition 4. This

apparent confusion might be perceived as a limitation of the discriminatory power of

the refining logic that is defined in Proposition 8.
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APPENDIX D

AN IMPLEMENTATION OF THE PROJECTION

OPERATOR EMPLOYED IN THE ALGORITHMS OF

CHAPTER 5

In the SA algorithms of Chapter 5, the vector ζ̄n + γnYn may be not in the feasible

region H that is defined by Equations (34)–(35). In this case, the algorithm should

find a point ζ̄ ′ ∈ H such that the Euclidean distance between ζ̄ ′ and ζ̄ is minimized.

In this appendix we address the problem of computing the vector ζ̄ ′.

We start by noticing that the constraints of Equations (34)–(35) can be decom-

posed in constraint subsets where each subset defines the corresponding simplex for a

single random switch. Hence, the projection operation that was described in the previ-

ous paragraph can be performed in a decomposing manner, by considering separately

the sub-vector of ζ̄ that corresponds to each random switch and the corresponding

simplex. And this is the approach that is discussed next.

Hence, consider a random switch R with n+ 1 options, and let the n components

of the vector ζ̄ that correspond to this random switch be collected to another vector

x ∈ Rn. Furthermore, suppose that the current pricing of x is not in the simplex

that is associated with this random switch, and thus, we want to find another vector

y∗ ∈ Rn, which will replace x in ζ̄. The vector y∗ should be an optimal solution to

the following constrained nonlinear program:
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minimize
n∑
i=1

(x[i]− y[i])2 (100)

subject to y[i] ≥ δ i = 1, . . . , n (101)

n∑
i=1

y[i] ≤ 1− δ (102)

In the problem formulation (100)–(102), x and δ are the given parameters, and y

is the vector of decision variables.1

If x itself satisfies all the constraints, then it belongs to the corresponding simplex

and the above formulation has the unique optimal solution y∗ = x. Otherwise, we

have the following lemma.

Lemma 7 If x is not in the feasible region of the optimization problem defined in

(100)–(102), then the violated constraints for x are binding at any optimal solution

y∗.

Proof: For the sake of contradiction, first suppose that for an index î, x[̂i] < δ, but

at an optimal solution y∗, y∗ [̂i] > δ. Hence, another solution y′ can be constructed:

all the components of y′ are equal to y∗, except that y′ [̂i] = δ. Obviously y′ is a

feasible solution but
∑n

i=1(x[i] − y′[i])2 <
∑n

i=1(x[i] − y∗[i])2. This contradicts with

the optimality of y∗.

Another possibility is that
∑n

i=1 x[i] > 1−δ, but at an optimal solution,
∑n

i=1 y
∗[i] <

1− δ. So, there exists an index î such that y∗ [̂i] < x[̂i]. Pick a small positive scalar ε

such that y∗ [̂i]+ε ≤ x[̂i] and
∑n

i=1 y
∗[i]+ε ≤ 1−δ. As a result, another solution y′ can

be constructed: all the components of y′ are equal to y∗, except that y′ [̂i] = y∗ [̂i] + ε.

Obviously y′ is a feasible solution but
∑n

i=1(x[i]− y′[i])2 <
∑n

i=1(x[i]− y∗[i])2. This

contradicts with the optimality of y∗. 2

1For simplicity, the parameter δ employed in the formulation (100)–(102) is not exactly the
same as the randomization factor defined in the constraints (15)–(16). However, we assume that
0 < δ < 1

n+1 , and therefore, the feasible region defined by (101) and (102) is non-empty.
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According to Lemma 7, for all i such that x[i] < δ, y∗[i] = δ. Thus, the original

problem formulation can be modified to:

minimize
∑
i:x[i]≥δ

(x[i]− y[i])2

subject to y[i] ≥ δ ∀i, x[i] ≥ δ

y[i] = δ ∀i, x[i] < δ∑
i:xi≥δ

y[i] ≤ 1− δ(1 + |{i : x[i] < δ}|)

If the vector x satisfies the last constraint, i.e.,
∑

i:xi≥δ x[i] ≤ 1− δ(1 + |{i : x[i] <

δ}|), then the optimal solution y∗ is

y∗[i] =


δ if x[i] < δ

x[i] otherwise

Otherwise, the original optimization problem of Equations (100)–(102) can be

reduced to a restricted simpler problem that solves for the values of y∗[i] where x[i] ≥

δ. And from Lemma 7, in this new problem, the constraint (102) is binding. Without

loss of generality, let us assume that the components of x are in descending order,

i.e., x[1] ≥ x[2] ≥ . . . ≥ x[n].2 Under this assumption, there exists a unique integer

m, such that for any i > m, x[i] < δ, and for any i ≤ m, x[i] ≥ δ. Then, taking into

consideration all the above remarks, the original optimization problem is reduced to:

minimize
m∑
i=1

(x[i]− y[i])2 (103)

subject to y[i] ≥ δ (104)

m∑
i=1

y[i] = 1− (n−m+ 1)δ (105)

The objective function (103) is a strict convex function, and the feasible region

is a polytope. Therefore, there exists a unique optimal solution [12]. Furthermore,

2In the case that the components of x are in some other arbitrary order, the problem can be
solved by re-arranging the components of the optimal solution y∗.
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this optimal solution must satisfy the corresponding Karush-Kuhn-Tucker (KKT)

condition [12]. This condition stipulates that, for any optimal solution ŷ for this

problem, there exist λ ∈ Rm
0+, µ ∈ R, such that

ŷ[i] = x[i] +
λ[i]

2
− µ

2
, i = 1, . . . ,m (106)

λ[i] = 0 or ŷ[i] = δ, i = 1, . . . ,m (107)

m∑
i=1

ŷ[i] = 1− (n−m+ 1)δ (108)

Equation (107) implies the existence of a partition (I1, I2) for the index set {1, . . . ,m}

where λ[i] = 0, ∀i ∈ I1, and ŷ[i] = δ, ∀i ∈ I2. Combining this partition with Equation

(106), we have:

m∑
i=1

ŷ[i] =
∑
i∈I1

ŷ[i] +
∑
i∈I2

ŷ[i]

=
∑
i∈I1

(x[i]− µ

2
) + |I2|δ

=
∑
i∈I1

x[i]− µ|I1|
2

+ |I2|δ (109)

Matching the right-hand-sides of Equations (109) and (108), we have:

∑
i∈I1

x[i]− µ|I1|
2

+ |I2|δ = 1− (n−m+ 1)δ

Equivalently,

−µ
2

=
1

|I1|
(−
∑
i∈I1

x[i] + 1− (n−m+ |I2|+ 1)δ)

=
1

|I1|
(−
∑
i∈I1

x[i] + (1− (n− |I1|+ 1)δ))

= − 1

|I1|
∑
i∈I1

x[i] +
1

|I1|
(1− (n+ 1)δ) + δ
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Finally, the solution of ŷ is

y∗[i] =


x[i]− 1

|I1|
∑

j∈I1 x[j] + 1
|I1|(1− (n+ 1)δ) + δ , if i ∈ I1

δ , if i ∈ I2

(110)

To effectively construct the partition (I1, I2), we work with Equation (110) and

the constraints y∗[i] ≥ δ, i ∈ I1, and λ[i] ≥ 0, i ∈ I2. Therefore, for any i ∈ I1, we

stipulate that

x[i]− 1

|I1|
∑
j∈I1

x[j] +
1

|I1|
(1− (n+ 1)δ) + δ ≥ δ

A more useful restatement of the above inequality is as follows:

1

|I1|
∑
j∈I1

x[j]− 1

|I1|
(1− (n+ 1)δ)) ≤ min

i∈I1
x[i] (111)

On the other hand, for any i ∈ I2:

δ = y∗[i]

= x[i] +
λ[i]

2
− µ

2

= x[i] +
λ[i]

2
− 1

|I1|
∑
j∈I1

x[j] +
1

|I1|
(1− (n+ 1)δ) + δ

Hence, for any i ∈ I2

λ[i]

2
= −x[i] +

1

|I1|
∑
j∈I1

x[j]− 1

|I1|
(1− (n+ 1)δ) ≥ 0

or equivalently

1

|I1|
∑
j∈I1

x[j]− 1

|I1|
(1− (n+ 1)δ) ≥ max

i∈I2
x[i] (112)

Equations (111) and (112), together with the assumed decreasing ordering of the

components of the vector x, imply that for any feasible partition (I1, I2) there must

exist an index i∗ ∈ {1, . . . ,m} such that any i ≤ i∗ is put into I1 and the remaining

indices are put into I2. It is possible that I2 = ∅, but I1 is always non-empty since, for
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any meaningful value of δ, Equation (111) will always be satisfied by picking I1 = {1}.

For a given i∗, the corresponding vector y∗ is given by:

y∗[i] =


x[i]− 1

i∗

∑i∗

j=1 x[j] + 1
i∗

(1− (n+ 1)δ) + δ , if i ≤ i∗

δ , otherwise

(113)

A simple algorithm to identify the index i∗ is by enumerating the integers from

1 to m, and stopping at the value where the corresponding partition (I1, I2) satisfies

both Equations (111) and (112). The existence of such a feasible i∗ is guaranteed

by the existence of a solution to the KKT conditions. The choice of i∗ may not be

unique, but the solution y∗ that is specified by Equation (113) is unique.

Proposition 10 The solution y∗ for the formulation (103)–(105) that is specified by

Equation (113) is unique.

Proof: The developments of this appendix imply that every solution to the KKT

conditions is given by Equation (113) for some i∗ inducing a partition (I1, I2) that

satisfies the conditions of Equations (111) and (112). Hence, suppose that any two

indices i1, i2 (i1 + 1 ≤ i2) specify two feasible partitions with respect to Equations

(111) and (112). Then, it suffices to prove that the corresponding solutions y∗1 and

y∗2, that are defined by Equation (113), are the same.

Since i1 and i2 specify feasible partitions, then:

1

i1

i1∑
j=1

x[j]− x[i1] ≤ 1

i1
(1− (n+ 1)δ)

1

i1

i1∑
j=1

x[j]− x[i1 + 1] ≥ 1

i1
(1− (n+ 1)δ)

and

1

i2

i2∑
j=1

x[j]− x[i2] ≤ 1

i2
(1− (n+ 1)δ)

1

i2

i2∑
j=1

x[j]− x[i2 + 1] ≥ 1

i2
(1− (n+ 1)δ)
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Equivalently,

i1∑
j=1

(x[j]− x[i1]) ≤ 1− (n+ 1)δ

i1∑
j=1

(x[j]− x[i1 + 1]) ≥ 1− (n+ 1)δ

i2∑
j=1

(x[j]− x[i2]) ≤ 1− (n+ 1)δ

i2∑
j=1

(x[j]− x[i2 + 1]) ≥ 1− (n+ 1)δ

(114)

Since the components of x are in descending order, the left-hand-sides of the

inequality system (114) can be re-arranged as follows:

i1∑
j=1

(x[j]− x[i1]) ≤
i1∑
j=1

(x[j]− x[i1 + 1])

≤
i1+1∑
j=1

(x[j]− x[i1 + 1])

≤
i1+1∑
j=1

(x[j]− x[i1 + 2])

≤ · · ·

≤
i2∑
j=1

(x[j]− x[i2])

≤
i2∑
j=1

(x[j]− x[i2 + 1])

Combining this last set of inequalities with the inequalities provided in (114), we

get that
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1− (n+ 1)δ =

i1∑
j=1

(x[j]− x[i1 + 1])

=

i1+1∑
j=1

(x[j]− x[i1 + 1])

=

i1+1∑
j=1

(x[j]− x[i1 + 2])

= . . .

=

i2∑
j=1

(x[j]− x[i2])

(115)

The result follows from the combination of Equation (115) with Equation (113)

that specifies the solutions y∗1 and y∗2 for the corresponding partitions that are defined

by i1 and i2. We leave the relevant verification to the reader. 2

The complete projection algorithm that is defined from the above developments

is formally stated as Algorithm 7.
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Algorithm 7 Projection of the variable vector defining a single random switch of the
formulation (33)–(35) on the corresponding simplex

Input: GSPNS, Π, M , ζ̄, idx(·), the randomizing parameter δ.
Output: The projected value of ζ̄.

1: sum← 0; δ ← δ/|EΠ
u (M)|; S ← {i : ∃t ∈ EΠ

u (M) s.t. idx(M, t) = i}.
2: for i ∈ S do
3: if ζ̄[i] < δ then
4: ζ̄[i]← δ.
5: end if
6: sum← sum+ ζ̄[i].
7: end for
8: if 1− sum < δ then
9: y ← vector of components in ζ̄[S] in descending order; define mapping j =

key(i) such that y[i] stands for ζ̄[j] for some j ∈ S.
10: for i = 1→ |S| do
11: µ← 1

i

∑i
k=1 y[k].

12: resid← (1− |EΠ
u (M)|δ)/i.

13: if µ− y[i] ≤ resid ∧ µ− y[i+ 1] ≥ resid then
14: Exit the for-loop.
15: end if
16: end for
17: for k = 1→ i do
18: ζ̄[key(k)]← y[k]− µ+ resid+ δ.
19: end for
20: for k = i+ 1→ |S| do
21: ζ̄[key(k)]← δ.
22: end for
23: end if
24: return ζ̄.
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