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Abstract

Improving the performance of most engineering systems requires the ability to model the system’s behavior
with improved accuracy. The evolution of the mechanical arm from teleoperator and crane to present day
industrial and spéqe robots and large space manipulators is no exception. Initial simple kinematic and
dynamic models are no longer adequatce to improve performance in the most critical applications. Both the
mechanical system and control system require improved models for design simulation. Proposéd new control
algorithms require dynamic models for control calculation. Planning and programming activities as well as

man-in-the-loop simulation also require accurate models of the arms.

Accuracy is usually acquired.at some cost. The application of mechanical arms to cconomically sensitive
endeavors in industry and space also gives incentive to improve the cfficiency of the formulation and
simulation of dynamic models. Control algorithms and man-in-the-loop simulation require."real time"”
calcufation of dyriamic behavior. Formulation of the dynamics in an easy to understand conceptual approach

is also important if maximum use of the results is to be obtained.

The nonlinear equations of motion for flexible manipulator arms consisting of rotary joints connecting two
flexible links aré developed. Kinematics of both the rotary joint motion and the link deformation are
described by 4x4 transformation matrices. The link deflection is assumed small so that the link
transformation can be composed of summations of assumed link shapes. The resulting equations are
presented as scalar and 4x4 matrix operations ready for programming. The efficiency of this formulation is

compared to rigid link cases reported in the literature.

Keywords: Robots; Distributed parameter systems; Models; Manipulation; Vibration control; Flexible

mechanisms; Mechanical arms.



1. Sketch of Prior Work :

Much work has been done to formulate the dynamic equations of motion for mechanical arms with
rigid links. Work on the "inverse dynamic formulation” used in control can be found in references [22], [27],
[29], [2] and in their bibliographies. References [30], [20], [33], [32], {12], and their bibliographies represent
work on the dynamic formulation for simulating rigid link arms. 'The cfficiency of these formulations and
alternatives to their real time calculation is discussed in [26], [1] and the works referenced therein.

The limitation of these works is that rigid links are assumed. With this assumption the techniques
become at some point self defeating, if their purpose is to improve performance. Maintaining rigidity of the
links inhibits improved performance but is necessary if the rigid link assumption is to be accurate.

Consideration of flexibility and control of the links in arm-type devices was reported in 1972 by
Mirro [24].  This early work considered both the modeling and control of a single link device. Book [7]
considered the lincar dynamics of spatial flexible arms represented as lumped mass and spring components
via 4x4 transformation matrices. 'This was refined and later reported in [9]. Book and Whitney [3], [4] later
considered linear distributed dynamics of planar arms via transfer matrices and the limitations flexibility
imposed on control system performance [8]. Maizza and Whitney [23], [4] used a planar nonlincar model with
modal representation of the flexibility and considered modal control as a technique for overcoming the
limitations of the flexibility. Whitney, Book, and Lynch [34], [4] considered the design implications of
flexibility. Distributed frequency domain analysis of nonplanar arms using transfer matrix technigues [5], [6]
has been used by Book, ctal to verify the accuracy of truncated modal models of the nonlincar spatial
dynamics of flexible manipulators (the Remote Manipulator of the Space Shuttle). The nonlincar modal
model appearing here was first presented by the author in 1982[10]. A more classical approach to
manipulator dynamics, both rigid [18] and flexible [19], has been undertaken by Huston and his coworkers.

The work in flexible spacecraft has spawned a line of rescarch pertaining to the interaction of articulated
structures. 'This work has great relevance to the manipulator modeling problem. Entrics into this literature
are provided by the works of Likins [21] and Hughes [25]. This activity produced a spatial, nonlincar, flexible
manipulator model reported by Ho etal. [14] and corresponding computer code for simulation. The
simulation required great amounts of computer time and was unsuitable for even off line simulation. Further
work for the purposes of simulating the Spacc Shuttle Remote Manipulator was performed by Hughes. His
linearized model is reported in [16] and a more general model is reported in [17]. The Hughes model ignores
the interaction between structural deformation and angular rate as might be appropriate for the Space Shuttle
arm. 'This work and associated work at SPAR Acrospace, Ltd. and the Charles Stark Draper [Laboratory, Inc.
probably represent the most intensive work on the modeling, simulation and control of flexible arms.
Unfortunately, little of this work has been reported in the open literature. Recent cxamination of
experimental results from the operation of the Shuttle arm in space has confirmed the validity of these
models. Morc recently, Singh and Likins [28] have reported an efficient flexible arm simulation program.

Yet another branch of research that has found its way to the flexible manipulator dynamics problem is
the study of flexible mechanisms. Dubowsky and Gardner [13] and Winfrey [35] provide the reader with a
bibliography on this work. Sunada and Dubowsky [31] have developed modeling techniques applicable to
both spatial closed loop mechanisms and open loop chains such as manipulator arms. “T'his work assumes a
known nominal motion over time about which the flexible arm equations are lincarized. This falls short of a
true simulation of the flexible, nonlincar cquations, but is an interesting compromise for the sake of
computational speed. This technique is oriented toward finite clement analysis to obtain modal



characteristics of the links which are then combined using a time varying compatibility matrix. It uscs 4x4
matriccs to represent the nominal kincmatics and derivation of the compdublhty matrix.

1.1. Perspective on This Work .

This report stresses an cfficient, complete, and conceptually straightforward modeling approach using
the 4x4 transformation matrices that arc familiar to workers in the ficld of robotics. [t is unique in several
respects: [t uses 4x4 matrices to represent both the joint and deflection motion.  The deflection
transformation is represented in terms of a summation of modal shapes. The computations resulting from the
Lagrangian formulation of the dynamics are reduced to recursive form similar to that which has proven so
efficient in the rigid link case. ‘The equations are free from assumptions of a nominal motion, and do not
ignore the interaction of angular rates and deflections. ‘They do assume small deflections of the links which
can be described by a summation of the modal shapes and a lincar model of clasticity. Only rotational joints
arc allowed. 'The results are quite tractable for automated computer solution of arbitrary rotary joints,
Preliminary programs written to evaluate computational efficiency show that this method requires about 2.7
times as many computations as the most efficient rigid formulations with the same number of degrees of
freedom. ‘T'he rigid model could incorporate 21 degrees of freedom compared to 12 degrees of freedom (6 of
which are joints) for this flexible model. Thus, 15 degrees of freedom in the rigid model could be used to
approximate the flexibility that the 6 flexible degrees of freedom of the model presented here approximate.
"The relative accuracy of the two approximations has not been determined. These issues are discussed in more
detail in the Conclusions.

2. Flexible Arm Kinematics .

The previous works on rigid arm dynamics use the serial nature of manipulator arms which results in
multiplicative terms in the kinematics. The modal representation of flexible structure dynamics, on the other
hand,. is a parallel or additive representation of the system behavior. One of the contributions of this paper is
to resolve this difference in a concise way. As with many of the previous works on rigid dynamics, the 4x4
matrices of Denavit and Hartenberg [11] are used. Sunada and Dubowsky [31] used this representation for
their flexible arm simulations but did not produce a complete nonlincar dynamic simulation. Other workers
such as Hughes[17] relied on the more gencral formulation p'r()vidcd by a vector-dyadic represcentation.
While Silver [27], Hollerbach [15], and others have pointed out the relative incfficiency of the 4x4
formulation, the conceptual framework is most advantageous when tackling the complexity of the flexible
- dynamics.

Decfine the position of a point in Cartesian coordinates by an augmented vector:

[1 x-component y-component z-component]'r.
Define the coordinate system [x y 7"]1 on link i with origin Oi at the proximal end (ncarest the base) oricnted so
that the x axis is coincident with the neutral axis of the beam in its undeformed condition. The orientation of
the remaining axes will be done so as to allow cfficient description of the joint motion. A point on the neutral
axis at x=n when the beam is undeformed is located at ihi(n) under a general condition of deformation, in
terms of system i,

By a homogencous transformation of coordinates the position of a point can be described in any other
coordinate system j if the transformation matrix JWi is known. The form of this matrix is



. 1 | o |

W, = X, component of O, | )
y; component of O, | ‘R,
z component of O, |

where
JRi = a 3x3 matrix of direction cosines
0 = a 1x3 vector of zeros.
Thus in terms of the fixed inertial coordinates of the basc the position of a point on link i is given as

h =W, 'h = W. ' | (2)
where the special case of O.Wi = W,.. Itis useful to separate the transformations duc to the joint from the
transformation due to the flexible link as follows

W= W, B A=W A _ 3)

where

. = the joint transformation matrix for joint j
K., = the link transformation matrix for link j-1 between joints j-1 and j
Wj_ | = the cumulative transformation from base coordinates to Oj_ , at the distal end of link j.

P
Xy

is fixed to the link j-1 and with no deflection [§ 3; ;‘]j-l is paralletto [x ¥ '/,]j_l with Xi.) coincident with

To incorporate the deflection of the link, the approach of modal analysis is used which is valid for small
deflection of the link.

1 i 0

= | 0 |+ 28| x@ @)
0 =1 yu('fl)
0 z(n)

where

X Vi By = the x,, y;. and z; displacement components of mode j of link i's deflection, respectively:.

aij = the time varying amplitude of mode j of link i

m, = the number of modes used to describe the deflection of link i.
The link transformation matrix must also incorporate the deflection of the link. Here the rotations as well as
the translations of the deflection must be represented. If once consistently requires small rotations the
dircction cosine matrix simplifies as noted in [9] and furthermore the small anglés can be assumed to add
vectorally. "This is basic to the approach used here. The link transformation matrix can then be written as

m.
1
Fo=[H + Zl 5, M, ] | )
J:



where
1 0 o0 0 ]
Hi = 1i 1 0 0
0 0 .1 0
] 0 0 1
0 0o o0 0 |
My= 1+ x 0 -y 6y
'yij 0 i i
L% '0yij xii 0 .
and where
All variables in brackets arc evaluated at I1
BXU 8.6 . =the X, ¥, and 7, rotation components of link i, respectively.

L= Lhc lcnéth of link i.

To find the velocity of a point on link i, take the time derivative of the position:

dh =h =W, 1hi + W, ‘hi.
dt

(6)

(N

-(8)

Due to the serial nature of the kinematic chain, it is computationally efficient to relate the position of a point

and its derivatives to precceding members in the chain., By differentiating 2 one obtains:

A ~

Wj W A + WJ_l AJ

Wj = WJ._l Aj +2 WJ._lAj + WJ._1 AJ.
where

A =U.q,

] 17

C o
Ay = Uy + Ug,

_ 72 2
U2j =9 Aj/aqj

Bz\j/aqj

q = the joint variable of joint j.

&)

(10)

an

(12)

Thus W, and W, can be computed recursively from W._l, its derivatives, and the partials with respect to
the variables of link j-1 and joint j. No mixed partials are explicitly present. This computational approach is

similar to that proposed by Hollerbach [15] for rigid link arms. Here onc additionally nceds Wj_

derivatives. These can be computed recursively from WJ._ , and its derivatives:

Wj = Wj Lj

its

(13)




V*vj =W E +WE (14)

W, = W E +2W E+ WE . | B (15)

iy = ) 8y My, | (16)
k=1

i =2 5, M, - a7
k=1

The last two equations illustrate how the deflection transformations cnter even more simply into the
kincmatics on a per variable basis than do the joint variables. 'This is due to the small deflection assumption
and the form chosen for the transformation. "The recursive nature of the velocity and aceeleration is preserved
from the rigid case. For the simulation cquations the terms involving second derivatives of the joint and
deflection variables will be separated from the above expressions and included in the incrtia matrix to make
up the cocfficient matrix of the derivatives of the state variables. The "inverse dynamics™ solution that
proceeds directly from the Lagrange formulation has little obvious utility.

3. System Kinetic Energy

In this scction the cxpression for the system kinetic energy is developed for use in Lagrange's cquations.
First, the kinctic energy for a differential clement is written. Then, integration of this differential kinctic
energy over the link gives the link’s total contribution. 'This produces terms that arc the cquivalent of the
moment of inertia matrices of rigid link arms. Summation over all the links provides the total kinetic encrgy.

The kinctic energy of a point on the i-th link is

dk, = Ldm Tr { h hl } (18)
2
where

dm is the differential mass of the point and
Tr{.} is the trace opcrator.

Expanding.IS and using the fact that T'r{A BT'} = Tr{B AT}> the expression for dk, becomes

~ e .
dk, = Ldm Tr{ W 'n 0/ WI + 2 Wi bl wl' + w i hT w!' } (19)
where 2
m,
- . o
h, = 21 8, L0x v 7 1" ‘ (20)
J:

By integrating over the link one can obtain the total link kinetic encrgy. In this report it is assumed that the
links arc slender beams because it makes the central development clearcr. Other mass distributions could be
uscd with a slight departure here in the development. For slender beams dm = p dn and onc can integrate
over n from 0 to 1. Only the terms in 'ihi and its derivatives are functions of 5 for this link. Thus the
integration can be performed without knowledge or‘Wi and its derivative. Summing over all n links one finds



the system kinetic energy to be

n i '
> / - dk, Q1)
i=1 0

3 e o . T -
K= > Io{ W,By W+ 2W,B, W' + w.B W} (22)
i=1
where |
oo
B, =1 / p'h bl dy. o (23)
2 0
By interchanging the integration in 23 and the summations involved in the definition ()Fiﬁi in 20 one obtains
m, m,
B = Z Z 8 8 Ciyg . ’ . 24
j=1 k=1
where
— , 1T . :
Cyy = ——/ 10 %y vy 7 1 [0 %y, 2] dp, (25)
. 0

C has units of an inertia matrix and serves a similar function. While shown herc as a 4x4 matrix it is
non/cro only in the 3x3 (lower right). It can also be shown that C = C"' By choosing the assumed mode
shapces in an appropriate manner, it is possible to reduce the numbcr of non/cro terms in 24. This matter is
discussed in light of computational speed in the conclusions.

The other tcp'ns in equation 22 can similarly be found:

B, =1 / p'h/h! dy ‘ (26)
2 0
m=om
By = Z‘SC Z Zsiks
= k=1 j=1- N
where
1
G = L/ pl1qg00(0 X ¥y 7] dn ‘ (28)
2 0
Finally, by a'simi]z]]r approach:
i
By = —1-/ ;' d
2 0 ,
m, m, m,
— T
By=C+ D 8IC+Cl+ 3 3 8,8,Cy (29)
~ j=1 k=1 j=1.

where




1,

1
C = L/ w1700/ [1500] dn. (30)
2 0
This final term contains the rigid body inertia terms.

It should be noted that these terms are casily simplified if onc link in the system is to be considered
rigid, in which m, = 0. Should alink consist of a flexible member with rigid appendages the above derivation
is readily extended to modify the matrices Cikj’ Cik' and Ci with no further modifications to the succceding
development. In fact, these matrices could be obtained by finite element analysis should the link shape be
irregular as is often the case. Furthermore, the expression for B, contains a term of order 8 which is by
definition small and a candidate for later climination. Finally, much of the complexity of the integration of
the modal shape products can be done offline, once, for a given link structure.

3.1. Derivatives of Kinetic Energy
For construction of Lagrange’s equations one necds

9K / 3q., 9K / 98, .S(BK/BC.;) andi(aK/Bé )
j’ ir g i’ dt it
First consider oK/ aq "This will involve the partials of all the terms in 22, some of which are zero. In

fact, only W forj<i<n provndcs nonzero partials with respect to q,.  ‘The time derivative of the partial is
then taken, ln this respect the following equivalences should be noted:

W,/ 3q, = aW,/ dq, ' G1)
d o, v
= (3W;/ 8, ) =W,/ aq, v | (32)
oW,/ 25,= OW,/ 85, (33)
d . . .
™ (oW, 728, )=23W,/ 25, | (34)

Also helpful in simplifying the result is that, Tr{A} = Tr{AT} for any square matrix A and that B, is
symmetric. Considerable cancellation and combination results when the terms in lagrange's cquation
involving the kinetic energy are combined. The result of this combination is

4 (9K/3q)-2K/0q =

m, ‘m.
] (TR l [TTT)
2 Z “{ [[C Z Sik(cik+ci1k+ Z ‘Silcuk)]wil
k=1

1=1

m- m; - m; m;
Zl S (C+ 20 8¢ ) Iwi+[2 3 §,(c,+ 121 8,Cy) 1 W1}
K= =1 - k=1 =

(35)



Note above terms of the form 6ik 8“ which are second order. ‘These can be ignored consistent with the
assumption that the deflections are small. Noting the recurrance of certain terms above, it is convenient to
define the following: ' '

m,
1
Dy =Gy + Z 8 Cige '
1=1 : (36)
m, .
L ] o
G=C+ 2 § (¢ +q)
k=1 (37
When these definitions are substituted into equation 35 one obtains;
g( 9K /8q) -8 K/ dqg, =
dt i i
n 5 W m, m,
. . o . T . L o
2 > 1 » Lo wWis S 8, p, w2 S 6 p W},
i=j i k=1 k=1 (38)

The partials of K, with respect to 8J.rand éjt‘ are considerably more complex due to the fact that B, By,

and B3i are functions of the deflection variables. The techniques of simplification are similar. An additional

simplification arises due to the fact that if A were any antisymmetric matrix, and if W were a matrix
compatible for multiplication, then 'I'r{f W A w! } = 0. An antisymmetric matrix occurs from the difference
of a matrix and its transpose. :

d( 5.) 38, =
EE aK/ajf -9K/ i =

L AW, i N .
2 30 i le Wi 30 & p W2 30 8, D Wik
i=j+1 if k=1 C k=1

m, m.
rr{2[ WD +2W, ). 8 Cort W, ). 8 Coe J W/}
k=1 k=1 (39)

4. System Potential Energy

The potential energy of the system arises from two sources: clastic deformation and gravity. Tn both
cascs they are included by first writing the potential energy contribution of a differential element, integrating
over the length of the link, and then summing over all links.

4.1. Elastic Potential Energy

Consider a point on the i-th link undergoing small deflections.  First restrict the link of the slender
beam type. The clastic potential is accounted for to a good approximation by bending about the transverse y,
and 7, axcs and twisting about the longitudinal x, axis. Compression is not initially included since it is
generally much smaller. Along an incremental length dy the clastic potential is




vci=1dn{l<[l( ")2+r(—l)2] Gl( X')2} (40)

where

8. 0 .and @, are the rotations of the neutral axis of the beam at the point  in the x,, y,, and 7,
dlrcctlons lcspccuvcly Since deflections arc small, these directions are csscnually pdrallcl or
perpendicular to Lhc neutral axis of the beam.

E = Young’s modulus of elasticity of the material
G = The shear modulus of the material
[, = 'The polar arca moment of inertia of the link cross section about the neutral axis.

1 [,{ = the arca moment of incrtia of the link cross section about the y;and z; axcs, respectively.

With a truncated modal approximation for the beam deformation the angles 0,(.[, Oyi, and ﬁyi are
represented as summations of modal cocfficients times the deflection variables. 'The x rotation, for cxample is

m, '
Z B3 iy , (41)

where 0 L I8 Lhe angle about the x; axis corresponding to the k-th mode of link i at the point 5. When dv, is
mtcgratcd over the link the mtcglatmn can be taken inside the modal summations of cquation 41 and ltS
corresponding y and z components. ‘The following definitions then prove uscful:

Kikl - K)ukl + Kylkl Kzikl : ‘(42)
where |
i
08..
K. =/ xil — ~xik dy (43)
ki
X1 0 a an
k
260._., 08 .
— : | k
Ky = / E ly(n)—a—#—l—an‘ dn (44)
1.
1 26 .20
K =/ E 1) - — dy | (45)
’ 0 7’ a"

Note that Kikl = Kilk and that for certain special cases the orthorgonality of the modal functions can

climinate many of the terms in cquations 43, 44, and 45. ‘The clastic potential for the total system, VC can then

be written as

m. m,
1 1

n
== Z 8y 0y Ky - ' (46)
2 =1 k=1 I=1




Note that the V_ is independent df q;, the joint variables.

Ve, @

For deflection variables

m,
oV

<= 2 8jk Kjkf' (48)
88, = |

The form of equation 48 is much more gencral than the initial assumptions made regarding the contributions
to the clastic potential energy would allow. Compression strain encrgy, and link forms other than beams can
be represented in this form. The values of the cocfficients Kjk pcan be determined analytically or numerically,
cg. by finite clement methods. -

4.2. Gravity Potential Energy
For a differential clement on the i-th link of length dy the gravity potential is

d@=m§mhm, : _ ' : (49)

where the gravity vector g has the form

T
g =[0g 8 8] ,
When integrated over the length of the beam and summed over all beams, the gravity potential becomes

: n
I
v, = > W (50
i=1
where
m,
n=Mr,+ Z Oy & (1)
k=1

Mi = the total mass of link i

r,= [1 r; 0 0], avector to the center of gravity
from joint i (undeformed)

1.

1
&k = / w0 xy vy 7, 10 dn. (52)
0

Note that ¢, is found in the top row of C,,. It is the distance from the undeformed center of gravity to the
center of gravity when all § are zero except aik , which is one. The total distance to the center of gravity from

O, (oint i) is multiplicd by the mass to give r,.

Upon taking the partial derivatives required by Lagrange’s equations we find for the joint variables
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3 o W,
I T *
9 i=j %% |
For the deflection variables, for 1 <j < n-1
n ' : :
av '1~ aw- vl‘ )
o= 2 (gan) - e W (54)
if i=j+1 if
Forj=n
aV, l
——5-88 r =-g W e, (55)
n

5. Lagrange’s Equations in Simulation Form

At this juncture the components of the complete equations of motion in Lagrange's formulation, except
for the external forcing terms, have been cvaluated in equations 38, 47, and 53 for the joint equations; and in
cquations 39, 48, 54 and 55 for deflection equations. 'The cxternal forcing terms arc the generalized forces
corresponding to the generalized coordinates: the joint and deflection variables in this case. The generalized
force corresponding to joint variable g, is the joint torque Fi' For the deflection variables the corresponding
gencralized force will be zero if the corresponding modal deflections or rotations have no displacement at
those locations where external forces are applied. Thus it is assumed for the present development that the
modal functions are sclected so that is the case. This is convenient for using the results ag well. All motion at
the joint is described in terms of the joint variable.” (This is not true in the approach taken by Sunada and
Dubowski [31].) The form of Lagrange's equations will then be:

The joint cquation j

d . ov ov

— (BK/aqj) 9K/0q; + —% + —L = F, .

dt aqj aq (56)
The deflection cquation j,f

d . ov ov

— (9K/28, ) - OK/88; + &+ —2=0.

dt ] 38 36 (57)

These cquations are in the "inverse dynamic form. To convert them to the simulation form onc must extract

the cocfficients of the second derivatives of the gencralized coordinates to compose an incrtia matrix for the

system. ‘The second and first derivatives together make up the derivative of the state vector, which can be
usced in onc of the available integration schemcs, e.g. Runga-Kutta, to solve for the state as a function of time
for given initial conditions and inputs F.

5.1. Kinematics Revisited
The purpose of this scction will be to extend the kinemnatics to sgparate the sccond derivatives of the

joint variables and deflection variables from the expressions for W and W Other occurrences of these
derivatives are already cxplicit in the formulation as it exists.

/

First consider the product of transformations which make up Wi and two alternative ways of expressing
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W= A B AE, A F . AE
_ A h —
=W, AW, C)
= : hy ‘
=W, k"W, (59

Carrying through the derivatives one obtains
i m,
h W ; hw & A
(W, uhwg + Z W, M WS )+ W, (60)
= k=1

For the corresponding expression for W, write

W= A K A By A K L E A
=W hw . )
= Wh,.-l Ay Wh _ (7))
— > h
=W, k"W, . (©2)
. . e
W, = Z W, U "Wa + Z Z WM, "WEL W (63)
h=1 h=1 k=1

The va]ue of W ;and W ; can be calculated rccmswcly as shown in cquations 15 and 10, respectively, for W
and W by only chmmatmg terms involving q and 6 The result is
W= W, A +2WA + W Uyd? (64)

W, =W, E +2WE,. (65)

5.2. Inertia Coefficients

To obtain the inertia cocfficients that multiply the second derivatives, substitute cquations 63 and
60 into the relevant parts of the equations of motion, cquations 38 and 39, respectively, Collecting the terms
and arranging them for efficient computation requires the steps outlined in this section.

5.2.1. Inertia Coefficients of Joint Variables in the Joint Equations
All occurances of q in cquation 38 arc in the cxpression for Wil. When these terms are isolated, a
double summation over the indiccs i and h exists. Interchange the order of the summation as follows:

ZZZZ

i=j h=l1 h=1 i=max(h,j)
The resulting cocfficient for joint variable q, in the joint equation j is
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_ . A~ .,.:, -l. ~ ’]- -
I = 2Te{ W, U IR, Ul Wi b ' (66)
where
n .
= o i
IF = Z W, G, "W . (67)

i=max(h, j)
Note that if one exchanges-j and h and transposes inside the trace operation an identical expression is
obtained. This indicates the symmetry of the incrtia matrix which is used to reduce the number of
computations required. The expression Foerh can be computed recursively; this will be described later to
further improve the efficiency of calculation.

5.2.2. Inertia Coefficients of the Deflection Variables in the Joint Equations

The deflection variables appcar both in the cxplcssmn f‘orWl and cxplicitly in cquation 38. After
substituting Wl mto cquation 38, collect terms in 8 pand cxchdngc the order of summations as follows

n n-1 n
j h=1 i=max(h+1,j)

The resulting cocff'cncntof"d . In joint cquation j is J . The terms to be included depend on the relative
values of j and h. The followmg hold forl <k < my,.
Forh=n,j=1..

Sk = 2'l‘r{ (W, U YW, D, Wi} (68)
forh=j..n-1,j=1..n1:

Tk = 271 { ( \‘vj_l U )L ¥, M+ W, Dy, ] why . O (69)
forh =1..j1j=2..n , _ |

T = 2T { (W, U ) IF, MEWT 5 (70)
whercforh=1..n1,j=1..n |

n
g = > WG hwl ' (71)

i=max(h+1,j)

It can be shown that the incrtia cocfficient for the deflection variable 8hk in the joint equation j is the

same as the cocfficient for the joint variable g, in the deflection equation h,k. 'This further extends the

symmetry of the inertia matrix and reduces the necessary computation:

5.2.3. Inertia Coefficients of the Deflection Variables in the Deflection Equation

In a manner similar to the previous two types of cocfficients, the inertia cocfficients of.the deflection
variables in the deflection cquations are evaluated. Symmetry of the coefficients can be shown such that the
coefficient of variable h,k in cquation j,f is the same as the cocfficient of variable j,f in cquation h.k.
Substituting cquation 63 into equation 39, isolating the sccond derivatives of the deflection variables, and
interchanging the order of summations cnables the inertia coefficients to be identified. Further simplification
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is based on the identity that, for any three square matricies A, Band C
Tr{ABC} = Tr{CA B} =Tr{B CA}.

Furthermore the rotation matrices in the transformation matrices are orthogonal so that Ri R}I‘ = 1, a 3x3
identity matrix. 'This coupled with the zcro first row and column of Cjkr results in an especially simple form
for two of the four cases. 'T'he following hold for 1 <k < m, and 1 < fslmj. ‘

Forj=h=n:

e = 277{ C e 3 < @
Forj=h=1..n-1:

L = 2Tr{ Mo, M+ € ) (73)
Forh=n;j=1..n1:

Le = 2T { WM W D WL (74)

Forj=1..n1;h =j+1..n1:

L = 2 Tr{M Do+ My -+ Iw, o Wi}

(75)
Terms in the above defined forj = 1..n-1;h = 1..n-larc:
n .
P . B, T
o, = > w, G, "w. - (76)

i=max(j+1,h+1)

5.2.4. Recursions in the Calculation of the Inertia Coefficients
Since the inertia matrix is a square matrix it requires the calculation of “12 terms where n, is the total
number of variables:’

n
n=n-+ Z m,
i=1

The fact that the matrix is symmetrical reduces the number of distinct terms to nt(nt+l)/2, which still has a
second power dependence. Thus while the inverse dynamics computation complexity can be made lincar in
n,, simulation requires the inertia matrix with complexity dependent on nlz. Since n_can be quite large for
practical arms it is important to reduce the cocfficient of the squarcd term as much as possible. Due to their
short or even zero length, it is possible for some links to be cssentially rigid. Anthropomorphic arms, for
example, have two links which arc much longer than the others and tend to dominate the compliance. Many
of the terms derived above may not be needed for these links, four of the six links in the anthropomorphic
cxample. Any rccursive scheme for calculating the terms in the cquations should not require these
calculations as a means to get to nceded terms.

Consider the calculation of cquations 67, 71, and 76. Several recursive schemes could be arranged for
the cfficient calculation of these quantities. Equation 71 is only needed if the link corresponding to the
variable, link h, is flexible. ‘T'hat is, if m, > 0. Equation 76 is only needed if both the link of the variable and
the link of the equation, link j, is also flexible. Thus we propose the following recursive scheme for
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calculatingjﬁh, ij, andjd>h. The following hold for 1 <k < my; 1<f< m, .
Initialization:

"F =G_. ' ~ (77) -

n n

Forj>h<n:

AN I '
By= KA (78)
Forj = h:
My h ) T
Fo=G,+ "R, (A, )" | (79)

lf‘mh > 0 calculate:

i = iF T

Ph = PhH /\h . (80)
lf‘mh > 0 and m; > 0 calculate:

Id = iw :

o = A R | (81)

5.3. Assembly of Finai Simulation Equations

The complete simulation equations have now been derived. [t remains to assemble them in final form
and to point out some remaining recursion relations that can be uscd to reduce the number of calculations.
The second derivatives of the joint and deflection variables are desired on the "left hand side” of the equation
as unknowns and the remaining dynamic effects and the inputs are desired on the "right hand side." "T'o carry
out this process completely one would take the inverse of the inertia matrix J and premultiply the vector of
other dynamic effects. This inverse can only be cvaluated numerically because of its complexity. Thus for the
present purposes the equations will be considered compicte in the following form:

Jz =R, | _ (82)
where

J = Inertia matrix consisting of coefficients previously defined in the order for multiplication
appropriate for z

z = the vector of generalized coordinates T
=1[q,8,, 85 8““1 4y 8y 62m2 e Qp Op e B e 8y e Bnmn]

q, = the joint variable of the h-th joint
8., = the deflection variable (amplitude) of the k-thmode of link h

R = vector of remaining dynamics and external forcing terms

- T
=Ry Ry Rip e Ry Ry Roy o Ry o Ry Ry o Ry Ry o R,
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R. = dynamics from the joint equation j (cquation 56) excluding second derivatives of the
generalized coordinates

Rjr = dynamics from the deflection equation jf (equation 57) excluding sccond derivatives of the
generalized coordinates

The clements of J have just been formulated and can be arranged to form the proper cquations in the order
described above. ‘This order has been sclected because it results in the symmetrical appearance of J. The
clements of R have not been explicitly given with the second derivatives removed. These arc given below
with some recursions to facilitate their computation.

. _ T .

R,=2Tr{U,Q }+g'UP +F (83)
A ~ T A . !
R =-21r{W_ U Qj} +8" W, U P+ , (84)
mn mn

o . . - " "
Rnf = -2 ”{ [ annnf + 2 Wn Z ank (’nkf] Wn } ) Z ank Knkf+ g \Vn Ear @5)
: k=1 k=1

m.
o v . < T
le' =-2 lr{ Wj Mjf Aj+.l Qj-l—l[ ij Djf + 2ij 21 '6jk (‘jkf] Wj }
) k=

m,
] T T
. 2 O Kyrt 8" WyMeA, P+ Wie

k=1 ' (86)
where
mn
- — 37T & T
Qn - Gn an+ 2 ( Z 8nk an) Wn @7
k=1
m. .
- vT : T A
Q= Gj W+ 2 ( 2 ajk Djk) W +EAL Q. . (88)
. k=1
) m.
.Pﬂ = Mn rn * 2 8nk enk (89)
k=1 . .

m.
P, = M, + g%%ﬁﬂ+%MHﬂH (90)
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6. Conclusions :

The above model is successful in terms of its accuracy and its speed. The two qualitics are somewhat
related in that accuracy of the flexible representation can be improved by increasing the number of modes
used to represent the link deflection at the expense of calculation time. The issue is further complicated by
the choice of mode shapes, range of motion considered, and the arm configuration. Furthermore, limited
information is available in the literature for comparison. A simple comparison has been used in the past and
can be performed for calculation complexity. Hollerbach [15] compares several approaches to the inverse
dynamics problem of rigid arms by different authors. Walker [33] gives a similar count for four approachces to
the simulation problem. Sunada [31] has given computation times for a given manipulator, trajectory, and
computer for his flexible simulation. Comparison to the calculation counts of rigid models are given for a
rough comparison of speeds in this section. No attempt at a quantitative comparison of the accuracy is made.

To determine the number of calculations from the equations, a choice must be made on how some
matrix products arc implemented. Hollerbach chose to use the most straightforward implementation of the
equations. The approach here is quite different. Obvious simplifications in the multiplication of matrices
with known constant rows, the top row of a transformation matrix for example, are assumed in these
computations. The 4x4 matrix transformation was chosen for its conceptual convenience and the calculation
count will not be intentionally penalized for that choice. Furthermore, certain products appear in multiple
equations and arc assumed to be saved when nceded later.  Special purpose multiply routines are used
whenever they can capitalize on the special structure of a given matrix. Finally, in the simulation form the
calculations nceded to invert the inertia matrix are not included, and no consideration is givcn'to the
calculations of the integration routine. The general form of the modal parameters arc used however. 'This
results in all combinations of modes h and k in the matrix Cihk to be computed and usced and hence introduces
a squared dependence on the number of modes on each incrtial coefficient of the deflection variables. With
these assumptions the number of calculations is approximate:

Number of multiplications:

6nm” + 17.5n.m? + 118 n? m+ 74 nn.m +

137.5n.m + 84 n* + 86 nn.+ 279 n+ 126 .- 57
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Number of additions:

6.5 n% m?+ 19 nfm2 + 115.5 n%m+ 68 n nem +

123n;m + 85n? + 80 nn; + 329 n+ 111 n;-91

where: n = total number of joints
n. = number of flexible links
m = number of modes describing cach flexible link

The above approximation assumes an "average™ joint complexity over two common types of rotary joints, the
same number of modcs on cach flexible link, a rigid last link and a flexible first link.

If assumed mode shapes are restricted so that the shape functions in the x, y, and 7 directions are
orthogonal, only Cikk will be non-zero. ‘This is a stronger requirement than the orthogonality of the sct of
complete maode shapes, but would often be realized with simple mode shapes. 1t has not been determined if
this would improve the combination of spcéd and accuracy.

This calculation count can be roughly compared to rigid link results available in the literature

mentioned above. For a 12 degree of freedom rigid problem the inverse 3x3 transformation matrix
formulation requires 2.66 times as many multiplics as the Newton-Euler formulation. Walker’s method 3 (his

_best) for simulation rcquires 4,491 multiplies. For 6 joints, and two flexible links with 3 modes cach the

method of this paper requires approximately 12,009 multiplies. The ratio of these simulation methods is 2.67,
almost cxactly the same as for the inverse dynamic methods with the same number of degrees of freedom. A
modal representation of flexibility would be much more accurate than adding 6 imaginary joints to represent
compliance, but one could cexpect to usc 15 imaginary joints and 6 rcal joints with Walker's method with
fewer multiplies than with the method of this paper.

Thus it scems that in order to be competitive with possible Newton-Euler, non-transfer matrix
approaches, the simplification of the assumed mode shapes will have to be made. It is not clear that the
conceptual convenience of the transformation matrix approach can be justified relative to vector dyadic
approaches of Hughes[17] and Likins [28]. Unfortunately, computation counts are not available for that
work.
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