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SUMMARY 

 

The application of therapeutic proteins and small interfering RNA (siRNA) 

molecules for disease treatment is an important yet challenging concept in modern 

medicine. To date, billions of dollars have been invested in the development of various 

drug candidates. However, the poor pharmacological properties of those compounds 

continue to limit progress towards viable human therapeutics, especially when 

intravenous delivery routes are considered. For instance, biological macromolecules are 

often incapable of targeting disease sites, can be immunogenic, or they can induce 

toxicity at off-target tissues. In response to the shortcomings of siRNA and protein drugs, 

many nanoparticle carriers are being pursued. Nanoparticles are designed to encapsulate, 

protect, and transport therapeutics to diseased cells. To be effective in this role, the 

delivery vehicle must overcome a series of biological hurdles over the course of delivery. 

Thus, dynamic, multifunctional nanoparticles are needed that can perform multiple in 

vivo functions.  

Hydrogel particles are a unique class of polymeric biomaterials for drug delivery 

applications. Depending on their diameter, particles are either categorized as nanogels 

(less than 100 nanometers) or microgels (up to several micrometers). Similar to 

macroscopic hydrogels, nanogels and microgels contain a large fraction of water within 

their structure, can retain their architecture despite mechanical stress, and are generally 

soft/pliable. Particles are composed of synthetic hydrophilic polymers, cross-linked into 

porous networks that are capable of encapsulating and releasing macromolecules. In 



 xxi 

addition to those features, stimuli-responsive nanogels and microgels may be synthesized 

by incorporating responsive polymers into the hydrogel matrix. 

In this dissertation, nanogels and microgels were investigated as candidate 

vehicles for macromolecule therapeutics, including siRNA and proteins. Chapter 1 is 

provided for additional background into the physicochemical properties of the particles. 

The chapter also discusses the relevant biological barriers faced by the vehicles during 

intravenous delivery, chemistries that may improve disease targeting, and factors that 

govern biocompatibility. In Chapter 3, proof-of-principle experiments show the utility of 

multifunctional nanogels for siRNA delivery. Using simple core/shell nanogel 

architectures, siRNA molecules were delivered to chemosensitize drug resistant ovarian 

cancer cells in vitro. In Chapter 4 biodegradable nanogels were synthesized that may 

enable the clearance of the vehicles following repeated administration in vivo. Chapter 5 

describes the detailed assessment of microgels that rapidly decompose in response to 

sodium periodate. The decomposition revealed key differenced in network composition 

for microgels composed of two different thermoresponsive polymers. In Chapter 6, 

charge microgels were investigated for the encapsulation of a model therapeutic protein. 

The loading of the protein was found to be tunable with respect to the chemistry of the 

hydrogel network. Chapter 7 is provided to summarize in-progress projects to modulate 

the loading of siRNA, and improve targeting and stealth for those vehicles. The chapter 

also proposes new avenues of research to improve the carriers. 

 New light scattering methods were developed in this dissertation to provide 

detailed, direct assessments of the particle properties. For example, through multiangle 

light scattering (MALS) the decomposition of microgels (Chapters 4 and 5) was 



 xxii 

monitored through changes in particle molar mass from network erosion. In another 

example, the loading of proteins within various microgels and nanogels was assessed 

through changes in particle molar mass (Chapter 6 and 7). To explain those 

methodologies, Chapter 2 is provided to briefly review some light scattering principles 

used in the work. Together, the chapters of this dissertation reveal nanogels and 

microgels as promising carriers for macromolecule drug candidates. By combining the 

knowledge gained throughout this work, next-generation carriers may be pursued with 

improved performance in the treatment of disease.



 

1 

CHAPTER 1 

INTRODUCTION 

 
Adapted from 

Smith MH, Lyon LA. Acc. Chem. Res., 2012 (ASAP) DOI: 10.1021/ar200216f 
 
Hendrickson GR*, Smith MH*, South AB*, Lyon LA. Adv. Funct. Mater. 2010, 20, (11),  
1697-1712  
*equal contributing author 
 
Smith MH, South AB, and Lyon LA in Hydrogel Micro and Nanoparticles, Wiley-VCH, 
2012 (in press) 
 

1.1 Polymeric Biomaterials and Drug Delivery 

Biomaterials have enabled profound contributions to medicine over the last 

several decades, from extracorporeal devices, like contact lenses and kidney dialyzers, to 

implantable devices, including vascular grafts and pacemakers.1 These materials are 

designed to interface with biological tissues and are capable of either augmenting, 

interacting with, or replacing natural functions in the body.1 The diverse range of 

biomaterial functionalities has led to the treatment of several diseases and has deeply 

impacted medicine as a whole.  

British ophthalmologist Harold Ridley developed some of the earliest applications 

of implantable polymers. While observing wounds to the eyes of fighter pilots following 

World War II, Ridley noticed that imbedded shards of the Spitfire canopy (poly(methyl 

methacrylate)) had a tendency to heal without excessive inflammation and infection. 

These early observations led to the first intraocular device for the treatment of cataracts.2 

Millions of these devices are now used in the treatment of ocular disease each year. 

The implementation of many other biomaterials also came in the post-war 

biomedicine boom. Like the implants inspired by the Spitfire canopy, these treatments 

typically used nonspecific, off-the-shelf components that were readily available. For 
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example, the first artificial kidney was inspired by the first hemodialysis machine 

invented by Willem Kolff. The Kolff machine employed cellulose acetate for dialysis 

tubing, a material commonly used at the time for sausage casing. Other significant 

medical devices would also include commodity plastics in their design. Early vascular 

grafts used a common textile polymer known as Dacron, introduced in 1950 by DuPont. 

Despite the fact that off-the-shelf materials were applied in those examples, the devices 

were effective in the treatment of medical problems. However, serious conflicts could 

also result from their use. Early dialysis tubing had an increased risk of platelet 

activation. Likewise, Dacron grafts were limited in their diameter and also increased the 

likelihood of clot formation. These limitations have motivated the development of more 

specific materials that are safer at the biological interface. 

One of the principal limitations of early polymeric biomaterials was their lack of 

compatibility with living tissues, or biocompatibility. All biomaterials, whether implanted 

or injected, experience what is described as the ‘wound healing response’ when 

administered to the body. This response occurs after injury, such as an incision, resulting 

in inflammatory responses, foreign body reactions, and fibrous encapsulation of the 

biomaterial, medical device, or prosthesis.3 As safer and more effective biomaterials are 

developed for medical applications, their chemical, physical, and biological properties 

must be improved to either reduce or mediate the host response. 

By the 1970s, many researchers were interested in imparting drug-releasing 

properties to polymeric materials. In particular, the delivery of macromolecules, such as 

peptides, proteins, or oligonucleotides had become attractive. Large-quantity production 

of these high molar mass drugs became possible through advancements in genetic 

engineering, providing new possibilities for disease treatment. However, those molecules 

generally showed poor characteristics in vivo, such as rapid degradation or recognition by 

the immune system. By encapsulating macromolecule therapies within polymeric 

devices, the drugs could be protected from immediate destruction and would be delivered 
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to specific regions of the body (avoiding off-target effects and toxicity). The first peptide-

eluting biomaterial was approved in 1989 by the U.S. Food and Drug Administration 

(FDA). The material was composed of a poly(lactic-co-glycolic acid) (PLGA), a 

copolymer that is susceptible to ester hydrolysis in water. For instance, microparticles are 

formed by mixing PLGA with macromolecules in certain organic solvents (i.e. 

dichloromethane).4 The hydrophobicity of the particle prevents water from penetrating 

and degrading the interior polymer matrix, while erosion at the water interface drives the 

release of encapsulated macromolecules. Thus, by tuning the ratio of hydrophobic and 

hydrophilic components of PLGA (i.e. the ratio of lactic and glycolic acid, respectively), 

the rate of water penetration, polymer degradation, and subsequent drug release may be 

tuned from hours to months. The FDA-approved device, leuprolide acetate (Lupron 

Depot®), was formulated for the slow release of luteinizing hormone-releasing hormone 

(LHRH). The polymer system has become one of the most widely applied devices for 

treating advanced prostate cancer, endometriosis, and precocious puberty. In addition to 

this device, an array of other polymeric materials has been introduced, that are 

profoundly impactful for modern medicine.5-7 

There are generally two delivery routes for polymeric devices: localized delivery, 

where therapies are administered directly to the tissue of interest, or systemic delivery 

(i.e. intravenous injection), where formulations are administered into the bloodstream. 

Although localized delivery has the benefit of enhancing bioavailability and reducing 

adverse effects, many tissues can only be reached through the systemic route. Intravenous 

delivery technologies are challenging, usually involving circulating nanoparticle carriers 

that must protect the drug cargo from degradation by serum nucleases, resist recognition 

by the immune system, and show tissue-specific uptake via cell targeting.  

Multiple colloidal materials have been investigated for their potential as delivery 

vehicles, including liposomes,8-11 metallic and semiconductor nanoparticles,12-18 

surfactant and block copolymer micelles,19-20 and other polymeric constructs.21-27 
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Although the physicochemical properties of these materials differ drastically, many of the 

sample principles apply for efficacy in vivo. In order to achieve a high therapeutic index, 

these constructs require (1) the ability to encapsulate, protect, and release loaded solutes 

in a predictable fashion, (2) remain in circulation while avoiding an immune response 

(which may hinder the transit of nanoparticles), (3) localize specifically at the diseased 

site of interest, and (4) occupy the tissue for a reasonable duration for possible uptake by 

diseased cells and solute delivery.28-30 

This dissertation discusses the design of hydrogel nanocarriers (nanogels or 

microgels) for application as intravenous delivery vehicles. In contrast to the colloidal 

materials described above, hydrogel particles have several useful characteristics as 

biomaterials and drug vectors. 

1.2 Hydrogels and Hydrogel Nanoparticles 

Hydrogels are a promising class of biomaterials for medical applications, 

including biological sensing, drug delivery, and tissue regeneration. These materials are 

generally very well-hydrated (absorbing up to 90-99% water by weight) and have an 

elastic structure.31 This hydrated, or hydrophilic, property reduces the tendency for 

proteins to nonspecifically adsorb to the hydrogel, thus imparting “non-fouling” 

characteristics. The structure of a hydrogel is usually an elastic network of polymers that 

can encapsulate biological molecules and therapeutics. Through modification of the 

density of the network, the mechanical properties of the material can be changed to suit 

their application.  
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Figure 1.1 Schematic representing the volume phase transition of a responsive hydrogel. 
 

Additionally, hydrogels may be designed to undergo a volume phase transition in 

response to an external stimulus.32 A volume phase transition occurs when the network 

transitions between a solvent-swollen network and a hydrophobic collapsed state due to a 

change in network solvation.  As can be seen in Figure 1.1, polymer chain-chain 

interactions dominate in the collapsed state, resulting in the expulsion of water from the 

network.  In the swollen state, the interactions between the solvent and the polymer 

chains dominate. Using this principle, a variety of microgels have been engineered to 

respond to varying pH conditions,33 light,34-35 ionic strength,36 and the presence of 

macromolecules.37-39 In the domain of responsive hydrogels, the most commonly studied 

are those composed of thermoresponsive polymers, which undergo dramatic changes in 

network swelling as function of temperature.40  

The most widely studied class of thermoresponsive microgels are those composed 

of N-isopropylacrylamide (NIPAm). At temperatures above ~31 ºC, poly(NIPAm) 

undergoes an endothermic, entropically-driven phase transition from a random coil to a 

collapsed globule.41-42 At low temperatures, pNIPAm interacts with water by hydrogen 

bonding (primarily through the amide side chains). Additionally, the isopropyl group 

causes structuring of water, promoting the entropically-driven polymer-polymer 

interaction (i.e. via the hydrophobic effect). As solution temperatures are elevated, 

polymer-polymer interactions are favored as hydrogen bonding with the solvent becomes 
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weaker. The polymer reorganizes to a collapsed globule as the polymer-polymer 

interactions become dominant, resulting in the expulsion of water. This phase change 

occurs at a discrete temperature known as the lower critical solution temperature (LCST). 

When observed in cross-linked networks, the transition temperature is often referred to as 

the volume phase transition temperature (VPTT).43-44  

1.2.1 Microgel Synthesis 

Free radical precipitation polymerization is a convenient approach to produce 

microgels or nanogels. This method exploits the thermally-triggered collapse of growing 

polymer chains to self-assemble the microgel,45 often resulting in narrow particle size 

distributions at high yield. For instance, poly(N-isopropylacrylamide) (pNIPAm) 

undergoes an abrupt coil-to-globule transition at ~31 ºC.46 Typical syntheses are 

performed by dissolving the monomer (e.g. NIPAm), other comonomers, and a cross-

linking agent (e.g. N,N’-methylenebis(acrylamide), BIS) in water. The reactants are 

subsequently heated to a temperature between 60 and 70 ºC (above the LCST). After 

purging the solution with N2, the polymerization is initiated by addition of initiator (e.g. 

ammonium or potassium persulfate, APS/KPS). At these reaction temperatures, 

persulfates thermally decompose to form sulfate radicals that initiate polymerization. The 

sulfate radicals attack the NIPAm monomer, which then undergoes chain growth via 

radical propagation. At a critical chain length (~10 monomer units), the polymer 

collapses to form a globular particle. The particles then grow in mass by the capture of 

oligoradicals, monomer addition, or aggregation with other nuclei.47  

Size is a critical characteristic for several microgel applications. For example, 

smaller particles (~50-200 nm in diameter) are favorable for intravenous drug delivery 

applications, where in vivo behavior depends greatly on colloidal dimensions.48 

Precipitation polymerization is an enabling scheme for obtaining a wide range of 
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microgel sizes, where fine control over dimensions is achieved through modification of 

synthetic components and conditions.   

Recently, a new protocol was demonstrated for the synthesis of larger diameter 

(2.5-5 µm), pH- and temperature-responsive microgels by surfactant-free emulsion 

polymerization.49 This size is not traditionally obtainable by dispersion polymerization 

methods. To accomplish such sizes, we used a temperature ramp from 45 °C to 65 °C 

during the nucleation stage of the polymerization. In this synthetic scheme, initiation is 

performed at a much lower temperature. The initiator thermally decomposes at a slower 

rate, reducing the oligomeric radical concentration and the overall abundance of 

collapsed nuclei. Additionally, the monomer concentration is higher at this time of the 

reaction. These conditions favor a higher chain propagation rate than initiation rate, and 

the growth of fewer, larger nuclei.49 As the reaction proceeds and monomer is consumed, 

the propagation rate decreases. The temperature ramp compensates for this, where the 

temperature was slowly elevated to increase the reaction kinetics.  

In contrast, much smaller particles are produced when syntheses are performed at 

higher temperatures, and when stabilizing agents are added to the system. Specifically, 

the use of ionic surfactants has yielded nano-sized hydrogel particles (nanogels) via 

precipitation polymerization. Surfactants likely assist in precursor particle stabilization, 

decreasing the probability of hydrophobic nuclei aggregation.47 Thus, nanogel growth 

likely occurs mainly through oligomer or monomer addition, instead of nuclei fusion. In 

this scheme, a larger number of small particles are formed as compared to surfactant-free 

synthesis conditions. 

1.2.2 Core/Shell Particle Synthesis 

Others have demonstrated the utility of adding hydrogel shells to “hard” 

nanoparticles (e.g. polystyrene, silica,50 iron oxide, gold 51). The resultant particles 

showed properties governed by the chemistry of the added polymer. Through hydrogel 



 8 

shell addition, chemical functionalities could be localized in the particle periphery,36, 52 

stimuli-responsive characteristics may be imparted,53  or the stability of the particles 

could be enhanced.54-55 Inspired by those results, the Lyon research group was the first to 

explore the synthesis of core/shell particle architectures composed entirely of hydrogel.45 

Such core/shell microgels showed intriguing properties, wherein different stimuli-

responsive components and chemical functionalities could be imparted into different 

compartments of a single particle. Since the first report of core/shell microgels in 2000, a 

number of higher order architectures have been investigated, each demonstrating 

interesting features in the context of drug delivery. Those particles include multi-shelled 

structures,56 erodible particles,57-59 hollow microgel capsules,60 and “yolk” shell spheres 

(Figure 1.2).56  

 
 

 
 
Figure 1.2 Summary of higher-order hydrogel particles reported in recent years. Adapted 
from reference 61. 
 



 9 

Although many of those architectures are being pursued for general drug 

encapsulation and release properties, the most progress towards drug delivery 

applications has been with core/shell nanogels. Core/shell nanogels are produced via a 

“seed and feed” method that involves a two step reaction strategy.45 In the first step, core 

particles are synthesized using the method described above (Section 1.2.1). Once a core is 

synthesized, a hydrogel shell with the desired composition and properties is added. In a 

typical reaction, the core particles are heated to a temperature above the LCST of the 

polymer (commonly 70 ºC) and a monomer solution is added to make up the shell 

composition. The mixture is purged with N2, and subsequently initiated via the addition 

of persulfate (APS/KPS) and reacted for several hours. Collapsed microgel cores are 

hydrophobic under these reaction conditions (above the LCST of the polymer), which 

promotes the capture of any oligomers formed in solution.  It is important to note that the 

“seed and feed” method requires all oligomers formed in the reaction to precipitate on 

preformed core particles, otherwise homonucleation of the shell polymer may occur 

where a second population of microgels is generated. To prevent the homonucleation of 

shell polymer, optimization is required with respect to the concentration of core particles, 

initiator, surfactant, and shell monomer. To achieve small particle sizes desired for 

intravenous application (! 100 nm in diameter), syntheses are performed with stabilizing 

agents added to the system, such as ionic surfactants. Stabilizing components prevent 

hydrophobic nuclei fusion during precipitation polymerization, thereby promoting 

particle growth mainly by oligomer or monomer addition.47  

1.3 Physicochemical Properties of Core/Shell Nanogels 

In previous sections, the versatility of microgels and nanogels was briefly 

described. Through modification of the monomeric components, cross-link density, and 

other synthetic conditions, a great diversity of microgel species may be generated with 

unique and often complex physicochemical properties (e.g. swelling or stimuli-
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responsivity). In this section, the influence of shell addition on the behavior of microgels 

is described. For example, we have demonstrated that an added shell can reveal cross-

linker heterogeneity within the particle,62 induce core compression, and modulate the 

swelling kinetics and thermodynamics of the resulting microgels. An understanding of 

these characteristics is critical in the design and application of core/shell microgels. 

1.3.1 Swelling Thermodynamics 

The original core/shell microgels reported by Jones et al. displayed stimuli-

responsive behavior and swelling properties that were dependent on the distribution of 

functional groups within the architecture.63 Specifically, the location of acidic 

comonomers such as Acrylic Acid (AAc) significantly affected the VPTT of the resulting 

microgel. For example, core particles composed of pNIPAm-AAc showed pH-dependent 

swelling behavior, and had higher VPTT values as the pH was increased from 3.5 to 6.5. 

These results were attributed to the increased osmotic pressure and Coulombic repulsion 

caused by the deprotonation of AAc and ingress of solvated ions, which increases 

swelling and inhibits chain collapse.64-65 However, the swelling behavior of pNIPAm-

AAc core particles was significantly modulated through addition of a pNIPAm shell. 

After a shell was added, two phase transition temperatures were observed. Whereas the 

magnitude of shell collapse at 32 °C was strong, the extent of core collapse was greatly 

hindered. The VPTT associated with the core was greatly depressed at pH 6.5 due to 

shell-dominated behavior.63 This behavior was attributed to a compression effect caused 

by shell addition, which decreases the average inter-chain distance in the core, and thus 

depressed core VPTT values. When pNIPAm-AAc was conversely localized in the 

particle shell (with a pNIPAm core), the pNIPAm core had less influence over the 

swelling of the pNIPAm-AAc copolymer shell. When localized in the shell, less physical 

restriction to pH-induced swelling was observed for pNIPAm-AAc.63 
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These studies revealed the complexity of the phase transition behavior of 

core/shell particles. For constructs composed of different hydrogel components, the 

physicochemical properties of the resulting microgel cannot be easily anticipated through 

the sum of the individual hydrogel properties. Instead, it is the exterior of a microgel that 

takes a dominant role in the thermodynamics of particle collapse. The microgel periphery 

is typically involved in the initial stages of the phase transition, which likely causes this 

behavior.66-67 Thus, the chemistry of the shell has mechanical and chemical influence 

over the solvation of the core compartment.68 

1.3.2 Network Heterogeneity and Core Compression 

As described in previous sections, the presence of cross-linking agents in 

synthesis is critical for network stability. For example, microgels synthesized via 

precipitation polymerization require cross-links to prevent polymer dissolution when 

cooled below the VPTT. Cross-linking is an important structural parameter not only for 

the basic mechanical properties of microgels systems (degree of particle solvation, 

equilibrium swelling volume), but also for the density (mesh size) and dimensions 

(hydrodynamic diameter) of the resulting particles.69-70 Since the distribution of segments 

within the network is heavily influenced by the amount of cross-linker used in synthesis, 

we cannot easily consider microgels as homogenous spheres. For instance, lightly cross-

linked pNIPAm particles (< 7 mol% BIS) show a radial distribution of cross-links 

throughout the particle. Particles of this type are typically described through a “gradient 

model”, since cross-linker distribution is highest near the particle center. This effect is 

caused by a faster incorporation rate of BIS during particle growth, resulting in an 

inhomogeneous distribution of cross-links.44, 70-71 In contrast, particles with higher cross-

linker content (> 7 mol% BIS) are not effectively described by the gradient model.72 

Instead, these microgels resemble a compact gel particle, with perhaps a more random 
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distribution of highly cross-linked regions. These particles typically show less network 

solvation, swelling, and a higher internal density of polymer chains. 

The morphology of microgel particles is further complicated by the addition of a 

shell compartment. Specifically, adding a shell via the “seeded” precipitation 

polymerization scheme often induces compressive forces on the core. Depending on the 

morphology of the core particles, the magnitude of compression may vary. For example, 

Jones et al. showed that for loosely cross-linked particles, the size of resulting core and 

core/shell particles below the VPTT were identical.73 Evidence of shell addition is only 

seen when the two particles are compared in the collapsed state (above the VPTT). For 

this particle type, shell addition restricts the swelling of the core, resulting in a core 

compression effect. In contrast, when higher cross-link density (10 mol% BIS) particles 

are employed as the core, a size increase was observed at all temperatures following shell 

addition.73 These data suggest that core particles containing fewer cross-links are 

perturbed to a larger extent through shell addition than highly cross-linked microgels. 

Multiple other factors influence the magnitude of compression induced by a shell, 

including the presence of charge in the core,73 and the overall thickness of the added shell 

layer.74 By increasing the amount of monomer present during shell addition, Jones et al. 

modulated the thickness of the resulting shell.74 For loosely cross-linked microgels (~2 

mol% BIS), particle size increased systematically as a function of shell thickness at 

temperatures both above and below the particle VPTT. However, the size increase was 

much more apparent for particles in the collapsed state, which suggests shell-restricted 

swelling (or compression) of the cores.74 Particles with a higher cross-link density (~10 

mol% BIS) showed less perturbation of the core swelling. For the loosely cross-linked 

microgels, Jones et al. showed that the shell thickness decreased the ability of the core to 

swell to its original volume.74 A similar effect was observed for the higher cross-linked 

system, but the effect was less pronounced. 
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1.4 Factors influencing biocompatibility and targeting 

In subsequent chapters of this dissertation, nanogels are described that were 

rationally designed to be effective carriers for proteins and small interfering RNA 

(siRNA) via intravenous routes of administration. To motivate that work, it is important 

to describe the factors influencing the biocompatibility of the nanogel, and methods to 

target tumors intravenously. 

1.4.1 Nanoparticles and The Mononuclear Phagocytic System 

The intravenous administration of targeted nanocarriers is an attractive option for 

the treatment of cancer, where particles in circulation will reach malignant sites 

regardless of their location in the animal (e.g. metastatic tumors). However, the ability of 

a nanogel to effectively target and deliver cargo depends on whether it can circulate long 

enough to reach its therapeutic site of action. The dimensions of the polymeric material 

have a significant impact on blood circulation time and the overall bioavailability.29, 75-80 

For example, materials below approximately 50,000 Daltons can be cleared through the 

kidney.25 This mass correlates to a particle size of roughly 5-10 nm, resulting in rapid 

removal through organ extravasation and renal clearance. Particles above this regime are 

more likely cleared through the mononuclear phagocytic system (MPS) (also known as 

the reticuloendothelial system).80   

The MPS is one of the largest biological barriers for virtually all long-circulating 

nanoparticles in development. This process involves monocytes and macrophages, which 

are primarily assembled in MPS-related organs such as the spleen, liver, and lymph 

tissue. The primary function of these cells is in the recognition of foreign materials, in 

circulation. Nanoparticles are affected by the MPS almost immediately upon intravenous 

injection, where serum proteins begin interacting with the surface of the nanocarrier.81 

When a nanoparticle encounters blood serum proteins (opsonins), there is a tendency for 

the protein to stick to the particle through various attractive forces (including van der 
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Waals, electrostatic, ionic, and hydrophobic).25 This process is known as opsonization, 

which makes the nanoparticles much more visible to phagocytic macrophages.  

Additionally, integrin receptors on macrophages bind a variety of extracellular matrix 

components and blood proteins (fibronectin, vitronectin) or IgG and IgM antibodies.82 

Finally, ligand-receptor complexation may be mediated by the presence of active 

cytokines and growth factors. Clearly this is a biologically complex process, where the 

specific relationship between the physicochemical properties of the polymers, opsonins, 

macrophages, inflammatory cytokines and growth factors is not fully understood.83  

In general, there are two types of the mononuclear phagocytes responsible for 

MPS clearance; circulating monocytes of peripheral blood and fixed, non-circulating 

tissue macrophages found throughout the body. These non-circulating cells include 

Knupffer cells of the liver, histocytes in multiple tissues, and phagocytes of the spleen.30 

Once associated with opsonins, macrophages may engulf the foreign material by 

phagocytosis, resulting in enzyme secretion along with other oxidative-reactive chemical 

factors to break down the phagocytosed material. 

1.4.2 Size and Surface Modification for Enhanced Delivery 

Particle size is an important factor in the biodistribution of the material. As 

previously described, materials with a hydrodynamic diameter less than 5 nm (or 50,000 

Da, conservatively), will be removed from the body by the renal system. Particles with 

diameters significantly larger (~200 nm) demonstrate longer circulation times, where 

clearance occurs through spleen sequestration and mechanical filtration, and will 

eventually be removed by the MPS.29, 77 Particles in the range of 10–70 nm have been 

considered ideal for long circulation since they are large enough to penetrate smaller 

capillaries in various body tissues and typically have longer circulation times than similar 

materials of larger dimensions.29, 76, 84 If we consider the fact that particles smaller than 

100 nm may be enclosed within endocytic vesicles,85 it becomes clear that particles 
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within the size range from 10 – 100 nm may be ideal for circulation, accumulation at sites 

of interest and may participate in endocytosis at the tumor site. 

The physical and chemical properties of the nanoparticle surface play an 

important role for protein adsorption. Extensive efforts have been made in elucidating the 

mechanism by which opsonins adhere to polymers, and techniques to minimize or slow 

the opsonization process. As described previously, opsonins adhere to nanoparticles 

through interactions of varying strength.25 The importance of the 

hydrophilic/hydrophobic nature of particles has been observed, where proteins seem to 

have a higher binding affinity for more hydrophobic surfaces.86-87 Additionally, ionic 

character on the nanoparticle surface may dramatically affect opsonization. For example, 

Tabata et al. have demonstrated the role of nanoparticle surface charge density on the rate 

of phagocytosis in vitro. Phagocytosis is enhanced as the absolute value of zeta potential 

increases for both negative and positively charged surfaces on the delivery vehicle.88 In 

consideration of nanogel circulation, the physicochemical properties of the particle must 

be considered if opsonin adhesion is to be reduced. 

A common method used to slow opsonization is to graft certain polymers to the 

surface of the nanoparticle, shielding electrostatic and hydrophobic interactions. Multiple 

species of long hydrophilic polymer chains and non-ionic surfactants have been 

employed with varying success, including polysaccharides, polyacrylamide, poly(vinyl 

alcohol), poly(N-vinyl-2-pyrrolidone), and poly(ethylene glycol).25 These polymers have 

a high hydrophilicity, are very flexible, and may be capable of shielding hydrophobic and 

charged particles from blood proteins. Of the multitude of polymers investigated for 

shielding properties, the most commonly employed and effective material is 

poly(ethylene glycol) (PEG), and PEG-containing copolymers. PEG is an uncharged, 

hydrophilic, and non-immunogenic polymer that can be grafted, copolymerized, or 

adsorbed in the synthesis of polymeric materials.89-90 The incorporation of PEG may lead 

to an enhancement in biocompatibility and enhanced stabilization of colloid materials. 
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The properties that PEG may impart on the nanomaterial is largely dependant on the 

molecular weight, density, conformation, and flexibility of the chains.91-92 As can be seen 

in Figure 1.3, density of PEG on the periphery of a particle contributes to it’s 

conformation. 

 

 
Figure 1.3 Schematic representation of PEG brushes on the periphery of a nanoparticle.  
Low coverage (a) leads to a “mushroom” topography, whereas high coverage (b) 
contributes to a “brush” configuration of PEG. Adapted from Ref 91. 
 

There have been several theories proposed to explain the mechanism of protein 

resistance and the described “stealth” effect caused by PEG incorporation. For example, 

the hydrophilic and flexible nature of the PEG chains allows them to take on an extended 

conformation in solution. As proteins interact the surface of the particle they encounter 

extended surface PEG chains and attempt to compress them into the particle. The PEG 

chains are being forced into a higher energy, compressed, conformation which causes an 

opposing repulsive force that effectively blocks or repulses the incoming protein.91-92 If 

the thickness of the PEG coating is sufficient, opsonization may be hindered in vivo.  

1.4.3 Active and Passive Cellular Targeting 
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Intravenously injected particles are commonly targeted to tumors through the 

enhanced permeability and retention effect (EPR).93 Through EPR, the size of 

nanoparticles may allow their passage through characteristically leaky vasculature around 

tumor sites,94 where pores between endothelial cells may allow the extravasation of 

nanoparticles introduced systemically. Localization may be significantly enhanced by 

incorporation of targeting moieties on the surface of the carrier (e.g. peptides, aptamers, 

antibodies/antibody fragments, small molecules). Malignant cells may specifically 

recognize these ligands and imbibe the nanoparticle by receptor mediated endocytosis. 

This section describes these targeting strategies, and methods to enhance localization and 

decreased accumulation in healthy tissues. 

As cancerous cells replicate at a high rate, vascular tissue must also form rapidly 

to provide nutrients for the cancerous region. This process is known as angiogenesis, and 

is important for the development of tumor mass. Before neovascularization, endothelial 

cells are barely dividing since only about 1 in 10,000 cells undergo cellular division at 

any given time.95 As angiogenesis occurs, the rate of endothelial cell division increases 

enormously (about 50-fold).96 During this process, endothelial cell growth will require 

the reorganization of the extracellular matrix, where cell growth will migrate toward the 

source of angiostimulatory molecules (i.e. tumor cells). For healthy cells, the growth of 

vasculature is self-limited through the production and release of angioinhibitory 

molecules. The regulated growth of healthy tissue results in a well-constructed tubular 

network of endothelium with very small pores between cells (~2 nm).97 However, this 

equilibrium between stimulatory and inhibitory molecules may be disrupted for tumors. 

The accelerated rate of growth of vasculature at tumors facilitates carcinogenesis, but 

also results in tissues that are physically very different from healthy cells. 

Tumor vasculature is characteristically highly permeable or “leaky”, 98 with pores 

ranging in size from 200 nm to 1.2 µm.99 In addition, lymphatic drainage from the 

interstitial tissues within the tumor is commonly hindered.100 This leaky nature of cancer 
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was observed by Maeda et al. in the late 1980’s, where biocompatible macromolecules 

had a tendency to accumulate at higher concentrations at tumor sites than healthy 

tissues.93, 101 In their mechanistic explanation of the phenomenon, Maeda coined the term 

enhanced permeability and retention.48, 93, 100, 102 As a result, polymer drug carriers were 

designed to exploit EPR to selectively deposit at cancer sites. For example, particles of 

appropriate size and biocompatibility may circulate for extensive periods of time and 

deposit through leaky pores in neovasculature. As shown in Figure 1.4, accumulation is 

additionally promoted by poor lymphatic drainage from the region of tumor cells.  

 
Figure 1.4 Schematic illustration of combined passive targeting (via EPR) and active 
targeting within tumor tissues. Adapted from Ref 98. 
 

The result of the EPR effect is a possible outlet for passively targeting 

nanoparticle drug carriers to tumor sites. Through this targeting, the overall systemic dose 

needed for many therapeutics may be lowered. However, improved therapeutic efficacy 

and reduced toxicity may be achieved by targeting specific cell surface interactions. This 

is typically done through the surface conjugation of targeting ligands. 

In addition to the vasculature environment, the surface of cancer cells is often 

unique and can be exploited by drug delivery vehicles for more effective targeting. Solid 
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tumors characteristically overexpress specific antigens or receptors on their surface, 

including epidermal growth factor (EGF),103 TRAIL receptor,104 folate receptor,105 and 

others.106-107 By functionalizing the surface of nanoparticles with targeting molecules 

such as antibodies, peptides, or aptamers, the receptor mediated uptake pathways of 

cancer cells may be exploited.108-112   

Folate Targeting 

Folic acid (or vitamin B9) plays an important role in the biosynthesis of 

nucleotide bases and is consumed rapidly during cellular proliferation. In general there 

are two mechanisms by which cells obtain folate, either through the folate carrier or by 

action of the folate receptor. While the folate carrier is present in virtually all cells and is 

the primary pathway for folate uptake, the folate receptor is typically on polarized 

epithelial cells and activated macrophages.113  This receptor is responsible for 

preferentially binding and internalizing oxidized folates by receptor mediated 

endocytosis. Cancer cells frequently overexpress this receptor, which may enable 

diseased cells to compete for folate when scarce.114 Folate is an attractive targeting 

molecule for several reasons, including its specificity to cancer cells, high binding 

affinity (KD ~ 10-10 M), small size, stability in storage, low cost, and availability.113, 115 

There are several examples of the targeting of macromolecules and nanoparticles 

utilizing folate bioconjugation.113, 116,117 For example, by decorating the surface of 

temperature-responsive pNIPAm-based nanogels with folate, uptake was readily 

observed in vitro in the presence cancer cells that overexpress the folate receptor.117 In 

this case, the targeting molecule was covalently tethered to the amines of the shell of a 

core/shell nanogel construct. Furthermore, these particles exhibited thermal cytotoxicity 

when at elevated temperatures (above their volume phase transition temperature).117 

Another example includes the folate-nanogels recently developed by Vinogradov et al., 

which also demonstrated the efficiency of folate targeting in vitro.118 Transcellular 
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transport of their folate-conjugated drug carrier was found to be four times more effective 

than using the drug alone in their cellular model system.  

Galactose Targeting 

Like folate, galactose-based targeting of nanoparticles may be a promising route 

for active cell targeting, specifically for malignant tissues localized in the liver.119-120 This 

sugar has a specific binding affinity to asialoglycoprotein receptors in the HepG2 human 

hepatoblastoma cell line. By conjugating galactose to the surface of pNIPAm-co-AA 

nanogels, Choi et al. showed a drastic increase in uptake by receptor-mediated 

endocytosis into blastoma cells.121 Due to particle temperature responsivity, this group 

also investigated the temperature-dependent uptake of their nanoparticles. The uptake 

efficiency was found to increase at elevated temperatures, which may be a result of 

particle deswelling of above the volume phase transition temperature of the polymer.121 

Transferrin Targeting 

Through conjugation of nanogels (nano-PEG-cross-PEI) bioconjugated with 

insulin and transferrin molecules, Vinagradov et al. demonstrated the efficient delivery of 

oligonucleotides across a model blood brain barrier (BBB).122 Through incorporation of 

poly(ethylene glycol), circulation times of nanogels was increased, resulting in an 

increased exposure to the BBB. Although the BBB is impermeable to macromolecules, it 

has been suggested that nanoparticles at this size scale may participate in receptor-

mediated transcytosis in BBB without violating the integrity of the tight junctions of the 

brain microvascular endothelial cells.122  

Peptide targeting 

Small peptides (6-20 amino acids) are powerful targeting molecules when 

conjugated to nanoparticle drug carriers. Their ease of synthesis, well-defined and 

efficient chemical reactions for linkage to nanoparticle surfaces, and decreased likelihood 
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of generating a harmful immune response make them an attractive alternative to some 

other targeting moieties.112, 123-125 Certain peptides may mimic surface receptor ligands, 

allowing for direct targeting of nanoparticles to cells expressing the receptor target. This 

bioconjugation could promote the receptor-ligand mediated endocytosis of nanoparticles 

and enable a pathway for uptake by target cells. 

There are several examples of efficient targeting through peptide bioconjugation. 

Recently, Wolf et al. demonstrated the delivery of small interfering RNA molecules 

(siRNA) to tumor bearing mice through the bioconjugation of RGD (Arg-Gly-Asp) to 

PEG-PEI nanoparticles.126 In another example, Becker et al. bioconjugated the protein 

transduction domain (PTD) from the HIV-1 Tat protein to their polymer micelle drug 

delivery vehicles.127-128 The bioconjugation employed in both examples increased the 

efficiency of cell penetration for the nanoparticles. 

1.5 Outlook 

This chapter reviewed some of the chemical features that influence the efficacy 

and the biocompatibility of nanomaterials for intravenous injection. The list of features 

needed in a single vehicle is exhaustive, whereas optimizing all of those factors together 

is a monumental task. At the onset of this dissertation work, nanogels were recognized as 

a promising opportunity to meet this challenge. Using the synthetic tools developed by 

Lyon and coworkers, nanoparticles may be synthesized with unique hydrogel 

compartments, each with designed chemical features for intravenous drug delivery (e.g. 

for improved targeting, stealth, toxicity, biodistribution, erosion/clearance, and controlled 

release). Thus, nanogels were investigated in this disseration as a “tunable” platform for 

generating multifunctional delivery vehicles. 
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CHAPTER 2 

LIGHT SCATTERING AND COMPLEMENTARY TECHNIQUES 

2.1 Introduction to Analytical Methodologies 

When investigating nanoparticles for drug delivery, there are a number of 

physicochemical metrics that are of interest, including the size, shape or aspect ratio, 

purity, chemical composition, surface charge, and the stability of the particles to name a 

few. Among those metrics, the size and size distribution for nanostructures are important, 

often dictating the biological activity and the fate of the particle. Perhaps the most 

common means to assess nanoparticle dimensions is Dynamic Light Scattering (DLS), 

where diffusion coefficients are measured from the time-dependent fluctuations of 

scattered light in solution. The particle rh is subsequently calculated via the Stokes-

Einstein relation.  Alternatively, the material may be deposited on a surface and imaged 

by an optical, electron, or probe microscopy.  Although microscopy is a powerful tool for 

sizing, some samples can yield misleading results when the sample preparation method 

affects particle swelling (e.g. dehydration) or if sample-substrate interactions disrupt the 

particle dimensions. In addition, detailed assessment of multicompartment nanogels and 

microgels is challenging through those approaches. As an example, two polymeric 

particles of identical rh may have very different molar mass and density values that may 

influence their performance in vivo. 

In this dissertation, light scattering tools are frequently described for assessing the 

physical characteristics of nanogels and microgels. Using Multiangle Light Scattering 

(MALS), the weight-average molar mass (Mw) and root-mean-square radius (rrms) of 

particles was measured. This brief chapter serves the other sections of the dissertation, 

describing some basic theory behind molar mass measurements. Asymmetrical flow 

field-flow fraction (A4F) and Composition Gradient Static Light Scattering (CG-SLS) 
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were also used throughout this work to complement MALS detection. Basic theory of 

practice is described for those techniques as well. 

2.2 Multiangle Light Scattering of Colloidal Dispersions 

When the oscillating electric field of light encounters a very small particle 

suspended in a homogenous medium (e.g. air, water), the radiation induces an oscillating 

dipole moment in the particle with a magnitude proportional to the strength of the field 

and the polarizability of the scatterer. If we were to place a series of detectors around a 

solution of those particles (being illuminated with polarized laser light), one would notice 

that the intensity of scattered light is equal at all scattering angles (in the plane 

perpendicular to the polarization of the incident light).  For the scattered light, the 

intensity can be represented by the ratio of the intensity of scattered light I over the 

intensity of the incident light I0 according to Eq. 2.1 (the Rayleigh equation for plane 

polarized light).1 

 

Eq. 2.1    

! 

I
I0

=
16" 2# 2 sin2$

%4r2
 

 

Since the intensity of scattering is proportional to the polarizability of the particle 

(!), and the polarizability correlates with mass, light scattering may be used to measure 

the molar mass of various polymers in solution. In order to utilize these principles to 

calculate the molar mass of scatterers, some assumptions must be made regarding the 

nature of the light scattering (i.e. the Rayleigh approximation). For the Rayleigh 

approximation, the electric field of the incident wave is assumed to be homogeneous 

within the particle. Thus, the particle must be significantly smaller than the wavelength of 

incident light. The particle is also assumed to respond instantaneously to the oscillating 

electric field, and that the light does not slow down appreciably within the particle (a 
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more complete description of the Rayleigh-Gans-Debye approximation is provided in 

Section 2.2.1).2 When these two criteria are assumed, the particle will act as a single 

dipole oscillating in-phase with electric field and will scatter light at all angles. The 

scattering angle (!) is defined in Scheme 2.1. 

 

 
 

Scheme 2.1. Definition of scattering angle. Adapted from ref 2. 

 

For dilute solutions of polymers in a typical experiment, intensity is quantified by the 

Rayleigh ratio (R(!)). The physical  meaning of R(!) is the attenuation of the incident 

beam by the loss of intensity after passage through a medium.1 

Eq. 2.2   

! 

R "( ) =
I
I0
x

r1

sin2 #  

 

where I is the intensity of the scattered light, I0 is the intensity of the incident light, r is 

the distance between the detector and scattering volume, and 

! 

"  is the angle between the 

plane of polarization of the incident light, and the plane defined by the incident and 

scattering beams. Thus, for small scatterers in solution with a mass concentration c, the 

weight average molar mass (Mw) of the polymer can be derived through Eq. 2.3 

 

Eq. 2.3   

! 

R "( ) = KcMw   
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The optical constant K is defined by Eq. 2.4, 

 

Eq. 2.4    

! 

K =
4" 2n0

2V (dn /dc)2

#4NA  

 

where n0 is the refractive index of the solvent, dn/dc is the refractive index increment of 

the scatterer, V is the volume of the sample, and NA is Avogadro’s number. It is important 

to note the importance of the dn/dc in these relationships. The refractive index increment 

of particles is a result of the local polarizability of atoms within the macromolecule due 

to the displacement of electrons about their nuclei. For proteins and many peptides, the 

dn/dc value may be accurately predicted based on the amino acid composition of the 

molecule (typically averaging ~0.190 mL/g).3 However, without accurate assessment of 

chemical composition for polymers and proteins, the dn/dc must be determined 

empirically.  

2.2.1 Scattering from nanoparticles 

When particles are not small relative to the wavelength of the incident beam (i.e. 

nanogels and microgels), a large amount of destructive interference occurs that reduces 

the intensity of scattered light when ! > 0. In the following section, several relationships 

are described which quantitatively interpret this interference to yield size information (in 

addition to molar mass) for large particles. For a basic understanding, it is useful to 

review the Rayleigh-Gans-Debye (RGD) model.2 As described earlier for small 

scatterers, we must assume that the incident light wave is unaffected by the scattering 

molecule. More specifically, the refractive index of the molecule is close to the refractive 

index of the solvent and the total phase shift of the light passing through the molecule is 

negligible (Eq. 2.5) 
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Eq. 2.5.  

! 

m "1 <<1 and 

! 

2kam "1 <<1 

 

where a is the size of the molecule (for spheres a denotes a radius), m is the refractive 

index of the scatterer relative to solvent (

! 

m = n /n0) and 

! 

k = 2"n0 /#.2 In contrast to small 

particles, we can consider a large particle as a collection of scattering subunits that each 

“experience” a homogeneous field. Each of the scattering units acts as a dipole scatterer, 

with an excitation and scattering that is independent of other subunits in the molecule. 

For a large particle, each unit scatters light with a different path length to the detector. 

Those differences in path lengths cause destructive interference due to phase differences 

in the scattered light, which ultimately reduces the intensity of light perceived by the 

detectors (Scheme 2.2) at all angles greater than zero. 

 
Scheme 2.2 Schematic illustration of the destructive interference for two scattering 
elements in a single particle. Scattered light (dashed wave) is detected at two angles 
relative to the incident beam (red). 
 

In Scheme 2.2, a particle is shown that is much larger than the wavelength of 

light. Within the particle are two scattering elements that act as Rayleigh scatterers 

(dipoles responding instantly to the oscillating electric field of the incident light, 

scattering in all directions). Light reaching the zero angle detector is thus a sum of the 

two scattered waves that are in phase (assuming the contribution from transmitted light is 
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neglected). Alignment of the phases is schematically depicted as a red line (Scheme 2.2). 

However, at greater angles the light reaching the detector is out of phase due to path 

length differences in the scattered light, resulting in destructive interference and a 

decrease in light intensity compared to low angles.  

The extent of destructive interference depends upon !. At ! = 0, the path lengths 

are equal and the destructive interference is negligible. The differences in intensity may 

be depicted through a scattering diagram (Scheme 2.3), representing the total intensity of 

scattered light (i.e. the sum of the polarized components of light scattered). 

 

 
Scheme 2.3 Scattering diagram shows the shape of the scattering intensity as a function 
of angle for both small (Rayleigh, isotropic scatterers) and large particles. 
 

As can be seen in Scheme 2.3, destructive interference occurs for large particles at all 

angles other than ! = 0. In the limit of low scattering vector (

! 

q = 4"n0 sin(# /2) /$), where 

the wavelength is large and scattering angle is low, the observed interference can be 

quantified by the form factor P(!). 
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Eq. 2.6   

! 

P "( ) =1#
16$ 2rg

2 sin2(" /2)
3%2  

 

where rg is the gravimetric radius of the scattering molecule (also referred to as a root-

mean-square radius, rrms). The value of rg is determined through integration over all of the 

mass elements of the molecule with respect to the center of gravity.  There is often 

confusion regarding the subscript “g”, which is sometimes referred to as a “radius of 

gyration”. However, this is a misnomer since “gyration” refers to rotation about an axis in 

fixed space.4 The rrms may be more specifically defined in Eq. 5 for a molecule 

Eq. 2.7   
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< rrms
2 >=

ri
2mi

i
"

mi
i
"
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1
M
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"  

 
where ri is the distance of element mi from the center of mass of the molecule with total 

mass M. 

In order to calculate the molar mass value for large spheres, one must eliminate 

the effects of destructive interference (i.e. measure R(0)). Unfortunately, measurements 

of scattering intensity at ! = 0 are not possible since transmitted light dominates the 

detector signal. Instead, one measures the scattering intensity at multiple angles and 

extrapolates the intensity to zero angle. Previous work from Wahlund and coworkers has 

demonstrated the importance of the extrapolation method employed, where the Debye 

method for constructing the Debye plot was shown to be the most accurate for spheres.5 

Other common methods include the Zimm and Berry methods for constructing the Debye 

plot.6-8 For the Debye method, the Debye plot is constructed with 

! 

R "( ) /Kc  as the 

ordinate and 

! 

sin2(" /2)  as the abscissa (Figure 2.1). 9 
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Figure 2.1 Example Debye plot for a nanogel. 

 

Accounting for the form factor Eq. 4., the Mw and rrms for dilute solutions of polymers 

may be determined through the well-known relationship shown in Eq. 2.8. 

 

Eq. 2.8   

! 

R "( )
Kc

= MwP "( ) # 2A2M
2P 2(" )c + ... 

 

If the concentration of polymers is assumed to be dilute, the value of A2 becomes 

vanishingly small. Simplifying Eq. 5, and combining with Eq. 4, we arrive at the 

following relationship (Eq. 2.9) where the Mw may be derived from intercept of the 

Debye plot (0º scattering angle), whereas the rrms may be derived from the slope at the 

intercept.  

 

Eq. 2.9   
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In the case of nanogels, a linear fit procedure to the angle-dependent data in the Debye 

plot is sufficient for calculating Mw and rrms. As particle size is increased, the shape of the 

Debye plot changes, as reflected in Figure 2.2 for latex standards of varying radius. 

 

 
Figure 2.2 Size of polystyrene standards affects angular dependent fitting within the 
Debye plot. Particle radii represented include 0.0478 µm (red), 0.102 µm (orange), 0.200 
µm (green), and 0.326 µm (blue) with corresponding polynomial fitting shown (grey). 
 

Thus, for large nanoparticles and microparticles (>100 nm in diameter), polynomial curve 

fitting using the least-squares method is used to extrapolate to zero angle.  

2.3 Asymmetrical Flow Field-Flow Fractionation 

Asymmetrical flow field-flow fractionation (A4F) is frequently used in the 

separation of macromolecules, including nanoparticles and proteins.10-17 Selectivity of 

separation is based on differences in solute diffusion coefficients, making A4F capable of 

separating a very broad range of macromolecule molar masses. Since A4F channels are 

open structures, typically ~100-500 µm thick, samples can often be run without filtration. 

The channels lack a physical stationary phase, which greatly reduces shear forces that can 

lead to degradation for high molar mass polymers. By separating a single population of 

particles, A4F further enables the assessment of particle size distributions. Instruments 
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are commonly composed of an impermeable upper plate that is separated from a porous 

membrane by a spacer of defined thickness (Figure 2.3).  

 
Figure 2.3 Instrument geometry for asymmetrical flow field-flow fractionation. 

 

For the instrument configuration employed in this work, the spacer is 350 µm. The 

porous membrane is composed of regenerated cellulose (10,000 MWCO) and is 

supported by a porous frit and a lower plate below, forming a ribbon-like channel. 

Laminar flow of eluent through the channel results in a parabolic flow velocity, where the 

flow rates are slowest near the membrane (accumulation wall) and the impermeable 

upper plate (Scheme 2.4).18  

 
Scheme 2.4 Mechanism of separation via asymmetrical flow field-flow fractionation. 
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For A4F, a field is generated by pumping eluent through a permeable lower plate, 

which is covered by an ultrafiltration membrane.16 This applied field-flow (cross-flow) is 

perpendicular to channel flow, driving injected particles towards the membrane 

(accumulation wall). In a typical separation scheme, particles are consistently driven 

towards the accumulation wall by the cross-flow while thermal motion of particulates 

(i.e. Brownian motion) counteracts the field. As eluent is eluted, smaller particles assume 

a higher mean steady-state distance from the wall, and thus elute at a faster rate.10 In 

contrast, larger particles (with smaller diffusion coefficients) occupy regions closer to the 

accumulation wall and have greater retention in the channel.  

According to A4F theory, the retention times (tR) may be use to calculate the 

hydrodynamic radius (rh) for eluting particles (Eq. 2.10). 

 

Eq. 2.10   

! 

rh =
kT

"#t 0VCw
2 * tR

 

 

where ! is the viscosity of the mobile phase, Vc is the crossflow rate, w is the thickness of 

the channel, and t0 is the void time (time to elute an unretained solute from the channel). 
16 

 

 
 

Scheme 2.5 Trapezoidal channel geometry in A4F. 
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The channel void time may be calculated if the geometry of the accumulation wall is 

known (Scheme 2.5), using Eq. 2.11-12. 

 

Eq. 2.11  
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Eq. 2.12   

! 

V 0 = Atot *Height of Channel 

 

where Atot is the area of the accumulation wall, y is the area of the tapered end beside the 

inlet, A(z’) is the uncorrected area of accumulation wall (inlet to focus). Although the 

spacer has a defined thickness (350 µm), the actual channel height must be 

experimentally determined since instrument variables (i.e. membrane swelling) may 

change the actual value of w.  The value of w is measured by separating either a small 

globular protein of known rh (e.g. ferritin or BSA) or a latex standard bead and 

subsequently calculating the value of w from Eq. 2.10. The actual channel height is 

typically ~270 µm (regenerated cellulose swells ~80 µm above the frit).  

Although A4F theory may be applied to measure rh values from separations, 

experimental variables (temperature gradients, band broadening, membrane interactions, 

local viscosity heterogeneity in separation) and the frequent need for standards makes the 

measurements challenging.19-22 Instead, the A4F theory was applied in this dissertation 

work to assist in separation method development for a broad range of nanogel and 

microgel sizes. The eluting particles are conveniently detected by MALS, which is a 

powerful means to assess both the size and solution-average molar mass for a variety of 

macromolecules and nanoparticles (Section 2.2.). By coupling a concentration detector 

(e.g. differential refractometer, dRI) on-line, the Mw may be derived from the Debye plot, 

constructed using the Debye extrapolation method.5  

2.4 Composition Gradient Static Light Scattering 
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Composition gradient static light scattering (CG-SLS) is a convenient batch 

characterization technique to assess the Mw, rrms, and the second virial coefficient (A2) for 

dispersions of polymers and proteins. Developed by Allen Minton for rapid quantification 

of protein interactions, the technique has been enabling for biophysical measurements.23-

25 Using CG-SLS, stoichiometry and equilibrium association constants of reversibly 

associating complexes can be measured. Additionally, the controlled delivery systems 

can be applied for rapid measurements of polymer dn/dc. However, one of the current 

limitations of the technique is the amount of sample needed for characterization 

(especially for binding constants). For most low molar mass samples (proteins, peptides), 

~0.5 - 1 mg/mL quantities of material are typically required at large volumes. For 

example, assessment of equilibrium binding constants requires ~1 mL of each sample 

stock for a single replicate.23 However, for high molar mass polymers (such as microgels 

and nanogels) significantly lower concentrations are required.  

An example instrument configuration is shown in Scheme 2.6, consisting of three 

syringes pulling from three distinct reservoirs containing buffers or samples. The 

instrument is equipped with a degasser and filters in-line. For the instrument configured 

in Scheme 2.6, filters were excluded from syringe 2, which was equipped to deliver 

nanogels and microgels. 
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Scheme 2.6. Example schematic of flow system employed for particle characterization 
via CG-SLS. Buffers and reactants were placed in reservoirs R1-R3 and loaded into 
syringes S1-S3. Fluid was dispensed by the programmable tri-syringe pump, proceeding 
through inline 0.1 µm anodisc filters (F1, F2) and a static mixer before reaching the 
detectors. Filters were excluded from the syringe S2 flow line, containing microgel or 
nanogel samples. 
 

The tri-syringe pump system is computer controlled, allowing the user to predetermine 

the sample flow rates (composition gradients) that are administered to the sequential 

MALS and dRI detectors online.  

2.5 Outlook 

Together, the techniques described in this chapter permit the design of 

increasingly complex microgel and nanogel structures. For instance, using MALS, 

polymer loss from degradable structures can be assessed directly through changes in 

molar mass (Chapters 4 and 5). In another example, the loading of therapeutic 

macromolecules into the internal network of a microgel can also be monitored by the 

mass gained by the carrier (Chapters 6 and 7). These tools have also enabled new 

synthetic efforts, where shell addition to core particles can be evaluated by mass changes 

in the structures directly (Chapter 7). Overall, these analytical techniques enhanced 
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quantitative characterization within the dissertation, and will enable the design of many 

multifunctional particle structures in the future. 
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3.1 Introduction 

 Significant effort has been invested in the design of colloidal drug carriers in 

order to improve drug localization and bioavailability.1-3 Ideally, an actively targeted 

particulate drug carrier will increase the therapeutic efficacy of a drug by delivery to the 

diseased site, while reducing drug-associated side effects. Attainment of this goal would 

greatly advance treatment of diseases (e.g. cancer) where the toxic effects of therapeutics 

administered systemically may outweigh their benefit. To date, many types of delivery 

vehicles have been explored for in vitro and in vivo drug delivery applications, including 

inorganic nanoparticles,4-5 polyelectrolyte complexes,6 liposomes,7-8 block co-polymer 

micelles,9-11 and polymeric nanoparticles.12-15  

A particularly compelling phenomenon from the standpoint of cancer therapy is 

RNA interference (RNAi). RNAi is a relatively new approach to gene silencing, which 

has been demonstrated effective both in vitro and in vivo.16-17 This technique employs 

small 21-25 nucleotide long double stranded small interfering RNAs (or siRNAs) to 

inhibit gene expression through degradation of a targeted mRNA.18 Whereas the potential 

for therapeutic oncology applications exist where siRNA would be used to specifically 
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shut down genes necessary for tumor growth, the lack of efficient methods for in vivo 

siRNA delivery prevent widespread therapeutic use.16-17 As described in Chapter 1, 

intravenous delivery of siRNA is challenging due to its polyanionic nature and high 

molecular weight (~13 kDa), preventing transport across the cell membrane.16-17 Thus, 

effective siRNA carriers must enable efficient transport through the vasculature to the 

tumor, and then must additionally enable intracellular delivery of the cargo. A common 

method currently used for siRNA delivery in vitro employs cationic lipid-based carriers16-

17, 19 or polyelectrolytes.6 These charged moieties form polyplexes with the siRNA, 

forming aggregates that can be taken up into the cells, thereby delivering the siRNA to 

the cytosol. However, these carriers can have notable drawbacks with respect to toxicity 

and difficulties in specific cell targeting,16-17, 20 thereby giving rise to a need for 

alternative delivery methods. A number of new approaches have been reported that 

overcome some of the shortcomings of lipid-based approaches. For example, Schiffelers 

et al. used an RGD (Arg-Gly-Asp peptide ligand)-PEG-PEI complex to target siRNA to 

tumor neovasculature.21 Song et al. presented the use of a protamine-antibody fusion 

protein using the Fab fragment of HIV-1 envelope antibody for siRNA delivery.22 

Another targeting motif has been the use of liposomes in the form of an immunoliposome 

complex reported by Pirollo et al.23 A number of other similar approaches have been 

taken6, 20, 24-29 and these siRNA carriers have enabled certain degrees of success. 

However, issues of toxicity, leakiness, and payload capacity still persist, especially in the 

context of in vivo gene silencing.16-17 

 Building upon many of the lessons learned from these approaches, we and others 

have developed drug delivery methods that employ the synthetic hydrogel nanoparticle 

(nanogel).13, 15, 30-31 Nanogels possess a high degree of porosity, permitting a high payload 

capacity, and can also be selectively surface functionalized to enable tumor-specific 

targeting. Thus, we have developed straightforward, scalable syntheses of surface-

functionalized, ~100-nm diameter, core/shell nanogels composed of poly(N-
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isopropylmethacrylamide) (pNIPMAm),32-33 an amphiphilic polymer that is hydrated at 

physiological temperature and is likely therefore to resist protein adsorption relative to 

more hydrophobic carriers. This polymer has also garnered interest due to its dramatic 

thermoresponsivity; it undergoes an entropically driven coil-to-globule (swollen-to-

collapsed) transition at ~43 ºC, which may have utility for thermally-triggered delivery 

(Chapter 1).32-33 However, in the present chapter, this thermoresponsivity is only used to 

enable the synthesis of monodispersed core/shell nanogels via precipitation 

polymerization, as we have discussed previously.32, 34 The core/shell pNIPMAm nanogel 

construct used to encapsulate and deliver siRNA to ovarian cancer cells is illustrated in 

Scheme 3.1.  

 

Scheme 3.1 Non-covalent encapsulation of siRNA in peptide-targeted core/shell 
nanogels. 
  

A previously described 12 amino acid peptide (YSAYPDSVPMMS or YSA)35 

was coupled to surface of ~100-nm diameter core/shell nanogels to permit cell-specific 

targeting and subsequent delivery of high concentrations of siRNA to the target cells. The 

YSA peptide mimics the ligand ephrin-A1, which binds to the erythropoietin-producing 

hepatocellular (Eph) A2 receptor. In addition to specific expression in neovasculature,36-

37 EphA2 is highly expressed by a number of tumor cells including those derived from 

ovarian,38-39 prostate,40-41 breast,42-43 and colon44-45 cancers, making it an excellent target 

for tumor-specific delivery. This chapter demonstrates that pNIPMAm nanogels have a 
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high loading capacity for siRNA, and that these nanogels can be delivered to the 

cytoplasm of ovarian cancer cells via ligand-receptor binding mediated endocytosis. 

Importantly, overt cytotoxicity was not observed to arise from the nanocarrier, suggesting 

that this approach could be an efficacious one. In addition, delivery of siRNA to cells in 

culture can be performed in the presence of serum, suggesting that nanogels may be of 

particular advantage for in vivo delivery. 

3.2 Experimental Section 

3.2.1 Materials 

All materials were purchased from Sigma-Aldrich (St Louis, MO) and used as 

received unless otherwise noted. 

3.2.2 Nanogel Core Synthesis 

Nanogel core particles were synthesized by free-radical precipitation 

polymerization, as previously reported.32 The use of thermally phase separating polymers 

enables the use of precipitation polymerization for the synthesis of highly monodispersed 

nanogels.32 The molar composition was 98% N-isopropylmethacrylamide (NIPMAm), 

2% N,N’-methylenebis(acrylamide) (BIS), with a total monomer concentration of 140 

mM. The solution also contained a small amount (~0.1 mM) of acrylamidofluorescein 

(AFA) to render the nanogels fluorescent for visualization via confocal microscopy.30, 32 

In a typical synthesis, 100 mL of a filtered, aqueous solution of NIPMAm, BIS, and 

sodium dodecyl sulfate (SDS, 8 mM total concentration) was added to the reaction flask, 

which was then heated to 70 ºC. The solution was purged with N2 gas and stirred 

vigorously until the temperature remained stable. The AFA was added, and after 10 

minutes the reaction was initiated by the addition of a 1 mL solution of 800 mM 

ammonium persulfate (APS) to make the final concentration of APS in the reaction ~8 
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mM. The solution turned turbid, indicating successful initiation. The reaction was 

allowed to continue for 4 h under an N2 blanket.  

3.2.3 Nanogel Shell Synthesis 

The core nanogels described above were used as seeds for the addition of a 

hydrogel shell in a seeded precipitation polymerization scheme. The detailed procedure 

of the shell synthesis has been reported previously.32 Briefly, 10 mL of the core nanogel 

solution and 0.0577 g SDS were first added to a three-neck round-bottom flask and 

heated under N2 gas to 70 ºC. A 50 mM monomer solution with molar ratios of 97.5% 

NIPMAm, 2% BIS, and 0.5% aminopropylmethacrylate (APMA, Polysciences, 

Warrington, PA) was prepared in 39.5 mL of dH2O. The solution was added to the three-

neck round-bottom flask, and the temperature was stabilized at 70 ºC while continuously 

stirring. The reaction was initiated by a 0.5 mL aliquot of 0.05 M APS. The reaction 

proceeded for 4 h under N2 gas. Following the synthesis, the solution was filtered through 

Whatman filter paper, and the nanogels were purified by centrifugation followed by 

resuspension in dH2O. 

3.2.4 Nanogel Characterization 

Multiangle light scattering (MALS) (Wyatt Technology Corporation, Santa 

Barbara, CA) detection following asymmetrical flow field-flow fractionation (A4F) was 

used to determine the distribution of root-mean square radii (rrms) for all nanogels 

(Chapter 2). For all separations, a cross-flow of 0.30 mL/min was used with a channel 

flow of 1.0 mL/min. The MALS detector is equipped with a Peltier device to maintain a 

flow cell temperature of 25 °C and collects scattered light from 16 different fixed angles 

to determine the rrms of the nanogels. By measuring rrms as a function of elution time, we 

constructed a chromatogram that permits the determination of the weight fraction of 

nanogels as a function of radius, thereby providing a sample polydispersity. ASTRA 
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5.1.5.0 software was used to determine rrms values using the Debye fit method. The 

core/shell nanogels synthesized using the methods described above were determined to 

have rrms values of ~54 nm with size polydispersities of <10%, as described previously.32 

Characterization of the refractive increment (dn/dc) of nanogels was performed to 

determine particle molecular weight by static light scattering. Differential refractive 

index analysis (dRI, OptiLab rEX, Wyatt Technologies, Inc.) was performed in batch 

mode. To ensure accurate data, the refractive index was calibrated prior to each 

measurement using sodium chloride concentrations ranging from 0.1 mg/mL to 15.0 

mg/mL. All nanogel dilutions were prepared in dust-free vials, which were rinsed 

sequentially with deionized water, absolute ethanol, and HPLC-grade acetone. Nanogels 

were resuspended in distilled, deionized water over a concentration range from 2.5 ! 10-6 

g/ml to 3.75 ! 10-4 g/mL. The use of MALS in conjunction with the rEX differential 

refractometer permitted the measurement of the Mw from the determined dn/dc values and 

the angle dependent light scattering data. 

3.2.5 YSA synthesis  

The YSA peptide (YSAYPDSVPMMSC) was synthesized using standard Fmoc 

chemistry as described previously.46 Peptide synthesis was carried out by K.D. Clark, 

University of Georgia. Following synthesis, the peptide was cleaved from the resin and 

deprotected for 4 h in reagent K after air-drying. The peptide was purified using a series 

of 5 mL injections onto a preparatory HPLC column (10-m; particle size, 21.2 mm 25 

cm, Jupiter C18; Phenomenex Inc., Torrance, CA) using HPLC-grade H2O and a linear 

gradient of acetonitrile (0–70 min, 10–80%) at 5 mL per min. Both the acetonitrile and 

H2O contained 0.05% trifluoroacetic acid. The desired peak was identified by matrix-

assisted laser desorption ionization time-of-flight mass spectrometry, and the peaks from 

multiple runs were pooled, lyophilized, and stored at 4 ºC in solid form. A scrambled 

form (SCR) of the YSA peptide (DYPSMAMYSPSVC) was also synthesized via this 
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method for use as a control. On other occasions, the YSA and SCR peptides were 

purchased from GenScript Corp (Piscataway, NJ).  

3.2.6 Peptide Conjugation 

In this study we produced a maleimide-functionalized nanogel through the EDC 

coupling of !-maleimidocaproic acid (EMCA) to the primary amines in the shell of the 

nanoparticle. As described in the nanogel shell synthesis, primary amines were 

introduced through the copolymerization of APMA (0.5% molar ratio). Given that 

APMA is efficiently incorporated at these low molar ratios, we can estimate the amine 

equivalents available for bioconjugation (~2.2 " 10-6 amines per 88.3 mg of lyophilized 

particles). From this estimate, peptide coupling was performed by introducing YSA 

peptide in a 1:1 molar ratio with amine (YSA molecular weight = 1450.66 g/mol). The 

YSA peptide was then conjugated to the nanogels via maleimide coupling to the cysteine 

residue on the C-terminal end of the peptides.  

First, 88.3 mg of nanogels (~2.2 " 10-6 amine equivalents) was resuspended in 

35.0 mL of pH 6.0 MES buffer and allowed to shake for 2 hours. A second solution was 

prepared where 4.4 " 10-6 moles (0.68 mg) of 1-ethyl-3-methyl-(3-dimethylaminopropyl) 

carbodiimide (EDC, Pierce, Rockford, IL), 4.4 " 10-6 moles (0.96 mg) N-

hydroxysulfosuccinimide (NHSS) and 2.2 " 10-6 moles (0.46 mg) of EMCA were 

dissolved in 3.0 mL of pH 6.0 MES buffer. This solution was reacted for 30 min at room 

temperature to activate the EMCA acid groups, which permits amide coupling to take 

place between the EMCA acid groups and the amines on the nanogel surface. This 

activated EMCA solution was then added to the nanogel solution and reacted for 2 h on a 

shaker table. The nanogels were centrifuged 3 times to remove any unreacted material, 

with resuspension in pH 6.0 MES buffer following each centrifugation. Finally, 3.2 mg of 

the appropriate peptide was added to the activated nanogels and reacted overnight. 
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Peptide-functionalized nanogels were purified by centrifugation and resuspended in 

distilled, deionized water.  

The number of bioconjugated YSA targeting peptides per particle was estimated 

by considering the number of primary amines available for conjugation and the number 

density of nanogels used during bioconjugation (as measured by static light scattering). 

Through differential refractometry, the nanogel refractive increment was determined to 

be 0.176 ± 0.002 mL/g. Measurement through MALS detection provided the molar mass 

of non-conjugated particles, Mw = 2.19 ! 107 g/mol (1º Debye fitting, 0.1% fit error). 

Thus, a total mass of 88.3 mg of lyophilized particles used during conjugation is 

equivalent to 2.43 ! 1015 particles. Assuming a 50% peptide conjugation efficiency47 and 

2.2 ! 10-6 amine equivalents available for bioconjugation, we conservatively estimate a 

peptide density of ~225 YSA peptides/particle. 

3.2.7 In vitro siRNA Encapsulation and Release 

Our group employs a “breathing-in” method for the encapsulation of various 

macromolecules within nanogels. In a typical method, lyophilized nanogels are 

resuspended in an aqueous solution containing the macromolecule to be loaded. 

Importantly, this is done using a loading solution volume that is almost completely 

imbibed by the swelling nanogels. In this fashion, the hydrogel network imbibes the 

payload with high efficiency and without relying on simple equilibrium partitioning to 

determine the maximum loading level. To determine the rate of siRNA release from 

nanogels loaded in this fashion, a mixture of oligonucleotide was prepared containing 

0.250 mL of 20 µM siGLO red transfection indicator and 1.00 mL of 20 µM siGENOME 

Lamin A/C control siRNA (Dharmacon, USA). Particles were resuspended in this 

mixture at a concentration of 4 mg per 250 µL siRNA solution. This concentration of 

particles is near the solubility limit for the nanogels in PBS, ensuring a high degree of 
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solvent and solute uptake into the hydrogel network. The particles were allowed to 

resuspend for 12 hours at room temperature while shaking. 

The encapsulation efficiency was determined via ultracentrifugation of the 

nanogel loading solution and measurement of supernatant siRNA concentration by UV-

vis spectroscopy (Shimadzu UV-1601). The moles of siRNA in the loading solution 

(msiRNA, Loading) and in the supernatant (msiRNA, Supernatant) were determined via interpolation 

from a separately constructed standard curve of absorbance vs. concentration (R2 > 0.99). 

The encapsulation efficiency (EE) of the system could then be calculated through 

analysis of the amount of siRNA in the loading solution and the remaining moles of 

siRNA in the supernatant after nanogel swelling was complete, as illustrated by Eq. 3.1 

and in similar encapsulation experiments.48  

 

Eq. 3.1   

! 

EE =
msiRNA,  Loading " msiRNA,  Supernatant

msiRNA,  Loading

#100  

 

The release of solutes from nanogels was performed in 10% serum to simulate 

physiological conditions. Release experiments were performed by dispersing 200 µL of 

loaded nanogels in 2.20 mL of 0.01 M phosphate buffered saline containing 10% fetal 

bovine serum (equilibrated at 37 ºC) in 3.2 mL polycarbonate centrifuge tubes (Beckman 

Coulter, USA). The nanogel suspension was allowed to incubate at 37 ºC while shaking. 

At specific time points, the tubes were centrifuged for 90 min at 687 000 ! g (at 37 ºC), 

and an aliquot of supernatant (0.75 mL) was removed for UV-vis analysis. This volume 

was replaced with fresh buffer. Upon centrifugation, the gel pellet had a homogenously 

distributed bright pink color, indicating significant retention of siRNA throughout the 

experiment. The cumulative siRNA released was calculated by calculating the total moles 

detected in the supernatant as a function of time, as described in Eq. 3.2. 
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Eq. 3.2  

! 

Cumulative siRNA Released =
mTOTAL siRNA, Supernatant

msiRNA, Loading

"100  

 

All release studies were performed in triplicate for statistical analysis, using identical 

nanogel loading and release conditions. 

3.2.8 !-potentiometry 

Excluding the 0.5 mol% APMA copolymerized into the shell of our nanogel 

particles, the nanogels are composed of largely non-ionic monomers. To confirm their 

suspected electroneutrality, which should be critical for reducing non-specific cell and 

protein interactions, we measured the !-potential of both YSA-conjugated and non-

conjugated core/shell nanogels (Zeta-Sizer Nano, Malvern, U.K.). All nanoparticles used 

in this investigation demonstrated !-potential values < +0.300 mV, suggesting that they 

are only weakly charged and should therefore not interact strongly with serum proteins or 

cell surfaces via Coulombic forces.  

3.2.9 Cell Culture 

Hey cells were provided by Gordon W. Mills, Department of Molecular 

Therapeutics, the University of Texas, M.D. Anderson Cancer Center. Hey cells were 

cultured in RPMI 1640 (Mediatech, Manassas, VA) supplemented with 10% v/v heat-

inactivated fetal calf serum (Invitrogen), 2 mM L-glutamine (Mediatech), 10 mM HEPES 

buffer (Mediatech), penicillin (100 U/ml), and streptomycin (100 !g/mL). The BG-1 cell 

line was provided by Julie M. Hall and Kenneth S. Korach, Receptor Biology Section, 

Laboratory of Reproductive and Developmental Toxicology, National Institute of 

Environmental Health Sciences, NIH, Division of Intramural Research, Environmental 

Disease and Medicine Program, Research Triangle Park, NC. BG-1 cells were propagated 
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in DMEM:F12/50:50 (Mediatech) supplemented with 10% v/v heat-inactivated fetal calf 

serum, penicillin, and streptomycin.  

3.2.10 siRNA Encapsulation for Cell Studies 

Using the “breathing-in” method for encapsulation (as described above), dried 

nanogels were reswollen in the presence of the siRNA, thereby imbibing the solute within 

the hydrogel network. In a typical procedure for in vitro cell delivery, a 20 !M solution 

(250 !L) of a fluorescent siRNA transfection indicator, siGLO (Dharmacon), or EGFR 

siRNA (Dharmacon, Lafayette, CO) was prepared in phosphate buffered saline (PBS). 

Lyophilized nanogels were dissolved in the siRNA solution at a concentration of 4 mg in 

250 µL and allowed to shake overnight at room temperature. Importantly, this nanogel 

concentration results in nearly all of the solvent being taken up by the nanogels. This 

volume-filling approach ensures a maximal uptake of siRNA within the nanogels. After 

shaking, the nanogels were centrifuged to remove any free siRNA and resuspended in 

PBS. A standard curve for increasing concentrations of siRNA was made by measuring 

the absorbance at 260 nm using a Shimadzu UV 1601 spectrophotometer. After siRNA 

was encapsulated in the nanogels, they were centrifuged, and the absorbance of the 

supernatant was measured to determine the amount of incorporated siRNA. 

3.2.11 Cell Transfection Using Nanogels 

Hey or BG-1 cells were plated onto an 8-well chamber slide (5 " 103 cells/well), 

and the cells allowed to adhere overnight at 37 ºC in a 5% CO2 atmosphere. After 

washing the wells with PBS and replacing the media, siGLO-loaded/YSA-conjugated 

nanogels, unloaded YSA-conjugated nanogels, pNIPMAm nanogels, or siGLO only were 

added to wells. Cells were incubated in each case for 4 h. In experiments where 

preincubation of ephrin-A1 was used to initiate internalization and degradation of EphA2, 

ephrin-A1 was added to the media at a final concentration of the ligand of 2 !g/mL. After 
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incubation, the cells were washed with PBS, and the medium replaced. For fixation prior 

to confocal imaging, the cells were incubated with 2% (v/v) paraformaldehyde for 30 

min.  

3.2.12 Immunoblotting 

Hey cells were plated into 6-well plates (5 ! 105/ well) and allowed to adhere 

overnight at 37 ºC, 5% CO2. The cells were lysed with 100 "L of lysis buffer (50 mM 

Tris-HCl, pH 7.5, 150 mM NaCl, 2 mM EDTA (Fisher), 2 mM EGTA (Fisher), 1 mM 

sodium orthovanadate, 2.5 mM sodium pyrophosphate, 1 mM #-gycerolphosphate, 1 mM 

phenylmethanesulfonyl fluoride, 10 "g/mL aprotinin, 10 "g/mL leupeptin, 1% Triton X-

100, and 5% glycerol), and the cell lysates sonicated four times for five seconds each. 

The lysates were cleared by centrifugation at 11,000 ! g rcf for 15 min at 4 ºC. Cell 

lysates were prepared for analysis by the addition of an equal volume of Laemmli 2X 

sample buffer. The samples were heated to 95 ºC for 5 min to denature the proteins. The 

proteins were separated on a 10% SDS-PAGE gel and transferred onto nitrocellulose. 

The blots were blocked with either 5% nonfat dry milk (NFDM) or 5% bovine serum 

albumin (BSA) in 10 mM Tris-buffered saline, pH 7.5 plus 1% Tween 20 (TBST, 

BioRad) for 1 hour at room temperature. The blots were probed with anti-EGFR antibody 

(Cell Signaling, Danvers, MA; cat. no. 4405) or with a b-actin antibody (Millipore, 

Billerica, MA; Mab1501) diluted in 5% NFDM or 5% BSA overnight, with shaking at 4 

ºC. For EphA2 detection, the blots were probed with an anti-EphA2 polyclonal antibody 

(Santa Cruz Biotechnology, Santa Cruz, CA; sc-294). The blots were washed three times 

with TBST and probed with goat anti-rabbit IgG (Santa Cruz, sc-2004) or with goat anti-

mouse IgG (Santa Cruz, sc-2005) linked to horseradish peroxidase (HRP). Bands were 

visualized on film (Pierce) using the ECL reagent, SuperSignal West PicoTM (Pierce). 

3.2.13 Confocal Microscopy 
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A Zeiss LSM510 confocal microscope was used to take cell images. Cells were 

incubated with nanogels for 4 h. After 4 h, the cells were washed and then fixed on the 

slide. An Ar+ laser was used to excite the AFA-labeled nanogels, whereas a HeNe laser 

was used to excite the fluorescently labeled siGLO. LSM510 software was used to view 

the images.  

3.2.14 Flow Cytometry 

Hey cells were plated at 2.5 x 105 cells/well in a 12-well, cell culture plate. Cells 

were allowed to adhere overnight in an incubator at 37 ºC in a 5% CO2 atmosphere. Cells 

were washed, and fresh medium was added containing YSA-pNIPMAm or SCR-

pNIPMAm nanogels at a concentration of 0.8 mg/mL and incubated for four hours. 

Following incubation, the cells were washed with PBS and removed from the plate by 

Trypsin-EDTA treatment. The cells were washed with PBS and fixed with 2% (v/v) 

paraformaldehyde. Cells were analyzed using a LSR Flow Cytometer (BD Biosciences). 

Data analysis was carried out using FlowJo software. 

3.2.15 Toxicity Studies 

Trypan blue exclusion assay. Hey cells were plated onto an 8-well chamber slide 

(1 ! 104 cells/well) and allowed to adhere overnight at 37 ºC and 5% CO2. The media 

was removed, the wells washed with PBS, and the medium replaced. PNIPMAm 

nanogels, YSA-conjugated nanogels, and SCR-conjugated nanogels were added to cells 

and incubated for 72 h. Untreated cells were used as controls. After 72 h, the cells 

washed with PBS, and a 1:1 solution of trypan blue was added to each well. After 1 min, 

the trypan blue was removed, the cells were washed with PBS, fixed with 2% (v/v) 

paraformaldehyde, and air dried. Each well was then viewed via bright field microscopy 

to determine the number of stained (dead) versus unstained cells. Five fields were viewed 

for each treatment. 
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Tox 8 assay. Hey cells were plated onto 96-well plates (1 ! 104 cells/well) and allowed to 

adhere overnight at 37 ºC and 5% CO2. The media was removed, and the cells were 

washed with PBS followed by replacement of the medium. Cells incubated with EGFR 

siRNA-loaded YSA-labeled nanogels, unloaded YSA-labeled pNIPMAm nanogels, 

unlabeled pNIPMAm, or YSA peptide alone were tested using this assay. The cells were 

incubated under all conditions for 4 h. The cells were then washed with PBS, the medium 

replaced, and the cells incubated for an additional 72 h in medium. The Tox 8 reagent 

(Sigma) was added to the cells according to the manufacturer’s instructions. The 

absorbance at 600 nm was read after 1 hour, and the extent of cellular 

viability/proliferation determined.  

3.3 Results and Discussion 

The nanogels described in this chapter were developed around two main design 

criteria, as depicted in Scheme 3.1. For this application, both peptide-based targeting of 

ovarian cancer and efficient encapsulation and delivery of siRNA are required. The 

core/shell nanogels synthesized using the methods described above were determined to 

have rrms values of ~54 nm with size polydispersities of < 10%, as described previously.32 

To determine the timescale for retention of siRNA within the pNIPMAm nanogels, we 

investigated siRNA leakage using simulated physiological conditions. As described 

above, nanogels were loaded using a model mixture of siRNA, containing both the 

siGLO red transfection indicator and the siGENOME Lamin control. The nanogel was 

observed to encapsulate the siRNA with high efficiency (93 ± 1%), which is equivalent to 

a loading level of 1.6 wt% or 16 µg siRNA/mg of nanogels.  
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Figure 3.1 siRNA release profile from nanogels at 37 ºC in PBS containing 10% fetal 
bovine serum. The error bars represent ±one standard deviation about the mean value 
(n=3). 
 

As shown in Figure 3.1, only ~33% of the siRNA is observed to leak from the 

nanogels within the first 12 hours (67% retained). This approximate level of retention 

persists out to 35 hours, suggesting very efficient entrapment of the siRNA within the 

nanogel network. Retention of this magnitude is promising for intravenous 

oligonucleotide delivery given previously determined timescales (~6 hours) for 

extravasation via the enhanced permeability and retention effect.49  

To establish the efficacy of targeting in vitro, we determined the uptake of 

nanogels by two ovarian cancer cell lines, Hey and BG-1. We previously demonstrated 

high expression of EphA2 by Hey cells and low expression of the receptor by the BG-1 

cell line.50 Because of these differences in EphA2 expression, we expected to see higher 

levels of nanogel uptake via receptor-mediated endocytosis with Hey cells as compared 

to BG-1 cells. Furthermore, we expected that the degree of siRNA delivery to those cells 

would be dependent on the cell type and the presence of the peptide ligand. To load 

siRNA into the nanocarrier, lyophilized nanogels were loaded with siGLO (a 

fluorescently-labeled siRNA delivery tracker) by reswelling them in a concentrated 
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solution of the siRNA, as described above. To obtain a relative concentration of the 

siGLO taken up by the nanogels, absorbance measurements were compared to a standard 

curve of siGLO in solution (R2>0.99). We determined in a series of three trials that 80-

95% (by mass) of the siGLO was incorporated into the nanogels by this method, in 

agreement with the loading levels calculated in the release kinetics experiment described 

above.  

Following loading with siGLO, nanogels were incubated with either Hey (high 

EphA2 expression) or BG-1 (low EphA2 expression) cells in order to compare the levels 

of targeted uptake by ovarian cancer cells. Uptake of the nanogels into the cells was 

followed using a fluorescent tag (AFA) incorporated into the nanogel core as well as by 

the fluorescence of the siGLO. In previous studies, we determined that high levels of 

nanogel uptake by cells occurred after four hours. As a result, cells were incubated for 

four hours with siGLO-loaded/YSA-conjugated nanogels to monitor specific targeting to 

EphA2. Unloaded YSA-conjugated nanogels, non-targeted pNIPMAm nanogels, and 

siGLO only were used as controls, with identical 4-hour incubation times. In all 

experiments described in this chapter, we maintained a constant nanogel/cell ratio of 1 

mg nanogels/5 ! 105 cells. For siRNA-loaded nanogels, this corresponds to 16.6 "g 

siRNA/5 ! 105 cells.  After incubation, the cells were washed, and the slides fixed for 

confocal microscopy imaging. Figure 3.2 shows that Hey cells targeted with YSA-

conjugated nanogels have high levels of nanogel uptake as indicated by the presence of 

green fluorescence.  
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Figure 3.2 Confocal microscopy images of (a) Hey cells and (b) BG-1 cells following 
exposure to siGLO-loaded/YSA-conjugated pNIPAMAm nanogels, YSA-nanogels alone, 
unlabeled nanogels, and siGLO alone. The AFA and siGLO fluorescence channels are 
shown individually, along with a merge of the two channels. Scale bar = 40 µm. 
 

At this time point, siGLO was retained at high levels within the internalized 

nanogels as indicated by the cell-localized red fluorescence. Merging of the two 

fluorescence channels showed strong overlap, further indicating delivery of the siGLO by 

the nanogels into the Hey cells. Hey cells incubated with YSA-targeted but unloaded 

nanogels showed strong green fluorescence, indicating cell uptake. A small amount of 

non-targeted uptake was observed for nanogels lacking the YSA peptide. Note that it was 

extremely difficult to find evidence of nonspecific uptake, and the fluorescence shown in 

the figure represents the appearance of the rare uptake event observed, and does not 

represent the overall fluorescence from the entire population of cells. When Hey cells 

were incubated with siGLO alone, no cell-localized red fluorescence was detected; this is 
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expected since RNA does not easily permeate the cell membrane in the absence of a 

carrier vehicle.16-17 

Targeting experiments were also performed using low EphA2 expressing BG-1 

cells (Figure 3.2). Decreased levels of green fluorescence were observed in BG-1 cells 

when compared to the fluorescence observed in the Hey cell cultures. The lower amount 

of nanogel uptake by the BG-1 cells was most likely due to the reduced EphA2 receptor 

expression; we have demonstrated a ~2.5-fold difference in EphA2 expression levels 

between these two cell lines. Control studies using non-targeted pNIPMAm nanogels or 

siGLO only showed no fluorescence in either the green or red fluorescent channels. 

These results indicate that the YSA peptide imparts targeting properties to the nanogels in 

the case of both the high (Hey) and low (BG-1) EphA2 expressing cells, and that the 

amount of nanogel uptake was dependent upon the level of EphA2 receptor expression. 

These results also indicate that nonspecific or nontargeted uptake of nanogels by cultured 

cells is low, and that the siRNA is unable to penetrate the cell membrane in the absence 

of a carrier vehicle. Together, these initial results illustrate the promise of the targeted 

nanogel construct for targeted delivery of oligonucleotide cargo. 

To further establish the mechanism of nanogel targeting and uptake, we took 

advantage of the known receptor internalization properties of the EphA2 receptor. 

Specifically, it has been shown that binding of ephrin-A1, a ligand for EphA2, to EphA2 

receptor causes internalization and degradation of the receptor-ligand complex.51 Figure 

3.3 shows the results of studies wherein this receptor recycling process was used to 

establish the nanogel target by preincubating Hey cells with ephrin-A1 before YSA-

targeted nanogel incubation. We hypothesized that if uptake of nanogels is EphA2 

receptor-mediated, YSA-targeted uptake after cell exposure to ephrin-A1 should be 

reduced, as the EphA2 receptor will be internalized and less available for binding to the 

nanogels. Hey cells were incubated overnight in an 8-well chamber slide. Two !g of 

ephrin-A1 were added, and the cells were incubated for 1 hour at 37 ºC. After ephrin-A1 
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incubation, siGLO-loaded/YSA-conjugated nanogels were added to both ephrin-A1 and 

control (PBS) treated wells. The cells were incubated for four hours, washed, and 

processed for imaging.  

 

Figure 3.3 Confocal microscopy images of Hey cells (top) following exposure to siGLO-
loaded/YSA-conjugated nanogels after 1 h ephrin incubation, and (bottom) following 
exposure to siGLO-loaded/YSA-conjugated nanogels alone. The fluorescence channels 
shown are as in Figure 3.2. Scale bar = 20 µm.  
 

Figure 3.3 shows the nanogel uptake in Hey cells preincubated with ephrin-A1. 

Whereas these cells (top three panels) show some uptake of nanogels and encapsulated 

siGLO, the amount of uptake is greatly diminished compared with untreated cells (lower 

three panels). These results suggest that YSA-conjugated uptake by Hey cells is 

conducted to a large extent through EphA2, however, a small amount of uptake may 

occur through nonspecific mechanisms or via binding of YSA to other Eph receptors.35 

This is not surprising, given the fact that ephrin and various small molecule ephrin 

mimics display binding affinities for multiple receptors of the Eph family.52-53 Flow 

cytometry was also used to establish the EphA2-associated binding of the peptide-

targeted nanogels. In this case, a scrambled (SCR) peptide sequence 

(DYPSMAMYSPSVC) possessing the same amino acid composition of the YSA peptide 

was tethered to the nanogels. The resultant nanogels should therefore possess the same 
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physicochemical surface properties as the YSA-labeled nanogels, but should not 

specifically bind to the EphA2 receptor.  

 

Figure 3.4 Flow cytometry data comparing (a) cell autofluorescence (red) vs. cells 
incubated with YSA-pNIPMAm nanogels (green) and (b) cell autofluorescence (red) vs. 
cells incubated with SCR-pNIPMAm nanogels (green). The differential uptake between 
the YSA- and SCR- labeled nanogels indicates the Eph2A receptor-specific binding and 
uptake pathway. 
 

Figure 3.4 shows the results of these studies, where cells incubated with YSA-labeled 

nanogels display ~10-fold greater fluorescence relative to those incubated with SCR-

labeled nanogels. Furthermore, the fluorescence signal associated with cells incubated 

with SCR-labeled nanogels is only slightly greater than the cell autofluorescence 

background signal.  

The effect of nanogels on tumor cell toxicity and proliferation was examined 

using two cell viability assays. For the trypan blue exclusion assay, Hey cells were 

incubated with pNIPMAm nanogels, YSA-conjugated nanogels, or SCR-conjugated 

nanogels for 72 hours. The cells were then washed with PBS, and trypan blue was added 

to the cells. Five fields were observed via microscopy for each treatment group. Blue 

cells, indicating dead cells, were not observed in any of the fields examined for any of the 

treatment groups. To more precisely establish any negative effects associated with 

nanogel-based delivery, we used the Tox 8 viability proliferation assay. Hey cells were 
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incubated in 96-well plates overnight and nanogels delivered and removed via the usual 

method. In the gene silencing data shown below, we chose siRNA targeting epidermal 

growth factor receptor (EGFR); knockdown of this receptor is non-lethal, but has clinical 

relevance in the treatment of drug resistant ovarian carcinomas.54 This siRNA was 

therefore used in these toxicity studies, as well. Again, we maintained a ratio of 1 mg 

nanogels/5 ! 105 cells for all samples. For the EGFR siRNA-loaded nanogels, this 

corresponds to 16.6 "g siRNA/5 ! 105 cells. Wells were washed with PBS, and 100 µL of 

cell culture medium was added to the wells. After 72 hours, Tox 8 was added to the cells 

according to the manufacturer’s instructions, and the cell viability was determined 

spectrophotometrically.  

 

 

Figure 3.5. Cell viability as determined with a Tox 8 assay for untreated Hey cells and 
Hey cells following a four h incubation with EGFR siRNA-loaded YSA-labeled 
nanogels, YSA-labeled pNIPMAm nanogels, unlabeled pNIPMAm, or YSA peptide 
alone. Error bars represent ±one standard deviation about the average value (n = 3). 
 

This analysis (Figure 3.5) revealed no significant difference for any treatment 

when compared with control (untreated) cells, although exposure to non-targeted 

nanogels and siRNA-containing nanogels showed slight decreases in viability; the origin 

of this effect is currently under investigation. These results indicate that treatment of Hey 
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cells with targeted nanogels does not greatly inhibit cell proliferation, indicating limited 

toxicity of the nanogels under these conditions. 

These promising preliminary studies clearly illustrate the efficacy of peptide-

targeted delivery of siRNA cargos via nanogel carriers. The lack of toxicity observed is 

of particular interest, given the high toxicity observed for some cationic lipid-based 

siRNA targeting methods, which limits the maximum doses that can be delivered, and 

also compromises the potential for in vivo delivery. In the present studies, a ratio of 16 µg 

siRNA or 1 mg nanogels/5 ! 105 cells was used throughout without significant toxicity 

being observed. These concentrations are somewhat higher than those suggested for 

common commercial regents such as RNAiFect (Qiagen) or DharmaFECT (Dharmacon), 

suggesting that the nanogel approach is capable of delivering siRNA amounts at or above 

those achievable by optimized commercial reagents. Another complicating factor in 

current methodologies is the frequent need for cellular delivery under serum free 

conditions; serum lipids and proteins compromise the stability of many liposomal 

formulations making their efficacy significantly lower. In the studies described herein, 

we have illustrated that delivery of siGLO is excellent in serum-containing medium, 

further establishing the promise of this construct.  

As a final preliminary test of the efficacy of the approach, we performed a limited 

investigation of siRNA-based silencing. Clearly, any delivery approach must deliver 

functional siRNA to the cell interior in order for it to be truly useful. If the nanogel 

carrier were unable to protect the cargo against degradation in the endosomal or 

lysosomal compartments, or if the nanogels were unable to escape from endosomes in 

order to deliver the siRNA to the cytosol, the amount of RNAi would be very low. Thus, 

we have undertaken a preliminary study of gene silencing to illustrate a minimal 

requirement for siRNA delivery: the functional silencing of a target mRNA. 

As described above, we chose siRNA targeting EGFR; knockdown of this 

receptor is non-lethal, but has clinical relevance in the treatment of drug resistant ovarian 
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carcinomas.54 To determine if we could effectively knockdown EGFR in vitro, EGFR 

siRNA was encapsulated at a concentration of 16.6 !g of EGFR siRNA/mg of nanogels, 

using the loading technique described above. Nanogels were then added to Hey cells (1 

mg of nanogels or 16.6 !g siRNA/5 " 105 cells) and incubated at 37 ºC for four hours. 

The unincorporated nanogels were then removed by washing the cells, and the medium 

was replaced. Controls included cells incubated with siRNA-loaded but non-targeted 

pNIPMAm nanogels, unloaded YSA-targeted nanogels, pNIPMAm nanogels, and 

untreated cells. All cells were harvested at 48 hours and assayed for EGFR expression by 

immunoblotting, as described in the Experimental Section.  

 

Figure 3.6. EGFR expression, as determined by immunoblot, in Hey cells following a 
four h incubation with either unloaded YSA-nanogels, unloaded non-targeted nanogels, 
or siRNA loaded YSA-nanogels. Untreated cells were set at 100% expression. All cells 
were harvested 48 h after removal of the nanogels. Error bars represent ±one standard 
deviation about the average value (n = 3, *p<0.01 relative to untreated sample). 
 

Figure 3.6. shows the results of this experiment; a significant reduction in EGFR 

expression is observed under these conditions relative to all controls (p<0.01 relative to 

untreated sample by paired t-test, n=3). A small, statistically insignificant decrease in 

EGFR expression was noted in the unloaded, YSA-targeted nanogel control (p>0.1). If 

this observation is indeed a real one, it may be due to cross talk between the EGFR and 
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the EphA2 receptors, as described by Larsen and colleagues.55 In addition, a small 

decrease in EGFR expression was observed when cells were incubated with pNIPMAm 

nanogels alone, although the difference is not statistically significant (p>0.3) in light of 

the large observed variability in expression.  

These preliminary results illustrate that the targeted nanogels are capable of 

functional delivery of siRNA to ovarian carcinomas without overt toxic effects, and that 

the subsequently internalized siRNA is available for gene silencing. Whereas this 

preliminary demonstration is relatively focused in scope, it clearly shows the promise of 

the construct.  

3.4 Conclusions 

Peptide-labeled nanogels with a high loading capacity for siRNA have been 

developed and can be effectively targeted to ovarian carcinomas by receptor-peptide 

binding. The encapsulated siRNA is transported into the cell interior, where it is available 

for gene silencing, as illustrated in this case by EGFR knockdown. Since the locus of 

siRNA-mediated gene silencing is the cytosol, the results are suggestive of the surprising 

conclusion that endosomal uptake of the nanogels is followed by endosomal escape, 

resulting in efficient transport/release of the siRNA to the cytosol. Whereas we do not 

currently know the exact mechanism by which endosomal escape occurs. It is plausible 

that the nanogels respond to endosomal changes in osmotic pressure and ionic strength by 

undergoing a volume change. This phenomenon, called osmotic swelling/deswelling56 is 

fundamental to the phase behavior of gel networks and may serendipitously be 

responsible for the excellent delivery properties described above. In addition to the gene-

silencing efficacy, the nanocarriers are demonstrated to be non-toxic under the conditions 

investigated and are effective even when delivered in serum-containing medium. As a 

result of these studies, we are currently investigating the fundamental mechanisms of 

nanogel endosomal release. Additionally, the gene silencing results are being validated in 
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a broader study of RNAi with plans to extend their use to in vivo delivery and silencing in 

animal models. 

3.5 Researcher Contributions 

Multiple researchers contributed to this work. The original conception of the 

study occurred prior to my entry into the research program by Dr. Erin B. Dickerson, Dr. 

William H. Blackburn, Dr. John F. McDonald, and Dr. L. Andrew Lyon. Dr. Blackburn, 

Dr. Dickerson, and myself designed and executed the experiments. After the graduation 

of Dr. Blackburn, I synthesized and characterized all nanogels used in these experiments. 

All authors contributed to and approved the final manuscript. 
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4.1. Introduction 

Nanogels were described in previous chapters as a unique class of drug delivery 

vehicles that may be applicable as injectable formulations. For example, nanogels are 

well-hydrated,1 have demonstrated non-fouling characteristics in serum,2-3 and are 

capable of encapsulating, retaining, and releasing macromolecules from their porous 

polymer network.4-8 By assisting in the intravenous transport, accumulation, and uptake 

by malignant cells, the therapeutic efficacy of drugs may be improved. Furthermore, the 

toxic side-effects commonly observed in most chemotherapy treatments may be reduced 

or eliminated by avoiding accumulation in healthy tissues. 

Chapter 3 discussed the efficient and functional delivery of macromolecular 

therapeutics (small interfering RNA, siRNA) to ovarian cancer cells.9 Nanogels 

composed of poly(N-isopropylmethacrylamide) (pNIPMAm) were demonstrated in that 

work to be non-toxic and able to efficiently encapsulate, retain and deliver functional 

siRNA upon uptake by cancer cells. However, bioaccumulation and nonspecific organ 

filtration is a concern for colloids designed for intravenous delivery. Degradation into 

lower molecular weight components may improve clearance by renal filtration, and 
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reduce undesired accumulation within the patient. Renal clearance is considered the most 

efficient route of nanoparticle excretion, in comparison to liver sequestration and 

subsequent reticuloendothelial macrophage uptake and hepatobiliary excretion into the 

intestine.10 In addition to clearance, erosion behavior may modulate the release of 

encapsulated drugs through network decomposition.11 

The design of erodible, responsive nanogels is a challenging task, wherein 

stimulus-sensitivity and degradability are sought simultaneously in the same particle 

architecture. Although a variety of erodible polymer colloids have been investigated, 

including lactic and glycolic-acid based polymers,12-13 poly(cyanoacrylate) (PCA),14 

poly(!-caprolactone) (PCL),15 and poly(alkylcyanoacrylate) (PACA),16 we and others 

have found cross-link scission to be a successful strategy for making erodible 

poly(alkylacrylamide) nanogels.17-18 We hypothesized that incorporation of a degradable 

cross-linker, such as N,O-(dimethacryloyl)hydroxylamine (DMHA), would result in 

degradable nanogels via cross-link cleavage. The DMHA cross-linker has been 

successfully applied in multiple hydrogel biomaterials, including degradable embryonic 

stem-cell supports,19 in vitro and in vivo drug release devices,20-21 and polymer scaffolds 

in spinal cord regeneration.22  Incorporation of DMHA is an attractive approach since the 

cross-linker is stable in acidic environments (pH < 5), is easy to synthesize, decomposes 

under physiological conditions, and has low in vivo toxicity.22  

Polymer degradation is likely to induce changes in colloidal properties. Thus, 

methods to monitor particle behavior during the erosion process are critical in the design 

of injectable nanogels. These measurements must be made in complex mixtures (e.g. in 

the presence of degradation products or in the presence of serum components) while 

assessing multiple colloidal properties (size, molar mass, number density) in solution. To 

accomplish these goals, we have developed methods using asymmetrical flow field-flow 

fractionation separation (A4F), coupled with multiangle light scattering detection and 

differential refractometry (A4F/MALS/dRI). A4F is a one-phase, non-destructive 
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separation technique that permits the separation of a wide range of polymer sizes and 

molar masses.23-25 The method is particularly enabling when coupled on-line to 

characterization tools such as MALS and dRI, which allows the determination of the Mw, 

the rrms, and the distribution of these values within the sample without the need to 

calibrate against standards (a detailed description of A4F/MALS is provided in Chapter 

2). Together, these coupled methods permit the separation of complex colloid/polymer 

mixtures, followed by direct determination of particle size, molar mass, and when further 

combined with additional tools such as dynamic light scattering, morphological 

characterization. 

As described in Chapter 2, A4F/MALS has been a particularly enabling technique 

in the measurement of rrms distributions for hydrogel nanoparticles (nanogels).26 This 

stationary phase-free system allows rapid separations without the application of 

destructive shear forces observed in more traditional chromatographic systems. Through 

a separation technique like A4F, light scattering analysis on complex samples may be 

performed since impurities may be separated, thereby providing interpretable MALS 

data. Additionally, eluting particles may be recovered in a fractionated manner for 

subsequent analysis. In this investigation, we demonstrate an A4F/MALS/dRI method to 

monitor the erosion of pNIPMAm-DMHA nanogels, where multiple colloidal properties 

can be monitored throughout the degradation reaction, providing insight into the erosion 

process. 

4.2 Experimental Section 

4.2.1 Materials  

All reagents were purchased from Sigma-Aldrich (St Louis, MO) and used as 

received, unless otherwise noted. The monomer N-isopropylmethacrylamide (NIPMAm) 

was twice recrystallized from hexanes (VWR international, West Chester, PA) and dried 
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in vacuo prior to use. Reagents sodium dodecyl sulfate (SDS) and ammonium persulfate 

(APS) were all used as received. Water used in all reactions, particle purifications, and 

buffer preparations was purified to a resistance of 18 M! (Barnstead E-Pure system), and 

filtered through a 0.2 µm filter to remove particulate matter. 

4.2.2 Nanogel Synthesis 

The synthesis of hydrolytically degradable cross-linker was performed as 

described previously.21 In brief, DMHA was produced through the reaction of 0.145 

moles (10.1 g) of hydroxylamine hydrochloride with 0.243 moles (25.4 g) of 

methacryloyl chloride in 50 mL of pyridine at 45 °C. After stirring at ambient 

temperature for 2 hours, the mixture was diluted in 100 mL of chloroform and 21 mL of 

concentrated hydrochloric acid. The organic layer was separated, washed four times with 

distilled, deionized water, and dried over MgSO4.21 The product identity was confirmed 

by 1H NMR and elemental analysis. 

The synthesis of pNIPMAm-DMHA nanogels was performed by precipitation 

polymerization. As described in Chapter 1, this synthetic method is an effective means 

for producing a variety of micro- and nanogel structures.26-28 The molar composition of 

reagents was 98% NIPMAm and 2% DMHA, with a total monomer concentration of 140 

mM in a 50.0 mL total synthesis volume. First, 0.873 g of NIPMAm was dissolved in 

48.0 mL of distilled, deionized water. A mass of 115 mg of SDS was added, resulting in a 

final SDS concentration of 8 mM. This solution was added to a three-neck round-bottom 

flask, and allowed to equilibrate to 70 °C while purging with N2 for an hour. Prior to 

initiation, the DMHA cross-linker was dissolved in DMSO at a concentration of 0.140 M. 

A 1.0 mL aliquot of the DMHA solution was delivered to the flask by pipette, and 

allowed to equilibrate for 10 minutes. The polymerization was initiated by delivering a 

1.0 mL aliquot of 0.800 M APS solution by pipette. The reaction was allowed to proceed 

for 7 hours under an N2 blanket while continuously stirring. Once cooled, the solution 
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was vacuum filtered, followed by repeated ultracentrifugation and resuspension in H2O. 

Water was removed from the purified product by lyophilization at -42 °C under 40 ! 10–3 

mbar for 72 hours. The freeze-dried product was a hygroscopic white powder. 

4.2.3 Instruments 

The rh of nanogels were measured using DLS. DLS experiments were performed 

at a 90° scattering angle using a Dynapro DLS (Wyatt Technology Corporation, Santa 

Barbara, CA). Typical particle concentrations used were ~0.01 wt%. The VPTT of 

degradable nanogels was assessed from turbidity curves collected on a steady-state 

fluorescence spectrophotometer (Photon Technology International), equipped with a 

Model 814 PMT photon-counting detector. 

A4F was performed using the Eclipse 1 Separation System (Wyatt Technology 

Corporation, Santa Barbara, CA). The eluent for all studies was composed of distilled and 

deionized water with 200 ppm NaN3 (Ionic strength = 3 mM). The Agilent 1100 Series 

Isocratic pump (Agilent Technologies) was used for eluent flow, whereas the Eclipse 

software Version 2.5.3 (Wyatt Technologies) was used for flow control. An Agilent 1100 

Series Vacuum degasser (Agilent Technologies, Santa Clara, CA) was equipped between 

the eluent reservoir and the pump system and an FP Vericel 0.45 µm membrane filter 

(Gelman Sciences, Ann Arbor, MI) was equipped after the eluent pump system to ensure 

a dust-free carrier. Similar to other A4F instruments, the channel employed here was 

trapezoidal in shape.29 The channel had a total length of 26.5 cm, whereas the channel 

breadth at the inlet and outlet was 1.5 and 0.5 cm, respectively. The accumulation wall of 

the channel was equipped with a 10 kDa MWCO regenerated cellulose membrane 

(Microdyn-Nadir, Germany) with a 350 µm channel spacer. Detection was performed on-

line using MALS and dRI detectors. 

 The MALS photometer was a DAWN-EOS (Wyatt Technology Corporation, 

Santa Barbara, CA). The DAWN-EOS contains a GaAs laser (! = 685 nm). The dRI was 
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a deflection-based Optilab rEX (Wyatt Technology Corporation, Santa Barbara, CA) 

refractive index detector, operating with an LED light source (! = 690 nm). Data 

collection from both detectors and subsequent light scattering analysis was performed 

using the Astra software Version 5.3.4.14 (Wyatt Technology Corporation, Santa 

Barbara, CA). Accurate measurement of nanogel Mw required characterization of the 

dn/dc. Differential refractive index analysis was performed in batch mode using the 

Optilab rEX system. A series of pNIPMAm-DMHA nanogel dilutions were prepared in 

dust-free vials, which were rinsed sequentially with distilled deionized water, absolute 

ethanol, and HPLC-grade acetone. Nanogels were resuspended in the separation eluent 

over a concentration range from 2.5 " 10-6 g/mL to 3.75 " 10-4 g/mL. 

Off-line light scattering measurements were performed using the NanoSight 

LM20 particle tracking analysis system (Nanosight, Ltd., Amesbury, U.K.). The LM20 is 

a laser light scattering instrument, which allows the direct visualization of nanoparticle 

scattering by microscopy.30-31 The LM20 employs a single-mode laser diode (<20 mW, ! 

= 635 nm) situated to launch a focused beam through a 500 µL sample chamber, with a 

cell depth of 0.9 mm. The light scattering of particles moving in the laser path was 

visualized using the LM20 CCD camera through a view window above the sample 

chamber. Particle motion was recorded for a suitable period of time (i.e. 90 seconds) at a 

rate of 30 frames per second. Video images of particle movements under Brownian 

motion were analyzed using the Nanosight NTA Software Version 2.0 (Nanosight, Ltd., 

Amesbury, U.K.). Individual particle trajectories were interpreted by the software, 

allowing the determination of particle diffusion coefficients. Nanogel rh values were 

determined using the Stokes-Einstein equation. 

4.2.4 Nanogel Turbidity 

The VPTT of degradable nanogels was assessed from turbidity curves collected 

on a steady-state fluorescence spectrophotometer, as described in the Section 4.2.3. All 
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turbidity measurements were performed at a particle concentration of 0.016 mg/mL in pH 

3.0 formate buffer. Scattering was measured at 600 nm and a temperature ramp was 

typically set from 25 °C to a maximum of 50 °C for all measurements. A ramp rate of 

0.25 °C/min was used, collecting data every 0.1 °C with an integration time of 1 s per 

data point.  

4.2.5 A4F Procedure 

Nanogels were separated via A4F in a two-stage separation scheme at ambient 

laboratory temperature (22 °C). Through this method, particle size and molar mass-

distributions were monitored without extensive scattering interference from degradation 

products. The stages served to first purify and equilibrate nanogels within the eluent, with 

the particles being later eluted for subsequent characterization. Sample injection was 

performed in Focus mode for 1 min using a sample injection flow rate of 0.2 mL/min 

(injection loop volume = 100 µL). The flow direction is reversed during Focus mode, 

which serves to concentrate the sample towards a narrow region near the injection point. 

A bypass flow of 1.0 ml/min was administered through the on-line detectors (MALS, 

dRI) downstream. Following sample focusing, the flow direction was shifted towards the 

detectors at a flow rate of 1.0 mL/min with a cross flow of 1.0 mL/min. In this first stage, 

eluent flow is permitted (containing low molar mass degradation products) while nanogel 

retention was observed. This stage was maintained for 25 minutes to allow nanogel 

equilibration in the eluent. Nanogels were subsequently eluted in the second stage for 

detection, using a reduced cross-flow of 0.25 mL/min with a channel flow of 1.0 mL/min. 

Detected sample peaks were recovered from A4F into dust-free glass vials for off-line 

light scattering characterization with the LM20 particle tracking system. The A4F 

channel and injection loop were flushed extensively (2.0 mL/min flow rate for 2 h) 

between runs to prevent sample artifacts.  

4.2.6 Degradation Study Procedure 
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To study the degradation process, 4 mg of dry nanogel powder was resuspended 

in pH or temperature-controlled buffers. In an investigation of the degradation pH-

dependence, nanogels were resuspended (0.20 mg/mL particle concentration) in either pH 

3.4 formate, pH 5.4 2-(N-morpholino)ethanesulfonic acid (MES), pH 7.4 phosphate, or 

pH 8.4 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) buffer (all buffers 

were prepared with a buffer concentration of 0.02 M and ionic strength values < 0.05 M). 

Prior to nanogel resuspension, all buffers were equilibrated to 37 °C. Resuspended 

nanogels were maintained at this temperature while continuously shaking. At 

predetermined time intervals, a 1.0 mL aliquot of the solution was removed and analyzed 

directly via A4F/MALS. Prior to analysis, all aliquots were allowed to equilibrate to 

ambient laboratory temperature (22 °C) while shaking. In an investigation of the 

temperature dependence of degradation, nanogels were resuspended in pH 7.4 phosphate 

buffer and allowed to equilibrate at 4 °C, 22 °C, 37 °C and 50 °C while continuously 

shaking. Similar to the pH experiments, 1.0 mL of particles were removed at 

predetermined time intervals, equilibrated to 22 °C, and analyzed by A4F/MALS. 

 

4.3 Results and Discussion 

Macroscopic hydrogels cross-linked with DMHA have been investigated by 

others as copolymers with N-(2-hydroxylpropyl)methacrylamide (HPMA).21 Polymers 

containing DMHA demonstrated degradation in vitro and in vivo, depending on the pH of 

the microenvironment and other factors. Specifically, these hydrogels degraded more 

rapidly at pH > 5, with little erosion being observed at lower pH. Additionally, when 

lower DMHA concentrations were used in synthesis, the erosion rate was shown to 

increase. In the pursuit of a degradable nanogel construct, we considered this a promising 

cross-linker due to its ease of copolymerization with acrylamide-based polymers, its 
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stability under the acidic conditions commonly observed in persulfate-initiated 

precipitation polymerization, and its degradation under physiologic conditions. 

A precipitation polymerization method was developed for production of 

pNIPMAm-DMHA nanogels, as described in the Section 4.2. Through DLS, the average 

rh of pNIPMAm-DMHA particles was determined to be 66.4 ± 0.5 nm. The dimensions 

of purified pNIPMAm-DMHA nanogels were further investigated by A4F/MALS 

analysis. Through this method, the rrms of particles were determined to be 40 ± 0.4 nm. 

Polydispersity values determined by both methods were low (Pd < 15%). 

The combination of data from DLS and MALS enabled the characterization of 

nanoparticle topology. As reviewed in Chapter 2, the rrms (also referred to as the 

gravimetric radius, rg) is a particle dimension, weighted by the mass distribution about 

the center of particle mass. When this value is compared to the hydrodynamic radius, 

structure-sensitive information is obtained.32 Specifically, nanoparticles that occupy a 

similar volume in solution may differ drastically in the value of a dimensionless 

parameter ! = rrms/rh. Using this ratio, the phase behavior of pNIPAm above and below 

the LCST has been monitored in terms of chain topology.33 For chains below the LCST, 

! = ~1.4. This value of ! is representative of slightly branched or linear chains in 

solution. However, after undergoing chain collapse at elevated temperature (T > LCST), 

! decreased sharply from 1.4 to 0.54. This value of ! is indicative of the surface of the 

globule having a lower density than the center.33 In contrast, nanogel spheres in the 

swollen state typically have ! values of ~0.6-0.85.34 The pNIPMAm-DMHA nanogels 

under study here were found to have a ! value of 0.60 at 20 °C.  

4.3.1 Stimuli-Responsivity 

To verify conservation of temperature responsivity for pNIPMAm-DMHA 

nanogels, the VPTT value was measured from turbidity curves collected on a steady-state 

fluorescence spectrophotometer, as described in the Section 4.2. When the temperature-
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dependent scattering intensity from a dispersion of pNIPMAm-DMHA particles was 

measured pH 3.4, a sharp increase in scattering intensity was observed as the solution 

temperature was raised above 43 ºC. 

 

 

Figure 4.1 Solutions of nanogels display temperature-dependent deswelling. 
Temperature-dependant turbidity measurements were obtained for pNIPMAm-DMHA 
degradable nanogels in pH 3.4 buffer. 
 

This scattering intensity increase reflects a change in the hydration state of the 

polymer. Elevated temperatures above the LCST caused expulsion of solvent from the 

polymer network, resulting in a deswollen, hydrophobic particle state.35-37 Particle size 

above and below the LCST was determined by DLS. At temperatures above the polymer 

LCST (T > 44 ºC for pNIPMAm), the particle size significantly decreased as the particles 

assumed a deswollen state (rh of 45 ± 0.4 nm at 45 °C, pH 3.4).37 As described earlier, 

particles equilibrated below this temperature were in a solvent-swollen state, showing a 

larger hydrodynamic size (rh of 66.4 ± 0.5 nm at 22 °C, pH 3.4). This VPTT value is in 

agreement with previously synthesized pNIPMAm-based nanogels,26 and demonstrates 

conservation of stimuli-responsive behavior upon DMHA incorporation. 

4.3.2 pH-Dependent Erosion 
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The pH-dependent erosion behavior of nanogels was observed through the 

A4F/MALS method, monitoring scattering intensity and the angular dependence of 

scattering as a function of time. Through this approach, the average rrms of particles was 

determined using the Debye extrapolation method for the construction of the Debye 

plot.38 Specifically, the rrms was determined from the slope of the linear fit of the Debye 

plot.  Since the concentration of polymer is constant throughout these experiments, the 

intensity of scattered light is directly proportional to polymer molar mass. However, 

initial experiments to monitor erosion were challenging, as angular-dependent fitting of 

the light scattering is error-prone in the presence of degradation products. To resolve 

these issues, we employed A4F separation technique to first purify and subsequently 

elute particles for size distributions and scattering intensity detection. Furthermore, this 

two-stage separation method was employed to minimized the effects of variable carrier 

composition on nanogel fractionation, where slight variance in sample pH and osmotic 

strength may adversely affect polymer elution by altering the eluent environment.39 As 

described in the Section 4.2., the first stage of the A4F procedure retained nanogels for 25 

minutes at a cross-flow of 1.0 mL/min prior to elution. Equilibration of samples to the 

eluent environment was evident since tR values and peak symmetry did not change for 

nanogels at early time-points (prior to erosion, t < 1 hr). This result suggests that 

nanogels were equilibrated to the carrier composition, and that differences in buffering 

(pH, osmotic strength) did not significantly affect separations. 

To initiate the erosion, pNIPMAm-DMHA nanogels were resuspended in pH-

controlled buffers, with pH values ranging from 5.4 – 8.4. Nanogel suspensions displayed 

dramatic changes in scattering intensity over time when equilibrated at elevated pH. This 

behavior was observed visually, where samples would become significantly less turbid 

with reaction time. To more quantitatively investigate the erosion, solutions were 

monitored by A4F/MALS immediately upon particle resuspension and equilibration. A4F 

fractograms are shown in Figure 4.2. 
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Figure 4.2 A4F fractograms for pH-induced erosion at 37 °C, with light scattering 
detection at 90°. pH values include pH 5.4 (top), pH 7.4 (middle), and pH 8.4 (bottom). 
 

Typical A4F fractogram peak heights observed throughout the experiments are 

summarized in Figure 4.3, where a decrease in the scattering intensity is evident when 

the pNIPMAm-DMHA nanogels were incubated at 37 °C and at pH values greater than 

3.4.  
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Figure 4.3 Particle erosion results in decreased scattering intensities. Microgels were 
incubated (37 °C) at pH 3.4 (open circles), pH 5.4 (filled circles), pH 7.4 (open triangles), 
and pH 8.4 (filled triangles) and the maximum scattering intensity was observed at a 
scattering angle of 90° as a function of reaction time. 
 

The decrease in the scattered light intensity is primarily indicative of a decrease in 

the average particle molar mass, but may also be a result of particle number density loss 

via erosion. Scission of the DMHA cross-linker was expected to induce changes in 

nanogel dimensions, as the cross-linker content influences polymer chain density within 

the nanogel and the equilibrium swelling capacity.40 Using the angular dependence of 

light scattering, particle rrms values were monitored over the course of the degradation 

reaction.   
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Figure 4.4 DMHA scission results in particle swelling. All rrms data were weight-
averaged across all slices, where the size is reported versus reaction time at pH 3.4 (open 
circles), 5.4 (filled circles), 7.4 (open triangles), and 8.4 (filled triangles). All reactions 
occurred at 37 °C. Error bars represent the error of the Debye plot polynomial fit of the 
scattering data, reported across all slices and detectors. 
 

As shown in Figure 4.4, the rrms of particles increased as a function of incubation 

time at pH ! 5.4. In contrast, particles incubated under more acidic conditions did not 

display time-dependent changes in swelling. The stability in size and scattering intensity 

observed for particles at pH 3.4 suggests limited cross-link scission, whereas higher pH 

values significantly affect the nanogel structure as a function of time.  

4.3.3 Temperature-Dependent Erosion 

Whereas pH-dependent hydrolytic erosion was an expected characteristic for this 

cross-linker,19-22, 41 we also found temperature-dependent behavior for the scattering and 

swelling. The temperature effects were characterized through the A4F/MALS method, 

assessing size and scattering for particles incubated at several temperatures. Similar to the 

pH-studies, nanogels were analyzed at predetermined time intervals for scattering 

intensities and the rrms throughout the reaction.  
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Figure 4.5 Nanogel erosion rates are temperature dependent. Asymmetrical flow FFF 
elution profiles for temperature-induced erosion experiments at pH 7.4, with light 
scattering detection at an angle of 90°. Data were collected at (top) 22 °C and (bottom) 37 
°C. 
 

Figure 4.5 shows a series of A4F fractograms, with light scattering detection at 

90°. As shown in Figure 4.5 (top), the scattering intensity of particle elutions remained 

stable when nanogels were maintained at room temperature (22 °C). However, when 

incubated at elevated temperatures, the particles showed significant decay in scattering, 

as observed in Figure 4.5 (bottom). Whereas particles at 22 °C showed minimal erosion, 

there was no observable difference in scattering intensity or size for nanogels maintained 

under refrigeration (4 °C, data not shown). Nanogel swelling and scattering decay 

progressed in a similar fashion as observed in the pH-dependent erosion experiments. 



 93 

 

Figure 4.6 Erosion-induced particle swelling is temperature dependent. Nanogel weight-
average rrms values were determined by MALS as a function of time and temperature at 4 
°C (open circles), 22 °C (filled circles), 37 °C (open triangles), and 50 °C (filled 
triangles) at pH 7.4. Error bars represent the error of the Debye plot polynomial fit of the 
scattering data, reported across all slices and detectors. 

 

As shown in Figure 4.6, the nanogels expanded in size after incubation at 

elevated temperatures (e.g. 37-50 °C). This phenomenon was absent for particles 

maintained at lower temperatures (e.g. 4 °C), where the particles maintained their original 

rrms values. 

4.3.4 Characterization of Nanogel Molar Mass and Number Sensitivity 

The decrease in scattering signal and enhanced swelling observed in Figures 4.2-

4.6 are indicative of nanogel erosion. We hypothesized that cross-link scission caused 

mass loss in the particle along with swelling due to a decrease in network connectivity. 

Additional experiments were performed using A4F/MALS/dRI, where on-line 

refractometry permitted the measurement of nanogel concentration in eluting fractions, 

and thus the derivation of Mw.38 Dry pNIPMAm-DMHA nanogels were resuspended 

under erosion-inducing conditions (pH 8.4, 37 °C) and analyzed at predetermined time 

intervals by A4F/MALS/dRI. The scattering intensity of the eluting nanogels decreased 
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throughout erosion reaction, in agreement with pH and temperature-dependent erosion 

experiments. 

The observed decay in scattering provided qualitative evidence of mass loss in the 

nanogel construct, as described above. Cross-linker scission likely permitted polymer 

dissociation from the nanogels, since cross-linking agents are what impart dimensional 

stability to these constructs below the VPTT.1 Thus, it is likely that polymer loss occurred 

upon DMHA hydrolysis, resulting in a decrease in nanogel molar mass. Using 

A4F/MALS/dRI, the weight-average molar mass of nanogels was monitored for each 

eluting fraction.  

 

Figure 4.7. Nanogel weight-averaged molar mass (Mw) decay for particles incubated in 
erosion-inducing buffers (pH 8.4, 37 °C incubation), as measured through the 
A4F/MALS/dRI method. Particle Mw were determined through a Debye plot of light 
scattering data. Error bars represent the error of the Debye plot polynomial fitting, 
reported across all slices and detectors. 
 

As shown in Figure 4.7, the molar mass of pNIPMAm-DMHA nanogels indeed 

decreased substantially during the erosion process. However, after 120 hours of 

incubation a significant portion of nanogel mass remained (~1.9 x 107 g/mol).  

An attractive feature of the A4F/MALS/dRI method is the ability to recover 

eluted fractions for subsequent analysis. Using off-line particle tracking analysis via the 

NanoSight LM20, the rh of fractionated particles was determined. The LM20 is capable 
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of tracking nanogel particles at very low concentrations (~0.008 mg/mL for particle 

fractions), which is below the concentration threshold for conventional DLS analysis of 

this nanoparticle type. Through characterization of rh and rrms for each particle fraction, 

nanoparticle mass distribution (!) was monitored throughout erosion.  

 

 

Figure 4.8 The stability of rrms/rh throughout the erosion reaction, measured via 
A4F/MALS/dRI with subsequent particle tracking analysis off-line. Error bars represent 
the absolute uncertainty of all measurements (N=4). 
 

From these analyses, we found that the pNIPMAm-DMHA nanogels do not 

demonstrate a statistically significant change in rrms/rh throughout the reaction (Figure 

4.8). Since the topology or mass distribution remains relatively stable throughout erosion, 

it is evident that the degradation-induced swelling observed occurs homogeneously 

throughout the particle.  

The abundance of particles available for tracking greatly decreased throughout 

erosion. Using the LM20 particle tracking system, the average observed number density 

of particles in the elution fractions were estimated (Figure 4.9).  
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Figure 4.9. Decrease in nanogel number density as a function of erosion time at pH 8.4 
and 37 °C from particle tracking analysis. Error bars represent the absolute uncertainty of 
multiple measurements (N=5). 
 

It is important to note that this number density value represents the remnant 

particles detectable by the particle tracking system, and is not necessarily representative 

of the absolute number density of particles remaining. Nanogels were undetectable by 

particle tracking after ~128 hours of incubation in erosion-inducing conditions (pH 8.4, 

37 °C). However, from MALS analysis it is clear that a significant portion of particles 

remained after extensive erosion times, as shown in Figure 4.2 and Figure 4.5.     

From the data presented above, we have found that pNIPMAm-DMHA nanogels 

undergo erosion at neutral pH and elevated temperatures. Originally we anticipated that 

cross-link scission would result in complete dissolution of polymer from the nanogel 

network. Without cross-linking agents in the network, the particles would lose 

dimensional stability and dissociate completely into linear chains. In this scheme, 

nanogels would not be detectable after DMHA hydrolysis. However, a detectable 

population of particles remains despite extensive erosion times (2 months in erosion-

inducing buffers). This population of particles was undetectable by our dRI configuration 

and nanoparticle tracking system, which makes molar mass and rh determination not 

possible. However, A4F/MALS analysis was an effective means for characterizing the 
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size and scattering profile of the remaining nanogels. After 4 weeks of erosion (pH 8.4, 

37 °C), a stable population of highly swollen (rrms = 55-60 nm) particles of very low 

scattering intensity (< 10% of the original R(!) value) was present, as evident by peak 

intensity at ! = 90°. 

The presence of an intact polymer network with dimensional stability suggests 

that cross-linking remains in the nanogels, despite hydrolysis of DMHA. We attribute the 

presence of stable nanoparticles (despite cross-link scission) to the self-cross-linking of 

pNIPMAm chains via a chain transfer reaction. This phenomenon has been observed for 

similarly structured pNIPAm chains, where particles are formed in precipitation 

polymerization despite a lack of added cross-linking agents.42 The pNIPMAm chains may 

undergo a similar reaction, involving free radical formation on the tertiary radical of the 

pendent isopropyl group on the side chain. A result of chain transfer is the formation of 

intrinsic cross-links in the polymer network, which would prevent complete polymer 

dissociation upon scission of DMHA. However, additional experiments were performed 

to validate these claims (Chapter 5), where complete particle dissolution was found for 

pNIPMAm microgels cross-linked with a another chemically-labile cross-linker (1,2-

dihydroxylethylene)bisacrylamide (DHEA). This result may indicate that self-cross-

linking is not a significant factor for those structures. Instead, remaining cross-linking in 

the particle may be due to incomplete scission of DMHA or chain entanglement that 

prevents complete dissolution for those networks. Additional experiments are necessary 

to verify this discrepancy.  

 

4.4 Conclusions 

This chapter described the synthesis of hydrolytically degradable, 

thermoresponsive nanogels via persulfate-intitiated precipitation polymerization. Those 

particles were produced through the copolymerization of NIPMAm and DMHA, yielding 
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monodisperse, thermoresponsive nanogels of appropriate size for intravenous drug 

delivery applications. To fully characterize nanogel erosion, AF4/MALS was used to 

monitor pNIPMAm-DMHA nanogel behavior in various media. Through A4F, particles 

were separated from degradation products to improve detection by light scattering. 

Nanogels showed pH and temperature dependence to erosion, where particles degraded 

faster at neutral to basic pH and at elevated temperatures. Under these conditions, DMHA 

scission was evident from an increase in particle swelling, and a decrease in scattering 

intensity for eluting peaks. The loss in light scattering is indicative of mass loss within 

the nanogel construct, which is an attractive feature from the standpoint for intravenous 

drug delivery and renal clearance. By adding on-line differential refractometry detection 

and off-line particle tracking analysis to our method, nanogel size (rh and rrms), molar 

mass, and number densities were monitored for sample fractions. Using this technique, 

the loss of molar mass for nanogels maintained in erosion-inducing buffers was 

confirmed. Using the ratio of rrms /rh ( !), the topology of nanogels was found to remain 

stable throughout degradation. The ! value is indicative of the distribution of polymer 

mass throughout the nanogel architecture, which was conserved despite scission of 

DMHA and polymer dissociation from the nanogels. 

The presence of remaining nanogels despite extensive erosion was a surprising 

result. After erosion, a highly swollen fraction of particles persisted whose low scattering 

profile suggests a decreased Mw. We attributed the presence of remaining particles to 

possible self-cross-linking behavior of the pNIPMAm chains; this phenomenon was 

further investigated in Chapter 5. The analytical method described in this chapter was a 

highly versatile and powerful means to assess the size, molar mass, topology, and number 

density of degradable nanogels during the erosion process. We anticipate that this 

technique should find applicability in the characterization of other degradable particle 

constructs, and will enable the future development of improved architectures for drug 

delivery.  
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CHAPTER 5 

NETWORK DECONSTRUCTION REVEALS NETWORK 

STRUCTURE IN RESPONSIVE MICROGELS 

 
Adapted from  

Smith MH, Herman ES, Lyon LA. J. Phys. Chem. B, 2011, 115 (14) 3761-3764.  

Copyright 2011 American Chemical Society 

 

5.1 Introduction 

Responsive hydrogel particles (microgels) are a versatile class of materials with 

potential utility in the encapsulation and delivery of therapeutic compounds.1-5 As a result 

of their proposed use in vivo, microgels possessing degradable properties have gained 

significant attention in recent years.5-6 By enabling polymer decomposition into low 

molar mass components, the clearance of the vehicles may be facilitated, whereas erosion 

might also be used to modulate drug release from the polymer matrix. 

Although microgel drug delivery systems are gaining increased visibility, several 

hurdles remain before they can be discussed as competent delivery vehicles for clinical 

applications. In the context of degradable microgels, assessment of erosion rate, erosion 

mechanism, and products of the degradation reaction are essential for a complete 

understanding of the carrier’s behavior. As seen with other erodible polymers, these 

characteristics are likely to influence polymer network diffusivity and drug release rates,7 

and the stability of particles in biological media (as a result of size and topological 

changes).8-9 In an ongoing effort to investigate microgel erosion dynamics, we and others 

have employed a variety of techniques including atomic force microscopy (AFM),10-11 

multiangle light scattering (MALS),10, 12 and other optical methods.13-15  
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In this chapter it is shown how the characterization of microgel network structure 

can be facilitated by the detailed observation of that network’s deconstruction. To 

illustrate the approach, we employed microgel particles composed of two different 

thermoresponsive polymers: poly(N-isopropylacrylamide)  (pNIPAm) and poly(N-

isopropylmethacrylamide) (pNIPMAm).16-17 Microgel erosion was enabled through 

copolymerization with a chemically labile cross-linker,18 (1,2-dihydroxylethylene)-

bisacrylamide (DHEA), via precipitation polymerization. The DHEA cross-linker 

contains a vicinal diol that is rapidly cleaved in the presence of periodate, resulting in 

destruction of the polymer network.14 Using MALS in conjunction with a controlled 

reagent delivery and mixing device (Scheme 2.6), we measured the real-time changes in 

microgel solution-average rrms and Mw during erosion, thereby revealing distinct 

differences in network erosion rates and pathways between the two microgel types. 

5.2 Experimental Section 

5.2.1 Materials 

All reagents were purchased from Sigma-Aldrich (St Louis, MO) and used as 

received, unless otherwise noted. The monomers N-isopropylacrylamide (NIPAm) and N-

isopropylmethacrylamide (NIPMAm) was recrystallized from hexanes (VWR 

international, West Chester, PA) and dried in vacuo prior to use. Reagents N,N’-

methylenebisacrylamide (BIS), sodium dodecyl sulfate (SDS), ammonium persulfate 

(APS), sodium periodate (NaIO4), and (1,2-dihydroxylethylene)bisacrylamide (DHEA) 

were all used as received. Water used in all reactions and particle purifications was 

purified to a resistance of 18 M! (Barnstead E-Pure system), and filtered through a 0.2 

µm filter to remove particulate matter. 

 

5.2.2 Microgel Synthesis 
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The synthesis of pNIPAm-DHEA and pNIPMAm-DMHA microgels was 

performed via surfactant-stabilized precipitation polymerization, using a modified 

approach to what has been previously published.14 The molar composition of reagents 

was 90% monomer (NIPAm or NIPMAm) and 10% DHEA, with a total monomer 

concentration of 70 mM and 140 mM for the pNIPAm and pNIPMAm syntheses, 

respectively. The total synthesis volume was 50.0 mL. The reactions were performed by 

separately dissolving NIPAm or NIPMAm monomer (0.387 g or 0.801 g) in 49.0 mL of 

distilled, deionized water. A mass of 0.070 g DHEA was dissolved in the NIPAm 

solution, whereas 0.140 g DHEA was dissolved in the NIPMAm solution. A mass 0.029 

g SDS was added to both solutions, forming a final synthesis concentration of 2 mM. 

Each solution was filtered through a 0.2 µm Acrodisc syringe filter and subsequently 

added to 100 mL three-neck round-bottom flasks. Once equilibrated at 70 °C, the reaction 

mixtures were purged with N2 for an hour while stirring (400 RPM). The polymerizations 

were initiated by delivering a 1.0 mL aliquot of 0.200 M APS solution by pipette. All 

reactions were allowed to proceed for 24 hours under an N2 blanket while continuously 

stirring. Once cooled, both solutions were filtered through 0.8 µm Acrodisc syringe filters 

and purified via repeated ultracentrifugation and resuspension in distilled, deionized 

water. 

5.2.3 Instruments 

Particle Mw and dn/dc values were determined in batch mode using the Calypso 

syringe pump system (Wyatt Technology Corporation, Santa Barbara, CA). As discussed 

in Chapter 2, the Calypso hardware consists of a computer-controlled triplet syringe 

pump and a multichannel degasser, equipped with in-line filters, mixers and valves to 

allow rapid and automated batch measurements. A diagram of the specific instrument 

configuration is shown in Scheme 2.6. 
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Multiangle light scattering was performed using the DAWN-EOS (Wyatt 

Technology Corporation, Santa Barbara, CA) equipped with a temperature-regulated K5 

flow cell with a GaAs laser light source (! = 685 nm). Data collection and subsequent 

light scattering analysis was performed using the Astra software Version 5.3.4.14 (Wyatt 

Technology Corporation, Santa Barbara, CA). Accurate measurements of microgel molar 

mass required characterization of the particle refractive increment (dn/dc). Differential 

refractive index analysis was performed via composition-gradient static light scattering 

using the Calypso and Optilab rEX system, equipped with an LED light source (! = 690 

nm). The hydrodynamic radii (rh) of nanogels were measured via dynamic light scattering 

(DLS). DLS experiments were performed at a 90° scattering angle using a Protein 

Solutions DLS (Wyatt Technology Corporation, Santa Barbara, CA).  

5.2.4 Light Scattering Validation 

The principles employed in MALS measurements have been described in Chapter 

2 and in detail elsewhere.19 To ensure accuracy in angular-dependent fitting with our 

instrument configuration, polystyrene microparticle standards (Duke Scientific, Palo 

Alto, CA) of varying radii (0.326 µm, 0.200 µm, 0.102 µm, and 0.0478 µm) were first 

characterized using the Debye method to construct the Debye plot. Polystyrene standards 

were diluted to a concentration of 5 x 10-4 wt% solids in filtered (0.1 µm Anodisc) 

distilled, deionized water containing 3 mM NaN3 and 3 mM SDS. A typical 

characterization experiment was conducted as follows. A baseline scattering signal was 

established by loading syringe 1 with particle-free solvent (containing 3 mM NaN3) from 

reservoir 1 (the instrument configuration is shown schematically in Scheme 2.5). 

Following baseline measurement, particles were introduced into the flow system through 

syringe 2, drawing particle samples from reservoir 2. Using the Calypso software, a 

programmed concentration gradient of polystyrene was established through modification 

of the flow rates of each syringe. Data analysis was performed at stopped-flow at each 
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concentration. This method enabled the rapid optimization of sample concentration to 

give adequate signal for MALS detection (typically 2.5 x 10-4 wt% polystyrene). All 

mathematical transformations and data fitting were performed using the Astra software 

Version 5.3.4.14 (Wyatt Technology Corporation, Santa Barbara, CA). 

A series of standard microspheres were characterized via MALS. Polystyrene 

spheres of radii 0.326 µm, 0.200 µm, 0.102 µm, and 0.0478 µm were analyzed using the 

Debye method to solve the Debye plot, where various fit degrees were compared for 

accuracy. The topology may be inferred through the ratio of the rrms (which is the particle 

dimension, weighted by the mass distribution about the center of particle mass) and the rh 

(which is a measure of the diffusion coefficient of the particle, or its volume of 

occupancy). The ratio is represented by dimensionless parameter . Accuracy in 

fitting was assessed assuming a smooth sphere topology for polystyrene particles (  = 

0.77), which has been demonstrated elsewhere.20 Fit accuracy was thus assessed from the 

measured rrms and a theoretical value for rrms assuming a homogeneous topology for the 

standard. The 0.0478 µm and 0.102 µm spheres required first order and second order 

fitting, respectively. In contrast, fourth-order and fifth-order fitting was required for the 

0.200 µm and 0.326 µm spheres 

5.2.5 Microgel Characterization and In Situ Erosion 

Microgel samples were prepared in 0.1 µm filtered 3 mM NaN3 media at a 

concentration of 4.8 x 10-3 mg/mL or 6.0 x 10-4 mg/mL for pNIPAm-DHEA and 

pNIPMAm-DHEA particles, respectively. Particles composed of pNIPMAm-BIS were 

characterized in identical media at a polymer concentration optimized for light scattering 

signal (~0.2-1.0 µg/mL for 2-8% BIS particles). Characterization experiments were 

performed similarly to what was described for polystyrene standards. A baseline 

scattering signal was established by loading pump 1 with particle-free media from 

reservoir 1. Microgel samples were loaded from reservoir 2 into syringe pump 2. 
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Particles were diluted to 50% stock concentration in situ through the use of pump 1 

(loaded with particle-free media containing 3 mM NaN3). Particle size and molar mass 

were characterized at stopped-flow using the Astra software. For erosion experiments, 

baseline measurements were instead made in a mixture of particle-free media (syringe 1) 

and NaIO4 stock solutions (200 mM, 20 mM, 2 mM, and 0.2 mM) loaded from reservoir 

3 into syringe 3.  All periodate samples were prepared in 3 mM NaN3 media and pre-

filtered through a 0.1 µm Anodisc filter. Following baseline measurement, particles were 

diluted to 50% stock concentration in situ through the use of syringe 3 (containing the 

sodium periodate stock). The erosion of microgels was monitored via MALS in situ using 

the Astra software.  

The hydrodynamic radii of pNIPAm-DHEA and pNIPMAm-DHEA microgels 

were determined by DLS. Particles were characterized at a concentration of 0.01 wt% in 

distilled, deionized water containing 3 mM NaN3. All microgel samples were allowed to 

equilibrate thermally for 30 min before measurement at 25 ºC. Sizing measurements 

represent an average value of 20 measurements, with a 10 s integration time each, 

performed in triplicate analysis. All correlogram analyses were performed using the 

Dynamic v.5.25.44 software (Wyatt Technology Corporation, Santa Barbara, CA). The rh 

of particles were determined from their respective diffusion coefficients according to the 

Stokes-Einstein relation. 

5.3 Results and Discussion 

The distinct structural features of both microgel types are graphically depicted in 

Scheme 5.1. Although the microgels had comparable rrms values, the different 

hydrodynamic radii (rh) suggest mass distribution differences between the spheres.  
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Scheme 5.1. Molar mass, density, and proposed microgel topology from light scattering 
characterization. Topological differences were observed for the spheres with comparable 
rrms but with divergent rh values. 
 

The mass distribution may be inferred from the ratio of the rrms (the particle 

dimension weighted by the mass distribution about the center of mass) and the rh 

(inferred from the particle diffusion coefficient) determined through DLS.21 As shown in 

Scheme 5.1 this ratio for the pNIPAm-DHEA microgels is rrms/rh = 0.63, which indicates 

a radially inhomogeneous mass distribution as observed previously for other microgel 

chemistries.22 In contrast, the calculated ratio for pNIPMAm-DHEA microgels (rrms/rh = 

0.78) is indicative of a smooth sphere with an even distribution of mass throughout the 

particle. Particles composed of pNIPMAm are also significantly denser than pNIPAm 

spheres, suggesting enhanced cross-linker incorporation. 

Microgel erosion was monitored in real-time via MALS in the presence of excess 

periodate. In a typical erosion experiment, microgels and sodium periodate were pumped 

and mixed into the MALS flow cell with constant monitoring of the Mw and rrms values. 

Constant Mw values were observed under flow conditions as the reactants were 

repeatedly replenished in the MALS flow cell. A sharp decay in the measured Mw values 

was then observed when the flow was stopped (t = 0 min). The molar mass for both the 

pNIPMAm and pNIPAm microgels reached equilibrium after ~80 min under the given 
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experimental conditions. The measured molar mass of the scattering species at that time 

point was approximately 2-3 orders of magnitude smaller than that of the original 

microgels (Figure 5.1-5.2).  

The architectural differences between the microgels resulted in distinct erosion 

profiles. Simultaneous monitoring of the particle sizes revealed that the rrms of the 

pNIPMAm microgels increased by ~15% to ~185 nm early in the erosion, with a 

subsequent decay to slightly smaller spheres and eventually into linear or branched chains 

with poorly defined angular scattering functions (Figure 5.1 and Figure 5.2).  

 

Figure 5.1. Erosion of pNIPMAm-DHEA microgels results in changes in particle molar 
mass (blue) and rrms (red). The erosion process is schematically represented at different 
time points (blue spheres). Reactions were monitored at 25 ºC in the presence of excess 
periodate (100 mM).  Error bars (black) represent one standard deviation about the mean 
of measurements performed in triplicate. 
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Figure 5.2. Debye plots for pNIPMAm microgels before (top) and after (bottom, t = 80 
min) erosion. Angle-dependent scattering for pNIPMAm microgel spheres was lost in the 
presence of excess periodate. Polynomial fitting of the microgel scattering function (red 
trace) is represented before erosion, where isotropic scattering was observed after 
polymer decomposition (bottom). Erosion resulted in low molar mass isotropic scatters 
(~1.0 x 106 g/mol). 
 

This erosion pathway is expected in cases where the network is very homogenous in 

density and uniform in connectivity. Cross-linker degradation results in a decrease in 

network connectivity, allowing the network to swell. As the network connectivity 

continues to decrease, the microgel eventually dissolves into a collection of branched 

oligomers with low scattering cross-sections (Figure 5.2, bottom).  
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Very different erosion behavior was observed in the case of pNIPAm-DHEA 

microgels (Figure 5.3).  

 

Figure 5.3. Erosion of pNIPAm-DHEA microgels results in the decay of particle molar 
mass (blue) and rrms (red). The erosion process is schematically represented at different 
time points (blue spheres). Reactions were monitored at 25 ºC in the presence of excess 
periodate (100 mM).  Error bars (black) represent one standard deviation about the mean 
of measurements performed in triplicate. 
 

As described above, the combined MALS and DLS data were suggestive of a radial 

distribution of polymer mass within the microgels, with the greatest polymer connectivity 

being present in the particle interior. This structure suggests that fewer cleavage events 

would be required to liberate polymer chains near the sphere periphery relative to the 

particle core. Thus, mass loss is favored from the exterior of the network, eventually 

proceeding towards the interior. As shown in Figure 5.3, pNIPAm-DHEA spheres 

demonstrated non-linear molar mass decay throughout erosion. In contrast to the swelling 

and network extension observed for pNIPMAm spheres, pNIPAm particles instead 

showed an immediate decrease in their rrms upon erosion, which is associated with mass 

loss proceeding from the exterior of the particle toward the interior. In other words, the 

erosion proceeded from regions of low connectivity (the particle periphery) to regions of 

high connectivity (a highly cross-linked core). However, unlike pNIPMAm spheres the 
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pNIPAm microgels did not completely dissolve, even after ~80 min of incubation with 

periodate. Erosion products at that time point continued to display angle-dependent 

scattering, which is strongly indicative of the presence of remnant spheres following 

DHEA degradation (Figure 5.4).   

 

 

Figure 5.4. Debye plots for pNIPAm microgels before (top) and after (bottom, t = 80 
min) erosion. Remaining angle-dependent scattering for pNIPAm microgel spheres 
suggests colloidal stability despite DHEA degradation. Polynomial fitting of the microgel 
scattering function (red trace) is represented before and after erosion. Erosion resulted in 
low molar mass spheres (~4.0 x 106 g/mol, bottom). 
 

This dimensional stability is likely imparted by non-degradable cross-linking sites arising 

from self-cross-linking that occurs during precipitation polymerization.11, 23 NIPAm is 

prone to chain transfer reactions via the hydrogen atom on the tert-C of the polymer main 
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chain, forming non-degradable connectivity (cross-links) in the network. Chain transfer 

on the main chain is preferred over the hydrogen on the pendent isopropyl group. Thus, 

microgels composed of pNIPMAm (lacking the tert-C on the main chain) would not be 

expected to show significant self-cross-linking, a hypothesis that is supported by the 

complete dissolution of the pNIPMAm spheres in the presence of periodate. Erosion 

products from pNIPMAm experiments showed loss of angle-dependent scattering, 

suggesting complete polymer dissolution and destruction of the particle (Figure 5.2). 

The kinetics of microgel network deconstruction provided additional insight into 

network structure. The pNIPMAm microgels showed an exponential decrease in Mw 

during erosion, as indicated by the linearity in the Mw decay when plotted on a 

logarithmic scale (Figure 5.1). This exponential decay is characteristic for bulk eroding 

polymers, where the erosion rate generally decreases as polymer is depleted from the 

particle structure.7 Decay constant values, !, for microgel erosion were determined 

through nonlinear least squares fitting of the exponential decay function, where 

! 

Mw(t) = Mw0e
"#t . As the concentration of periodate was decreased, the value of ! 

decreased in a linear fashion (Figure 5.5). In contrast, pNIPAm microgels (having an 

inhomogeneous mass distribution throughout the structure) showed very different kinetic 

behavior. For these polymers, mass loss proceeds from the exterior regions first 

(containing less connectivity) towards the interior (containing enhanced connectivity). As 

a result, the kinetics of molar mass loss decelerates during the erosion reaction (Figure 

5.3), where reaction velocities are highest early in the reaction, as the peripheral, low-

connectivity chains are lost from the structure. 
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Figure 5.5. First-order erosion kinetics were observed for pNIPMAm spheres throughout 
the majority of the erosion reaction. Regions showing exponential molar mass decay 
(red) were fit via nonlinear least squares fitting of the exponential function (dotted blue 
lines). The decay constant, !, scaled linearly with periodate concentration.  
 

A direct relationship between the microgel structural composition and the erosion 

behavior was observed in this Chapter. These divergent structures were likely caused by 

several factors, including monomer reactivity and cross-linker incorporation differences 

during polymerization. Heterogeneities in microgel structures are often caused by 

mismatched reactivity ratios for monomer and cross-linker (r1 and r2, respectively) during 

precipitation polymerization, where the reactivity ratio is a measure of the propensity of a 

monomer to propagate by reacting with itself or a different monomer in the synthetic 

mixture. For instance, microgels cross-linked with N,N’-methylenebis(acrylamide) (BIS) 

typically show a radial distribution of cross-links within the particle, with the highest 

cross-linker concentrations residing at the microgel interior.21, 24 This uneven 

incorporation of BIS has been attributed to a high reactivity ratio for the cross-linker 

relative to the monomer (e.g. acrylamide r1 = 0.57, BIS r2 = 3.36).25 The divergent 

microgel structures used in this study were also likely caused by differential 

incorporation of DHEA in microgels composed of NIPAm relative to those composed of 
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NIPMAm. This differential incorporation likely arises from a combination of two factors. 

First, NIPAm has been reported to undergo polymerization faster than NIPMAm, which 

would result in differential reaction rates between the different monomers and the cross-

linker.26  Secondly, DHEA is a more hydrophilic molecule than BIS, which would result 

in poorer incorporation of DHEA-rich polymer segments into the hydrophobic polymer 

globules during particle growth; this effect has been observed for a number of other co-

polymer microgels synthesized by precipitation polymerization.26-27 We have previously 

found, for example, that DHEA tends to be inefficiently incorporated into pNIPAm 

microgels during precipitation polymerization as compared with BIS, resulting in a more 

loosely cross-linked network in the case of DHEA.14  

Thus, the heterogeneous mass distribution found for pNIPAm-DHEA microgels 

may be attributed to preferential incorporation of the NIPAm monomer over DHEA 

during synthesis due to both the rapid homopropagation of NIPAm and the higher 

solubility of any DHEA rich-segments. As discussed previously, there are additional 

features of pNIPAm polymerization that can contribute to microgel heterogeneity (i.e. 

self-cross-linking), which might serve to exacerbate the observed structural differences. 

As shown Scheme 5.1, pNIPAm microgels were of significantly lower density than 

pNIPMAm spheres, suggesting a lower overall cross-linking density.  This result, 

combined with the presence of remnant spheres following erosion, suggests that self-

cross-linking contributes a significant fraction of cross-linking sites throughout the 

structure. In contrast, spheres composed of pNIPMAm showed significantly greater 

density and a smooth sphere topology. This was likely the result of even incorporation of 

reactants during synthesis, as NIPMAm reacts more slowly, which would permit a more 

statistically random incorporation of the DHEA cross-linker. The more random co-

polymers will also be less likely to suffer from poor incorporation due to solubility 

issues, as described previously for polyelectrolyte copolymer microgel synthesis.27  
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5.4 Conclusions 

In summary, analysis of microgel network deconstruction using the in situ 

monitoring method revealed critical physicochemical differences between the particles. 

Although the two microgels were produced under similar synthetic conditions and were 

of comparable dimensions (i.e. their rrms values), their reaction kinetics and the products 

of erosion were very different. Importantly, the presence of intrinsic self-cross-linking 

sites within pNIPAm-DHEA microgels limited the dissolution of the network. This result 

suggests that the formation of completely degradable pNIPAm microgels may require 

alternative synthetic strategies that limit parasitic chain transfer. The investigation 

described in this chapter was informative as we pursue the synthesis and application of 

thermoresponsive and degradable hydrogel particles, enabling a detailed assessment of 

microgel erosion. We anticipate that similar methods will assist in the study of other 

micro/nanoparticles, where rapid response events may enable specific biomedical 

applications. 
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CHAPTER 6 
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MICROGELS 
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6.1 Introduction 

Effective delivery systems are greatly needed for therapeutic proteins, which are 

characterized by several undesirable physicochemical properties that limit their 

widespread medical use. For example, the bioavailability of proteins is generally poor 

since they are unable to cross many biological membranes. Unlike more stable 

compounds, protein drugs are highly susceptible to loss of their pharmacologically-active 

structure (e.g. by proteolysis, oxidation, deamidation), decreasing their therapeutic 

activity.1 Proteins are also sensitive to their local environment, being prone to 

aggregation, adsorption, or denaturation.2 To overcome the shortcomings of protein 

drugs, hydrogel particles (e.g. micro- or nanogels) may be used to encapsulate, protect, 

and subsequently release the agents at disease sites.3-4 Hydrogels are composed of loosely 

cross-linked hydrophilic polymers, yielding a low-density structure that can be used to 

encapsulate proteins. Importantly, using microgels and nanogels scales the favorable 

encapsulation properties down to the sub-cellular level, suggesting the potential for 

cellular targeting of therapeutics (the physicochemical properties of nanogels and 

microgels are discussed in more detail in Chapter 1). 
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 Several researchers have examined the encapsulation of therapeutic peptides and 

proteins within hydrogels.1, 5-12 In previous studies, protein loading was shown to depend 

on the physicochemical properties of the gel (e.g. cross-link density, charge, 

hydrophilicity) and the strength of protein-polymer interactions within the polymer 

network. However, the majority of reports have focused on encapsulation within gels of 

macroscopic dimensions. Whereas macroscopic gels show promise for certain delivery 

routes (e.g. implantable drug depots, topical application, oral administration), the smaller 

dimensions of colloidal particles enables access to regions of the body inaccessible to 

their larger counterparts. For example, we and others are pursuing microgels and 

nanogels as drug delivery vehicles for siRNA and therapeutic proteins (Chapter 3).9, 13-16 

In work described in this Chapter, the loading of cationic proteins within anionic 

microgels (<0.7 µm in diameter) was systematically investigated, assessing the 

relationships between microgel charge and binding stoichiometry. Encapsulation was 

measured by monitoring the changes in microgel molar mass and radius upon protein 

loading via MALS. 

6.2 Experimental Section 

6.2.1 Materials 

All reagents were purchased from Sigma-Aldrich (St Louis, MO) and used as 

received, unless otherwise noted. The monomer N-isopropylacrylamide (NIPAm) was 

recrystallized from hexanes (VWR international, West Chester, PA) and dried in vacuo 

prior to use. Reagents N,N’-methylenebisacrylamide (BIS), sodium dodecyl sulfate 

(SDS), and ammonium persulfate (APS) were all used as received. Water used in all 

reactions and particle purifications was purified to a resistance of 18 M! (Barnstead E-

Pure system), and filtered through a 0.2-µm filter to remove particulate matter. 

6.2.2 Microgel Synthesis 
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Particle syntheses were performed via surfactant-stabilized precipitation 

polymerization, using a modified approach to that previously reported.17 The total 

monomer concentration of all reactions was maintained at 100 mM with a total reaction 

volume of 100 mL. A series of microgels were synthesized with varying AAc content 

(30%, 20%, 10%, and 0% of the total monomer concentration) with identical BIS content 

(2%). The concentrations of NIPAm monomer were adjusted accordingly to achieve the 

desired total monomer content. Reactions were performed by first dissolving NIPAm, 

AAc, and BIS in distilled, deionized water. A small amount of SDS was added to each 

suspension to yield a total surfactant concentration of 1 mM. Monomer solutions were 

filtered through 0.2 µm Acrodisc syringe filters and subsequently added to 200 mL three-

neck round-bottom flasks. Once equilibrated at 70 °C, the reaction mixtures were purged 

with N2 for 1 hr while stirring (400 RPM). The polymerizations were initiated by 

delivering a 1.0 mL aliquot of 0.100 M APS solution by pipette. All reactions were 

allowed to proceed for 24 hours under an N2 blanket while continuously stirring. Once 

cooled, reaction products were filtered through 0.8 µm Acrodisc syringe filters and 

purified via repeated ultracentrifugation and resuspension in distilled, deionized water. 

6.2.3 Microgel Characterization 

The Mw and dn/dc values of all microgels were determined via the Calypso 

syringe pump system (Wyatt Technology Corporation, Santa Barbara, CA), equipped 

with MALS and dRI detection. A diagram of the instrument configuration and the 

principle employed to characterize the Mw and rrms of particles is described in Chapter 2. 

Multiangle light scattering was performed using the DAWN-EOS (Wyatt Technology 

Corporation, Santa Barbara, CA) equipped with a temperature-regulated K5 flow cell 

with a GaAs laser light source (! = 685 nm). Data collection and subsequent light 

scattering analysis was performed using the Astra software Version 5.3.4.14 (Wyatt 

Technology Corporation, Santa Barbara, CA). Accurate measurements of microgel molar 
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mass require the characterization of the dn/dc. Differential refractive index analysis was 

performed via composition-gradient static light scattering using the Calypso and Optilab 

rEX system, equipped with an LED light source (! = 690 nm). The diffusion coefficient 

values of particles were measured via DLS. DLS experiments were performed at a 90° 

scattering angle using a Protein Solutions DLS (Wyatt Technology Corporation, Santa 

Barbara, CA). The rh values were calculated from measured diffusion coefficients 

through the Stokes-Einstein relation ( ), where  is the diffusion 

coefficient,  is Boltzmann’s constant,  and  are the solution viscosity and 

temperature, respectively. Microgel electrophoretic mobility values ( ) were 

determined using a Malvern Zetasizer Nano. The !-potential ( ) values were derived 

from the Smoluchowski relation ( ), where  is the solution viscosity,  is 

the relative dielectric constant, and  is the electrical permittivity). It should be noted, 

however, that the !-potential is only applicable to microgels in a semi-quantitative 

manner, since no well-defined slipping plane exists between the microgel surface and the 

medium. Additionally, most of the charges in the microgels are buried, and contribute 

only fractionally to the calculated !-potential. 

6.2.4  Protein Binding Analysis 

Protein loading was quantified in this work via MALS. MALS is frequently 

employed to measure the root-mean-square radius (rrms) and weight-average molar mass 

(Mw) of polymers. The principles employed in MALS measurements have been 

described in detail in Chapter 2 and elsewhere.18 For accurate measurement of Mw, the 

differential refractive index increment (dn/dc) was measured for all microgels in pH 7 

phosphate buffer. The dn/dc value is an important factor in accurate molar mass 

determination, being a component of the optical constant K in Eq. 1, and is dependent on 
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solvent conditions. Thus, the dn/dc values of microgels were determined in several 

different ionic strength environments and in the presence of cytochrome c.  

For estimations of protein loading via light scattering, the overall change in Mw must be 

approximated for microgels in the presence or absence of protein. However, it is 

important to note that changes in particle swelling from loading introduces error into the 

approximation of Mw, where an increase in polymer segment density causes an increase 

in the intensity of scattering and thus the calculated change in molar mass. In order to 

compensate for this error, one may simply account for the overall change in particle 

volume in the loaded and unloaded states to more accurately estimate an overall change 

in Mw from binding via Equation 6.1. 

Eq. 6.1.   
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dMw = Mloaded "Mwunloaded( ) 1" Vloaded

V0
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$ 
% 
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' 
(    

 

where V0 is the volume of the microgel in the absence of protein and Vloaded is the volume 

of the microgel in the presence of the macromolecule. The validity of this approach was 

investigated in this work by comparing the measured loading via light scattering with 

offline methods (i.e traditional centrifugation/supernatant assay methods) and by 

comparing the measured values with reported loading capacities for similar hydrogels in 

the literature (described below in the Discussion section).  

Solutions of microgels were prepared by diluting a purified stock of particles to a 

concentration of 1.50 µg/mL, 0.86 µg/mL, 0.663 µg/mL, or 1.82 µg/mL for 30 mol%, 20 

mol%, 10 mol% and 0 mol% AAc microgels, respectively in pH 7.0 phosphate (10 mM, 

ionic strength = 20 mM). All buffers were filtered through 0.1 µm syringe filters prior to 

use. In a typical measurement, a baseline was first measured by delivering buffer alone 

through syringe S1 of the delivery system (from reservoir R1) (Scheme 2.6). Microgel 

solutions (loaded in reservoir R2) were subsequently introduced using the computer-

controlled tri-syringe dispenser. The Calypso software enables programmable control 
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over reactant concentrations through the volume and rate of syringe flow. For reported 

microgel Mw and rrms values in this work, particles were diluted to 50% concentration by 

dispensing and mixing the microgel solutions (S2) with buffer (S1). Scattering data was 

collected at 15 angles (0.5 s collection interval) and the resultant scattering curves were 

interpreted using the ASTRA software. 

Measurement of microgel-protein interactions at a single concentration of cyt c 

was performed by dissolving the protein to a concentration of 48 µM in pH 7.0 phosphate 

buffer (10 mM, ionic strength = 20 mM). Protein solutions were filtered through 0.1 µM 

syringe filters to remove any particulate matter. The final concentration of protein stock 

was verified through differential refractometry. A baseline scattering signal was first 

measured by delivering cyt c (loaded in syringe S3) with buffer (loaded in syringe S1), 

resulting in 50% dilution ([cyt c] = 24 µM). After baseline measurement, the previously 

described microgel stock solutions (loaded in syringe S2) were administered with 

cytochrome c (syringe S3), diluting both reactants to 50% stock concentration. The Mw 

and rrms of each particle type was measured at equilibrium via MALS, subtracting the 

baseline light scattering contribution from the protein alone. In an investigation of the 

effect of ionic strength on binding, the buffer used in microgel and protein stock 

preparation was replaced with pH 7.0 phosphate (10 mM) with varying salinity (ionic 

strength range of 20 – 150 mM). 

Traditional centrifugation/supernatant assay methods were used to validate the 

light scattering approach for binding measurements. Solutions were prepared at 24 µm 

cyt c and varying 30 mol% AAc microgel concentrations (3.7 x 10-4 – 1.7 x 10-5 g/mL 

polymer) in pH 7.0 phosphate buffer (10 mM, ionic strength = 20 mM). Microgels were 

sedimented at 50,000 RPM (RCF = 136,000 x g) for 15 min using an Optilab Preparative 

Ultracentrifuge (Beckman Coulter, USA). Supernatant solutions were collected and 

assayed for protein concentration via standard curve using a UV-1601 spectophotometer 

(Shimadzu Corporation, Kyoto, Japan). Protein concentrations in the supernatant were 
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used to calculate the mass of bound cyt c per gram of polymer, enabling estimation of the 

polyelectrolyte capacity for the microgel (PC = g protein/ 1 g polymer). It is important to 

note that the polymer concentrations used in this assay are much greater than those 

employed in light scattering analysis. Thus, the PC value for microgels was estimated 

using the concentration series to extrapolate the PC value to lower polymer 

concentrations (~0.7 µg/mL). 

6.2.5 Microgel Size Analysis 

Investigations of microgel rh by DLS were performed offline at particle 

concentrations of 0.04 mg/mL, 0.04 mg/mL, 0.01 mg/mL, and 0.005 mg/mL for 30 

mol%, 20 mol%, 10 mol %, and 0 mol% AAc microgels, respectively. Samples were 

prepared by diluting a concentrated, purified stock of particles to the indicated 

concentration in pH 7.0 phosphate buffer. Microgel rh was measured at 25 ºC using the 

Dynapro DLS. The !-potential of microgels was measured at the same stock 

concentrations and in identical buffers. In an investigation of microgel binding, 30 mol% 

AAc microgels were diluted in a concentrated protein stock ([cyt c] = 24 µM). The 

diffusion coefficients for the microgels at varying ionic strength were measured, enabling 

calculation of particle rh in response to protein binding.  

6.2.6 Titrations 

Potentiometric titrations were performed to measure acid incorporation into 

microgels using a Corning pH Meter 430 (Corning Incorporated, NY). Microgels were 

diluted to a total concentration of 1 mg/mL and a volume of 20.00 mL in distilled, 

deionized water. Samples were titrated with 0.11 M NaOH under an N2 purge while 

stirring at 22 ºC. Measurements of solution pH were made after 300 s equilibration after 

each addition of titrant. 
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6.3 Results and Discussion 

To systematically investigate the role of hydrogel charge in protein encapsulation, 

a series of poly(N-isopropylacrylamide-co-acrylic acid) microgels was synthesized, 

loosely cross-linked with N,N’-methylenebisacrylamide (BIS, 2 mol%). Acrylic acid 

(AAc) was chosen as a comonomer since it incorporates quantitatively into pNIPAm 

microgels during precipitation polymerization, as reported previously.19 In order to tune 

the acid content, microgels were synthesized by varying the mol% AAc added during 

precipitation polymerization. The set of synthesized microgel particles had similar 

weight-average molar mass (Mw) values, densities (!), and topological features (Table 

6.1).  

 

Table 6.1. Physical properties of microgels synthesized via precipitation polymerization.1 

AAc 
Content rh, DLS rrms, MALS Mw ! "-potential 
(mol%) (nm) (nm) (g/mol) (g/mL) (mV) 

30 358 ± 3 230.5 ± 0.5 2.60 ± 0.02 x 109 2.26 ± 0.01 x 10-2 -32.9 ± 0.8 
20 327 ± 4 187.5 ± 0.2 1.62 ± 0.01 x 109 1.89 ± 0.01 x 10-2 -26.6 ± 0.5 
10 229 ± 4 138.0 ± 0.3 9.41 ± 0.01 x 108 3.10 ± 0.01 x 10-2 -16.4 ± 0.7 
0 121 ± 1 76 ± 2 2.91 ± 0.01 x 108 6.4 ± 0.1 x 10-2 -0.7 ± 0.7 

1Error represents ± one standard deviation of measurements in replicate (n = 4). 
 

The mass distribution within the spheres may be inferred through the ratio of the 

rrms and the rh values.20 Ratios observed in this work (rrms/rh < 0.7) are indicative of a 

radially heterogeneous network topology. Heterogeneity in the microgel structure is 

imparted through non-uniform cross-linker incorporation during precipitation 

polymerization; particles prepared in this fashion typically have greater cross-linking 

within their interior than the periphery.21 Additionally, the microgels have a low density, 

a common characteristic for superabsorbent hydrogels. The density was calculated from 

the mass of a single microgel per the measured volume (from DLS analysis). Acid 

incorporation was quantified via potentiometric titration and was found to scale 
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quantitatively with the moles of AAc included in synthesis for 30 mol% (2.9 x 10-3 mol 

COOH/g polymer), 20 mol% (1.9 x 10-3 mol COOH/g polymer), and 10 mol% AAc (1.1 

x 10-3 mol COOH/g polymer) particles (Figure 6.1).  

 

Figure 6.1. Potentiometric titrations of microgels for the measurement of total acid 
content. Particles were synthesized to contain 30 mol% (green), 20 mol% (red), and 10 
mol%(blue) AAc comonomer. 
 

The !-potential for all spheres was measured to determine the influence of the AAc 

content on particle ionization at neutral pH. The magnitude of !-potential was found to 

increase with increasing amounts of AAc included during synthesis, as reported in Table 

6.1. 

Protein binding was measured for the charged microgels in the presence of 

cytochrome c (cyt c). The structure and charge distribution of cyt c have been explored 

in-depth,22 whereas the binding characteristics of the protein to macroscopic hydrogels 

has also been reported.6-7 The protein is a small, highly water soluble, heme protein with 

a hydrodynamic diameter of 3.5 nm (1.75 nm rh, by DLS).22 The heme ligand is located 

in a lysine-rich region of the protein, imparting a positive charge to the macromolecule at 

pH 7.23 It has been hypothesized that this front face electrostatically guides the 
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cytochrome complex towards negatively charged proteins and lipids in vivo. The protein 

has a net charge of +9.3 (pI = 10.1, Mw = 12,327 Da) at neutral pH.23 

MALS was employed to quantitatively determine the relative cyt c binding to microgels 

of varying AAc content. The Mw values of dilute microgels in buffer alone (0.332 – 

0.910 µg/mL) were compared to the Mw measured in the presence of 24 µM cyt c (~300 

µg/mL) (Figure 6.2).  

 

 

Figure 6.2.  The AAc content of microgels influences binding to cyt c, resulting in an 
increase in apparent microgel Mw in the presence (blue, 24 µM protein) versus absence 
(red) of cyt c. Inset: calculated polyelectrolyte capacity (PC) for microgels. Error bars 
represent one standard deviation about the mean of measurements performed in triplicate. 

 

An increase in Mw was observed for microgels containing AAc in the presence of 

cyt c (Figure 6.2). Notably, the Mw of 30 mol% AAc microgels increased by 

approximately an order of magnitude, indicating a large amount of cyt c loading within 

the hydrogel network. The loading results in a significant change in shape of the Debye 

plot, which suggests a change in particle swelling through loading (Figure 6.3). 
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Figure 6.3. Example Debye plots for 30 mol% microgels (red) and for those microgels in 
the presence of 24 µM cytochrome c (blue) with polynomial fitting of the angle-
dependent data shown (dotted black line). Inset: normalized polynomial fits for the 
particles in the bound (blue) and unbound (red) state. 
 

The loading results in a decrease in particle radius (rh and rrms). The rrms of microgels 

containing 30 mol% AAc decreased from 229 nm to 174 nm from the empty to loaded 

states, respectively (pH 7.0, I = 20 mM, [cyt c] = 24 µM). This size change correlates to a 

volume decrease of ~55% during the binding event. A similar volume decrease was 

observed in the measurement of rh by DLS under the same solution conditions (~53%). 

Microgels interact with oppositely charged cyt c via polyelectrolyte interactions. 

Coulombic forces between the microgel and cyt c results the formation of a polymer-

protein complex, releasing counterions associated with the polymer and protein. Entropy 

is gained through counterion release, providing a net gain in free energy which drives the 

formation of a cross-linked protein-polyelectrolyte complex (Scheme 6.1).7  



 131 

 

Scheme 6.1. Proposed interaction of microgels with oppositely charged cyt c.  

 

Using the scattering data, the polyelectrolyte capacity (PC) of the polymer may be 

calculated (Figure 6.2, inset). The PC is a frequently used metric for the loading capacity 

of macroscopic hydrogels reported in the literature.7 Conventionally, the amount of 

loaded material is measured by weighing the dehydrated bulk gels (equation 6.2). 

 

Eq. 6.2   
  

 

Using MALS, the PC is instead determined through the ratio of the mass of loaded 

protein per the mass of a single sphere.  

 

Eq. 6.3.  

! 

PCMALS =
mass of protein loaded 

mass of a single microgel
=

Mtot,cytc

Mwunbound * (1/NA )
  

 

 

! 

PC =
g of protein 

1 g of polymer
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where Mtot,cytc is the total mass of protein per microgel, Mwunloaded is the molar mass of 

native microgels (without protein), and NA is Avagadro’s number. The Mtot,cytc was 

determined through 

 

Eq. 6.4.  

! 

Mtot,cytc =
dMw
Mwcytc

* 1
NA

*Mwcytc =
dMw
NA

 

 

where dMw is the overall change in molar mass as described by equation 2 of the main 

text. Combining Eq. S2 with Eq. S3 and simplifying yields Eq. 6.5. for calculating PC. 

 

Eq. 6.5.   
  

 

To validate the MALS method for the measurement of PC in this fashion, traditional 

centrifugation/supernatant recovery assay methods were used to measure the fraction of 

protein bound under similar conditions (pH 7.0, [cytc] = 24 µm). As described in the 

Methods, microgels at varying concentration were mixed with the protein and 

subsequently separated by centrifugation. The concentration of bound cyt c was 

quantified by analysis of the supernatant by UV-vis (Figure 6.4).  
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Figure 6.4. Traditional centrifugation/supernatant analysis methods to estimate the 
fraction of bound protein (!) for 30 mol% AAc microgels at varying polymer 
concentrations in pH 7.0 and in the presence of 24 µM cyt c. Polyelectrolyte capacity 
values (inset) were calculated from the concentration of bound protein per mass of 
polymer.  
 

The PC was found to converge to a value of ~4.4 for the particles in the presence 

of excess cyt c. Using the MALS approach, the PC was found to be ~4.5 for the 30 mol% 

AAc microgels, which is in good agreement with traditional centrifugation/supernatant 

assay methods for measuring encapsulation. To further validate the MALS method, the 

calculated PC for 30 mol% AAc microgels was compared with the PC values for 

macroscopic anionic hydrogels reported in the literature. The PC value varies 

significantly with the pH and the ionic strength of the medium. However, Kabanov et al. 

have reported PC values ranging from 13.2 – 16.5 for poly(acrylic acid) macroscopic gels 

under similar binding conditions to those reported in this work (pH 7, low ionic 

strength).7 From the PC range reported by Kabanov (for AAc homopolymer gels), one 

would anticipate a PC value for 30 mol% AAc microgel to range from ~4.0 – 5.0. Our 

measured PC value for 30 mol% AAc microgels (~4.5) is thus in good agreement with 

the expected capacity of the hydrogels for protein. 
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Using MALS, loading was quantified for each particle in solutions of high protein 

concentration ([cytc] = 24 µM). For instance, the 30 mol% AAc microgels bind ~9.7 x 

105 molecules of cyt c per sphere. Using the number of bound proteins and the volume of 

the microgel, we approximated the effective internal protein concentration to be ~17 mM 

(~210 g/L), which is a ~700-fold increase in the protein concentration relative to the 24 

µM solution used for loading. The loaded concentration exceeds the solubility of cyt c in 

water (100 g/L at 25 ºC), which suggests that the microgel network facilitates 

solubilization of the protein. Microgels with lower AAc content loaded less cyt c: 20 

mol% AAc microgels bound ~4.0 x 105 cyt c and 10 mol% AAc microgels bound ~1.0 x 

104 cyt c per sphere. Those loading stoichiometries correspond to effective internal 

protein concentrations of ~4.0 mM and ~0.6 mM cyt c for 20 mol% and 10 mol% AAc 

particles, respectively. For particles synthesized without AAc, the MALS method was 

unable to detect a significant increase in light scattering in the presence of cyt c, which 

suggests minimal interaction with the protein.  

Additional differences between particles were found by comparing the mole 

fraction (!) of cytochrome c loaded per the total moles of acids in the microgel (! = 

moles cyt c loaded / moles AAc available). Whereas the PC value reflects the total 

capacity of the polymer for protein, the value of ! reflects the capacity of the microgel to 

interact with the protein on a per site basis. For example, particles with 30 mol% AAc 

bind a significantly greater fraction of charged groups (! = 0.13) than either the 20 mol% 

(! = 0.05) or 10 mol% AAc microgels (! = 0.01). In other words, the proteins are able to 

access a much larger number of the available charges within the high acid content 

microgels. The higher loading capacities for 30 mol% AAc microgels likely result from 

the increased network swelling, caused by the Donnan effect.19, 24 The higher charge 

density in those microgels increases swelling pressure in the network. Gel swelling yields 

a lower polymer segment density in the network and greater gel porosity, yielding a 

higher loading capacity for cyt c.  In the case of the lower acid content particles, it 
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appears that the decrease in charge density dramatically decreases the accessibility of 

those charges to protein binding. This effect was especially apparent for 10 mol% AAc 

microgels (! = 0.01), where the amount of protein binding (Figure 6.2) is commensurate 

with a sub-monolayer of the cyt c on the particle surface. The low binding stoichiometry 

suggests limited access of the protein to the interior polymer network in the case of low 

acid-content microgels. It may be the case that the initial protein binding events are 

surface localized, causing a condensation of the particle periphery, which limits 

subsequent protein binding within the microgels. Conversely, for the higher acid content 

microgels, the initial protein binding events may occur deeper within the microgel or may 

cause less network condensation, thereby presenting less of a steric hindrance to 

subsequent binding events. 

Previous reports have described an anti-cooperative mechanism for binding 

between microgels and cationic molecules, being strongly dependent on the 

physicochemical properties of the loaded macromolecule (e.g. charge, hydrophobicity, 

molar mass).15-16, 20 For example, the uptake of lysozyme (a small, cationic protein 

similar to cyt c) results in condensation of the polymer network in the periphery of 

particles, forming a collapsed shell and a semi-swollen particle interior.11 Protein-protein 

interactions cause lysozyme to aggregate in the shell, resulting in a biphasic distribution 

of loaded constituents at the final stages of loading (with the greatest protein 

concentration in the particle periphery). Malmsten and coworkers noticed a similar effect 

in loading cationic peptides into charge microgels, where hydrophobic interactions 

between peptides greatly influences the resulting distribution of macromolecules in the 

microgels.25 Although cytochrome c has been reported to form a collapsed polymer shell 

during loading, a recent study has shown that the high stability of the molecule (by 

protein-protein repulsion) enables diffusion through the collapsed shell during loading, 

eventually resulting in a uniform distribution of protein throughout the microgel at 

equilibrium.6 Guided by the literature precedent, we anticipate that the highly acidic 
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microgels (30 mol% AAc) likely load cytochrome c with a similar mechanism as their 

macroscopic counterparts, resulting in a uniform distribution of proteins within the 

structure (Scheme 6.1). However, the decreased accessibility of the charge groups within 

20 mol% and 10 mol% AAc microgels (! = 0.05 and 0.01, respectively) may suggest a 

different loading mechanism, where the decreased swelling of the particles limits loading 

within the microgel exterior. However, additional work is needed to verify this 

hypothesis. 

The interaction of cyt c with polyanionic microgels results in a highly condensed 

polymer structure presumably due to the release of counterions and solvent from the 

network, causing an overall decrease in particle volume. The observed decrease in 

volume, coupled with the increase in particle molar mass, results in a density increase 

(Figure 6.5).  

 

 

Figure 6.5. Influence of cyt c binding on density for loaded (blue, 24 µM) and unloaded 
(red) microgels. Density values for microgels were calculated through measurement of 
microgel volume and molar mass via DLS and MALS, respectively (pH 7.0, I = 20 mM, 
[CytC] = 24 µM). 
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For example, the density of 30 mol% AAc microgels increases ~20-fold in the presence 

of cyt c. For reference, the density of globular proteins typically ranges from 0.8-1.2 

g/mL (density of cyt c = 0.9 g/mL). The microgel density increase is representative of a 

transition from of a porous, highly-swollen network (~0.02 g/mL), to a condensed, 

protein-rich material (~0.5 g/mL). This result may suggest that protein loading affects the 

modulus of the microgel particles. Others have described a strong relationship between 

particle shear modulus with the ionization of the network.26 Protein loading and the 

occupancy of available charged groups may decrease network ionization, and thus 

decrease particle softness. This outcome may influence the deformability of particles in 

response to applied forces.  

Under neutral pH conditions, AAc-functionalized microgels are ionized, and in 

the case of AAc containing pNIPAm microgels, have a uniform distribution of charges 

throughout the particle structure.19 Conversely, cyt c is positively charged due to the 

presence of a lysine-rich region of the macromolecule (adjacent to the heme group). The 

mixing of microgels and cyt c under low ionic strength conditions results in microgel-

protein association. However, the extent and strength of Coulombic interactions between 

polyanionic gels and cyt c is dependent on the solution composition, as reported for 

macroscopic hydrogels.6-7, 11 For example, changes in pH or ionic strength modulate the 

swelling of charged hydrogels. These volume changes are primarily driven by the 

distribution of ions between the internal gel network and the external environment by the 

Donnan potential.19, 24 This additional swelling pressure is thus dependent on the AAc 

content, pH, and the salt concentration in the medium. Additionally, as the ionic strength 

is increased, the strength of Coulombic interactions between ionized gel and the loaded 

protein is diminished as the charges become more screened. 

To look more closely at this effect, the impact of solution ionic strength on 

protein loading was investigated for 30 mol% AAc microgels, which have the highest 

capacity for cyt c of the microgels studied here. For microgels in the absence of protein, a 
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decrease in particle rh was measured with increasing ionic strength (20 – 100 mM) at 

neutral pH, as expected for polyanionic networks (Figure 6.6).  

 

 

Figure 6.6. Influence of ionic strength on the hydrodynamic radius of loaded (blue, [cyt 
c] = 24 µM) versus unloaded (red) 30 mol% AAc microgels. All rh values for were 
measured at identical particle concentrations in pH 7.0 phosphate buffer (10 mM) of 
varying salinity. Error bars represent one standard deviation about the means of several 
replicated measurements (n = 5). 
 

The stoichiometry of protein binding to microgel is also affected by ionic strength; as the 

salt concentration is increased, the measured Mw of the complex decreases. At the 

highest ionic strengths studied (170 mM), the microgel Mw approaches a value that is 

similar to that measured for microgels in the absence of protein (Figure 6.7, green dotted 

line).  
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Figure 6.7 Influence of ionic strength on microgel-cyt c interactions. Increasing salinity 
results in a decrease in the measured Mw of 30 mol% AAc microgels. For reference, the 
Mw of unloaded microgels is shown (green dotted line). All measurements were made at 
neutral pH and at identical microgel and protein concentrations. Inset: visual observation 
of loading via mixing and separating microgels from free protein by centrifugation. Cyt c 
(red color) is localized with microgels in the pellet at low ionic strength (I = 20 mM). 
 

The loading of microgels was also qualitatively observed by mixing 30 mol% microgels 

with cyt c and separating the bound and unbound fractions by centrifugation. 

Photographs were taken after centrifugation (Figure 6.7, inset). At low ionic strength, 

where charge screening is limited, cyt c is co-localized with particles in the pellet. 

The decrease in protein loading at high ionic strength is likely caused by two 

factors, the change in swelling of the microgel network and charge screening between 

binding partners. As described earlier, entropy is gained through counterion release from 

binding cyt c, providing a net gain in free energy that drives the formation of a cross-

linked protein-polyelectrolyte complex. As the salt concentration is increased, the total 

change in entropy experienced by the system during binding is diminished, making 

loading less favorable. Meanwhile, the Debye screening length is reduced at high ionic 

strength, decreasing the effective strength of Coulombic interactions. For microgels 
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composed of 30 mol% AAc, binding was not detected above 120 mM ionic strength. A 

similar trend has recently been reported for the interaction between polyanionic 

macrogels and oppositely charged peptides, where increasing ionic strength screened the 

Coulombic interactions between peptides bound to the gel.25 

6.4 Conclusions 

The physicochemical properties of microgels is altered through binding with 

various compounds, including polyelectrolytes,27-28 polymers,29 surfactants,30 and small 

molecule compounds.31 Namely, the adsorption or absorption of macromolecules affects 

swelling, density, charge and the stability of the polymer. In this chapter, we assessed cyt 

c loading into colloidal microgels by monitoring the properties of the particles (e.g. molar 

mass, radius) directly during encapsulation. Similar to their macroscopic counterparts,6-7, 

11 colloidal microgels load oppositely charged proteins via Coulombic interactions. The 

increase in particle Mw in the presence of cyt c was used to quantify the number and 

concentration of macromolecules within the particles. Microgels containing 30 mol% 

AAc were capable of loading extremely high concentrations of cyt c (~17 mM), beyond 

the solubility limit of the protein in aqueous media (8 mM, 25 ºC). Modulating AAc 

content was an effective means to tune binding stoichiometry; particles with greater AAc 

content showed the greatest capacity for loading. Microgels with low charge content (e.g. 

10 mol% AAc) encapsulated a smaller fraction of proteins due to the decreased swelling 

and low porosity of those networks. 

The detailed assessment of encapsulation in this chapter revealed import design 

parameters to consider as we pursue microgels and nanogels as peptide and protein 

delivery vehicles. For example, considerable changes in microgel morphology resulted 

from loading, where the density of the highly charged spheres (30 mol% AAc) increased 

~20-fold. Decreased swelling during loading is likely to influence the modulus or 

“softness” of the particles, where previous reports have shown a strong relationship 
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between polyelectrolyte shear modulus and the ionization of the network.26 The microgel 

softness is a critical property for the material in biomedical applications, affecting their 

behavior in confined environments.32-33 The chapter also elucidated the effects of gel 

network structure on macromolecule encapsulation. Using network swelling and 

ionization as a tunable variable, future delivery vehicles may be designed with specific 

encapsulation and release properties for biomedical applications.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Introduction 

In this dissertation, several nanogel and microgel chemistries were investigated as 

multifunctional drug delivery vehicles. However, a number of problems remain for those 

structures that must be overcome prior to practical clinical applications. The goal of this 

chapter is to provide concluding remarks for those projects and propose future directions 

of research. This chapter also describes preliminary research (unpublished data) that may 

serve as a starting point to enable those research directions.  

7.2 Multicompartment Nanogels for siRNA Delivery 

Since the discovery of RNA interference by Fire and Mello, there has been 

significant excitement over the use of siRNA as a means for human therapy. The hype 

may be largely attributed to the billions of dollars invested by several pharmaceutical 

giants in the area, both in terms of R&D and the massive capital investments in securing 

intellectual property rights. For example, in 2006 the field was gaining momentum as 

Alnylam (considered a leading biotechnology company in the field) began a major 

partnership with Roche. Roche agreed to pay over $330 million upfront for non-exclusive 

rights to Alnylam’s technology (and potentially more over time). Responding to the deal, 

Merck purchased San Francisco-based Sirna Therapeutics for a surprising $1.15 billion. 

However, those relationships have ultimately failed. As of 2010, Roche had terminated 

all efforts to discover and develop drugs based on RNAi, effectively ending the 

collaboration with Alnylam.1 Despite the significant investment in Sirna Therapeutics, 

Merck closed that facility in February of 2011. Roche and Merck aren’t alone in this 

struggle; Novartis and Pfizer have also curtailed their RNAi programs in recent years.  
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One of the primary reasons for the slow progress experienced by those companies 

is technological: RNAi drugs are plagued by delivery challenges. As discussed in Chapter 

3, oligonucleotides are hydrophilic, negatively charged, and unable to overcome several 

biological hurdles to reach disease sites in vivo. Although a number of siRNA-based 

therapeutics having made progress in clinical trials, the majority of advanced stage trials 

involve either topical or direct injection of siRNA (e.g. treatment of ocular degenerative 

diseases), where delivery is considered less challenging.2 Intravenously administered 

therapeutic formulations are limited to delivery to the liver or other MPS organs.  

Targeted nanoparticle carrier vehicles are expected to enable delivery to other disease 

sites (i.e. cancers), although the majority of those vehicles are in early stages of 

development. 

In Chapter 3, proof-of-principle experiments showed the utility of 

multicompartmental nanogels for the targeted delivery of siRNA for cancer cells. The 

outcome of those experiments was surprising: despite the nanogels being unoptimized 

with regard to siRNA loading and cell targeting, the vehicles showed good efficacy in 

transfection with very low cell toxicity. Preliminary transfection experiments (rodent 

model) showed that nanogels are capable of targeting tumors via the EPR effect in vivo 

(data unpublished). However, high uptake at the spleen and liver suggest macrophage 

recognition and non-specific clearance of the vehicle from circulation. Thus, future 

efforts in this project are aimed to improve various characteristics of the nanogels to 

improve in vivo delivery, some of those include: 

siRNA Protection and Release.  

Nanogels must guard siRNA from inactivation during circulation (e.g. by 

clearance, aggregation, degradation) while preventing premature release. Although the 

hydrophilic nanogel network has shown promise for siRNA protection, the release profile 

imparted by the gel network will require optimization to suit specific tumor phenotypes 
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and physiological conditions. Furthermore, stimuli-responsive characteristics may be 

engineered into these materials for cell-specific, triggered release events. 

Cell Targeting and Transfection.  

In vivo transfection will require optimization for both passive and active targeting 

mechanisms. In addition, the endosomal escape mechanism for nanogels requires 

elucidation. 

Stealth.  

Recognition of particles by phagocytes remains an ongoing challenge for a variety of 

synthetic siRNA vectors. Whereas nanogels are hydrophilic and have shown low levels 

of cytotoxicity, the properties of the nanogel periphery will need optimization (e.g. via 

poly(ethylene glycol) grafting) to enhance tumor accumulation via EPR while avoiding 

clearance by immune recognition. 

Tissue Penetration.  

The siRNA carrier must be capable of passage within confined environments in vivo, 

including the porous vasculature of tumors and the dense extracellular matrix of the 

target tissue. Previous nanogel pore translocation experiments by Hendrickson et al. 

showed that particle softness likely enables nanogel mobility in confined areas.3-5 We 

anticipate that ongoing research via the resistive pulse analysis technique will yield 

additional insight into those properties and how to control particle penetration into dense 

tissues. 

Clearance and Toxicity.  

In order to permit repeated administration of the vector, while limiting toxicity, it is 

common to impart biodegradability. We have found cross-link scission to be a convenient 

means to enable erosion (Chapters 4-5), which may assist in nanogel clearance while 
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reducing off-target effects after repeated delivery. Additionally, nanogels with triggered 

erosion may enable tissue-specific release in future particle formulations, where network 

decomposition in response to cell-specific signal would provide greater specificity 

towards the siRNA release. These erodible properties will need to be included in future 

delivery vehicle architectures. 

The number of features required in these siRNA vectors is large, as illustrated by 

the (by no means comprehensive) list above. However, we consider multifunctional 

nanogels likely candidates to meet those demands. The remainder of this section 

discusses the current (in-progress, unpublished) efforts to optimized the nanogels for drug 

delivery applications. 

7.2.1 Improved Cell Targeting and Stealth 

Of the list of features described in the previous section, we identified cell 

targeting and stealth as immediate concerns for forthcoming animal trials. In Chapter 

1.4.2, surface modifications to improve nanogel biocompatibility were discussed. As 

described in that section, poly(ethylene glycol) modification is a common method to slow 

protein opsonization and non-specific clearance for circulating nanoparticles. PEG 

molecules are very hydrophilic, flexible, and are capable of shielding nanostructures from 

serum proteins that may adsorb.6-7 We hypothesized that surface modification of nanogels 

with high molar mass PEG would improve plasma residence for circulating siRNA 

delivery vehicles. Previous nanogels (described in Chapter 3) did not contain PEG. 

Instead, targeting peptides were bioconjugated to shell-localized primary amines by 

carbodiimide coupling and subsequent maleimide-thiol chemistry.  In order to conjugate 

PEG chains with high surface density, a new bioconjugation strategy was proposed 

(Scheme 7.1).  
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Scheme 7.1. Multicompartment nanogel platform for targeting optimization, consisting 
of a pNIPMAm-BIS core (light grey), and a thin pNIPMAm-BIS-AAc shell (dark grey). 
Particles are decorated with PEG molecules (R1 and R2) via carbodiimide coupling 
reactions. 
 

For this new synthetic strategy, nanogels were synthesized with 5 mol% acrylic 

acid (AAc) in the shell for post-synthesis modification, using the “seed and feed” 

precipitation polymerization method. To those AAc groups, amine-functionalized PEG 

molecules were subsequently conjugated in excess via EDC coupling, using a similar 

approach as described in Chapter 3. Two bifunctional PEG molecules are shown in 

Scheme 7.1, either being carboxy- or maleimide-terminated (R1 and R2, respectively). 

PEG Molecule R2 contains a maleimide group that enables thiol coupling to Cysteine-

terminated targeting peptides. By changing the molar ratio of R1:R2 used during the EDC 

coupling step, the number density of peptide targeting ligands may be tuned within the 

final structure. Since the peptide molecules are conjugated to the terminal end of PEG, 

shielding of the targeting groups by PEG would be avoided. 
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7.2.2 Current status of nanogel optimization and delivery 

Core particles were produced with the same synthetic method as described 

previously (Chapter 3). Instead of including APMA in the shell synthesis, AAc was 

added at 5 mol% of the total monomer concentration ([Total Monomer] = 50 mM). 

Resulting nanogels were of similar size as the previously investigated delivery vehicles: 

nanogels were characterized via DLS in pH 3.0 formate buffer (rh,core = 75 ± 1 nm, rh, 

core/shell = 79 ± 1 nm). However, the core/shell particles demonstrated pH responsivity due 

to the presence of acid groups in the shell (rh,pH3 = 79 ± 1 nm, rh,pH7 = 85 ± 1 nm). 

Additional titrations and electrophoretic mobility measurements are necessary to quantify 

total acid content in the particle shell. To investigate the effects of PEG modification 

alone (without peptide targeting) on macrophage recognition, nanogels were modified 

with R1 only via EDC coupling of the carboxylic acid groups to the primary amines of 

R1. A second batch of nanogels was coupled with R1 and R2 in a 4:1 ratio to serve as an 

initial targeted nanogel. Following conjugation, the second nanogel structure was coupled 

with YSA peptide (in excess to the maleimide groups present, assuming 100% yield from 

EDC coupling). 

The nanogels will be investigated extensively over the next few months by 

another student in the Lyon group, who will assess peptide conjugation efficiency, 

perform additional physicochemical characterizations, and synthesize other carriers with 

varying ratios of R1:R2. Meanwhile, researchers in the McDonald research group 

(GaTech, Biology) will perform macrophage recognition assays and assess transfection in 

vitro and in vivo for the various carriers. Through this collaborative effort, we will likely 

determine improved shell chemistries for both targeting and stealth. 

7.3 Role of Shell Composition in Macromolecule Encapsulation 
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Chapter 6 describes the tunable encapsulation of cationic proteins into anionic 

microgels. From that work, some of the “design rules” for macromolecule encapsulation 

were determined (i.e. the effects of charge and swelling on loading), which may enable 

the rational design of new carrier vehicles. For instance, a charged microgel core particle 

may be chosen for specific loading and macromolecule retention, whereas a shell 

material may be added to impart targeting and to shield the charges present in the core 

(reducing opsonization). However, little is know regarding the effects of shell addition of 

macromolecule encapsulation. Recently, the influence of microgel architecture on 

loading was investigated.  

 

 

Scheme 7.2. Series of microgel structures produced by modulating the total monomer 
concentration in shell synthesis (from 25 mM to 75 mM). 
 

7.3.1 Shell Synthesis 

Core microgel particles were synthesized using an adapted synthetic approach 

from Chapter 3.2.2. However, the composition of the particles was adjusted to include 

AAc. The overall composition of the core particles was 68% NIPMAm, 2% BIS, and 

30% AAc (140 mM = [total monomer], 8 mM = [APS] and [SDS]). A series of shells 

were added with varying thickness using a “seed and feed” precipitation polymerization 

approach.  To vary the total mass of hydrogel shell added, the concentration of monomer 
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in synthesis was varied from 25 mM to 75 mM while maintaining a constant shell 

composition of 98% NIPAm and 2% BIS (Scheme 7.2). Reactions were performed by 

first dissolving NIPAm and BIS in distilled, deionized water. A small amount of SDS 

was added to each suspension to yield a total surfactant concentration of 0.3 mM. 

Monomer solutions were filtered through 0.2 µm Acrodisc syringe filters and 

subsequently added to 100 mL three-neck round-bottom flasks. To this flask, a small 

volume of core particles (5 mL, ~50 mg polymer) was added to serve as “seeds” to 

polymerize the hydrogel shell. The total volume of the reactions was 50 mL. Once 

equilibrated at 70 °C, the reaction mixtures were purged with N2 for 1 hr while stirring 

(400 RPM). The polymerizations were initiated by delivering a 1.0 mL aliquot of 35 mM 

APS solution by pipette. All reactions were allowed to proceed for 24 hours under an N2 

blanket while continuously stirring. Once cooled, reaction products were filtered through 

0.8 µm Acrodisc syringe filters and purified via repeated ultracentrifugation and 

resuspension in distilled, deionized water. 

7.3.2 Core/Shell Microgel Characterization 

Post synthesis characterization was perfomed via Dynamic Light Scattering 

(DLS), Calypso/MALS, and !-potentiometry using similar methods as described in 

Chapter 6. 

 

Table 7.1. Characterization data for microgel core/shell particle series. 

[Shell]  rh, pH 7 rh, pH 3 ! "-potential 
(mM) (nm) (nm) (g/mL) (mV) 

0 128 ± 1 76.7 ± 0.9 0.012 -28 ± 1 
25 133 ± 1 100 ± 1 0.035 -13 ± 1 
50 144 ± 1 126 ± 1 0.041 -6 ± 1 
75 157 ± 1 143 ± 1 0.064 - 

 

Increasing the concentration of total monomer in shell synthesis resulted in an 

increase in particle dimensions under all pH conditions. The responsivity of the core 
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particle was found to attenuate as thicker shells are added. This effect was observed by 

comparing of the pH-response of the particle before and after shell addition. For instance, 

the radius of core particles (without an added shell) decreased by ~51 nm when the pH is 

decreased from pH 7 to pH 3 (Table 7.1). This response is caused by a change in the 

ionization of AAc groups in the core and a decrease in osmotic pressure as charges are 

protonated in the hydrogel. In contrast, microgels with a 75 mM shell responded by ~14 

nm. Core compression effects likely cause the decrease in pH responsivity (core 

compression is reviewed in Chapter 1.3.2.). Core compression is also suggested by the 

increase in density (") observed as shell thickness is increased (Table 7.1). The addition 

of shell decreases the electrophoretic mobility of the microgels by screening the charges 

imparted by the core. 

Using MALS, the weight average molar mass (Mw) for microgels was 

characterized both in the presence and absence of 24  µM cytochrome c (cyt c). All 

microgels were found to load a comparable amount of protein, quantified by the total 

number of proteins (#P) loaded per sphere (the MALS method for quantifying loading is 

described in Chapter 6) (Table 7.2).  

 

Table 7.2. Microgel molar mass was quantified in the presence or absence of cytc. 
 

Shell Conc Mw Unloaded Mw Loaded #P 
(mM) (x 108 g/mol) (x 109 g/mol) (x 104) 

0 0.61 ± 0.01 0.73 ± 0.1 5.4 
25 2.1 ± 0.06 1.04 ± 0.02 6.8 
50 3.1 ± 0.1 1.12 ± 0.01 6.6 
75 6.3 ± 0.2 1.31 ± 0.01 5.5 

 

It is important to note that additional characterization is necessary to fully 

compare the microgel structures for total loading. Specifically, the total acid content for 

each sphere should be quantified via potentiometric titration. With knowledge of the total 

AAc content, the total binding per site may be depicted. Disregarding this limitation of 
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the experiment, the extent of loading shown in Table 7.2 is surprising. Although a 

significant amount of core compression occurs through shell addition (Table 7.1), 

microgels with thick shells appear to load a comparable amount of cyt c into their 

structure. Although the addition of a loosely cross-linked shell (2 mol% BIS) affects the 

swelling of the 30 mol% AAc core, the shells do not attenuate total loading in the 

microsphere. 

7.3.3 Future efforts 

The outcomes described in the previous section suggest that shell addition does 

not diminish loading within the particles. The result also suggests that shell addition can 

be used to decrease the surface charge of the particle (while maintaining core loading). 

To confirm these hypotheses, additional experiments are necessary: In addition to 

potentiometric titrations and additional binding experiments, assessment of the 

morphology of the shells is important. For instance, the shells in those studies may be 

deposited heterogeneously around the core particles, thus making the shells “leaky”. Size 

and surface morphology assessment via microscopy (e.g. in-liquid atomic force 

microscopy or cryo-TEM) is necessary. 

After completion of the shell thickness study, investigating the effects of hydrogel 

shell density would be an interesting avenue for research (Scheme 7.3). 
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Scheme 7.3. Proposed core/shell microgel series with varied BIS content in the shell 
synthesis. 
 

Increasing cross-linker concentration is hypothesized to increase network 

connectivity within the structures. During loading, it is likely that protein diffusivity 

through the shell would be decreased if the polymer segment density were increased. The 

protein may also be inhibited from loading via size-exclusion effects. This outcome 

would be highly enabling in the design of next generation carriers, where shell porosity 

may gate the loading and release of loaded macromolecules. 

7.4 Tunable Encapsulation of siRNA within Cationic Nanogels 

Previous studies demonstrated the high capacity of hydrogel particles for the 

encapsulation of proteins, where the resulting polymer-protein complex (induced by 

Coulombic interactions) was sensitive to solution ionic strength and pH.  Using similar 

approaches, the loading of oligonucleotides into nanogels of varying charge (neutral to 

positive) may be studied. In contrast to positively charged cyt c studied in Chapter 6 and 

Chapter 7.3, siRNA molecules are negatively charged, rod-like molecules. In Chapter 2, 

nanogels of neutral charge were found to load a significant fraction of siRNA, as 
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determined by traditional centrifugation/supernatant assay methods. However, 

introduction of cationic charge groups into the core of those structures may greatly 

increase loading and retention. 

7.4.1 Cationic Nanogel Synthesis 

A new synthetic strategy was developed for synthesizing nanogels containing a 

quaternary amine-containing comonomer (i.e. [2-(methacryloyloxy)ethy] 

trimethylammonium chloride (DMAEMA-Q)). In contrast to previous synthetic methods 

used in this dissertation, the reactions required a cationic initiator 2,2'-azobis(2-

methylpropionamidine)dihydrochloride (v50) and cationic surfactant 

dodecyltrimethylammonium bromide (DTA) to increase particle stability during the 

reaction. Quaternary amine groups were chosen in anticipation of producing core/shell 

nanogels at a later time. Similar to the previous core/shell nanogels for siRNA delivery, 

primary amines would be incorporated in the shell compartment (for post synthesis EDC 

coupling of targeting ligands). The quaternary amines in the core would not disrupt 

coupling to amine chemoligation sites in the shell. 

Nanogel core particles were synthesized by free-radical precipitation 

polymerization, using a modified approach to what is described in Chapter 3.2.2.8 The 

molar composition for the particles was 88% N-isopropylmethacrylamide (NIPMAm), 

2% N,N’-methylenebis(acrylamide) (BIS), and 10% DMAEMA-Q with a total monomer 

concentration of 140 mM. Salt was added (150 mM) to adjust the ionic strength of the 

reaction.  Previous work from our group by Hu et al. demonstrated the effects of ionic 

strength on the yield and size of particles during precipitation polymerization.9 Added 

salt likely screens Coulombic repulsion between positively charged DMAEMA-Q units 

in the copolymer, which enables greater homopropagation of chains during the reaction. 

Block copolymers of pNIPMam and DMAEMA-Q undergo chain collapse more readily 

in the reaction, thus resulting in greater incorporation into the resulting nanogel. Similar 
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to the siRNA delivery vehicles, a small amount (0.1 mM) of acrylamidofluorescein 

(AFA) was added to render the nanogels fluorescent for visualization via confocal 

microscopy.  

For the synthesis, 50 mL of a filtered, aqueous solution of NIPMAm, BIS, and 

DTA ([DTA] = 2 mM) was added to the reaction flask, which was then heated to 70 ºC. 

The solution was purged with N2 gas and stirred vigorously until the temperature 

remained stable. The AFA was added, and after 10 minutes the reaction was initiated by 

the addition of a 1 mL solution of 100 mM ammonium persulfate (APS) to make the final 

concentration of APS in the reaction 2 mM. The solution turned turbid, indicating 

successful initiation. The reaction was allowed to continue for 4 h under an N2 blanket.  

7.4.2 Nanogel characterization and preliminary binding results 

Resulting nanogels were small in radius (rh = 76 ± 1 nm) with high size 

polydispersity values (Pd # 30%). As described by Hu et al.,9 high ionic strengths in the 

reaction results in charge-screening conditions, which may destabilize particles during 

the reaction and increase polydispersity values in the final product. A4F/MALS was 

employed to accurately assess size dispersity prior to loading experiments. 
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Figure 7.1 Characterization of cationic nanogel via A4F/MALS. Particle were separated 
in pH 7.0 phosphate buffer (ionic strength = 20 mM). 
 

The broad distribution of nanogel sizes was determined via A4F/MALS (Figure 

7.1). As can be seen in that fractogram, particle sizes ranged from 40-100 nm across the 

peak associated with nanogels (tR = 34 min). We hypothesized that similar to anionic 

microgels (Chapter 6), the cationic nanogels would bind to oppositely charged 

macromolecules at low ionic strength. In a preliminary binding experiment, nanogels 

were characterized in the presence of lactalbumin, which is a small, anionic protein. The 

nanogel was mixed with increasing concentrations of lactalbumin in pH 7.0 phosphate 

(ionic strength = 20 mM) and subsequently characterized using the A4F/MALS method. 

By using A4F prior to light scattering detection, binding could be characterized despite 

the broad distribution of particle sizes present in the system.  

 

 

Figure 7.2 Nanogel-protein mixtures characterized via A4F/MALS in the absence (blue) 
or presence of 6.4 µg (green) and 32 µg (red) of lactalbumin. Particles were separated in 
pH 7.0 phosphate buffer (ionic strength = 20 mM) using an identical nanogel 
concentration.  
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The increase in peak area for nanogels (tR ~34 min) may be indicative of protein 

loading within the structures. However, the mean rrms value for the peaks increases with 

increasing protein concentration. The nanogels are ~77 nm without lactalbumin present 

(Figure 7.1). In the presence of lactalbumin (Figure 7.2), the rrms increases to ~96 nm and 

~102 nm for 6.4 µg and 32 µg of protein, respectfully.  These results are in contrast to 

previously studied anionic microgels, which decrease in size due to the formation of a 

polymer-protein complex (Chapter 6). The increase in rrms observed in this work may be 

caused by three factors. First, the binding of protein to the nanogel may destabilize 

particles in solution, resulting in the formation of aggregates that distort low angle data 

and thus increase the apparent rrms value. Second, the protein may be binding to the 

periphery of the nanogels selectively, unable to access buried charges in the interior of 

the particle. Binding to the periphery may increase the rrms since the mass distribution of 

scatterers would change in the particle. Third, the A4F/MALS method may be inducing 

protein and nanoparticle aggregation during the fractionation, distorting the subsequent 

data analysis. 

7.4.3 Future Efforts 

Preliminary experiments suggest that cationic nanogels are responsive to 

oppositely-charged lactalbumin. A series of experiments must be performed to 

investigate the nature of that response (observed in Figure 7.2). As described in the 

previous section, it is unclear whether the increase in scattering from nanogels is a result 

of protein loading, particle/protein aggregation, or both effects simultaneously.  

The nanogels should be characterized offline, both in the presence and absence of 

protein. Through assessment without fractionation, one could determine whether A4F has 

a destabilizing effect on the particles or protein. Nanogels should be characterized via 

DLS to determine the change in rh in the presence of lactalbumin. Assessment of the ratio 

of rrms: rh would provide insight into whether surface-localized binding occurs in the 
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particles: although a large increase in rrms was observed in the data (presented in Figure 

7.2), the nanogels show only a slight increase in retention via A4F, which may indicate a 

small increase in particle rh from loading. For surface-localized binding, an increase in 

the ratio of rrms:rh would be expected. Nanogels should be characterized in the presence 

of other oppositely charged macromolecules, including globular proteins and 

oligonucleotides. We hypothesized that the nanogels would bind oppositely-charged 

macromolecules via Coulombic interactions. Thus, performing loading and A4F/MALS 

characterization at high ionic strengths and varying pH may attenuate loading in those 

structures. Finally, nanogels of varying charge and reduced polydispersity may be 

synthesized. Through repeated assessment of those particles, the “design rules” for 

loading a variety of cationic macromolecules would be obtained. 

7.5 Closing Remarks 

In this Chapter several new research directions were proposed to improve the 

performance of nanogels for delivery applications. For example, additional research into 

cationic nanogels (Section 7.4) may give rise to tunable core compartments for those 

vehicles, where siRNA or protein encapsulation may be modified by the concentration of 

charged groups within the network. To those cores, PEG containing shells may be added 

(Section 7.2), where the ratio of targeting and stealth characteristics can be modulated 

through the ratio of coupled ligands on the surface. The effects of adding those shells to 

the core nanogels may be anticipated through additional research in Section 7.3. Thus, 

these projects together may enable new generations of nanogels, each with tunable 

features for various drug delivery applications. 
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