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 “In the course of time I have learned to tramp about coral reefs, twenty to thirty feet 

under water, so unconcernedly that I can pay attention to particular definite things. But 

after all my silly fears have been allayed, even now, with eyes overflowing with surfeit of 

color, I am still almost inarticulate. We need a whole new vocabulary, new adjectives, 

adequately to describe the designs and colors of under sea.” 

-William Beebe 
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Diet of blue crab is represented in chemical profile of urine. 

Orthogonalized partial least squares discriminant analysis (OPSL-
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variation within urine. Maroon circles represent data from urine 

from blue crabs fed mud crabs (N = 9); yellow circles represent 

data from urine from blue crabs fed oysters (N = 10). Diet of blue 

crab is represented in chemical profile of urine. Orthogonalized 

partial least squares discriminant analysis (OPSL-DA) scores for 
1H NMR spectra differentiates urine of blue crabs fed mud crabs 

and from urine of blue crabs fed oysters along the first latent 

variable using 10.45% of the total detected chemical variation 

within urine. Maroon circles represent data from urine from blue 
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Correlation spectroscopy (COSY) spectrum of blue crab urine 

annotated with compound numbers indicating critical correlations 

for trigonelline (1), lactate (3), carnitine (4), choline (5), threonine 

(6), methyl glutarate (9), and alanine (13).Blue crab diet affects 

concentration of specific urinary metabolites. (A) Compounds 

identified by 1H NMR metabolomics PCA model that distinguish 

urine of blue crabs fed mud crab vs. oyster diets. Annotated 

metabolites consisted of: trigonelline (1); pyrimidine (2); lactate 

(3); carnitine (4); choline (5); threonine (6); creatinine (7); 

trimethylamine (8); methyl glutarate (9); acetate (10); creatine 

(11); N-methylhistidine (12); alanine (13). (B) Overlay of 1H NMR 

spectra of urine from blue crabs fed mud crabs (brown) oyster 

(yellow) averaged across 12 urine samples for each diet. Peak 

intensity was normalized to an internal standard whose 

concentration was identical in all samples. Numbers above 1H 

NMR signals in (B) refer to numbered compounds in (A). Only 

protons used to calculate concentration of metabolites are labeled. 

Inset is expansion of downfield region of overlaid 1H NMR spectra. 
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squares regression (PLS-R) model of 1H NMR metabolomics data 

suggests that trigonelline (1) and homarine (14), but not 

trimethylamine (8) are components of the fear-inducing cue of blue 

crab urine. (A) PLS-R model highlights the linear relationship 

between the measured and model-predicted potency of fear-

inducing behavior of blue crab urine. A potency value of 1 would 

indicate complete suppression of mud crab feeding in the presence 

of the urine sample whereas a potency value of zero represents no 

feeding suppression. Crab symbols represent data from urine from 

blue crabs fed mud crabs; oyster symbols represent data from urine 

from blue crabs fed oysters (N = 4 for urine from blue crabs fed 

mud crabs, N = 3 for urine from blue crabs fed oysters). Dashed 

lines represent sigmoidal curve fitted to experimental data using 
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Heteronuclear multiple bond correlation (HMBC) spectrum of blue 

crab urine annotated with compound numbers indicating critical 

chemical shifts for trigonelline (1), pyrimidine (2), lactate (3), 

carnitine (4), choline (5), threonine (6), trimethylamine (8), methyl 

glutarate (9), N-methylhistidine (12), and alanine (13).PLS-R 

models for 1H NMR metabolomics highlight metabolites whose 

concentrations correlate with urine fear-inducing potency. (A) 

PLS-R variable importance parameters (VIP) and (B) loadings for 
1H NMR spectroscopic features in urine from blue crabs. All VIP 

scores above 30 were truncated to allow for visualization of 

spectroscopic features with smaller VIP scores. 
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Figure 2.7 

 

 

 

Multiple reaction monitoring LC/MS confirmation of trigonelline 

(1) in blue crab urine. Mass transitions of 138 amu to 94 amu (blue) 

and 138 amu to 78 amu (orange) were optimized using a 

commercially available standard of 1. A) Commercial standard of 

1 at 1 mg/mL, B) blue crab urine, and C) blue crab urine spiked 

with an equivalent amount of 1 which resulted in an approximate 

doubling of the peak associated with 1, as predicted.At natural 

concentrations found in blue crab urine, trigonelline (1) and 

homarine (14) but not trimethylamine induce fear, evidenced by 

reduced foraging among mud crabs. Urinary metabolites were 

formulated to match concentrations observed in blue crab urine (N 

= 10 for all treatments). Letters indicate significant grouping of 

treatments (one-way ANOVA with Tukey post-hoc test). Error 

bars represent ±1 SEM. 
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Blue crab diet affects concentration of specific urinary metabolites. 

(A) Compounds identified by 1H NMR metabolomics PCA model 

that distinguish urine of blue crabs fed mud crab vs. oyster diets. 

Annotated metabolites consisted of: trigonelline (1); pyrimidine 

(2); lactate (3); carnitine (4); choline (5); threonine (6); creatinine 

(7); trimethylamine (8); methyl glutarate (9); acetate (10); creatine 

(11); N-methylhistidine (12); alanine (13). (B) Overlay of 1H NMR 

spectra of urine from blue crabs fed mud crabs (brown) oyster 

(yellow) averaged across 12 urine samples for each diet. Peak 

intensity was normalized to an internal standard whose 

concentration was identical in all samples. Numbers above 1H 

NMR signals in (B) refer to numbered compounds in (A). Only 

protons used to calculate concentration of metabolites are labeled. 

Inset is expansion of downfield region of overlaid 1H NMR 

spectra.Electron delocalization is dependent on carboxylate 

position for trigonelline, homarine, picolinic acid, and toluic acid. 

Orbital representations (red and blue shapes, row two) are of the 

highest occupied molecular orbital (HOMO) for each molecule and 

were model using Gaussian ’09 and visualized with PyMol. The 

torsional angle between the pyridinium/aromatic ring (black line) 

and the carboxylate (red line) are shown in the bottom row. 

40 
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Electron delocalization is dependent on carboxylate position for 

trigonelline, homarine, picolinic acid, and toluic acid. Orbital 

representations (red and blue shapes, row two) are of the highest 

occupied molecular orbital (HOMO) for each molecule and were 

model using Gaussian ’09 and visualized with PyMol. The 

torsional angle between the pyridinium/aromatic ring (black line) 

and the carboxylate (red line) are shown in the bottom row. 
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PCA and OPLS-DA discriminate among allelopathic effects of K. 

brevis against A. glaclialis. A) PCA of allelopathic exuded 

metabolomes (red) vs. non-allelopathic exuded metabolomes 

(blue) vs most stimulatory K. brevis exuded metabolomes (green). 

B) OPLS-DA of allelopathic exuded metabolomes (red) vs. 

combination of non-allelopathic exuded metabolomes and most 

stimulatory K. brevis exuded metabolomes (teal). C) OPLS-DA of 

allelopathic exuded metabolomes (red) vs non-allelopathic exuded 

metabolomes (blue) and D) non-allelopathic exuded metabolomes 

(blue) vs. most stimulatory K. brevis exuded metabolomes (green, 

N = 9 for each class in each model). 
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SUMMARY 

Understanding how organisms interact with members of their own species 

(intraspecific interactions), with members of other species (interspecific interactions), or 

with their environment is a central theme of ecology. For these interactions to occur, 

individuals must be able to sense and recognize other organisms, nutrients, and resources. 

However, not all organisms sense others and their environments by similar mechanisms: 

some species rely on sight, sound, olfaction, or taste, whereas others utilize 

mechanosensory cues, magnetosensory cues, or gravitational cues. In the marine 

environment, waterborne olfactory cues released into the water column are commonly 

utilized since visual, auditory, and mechanosensory cues can be complicated by wave 

action and turbidity. Additionally, waterborne cues are important in competitive 

interactions among organisms. Despite decades of dedicated research, we still know little 

about the chemical nature of waterborne cues and physiological responses by individuals 

that detect the cues.  

First, to better understand the chemical nature of waterborne cues in chemosensory 

detection, we investigated how the mud crab Panopeus herbstii detects its predator, the 

blue crab Callinectes sapidus, via waterborne cues (see Chapter 2) (1). Using a multi-

platform metabolomics approach combining 1H nuclear magnetic resonance (NMR) 

spectroscopy and mass spectrometry (MS), two compounds, trigonelline and homarine, 

were identified as the major constituents of the waterborne cue released in the urine of blue 

crabs that induces fear in mud crabs. We also found that mud crabs adjust their behavior 

depending on the diet of the blue crab, with exposure to urine from blue crabs fed mud 
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crabs leading crabs to exhibit a stronger fear response than exposure to urine from blue 

crabs fed oysters. This suggests that mud crabs exhibit differential risk perception. The 

concentrations of trigonelline and homarine were highest in blue crab urine associated with 

the greatest fear response and lowest in urine with the lowest perceived risk. More 

generally, this ability of prey to chemically detect predators and in turn avoid predation is 

vital to survival and is expected to have significant implications on community structure. 

This case study involving blue crabs and mud crabs is an example of non-consumptive 

effects of predators, i.e., predator-prey interactions that do not necessarily result in 

consumption of prey but that alter physiology or behavior of prey with cascading impacts 

on lower trophic levels.  Thus, the waterborne cues identified in this study could have a 

large impact not only on blue crabs and mud crabs but also on populations of other 

organisms and on the entire estuarine community.  

To better understand the role of waterborne cues in competition, we investigated 

the chemical basis of allelopathy, the release of compounds that negatively affect 

competitors, involving the red tide phytoplankton Karenia brevis (See Chapter 3) (2).  K. 

brevis is a common inhabitant of Gulf of Mexico offshore and nearshore waters, frequently 

forming dense blooms of congregated cells, colloquially known as the red tide. K. brevis 

exudes unidentified allelopathic compounds that negatively affect competitors through 

sub-lethal effects. However, K. brevis allelopathy is variable among blocks and strains. We 

investigated the chemical nature of variable allelopathic potency of K. brevis against its 

competitor Asterionellopsis glacialis.  Combining an in vitro laboratory-based assay to 

assess allelopathic potency and 1H NMR spectroscopic profiling, we identified three 

distinct metabolic modalities of K. brevis: allelopathic, non-allelopathic, and stimulatory. 
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Each metabolic modality exhibited a distinct chemical fingerprint with compounds that 

were more abundant in the exuded metabolomes of the most allelopathic K. brevis blocks 

and strains possessing aromatic moieties, unsaturated lipid-derived moieties, or both 

functionalities. This variation has been previously underutilized in understanding 

chemically mediated interactions involving K. brevis and could serve as a model for other 

phytoplankton systems.  

In addition to understanding the compounds serving as waterborne cues (see 

Chapter 2) (1) and allelopathy (see Chapter 3) (2), it is important to investigate the 

physiological and molecular consequences of allelopathy on competitors. The molecular 

underpinnings of chemosensory detection, or chemoreception, such as G protein-coupled 

receptors and ensuing signaling cascades, are the subject of considerable historic 

evaluation, while the metabolic responses by individuals responding to chemically 

mediated competition, such as allelopathy, are not well studied. We investigated alterations 

in the lipidomes of two competitors, A. glacialis and Thalassiosira pseudonana, in 

response to K. brevis allelopathy (see Chapter 4) (3).  Using a multi-platform metabolomics 

approach (NMR and MS profiling), both competitors’ lipidomes were found to be affected 

by allelopathy. However, the lipidome of T. pseudonana was significantly more disrupted 

than that of A. glacialis. Co-occurrence of A. glacialis and K. brevis in the Gulf of Mexico 

could have provided A. glacialis with the opportunity to evolve some partial resistance to 

allelopathy. Decreases in concentrations of lipids common to cell membranes and 

chloroplast membranes were detected when T. pseudonana was exposed to allelopathy. 

Perforations in the cell membrane observed via fluorescence microscopy were consistent 
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with the observed decreases in membrane-associated lipids. These findings suggest that 

allelopathy acts through membrane destabilization and the disruption of photosynthesis.  

In summary, my dissertation research provides insights into the chemical nature of 

waterborne cues and their impacts on biological systems. Using complex multivariate 

modeling and multi-platform profiling techniques, the molecular nature of a waterborne 

cue mixture was characterized and the molecular responses of species sensitive to 

allelopathy were illuminated. Lastly, the current work reveals the challenges of identifying 

waterborne cues and provides a framework for investigating the chemical nature and 

importance of interactions mediated by waterborne cues.  
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CHAPTER 1. INTRODUCTION 

 One of the most fundamental aspects of ecology is understanding interactions 

among organisms and interactions between organisms and their environments (4). These 

interactions are dependent on mechanisms to detect other organisms via visual (5, 6), 

olfactory (7, 8), auditory (9, 10), mechanosensory (11, 12), or other specialized cues.  In 

the marine environment, many organisms use chemical senses such as olfaction and taste, 

as wave action, turbidity, and darkness can complicate other detections mechanisms. 

However, despite significant evidence that chemosensation is widespread (7, 13-15), little 

is known of the ecologically important compounds being sensed in marine environments. 

In one of the few chemically described systems, di-L-prolyl diketopiperazine (Figure 1.1) 

mediates the attraction of mates in the phytoplankton Seminavis robusta (16). In another 

example, the phytoplankton Alexandrium minutum responds to a specialized class of 

taurolipids called copepodamides (Figure 1.1) released by copepod predators, increasing 

production of defensive toxins by up to 20-fold (17).  

 Many of the waterborne cues responsible for mediating interactions among marine 

organisms are particularly difficult to characterize due to their chemical properties. 

Waterborne cues are often polar, labile, and found in relatively low concentrations in the 

water column (18).  Bioassay-guided fractionation is time and resource intensive and does 

not favor waterborne cues. Additionally, the separation of multicomponent cues can lead 

to loss of bioactivity during compound isolation. The lack of appropriate methodologies to 

isolate and characterize waterborne cues has led to a dearth of knowledge regarding the 

chemical nature of signaling in marine systems.  
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Figure 1.1: Molecular structures of the previously identified waterborne cues: di-L-prolyl 

diketopiperazine and copepodamides A-H.  
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 The intertidal zone is a particularly harsh environment that straddles the boundary 

between land and water. Intense abiotic stressors such as direct sunlight, fluctuating 

temperatures, and arid conditions when intertidal communities are exposed to the air have 

led to adaptive behaviors and physiological enhancements that reduce desiccation and 

predation (19-21). When submerged, organisms are subjected to a completely different set 

of stressors including predators that may not be relevant when exposed at low tide. One 

useful adaptation is for individuals to detect predators at a distance and avoid contact, thus 

preventing the need for additional costly investment in defense. In Southeastern U.S. 

estuarine oyster reefs, the mud crab Panopeus herbstii is known to cease foraging activities 

and hide from predatory blue crabs, Callinectes sapidus, in the interstitial spaces between 

oysters (22). Previous studies have suggested that detection is chemically mediated 

although neither the transmission source of the cue nor the compounds responsible for 

detection were identified (22). I hypothesized that small, primary metabolites released in 

the urine of blue crabs are perceived and utilized by mud crabs as a warning that a predator 

is nearby. 

 Alteration of behavior of prey in response to the detection of predators, also known 

as non-consumptive effects, is predicted to have large impacts on community structure, 

possibly more than the direct consumption of prey by predators (23). For example, the 

reintroduction of wolves in Yellowstone National Park is shown to have affected the 

movement, feeding habits, and reproduction of elk (24-26). Altered elk behavior allowed 

aspen, willow, and cottonwood populations to rebound near riverbanks which further 

allowed beavers and bison to reclaim lost habitat (27). Additional effects, such as increases 

in the populations of songbirds have also been attributed to cascading non-consumptive 
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effects of wolf reintroduction (28). Similarly to how the presence of wolves in Yellowstone 

altered the behavior of elk, the fear-inducing cue alters the behavior of mud crabs, 

suggesting that the fear-inducing cue could affect community structure and composition. 

This warrants additional investigation into the chemical nature of the cue in the field as 

well as the ecological impact on the community.  

 Chemical cues are also important in mediating competitive interactions. 

Allelopathy, the release of compounds that negatively affect competitors, is a common 

feature among bloom-forming phytoplankton hypothesized to play a role in bloom 

dynamics (29). Despite a long history of researchers investigating the potent neurotoxins 

that bloom-forming phytoplankton exude (30-32) and their disastrous effects on marine 

life (33, 34), little is known of the compounds responsible for allelopathy.  Perhaps 

surprisingly, the neurotoxins that threaten human health and cause wildlife mortality are 

not typically allelopathic towards other phytoplankton. Additionally, little is known of the 

metabolic responses of phytoplankton exposed to allelopathy or the mechanisms of action 

of allelopathic compounds.  

 The red tide dinoflagellate, Karenia brevis, is common to the Gulf of Mexico and 

has been shown to utilize allelopathy as a form of interference competition. Previous 

research into the chemical nature of allelopathy has revealed that K. brevis allelopathy has 

species-dependent effects on competitors and is sub-lethal (35, 36) with allelopathic 

exposure leading to compromised osmoregulation, decreased photosynthesis, and 

increased oxidative stress in the competitor Thalassiosira pseudonana (37). Additionally, 

bioassay-guided fraction identified that bioactive fraction containing allelopathic 

compounds exhibited spectral characteristics of aromatic and fatty-acid derived moieties 
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but that complete characterization was not possible due to degradation (38). I hypothesized 

that K. brevis exudes variable concentrations of allelopathic compounds that correlate with 

allelopathic potency and that this variation could be used to classify K. brevis into distinct 

fingerprints, or chemical profiles. A more thorough understanding of the chemical nature 

of allelopathy and the effects on competitor physiology allows for further investigation into 

the mechanism of action of allelopathy and into the role of specific compounds in bloom 

dynamics.  

 In this dissertation, I examine the chemical nature of waterborne cues utilizing 

metabolomics and multivariate statistical modeling. I first describe a multicomponent fear-

inducing cue that is utilized by prey to detect their predators in a Southeastern U.S. 

estuarine oyster reef. I then detail the chemical distinctions between allelopathic, non-

allelopathic, and stimulatory Karenia brevis via spectroscopic fingerprinting. I follow by 

describing the catastrophic metabolic consequences of allelopathic exposure in two 

competing phytoplankton species. I conclude with future directions regarding the 

identification and characterization of waterborne cues.  
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CHAPTER 2. CHEMICAL ENCONDING OF RISK 

PERCEPTION AND PREDATOR DETECTION AMONG 

ESTUARINE INVERTEBRATES (1) 

2.1 Abstract 

An effective strategy for prey to survive in habitats rich in predators is to avoid 

being noticed. Thus, prey may be selected to recognize predators and adjust their behavior 

which can impact numerous community-wide interactions. Many animals in murky and 

turbulent aquatic environments rely on waterborne chemical cues. Previous research 

showed that the mud crab, Panopeus herbstii, recognizes the predatory blue crab, 

Callinectus sapidus, via a cue in blue crab urine.  This cue is strongest if blue crabs recently 

preyed upon mud crabs. Subsequently, mud crabs reduce their foraging activity, reducing 

predation by blue crabs. Using nuclear magnetic resonance spectroscopy- and mass 

spectrometry-based metabolomics, chemical variation in urine from blue crabs fed 

different diets was related to prey behavior. We further identified the urinary metabolites 

trigonelline and homarine as components of the cue that mud crabs use to detect blue crabs, 

with concentrations of each metabolite dependent on blue crab diet. At concentrations 

found naturally in blue crab urine, trigonelline and homarine alone, as well as in a mixture, 

alerted mud crabs to the presence of blue crabs leading to decreased foraging by mud crabs. 

Risk perception by waterborne cues has been widely observed by ecologists, but the 

molecular nature of these cues has never been identified. Metabolomics provides an 

opportunity to study waterborne cues where other approaches have historically failed, 
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allowing for the advancement of our understanding of the chemical nature of a wide range 

of ecological interactions. 

2.2 Introduction 

Gathering and interpreting information from the environment is imperative to 

organisms’ ability to recognize food, mates, predators, and appropriate habitat. Many 

aquatic species rely on chemical cues (39-41) in the marine environment where auditory, 

visual, and mechanosensory mechanisms are often compromised. Significant efforts have 

been made to understand chemical defenses and feeding deterrents (42-45) as many have 

potential medicinal applications (46-48), however waterborne cues remain almost 

completely unidentified.  

The ability to sense and recognize predators remotely is particularly important for 

organisms because it allows for the production of behavioral, morphological, or life-

historical adjustments to minimize predation (49). Although significant evidence exists for 

widespread chemical detection of predators and alarm cues among conspecifics in the 

marine environment (50-52), little is known about the molecular nature of the cues 

involved. These cues are of particular  importance as they routinely produce ecologically 

significant non-consumptive effects, that is, altered species interactions beyond the effects 

of lost prey due to consumption due to changes in the morphology, behavior, or life-history 

of prey (23). Non-consumptive effects have been demonstrated in aquatic (21, 53, 54) and 

terrestrial environments (55), and are suggested to have even greater capacity to structure 

many communities than the direct effects of consuming prey (23). Due to the lack of a 

molecular understanding of these cue systems, little is known about how cues disperse in 
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aquatic systems, the receptors that mediate chemoreception and recognition of these cues, 

and the specificity to these cues, necessitating further research.  

One explanation for the lack of characterized waterborne cues is that purification 

methodologies for highly water-soluble compounds have been unsatisfactory, especially 

when working with seawater samples that contain substantial quantities of inorganic salts. 

Standard sampling methods for airborne chemical cues such as headspace analysis for 

volatile insect pheromones (56) are unavailable for non-volatile waterborne cues. Many 

waterborne cues are present in very low concentrations, unstable to handling in the 

laboratory, and produced by organisms that either are not abundant or not readily cultivated 

in the laboratory. It may be difficult to identify in which tissues of an organism these cues 

are produced or stored, and when this is possible the signaling molecules may occur as part 

of a complex mixture with many other, irrelevant metabolites. 

 Traditionally, chemists have applied a process of bioassay-guided fractionation to 

purify and then characterize biologically active compounds. However, this multi-step 

approach often leads to decomposition of labile cues and exclusion of multicomponent 

cues, while simultaneously requiring substantial quantities of the chemical cue mixture for 

biological testing after each chemical separation step (38). Recent advances in nuclear 

magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) metabolomics 

allow for fast, efficient, and cost-effective profiling of complex mixtures containing 

waterborne cues, whose chemical variation can be leveraged to correlate the presence or 

abundance of particular compounds within the mixture with biological potency of the 

mixture. Recently, a novel microalgal mate attraction pheromone was identified using MS-

based metabolomics despite pheromone concentrations in the nanomolar range (16).  
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Previous research showed that the mud crab, Panopeus herbstii, detects its predator, 

the blue crab, Callinectus sapidus, using unknown metabolites released in the urine of blue 

crabs (57). Mud crabs distinguished urine from blue crabs fed different diets and reacted 

differently to urine from blue crabs fed mud crabs vs. other prey. Using NMR- and MS-

based metabolomics, we aimed to leverage the chemical variation in urine from blue crabs 

fed different diets to identify the component(s) of the cue mixture that mud crabs use to 

recognize blue crabs. This study provides a roadmap to identify complex waterborne cues 

that can be used to further our understanding of chemically mediated interactions in the 

marine environment.  

2.3 Materials and Methods 

Animal Maintenance and Sample Collection 

Blue crabs, Callinectes sapidus, were collected from the tributaries and rivers 

around Wassaw Sound, Savannah, GA, and either kept in a seawater flow-through system 

at the Skidaway Institute of Oceanography (SkIO) or transported to the Georgia Institute 

of Technology (GT), Atlanta, GA. The seawater flow-through system at SkIO housed 

animals in 2000 L tanks at ambient temperature with running seawater. Crabs at GT were 

held in a 4000 L recirculating system of artificial seawater (Instant Ocean™) formulated 

to maintain salinity between 25-30 ppt at 21-22 °C. The system contained a particulate 

bacterial biofilter, protein skimmer, and carbon filter. Animals were kept under a 12:12 

light:dark cycle and water quality was checked and adjusted weekly to maintain levels 

recommended for marine invertebrates. Urine was collected from intermolt crabs, 10-15 

cm carapace width from spine to spine. Animals were starved (36-48 h) prior to urine 
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collection to ensure urine was not contaminated with metabolites from their previous diet. 

Crabs were fed 7-12 g/day of either locally collected crushed mud crabs, Panopeus herbstii, 

or freshly shucked oysters, Crassostrea virginica, natural constituents of blue crab diets 

and members of the Wassaw Sound intertidal community (37). The diets mimicked ad 

libitum amounts for each prey type; 7 g oyster flesh and 12 g crushed mud crab (the 

difference accounting for the crab carapace that was not consumed). Blue crabs were 

housed in tanks with other members of the same diet treatment (20-24 crabs per treatment; 

groups of 4-6) and removed from the experiment if the full amount of food provided was 

not consumed daily. Blue crabs were maintained on their respective diet for a minimum of 

5 days prior to urine collection.  

Urine was collected from blue crabs via catheter twice weekly, by gentle suction 

(<35kPa) via a 22-gauge needle inserted into each nephropore of a blue crab. Urine 

contaminated with haemolymph or particulate matter was rejected. Urine from blue crabs 

of each diet treatment was collected approximately every other day, pooled, filtered by 

0.22 µm Teflon syringe filter, and stored at -20 ̊ C at GT. A total of 12 unique urine samples 

(each from 2-6 different crabs) per diet treatment were collected. Urine collected at SkIO 

as transported to GT frozen and stored at -20 ̊ C. Urine was either assayed or profiled within 

2 weeks of collection.  

Behavioral Assay 

The mud crab behavioral assay was performed following the previously reported 

protocol (57). In short, mud crabs collected from oyster reefs at low tide in the area 

surrounding Wassaw Sound were transported to GT where they were housed in a 380 L 
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recirculating artificial seawater system similar to that used for blue crabs. Mud crabs were 

fed an ad libitum shrimp diet 2-3 times weekly. Four mud crabs, 20-25 mm carapace width, 

were placed in 40 L aquaria with 2.0 L of freshly prepared artificial seawater of salinity 

(25-30 ppt) equal to the holding tanks. No more than three crabs of a single sex were 

maintained in each enclosure to average potential effects of sex on mud crab foraging. 

Crabs acclimated to their enclosure for 2 h, after which raw shrimp (3.8-4.2 g) cut into 6-

10 pieces was added along with urine, cue solution, or artificial seawater as control (see 

below for specific details of treatments) and the water was agitated to ensure equal mixing. 

Mud crabs were allowed to eat undisturbed for 4 h, after which the remaining shrimp was 

collected and weighed to determine mass loss due to consumption. The amount of food 

consumed as a proportion of the total provided was analyzed using one-way analysis of 

variance with a Tukey post-hoc test using PRISM version 10.0.  

Urine and cue treatments consisted of: 5.0 mL of urine added to a tank for a final 

concentration of 2.5 mL/L, or, 5.0 mL of a synthetic cue mixture solubilized in artificial 

seawater and formulated for a final concentration equal to that of the average concentration 

in blue crab urine across all urine samples. Negative controls consisted of 5.0 mL artificial 

seawater. Previous studies indicated that a mass loss control was unnecessary as shrimp 

mass change was negligible due to water loss/gain.15 Potency of urine/cue treatment was 

determined following:  

Urine potency = 1 − (
amount eaten by crabs exposed to urine or cue treatment

amount eaten by crabs exposed to control
) ∗ 100 
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NMR sample preparation and data collection 

Urine samples were prepared for 1H NMR metabolomics by adding an antibacterial 

buffer solution and internal standard in deuterated water. Urine samples collected at SkIO 

were formulated from 345 µL urine, 115 µL buffer solution (0.4 M sodium phosphate pH 

7.0, 0.5 % w/v sodium azide), and 40 µL internal standard 3-(trimethylsilyl)propionic-

2,2,3,3-d4 acid (TMSP) in D2O (99.9% atom D2O; Sigma-Aldrich), whereas urine samples 

collected at GT were formulated from 138 µL urine, 46µL buffer solution, and 16 µL of 

TMSP in D2O. A Bruker Avance 500 MHz NMR spectrometer equipped with a 5 mm 

broadband direct detection probe in conjunction with a water suppression excitation-

sculpting gradient pulse program (relaxation delay of 1 s and spectral width of 6.5 kHz) 

was used to acquire 256 scans per urine sample (37). 

NMR spectroscopic data processing and analysis 

 1H NMR spectra were processed in MATLAB, version 8.1.0.604, using NMRLab 

(58). Spectra were manually phased, baseline corrected, aligned, and the following regions 

excluded to remove contaminants from statistical analysis: TMSP (-0.5 to 0.5 ppm), water 

(4.6-5.2 ppm), residual methanol (3.2-3.4 ppm), and excess area (9.0-12.4 ppm) that 

contained no spectroscopic features. Spectroscopic features were clustered into 0.005 ppm 

bins, probabilistic quotient normalized (59) to remove dilution bias, and generalized log 

(glog) transformed to avoid bias towards high-concentration metabolites without affecting 

between-sample variation. Glog optimization values, λ, were generated from five technical 

replicates that consisted of equal parts from a single bulk urine sample using the methods 

above (60). For urine samples from SkIO, λ = 2.9359x10-7 and for urine samples at GT       
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λ = 8.2585x10-9. Principal component analysis (PCA) and partial least squares discriminant 

analysis (PLSDA) were used to visualize differences in urine metabolite profiles from urine 

collected at SkIO (MATLAB and PLS_Toolbox, version 7.9.1). The PCA and PLSDA 

models were generated from data that was mean centered and cross-validated using 

Venetian blinds with eight data splits (n = 12 per treatment), and the loadings of the 1st 

principal component of the PCA model were used to identify spectroscopic features of 

significance in differentiating urine samples from blue crabs fed different diets.  

A partial least squares regression (PLS-R) model was generated using the above 

spectroscopic preprocessing, matrix preprocessing, and relative potency values 

(determined in behavioral bioassay below) for a set of seven urine samples collect at GT, 

four from blue carbs fed mud crabs and three from blue crabs fed oysters. The loadings of 

the regression vector in addition to the variable importance parameter were used to identify 

spectroscopic features that increased in area under the curve with an increase in urine 

potency in the bioassay.  

Identification of metabolites from NMR spectroscopic data 

The NMR profiling database Chenomix was initially used to assign structures to 

metabolites with spectroscopic features present in the 1H NMR spectra of blue crab urine. 

However, because blue crab urine is chemically complex with many overlapping signals, 

1H NMR spectroscopy was not sufficient to fully characterize metabolites. From a 

representative blue crab urine sample correlation spectroscopy (COSY), total correlated 

spectroscopy (TOCSY), heteronuclear single quantum coherence spectroscopy (HSQC), 

and heteronuclear multiple bond correlation spectroscopy (HMBC) were acquired using a 
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500 MHz Avance NMR spectrophotometer as above with a 5 mm indirect detection probe. 

The loadings from the PCA and PLS-R models pinpointed protons that distinguished urine 

from blue crabs fed different diets and for identifying the components of the fear inducing 

cue respectively. The COSY, TOCSY, HSQC, and HMBC data were used to connect 

multiple protons associated with the same metabolite (or to identify that no additional 

protons were associated). Concentrations of proposed metabolites were determined by 

comparing the integrated areas of non-overlapping proton signals to that of the internal 

standard of known concentration. Commercially available synthetic standards of each 

proposed metabolite were formulated to match the concentration of the proposed 

metabolite in blue crab urine as determined above, and subjected to low resolution mass 

spectrometry. A Waters Micromass ZQ2000 mass spectrometer was tuned (capillary 

voltage, cone voltage, extractor voltage, RF lens voltage, source temperature, desolvation 

temperature, desolvation gas flow, cone gas flow mass resolution, and ion energy) to each 

synthetic standard to obtain the best ionization and mass signal possible for each 

metabolite. Once tuned to a standard, a representative urine sample and the synthetic 

standard were compared by high performance liquid chromatography with a Waters 2495 

pump equipped with a Phenomenex Luna C18 silica reversed phase column, using 

retention time, peak shape, and peak integration observed by a Waters 2996 photodiode 

array detector. If the two samples were sufficiently similar, low resolution mass 

spectrometry fragmentation data were collected and compared between the synthetic 

standard and the representative sample of blue crab urine using an Agilent 1100 HPLC 

with Phenomenex Gemini C18 silica reversed phase column coupled to a Micromass 
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Quattro mass spectrometer using electrospray ionization in both positive and negative 

mode.  

UPLC-MS sample preparation and data collection 

Urine samples from four blue crabs fed each diet (collected at GT) were thawed on 

ice, and protein were precipitated by the addition of methanol in a 5:1 volume ratio to 50 

µL of urine. Samples were vortex-mixed for 30 s and centrifuged at 21,100 g for 5 min. 

After centrifugation, supernatant was transferred to an auto-sample vial with snap-on cap 

and placed in sample manager which was held at 4 °C. Samples were run in randomized 

order. The mass spectrometer was mass calibrated before analysis; a sample preparation 

blank was analyzed jointly with the samples. 

UPLC-MS was performed using an Ultimate3000 (ThermoFisher Scientific), fitted 

with a Waters ACQUITY UPLC BEH HILIC column (2.1 x 75 mm, 1.7 µm particle size), 

coupled to a high-resolution accurate mass Q Exactive HF mass spectrometry system 

(ThermoFisher Scientific). The Q Exactive HF is a hybrid quadrupole-orbitrap instrument 

with a typical resolving power of 240,000 FWHM at m/z 200 and mass accuracy of <1 

ppm. The heated electrospray ionization (HESI) source was operated at a capillary 

temperature of 275 ⁰C, a spray voltage of 3.5 kV, and sheath, auxiliary, and sweep gas 

flows of 48, 11, and 2, respectively. The instrument acquired data in the 70-1050 m/z range 

in positive and negative ionization modes. Data acquisition and processing were carried 

out using Xcalibur V4.0 (ThermoFisher Scientific) and Compound Discoverer V2.1 

(ThermoFisher Scientific), respectively. The chromatographic method for sample analysis 

involved elution with 95:5 10 mM ammonium acetate with ~0.014% ammonium 
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hydroxide: acetonitrile (mobile phase A) and acetonitrile with ~0.014% ammonium 

hydroxide (mobile phase B) using the following gradient program: 0 min 5% A; 3 min 63% 

A; 7 min 63% A; 7.1 min 5% A; 9.9 min 5%. The flow rate was set at 0.30 mL min-1 for 

0-7.1 min; increased to 0.5 mL min-1 from 7.1-7,2 min; 7.2-9.5 min at 0.5 mL min-1; and 

decreased to 0.30 mL min-1 from 9.5 – 10.0 min. Optima (ThermoFisher Scientific) LC-

MS grade water and acetonitrile was used to prepare all mobile phase components. 

Ammonium acetate (Sigma) molecular biology grade and ammonium hydroxide 28-30% 

solution (Fisher Chemical) were additives to the mobile phases. The column temperature 

was set to 50 °C, and the injection volume was 2 µL.  

UPLC-MS/MS experiments were performed by acquiring mass spectra in a data 

dependent acquisition fashion. Full MS were collected with a resolution of 120,000 and 

the top 10 dd-MS2 were collected at a resolution of 30,000 and an isolation window of 0.4 

m/z. Stepped normalized collision energies of 10, 30, and 50 fragmented selected 

precursors in the HCD cell prior to combination of ion for analysis in the orbitrap. Dynamic 

exclusion was set at 10 s and ions with charges greater than 2 were omitted.  

MS data processing and analysis 

Data from two urine samples, one from each diet, were removed as outliers due to 

either overly low and high average signal intensity. The remaining data files were aligned 

with an adaptive curve and metabolic features (retention time (Rt), m/z pairs) were detected 

after removal of isotopes and adducts in Compound Discoverer. Background peaks were 

removed from the dataset using a sample blank. Fill gaps and normalization by constant 

sum was applied to the data. Select features with a fold change greater or equal to 2 in urine 
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from blue crabs fed mud crabs when compared to urine from blue crabs fed oysters and 

relative standard deviation of less than 30 were used to build an un-supervised principal 

component analysis (PCA) model with leave-one-out cross-validation using MATLAB 

R2012b (Version 8.0.0.783 The MathWorks, Inc.) and the PLS Toolbox (v.6.71, 

Eigenvector Research, Inc.). Data were preprocessed by auto-scaling the features’ peak 

areas across the samples. 

Identification of metabolites from MS data 

Compound identification was carried out for the selected 28 unique discriminant 

features (Table 2.3). During data processing, elemental formulas were generated based on 

the mass accuracy and together with available MS2 spectra potential hits were compiled 

based on searches against publicly-available databases: ChemSpider, the human 

metabolome database (HMDB), KEGG database, and MzCloud. In silico fragmentation of 

potential structural matches were calculated and scored against experimental data using 

Compound Discoverer. When available, metabolite standards were analyzed to support 

identification.  Identification of metabolites was pursued per established criteria (61). See 

Table 2.1 for fragmentation data for all significant discriminant features. 

Isolation and characterization of homarine (14) 

 Blue crab urine was initially separated using a Waters 1525 pump coupled to a 

Waters 2487 dual wavelength detector with a Vydac C18 silica column (5 µm, 10 x 250 

mm). Chromatography was completed following a 5 min hold at 2 % aqueous methanol 

followed by a gradient from 2 % to 75 % aqueous methanol, at 3 mL/min. The fraction 

containing the metabolite of interest as detected by 1H NMR spectroscopy was further 
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purified using a Tosoh Biosciences amide 80 (5 µm, 4.6 x 250 mm) column with an 

isocratic elution of 15% aqueous acetonitrile over 20 min at 1 mL/min. MS data were 

collected using a high resolution accurate mass Q Exactive HF mass spectrometry system 

(ThermoFisher Scientific). NMR spectroscopic data were acquired as described above.  

Identification of blue crab urine cue constituents 

Trigonelline (1) and trimethylamine (8) were purchased commercially whereas 

homarine (14) was synthesized (see below). All three compounds – commercial (1) and (8) 

and synthesized (14) – were tested alone and in combination in the behavioral assay to 

assess their roles in the fear-inducing cue. Urine assayed was collected from crabs housed 

at GT. A one-way ANOVA with Tukey post-hoc test was run to test statistical significance 

of foraging suppression.  

Synthesis of homarine (14)  

Homarine (14) was synthesized following a slightly modified protocol previously 

reported (62), as described below, from methyl picolinate:  

Synthesis of methyl picolinate 

A picolinic acid (1.02 g, 8.3 mmol) solution in methanol (10 mL) was cooled to 

0 °C, and concentrated sulfuric acid (2.5 mL) was added dropwise. The reaction mixture 

was refluxed under agitation for 4 h, after which a saturated potassium carbonate solution 

(10 mL) was added. Solvents were removed in vacuo and the solid residue was suspended 

in chloroform and water. The organic layer was washed with water until neutral, dried with 

anhydrous magnesium sulfate, and the solvent was removed by rotary evaporation. The 
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crude oily product was characterized using 1H NMR spectroscopy and used for in the next 

step without further purification. 1H NMR (500 MHz, CDCl3): δ 8.76 (ddd, J = 4.8, 1.8, 

0.9 Hz, 1H), 8.15 (dt, J = 7.9, 1.1 Hz, 1H), 7.86 (td, J = 7.8, 1.8 Hz, 1H), 7.49 (ddd, J = 

7.7, 4.7, 1.2 Hz, 1H), 4.02 (s, 3H). 

Synthesis of homarine (14) 

The crude methyl picolinate product was dissolved in toluene (3 mL) and dimethyl 

sulfate (5 mL, 53 mmol) was slowly added. The reaction mixture was agitated at room 

temperature for 16 h, then brought to boil for 1 h. The solvent and excess reagent were 

removed in vacuo after the reaction was complete. The product was suspended in 10% 

aqueous hydrochloric acid (10 mL) and refluxed for 4 h. The reaction mixture was 

neutralized with saturated potassium carbonate, and the final product was extracted with 

n-butanol. The organic layer was dried with anhydrous magnesium sulfate and evaporated 

in vacuo. The oil was freeze-dried overnight after which crystals were recovered. Pure 

homarine (14) was obtained in an unoptimized yield of 0.9 % starting from picolinic acid. 

1H NMR (500 MHz, DMSO-d6): δ 9.14 (br d, J = 6.1 Hz, 1H), 8.71 (td, J = 7.9, 1.4 Hz, 

1H), 8.49 (dd, J = 7.9, 1.6 Hz, 1H), 8.25 (ddd, J = 7.8, 6.1, 1.7 Hz, 1H), 4.49 (s, 3H). 13C 

NMR (125 MHz, DMSO-d6): δ 161.3, 148.8, 146.6, 144.4, 129.6, 129.2, 48.3. High 

resolution mass spectrometric (HRMS) data collected on a Waters Xevo QTOF instrument 

equipped with a Waters Aquity C18 silica BEH reserved-phase column. HRMS (ESI) m/z: 

[M+H]+ Calculated for C7H8NO2 138.0554; found 138.0566. 

Geometry optimization of trigonelline (1) and homarine (14) 
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Three-dimensional structures of trigonelline, homarine, picolinic acid, and o-toluic 

acid were drawn and submitted to Gaussian ’09 (63) for geometrical optimization at the 

B3LYP/6-31++G** level of theory. Thereafter, the resulting geometries were subjected to 

vibrational and thermochemical calculations at the same level of theory, and the vibration 

frequencies were verified to ensure that all were positive and real. The structures were 

represented using PyMol (64).  

2.4 Results 

Mud crabs perceive risk via concentration differences in predator urinary 

metabolites 

  When we employed 1H NMR-based metabolomics comparing the chemical profiles 

of urine from blue crabs fed mud crabs vs. oysters, principal component analysis (PCA) 

revealed a single principal component, accounting for 19.5 % of the total variation among 

urine samples, which differentiated urine of blue crabs fed the two diets (Figure 2.1A). An 

orthogonalized partial least squares discriminant analysis (oPLS-DA) model also 

differentiated urine from blue crabs fed these two diets; however the first latent variable 

only accounted for 10.4% of the total chemical variation (Figure 2.2). A complementary 

MS-based PCA model similarly distinguished urine from blue crabs fed different diets 

using a single principal component, accounting for 89.3% of the total variation among 

samples (Figure 2.1B).  

Analysis of the NMR-based PCA loadings (Figure 2.3) which highlighted spectral 

features that were more abundant in urine from blue crabs fed one diet versus the other, 

along with two-dimensional NMR spectroscopic data of blue crab urine (Table 2.1; 

Figure 2.4, Figure 2.5, Figure 2.6) which determined the connectivity of atoms within  
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Figure 2.1: Blue crab diet affects urine metabolite profile. Principal component analysis 

(PCA) of metabolomics data from A) 1H nuclear magnetic resonance (NMR) spectra and 

B) mass spectrometry (MS) differentiate urine of blue crabs fed mud crabs and from 

urine of blue crabs fed oysters along the first principal component (variance captured 

along PC1 is stated in parentheses, P = 0.0074 for NMR, P = 0.0003 for MS). Crab 

symbols represent data from urine from blue crabs fed mud crabs (N = 10 for NMR, N = 

3 for MS); oyster symbols represent data from urine from blue crabs fed oysters (N = 9 

for NMR, N = 3 for MS).  
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Figure 2.2: Diet of blue crab is represented in chemical profile of urine. Orthogonalized 

partial least squares discriminant analysis (OPSL-DA) scores for 1H NMR spectra 

differentiates urine of blue crabs fed mud crabs and from urine of blue crabs fed oysters 

along the first latent variable using 10.45% of the total detected chemical variation within 

urine. Maroon circles represent data from urine from blue crabs fed mud crabs (N = 9); 

yellow circles represent data from urine from blue crabs fed oysters (N = 10). 
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Figure 2.3: PCA loadings for 1H NMR metabolomics highlight blue crab urinary 

metabolites whose concentrations are diet dependent. Spectroscopic features with 

positive loadings are associated with metabolites exhibiting increased concentration in 

urine from blue crabs fed mud crabs; spectroscopic features with negative loadings are 

associated with metabolites of an increased concentration in urine from blue crabs fed 

oysters (See Figure 2.1 for PCA scores plot). 
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Table 2.1: Spectrometric techniques used for identifying blue crab urine metabolites. MS 

data consisted of multiple reaction monitoring including mass transitions optimized with 

commercial standards prior to analysis. NMR data consisted of 1H and two-dimensional 

approaches listed. 

Compound Molecular Ion (m/z) Transition detected (m/z) NMR method 

Trigonelline (1) 138.0 94.0, 78.0 COSY, HSQC, HMBC 

Pyrimidine (2) 81.0 54.0 HSQC, HMBC 

Lactate (3) 89.0 45.0 COSY, HSQC, HMBC  

Carnitine (4) 162.0 103.0, 60.0 HSQC, HMBC  
Choline (5) 103.9 60.0, 45.0 COSY, HSQC, HMBC 

Threonine (6) 119.8 74.0 COSY, HSQC, HMBC  

Creatinine (7) 113.8 44.0 HMBC  
Trimethylamine (8) 59.8 45.0 HSQC, HMBC  

Methyl glutarate (9) 161.2 102.1 COSY, HSQC, HMBC  

Acetate (10) 60.0 Fragments too small for 

detection 

 

Creatine (11) 131.8 90.0 HSQC  

N-3-methylhistidine (12) 169.9 124.0 HSQC, HMBC 
Alanine (13) 89.9 44.0 COSY, HSQC, HMBC  
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Figure 2.4: Correlation spectroscopy (COSY) spectrum of blue crab urine annotated with 

compound numbers indicating critical correlations for trigonelline (1), lactate (3), 

carnitine (4), choline (5), threonine (6), methyl glutarate (9), and alanine (13).  
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Figure 2.5: Heteronuclear single quantum coherence (HSQC) spectrum of blue crab urine 

annotated with compound numbers indicating critical chemical shifts for trigonelline (1), 

pyrimidine (2), lactate (3), carnitine (4), choline (5), threonine (6), trimethylamine (8), 

creatine (11), N-methylhistidine (12), and alanine (13). 
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Figure 2.6: Heteronuclear multiple bond correlation (HMBC) spectrum of blue crab urine 

annotated with compound numbers indicating critical chemical shifts for trigonelline (1), 

pyrimidine (2), lactate (3), carnitine (4), choline (5), threonine (6), trimethylamine (8), 

methyl glutarate (9), N-methylhistidine (12), and alanine (13). 
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each molecule, led to the putative identification of a subset of urinary metabolites, 13 in 

total, that we hypothesized mud crabs use to differentiate among predators that impose 

different degrees of risk (Table 2.2). Mass spectrometric data confirmed these 

identifications (Table 2.1, Figure 2.7). Thus, whereas individual metabolites pinpointed 

via PCA were not purified from blue crab urine, their structures were confidently 

assigned, as components of a complex urine matrix, by a combination of NMR and MS 

approaches. Analysis of the MS-based PCA model highlighted 28 unique metabolites of 

the 661 total detected metabolites (Table 2.3, Table 2.4, Table 2.5) whose concentrations 

were enhanced in the urine of blue crabs fed mud crabs, which act as a discriminating 

panel to differentiate between urine from blue crabs fed different diets. Carnitine (4) was 

identified through both NMR- and MS-based metabolomics analyses as more abundant 

when blue crabs ate mud crabs, but most relevant molecules were revealed through 

statistical modeling by only one of the approaches, highlighting the complementary 

nature of the two techniques. Additionally, acetylcholine and propionylcarnitine were 

identified via MS profiling while choline and carnitine were identified via NMR 

spectroscopic profiling, further accentuating useful complementarity of the two 

spectroscopic techniques.  

Different diets did not lead to different identities of metabolites in blue crab urine 

relevant to prey behavior, but rather resulted in altered concentrations of the same 

metabolites perceived by prey via exposure to urine (Figure 2.8). Variable concentrations 

of individual metabolites were evident from the differential integration of common 1H 

NMR spectroscopic features (Figure 2.8B inset). These metabolites included those 

involved in amino acid metabolism, niacin metabolism, energy metabolism, energy  
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Table 2.2: Metabolites identified from blue crab urine by NMR spectroscopy-based PCA 

model. Relative concentrations were averaged from N = 9 urine samples for each diet 

type. 

Metabolite Concentration in urine of blue crabs fed mud crabs  
 

Absolute (µM) Relative to urine of blue 

crabs fed oysters 

Trigonelline (1) 90 1.8× 
Pyrimidine (2) 72 1.6× 

Lactate (3) 250 1.3× 

Carnitine (4) 160 1.2× 
Choline (5) 110 1.2× 

Threonine (6) 160 1.1× 

Creatinine (7) 62 1.0× 
Trimethylamine (8) -a -a 

Methyl glutarate (9) -a -a 

Acetate (10) -a -a 
Creatine (11) -a -a 

N-Methylhistidine (12) 99 0.75× 

Alanine (13) 180 0.50× 
a – Concentration could not be determined due to NMR spectral overlap of diagnostic protons. 
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Figure 2.7: Multiple reaction monitoring LC/MS confirmation of trigonelline (1) in blue 

crab urine. Mass transitions of 138 amu to 94 amu (blue) and 138 amu to 78 amu 

(orange) were optimized using a commercially available standard of 1. A) Commercial 

standard of 1 at 1 mg/mL, B) blue crab urine, and C) blue crab urine spiked with an 

equivalent amount of 1 which resulted in an approximate doubling of the peak associated 

with 1, as predicted.  
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Table 2.3: Tentative identification of 28 unique metabolites detected via MS 

metabolomics whose concentrations were greater in urine from blue crabs fed mud crabs 

than urine from blue crabs fed oyster. Mass, retention time, ion type, theoretical mass, 

mass error, and elemental formula provided. Metabolites were matched to standards, 

literature spectra, or were at least consistent with potential molecular structure fitting the 

following requirements for each confidence level: 1) elemental formula, retention time, 

and MS/MS spectrum of standard matched to feature; 2) MS/MS spectrum consistent 

with literature spectra and fragmentation ions observed consistent with proposed 

structure; 3) putative compound class based on chromatographic elution window; and 4) 

unknown compounds. CAS# is provided where applicable. 

Compound 

Number 

Average 

m/z 

Average 

Retention 

Time (min) 

Ion Type Ion 

Theoretical 

m/z 

Mass 

Error 

(PPM) 

Elemental 

Formula 

Tentative Metabolite 

Identification 

[CAS#]  

[ID level] 

19 146.1175 4.54 [M+H]+1 146.1176 -0.7 C7H15NO2 acetylcholine [51-84-3] 

[1] 

34 162.1123 4.13 [M+H]+1 162.1125 -1.2 C7H15NO3 carnitine[541-15-1] [1] 

40 76.0764 4.43 [M+H]+1 76.0757 9.2 C3H9NO 1-aminopropan-2-ol 

[78-96-6] [2] 

95 218.1387 4.04 [M+H]+1 218.1387 0.0 C10H19NO4 propionylcarnitine [NA] 

[2] 

98 144.1384 5.42 [M+H]+1 144.1383 0.7 C8H17NO [NA] [4] 

166 141.1387 5.34 [M+H]+1 141.1386 0.7 C8H16N2 [NA] [4] 

172 222.0986 1.64 [M+H]+1 222.0986 0.0 C9H11N5O2 6-acetyl-2-amino-

1,7,8,9-tetrahydro-4H-

pyrimido[4,5-

b][1,4]diazepin-4-one 

[80003-63-0] [2] 

174 377.1455 1.66 [M+H]+1 377.1456 -0.3 C17H20N4O6 riboflavin [83-88-5] [2]; 

lyxoflavin [13123-37-0] 

[2]  

176 285.0982 1.16 [M+H]+1 285.0969 4.5 C13H16O7 [NA] [4] 

200 192.0516 1.36 [M+H]+1 192.0516 0.0 C7H5N5O2 2-amino-4-

hydroxypteridine-6-

caraldehyde [721-30-1] 

[2] 

215 120.1022 4.83 [M+H]+1 120.1019 2.5 C5H13NO2 [NA] [4] 

223 198.0795 3.07 [M+H]+1 198.0795 0.0 C6H15NO4S [NA] [4] 

255 329.0811 1.71 [M+H]+1 329.0809 0.6 C6H16N8O4S2 [NA] [4] 

262 238.0938 2.19 [M+H]+1 238.0935 1.3 C9H11N5O3 biopterin [22150-76-1] 

[2] 

307 144.1384 4.45 [M+H]+1 144.1383 0.7 C8H17NO [NA] [4] 

348 226.0933 1.68 [M+H]+1 226.0935 -0.9 C8H11N5O3 acyclovir [59277-89-3] 

[2] 
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Table 2.3 continued 

369 477.1721 1.71 [M+H]+1 477.1713 -1.7 C14H33N6O6PS

2 

[NA] [4] 

388 375.1444 1.68 [M+H]+1 375.1458 -3.7 C13H24N6O3P2 [NA] [4] 

393 184.0460 1.71 [M+H]+1 184.0460 0.0 C5H13NO2S2 [NA] [4] 

402 327.0680 1.80 [M+H]+1 327.0675 1.5 C12H15N4O3PS [NA] [4] 

490 210.0439 0.91 [M-H]-1 210.0442 -1.4 C6H13NO5S [NA] [4] 

522 244.0651 0.95 [M-H]-1 244.0649 0.8 C10H15NO4S [NA] [4] 

532 162.0189 1.02 [M-H]-1 162.0197 -4.9 C8H5NO3 [NA] [4] 

543 237.0630 1.12 [M-H]-1 237.0629 0.4 C9H10N4O4 [NA] [4] 

544 223.0392 1.13 [M-H]-1 223.0394 -0.9 C6H12N2O5S [NA] [4] 

564 190.0365 1.30 [M-H]-1 190.0370 -2.6 C7H5N5O2 [NA] [4] 

596 157.9910 1.86 [M-H]-1 157.9917 -4.4 C5H5NO3S [NA] [4] 

603 236.0788 2.16 [M-H]-1 236.0789 -0.4 C9H11N5O3 biopterin [22150-76-1] 

[2] 

626 142.0501 3.14 [M-H]-1 142.0510 -6.3 C6H8NO3 [NA] [4] 
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Table 2.4: Detailed Tandem MS characteristics of the significant metabolites as 

determined by PCA. Fragment ions detected using a stepped normalized collision energy 

of 10, 30, and 50 eV are listed with selected precursor ions underlined. Ions in bold are 

those matched to standard spectra or literature spectra. Fragments were matched to 

standards, literature spectra, or were at least consistent with potential molecular structure 

fitting the following requirements for each confidence level: 1) elemental formula, 

retention time, and MS/MS spectrum of standard matched to feature; 2) MS/MS spectrum 

consistent with literature spectra and fragmentation ions observed consistent with 

proposed structure; 3) putative compound class based on chromatographic elution 

window; and 4) unknown compounds. 

Feature 

ID 

m/z of Fragment Ions Observed in 

MS/MS Experiments 

Confidence Level Match Details 

(Source) 

Ionization 

method 

19 146.1361, 146.1176,146.0929, 129.1104, 

87.1005, 87.0447, 86.0970, 73.0485, 
72.0451, 70.0740, 60.0817, 58.0660 

1 consistent with 

standard 

 

34 162.1124, 130.0863, 115.0630, 103.0395, 

102.0918, 86.0970, 85.0291, 75.0448, 

74.0973, 73.0893, 71.0292, 71.0136, 

61.0293, 60.0816, 59.0738, 59.0500, 

58.0660, 57.0344, 56.0504 

1 consistent with 

standard 

positive 

 

40 76.0764, 59.0738, 58.0660 2 consistent with 

spectrum 

(MzCloud) 

positive 

 

95 218.1388, 160.0971, 159.0652, 144.1021, 

99.0446, 85.0291, 60.0817 

2 consistent with 

spectrum 

(MzCloud) 

positive 

 

98 144.1384, [144.1020], 139.0272, 98.0968, 

98.0606, 85.0655, [84.0815], 67.0551, 

60.0817, [58.0660], 57.0708, 57.0344 

4 [Interfering 

compound 

stachydrine] 

positive 

 

166 141.0659, 138.8299, 107.9576, 100.5644, 

97.8813, 97.0765, 81.7610, 76.9697, 

76.6570, 75.4184, 65.6036, 57.2105, 
54.8734 

4  positive 

 

172 222.0987, 205.0723, 204.0881, 177.0773, 

165.9701, 161.0821, 159.0667, 138.2688, 
132.0560, 130.4666, 119.0691, 115.9056, 

110.0605, 109.4668, 84.5712, 76.5170, 

71.3243, 68.9697, 59.6849, 51.8696 

2 Consistent with in 

silico model (Mz 
Cloud) 

positive 

 

174 377.1458, 243.0878, 172.0872, 99.0447, 

69.0342, 57.0345 

2 Consistent with in 

silico model (Mz 

Cloud) 

positive 

 

176 285.0983, 260.1032, 214.0977, 186.1028 4  positive 

 

200 193.0357, 192.1597, 192.1380, 192.0516, 
188.9129, 185.0593, 174.1494, 149.0460, 

147.0302, 98.0972, 66.0972, 66.7425, 
56.4709 

2 Consistent with in 
silico model (Mz 

Cloud) 

positive 
 

215 120.1022, 120.0559, 102.0918, 60.0816, 

59.0739, 58.0660 

4  positive 

 

223 198.1599, 198.0795, 175.2923, 109.3497, 

100.0763, 91.0548, 60.0817, 60.0800, 

59.0739, 58.0660, 57.0345 

4  positive 

 

255 329.0811, 217.0625, 176.0353 4  positive 

 

262 238.0934, 220.0826, 194.0673, 192.0883, 

178.0726, 177.0649 
2 consistent with 

spectrum 

(MzCloud) 

positive 
 

307 144.1384, [144.1020], 139.0272, 98.0968, 
98.0606, 85.0655, [84.0815], 97.0551, 

60.0817, [58.0660], 57.0708, 57.0344 

 

4 [Interfering 
compound 

stachydrine] 

positive 
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Table 2.4 continued 

348 226.1799, 226.1221, 226.0932, 195.0751, 

194.0674, 180.1742, 166.0723, 163.1477, 

141.0772, 133.2471, 125.0459, 124.0508, 

114.5799, 101.9819, 99.5021, 95.0861, 

91.0548, 81.0707, 72.1257, 50.4029 

2 Consistent with in 

silico model (Mz 
Cloud) 

positive 

 

369 351.9716, 307.0989, 244.5152, 206.7861, 

193.5730, 184.7968, 177.0741, 163.0505, 

154.0533, 145.6610, 126.1556, 117.0741, 
103.1398, 102.1094, 99.6238, 90.1905, 

85.0477, 79.0730, 71.9434, 53.4041 

4  positive 

 

388 365.4666, 359.2511, 344.3310, 262.1635, 
222.0987, 218.9116, 204.0881, 162.1907, 

161.0811, 154.0533, 139.1276, 137.6107, 

127.9275, 93.0815, 87.0389, 83.0149, 
73.1141, 65.2577, 61.9992, 51.3429 

4  positive 
 

393 184.1700, 184.0462, 156.6481, 118.1686, 

116.3248, 114.9496, 113.6535, 102.0919, 
85.09197, 81.8920, 1.5119, 63.9509, 

61.8697, 59.0739, 58.0661 

4  positive 

 

402 327.0679, 174.0221, 154.0533, 98.9847, 
89.0603 

4  positive 
 

490 218.7906, 210.0431, 210.0318, 196.7856, 

178.0362, 167.0561, 166.0166, 151.0248, 
140.4884, 138.0258, 136.2590, 135.0299, 

124.0060, 106.9794, 95.8013, 80.9637, 

80.9298, 79.9558, 78.5550, 77.2331 

4  negative 

522 244.0649, 244.0280, 231.8818, 217.5685, 

184.8859, 184.2925, 169.5757, 164.1073, 

164.0709, 140.8959, 124.0067, 115.4720, 
108.0207, 101.0348, 98.3682, 83.6366, 

79.9562, 76.8413 

4  negative 

532 169.6786, 162.0297, 162.0184, 161.9124, 
154.0088, 144.2172, 134.0234, 118.0285, 

115.9194, 90.0335, 80.5210, 70.2573, 

69.5410, 66.6257, 65.9971, 52.7061 

4  negative 

543 237.0630, 193.0363, 192.0280, 191.0204, 

163.0255, 150.0299, 123.0192, 122.0350 

4  negative 

544 223.0390, 206.0124, 179.0172, 151.0220, 
124.0063, 115.0503, 106.9798, 98.0236, 

97.0396, 80.9639, 79.9561, 65.9972 

4  negative 

564 190.0364, 190.0146, 162.0185, 152.0880, 
148.0141, 147.0302, 130.9299, 119.0353, 

92.0242 

4  negative 

596 157.9907, 94.0285, 79.9560 4  negative 

603 236.0958, 236.0786, 225.2259, 205.8749, 

192.0520, 191.8226, 190.0365, 179.3277, 

175.0134, 171.4098, 162.0415, 147.0299, 
133.6492, 122.0348, 107.5690, 79.9562, 

66.1005, 62.6208, 56.3433, 53.4817 

2 consistent with 

spectrum 

(MzCloud) 

negative 

626 159.06521, 142.0499, 142.0398, 99.9245, 
60.0159 

4  negative 
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Table 2.5: List of all compounds detected via UPLC-MS analysis. Molecular weight was 

determined using Compound Discoverer 2.1. The ionization polarity and retention time 

(RT) is listed for each compound. 

Compound 

Number 

Ionization 

Mode 

Molecular 

Weight 

(g/mol) 

RT 

(min) 

Compound 

Number 

Ionization 

Mode 

Molecular 

Weight 

(g/mol) 

RT 

(min) 

1 positive 143.0945 3.83 42 positive 227.1884 0.87 
2 positive 127.9463 4.37 43 positive 233.9105 4.35 

3 positive 129.1518 3.20 44 positive 157.1467 3.65 

4 positive 137.0475 3.41 45 positive 217.0408 1.17 
5 positive 161.1050 4.26 46 positive 195.1007 3.41 

6 positive 103.9854 4.37 47 positive 167.9388 4.37 

7 positive 153.0458 1.70 48 positive 161.1050 3.88 
8 positive 179.0945 4.53 49 positive 164.0436 3.42 

9 positive 142.0742 4.00 50 positive 136.0385 1.72 

10 positive 130.1107 4.65 51 positive 305.1740 1.93 

11 positive 143.0945 4.31 52 positive 267.9911 4.37 

12 positive 113.0843 4.72 53 positive 175.1208 3.93 

13 positive 159.0894 3.77 54 positive 147.0895 3.70 
14 positive 128.0587 3.93 55 positive 549.6216 3.01 

15 positive 217.0408 1.25 56 positive 172.1325 4.49 

16 positive 183.0565 2.35 57 positive 136.0385 1.63 
17 positive 131.0947 3.81 58 positive 129.0904 5.10 

18 positive 137.0475 3.81 59 positive 154.0742 4.29 

19 positive 145.1102 4.54 60 positive 120.0577 1.24 
20 positive 185.9881 4.36 61 positive 267.9911 4.31 

21 positive 145.1102 4.26 62 positive 201.1477 3.83 

22 positive 82.0538 3.22 63 positive 126.0431 3.65 
23 positive 337.3341 0.87 64 positive 145.0115 4.36 

24 positive 159.1259 4.62 65 positive 203.1158 4.13 

25 positive 161.1050 3.70 66 positive 306.0917 1.66 
26 positive 156.0899 4.09 67 positive 165.0790 4.55 

27 positive 251.9211 4.38 68 positive 175.1208 4.45 

28 positive 144.1263 4.57 69 positive 159.1259 3.66 

29 positive 173.0146 1.88 70 positive 243.1833 1.55 

30 positive 161.1050 4.16 71 positive 273.9030 4.36 

31 positive 117.0792 3.91 72 positive 205.0374 1.79 
32 positive 158.0691 3.90 73 positive 140.0585 3.76 

33 positive 99.0689 4.59 74 positive 137.0475 3.56 

34 positive 161.1050 4.13 75 positive 175.1208 4.15 
35 positive 225.1727 0.87 76 positive 103.1002 4.67 

36 positive 188.1161 4.00 77 positive 245.1627 3.89 

37 positive 210.1618 0.88 78 positive 365.0749 2.27 
38 positive 211.9286 4.38 79 positive 123.0356 2.12 

39 positive 225.9805 4.37 80 positive 708.0654 0.92 

40 positive 75.0692 4.43 81 positive 249.9418 4.37 
41 positive 208.1461 0.87 82 positive 108.0326 3.65 

83 positive 189.1000 3.94 126 positive 175.1209 4.34 

84 positive 243.1833 0.87 127 positive 353.3291 0.88 
85 positive 226.1566 0.87 128 positive 111.0436 2.62 

86 positive 161.1417 5.43 129 positive 175.0279 1.69 
87 positive 157.1103 3.81 130 positive 143.1311 4.82 

88 positive 177.9975 3.90 131 positive 103.1002 2.36 

89 positive 131.0947 4.33 132 positive 191.1158 4.15 
90 positive 304.2959 3.34 133 positive 373.9556 4.38 

91 positive 173.1053 4.06 134 positive 396.1686 1.07 

92 positive 115.1001 4.68 135 positive 343.2208 1.55 
93 positive 295.9110 4.37 136 positive 126.0908 4.98 

94 positive 205.0375 0.95 137 positive 445.2890 1.42 

95 positive 217.1315 4.04 138 positive 231.1472 3.96 
96 positive 230.0360 0.92 139 positive 331.3239 3.32 

97 positive 170.0725 1.70 140 positive 93.0584 3.41 

98 positive 143.1312 5.45 141 positive 180.1513 0.87 
99 positive 291.9524 4.37 142 positive 399.8961 4.37 

100 positive 195.0566 2.77 143 positive 282.1680 1.42 

101 positive 258.0674 1.12 144 positive 365.0749 1.88 
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102 positive 190.1356 0.87 145 positive 115.1001 4.56 

103 positive 150.1369 4.44 146 positive 213.1728 0.88 

104 positive 205.0374 1.04 147 positive 187.1322 4.65 
105 positive 143.9202 4.44 148 positive 219.1108 4.09 

106 positive 293.9317 4.38 149 positive 387.2469 1.67 

107 positive 217.0408 1.09 150 positive 205.0373 0.88 
108 positive 211.0990 1.69 151 positive 367.0902 0.94 

109 positive 120.0577 1.16 152 positive 401.8754 4.36 

110 positive 227.1883 1.00 153 positive 240.1474 4.25 
111 positive 714.0562 0.92 154 positive 225.1726 1.56 

112 positive 315.9138 4.37 155 positive 125.0148 2.84 

113 positive 161.1417 4.82 156 positive 194.1155 1.22 
114 positive 712.0594 0.90 157 positive 238.1416 1.29 

115 positive 401.2628 1.36 158 positive 96.0692 3.20 

116 positive 317.8930 4.30 159 positive 260.1373 4.33 
117 positive 159.0894 3.67 160 positive 349.9943 4.38 

118 positive 159.0894 4.07 161 positive 369.3240 0.88 

119 positive 339.8750 4.37 162 positive 355.9062 4.37 

120 positive 209.9493 4.38 163 positive 357.2363 1.26 

121 positive 379.8934 4.38 164 positive 443.0494 0.92 

122 positive 263.1635 4.02 165 positive 140.1314 5.36 
123 positive 111.0436 2.14 166 positive 225.0750 2.13 

124 positive 159.0894 3.56 167 positive 205.0701 3.31 

125 positive 375.9350 4.38 168 positive 189.0825 3.92 
169 positive 217.1427 3.77 212 positive 115.1001 4.34 

170 positive 331.9450 4.37 213 positive 172.0849 3.95 
171 positive 221.0913 1.64 214 positive 119.0950 4.83 

172 positive 129.0427 3.99 215 positive 197.0723 1.94 

173 positive 376.1384 1.66 216 positive 288.0780 1.45 
174 positive 219.1583 3.69 217 positive 189.0425 1.44 

175 positive 284.0910 1.16 218 positive 431.2735 1.82 

176 positive 173.1416 3.53 219 positive 337.0428 0.93 
177 positive 423.8574 4.35 220 positive 119.0949 4.55 

178 positive 232.1424 2.36 221 positive 193.0600 1.52 

179 positive 114.0796 4.74 222 positive 197.0722 3.07 
180 positive 351.3135 0.88 223 positive 138.0430 1.59 

181 positive 187.1209 3.95 224 positive 377.9142 4.39 

182 positive 215.1636 4.87 225 positive 274.1893 3.82 
183 positive 463.8760 4.38 226 positive 475.2997 1.94 

184 positive 363.2272 1.96 227 positive 431.9976 4.38 

185 positive 197.1779 0.87 228 positive 163.0859 4.05 
186 positive 157.0739 3.53 229 positive 143.9775 4.39 

187 positive 119.0950 4.68 230 positive 253.9755 4.38 

188 positive 165.0651 2.44 231 positive 276.1475 2.83 
189 positive 183.0872 4.27 232 positive 334.2718 0.89 

190 positive 169.1103 4.33 233 positive 199.1571 0.88 

191 positive 496.0526 0.92 234 positive 159.0532 1.26 
192 positive 299.1945 1.34 235 positive 151.0494 1.88 

193 positive 299.1944 1.43 236 positive 297.1075 1.87 

194 positive 313.2100 1.19 237 positive 192.1514 0.88 
195 positive 183.1261 4.55 238 positive 367.0903 1.88 

196 positive 379.8675 4.36 239 positive 171.1260 4.59 

197 positive 207.1259 3.47 240 positive 194.9968 1.88 
198 positive 489.3152 1.57 241 positive 200.0144 1.26 

199 positive 191.0443 1.34 242 positive 113.0480 1.85 

200 positive 131.0696 3.89 243 positive 286.1564 2.35 
201 positive 288.0780 1.55 244 positive 155.0252 2.50 

202 positive 157.1103 4.45 245 positive 78.0142 1.34 

203 positive 137.0841 1.28 246 positive 150.0542 1.53 
204 positive 367.0903 2.86 247 positive 224.0466 1.16 

205 positive 82.0537 3.93 248 positive 131.1060 4.74 

206 positive 457.9381 4.38 249 positive 167.0616 3.25 
207 positive 245.9967 4.30 250 positive 189.1000 4.08 

208 positive 191.0980 3.53 251 positive 246.1693 4.00 

209 positive 201.1002 4.09 252 positive 157.1103 3.71 
210 positive 203.1159 4.01 253 positive 479.9202 4.36 

211 positive 256.1060 2.03 254 positive 328.0738 1.71 

255 positive 166.0411 3.42 298 positive 154.0742 3.77 
256 positive 455.9588 4.38 299 positive 78.0147 1.34 
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257 positive 282.0965 1.55 300 positive 191.0018 1.71 

258 positive 485.8580 4.35 301 positive 228.0747 3.49 

259 positive 183.0565 1.94 302 positive 177.0557 3.73 
260 positive 716.0534 0.92 303 positive 181.1103 4.36 

261 positive 237.0864 2.19 304 positive 211.9650 4.40 

262 positive 169.0409 2.50 305 positive 257.1013 2.15 
263 positive 289.0843 1.71 306 positive 143.1311 4.45 

264 positive 207.0201 1.17 307 positive 503.8813 4.38 

265 positive 437.9095 4.37 308 positive 207.0167 1.04 
266 positive 189.1477 3.81 309 positive 569.8402 4.37 

267 positive 175.1321 3.91 310 positive 241.1097 2.36 

268 positive 238.0702 1.12 311 positive 151.0633 3.87 
269 positive 461.8965 4.37 312 positive 181.0601 1.97 

270 positive 549.6216 0.91 313 positive 93.0585 4.85 

271 positive 241.2039 0.88 314 positive 533.3417 1.67 
272 positive 445.8394 4.37 315 positive 207.0930 4.14 

273 positive 140.0585 3.51 316 positive 200.0621 4.10 

274 positive 241.0408 1.26 317 positive 162.1407 0.88 

275 positive 309.3029 0.88 318 positive 169.0599 1.13 

276 positive 215.1520 0.88 319 positive 77.9492 4.45 

277 positive 259.1324 2.22 320 positive 104.0354 4.37 
278 positive 243.0165 3.50 321 positive 201.1479 4.60 

279 positive 171.9725 4.39 322 positive 367.3085 0.88 

280 positive 184.1213 4.55 323 positive 266.1993 3.42 
281 positive 117.1157 4.51 324 positive 168.9786 2.86 

282 positive 161.0688 3.58 325 positive 173.1165 4.13 
283 positive 229.2407 3.36 326 positive 159.8942 4.46 

284 positive 261.8807 3.59 327 positive 187.1209 4.14 

285 positive 113.0593 2.78 328 positive 215.1521 1.85 
286 positive 260.1737 3.80 329 positive 100.0723 4.60 

287 positive 205.1427 3.70 330 positive 197.1165 4.33 

288 positive 327.9998 4.32 331 positive 245.1012 3.48 
289 positive 395.3246 0.89 332 positive 228.1476 4.18 

290 positive 257.2719 3.37 333 positive 249.8846 4.44 

291 positive 97.0646 4.52 334 positive 255.1682 1.30 
292 positive 211.0957 3.60 335 positive 358.0834 1.77 

293 positive 135.0545 2.32 336 positive 229.9693 2.77 

294 positive 159.1259 4.44 337 positive 247.1533 3.94 
295 positive 290.2455 0.88 338 positive 216.1224 4.04 

296 positive 101.1209 0.90 339 positive 233.1740 3.93 

297 positive 233.0326 2.65 340 positive 240.1143 1.70 
341 positive 241.1676 0.87 384 positive 173.1053 4.23 

342 positive 120.0326 1.60 385 positive 235.0479 0.94 

343 positive 100.0642 4.48 386 positive 101.0846 4.53 
344 positive 271.2145 0.87 387 positive 374.1371 1.68 

345 positive 481.1201 1.71 388 positive 216.1112 4.03 

346 positive 519.9126 4.38 389 positive 464.9191 3.50 
347 positive 225.0861 1.68 390 positive 277.9367 4.38 

348 positive 197.1414 0.89 391 positive 125.0591 3.12 

349 positive 219.1583 3.88 392 positive 183.0387 1.71 
350 positive 189.0425 0.95 393 positive 514.0009 4.38 

351 positive 537.9620 4.38 394 positive 191.1308 0.89 

352 positive 187.1209 3.73 395 positive 276.1685 3.77 
353 positive 288.1797 3.32 396 positive 383.3034 0.88 

354 positive 527.8425 4.37 397 positive 325.2979 0.89 

355 positive 459.9172 4.38 398 positive 183.1261 4.41 
356 positive 153.0651 2.31 399 positive 192.1264 3.61 

357 positive 231.1108 1.46 400 positive 145.1102 3.71 

358 positive 107.0410 3.74 401 positive 326.0606 1.80 
359 positive 211.0705 1.24 402 positive 187.1209 4.45 

360 positive 141.0792 4.03 403 positive 413.9482 4.36 

361 positive 495.9512 4.37 404 positive 174.1006 4.14 
362 positive 203.0985 4.15 405 positive 108.0942 0.88 

363 positive 207.9313 4.42 406 positive 169.0409 1.77 

364 positive 561.9231 4.38 407 positive 155.0329 0.96 
365 positive 183.9128 4.44 408 positive 169.1465 0.87 

366 positive 439.3509 0.89 409 positive 134.0402 4.26 

367 positive 197.1414 1.86 410 positive 289.8771 4.44 
368 positive 476.1646 1.71 411 positive 159.1007 4.10 
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369 positive 208.1699 0.88 412 positive 454.2218 1.06 

370 positive 507.8398 4.36 413 positive 200.0584 0.94 

371 positive 199.1571 1.01 414 positive 167.0616 3.57 
372 positive 174.1407 0.87 415 positive 149.0702 3.60 

373 positive 253.2039 0.87 416 positive 198.0387 0.96 

374 positive 216.1223 3.91 417 positive 381.0698 1.69 
375 positive 179.0806 1.85 418 positive 122.0482 1.22 

376 positive 229.1792 4.04 419 positive 265.1316 3.87 

377 positive 183.1260 4.17 420 positive 181.0773 3.20 
378 positive 214.0737 3.54 421 positive 146.0402 4.10 

379 positive 213.1727 1.00 422 positive 209.1417 4.12 

380 positive 200.1274 3.99 423 positive 151.0633 4.35 
381 positive 461.8706 4.37 424 positive 201.1478 4.87 

382 positive 483.8787 4.38 425 positive 163.1210 4.58 

383 positive 255.2196 0.88 426 positive 215.1634 3.81 
427 positive 265.9158 4.43 470 positive 283.9652 4.43 

428 positive 156.0899 3.90 471 positive 146.1094 0.88 

429 positive 93.0578 3.41 472 positive 189.1366 4.22 

430 positive 186.1006 4.16 473 positive 201.9621 4.43 

431 positive 155.0948 4.18 474 positive 130.0783 0.88 

432 positive 439.3509 1.01 475 positive 120.0940 0.87 
433 positive 230.1267 3.31 476 positive 280.1422 3.81 

434 positive 323.2822 0.89 477 positive 245.0721 1.04 

435 positive 342.2884 3.38 478 positive 211.1934 0.88 
436 positive 119.9592 4.44 479 negative 243.0566 0.84 

437 positive 99.0325 3.93 480 negative 259.0517 0.85 
438 positive 483.3773 0.89 481 negative 243.1835 0.86 

439 positive 571.1663 1.27 482 negative 373.3119 0.86 

440 positive 179.0527 3.74 483 negative 93.9342 0.86 
441 positive 223.0879 3.58 484 negative 405.3019 0.87 

442 positive 118.0533 3.41 485 negative 437.2917 0.87 

443 positive 117.0580 0.88 486 negative 421.2970 0.87 
444 positive 331.8878 4.43 487 negative 320.2489 0.88 

445 positive 174.0640 3.81 488 negative 367.0910 0.89 

446 positive 90.0475 0.88 489 negative 143.9793 0.89 
447 positive 171.1260 4.50 490 negative 211.0512 0.91 

448 positive 231.1585 4.09 491 negative 198.0384 0.91 

449 positive 205.1137 4.31 492 negative 125.9977 0.91 
450 positive 241.9547 4.43 493 negative 118.0256 0.91 

451 positive 154.0742 3.63 494 negative 197.0354 0.91 

452 positive 202.0953 3.38 495 negative 265.0591 0.91 
453 positive 197.0549 0.94 496 negative 129.0416 0.91 

454 positive 140.1313 4.43 497 negative 225.0498 0.91 

455 positive 217.1426 4.14 498 negative 167.0245 0.92 
456 positive 300.2049 3.82 499 negative 217.9883 0.92 

457 positive 252.0873 3.41 500 negative 230.0361 0.92 

458 positive 224.1273 3.35 501 negative 183.0197 0.92 
459 positive 274.1640 3.33 502 negative 232.0042 0.92 

460 positive 217.1791 3.65 503 negative 224.0465 0.92 

461 positive 134.1095 0.88 504 negative 156.0084 0.92 
462 positive 219.1107 3.94 505 negative 189.0422 0.92 

463 positive 120.0816 4.54 506 negative 161.0469 0.92 

464 positive 106.0786 0.87 507 negative 184.0226 0.92 
465 positive 248.1737 3.80 508 negative 284.9948 0.92 

466 positive 194.0693 4.20 509 negative 131.8956 0.92 

467 positive 144.1263 4.11 510 negative 260.0471 0.93 
468 positive 179.0947 3.57 511 negative 216.0567 0.93 

469 positive 148.1251 0.88 512 negative 205.0372 0.93 

513 negative 180.0277 0.93 556 negative 137.0830 1.25 
514 negative 197.0544 0.93 557 negative 470.0593 1.25 

515 negative 235.0481 0.93 558 negative 456.0646 1.25 

516 negative 367.0911 0.93 559 negative 158.0431 1.25 
517 negative 140.0325 0.94 560 negative 302.0188 1.26 

518 negative 183.0386 0.94 561 negative 115.0370 1.27 

519 negative 120.9823 0.94 562 negative 155.0435 1.30 
520 negative 168.0197 0.94 563 negative 122.0357 1.30 

521 negative 93.9342 0.95 564 negative 191.0438 1.30 

522 negative 245.0723 0.95 565 negative 197.0544 1.32 
523 negative 138.8982 0.95 566 negative 189.0420 1.38 
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524 negative 123.9820 0.97 567 negative 145.0518 1.38 

525 negative 320.2489 1.00 568 negative 282.0968 1.46 

526 negative 112.0150 1.00 569 negative 193.0595 1.50 
527 negative 268.0733 1.01 570 negative 243.1835 1.51 

528 negative 223.0115 1.02 571 negative 288.0784 1.54 

529 negative 270.9825 1.02 572 negative 138.0420 1.54 
530 negative 205.0372 1.02 573 negative 115.0259 1.55 

531 negative 284.9948 1.02 574 negative 216.0397 1.57 

532 negative 163.0262 1.02 575 negative 127.0082 1.57 
533 negative 207.0165 1.03 576 negative 102.0306 1.62 

534 negative 245.0723 1.03 577 negative 221.0911 1.65 

535 negative 367.0912 1.04 578 negative 230.0326 1.66 
536 negative 215.0652 1.04 579 negative 130.0256 1.67 

537 negative 142.4961 1.04 580 negative 189.0221 1.67 

538 negative 214.0241 1.06 581 negative 213.0668 1.67 
539 negative 292.0719 1.06 582 negative 139.0293 1.69 

540 negative 240.9979 1.07 583 negative 153.0455 1.69 

541 negative 183.0386 1.07 584 negative 479.2386 1.69 

542 negative 140.0325 1.07 585 negative 196.0513 1.69 

543 negative 238.0702 1.12 586 negative 136.0375 1.73 

544 negative 224.0465 1.13 587 negative 99.0309 1.73 
545 negative 217.0406 1.15 588 negative 169.0401 1.73 

546 negative 374.0624 1.16 589 negative 216.0566 1.75 

547 negative 168.0197 1.18 590 negative 161.0469 1.75 
548 negative 254.0575 1.20 591 negative 205.0372 1.76 

549 negative 180.0277 1.20 592 negative 118.0619 1.81 
550 negative 211.0702 1.20 593 negative 215.1519 1.83 

551 negative 217.0405 1.22 594 negative 341.1512 1.84 

552 negative 275.0000 1.23 595 negative 116.0464 1.85 
553 negative 188.0540 1.23 596 negative 158.9982 1.86 

554 negative 219.0363 1.24 597 negative 173.0140 1.86 

555 negative 140.9909 1.25 598 negative 365.0756 1.88 
599 negative 367.0912 1.90 631 negative 237.8909 3.48 

600 negative 368.1702 1.91 632 negative 80.9634 3.48 

601 negative 183.0559 1.93 633 negative 315.8721 3.48 
602 negative 104.0462 2.14 634 negative 177.9235 3.48 

603 negative 237.0860 2.16 635 negative 175.9440 3.48 

604 negative 120.9824 2.22 636 negative 179.9572 3.48 
605 negative 365.0756 2.24 637 negative 277.8497 3.48 

606 negative 123.9820 2.24 638 negative 97.9662 3.48 

607 negative 243.0777 2.34 639 negative 97.9671 3.48 
608 negative 226.0622 2.34 640 negative 195.9341 3.48 

609 negative 169.0402 2.34 641 negative 99.9703 3.48 

610 negative 207.0892 2.36 642 negative 99.9619 3.49 
611 negative 153.0451 2.38 643 negative 217.9164 3.49 

612 negative 165.0643 2.43 644 negative 260.8469 3.49 

613 negative 183.0559 2.47 645 negative 180.8892 3.49 
614 negative 169.0402 2.50 646 negative 197.8921 3.51 

615 negative 172.0729 2.53 647 negative 337.8666 3.51 

616 negative 155.0244 2.55 648 negative 175.9440 3.57 
617 negative 172.0729 2.63 649 negative 153.9928 3.61 

618 negative 233.0324 2.65 650 negative 175.0475 3.62 

619 negative 90.0306 2.67 651 negative 126.0420 3.65 
620 negative 154.0023 2.68 652 negative 219.1106 3.77 

621 negative 181.0403 2.76 653 negative 146.0683 3.81 

622 negative 123.9820 2.77 654 negative 243.0470 3.90 
623 negative 125.0137 2.83 655 negative 158.0684 3.90 

624 negative 210.9561 2.84 656 negative 128.0576 3.92 

625 negative 367.0911 2.85 657 negative 142.0733 3.99 
626 negative 143.0574 3.14 658 negative 147.9723 6.15 

627 negative 129.0416 3.21 659 negative 293.8445 8.46 

628 negative 102.0306 3.23 660 negative 317.7868 8.59 
629 negative 186.1364 3.30 661 negative 235.8272 8.70 

630 negative 158.1048 3.38 
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Figure 2.8: Blue crab diet affects concentration of specific urinary metabolites. (A) 

Compounds identified by 1H NMR metabolomics PCA model that distinguish urine of blue 

crabs fed mud crab vs. oyster diets. Annotated metabolites consisted of: trigonelline (1); 

pyrimidine (2); lactate (3); carnitine (4); choline (5); threonine (6); creatinine (7); 

trimethylamine (8); methyl glutarate (9); acetate (10); creatine (11); N-methylhistidine 

(12); alanine (13). (B) Overlay of 1H NMR spectra of urine from blue crabs fed mud crabs 

(brown) oyster (yellow) averaged across 12 urine samples for each diet. Peak intensity was 

normalized to an internal standard whose concentration was identical in all samples. 

Numbers above 1H NMR signals in (B) refer to numbered compounds in (A). Only protons 

used to calculate concentration of metabolites are labeled. Inset is expansion of downfield 

region of overlaid 1H NMR spectra.  
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shuttling, and choline metabolism (65) (Table 2.2, Table 2.3). Collectively, these data 

predicted that the fear-inducing cue in blue crab urine consists of relatively simple, primary 

metabolites that vary in concentration depending on diet.  

A subset of metabolites account for fear-inducing properties of blue crab urine 

To provide further evidence of the role of metabolites found in blue crab urine, we 

applied partial least squares regression (PLS-R) analysis to the 1H NMR spectroscopic data 

to test for correlation between the measured potency of blue crab urine samples and the 

chemical variation among urine samples as revealed by PCA. A near-perfect linear fit was 

observed based on analysis of seven blue crab urine samples, four from blue crabs fed mud 

crabs and three from blue crabs fed oysters (Figure 2.9A). Upon inspection of the variable 

importance parameters (VIP, Figure 2.10A) and the PLS-R loadings (Figure 2.10B), 

trigonelline (1) was the only urinary metabolite identified by the PLS-R model that was 

also a critical component of the loadings via PCA (Table 2.2, Figure 2.10).  

In addition to trigonelline being predicted as a constituent of the fear-inducing cue, 

the VIP and the loadings of the PLS-R model suggested that additional unidentified 

metabolites were constituents of the cue mixture. Inspection of the aromatic spectral region 

of the PLS-R loadings (Figure 2.10), coupled with total correlation spectroscopy (TOCSY) 

data (Figure 2.11), pointed to a second fear-inducing metabolite, differing from trigonelline 

only in the pattern of substituents around the aromatic ring. Homarine (14), a constitutional 

isomer of trigonelline, was isolated from blue crab urine, characterized by MS and NMR 

spectroscopy (Figure 2.11), and synthesized to confirm its molecular structure.  
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Figure 2.9: Partial least squares regression (PLS-R) model of 1H NMR metabolomics data 

suggests that trigonelline (1) and homarine (14), but not trimethylamine (8) are components 

of the fear-inducing cue of blue crab urine. (A) PLS-R model highlights the linear 

relationship between the measured and model-predicted potency of fear-inducing behavior 

of blue crab urine. A potency value of 1 would indicate complete suppression of mud crab 

feeding in the presence of the urine sample whereas a potency value of zero represents no 

feeding suppression. Crab symbols represent data from urine from blue crabs fed mud 

crabs; oyster symbols represent data from urine from blue crabs fed oysters (N = 4 for urine 

from blue crabs fed mud crabs, N = 3 for urine from blue crabs fed oysters). Dashed lines 

represent sigmoidal curve fitted to experimental data using Matlab curve fitting toolbox 

with adjusted R2 values for (B) Trigonelline (1), (C) homarine (14), and (D) trimethylamine 

(8) at the highest possible concentration, as indicated by square brackets around metabolite 

name (based on all protons resonating at 2.89 ppm belonging to trimethylamine and no 

other metabolites). N = 7 urine samples.  
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Figure 2.10: PLS-R models for 1H NMR metabolomics highlight metabolites whose 

concentrations correlate with urine fear-inducing potency. (A) PLS-R variable 

importance parameters (VIP) and (B) loadings for 1H NMR spectroscopic features in 

urine from blue crabs. All VIP scores above 30 were truncated to allow for visualization 

of spectroscopic features with smaller VIP scores.  
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Figure 2.11: NMR spectroscopic and MS-based identification of homarine (14) in blue 

crab urine. A) Expanded total correlated spectroscopy (TOCSY) spectrum of blue crab 

urine, indicating annotated correlations consistent with data for synthetic 14. B) 1H NMR 

spectrum of 14 isolated from blue crab urine. Aromatic proton region is expanded and 

annotated with chemical shifts to show agreement between urine and isolated 14 (within 

0.02 ppm for each signal). Inset shows high-resolution mass spectrum of 14 isolated from 

blue crab urine, corresponding to the molecular ion predicted for this compound.    
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The relationship between measured potency of blue crab urine and the measured 

concentrations of trigonelline and homarine indicated sigmoidal relationships for both, 

with greater fear-inducing potency for urine samples with greater concentrations of 

trigonelline and homarine, as expected (Figure 2.9). In contrast, the fear-inducing potency 

of urine poorly correlated with the concentration of trimethylamine. Although 

trimethylamine was identified by the PCA model as being significantly more concentrated 

in urine from blue crabs fed mud crabs vs. oysters (Table 2.2), it did not emerge from the 

PLS-R model as a likely candidate for the fear-inducing cue, and as such it acted as a 

further calibrant for our model. Overall, these findings led us to conclude that both 

trigonelline and homarine are likely constituents of the fear-inducing cue in blue crab urine 

but that trimethylamine is not. 

Trigonelline and homarine induce fear in mud crabs 

 To explicitly test the functions of trigonelline and homarine as components of the 

fear-inducing cue in blue crab urine, mud crabs were exposed to each compound, alone 

and together, at concentrations found naturally in urine of blue crabs fed mud crabs (43 

µM for trigonelline and 190 µM for homarine). Trigonelline (purchased commercially and 

analyzed spectroscopically to confirm its identity) and homarine (synthesized and 

characterized) suppressed foraging by 60% and 67%, respectively, when each compound 

was presented to mud crabs. Mud crabs reduced their feeding behavior by 65% when these 

two compounds were tested as a mixture, similar to the effect of blue crab urine itself 

(Figure 2.12).  

In contrast, and as expected given the poor predictive relationship between 

trimethylamine (8) and urine (Figure 2.9D), trimethylamine did not significantly  
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Figure 2.12: At natural concentrations found in blue crab urine, trigonelline (1) and 

homarine (14) but not trimethylamine induce fear, evidenced by reduced foraging among 

mud crabs. Urinary metabolites were formulated to match concentrations observed in 

blue crab urine (N = 10 for all treatments). Letters indicate significant grouping of 

treatments (one-way ANOVA with Tukey post-hoc test). Error bars represent ±1 SEM. 
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affect mud crab behavior (Figure 2.12). The exact concentration of trimethylamine in blue 

crab urine could not be determined by 1H NMR spectroscopy due to spectral overlap and 

the non-diagnostic nature of the only unique proton signal associated with trimethylamine. 

The concentration (42 µM) used in the mud crab behavior assay was the highest possible 

concentration of trimethylamine (if all protons resonating at 2.89 ppm belonged to 

trimethylamine and not to other metabolites); yet no significant behavioral response 

indicative of fear was observed in mud crabs exposed to trimethylamine at this high 

concentration (Figure 2.12).  

Although the PLS-R model predicted that additional unidentified blue crab urine 

metabolites are likely components of the cue mixture, trigonelline and homarine appear to 

be the major constituents of the fear-inducing cue. The suppressive effects that these 

compounds induced on mud crab behavior were statistically indistinguishable from the 

effects of blue crab urine itself (Figure 2.12), revealing that other compounds were not 

necessary to recapitulate the activity of whole urine. 

To predict the source of the components of the fear-inducing cue, we quantified 

trigonelline, homarine, and trimethylamine in the flesh of each food source (mud crab, 

oyster, shrimp; Table 2.6). Trimethylamine and homarine were found in tissues of all three 

food sources whereas trigonelline was only detected in mud crab and shrimp tissues. The 

concentrations of all three metabolites were higher in mud crab tissue than other tissues, 

indicating that it’s possible that blue crab urine derives at least a portion of these three 

metabolites directly from the diets of blue crabs. However, it is unlikely that all of the 

components of the fear-inducing cue come from blue crab food sources, since trigonelline 

is present the urine of blue crabs fed oyster but was not detected in oyster tissue.  
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Table 2.6: Quantification of trigonelline (1), trimethylamine (8), and homarine (14) in the 

tissue of blue crab dietary sources (N=3 for each diet). 

 Metabolite concentration (µg/g tissue) 

Dietary source tissue Trigonelline (1) Trimethylamine (8) Homarine (14) 

Shrimp 9 ± 13 16 ± 11 14 ± 19 

Oyster < 0.1 52 ± 26 2 ± 1 

Mud crab 19 ± 4 128 ± 112 41 ± 9 
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Trigonelline and homarine are constitutional isomers with different electron 

delocalization 

 The two critical components of the fear-inducing cue in blue crab urine have similar 

biological activities and appear nearly structurally identical; however, they have different 

electronic structures. Although each contains a methylated pyridinium ring and a 

carboxylate group, their connectivity of the ring to the carboxylate differs. Through 

molecular modeling, the attachment of the carboxylate to carbon three of the pyridinium 

ring of trigonelline allows for a greater delocalization of electron density, as evidenced by 

increased electron density around the carboxylate (Figure 2.13). In contrast, homarine does 

not exhibit such delocalization, since the carboxylate is rotated 64˚ relative to the ring 

preventing orbital overlap. When similar models were applied to related molecules 

picolinic acid (15) (the demethylated analog of homarine) and o-toluic acid (16) (the non-

nitrogenous analog of homarine), the steric implications on torsional angle of the 

carboxylate relative to delocalization of electron density became apparent. For picolinic 

acid, the torsional angle between the carboxylate and the pyridinium ring is 0.0˚, allowing 

electron density from the aromatic system to be pulled towards the carboxylate (Figure 

2.13). However, in o-toluic acid, the carboxylate rotates out of the plane of the ring with a 

torsional angle of 37˚ to decrease steric interactions with the bulkier methyl. This rotation 

prevents conjugation of the aromatic system with the carboxylate because the p orbitals of 

the carboxylate cannot sufficiently interact with those of the aromatic system, as evidenced 

by most of the electron density remaining around the aromatic system (Figure 2.13). Thus, 

connectivity of the carboxylate to the pyridinium ring at carbon 2 in homarine leads to 

steric interactions with the N-methyl, forcing the carboxylate to rotate out of the plane of 
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the ring, thus preventing further electron delocalization. While not directly tested, the 

differences in electronic structure could lead to differential interaction with a mud crab 

receptor, thus possibly explaining the similar levels of potency of trigonelline and homarine 

at different concentrations (Figure 2.12).  
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Figure 2.13: Electron delocalization is dependent on carboxylate position for trigonelline, 

homarine, picolinic acid, and toluic acid. Orbital representations (red and blue shapes, row 

two) are of the highest occupied molecular orbital (HOMO) for each molecule and were 

model using Gaussian ’09 and visualized with PyMol. The torsional angle between the 

pyridinium/aromatic ring (black line) and the carboxylate (red line) are shown in the 

bottom row. 
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Discussion 

We identified the two major chemical components of a waterborne cue by 

leveraging the variable fear-inducing potencies of urine from blue crabs fed different diets, 

resulting in the conclusion that trigonelline and homarine strongly affect risk perception in 

prey (Figure 2.12). These cues, when released into seawater via the urine of blue crabs, 

allow mud crab prey to recognize the presence of a predator and adjust their behavior to 

avoid detection by that predator. The relative concentrations of these metabolites in 

predator urine reveals whether it has recently consumed mud crabs, which mud crabs then 

interpret as additional risk. Mud crabs subsequently respond with reduced foraging activity 

compared to when they are exposed to urine with lower concentrations of trigonelline and 

homarine (Figure 2.9). Although trigonelline and homarine, when tested alone or in 

combination, induced fear in prey crabs similarly to intact blue crab urine (Figure 2.12), 

these two metabolites are not the only components of the fear-inducing cue. Both 1H NMR 

and MS metabolomics suggested multiple additional components. However, the lack of 

diagnostic protons with VIP scores greater than those of trigonelline and homarine (Figure 

2.10A) and the stand-alone potencies of trigonelline and homarine (Figure 2.12) indicate 

that while additional metabolites are predicted to act as components of the fear-inducing 

cue, their importance is limited.  

Waterborne cues for predator detection have been infrequently characterized 

 The current system represents one of the few waterborne cues that has been 

chemically identified, among those used for predator detection and risk perception by prey. 

Yet there is significant evidence that such cues are sensed widely in invertebrates (66, 67) 
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and vertebrates (68, 69). More importantly, the current study is one of the first in which 

non-consumptive effects of predators, mediated by waterborne predator chemistry, have 

been revealed at the molecular level. Non-consumptive effects on prey are increasingly 

predicted to be more important than consumptive effects (removal of prey through 

consumption) in systems with a top predator, intermediate predator, and basal resource, 

such as the current system (23). The potential for these interactions to broadly structure 

communities emphasizes the need to understand the chemical nature of the cues, which 

would provide insight into what confers cue specificity, and therefore how organisms may 

respond to in the presence of many cues with different degrees of salience or risk. Since 

prey in natural communities will be simultaneously exposed to many different cues, 

developing a framework to predict and understand the effects of multiple cues is essential 

if we are to progress beyond understanding prey response in single predator-prey pairs.   

A rare case of chemically mediated non-consumptive effect in which the chemical 

cue has been identified involves the copepodamides, a class of taurine-containing polar 

lipids, released into seawater by copepods leading to an increase in toxicity in their 

dinoflagellate prey (17). A second example is that of the use of aliphatic sulfates and 

sulfamates by the freshwater green alga Scenedesmus to detect predatory Daphnia pulex, 

inducing colony formation in Scenedesmus as a defense mechanism (70). A significant 

contrast between these two identified cues is that the compounds involved, like many 

terrestrial cues, appear to be more specific to certain taxonomic groups than the fear-

inducing metabolites identified in the current study, trigonelline and homarine; yet many 

may be waste products. The unavoidable exudation of waste compounds by predators may 
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therefore be important in many systems enabling prey to recognize predators, sometimes 

in species-specific or even diet-specific manners.  

Trigonelline and homarine are common invertebrate signaling molecules   

The two critical components of the fear-inducing cue in blue crab urine, trigonelline 

and homarine, are well documented in marine invertebrate tissues (71-77). Homarine and 

trigonelline, present in marine hydroid oocytes at approximately 25 nM and 8 nM 

respectively, prevent the metamorphosis of larvae to adults as well as limiting formation 

of the head and stolon in adults (78, 79). Homarine defends an Antarctic gastropod against 

its sea star predator, which flees from its prey when exposed to high concentrations of the 

compound (80). Homarine in gorgonian corals repels fouling by a surface-associated 

diatom (81). When nicotinic acid (the demethylated analog of homarine), picolinic acid 

(the demethylated analog of trigonelline), and pyridine (neither methylated nor possessing 

a carboxyl side chain as do trigonelline or homarine) were tested for their antifouling 

properties, the methylation state of the compound was found to be unimportant, whereas 

the presence of the carboxyl group at position two of the aromatic ring (as found in 

homarine) was crucial for the antifouling nature of the compounds (81). These last findings 

run counter to those of the current study in which trigonelline appears to be slightly more 

potent than homarine based on the similar fear-inducing effects at lower concentration 

(Figure 2.12). This suggests different molecular mechanisms of action for these molecules 

when involved in fear induction in prey compared with fouling deterrence. Additionally, 

trigonelline and homarine were found to act as waterborne cues in the current study 

whereas previously reported systems considered the roles of trigonelline and homarine as 

components in animal tissue, further contrasting the systems.   
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Trigonelline and homarine appear structurally similar, but differ in electronic 

properties and biosynthetic origins  

The structural similarities of trigonelline and homarine prompted us to further 

examine the electronic properties of the related molecules. Density functional theory 

calculations revealed that electron density is differently delocalized in trigonelline and 

homarine based on the connectivity of the carboxyl group (Figure 2.13). If the fear response 

in prey is receptor-mediated as we would expect, then broader delocalization of electron 

density in trigonelline could enhance its interaction with a corresponding receptor in mud 

crabs, translating into a somewhat greater magnitude of behavioral response.  

The multiple biological functions of trigonelline and homarine argue for seeking a 

better understanding of their biosynthetic origins. Although trigonelline and homarine 

appear to have very similar molecular structures, their biosynthetic origins differ in 

organisms for which this has been studied. Homarine biosynthesis in marine invertebrates 

is predominately known from isotope incorporation experiments of shrimp in which 

glycine and succinyl CoA form N-succinylglycine which, through a series of modifications, 

is transformed to homarine (82, 83). Tryptophan was not incorporated into homarine in 

feeding experiments and as such a hypothesized route to homarine through that amino acid 

was rejected (82); acetate was incorporated to form homarine through quinolinate (84). 

Although no study has investigated trigonelline biosynthesis in marine invertebrates, it is 

known that plants produce trigonelline from tryptophan and aspartate via quinolinic acid, 

which is converted to nicotinic acid and methylated to form trigonelline (85). Despite the 

incorporation of quinolinic acid into both trigonelline and homarine, the lack of tryptophan 

incorporation in homarine synthesis suggests that either trigonelline and homarine are 
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derived from divergent biosynthetic pathways in invertebrates or that invertebrates utilize 

multiple pathways towards the formation of quinolinic acid.  

Metabolomics as a promising tool for chemical ecology 

 For decades, the principal platform for isolating biologically active compounds in 

chemical ecology research has been bioassay-guided fractionation. This approach has 

failed to facilitate the discovery of waterborne cues, despite the obvious importance of such 

cues in aquatic systems, due in part to the lack of sensitivity and resolution in analytical 

technologies used to elucidate the molecular structures of compounds accessible only in 

low quantities. In the current study, we avoided working with a low concentration cue by 

collecting the cue at its source (urine collection via catheterization) rather than 

concentrating compounds from seawater after release and dispersal of the cue. 

Additionally, bioassay-guided fractionation requires a destructive a bioassay after each 

separation step to pinpoint those fractions containing bioactive molecules in order to 

proceed to the next step of chemical separation. These separations can lead to loss of 

biological activity as multicomponent cues are separated into multiple fractions and as 

protectant molecules, such as antioxidants, are removed from mixtures containing 

bioactive molecules and degradation processes take over. With increasing NMR 

sensitivity, MS resolving power, and big data analysis tools, metabolomics has become a 

useful approach for chemical ecology and natural product discovery (18, 86). The 

complementary nature of MS metabolomics, which is highly sensitive and allows 

simultaneous analysis of many compounds, and NMR metabolomics, which is quantitative 

and can detect compounds with poor MS ionization properties, makes the combination of 

these two spectroscopic approaches desirable when the identities of relevant molecules are 
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completely unknown. The advantages of metabolomics for identifying waterborne cues 

will continue to increase as chemical libraries become more accessible and profiling 

technologies become more widespread.  

Conclusions 

A combined NMR-MS metabolomics approach led to the successful 

characterization of chemical cues in a complex behavioral interaction between predator 

and prey, in which prey recognize and respond to predators via exuded metabolites. By 

identifying the major components of this fear-inducing cue, we can now better address 

important questions about the impacts of non-consumptive effects by predators on prey, 

the ecological importance of these interactions on community structure, and the possible 

ubiquity of chemically mediated non-consumptive interactions in the marine environment. 

More generally, we posit that this study serves as a roadmap for further studies aimed at 

identifying and understanding the many diverse systems that ecologists hypothesize are 

mediated by waterborne cues but in which the chemistry is yet unknown. Despite noted 

examples where metabolomics has previously identified important cues, the cues were 

either not fully characterized, were terrestrial in origin, or were highly specific pheromones 

instead of more ubiquitous cues such as in the current study. Only with a more thorough 

understanding of the chemistry of these systems can we begin to address other important 

aspects, such as cue dispersal, dose-response relationships, structure-activity relationships, 

chemoreception and signal transduction, potential effects of climate change on cue 

longevity in the water column, and potential effects of anthropogenic pollutants in the 

water. 
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Ecologists have been long interested in the role of chemical compounds in 

mediating interactions among species. The natural variation inherent in these systems has 

often been seen as an inconvenience to be minimized or overcome in order to define the 

function of individual compounds. This approach misses the opportunity to leverage 

naturally occurring variation – whether it be in the behavior or chemistry of an organism, 

or both – towards understanding how chemistry shapes biology. Wherever a correlation 

between chemical composition and a biological outcome can be gleaned, hypotheses can 

be constructed to explicitly test the function of such chemistry. In the current study, the 

chemical fingerprint of blue crab urine was found to be diverse, both in terms of the identity 

of metabolites and their relative concentrations. Rather than ignoring or minimizing this 

variation (for example, by pooling urine samples into one large batch), we capitalized on 

this variation. The fact that urine chemistry could be manipulated by adjusting diet, with 

concomitant change to the potency of urine in inducing fear among prey, provided the 

opportunity to determine which urinary metabolites caused fear. The dose dependency of 

individual metabolites, acting together to enable prey to assess relative risk, confirms that 

such environmental cues do not act as an on/off switch, but rather produce a subtle range 

of biological outcomes predictable by compound concentration gradients. This is the great 

power of metabolomics in chemical ecology: to go beyond a false determination of “yes” 

(the organism responds) or “no” (the organism does not respond), towards making the most 

of existing variation and generating a deeper understanding of these responses at the 

chemical and biological level.    
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CHAPTER 3. POTENCY OF KARENIA BREVIS ALLELOPATHY 

IS HIGHLY VARIABLE AGAINST CO-OCCURING 

COMPETITORS (2) 

3.1 Abstract 

 Harmful algae are known to utilize allelopathy, the release of compounds that 

inhibit competitors, as a form of interference competition. Competitor responses to 

allelopathy are species-specific and allelopathic potency of producing algae is variable. We 

mapped the biological variability in allelopathic potency to the underlying chemical 

variation in the exuded metabolomes of five genetic strains of the red tide dinoflagellate 

Karenia brevis using 1H nuclear magnetic resonance (NMR) spectroscopy. The impacts of 

K. brevis allelopathy on growth of a model competitor, Asterionellopsis glacialis, ranged 

from strongly inhibitory to negligible to strongly stimulatory. K. brevis exuded unique 

metabolomes, visualized as chemical fingerprints, that suggested three distinct metabolic 

modalities – allelopathic, non-allelopathic, and stimulatory – with each modality 

distinguished from the others by different concentrations of several metabolites. 

Allelopathic K. brevis was characterized by enhanced concentrations of fatty acid-derived 

lipids and aromatic compounds, relative to less allelopathic K. brevis. These findings point 

to a previously untapped source of information in the study of allelopathy: the chemical 

variability of phytoplankton, which has been underutilized in the study of bloom dynamics 

and plankton chemical ecology.   
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3.2 Introduction 

Allelopathy, or the release of compounds that inhibit competitors, is a form of 

interference competition that is well documented in terrestrial plants (87, 88), zooplankton 

(89), and phytoplankton (90, 91). Allelopathy is one of the proposed mechanisms 

hypothesized to affect harmful algal bloom (HAB) dynamics (29), although the role of 

allelopathy in the formation of HABs has been disputed (92). While some HAB-forming 

species produce potent toxins such as brevetoxins (30), domoic acid (31), and saxitoxins 

(32), none of these toxic compounds have also been identified as an allelopathic agent; one 

exception is the karlotoxins which have been shown to inhibit competitor growth and 

immobilize prey with effects depending on sterol composition of target species (93). 

Typically, in allelopathy research, scientists have sought to identify allelopathic 

compounds by applying bioassay-guided fractionation to an extract of a potently 

allelopathic organism (38, 94, 95). This has left untapped potentially useful biological and 

chemical variability among samples, whether cultivated or field-collected, of an 

allelopathic species. Recent advances in metabolic profiling have led to the emergence of 

chemical fingerprinting as a tool for taxonomic analysis and authentication (96-98), disease 

diagnosis (99-101), and classification of multi-state systems, such as stressed vs. non-

stressed organisms (37, 102). Within-species metabolic variability has also been leveraged 

to guide identification of mating pheromones in phytoplankton (16), virulence-regulating 

small molecules in worms (103), and enzymes responsible for the biosynthesis of nematode 

pheromones (104). 

Karenia brevis, a HAB-forming dinoflagellate colloquially known as Florida red 

tide, produces a family of sodium channel blockers called brevotoxins which do not act as 
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allelopathic compounds (35, 38). K. brevis allelopathy, mediated by unknown compounds 

exuded by cells during blooms, is understood to negatively impact competing 

phytoplankton, especially diatoms such as Amphora sp., Skeletonema grethae (formerly S. 

costatum), Thalassiosira sp., and Asterionellopsis glacialis (35, 36). Competitor sensitivity 

to K. brevis allelopathy is variable among competitor species, with some species exhibiting 

resistance to allelopathic compounds and others suffering reduced growth rates, longer lag 

before the onset of exponential growth, membrane integrity loss, compromised 

photosynthesis, inhibited osmoregulation, and increased oxidative stress (36, 37, 105). 

Previous attempts to identify K. brevis compounds responsible for allelopathy have failed; 

however, chromatographic fractions containing allelopathic compounds exhibited 

spectroscopic features consistent with aromatic compounds and unsaturated hydrocarbons 

(38). Due to the substantial variability in allelopathy in this system, we hypothesized that 

variation in allelopathic potency is also reflected in the exuded metabolome of K. brevis. 

In the current study, nuclear magnetic resonance (NMR) spectroscopy-based comparative 

metabolomics was used to fingerprint K. brevis, correlating allelopathic potency with 

chemical variability of exuded metabolomes.  

3.3 Materials and Methods 

Phytoplankton culturing  

Five strains of Karenia brevis were obtained from the National Center for Marine 

Algae and Microbiota (CCMP 2228, CCMP 2229, CCMP 2281) or Lisa Campbell at Texas 

A&M University (TxB3 and TxB4) and cultured in L1 growth media formulated with 

Instant Ocean at 35 ppt. The model diatom, Asterionellopsis glacialis (CCMP 137), a 

naturally co-occurring competitor known to be moderately vulnerable to K. brevis 
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allelopathy (35, 36), was cultured using the same conditions. Cultures were subjected to a 

12:12 light:dark cycle, with irradiance 75-120 μmol m-2 s-1  at a temperature of 22 °C. 

Growth of A. glacialis was approximated using in vivo chlorophyll a fluorescence (Turner 

Biosystems Trilogy Fluorometer).  

Allelopathy assay and generation of extracellular extracts 

To determine allelopathic potencies of blocks of each of the five K. brevis strains, 

12 biological replicates of each strain were cultured in full strength L1 media in paired 

flasks from the same inoculum: one large 1.8 L culture for the collection of exuded 

allelochemicals and a second, 250 mL flask that contained a co-culture with A. glacialis to 

assess allelopathic effects. Allelopathy assay flasks consisted of K. brevis grown in a 50 

mL falcon tube cage (ends removed and capped with 1 µm nylon mesh) placed in a culture 

of A. glacialis. A. glacialis grown in dilute L1 medium (90% of typical sodium phosphate 

levels, 65% of typical nitrate levels, plus typical concentrations of vitamins, and trace 

metals) in the presence of the same cage acted as a control in the allelopathy assay, to 

mimic resource consumption by K. brevis which we found to deplete macronutrients as 

described above (37). To make the set-up manageable, the 12 replicate cultures of each 

strain were split into three block experiments that were performed sequentially, with each 

block containing four replicates of each strain. Thus, the experiment was designed to assess 

both strain and block variability in allelopathic compound production.  

Growth of the K. brevis was monitored every other day (starting on the first day) 

using samples preserved with Lugol's solution and measured using a FlowCAM 

autoimager (Fluid Imaging Inc.; 100 µm flow cell, 0.4 mL min-1, autoimage rate of 16 
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frames per second). A. glacialis cell concentrations in the allelopathy assay flasks were 

monitored daily via in vivo fluorescence. Growth was calculated via:  

% 𝐺𝑟𝑜𝑤𝑡ℎ =
𝑓𝑖𝑛𝑎𝑙 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒
×100. 

Strain and block effects of K. brevis allelopathy on percent growth of A. glacialis were 

analyzed using two-way analysis of variance (ANOVA) using PRISM version 10.0.  Block 

effect on growth of A. glacialis controls were analyzed using one-way analysis of variance 

(ANOVA) using PRISM version 10.0.  

 Cultures were grown for 10 days by which time the K. brevis had reached mid-

exponential growth phase, at which point hydrophobic resins (a 1:1 mixture of Diaion 

HP20 and Amberlite XAD-7) were added to K. brevis monocultures (1.8 L flasks) to 

extract compounds exuded by K. brevis, as described in Prince et al. (2008). Resins were 

incubated for 24 h, gently rinsed with filtered artificial seawater to remove K. brevis cells, 

and rinsed with deionized water to remove salts. Organic compounds were eluted from 

resins with LC-MS grade methanol and solvent was removed by rotary evaporation. The 

resulting extracts were triturated three times with ice-cold methanol to remove excess salts 

and dried again.  Extracellular extracts were stored dry at -80 ˚C prior to spectroscopic 

analysis. 

Allelopathic index calculation 

To assign strain and block potency of K. brevis allelopathy, we used growth of the 

competitor A. glacialis when co-cultured with K. brevis as an inverse proxy for K. brevis 

allelopathic potency. More potent K. brevis cultures reduced growth of A. glacialis and as 

such we calculated our allelopathic index as:  

𝐴𝑙𝑙𝑒𝑙𝑜𝑝𝑎𝑡ℎ𝑖𝑐 𝑖𝑛𝑑𝑒𝑥 = (1 −
𝑎𝑣𝑔 % 𝑔𝑟𝑜𝑤𝑡ℎ 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑓𝑜𝑟 𝑏𝑎𝑡𝑐ℎ − % 𝑔𝑟𝑜𝑤𝑡ℎ 𝑜𝑓 𝐴. 𝑔𝑙𝑎𝑐𝑖𝑎𝑙𝑖𝑠 𝑖𝑛 𝑓𝑙𝑎𝑠𝑘

𝑎𝑣𝑔 % 𝑔𝑟𝑜𝑤𝑡ℎ 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑓𝑜𝑟 𝑏𝑎𝑡𝑐ℎ
)×100 
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Cultures of K. brevis with an allelopathic index within one standard deviation of the mean 

% growth (mean % growth = 114.7 % relative to A. glacialis-only control, standard 

deviation = 79.4 %) were deemed “non-allelopathic”; those greater than one standard 

deviation below the mean (% growth below than 35.2 % relative to A. glacialis-only 

control) were deemed “allelopathic”; and those greater than one standard deviation above 

the mean (% growth greater than 194.1 % relative to A. glacialis-only control) were 

deemed “stimulatory.” This assignment allowed a preliminary basis for comparison among 

strains and blocks, in order to test whether concentrations of some exuded metabolites were 

associated with a category of allelopathic potency. 

NMR spectroscopic data acquisition and processing 

To explore the chemical constituents of K. brevis exuded metabolomes, 

extracellular extracts from the K. brevis monocultures were profiled using a conventional 

1H NMR pulse sequence (zg30) on a Bruker Avance 500 MHz DRX NMR spectrometer 

equipped with a 5 mm broadband direct detection probe. Extracellular extracts were re-

suspended in 90% d6-DMSO / 10% D2O (99.9% atom Cambridge Isotope Labs) spiked 

with the internal standard 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid (TMSP), gently 

centrifuged (~2 min) to remove salts, and transferred to NMR tubes. To gather adequate 

signal, spectra were compiled from 256 scans and processed using NMRLab software (58) 

version 0.99.0.0 in Matlab version R2013a (8.1.0.604). Spectra were aligned to the 

chemical shift of 0.00 ppm using TMSP, manually phased, and baseline-corrected to allow 

for accurate integration of spectral features. Spectral regions corresponding to solvent 

signals and unoccupied regions were removed to simplify multivariate analysis (TMSP: -

5.0 – 0.5 ppm, residual DMSO: 2.46 – 2.53 ppm, methanol: 2.94 – 3.27 ppm, water: 3.40 
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– 4.40 ppm, and unoccupied low field region: 8.5 – 15.0 ppm). Spectral features were 

binned into 0.005 ppm bins, filtered to reduce the impact of noise, probabilistic quotient-

normalized (59) to remove the effects of differential dilution among samples, and 

generalized log (glog) transformed to raise sensitivity to low concentration metabolites 

within each sample with relatively low concentrations (60). Glog optimization was 

conducted using a set of five quality control extracts separately generated from a single 

batch of K. brevis culture, yielding λ = 1.3879 x 10-7.  

Multivariate data analysis  

To identify the relationship between variation in the exuded metabolome of K. 

brevis and allelopathic potency, a partial least squares regression (PLS-R) model was 

generated (MATLAB and PLS_Toolbox, version 8.1) using the chemical variation 

detected via 1H NMR spectroscopy and the calculated allelopathic index for each culture. 

This multivariate regression approach was used to pinpoint chemical components whose 

concentrations correlated with allelopathy or whose presence was associated only with 

allelopathic blocks and strains. Cross-validation was completed using the Venetian blinds 

method with eight data splits.  

To visualize chemical differences among the three metabolic modalities 

(allelopathic, non-allelopathic, and stimulatory) of K. brevis cultures, principal component 

analysis (PCA) and orthogonalized partial least squares discriminant analysis (OPLS-DA) 

models were generated (PLS_Toolbox version 8.1). Data were mean centered and cross-

validated using Venetian blinds of eight data splits. The first principal component/latent 

variable was used to identify spectroscopic features differentiating exuded metabolomes of 

K. brevis.  
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3.4 Results & Discussion  

K. brevis allelopathy is variable within and among strains 

 To exploit previously observed variability in allelopathic potency of K. brevis, we 

first confirmed that different K. brevis strains, and different batch cultures of individual 

strains, have different allelopathic effects on A. glacialis growth (Figure 3.1). Rather than 

invest significant statistical power in large numbers of replicates within a given strain, we 

chose to sample a smaller number of samples across five strains in three blocks, leading to 

high diversity in competitive outcome but low statistical power for any single treatment 

(p>0.05 for comparison of A. glacialis growth when exposed to each K. brevis strain within 

a block, compared to dilute media controls grown simultaneously). Despite the lack of 

significant strain effect, a significant block effect was observed (p<0.0001; no strain X 

block interaction, p = 0.92; no significant block effect observed for the growth of A. 

glacialis-only controls, p = 0.15), which, combined with variation among strains, led to 

chemically distinct exuded metabolomes (Figure 3.2, Figure 3.3, Figure 3.4). To our 

surprise, K. brevis stimulated the growth of A. glacialis in multiple co-cultures (Figure 3.1). 

Stimulation of growth of a competitor by K. brevis has previously been reported, but never 

to such an extent as observed here and not previously involving A. glacialis (105).  The 

variability in allelopathic potency has also been observed in the field between K. brevis 

and another competitor, Skeletonema grethae, and is likely ubiquitous among co-occurring 

phytoplankton (36). 

The observed variable response by A. glacialis to K. brevis exposure suggested 

three distinct exudate-based metabolic modalities of K. brevis: allelopathic,  
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Figure 3.1: Effects of Karenia brevis allelopathy on Asterionellopsis glacialis are 

variable among and within block of K. brevis strains. K. brevis and A. glacialis were co-

cultured for 10 days separated by a mesh barrier to prevent direct contact between 

species. Growth of A. glacialis was calculated using fluorescence as a proxy for cell 

concentration, normalized to controls for each strain within a block (N = 4 replicates per 

strain per block). K. brevis strains were CCMP 2228 (small dots), CCMP 2229 (large 

checkers), CCMP 2281 (horizontal lines), TxB3 (bricks), and TxB4 (diagonal lines).  

Purple represents K. brevis from block one, blue from block two, and green from block 3. 

A significant block effect existed (p < 0.0001 via two-way ANOVA). Boxes represent 

inter-quartile range of % growth for each strain with the upper edge representing the 

upper quartile and the bottom edge the lower quartile; the median % growth for each 

strain is the dividing line of the box. Whiskers represent the full range of % growth.   
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Figure 3.2: Potency of K. brevis allelopathy against A. glacialis weakly correlates with 

chemical variation of K. brevis exuded metabolome. PLS-R analysis was performed on 

growth data for A. glacialis exposed to allelopathic (red, N = 19), non-allelopathic (blue, 

N = 10) and stimulatory K. brevis (green, N = 21) belonging to five strains, cross-

validated using Venetian blinds method. 
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Figure 3.3: PCA and OPLS-DA discriminate among allelopathic effects of K. brevis 

against A. glaclialis. A) PCA of allelopathic exuded metabolomes (red) vs. non-

allelopathic exuded metabolomes (blue) vs most stimulatory K. brevis exuded 

metabolomes (green). B) OPLS-DA of allelopathic exuded metabolomes (red) vs. 

combination of non-allelopathic exuded metabolomes and most stimulatory K. brevis 

exuded metabolomes (teal). C) OPLS-DA of allelopathic exuded metabolomes (red) vs 

non-allelopathic exuded metabolomes (blue) and D) non-allelopathic exuded 

metabolomes (blue) vs. most stimulatory K. brevis exuded metabolomes (green, N = 9 for 

each class in each model). 
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Figure 3.4: Chemical differences of K. brevis exuded metabolomes with differing 

allelopathic potencies, as detected by 1H NMR spectroscopy. A) Overlay of loadings from 

OPLS-DA of allelopathic exuded metabolomes vs. combination of non-allelopathic exuded 

metabolomes  and most stimulatory K. brevis exuded metabolomes (orange line, Figure 

3B) and loadings from OPLS-DA of allelopathic exuded metabolomes vs non-allelopathic 

exuded metabolomes (black line, Figure 3C). B) Loadings from OPLS-DA of non-

allelopathic exuded metabolomes vs exuded metabolomes of stimulatory K. brevis (Figure 

3D). Negative loadings represent metabolites that are enhanced in allelopathic K. brevis 

while positive loadings represent metabolites that are enhanced non-allelopathic or 

stimulatory K. brevis.  
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non-allelopathic, and stimulatory. When compared across block experiments conducted at 

different times, no K. brevis strain was always or never allelopathic, despite identical 

culture conditions: all five K. brevis strains trended at different times towards being 

allelopathic, stimulatory, or neither allelopathic nor stimulatory towards A. glacialis in at 

least one block (Figure 3.1). While this classification of K. brevis into three modalities was 

somewhat arbitrary given that allelopathic potency measurements revealed an 

uninterrupted spectrum of effects without distinct cut-off between categories (Figure 3.1, 

Figure 3.2), it provided a useful framework for further exploration of chemical differences 

between groups of K. brevis blocks and strains. 

Chemical variability in exuded metabolomes is captured in distinct fingerprints 

 Leveraging the variability in allelopathic potency among K. brevis strains and 

blocks, we utilized partial least squares regression (PLS-R) analysis to test for correlation 

between the measured potencies of K. brevis blocks and the chemical variation of their 

exuded metabolomes, as detected by 1H nuclear magnetic resonance (NMR) spectroscopy. 

We detected a weakly positive correlation (r = 0.26) between allelopathic potency and 

chemical variation among cultures of five K. brevis strains (Figure 3.2). When a principal 

component analysis (PCA) model was generated to complement the regression analysis, a 

predominance of the exuded metabolomes of non-allelopathic and stimulatory K. brevis 

clustered together, suggesting chemical similarities (Figure 3.3A). An orthogonalized 

partial least squares discriminant analysis (OPLS-DA) model of allelopathic versus 

combined non-allelopathic and stimulatory K. brevis exuded metabolomes led to 

successful discrimination among classes (Figure 3.3B). Notably, the variation in chemical 

composition that discriminated allelopathic from non-allelopathic K. brevis (Figure 3.3C) 
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and that differentiating allelopathic from combined non-allelopathic/stimulatory K. brevis 

(Figure 3.3B) were approximately the same, qualitatively and quantitatively (Figure 3.3A, 

Figure 3.4A). This suggested that allelopathic K. brevis exudes molecules that are absent 

or exuded at significantly lower concentrations by non-allelopathic and stimulatory K. 

brevis. Furthermore, despite non-allelopathic and stimulatory K. brevis metabolomes 

exhibiting similar features when focusing on contrasts with allelopathic K. brevis (Figure 

3.4A), OPLS-DA revealed distinct chemistry differentiating non-allelopathic and 

stimulatory K. brevis from each other (Figure 3.3D, Figure 3.4B). The chemical differences 

between non-allelopathic and stimulatory K. brevis, while not accounting for the majority 

of the observed chemical variation among all strains and blocks, likely confounded the 

original PLS-R analysis (Figure 3.2) that included all metabolic modalities of K. brevis 

(allelopathic, non-allelopathic, and stimulatory).  

Similar to how chemical variation was leveraged in the current study, variation in 

biological responses to stressors have been used to classify phytoplankton. In Lake 

Washington, biological responses of 40 phytoplankton species to changes in over 25 

environmental factors, such as nutrient chemistry, presence of herbivorous zooplantkton, 

and other physical variables, were found to cluster into six main modalities of responses to 

chemical and physical variables across taxa (106). Taxon-specific growth rates in response 

to each variable were compared to classify similar responses into two main categories, with 

four additional variations on a category.  

Genetic variation has also been used to fingerprint phytoplankton. Inter simple 

sequence repeats markers were used to fingerprint and taxonomically differentiate among 

12 phytoplankton species including members of the genera Alexandrium, Pseudo-
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nitzschia, Skeletonema, and Tetraselmis (107). Variation in gene sequences encoding DNA 

polymerase B and the capsid protein g23 of viruses from Phycodnaviridae and Myoviridae, 

two families of viruses that target phytoplankton and bacteria, were displayed as denaturing 

gradient gel electrophoresis fingerprints and used to identify family-based changes in 

genetic composition in response to productivity and hydrological conditions (108).  

In addition to interspecies and inter-strain variability, cell to cell variability and 

intra-strain variability are possible sources of metabolic information. Despite identical 

culturing conditions in the current study, intra-strain variability was expansive, both 

physiologically (Figure 3.1, Figure 3.2) as well as chemically (Figure 3.3, Figure 3.4). 

While the underlying mechanism for this variability is unknown, it could serve as a 

potential source of untapped information and should be studied further.  

Allelopathic K. brevis exudes aromatic compounds and lipids 

 Inspection of NMR spectroscopic data and loadings from the OPLS-DA model 

distinguishing allelopathic from non-allelopathic K. brevis suggested that allelopathic K. 

brevis exudes enhanced concentrations of aromatic compounds and lipids (Figure 3.4A, 

Figure 3.5). Unsaturated fatty acid-derived lipids are evident from 1H NMR chemical shifts 

observed at 0.9, 1.2, 1.5, and 5.3 ppm in both the loadings (Figure 3.4A) and 1H NMR 

spectrum of allelopathic K. brevis (Figure 3.5). Characteristic aromatic 1H NMR chemical 

shifts 6.0-8.0 ppm trended in both positive and negative directions in the loadings (Figure 

3.4A), indicating that some aromatic compounds were more abundant in allelopathic 

Karenia, represented by chemical shifts of 6.0, 6.7, 6.9, 7.2, 7.6, and 7.8 ppm, whereas 

other aromatic compounds were more abundant in less allelopathic and stimulatory 

Karenia (Figure 3.4A, Figure 3.5).  
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Figure 3.5: Fatty acid-derived lipids and aromatic metabolites are apparent, but not 

abundant, in exuded metabolomes of allelopathic Karenia brevis, as shown in 1H NMR 

spectrum above. Inset is an expansion of the upfield region of the same 1H NMR 

spectrum. Blue arrows highlight spectroscopic features indicative of fatty acid-derived 

lipids and green arrows spectroscopic features indicative of aromatic compounds 

associated with allelopathy. 
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Identification of individual lipid and aromatic molecules was not achieved in the 

current study. Because metabolomic analyses are conducted on complex mixtures without 

purification of individual compounds, full structure determination is challenging, requiring  

acquisition of additional data and, typically, access to a public database containing 

spectroscopic data of relevant metabolites. Metabolomics databases are becoming more 

useful for environmental studies such as this one, but still suffer from under-representation 

of rare metabolites; by definition, a previously unknown molecule cannot be expected to 

be described in an existing database. Karlotoxins, allelopathic polyhydroxy polyketides 

produced by the dinoflagellate Karlodinium veneficum (109, 110), would be expected to 

share some but not all spectroscopic features with the fatty acid-derived lipid resonances 

observed in the current study (Figure 3.5). It’s also clear from the NMR signals associated 

with allelopathy (Figure 3.4A) that brevetoxins produced by K. brevis (including the strains 

used in the current study) are not responsible for allelopathy. In previous work conducted 

by bioassay-guided fractionation, unstable polar aromatic compounds and unsaturated fatty 

acids (and not brevetoxins) were detected in the active fraction of allelopathic agents of K. 

brevis (38), consistent with the findings of the current study (Figure 3.3C, Figure 3.4A). 

The findings of the current study can guide further investigation, NMR- and mass 

spectrometry-based, aimed at identifying individual allelopathic compounds exuded by K. 

brevis and other phytoplankton.  

K. brevis exudes a variety of metabolites that stimulate competitor 

Inspection of the loadings from the OPLS-DA model distinguishing non-

allelopathic from stimulatory K. brevis revealed multiple classes of molecules responsible 

for stimulation of its competitor (Figure 3.4B). Spectroscopic features characteristic of 
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aromatic compounds were observed trending in both positive and negative directions in the 

loadings (Figure 3.4B), suggesting that K. brevis produces some aromatic compounds that 

stimulate competitor growth whereas others have little effect. Signals typically associated 

with unsaturated fatty acid-derived lipids did not trend consistently in one direction or 

another, indicating their limited role in stimulation of competitor growth. Spectroscopic 

features characteristic of aromatic compounds exhibited on average loadings of greater 

intensity compared with features characteristic of other metabolites, which suggested that 

a variety of aromatic compounds likely contribute a majority of the stimulatory effect of 

K. brevis (Figure 3.4B).  

3.5 Conclusions  

 Using a metabolomics approach, chemical variation in the exuded metabolome of 

the red tide dinoflagellate K. brevis was found to correlate, albeit weakly, with allelopathic 

potency against a co-occurring competitor, the diatom A. glacialis. Variability in K. brevis 

allelopathy was evident both within as well as among strains (Figure 3.1), allowing for the 

generation of clearly distinct exudate-based fingerprints (Figure 3.3). Multiple K. brevis 

cultures belonging to five genetic strains were classified as exhibiting three distinct 

metabolic modalities: allelopathic, non-allelopathic, and stimulatory; providing a 

framework for examining the chemical profiles of K. brevis of differing impacts on A. 

glacialis (Figure 3.2, Figure 3.3). More allelopathic K. brevis cultures were associated with 

enhanced exudation of unsaturated fatty acid-derived lipids and aromatic compounds, 

making these classes of molecules candidates for further investigation as allelopathic 

agents. The chemically encoded variability in allelopathic potency in this and possibly 

other plankton systems has likely complicated previous studies aimed at identifying 
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compounds responsible for allelopathy, including those studies that have sought to measure 

competitor responses to allelopathy and studies that have addressed the relative importance 

of allelopathy in the field. These complications could also affect our ability to understand 

the hypothesized role of allelopathy in bloom ecology. We suggest that further studies 

aimed at understanding mechanisms and targets of K. brevis allelopathy should address the 

intraspecific variability in allelopathic compound production.   
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CHAPTER 4.    LIPIDOME AND MEMBRANE INTEGRITY OF 

COMPETITORS COMPROMISED BY KARENIA BREVIS 

ALLELOPATHY (3) 

4.1 Abstract 

The formation, propagation, and maintenance of harmful algal blooms is of interest 

due to their negative effects on marine life and human health. Some bloom-forming algae 

utilize allelopathy, the release of compounds that inhibit competitors, to exclude other 

species dependent on a common pool of limiting resources. Allelopathy is hypothesized to 

effect bloom dynamics and is well established in the red tide dinoflagellate Karenia brevis. 

K. brevis typically suppresses competitor growth rather than being acutely toxic to other 

algae. When we investigated the effects of allelopathy on two competitors, Asterionellopsis 

glacialis and Thalassiosira pseudonana, using nuclear magnetic resonance (NMR) 

spectroscopy and mass spectrometry (MS)-based metabolomics, we found that the 

lipidomes of both species were significantly altered. However, A. glacialis maintained a 

more robust metabolism in response to K. brevis allelopathy whereas T. pseudonana 

exhibited significant alterations in lipid synthesis, cell membrane integrity, and 

photosynthesis. Membrane-associated lipids were significantly suppressed for T. 

pseudonana exposed to allelopathy such that membranes of living cells became permeable. 

K. brevis allelopathy appears to target lipid biosynthesis affecting multiple physiological 

pathways suggesting that exuded compounds have the ability to significantly alter 

competitor physiology, giving K. brevis an edge over sensitive species.  
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4.2 Introduction 

Harmful algal blooms, dense congregations of marine phytoplankton that often 

produce noxious compounds, can be toxic to human and marine life and are becoming 

increasingly more frequent (111). In addition to killing various marine mammals, potent 

algal toxins exuded by bloom-forming phytoplankton accumulate in predators and filter 

feeders, eventually entering the human food web through contaminated seafood such as 

clams, oysters, and fish (33, 34, 112-114). Toxins produced by some algae also persist in 

ambient waters, affecting human health through exposure to toxin-containing aerosols and 

cellular debris, leading to respiratory distress (113, 115-117).   

Allelopathy, the release of compounds into the surrounding water that negatively 

affect competitors, is an important manifestation of competition that influences aquatic 

community structure (118). Allelopathy can significantly alter species composition (119, 

120) and species succession (121, 122) through lethal interactions (122, 123), as well as 

sub-lethal outcomes such as reduced growth (124, 125), induction of cyst formation (126), 

and suppression of swimming behavior (127, 128). Little is known of the compounds 

responsible for allelopathy in the marine plankton or the molecular targets of allelopathy 

despite significant research (45). Typically, toxins produced by these phytoplankton have 

not been shown to be allelopathic, with the exception of karlotoxins produced by the 

dinoflagellate Karlodinium veneficum (129). A more thorough understanding of the modes 

of action of allelopathy and of the compounds responsible could enhance our understanding 

of the roles and ecosystem-wide impacts of allelopathy in algal blooms.  
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Karenia brevis, a dinoflagellate that blooms in the Gulf of Mexico and Southeastern 

Atlantic Ocean, produces a suite of neurotoxins called brevetoxins that cause neurotoxic 

shellfish poisoning in humans and marine life (130). Despite their toxicity, brevetoxins are 

not responsible for observed allelopathic effects of K. brevis on competitors (35, 38, 105). 

Instead, allelopathic compounds are yet uncharacterized fatty acid-derived lipids and 

aromatic molecules whose lack of stability has prevented complete characterization (38). 

Potency of K. brevis allelopathy varies among blooms, strains, and cultured blocks and its 

effects are selective towards certain competitor species in the early stages of growth (35, 

36, 94). Reduced growth, membrane integrity, and photosynthetic efficiency have 

previously been reported for allelopathy-affected competitors; however, the molecular 

explanation for these physiological responses is yet poorly understood (36, 37). K. brevis 

is a particularly useful model for addressing the metabolic responses of competitors to 

allelopathy as the effects of K. brevis exposure are sub-lethal (35, 37, 94, 105). 

Metabolomics can provide a snapshot of alterations to the collection of small molecule 

metabolites in an organism during allelopathic stress, providing broad, system-level 

insights into possible mechanisms of action and causative agents of physiological 

responses.  

Using proteomics as well as analysis of the polar metabolomes of two competing 

phytoplankton, Asterionellopsis glacialis and Thalassiosira pseudonana, we previously 

showed that energy metabolism, osmoregulation, photosynthesis, and fatty acid synthesis 

were all disrupted due to K. brevis allelopathy (37). Notably, various aspects of lipid 

metabolism appeared to be disrupted, with enhanced concentrations of enzymes associated 

with lipid anabolism, such as sulpholipid synthase and UDP-sulfoquinovose synthase, and 
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decreased concentrations of certain lipids, such as terpene glycosides, when T. pseudonana 

was exposed to allelopathy (37). This previous study, while providing significant insights 

into the molecular targets and metabolic pathways affected by allelopathy, was biased 

towards polar metabolites and therefore unable to fully describe the effect of allelopathy 

on competitor phytoplankton. The disruption of lipid metabolic enzymes and pathways has 

been shown to drive many human diseases and disorders, including diabetes, many forms 

of cancer, neurodegenerative disease, and infectious diseases (131, 132). Additionally, 

changes in lipid concentrations and the use of various lipids as signals is common in plants 

(133, 134), as well as in phytoplankton during stress (135, 136).  

The previously observed complex response of lipid metabolism to allelopathy (37), 

coupled with the importance of the lipidome in regulating stress responses in many 

systems, led us to investigate the impacts of K. brevis allelopathy on the lipidome of 

competitors. Using nuclear magnetic resonance (NMR) spectroscopy and mass 

spectrometry (MS)-based metabolomics we identified the major metabolic effects of K. 

brevis allelopathy on the lipidomes of two competitors, one co-occurring with K. brevis 

during blooms and the other originating from non-bloom areas, in order to achieve a more 

complete understanding of the physiological responses and mode of action of allelopathy. 

4.3 Materials and Methods 

Generation and preparation of extracts for lipidomics 

Lipids were accessed from intracellular phytoplankton extracts obtained for the 

experiment described by Poulson-Ellestad et al. (2014) (37). Briefly, diatoms Thalassiosira 

pseudonana strain CCMP 1335 and Asterionellopsis glacialis strain CCMP 137 were 
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grown in silicate-amended L1 media in artificial seawater (Instant Ocean, 35 ppt). Karenia 

brevis strain CCMP 2228 was cultured in similar conditions above with L1 media-amended 

artificial seawater. All cultures were maintained at 21 ˚C with a 12:12 light/dark cycle and 

an irradiance of 100-145 µmol/m2s in a Percival incubator (Biospherical Instrument 

QSL2100). Diatom cell concentrations were quantified via in vivo fluorescence as a proxy 

for cell concentration or by visual counts under microscope. A Fluid Imaging Technologies 

FlowCam was used to determine K. brevis cell concentrations. 

To expose competitors to allelopathic K. brevis, K. brevis was co-cultured with 

each of the two diatom species (n=14 per species). K. brevis was grown inside a permeable 

dialysis membrane to allow for exchange of exuded allelopathic compounds without direct 

interaction of K. brevis and diatom cells, which were grown in flasks in which the dialysis 

tubes were placed. Control cultures consisted of dialysis membranes (molecular weight 

cutoff, 50 kDa) filled with L1 media diluted to conditions similar to that of exponential 

growth phase K. brevis (n = 15 per diatom species) in place of diatom species.  This co-

culture experiment was halted once competitor cultures reached exponential growth stage, 

which was 6 d for T. pseudonana and 8 d for A. glacialis, after which diatom cells were 

filtered onto GF/C filters (Whatman #1922-110, muffled at 450 ˚C for 3 h) and dipped into 

liquid nitrogen to quench intracellular metabolism. Filtered cells were stored at -80 ̊ C until 

extraction. Cells were ground with a liquid nitrogen-cooled mortar and pestle, and 

extracted with 30 mL of an ice-cold mixture of 3:1:2 methanol/acetone/acetonitrile. 

Particulate matter was removed via centrifugation (5 min at 0 ˚C, 1,460 x g) and the 

supernatant was removed. Cell pellets were rinsed twice with 10 mL of fresh solvent 
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mixture and a final 3 mL rinse. Rinses were added to the supernatant and solvent was 

removed in vacuo.  

To separate polar and lipid intracellular metabolites, dried extracts were dissolved 

in a biphasic mixture of 9:10:15 water/methanol/chloroform. The more lipophilic layer was 

removed and washed twice with 9:10 water/methanol. Polar metabolites of diatoms 

undergoing stress from competition with K. brevis were previously reported by Poulson-

Ellestad et al. (2014) (37). For the current work, the lipid-soluble chloroform-methanol 

fractions were analyzed by 1H NMR spectroscopy and ultrahigh performance liquid 

chromatography mass spectrometry (UHPLC/MS) metabolomics.  

NMR sample preparation and data acquisition 

To compare equivalent metabolomes, each lipid extract was prepared from a total 

of 1.52 x 106 A. glacialis cells or 2.56 x 106 T. pseudonana cells. 1H NMR spectra were 

collected for all samples on a Bruker Avance 500 MHz AVIIIHD NMR spectrometer 

equipped with a 5 mm broadband direct detection probe using an excitation-sculpting 

gradient pulse (37). Extracts were reconstituted in 250 µL d6-DMSO (99.9% atom d6-

DMSO; Cambridge Isotope Labs) containing 0.1% trimethylsilane (TMS) as an internal 

standard in 3 mm NMR tubes. Spectra of each extract were compiled from 256 scans. 

Spectra were preprocessed in NMRLab version 3.5.0.0 (58) in MATLAB R2013a 

version 8.1.0.604. TMS was used to align spectra at 0.00 ppm. All spectra were manually 

phased and baseline corrected prior to the spectral regions around TMS (-2.00 to 0.50), 

DMSO (2.35 to 2.70), water (3.30 to 3.50), and unoccupied downfield region (7.75 to 8.50) 

being removed in spectra of A. glacialis lipid extracts. The spectral regions around TMS (-
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2.00 to 0.50), DMSO (2.45 to 2.57), water (3.14 to 3.19), a contaminant peak (4.00 to 4.20), 

and unoccupied downfield region (7.75 to 8.50) were removed in spectra of T. pseudonana 

lipid extracts. All spectra were binned (0.005 ppm), probabilistic quotient normalized (59) 

to correct for minute differential dilution among samples, and generalized log (glog) 

transformed to reduce bias toward higher concentration metabolites. A single batch of 

culture of each diatom species was used to generate a set of five quality control extracts 

using the above methods. Quality control samples were used to obtain glog optimized 

lambda values of 1.3093 x 10-8 for A. glacialis extracts and 8.4010 x 10-9 for T. pseudonana 

extracts. 

Spectral features with discriminatory power in NMR-based models were annotated 

using the Human Metabolome Database and Chenomx Profiler. Pooled extracts of each 

species were used to collect 2D NMR spectral data including: correlation spectroscopy 

(COSY), heteronuclear single quantum coherence (HSQC), and heteronuclear multiple 

bond correlation spectroscopy (HMBC) to aid in annotation. 

UHPLC/MS data collection  

 Lipid extracts were reconstituted in 200 μL 2-propanol. Quantitative metabolomics 

data were acquired using a Waters Xevo G2 QTOF mass spectrometer. The instrument was 

operated in negative electrospray ionization mode with a capillary voltage of -2.0 kV and 

a sampling cone voltage of 30 V. The source temperature of 90 °C was maintained 

throughout the experiment. Nitrogen was used as a desolvation gas at 250 °C with a flow 

rate of 600 L/h. The mass spectrometer was calibrated across the 50-1200 Da mass range 

using a sodium formate solution. Leucine Enkephalin was infused at a flow rate of 2 
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μL/min and acquired as a lockmass correction. Run order was randomized and samples 

were acquired in duplicate. Pooled quality control samples were acquired after every 

twelfth sample injection to monitor instrumental drift and minimize block effects. 

 Chromatographic separation was accomplished using a Waters Acquity UPLC 

quaternary solvent manager system fitted with a Waters ACQUITY UPLC BEH C18 

column (1.7-μm particle size, 2.1 × 50 mm), with an injection volume of 10 μL. The column 

was operated at 60 °C, while the autosampler tray was maintained at 5 °C. Mobile phase 

A contained water: acetonitrile (40:60) and mobile phase B contained 10% acetonitrile in 

2-propanol. A flow rate of 300 μL/min was used with the following gradient: 0-1 min, 70% 

B; 1-3 min, 75% B; 3-6 min, 80% B; 6-10 min, 90% B; 10-14 min, 100% B. Both mobile 

phases included 10 mM ammonium formate (Sigma Aldrich, >99.995%) and 0.1% formic 

acid (Fluka Analytical) additives to improve peak shape and ionization efficiency. All 

solvents used were of LCMS grade and provided by OmniSolv (water, acetonitrile) or 

Honeywell (2-propanol).  

UHPLC/MS Data Processing 

 Data were imported into Progenesis QI for chromatographic alignment, de-

isotoping, adduct deconvolution, normalization, and peak picking. Peaks detected in the 

sample blanks at greater than 10% of the average sample intensity were removed as 

potential contaminants. The corresponding normalized intensities across each sample for 

every feature (m/z, retention time pair) were imported into Matlab for multivariate analysis. 

MS Metabolomics Statistical Analyses 



 86 

 PCA and oPLS-DA plots were constructed using PLS toolbox version 8.1 in 

Matlab. PCA plots are provided for both cell types to assess PCA scores of treatment vs. 

controls. PCA is an unsupervised analysis technique that reduces dimensionality in the data 

in order to visualize multivariate matrices in a linear space. It can be helpful in observing 

clustering patterns in the data without potential overfitting imposed by imparting class 

information.  

 For oPLSDA, plots were orthogonalized such that the maximum variance between 

classes is produced across the first latent variable (LV), with all other LVs explaining 

within class variance. Data were autoscaled and the model containing the fewest LVs that 

produced the lowest cross-validated error was selected. Venetian blinds cross validation 

was employed with six data splits for analysis of treatment/control effects of each cell type, 

while eight data splits were used when comparing all samples (n=61) including pooled 

quality controls. Significant peaks, defined as p<0.05/n (number of features, n = 322 for A. 

glacialis, n = 360 for T. pseudonana) were identified using a 2-tailed t-test with unequal 

variance following Bonferroni correction for multiple comparisons. To normalize the 

significance cutoff for both competitor species at α = 0.05 (Figure 4.3), p-values were 

adjusted by multiplying p-values by n instead of dividing α by n.  

MS Metabolite Annotation 

 Tandem MS experiments were performed on Thermo Q-Exactive HF quadrupole-

Orbitrap mass spectrometer using the top 10 Data Dependent Analysis (DDA) method to 

select and fragment all ions of interest with resolution=30,000, automatic gain control 
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(AGC) = 1e5, max injection time (IT) = 30 ms, and a stepped normalized collision energy 

(NCE) ranging from 10 to 50. 

 All features with significant differences between control and treatment groups for 

either cell type were analyzed by MS/MS to elucidate structure. Following adduct analysis, 

elemental formulae were determined based on exact mass and isotopic distribution. 

Features with exact masses corresponding to matches in the LOBSTAHS database were 

tentatively identified, with identities confirmed by matching headgroup fragments and fatty 

acid chains from the MS/MS spectra to tentative identities (137). For those features without 

LOBSTAHS matches, identifications were performed by hand using known lipid 

fragmentation patterns and cross-checked against other the KEGG, Metlin and LIPID 

MAPS databases (138-140). 

Membrane permeability assay 

 To detect differences in membrane permeability between T. pseudonana grown in 

the presence vs. absence of K. brevis, 250 mL media bottle containing L1 media were 

inoculated with T. pseudonana to a concentration of ~1.0 x 104
 cells mL-1. Cages made of 

50 mL falcon tubes with 1 μm mesh bottoms containing 25 mL of either media (control) 

or K. brevis (~1.0 x 104
 cells mL-1) (treatment) were added to the T. pseudonana cultures. 

Cultures were rearranged daily and cages were gently moved up and down twice per day 

to maximize exposure of T. pseudonana to the allelopathic compounds of K. brevis. After 

five days, two 500 μL samples of T. pseudonana were removed from experimental flasks. 

The first sample was preserved with an acidified Lugol’s solution for measurement of total 

cell concentration. The second sample was stained with 20 μL Neutral Red solution (0.05% 
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w:v in deionized water, Mallinckrodt Chemical) and 10 μL SYTOX Green solution (50 

μM in DMSO, Invitrogen Molecular Probes, detected with excitation at 504 nm and 

emission at 523 nm), to test for live and permeable cells, respectively. Stained T. 

pseudonana cells were counted using fluorescence microscopy on an Olympus IX-50 

inverted microscope with a Palmer-Maloney settling chamber to determine the ratio of 

living cells with permeable membranes (red and fluorescent green) compared to the total 

number of living cells (red but not fluorescent green). T-test of unequal variances were 

conducted using Prism graphpad version 4.0.  

4.4 Results 

Allelopathy affects the lipidomes of competing phytoplankton 

In the current study, K. brevis allelopathy significantly affected the lipidomes of 

both competitor species T. pseudonana and A. glacialis (Figure 4.1), even more 

dramatically than was observed for polar metabolites (37). When we employed a multi-

platform metabolomics approach combining NMR spectroscopy and MS, algae exposed to 

K. brevis allelopathy were distinguished from algae grown alone based on chemical 

dissimilarities in their lipidomes (Figure 4.1). Orthogonal partial least squares discriminant 

analysis (oPLS-DA) identified a subset of spectral features corresponding to putatively 

identified metabolites that differentiated algae exposed to K. brevis allelopathy from 

controls. The concentration of any individual molecule alone could not comprehensively 

describe the differences in plankton lipidomes, but when combined as part of a 

discriminating panel they accurately differentiated the treatment effects of exposure to K. 

brevis allelopathy. Principal component analysis (PCA) models were also generated;  
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Figure 4.1: oPLS-DA models reveal that lipidomes of Thalassiosira pseudonana and 

Asterionellopsis glacialis are disrupted by Karenia brevis allelopathy. Filled symbols 

represent lipidomes of algae exposed to K. brevis through molecule-permeable but cell 

impermeable membranes, empty symbols represent lipidomes from unexposed algae 

(controls). oPLS-DA model generated from (A) 1H NMR spectral data and (B) from 

UHPLC-MS metabolic features from lipidomes of T. pseudonana (blue squares). oPLS-

DA model generated from (C) 1H NMR spectral data and (D) from UHPLC/MS 

metabolic features from lipidomes of A. glacialis (yellow circles).  
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Figure 4.2: PCA models fail to fully differentiate between cellular extracts of 

Thalassiosira pseudonana and Asterionellopsis glacialis exposed or not exposed to 

Karenia brevis allelopathy. Filled symbols represent lipidomes of algae exposed to K. 

brevis through molecule-permeable but cell impermeable membranes, empty symbols 

represent lipidomes from unexposed algae (controls). oPLS-DA model generated from 

(A) 1H NMR spectral data and (B) from UHPLC/MS metabolic features from extracts of 

T. pseudonana (blue squares). oPLS-DA model generated from (C) 1H NMR spectral 

data and (D) from UHPLC/MS metabolic features from extracts of A. glacialis (yellow 

circles). 
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however, the discriminating power of most of these models was insufficient to identify 

algae based on their exposure to K. brevis allelopathy (Figure 4.2). Despite this lack of 

discriminatory power, PCA of T. pseudonana metabolome profiles obtained via ultra-high 

performance liquid chromatography mass spectrometry (UHPLC-MS) accurately 

classified algae as having been exposed or unexposed to K. brevis (Figure 4.2B). However, 

the rest of these PCA scores plots thus suggested the need for supervised multivariate 

classification tools to describe differences in the lipidomes, as well as to determine which 

variables or features were most critical in distinguishing between exposed and unexposed 

algae. Because MS is significantly more sensitive than NMR spectroscopy and therefore 

allowed detection of differences in lower abundance metabolite concentrations, the ability 

of the MS-based PCA model to successfully differentiate between T. pseudonana exposed 

or not exposed to K. brevis was not surprising, and consistent with previous findings (37).  

Metabolic responses to allelopathy are conserved among competitors, despite 

differential sensitivities  

MS-based metabolomics analysis of lipidomes led to identification of 80 lipid 

metabolites whose concentrations differed significantly in T. pseudonana depending on 

exposure to K. brevis allelopathy (Table 4.1, Table 4.2). Of these metabolites, 33 were 

significantly more abundant whereas 47 were significantly less abundant when T. 

pseudonana experienced K. brevis allelopathy (Figure 4.3), with many of the metabolites 

exhibiting considerable fold differences due to K. brevis exposure (Table 4.3, Figure 4.3).  

These 80   
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Figure 4.3: Volcano plot summarizes the differences in the lipdome of T. pseudonana 

(blue squares) and A. glacialis (yellow circles) when exposed vs. not exposed to K. brevis 

allelopathy. The relative abundances of 80 metabolites were significantly different (p< 

0.05 after Bonferroni correction, see materials and methods – Section 3.3) in T. 

pseudonana upon exposure to K. brevis allelopathy. Red lines indicate log2 fold 

difference of ±1. Six metabolites with concentrations that were significantly different in 

A. glacialis when exposed to K. brevis were also significantly different in concentration 

when T. pseudonana was exposed to K. brevis. 
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Table 4.1: Identification of metabolites via MS metabolomics analysis whose 

concentrations were significantly different when T. pseudonana was exposed to K. brevis 

vs. controls. Observed m/z and parts-per-million mass error (PPM), adduct, elemental 

formula, and molecular composition (full fatty acid chain information) are provided 

where possible. Fold change values are shown as positive when relative abundance of 

metabolite increased when T. pseduaona was exposed to allelopathy and negative when 

abundances decreased. Annotation confidence ranges from 1-3. Confidence level 1: 

observed MS/MS data consistent with predicted spectrum and LOBSTAHS exact mass 

match to corresponding lipid class; 2: observed MS/MS data consistent with predicted 

spectrum; 3: observed exact mass match to LOBSTAHS database and/or partial MS/MS 

structural determination (137). 

* Fold change value uncertain due to extremely low concentration of metabolites in control 

samples 
m/z 

error (PPM) 

Adduct Elemental 

formula 

Identity Fold 

change 

p value Conf. Lipid Class 

563.3986 

0.71 

[M-H]- C30H60O7S Tetradecanoyl 

sulfohexadecanoic acid 

>25* 2.39E-05 2 Other (sulfur 

containing) 
577.4146 

1.39 

[M-H]- C31H62O7S Pentadecenoyl 

sulfohexadecanoic acid 

>25* 3.83E-06 2 Other (sulfur 

containing) 

591.4308 

2.20 

[M-H]- C32H64SO7 Pentadecenoyl 
sulfoheptadecanoic acid 

>25* 1.88E-06 2 Other (sulfur 
containing) 

379.2148 

7.12 

[M-H]- C21H32O6 FFA(21:5 + 4 O) >25* 4.25E-5 

 

3 Free fatty acid 

607.4243 

1.81 

[M-H]- C32H64O8S Hydroxypentadecanoyl 
sulfoheptadecanoic acid 

>25* 2.77E-5 
 

2 Other (sulfur 
containing) 

619.4249 

0.81 

[M-H]- C33H64SO8 Hydroxypentadecanoyl 

sulfooctadecenoic acid 

>25* 1.96E-05 2 Other (sulfur 

containing) 

572.4354 

0.87 

[M-H]- C32H63NO5S Hydroxyhexadecyl 

sulfohexadecenamide 

>25* 5.77E-07 2 Other (sulfur 

containing) 

367.2127 

1.63 

[M-H]- C20H32O6 FFA(20:4 + 4 O) >25* 2.75E-05 
 

3 Free fatty acid 

575.4356 

1.91 

[M-H]- C32H64O6S Pentadecenoyl 
sulfohexadecenoic acid 

>25* 4.38E-07 2 Other (sulfur 
containing) 

592.4942 

0.17 

[M-H]- C36H67NO5 Heptadecenoyl 

octadecanamide 

>25* 3.82E-06 2 Fatty acid 

amide 
665.5117 

3.31 

[M-H]- C35H74N2O7S Not – identified >25* 3.04E-06 2 Other (sulfur 

containing) 

257.2125 

3.11 

[M-H]- C15H30O3 FFA(15:0 + 1 O) >25* 7.05E-05 
 

3 Free fatty acid 

616.4615 

0.65 

[M-H]- C34H67NO6S Pentadecenoyl 

sulfononadecenamide 

>25* 1E-08 2 Other (sulfur 

containing) 
561.4194 

0.89 

[M-H]- C31H62O6S Tetradecanoyl 

sulfohexadecenoic acid 

>25* 1.9E-06 2 Other (sulfur 

containing) 

787.5583 

0.76 

[M+HCOO]- C42H78O10 MGDG(33:1) 20. 8.84E-06 
 

3 Mono-
galactosyl 

diacylglycerol 

574.4516 

1.91 

[M-H]- C32H65NO5S Hydroxyhexadecyl 
sulfohexadecanamide 

14 9.71E-08 2 Other (sulfur 
containing) 

578.4790 

1.04 

[M-H]- C35H65NO5 Hexadecenoyl 

octadecanamide 

8.5 2.14E-06 2 Fatty acid 

amide 
564.4639 

1.95 

[M-H]- C34H63NO5 Pentadecenoyl 

octadecanamide 

7.1 7.94E-07 2 Fatty acid 

amide 

566.4792 

1.41 

[M-H]- C34H65NO5 Pentadecenoyl 
octadecanamide 

7.0 6.79E-08 2 Fatty acid 
amide 

686.4778 

1.75 

[M-H]- C37H70NO8P PE(16:1_16:1) 6.5 3.54E-05 1 Phosphatidyl-

ethanolamine 
550.4480 

1.64 

[M-H]- C33H61NO5 Pentadecenoyl 

heptadecenamide 

 
 

5.8 9.45E-06 2 Fatty acid 

amide 
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Table 4.1 continued 
 

682.5090 

1.47 

[M-H]- C39H73NO6S Octadecenoyl 

sulfoheneicosadienamide 

5.5 4.23E-05 2 Other (sulfur 

containing) 

651.4958 

3.68 

[M-H]- C34H72N2O7S Not – identified 
 

3.3 3.48E-04 2 Other (sulfur 
containing) 

793.5113 

3.53 

[M-H]- C41H78O12S SQDG(16:0_16:0) -2.0 5.05E-05 

 

1 Sulfo-

quinovosyl-
diacylglycerol 

763.4646 

1.83 

[M+HCOO]- C41H66O10 MGDG(16:3_16:3) -2.1 4.05E-05 1 Mono-

galactosyl-
diacylglycerol 

791.4988 

0.38 

[M-H]- C41H76O12S SQDG(16:0_16:1) -2.2 4.52E-05 1 Sulfo-

quinovosyl-
diacylglycerol 

771.5272 

1.04 

[M+HCOO]- C41H74O10 MGDG(16:1_16:1) -2.5 2.6E-06 1 Mono-

galactosyl-
diacylglycerol 

719.4879 

1.39 

[M-H]- C38H73O10P PG(16:0_16:1) -2.6 4.89E-07 1 Phosphatidyl-

glycerol 

737.4527 

1.63 

[M-H]- C37H70O12S SQDG(14:0_14:0) -2.6 7.99E-08 1 Sulfo-

quinovosyl-

diacylglycerol 
779.4988 

0.38 

[M-H]- C40H76O12S SQDG(15:0_16:0) -2.6 7.16E-06 1 Sulfo-

quinovosyl-

diacylglycerol 
813.4798 

3.07 

[M-H]- C43H74O12S SQDG(16:0_18:4) -2.7 1.79E-06 1 Sulfo-

quinovosyl-

diacylglycerol 
765.4723 

1.44 

[M-H]- C42H71O10P PG(16:1_20:5) 

 

 

-2.8 2.33E-02 1 Phosphatidyl-

glycerol 

769.5111 

0.39 

[M+HCOO]- C41H72O10 MGDG(16:0_16:3) -2.8 1.30E-03 1 Mono-

galactosyl-

diacylglycerol 
977.5477 

0.20 

[M+HCOO]- C51H80O15 DGDG(16:3_20:5) -2.8 1.07E-02 1 Digalactosyl-

diacylglycerol 

759.4368 

1.19 

[M-H]- C39H68O12S SQDG(14:0_16:3) -2.9 1.42E-02 1 Sulfo-

quinovosyl-

diacylglycerol 

751.4681 

1.20 

[M-H]- C38H72O12S SQDG(14:0_15:0) -3.1 2.93E-08 1 Sulfo-
quinovosyl-

diacylglycerol 

765.4796 

3.53 

[M-H]- C39H74O12S SQDG(14:0_16:0) -3.2 1.69E-08 1 Sulfo-
quinovosyl-

diacylglycerol 

691.4565 

1.30 

[M-H]- C36H69O10P PG(14:0_16:1) -3.2 9.85E-07 1 Phosphatidyl-
glycerol 

819.5268 

0.49 

[M+HCOO]- C45H74O10 MGDG(16:1_20:5) -3.3 9.7E-05 1 Mono-

galactosyl-
diacylglycerol 

791.4989 

0.51 

[M-H]- C41H76O12S SQDG(14:0_18:1) -2.2 4.52E-05 1 Sulfo-
quinovosyl-

diacylglycerol 

745.5114 

1.61 

[M+HCOO]- C39H72O10 MGDG(14:0_16:1) -3.6 2.05E-06 1 Mono-
galactosyl-

diacylglycerol 

748.5145 

2.14 

[M+HCOO]- C38H74NO8P PC(14:0_16:1) -3.7 2.59E-06 1 Phosphatidyl-
choline 

761.4489 

3.41 

[M-H]- C39H70O12S SQDG(14:0_16:2) -3.9 9.06E-06 1 Sulfo-

quinovosyl-
diacylglycerol 

799.4681 

1.13 

[M-H]- C42H72O12S SQDG(15:0_18:4) -3.9 7.44E-05 1 Sulfo-

quinovosyl-
diacylglycerol 

743.4965 

2.69 

[M+HCOO]- C39H70O10 MGDG(14:0_16:2) -4.0 1.75E-05 1 Mono-

galactosyl-
diacylglycerol 

802.5609 

1.37 

[M+HCOO]- C42H80NO8P PC(16:1_18:1) / 

PC(16:0_18:2) 
 

-4.0 9.41E-06 1 Phosphatidyl-

choline 
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Table 4.1 continued 

907.5639 

0.33 

[M+HCOO]- C45H82O15 DGDG(14:0_16:1) -4.0 4.9E-06 1 Digalactosyl-

diacylglycerol 

762.5017 

35.1 

[M+HCOO]- C39H76NO8P PC(15:0_16:1) -4.0 8.47E-06 1 Phosphatidyl-
choline 

822.5293 

0.24 

[M+HCOO]- C44H76NO8P PC(16:1_20:5) -4.1 4.57E-08 1 Phosphatidyl-

choline 
841.5108 

3.92 

[M-H]- C45H78O12S SQDG(36:4) -4.2 1.24E-05 3 Sulfo-

quinovosyl-

diacylglycerol 
935.5961 

1.28 

[M+HCOO]- C47H86O15 DGDG(16:0_16:1) -4.2 1.8E-07 1 Digalactosyl-

diacylglycerol 

757.4210 

1.06 

[M-H]- C39H66O12S SQDG(14:0_16:4) -4.4 5.19E-06 1 Sulfo-
quinovosyl-

diacylglycerol 

820.5129 

0.61 

[M+HCOO]- C44H74NO8P PC(16:2_20:5) -4.4 3.36E-06 1 Phosphatidyl-
choline 

583.3129 

1.89 

[M-H]- C30H48O11 MGDG(21:4+1 O) -4.5 1.23E-06 3 Mono-

galactosyl-

diacylglycerol 

773.5427 

0.78 

[M+HCOO]- C41H76O10 MGDG(16:0_16:1) -4.5 8.48E-07 1 Mono-

galactosyl-
diacylglycerol 

795.5265 

0.13 

[M+HCOO]- C43H74O10 MGDG(16:0_18:4) -4.5 6.45E-06 1 Mono-

galactosyl-
diacylglycerol 

829.4763 

1.09 

[M-H]- C43H74O13S SQDG(34:4 + 1O) -4.8 0.00013
8 

3 Sulfo-
quinovosyl-

diacylglycerol 

818.4976 

0.24 

[M+HCOO]- C44H72NO8P PC(16:3_20:5) / 
PC(18:4_18:4) 

-5.1 2.69E-07 1 Phosphatidyl-
choline 

850.5604 

0.00 

[M+HCOO]- C46H80NO8P PC(18:1_20:5) -5.3 4.66E-06 1 Phosphatidyl-

choline 
870.5292 

0.11 

[M+HCOO]- C48H76NO8P PC(20:5_20:5) -5.3 6.87E-07 1 Phosphatidyl-

choline 

796.5138 

1.13 

[M+HCOO]- C42H74NO8P PC(14:0_20:5) / 
PC(16:1_18:4) 

-6.3 3.49E-07 1 Phosphatidyl-
choline 

824.5454 

0.85 

[M+HCOO]- C44H78NO8P PC(16:0_20:5) -6.4 1.25E-08 1 Phosphatidyl-

choline 
896.5448 

0.11 

[M+HCOO]- C50H78NO8P PC(20:5_22:6) -6.7 3.46E-07 1 Phosphatidyl-

choline 

800.5449 

0.25 

[M+HCOO]- C42H78NO8P PC(16:0_18:3) -6.9 4.77E-05 1 Phosphatidyl-
choline 

798.5286 

0.63 

[M+HCOO]- C42H76NO8P PC(16:0_18:4) -7.8 5.7E-05 1 Phosphatidyl-

choline 
844.5135 

0.12 

[M+HCOO]- C46H74NO8P PC(18:4_20:5) -8.5 1.41E-05 1 Phosphatidyl-

choline 

848.5448 

0.12 

[M+HCOO]- C46H78NO8P PC(18:2_20:5) / 
PC(16:1_22:6) 

-8.5 5.3E-06 1 Phosphatidyl-
choline  

821.5427 

1.46 

[M+HCOO]- C45H76O10 MGDG(36:5) -9.3 2.82E-06 3 Mono-

galactosyl-
diacylglycerol 

843.5266 

0.24 

[M+HCOO]- C47H74O10 MGDG(18:3_20:5) -11 6E-05 1 Mono-

galactosyl-
diacylglycerol 

 

  



 96 

Table 4.2: Identification of metabolites via MS metabolomics analysis whose 

concentrations are significantly different when A. glacialis was exposed to K. brevis. 

Observed m/z and parts-per-million mass error (PPM), adduct, elemental formula, and 

molecular composition (full fatty acid chain information) are provided where possible. 

Fold change values are positive when relative abundance of metabolite increased when A. 

glacialis was exposed to allelopathy. Annotation confidence ranges from 1-3. Confidence 

level 1: observed MS/MS data consistent with predicted spectrum and LOBSTAHS exact 

mass match to corresponding lipid class; 2: observed MS/MS data consistent with predicted 

spectrum; 3: observed exact mass match to LOBSTAHS database and/or partial MS/MS 

structural determination (137). 

* Fold change value uncertain due to extremely low concentration of metabolites in control 

samples 
m/z 

error 

(PPM) 

Adduct Elemental 

formula 

Identity Fold 

change 

p value Conf. Lipid Class 

591.4308 

2.37 

[M-H]- C32H64SO7 Pentadecanoyl 
sulfohydroxyheptade

canoic acid 

4.9 
 

4.24E-06 2 Other (sulfur 
containing) 

607.4243 

1.81 

[M-H]- C32H64O8S Pentadecanoyl 
sulfohydroxyheptade

canoic acid 

4.9 1.66E-05 2 Other (sulfur 
containing) 

616.4615 

0.65 

[M-H]- C34H67NO6S N-sulfo,N-
pentadecanoyl 

nonadecanamide 

13.8 5.55E-05 2 Other (sulfur 
containing) 

578.4790 

1.04 

[M-H]- C35H65NO5 N-palmitoleic acid 
oleamide 

12.2 7.2E-06 2 Fatty acid amide 

651.4958 

3.68 

[M-H]- C34H72N2O7S Pentadecenoyl N-

sulfanediol 
dihydroxynonadecan

e-diamide 

12.5 1.42E-05 2 Other (sulfur 

containing) 

653.5117 

3.37 

[M-H]- C34H74N2O7S Pentadecanoyl N-

sulfanediol 

dihydroxynonadecan

e-diamide 

16.4 4.57E-05 2 Other (sulfur 

containing) 
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Table 4.3: Lipid classes identified by MS-based oPLS-DA model as having significantly 

different concentrations in T. pseudonana based upon exposure to K. brevis allelopathy. 

Common adducts used to identify class of compound, the number of compounds in each 

class of lipids, and the average fold change is included for each class. The average fold 

change is an average of the individual fold changes each lipid identified in a class. Classes 

of lipids identified include: phosphatidylcholines (PCs), sulfoquinovosyldiacylglycerides 

(SQDGs), digalactosyldiacylglycerides (DGDGs), phosphatidylglycerols (PGs), 

monogalatoyldiacylglycerides (MGDGs), phosphatidylethanolamines (PEs), primary fatty 

acid amides (PFAAs), free fatty acids (FFAs), and non-SQDG sulfonated lipids (SULF). 

Lipid 

Class 

Adduct 

Detected 

# Chemical 

Species 

Average 

Fold 

Change 

PC [M+HCOO]- 15 -5.8 

SQDG [M-H]- 14 -3.3 

DGDG [M+HCOO]- 3 -3.3 

PG [M-H]- 3 -2.9 

MGDG [M+HCOO]- 12 -2.8 

PE [M+HCOO]- 1 6.5 

PFAA [M-H]- 5 25 

FFA [M-H]- 3 >25* 

SULF [M-H]- 14 >25* 
*Fold change value uncertain due to extremely low concentration of metabolites in control samples 
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metabolites represent nine major lipid classes, of which members of five 

(phosphatidylcholines [PCs], sulfoquinovosyldiacylglycerides [SQDGs],  

monogalatosyldiacylglycerides [MGDGs], digalactosyldiacylglycerides [DGDGs], and 

phosphatidylglycerols [PGs]) were generally less abundant when T. pseudonana was 

subjected to K. brevis allelopathy, whereas members of four classes (non-SQDG sulfonated 

lipids [SULF], free fatty acids [FFAs], primary fatty acid amides [PFAAs], and 

phosphatidylethanolamines [PEs]) were generally more abundant due to allelopathy (Table 

4.3). In contrast, for the other competitor, A. glacialis, concentrations of only six 

metabolites were significantly affected by allelopathy, reinforcing that A. glacialis 

maintains a more robust metabolism in response to K. brevis allelopathy (Figure 4.3, Table 

4.1, Table 4.2). All six A. glacialis lipid metabolites whose concentrations varied with 

exposure to allelopathy were also modulated in T. pseudonana, all experiencing enhanced 

concentrations in both competitor species due to K. brevis exposure.  

In addition to observing mass spectral features that represent SGQDs, MGDGs, 

DGDGs, PCs, and PGs (Table 4.3) as major lipid classes affected by allelopathy, five 

additional metabolites analysis whose concentrations in T. pseudonana were suppressed 

by K. brevis allelopathy were revealed only by NMR spectroscopic analysis. There were 

identified as aconitic acid, malonic acid, methyl guanidine, N-acetyl cysteine, and N-acetyl 

glutamine.  

Cell membrane integrity is weakened by K. brevis allelopathy  

 Upon inspection of the identities of disrupted lipids in the current study, two major 

classes of lipids common to cell and thylakoid membranes were noted as being 

significantly affected by allelopathy: SQDGs and MGDGs. Prince et al. had previously 
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found cell membranes of some competing algae to be disrupted upon exposure to K. brevis 

allelopathy (36); however, T. pseudonana was not tested in that study. In the current study, 

following exposure to K. brevis for six days, the proportion of living T. pseudonana cells 

with permeable and therefore damaged cell membranes was significantly greater than for 

unexposed T. pseudonana (Figure 4.4). In this experiment, T. pseudonana growth was 

statistically indistinguishable for exposed and unexposed treatments indicating that even at 

sub-lethal doses, K. brevis allelopathy causes substantial alterations to competitor 

physiology, prior to changes being evident at the population level. This confirms that one 

of the major mechanisms or outcomes of allelopathy is via cell membrane disruption, 

possibly due to a decreased concentration of membrane lipids such as SQDGs and 

MGDGs.  
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Figure 4.4: Exposure of K. brevis to T. pseudonana led to cell membrane damage. (A) 

Allelopathy significantly led to decreased T. pseudonana membrane integrity as indicated 

by membrane permeability of live cells measured by SYTOX Green and Neutral Red 

staining (N = 5; p = 0.0006). (B and D) Brightfield imaging of T. pseudonana stained with 

Neutral Red indicate living cells. (C and E) Fluorescence imaging of T. pseudonana stained 

with SYTOX Green indicate cells with permeable membranes. Simultaneous red and 

fluorescent green staining signify living T. pseudonana with permeable, damaged cell 

membranes.  
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4.5 Discussion  

Dominant impact of allelopathy on competitor lipidome 

The major metabolic responses of two model algae indicate that a dominant 

consequence of K. brevis allelopathy is increased membrane permeability and decreased 

photosynthetic capability, both likely due to decreases in the concentrations of membrane- 

and thylakoid-associated lipids (Figure 4.1, Figure 4.4, Table 4.3). Decreases in the 

concentrations of cell membrane associated PCs, SQDGs, and PGs (Table 4.1, Table 4.3) 

and permeabilization of the cell wall (Figure 4.4) suggested that allelopathy significantly 

disrupts membrane integrity by altering the lipid content without directly killing cells 

(Figure 4.4). Similarly, previously observed reduction in photosynthetic efficiency, as 

evidenced by decreases in the maximum quantum yield of photosystem II (36) and in 

expression of 12 photosynthesis-related proteins (37) could be due to damage to the 

thylakoid membrane and significant suppression of MGDGs, DGDGs, and SQDGs (Table 

4.1, Table 4.3). 

K. brevis allelopathy damages competitor cell membranes  

Allelopathy-induced cell membrane permeabilization and depolarization is 

common in terrestrial plants (141-143); however, it does not appear to be well known in 

phytoplankton (but see ref. 36). Fluorescent staining of T. pseudonana showed that K. 

brevis allelopathy significantly reduced cell membrane integrity in living T. pseudonana 

cells (Figure 4.4). This increased permeability could have been caused by decreased 

abundance of membrane-associated lipids (Table 4.3). This trend was also identified in the 

polar metabolome of T. pseudonana when exposed to K. brevis allelopathy suggesting that 
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one of the major outcomes of allelopathy prior to cell death is cell membrane 

destabilization (37). Despite this prior report, no molecular mechanism of action for K. 

brevis allelopathy has been described to account for the observed phenotypic response. The 

current work implicates that decreases in PCs, SQDGs, and PGs are molecular 

underpinnings of cell membrane destabilization (Table 4.1, Table 4.3).  

Thylakoid-associated lipids are significantly disrupted by allelopathy 

 A second likely mechanism by which allelopathy affects competitor physiology is 

via reduction of photosynthetic efficiency, which has been previously reported for 

competitors exposed to K. brevis.(36) Previously, we showed that the concentrations of 12 

photosynthesis-related proteins decreased in response to K. brevis allelopathy (37). Here 

we show that MGDGs, DGDGs, and SQDGs are also less abundant when competing algae 

are exposed to allelopathy (Table 4.1, Table 4.2, Table 4.3). MGDGs and DGDGs are the 

most abundant lipids in chloroplasts, constituting up to 80% of total plastidic lipid content 

(144). In Arabidopsis leaves, higher MGDG content in the chloroplast led to maintenance 

of photosynthetic activity when subjected to ethylene-promoted senescence (145). 

Additionally, plastids have been shown to elongate in mustard seedlings when exposed to 

high enough concentrations of the known allelochemical benzoic acid (146). In general, 

the current findings suggest that an explanation for the observed loss in photosynthetic 

efficiency (36) is destabilization of plastid membranes. While no direct experimental 

evidence exists in the current study that the number of plastids decreased or that thylakoid 

membranes became permeable, the downregulation of thylakoid-associated lipids and 

known consequences of allelopathy on plastids warrant additional tests of this hypothesis.  
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Competitors display different responses to K. brevis allelopathy 

 Previous research showed that competing algae exhibit differential sensitivities to 

K. brevis allelopathy (35-37, 105). Herein we report that both competitor species studied, 

A. glacialis and T. pseudonana, are affected by allelopathy, although T. pseudonana was 

significantly more sensitive (Figure 4.1, Table 4.1, Table 4.2, Table 4.3). These findings 

support the previously posited hypothesis that A. glacialis possesses a resistance 

mechanism to mitigate the effects of allelopathy (37). The long-term geographic and 

seasonal co-occurrence of A. glacialis and K. brevis may have provided the selection 

pressure for A. glacialis to evolve resistance, which T. pseudonana has not yet acquired 

(37).  

Consideration of the specific classes of lipids most affected in T. pseudonana by 

allelopathy (PC, SQDG, PFAA, FFA, and taurolipids) suggests that a majority of lipids 

induced (PFAA, FFA, and SULF) by allelopathic exposure are either metabolic breakdown 

products or metabolic precursors of PCs and SQDGs, whose pools shrunk in T. pseudonana 

upon exposure to allelopathy. These findings allow for two possible mechanisms: the stress 

of allelopathic exposure leads to the degradation of complex lipids, such as SQDGs and 

PCs, to their less complex components; or, allelopathic compounds exuded by K. brevis 

inhibit the biosynthetic enzymes within T. pseudonana that are responsible for the anabolic 

synthesis of complex lipids from more simple building blocks, resulting in a build-up of 

biosynthetic precursors (PFAA, FFA) and a loss of more complex lipids (SQDG, PC). 

Breakdown of more complex lipids to smaller products has been observed in the green alga 

Dunaliella salina, where the degradation of MGDGs to DGDGs was observed using 

radiolabeled carbon precursors (147). In the current case of K. brevis allelopathy affecting 
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T. pseudonana, the observed increase in concentrations, rather than decrease, of lipid 

biosynthetic enzymes such as sulpholipid synthase and UDP-sulfoquinovose synthase (37), 

favors the hypothesis that complex lipids are degraded in response to allelopathy. 

Complementing the MS lipidomic analysis, NMR spectroscopic profiling revealed 

that additional essential metabolites in T. pseudonana were disrupted by K. brevis 

allelopathy. Aconitic acid, an intermediate in the TCA cycle, and malonic acid, 

intermediate building block for fatty acid synthesis, were both less abundant due to 

allelopathy, which could be explained by the degradation of these acids, an enhanced 

production of some fatty acids thus reducing cellular stocks of starting materials and 

intermediates, or the slowdown in anabolism of these acids (148, 149). Three methylated 

and acetylated amino acids were also suppressed which point to alterations in amino acid 

metabolism as a consequence of allelopathic exposure. None of the five compounds 

identified via NMR spectroscopic profiling were identified as components of the MS-based 

model, highlighting the complementary nature of NMR and MS profiling.  

K. brevis’ sub-lethal allelopathy provides a unique study system  

 K. brevis allelopathy is relatively mild among algae, some of which release 

compounds that are acutely toxic to other algae (150-154). K. brevis allelopathy acts slowly 

on competitors, affecting cell viability and population growth over days by weakening cell 

membranes, impeding photosynthesis, and disrupting osmoregulation (37). In contrast, 

Alexandrium dinoflagellates can cause lysis of competitor cells in minutes to hours (150, 

154). The freshwater dinoflagellate Peridinium aciculiferum produces bubbles that later 

burst leading to cell death in its competitor Rhodomonas lacustris (153). Due to the slow 
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acting allelopathic effects of K. brevis, we were able to observe the disruption of lipid 

metabolism, which ultimately leads to catastrophic effects on membrane integrity and 

photosynthesis in some competing phytoplankton (Figure 4.4, Table 4.3).  

Lipidomics provides essential knowledge on how competitors respond to allelopathy  

 In the current study focused on lipidomics, we show that the major effects of K. 

brevis allelopathy on T. pseudonana are the permeabilization of the cell membrane and 

significant decreases in the concentrations of membrane-associated lipids, including those 

associated with the thylakoid and cell membranes (Figure 4.4, Table 4.1, Table 4.2, Table 

4.3). This complements previous findings regarding the polar metabolome and proteome 

in which we showed that T. pseudonana suffered significantly increased glycolysis activity, 

suppressed osmoregulation, enhanced enzymatic capabilities related to oxidative stress, as 

well as an increase in proteins associated with the pentose phosphate pathway and anti-

trypsin protease inhibitors, when exposed to K. brevis allelopathy (37). The integration of 

metabolomics involving both polar and non-polar classes with proteomics analysis 

suggests that K. brevis allelopathy significantly alters T. pseudonana cellular functions on 

many levels. Cell membrane permeability, significantly altered metabolism, and decreased 

photosynthesis together paint a dreary picture for T. pseudonana that leads to decreased 

growth. The current lipidomics work offers a glimpse into the robust metabolome of a more 

resistant competitor, A. glacialis, providing unique opportunities for exploring mechanisms 

of resistance to allelopathy.  
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 

Chemically mediated interactions are diverse and numerous, ranging from finding 

mates and food, to detecting predators and defending oneself. Waterborne cues are 

commonly utilized by organisms in the marine environment since visual, auditory, and 

mechanosensory stimuli can be complicated. Despite decades of research suggesting the 

presence and importance of waterborne cues, little is known of the compounds that make 

up these cues. The current body of work investigates the chemical nature of waterborne 

cues utilized for predator detection and of waterborne cues involved in chemically 

mediated competition among marine phytoplankton. In addition, the studies herein 

describe the catastrophic effects of allelopathy on phytoplankton metabolism and cellular 

integrity. 

Ecologically important waterborne cues have historically been difficult to isolate 

and characterize due to their lability, polarity, and low abundance in nature (18). 

Additionally, biological activity of multicomponent cues is likely to be lost during 

chromatographic separation using traditional bioassay-guided fractionation, since essential 

components of a mixture are likely to be isolated into different fractions (155). 

Metabolomics paired with multivariate statistical modeling enables prediction of the 

functions of individual compounds within a complex mixture without labor-intensive 

separation or successive rounds of assays after each separation step to determine which 

fraction contains bioactive molecules. Compounds predicted to illicit biological responses 

following metabolomics analysis are then tested in a small number of assays as single 

components or in combination to test model-based predictions. Using this approach as 
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reported in Chapter 2 (1) of this dissertation, we identified trigonelline and homarine as the 

major constituents of a waterborne fear-inducing cue, released in the urine of the predatory 

blue crab, that prey crabs perceive, resulting in altered prey behavior to avoid being 

consumed by blue crabs. The fear-inducing effects of each compound as a single 

component as well as in a mixture, at their natural concentrations, were confirmed via 

bioassay without having fully purified either compound from blue crab urine. Bypassing 

compound isolation from natural mixtures saved time, resources, and likely deconvoluted 

the characterization of constitutional isomers that are difficult to separate. This study serves 

as a roadmap for future studies aimed at characterizing waterborne cues, specifically those 

that have been shown to involve multicomponent, labile, or low abundance cues.  

In addition to characterizing the fear-inducing cue, we also described the 

concentration- and diet-dependent risk perception of mud crabs by quantifying trigonelline 

and homarine in urine of varying potencies. Trigonelline and homarine occurred at highest 

concentration in urine that also caused the greatest behavioral disturbance to prey. To our 

knowledge, this is the first fully characterized system of chemically mediated risk 

perception that promotes a behavioral response by prey in the marine environment. With 

the identities of the components of the fear-inducing cue now known, we can begin to 

address the relative strength of their community-structuring effects in estuarine 

environments. Non-consumptive effects of predators have been predicted to be strong 

compared to the direct effects of predators consuming individual prey and therefore 

warrant significant future study (23). Scientists may also now assess the potential role of 

this fear-inducing cue as a management tool for oyster fisheries and coastal management. 
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Chapters 3 (2) and 4 (3) of this dissertation report chemical profiling of allelopathic 

compounds and the metabolic consequences of allelopathy to competing phytoplankton. 

Harmful algal blooms such as those formed by K. brevis have disastrous effects on marine 

ecosystems through the poisoning of wildlife (33, 34). A significant number of these 

ecosystem-structuring interactions are mediated by well-described toxins that are not 

known to be allelopathic (35, 38). Allelopathy is, however, hypothesized to play a 

significant role in bloom dynamics allowing these blooms to persist and out-compete co-

occurring phytoplankton (29). Previous efforts to isolate and characterize the compounds 

responsible for allelopathy have failed (38) due to reasons discussed previously. Without 

knowledge of the exact identities of compounds responsible for allelopathy, we cannot 

determine structure-activity relationships of allelopathic compounds, impacts of biotic and 

abiotic factors on their production rates, metabolic pathways that lead to their production 

and release into the environment, or the selective pressures that have led to their evolution.  

 In Chapter 4 (3) of this dissertation we identified and utilized previously untapped 

variation in allelopathic potency to chemically fingerprint K. brevis. Metabolomics and 

multivariate statistical modeling provided a unique tool set for working with these 

ecologically important waterborne cues that mediate interspecific interactions between K. 

brevis and competitors. Spectroscopic fingerprinting led to the identification of three 

distinct metabolic modalities of K. brevis: allelopathic, non-allelopathic, and stimulatory 

towards one important competitor, Asterionellopsis glacialis. Additionally, multivariate 

models predicted that allelopathic compounds contain aromatic moieties, unsaturated fatty-

acid derived moieties, or both. While the individual compounds responsible for allelopathy 

were not identified, the chemical variability in the exuded metabolome of K. brevis was 
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established as a source of untapped information that was utilized to elucidate chemical 

properties of allelopathic compounds. Utilizing the variability in allelopathic potency, 

future studies can now assess the relative proportion of each metabolic modality in bloom 

and non-bloom conditions in the field, the relative ecological importance of each metabolic 

modality in bloom dynamics, and investigate the conditions that promote one metabolic 

modality over another, possibly with the hopes of managing/affecting bloom patterns in 

areas commonly afflicted with red tide blooms.   

In Chapter 3 (2) of this dissertation we described the physiological effects of 

allelopathy on competitor metabolism. Significant alterations to the lipidome of competitor 

T. pseudonana were observed in the cell membrane, where decreases in membrane-

associated lipids led to visible perforations in living cells when exposed to K. brevis 

allelopathy. Decreases in thylakoid membrane-associated lipids were also measured, likely 

explaining disruption of photosynthesis that has been previously reported for K. brevis 

allelopathy (36, 37). The catastrophic effects of allelopathy on competitor lipidomes 

coupled with previously reported effects on polar metabolomes such as increased oxidative 

stress and inhibited osmoregulation (37), paint a picture of cells doomed to die with 

multiple failing systems apparent. Future research could be aimed at understanding the 

molecular targets of allelopathic compounds that lead to the observed alterations in the 

lipidome. A thorough understanding of the pathways, enzymes, and systems affected is 

possible through multi-platform studies combining guided metabolomics, proteomics, and 

genomics analyses of this sub-lethal allelopathy.  

This dissertation describes three significant advances in understanding the chemical 

nature of waterborne cues and the metabolic effects they have on other species. 
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Metabolomics analyses paired with multivariate statistical modeling provide an effective 

alternative to traditional bioassay-guided fractionation which has particular weaknesses 

when applied to identifying waterborne cues as previously discussed. As more such cues 

are characterized we can address numerous additional questions including: What are the 

biosynthetic origins of these cues? What biosynthetic machinery is required to synthesize 

them? How do cues disperse? How long do these cues persist in the water column? Are 

responses to the cues learned or innate? Are responses to the cues in the field equivalent to 

responses in the lab? How strong are the community structuring effects?  What mechanisms 

are there for cue degradation in the water column? Answers to these questions will provide 

significant insight into the roles and mechanisms of chemically mediated interactions.  
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