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SUMMARY 

Using Lagrange's equations, the equations of motions for column 

simply supported at both ends under axial load P(t) = P + P-, cos et 

were derived. The approximate formulae for the parametric stability, 

the free vibration frequency and the buckling load were obtained 

using the method of successive approximations (note that these formu

lae apply to a column with a region of discontinuity, e.g. distribu- • 

tion of extensive cracks). The effects of a region of discontinuities 

on the column were evaluated in terms of three parameters, the size 

of the discontinuity, the effective stiffness and the location of the 

discontinuity, i.e., R, K and C. These effects are reported in a non-

dimensional form. 

A two part experimental program was conducted to evaluate the 

effective stiffness parameter and the parametric stability results. 

These experimental results were correlated with the analytically 

deduced results. The experimental and the analytical stability results 

were in good agreement. 
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CHAPTER I 

INTRODUCTION 

The dynamic stability of mechanical systems constitutes a class 

of problems in mechanics which is in the border line between static 

stability and vibration problems. Beilin [1] defines the class of 

dynamic stability problems as follows: "The essence of the general 

problems of dynamic instability consists of the study of the motion 

of elastic systems which are excited by time-dependent external loads, 

if the latter are so applied that the loads in direction and point of 

application but not varying in time may cause static loss of stability." 

To indicate the basic features of this type of problem, con

sider a uniform simply supported column of length i, and subjected to 

a periodic axial load Pcos(et), shown in Figure 1. If the column 

has flexural rigidity EI and mass per unit length m, then its equa

tion of motion in the lateral direction is 

EI 4 r + P cos(et) ^ - + m ^ = 0 . (1) 
3x ax 9t 

It can be seen that the loading enters as a periodic parameter in 

Equation (1) and hence dynamic instability is called parametric insta-

bility of the column. 

The displacement W(x,t) can be expanded as a series in the 

normal modes of the unloaded column, i.e. 



• * * x 

P cos et 

vsssQ?, vs?s» 

Figure 1. Schematic Representation of a Uniform Column 
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• /TTX1 
W(x,t) = I q , ( t ) s i n ( ^ ) 

i=l 

A set of equations for the generalized co-ordinate q-(t) is obtained 

as follows: 

qi * 4 (1 - ^-)cos(6t)q. = 0 , (2) 
pi 

in which dots denotes differentiation with respect to time t, 

2 — 
co. = (~—) /-— is the i natural frequency and 

i 2 th 
p. = (̂ —) EI is the i buckling load of the column. 

The equations (2) are uncoupled and each has the form of a 

Mathieu equation. In particular the solution for any mode q. is 

classified as unstable within certain regions because it can be 

shown that q. grows exponentially in those regions [2]. The most 

P 
significant and largest of these regions exists for — near an exci-

6 Pl" 
tation frequency e given by 75— = 1. A physical reasoning leads 

£(i) • 
1 

directly to the relationship e = 2to.: for each cycle of the trans

verse vibration of the column, the right end in Figure 1 completes 

two cycles. Thus if a frequency of the applied load e is nearly twice 

the natural frequency w., then the resonance occurs. Often this type 

of resonance is called a parametric resonance, and the behavior of the 

column is termed a sub-harmonic response of order 1/2. 

Moreover, the theory indicates that higher order instability 

zones can be found in the vicinity of 
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2^7 = 7T ' n = L2'3---- • 

Thus there exist for each mode countless instability regions being 

more densely spaced as 0 is reduced. The instability regions become 

thinner with increasing order [3]. It can be also noted that for the 

zones associated with n = 1,2,3 are called i principal (primary), 

secondary and third instability zones (regions) respectively. It can 

be realized that there exist an infinite number of instability zones 

corresponding to a mode and there are infinite number of modes which 

govern the stability of the column. Therefore, in the 0,p-plane, the 

number of instability zones increase as number of modes are increased 

for the stability analysis. However these instability zones are not 

accessible experimentally due to damping. 

Therefore, the following conclusions can be drawn for the column 

in Figure 1. 

P Q 
o If a point exists in — , 75 plane in a blank region of 

p. 2*. 

Figure 2, then the initial straight form of the column is dynamically 

stable. However if this point is found in a shaded region, then any 

initial deviation from the straight form of column will increase 

unboundedly with time, i.e. the straight form of the column is dynam

ically unstable. 

0 The conditions under which the differential equation (2) 

has periodic solutions are represented by the boundaries of the 

instability regions in Figure 2. These boundaries describe the rela

tion between the frequencies of the external loading, the natural 



2a), 

Shaded Areas Represent Unstable Zones 

Blank Areas Represent Stable Zones 

0.2 
_ J i_ r_ 
0.4 Pi 

Figure 2. Regions of Dynamic Instability 

en 
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frequency of the column and the magnitude of external force. 

o When the displacement W and the external load are independent 

of time in the equation of motion (1), then this equation represents 

the corresponding static stability problem. But, if the displacement 

is time-dependent and the load is time-independent the problem reduces 

to the usual vibration problem with axial external loading. 

During the last decade a considerable amount of theoretical and 

experimental research has been done in the field of parametric exci

tation [3,8-12,15-19]. An elegant and systematic presentation of the 

theory of dynamic stability of elastic systems can be found in the 

classical textbook on the subject by Bolotin [2]. 

Historically, the first report of parametric instability was 

made by Faraday in 1833, when he observed that the liquid in a cylin

drical glass was parametrically excited by movement of moist fingers 

around the glass edge [4]. Melde in 1859 gave a demonstration of the 

parametric resonance phenomenon using a system involving a string and 

a tuning fork [5]. A mathematical analysis of this phenomenon was 

provided by Lord Rayleigh in 1885 [1]. 

Thus, the study of the parametric resonance commenced early in 

the 19 century. About 100 years elapsed, however, before Beliaev 

in 1924 described the first engineering problem in which parametric 

instability was studied analytically (Figure 1). Later, experimental 

work by Bolotin and others confirmed the analytical results for this 

problem [2,6]. An interesting review on the development of the field 

up to 1965 has been given by Evan-Iwanowski [4]. 

Since 1965 the literature on parametric excitation has taken a 
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direction of accounting for nonlinear, inertial , damping and visco-

elastic effects [1,4-12]. Recently, Haight and King [9] reported a 

theoretical and experimental investigation of the loss due to param

etric coupling of stability of steady-state plane transverse response 

of a slender elastic rod subjected to a harmonic longitudinal excita

tion. Their analysis shows that, provided an arbitrarily small viscous 

damping term is present, plane motion is stable for all values of the 

parameters when the natural frequency ratio for motions in the two 

principal planes is unity. Only when the natural frequencies are 

detuned (difference between oscillation and excitation frequencies) 

does the original planar response lose its stability. They found that 

when the frequency ratio is near unity there is a critical excitation 

frequency which causes the original planar response to exhibit an 

amplitude jump and a simultaneous plane shift to stable motions in the 

other principal plane. It can be noted that these results were obtained 

by use of a set of nonlinear equations for the stability of the uniform 

column with one end fixed and other end free. In present investigation 

linearized equations of motion are obtained for a simply supported 

column with a region of discontinuities. Naturally, it can be extended 

to study steady-state amplitude-frequency response by a nonlinear form

ulation of the problem. There has also been an increased effort to 

identify examples of dynamic instability in the various areas of 

mechanics, transportation, and industrial construction. The possibility 

of parametric excitation in aircraft structures has been discussed 

by Barr and Done [31. They pointed out that as structures are pro

gressively refined an associated refinement of the dynamic analysis 
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becomes necessary and that a parametric stability analysis may often 

be desirable. For example a close observation indicates that fatigue 

failure develops in the following pattern: 

o repeated cyclic stressing causes incremental slip and cold-

working locally 

o gradual reduction of ductility in strain-hardened area 

results in the formation of submicroscopic cracks 

o and the notched effect of the submicroscopic cracks concen

trates stresses until complete fracture occurs. 

Fatigue failure is thus related to localized nonuniform plastic 

deformation, rather than to ideal reversible elastic behavior. There

fore, it is possible that the existence of parametric excitation in 

a structure may provide the cyclic loading which will bring out both 

an initiation of cracks and an accelerated propagation of existing 

cracks. 

A general observation of the trend of the research in the field 

can be summarized as follows [13-19]: 

o Some structural failures may be traced to parametric oscilla

tions [3]. 

o Sustained parametric excitation may accelerate or initiate 

fatigue failures in a complex structure; therefore a thorough under

standing of parametric response is of basic significance [3]. 

o There is an urgent need on a broad experimental basis for 

theoretical work in this field [3,7]. 

For the past 20 years considerable attention has been focused 
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on the strength behavior of cracked structural elements. A wide 

variety of elements has been considered, including plates, shells, 

beams, etc. [20-261. Recently, Liebowitz and Vanderveldt [27] de

scribed several types of behaviors of notched columns. Among these, 

one of particular interest in this thesis is the reduction of column 

strength due to notches. Berkovits and Golad [28] conducted an 

experimental program on slender columns with centrally located cracks. 

They found that relatively little effect on the column strength was 

observed when the crack closes during buckling. In the majority of 

cases, however, the crack tends to open and the strength was reduced 

significantly. Thus the common assumption that fatigue damage is not 

harmful in compression-design problems was shown to be unconserva-

tive. 

In the static problems the loss in strength can be associated 

with the amplification of stress accompanying increasing lateral 

deflection. The development of deflection is not only connected with 

static behavior, but it may also occur in dynamic behavior during 

oscillatory motion. In particular, any resonant type behavior would 

be expected to introduce much more severe conditions than those 

encountered in a static test. These conditions are even more severe 

when a region of discontinuities is present in the column. 

To date wery little has been done on the dynamic stability of 

elastic systems with cut-outs, notches or cracks. Such systems are 

a step closer to the corresponding realistic systems. 

In the present investigation such a general problem involving 
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the dynamic stability of a simply supported slender column with a 

region of discontinuities under parametric excitation is examined. 

The problem of interest is illustrated in Figure 3. It may be noted 

that the shaded region depicted in Figure 3 represents a region in 

which discontinuities are present; e.g. multiple cracks, or notches 

which may be either internal or external. Note that the region 2R: 

a < x < b is slightly larger than the actual region of discontinuities, 
2 

so that —*Tr-*- at x = a and x = b will be continuous for the ana-
dx^ 

lytical development of the stability model. 

The presence of such regions has, in recent years, become 

increasingly possible as strength requirements have increased and as 

new types of materials have been introduced. These include the ultra

high strength steels and heat resisting alloys. Concrete has, of 

course, always involved a brittle response which is susceptible to 

cracking. More recently, the use of fiber reinforced composites has 

created concern about the effect of cracks. For example, it has been 

found that the graphite composites are embrittled by surface impact 

which can introduce cracks. 

The objectives of the research described here are: 

o to develop an analytical model for determining the boundaries 

of instability regions for a bar within which a region of discontinu

ities is present, 

o to determine the instability boundaries for a notched column 

by conducting an experimental investigation, and 

o to correlate the analytical and experimental results on 

buckling strength and vibration characteristics. 



11 

v ( x , t ) , y 

£ 
h 

d 
i 

•*• x 

fffr P(t) = P0+P1 coset 

Figure 3. Objective Column Schematic 
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Chapter II contains the development of the stability model for 

the column and the analysis using the variational method. In Chapter 

III experimental procedures to establish the instability boundaries 

for the column and the needed instrumentation are described. The 

analytical and experimental results, including the effects of notches 

on the buckling strength and the vibration characteristics, are pre

sented in Chapter IV. Finally, conclusions and recommendations regard

ing the investigation are reported in Chapter V. 
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CHAPTER II 

THEORETICAL ANALYSIS 

The developments in this chapter include a statement of the 

basic assumptions made for the idealization of the subject problem, 

a derivation of the governing differential equations of motion for 

the column, and a determination of the equations for the boundaries 

between the stable and unstable regions. Finally, approximate rela

tions for the parametric, buckling and vibration characteristics of 

the column are presented. Applications of these relations and numeri

cal results are presented in Chapter IV. 

Basic Assumption 

To develop the analytical stability model for the column 

described in Figure 3, the following assumptions apply: 

o Except for the region within which the discontinuities occur, 

the column is a uniform solid homogeneous prismatic bar and the maxi

mum cross-sectional dimension is small compared with length a. 

o Shear stress and rotatory inertia effects are negligible. 

o The maximum stress is within the proportional limit of the 

material. 

o The lateral displacement v(x,t) due to P(t) is small rela

tive to a. 

o The forces P(t) applied at the ends of the column result in 

forces throughout the column which are uniform to a sufficiently close 
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approximation. Lubkin and Stoker [29] showed that this assumption 

is justified if the bending frequency is well below the first longi 

tudinal vibration frequency of the column. 

o The column axis is assumed to be incompressible, which 

means e = 0 everywhere along the axis. Since e = -^ + «-(—) , 
X X X C X 

it follows that 

du = 1/9v\2 
9x "' " 2^9x; " 

Therefore the work done by the external force P(t) can be written as 

)̂u|x=, = p(t)/ lf^-^Mf)V 
1 0 0 

o The mass per unit length of the beam is assumed to be con

stant, i.e., the absence of mass at the void is neglected. 

o The bending strain energy of the element from x = a to x = b 
F ^ 7 

shown in Figure 3 is proportional to «• / v ( x , t ) d x ; i.e. the strain 
^ a xx 

FK 7 
energy is equal to -«- / v (x,t)dx for the element containing the 

L a xx 

notch, and K is a constant of proportionality. The constant K is a 

function of the characteristic variables of the sub-element; i.e., 

the type of material, the nature and distribution of the discontinui

ties. Thus, its value reflects the effect of the discontinuities on 

the capacity of the sub-element to store strain energy. 

This approximation is yery similar to that used by Tsalik [20] 

in the free vibration analysis of bars with cracks. He assumed that 
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the relation between the bending moment and the stiffness could be 

represented by a weighted linear relationship. It can be noted that 

bending strain energy estimation of the beam element a-b provides an 

integrated representation of the characteristics of the section. The 

details of the local properties are not specified; e.g., the stress 

distribution in the vicinity of the notch is not described in this 

representation. 

In this connection reference to results obtained by Stahl and 

Keer [30], and by Lynn and Kumbasar [31] for vibration and stability 

of cracked rectangular plates is of special interest. Stahl and Keer 

developed a cracked plate analysis in which the local effect of the 

crack-tip singularity was incorporated in the determination of global 

properties such as natural frequency of vibration and buckling load. 

The development of Lynn and Kumbasar, on the other hand, did not incor

porate the local crack-tip stress singularity in their analysis. In 

effect, their representation was global in character. A comparison of 

these results [30] revealed good agreement between the two analyses 

with regard to the global properties; i.e., frequencies. However, the 

moment distributions and bending stress in the vicinity of the crack 

tip, a local effect, were significantly different. This indicates 

that in some instances, global properties can be correctly deduced 

from analyses which do not include a detailed representation of local

ized effects. 

It should be noted that since the details of the bar within the 

region denoted by 2R are expressed only in terms of the constant K, 
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different possibilities may be envisioned. For example, in addition 

to a single slot, a series of cracks indicated in Figure 4(b) may 

exist. Naturally the values of R and K must appropriately reflect 

the effective stiffness in the strain energy estimation of the beam 

element a-b. Methods for determining the R and the K are discussed 

in Chapter IV. 

Equations of Motion 

In this section an infinite set of differential equations of 

motion in terms of the generalized coordinates, {f.(t)}~ are derived 

using Lagrange's equations. The Lagrangian equations for an elastic 

system are [2]: 

a t ^ - > - k ( T - u ^ i • ^ 
at-i n 

i = 1,2,3,... . 

In these equations T is the kinetic and U the strain energy of the 

system, and Q. is the generalized force corresponding the generalized 

coordinate, f.(t). A sequence of admissible functions* for deflection 

riTr Y co 

can be selected as {sin — — }-, for the subject problem. Therefore, 

time-dependent deflection of the column shown in Figure 3 may be rep

resented as 

* 
Admissible functions are defined as those functions which sat

isfy both geometric and natural boundary conditions of the problem. 



1 
h 2R 

(a) Single Slot Geometry in 
Element a-b. 

1 
Hum (b) Series of Cracks Geometry in 

Element a-b. 

2R 

Figure 4. Possible Discontinuities. 
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v(x,t) = I f (t) s i n ^ . (2) 
n=l £ 

The potential and the kinetic energy, and the generalized forces of 

the column shown in Figure 3 with the idealization described in the 

previous section are: 

u , « /
l

( l ! v , 2 d x + EiMl /
b

(l!v )2dx 
c o zx

 L a ax 

T- | /N | f ) 2 dx (3) 

3 ,1 „ , . * r £ , 3 v , 2 
«1 = " -3T7 <? p<t) / <£> d*> 

In Equations (3), EI and EK are the uniform and the effective bending 

stiffness of the column. The mass per unit length is m and P(t)= P + 

P-, cos et is the external oscillating tension with circular frequency, e 

for the column. Substituting Equations (2) and (3) into (1), the equa

tions of motion for the column in terms of the generalized coordinates 

are obtained as 

2 2 2 2 
4 4 r T 2 4r/1/ TX °° o n P 7T n P,TT 

nu + r L l E I _ f . r ^ i l K J l ^ 2 f + o_f + _ 1 cosetf = 

2 n « 3 n « 4 >, i m 2£ n 2& n 

where, n = 1,2,3,...,°° ; and (4) 
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b=C+R 
_ r . ITTX . n-rrX . 

e i n - e n i - f . - s i n — s i n n r d x = j 
a~L-K 

D «• ,-„ , . 2rriC . 2iriR . 
R - 2 ^ T C 0 S — s i n — ' 1 = n 

(5) 

L 

C0S(wLkcsinii^nM 

^7C0S 

I 
(i -n )TT 

£ (n+i )TTC . (n+i )TTR ., 
— I — s — I — ' ^n< 

Equations (4) are a system of ordinary second order linear homo

geneous coupled differential equations. The coefficient of the last 

term is a periodic function of the independent variable t. It is con

venient to rewrite Equations (4) in matrix form: 

where, 

d2 f 
C — ^ + (E - aA - 0 B cos et)f = 0 
dtr 

» P 7T 
A 0 

a = - — o 

2 

ml 

(6) 

A V' 
mi 

2 ' 

f(t)£ f,(t) 

f 2(t) 

f (t) 
(» by 1) 
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0 ^ 

(»by 1) 

c & 

A ^ 

1 0 0 0 0 o • 

0 1 0 0 0 0 • 

0 0 1 0 0 0 • 

0 0 0 1 0 0 

0 0 0 0 1 0 • 

0 0 0 0 0 1 

1 0 0 0 o • 

0 22 0 0 0 

0 0 32 a 0 • 

0 0 0 42 0 • 

c 0 0 0 52 0 • 

c 0 0 0 0 6 2 . • 

(« by * ) 

J(oo b y oo) 
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1 0 0 0 0 

0 2 0 0 0 

B=A 

0 0 3 0 0 

0 0 0 46 0 

and, 

0 0 0 0 5' 

- (°° by «>) 

r - ^4EI 
- ~ A mil 

1 + 11 2 e12 J- hi 2 e14 

,2 e21 2 4 + 2 4 ^ 2 22 . 42 !?A 

.2 e31 32 . 22 !32 4 4 33 32 . 42 -** 

2 e41 42 . 22 !42 42 . 3^ _43. A 4 ^ 4 - 4 4 -

w i th , e . = ( T - 1)e . m VI y m 
i = 1 ,2 ,3 , . . . , 

n = l , 2 , 3 , . . . . 

(oo by °°) 
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Equations for the Boundary Frequencies 

The finding of the regions of instability reduces to the determin

ation of conditions under which the differential equation system (6) 

has periodic solutions with period T or 2T (Appendix A). The solution 

with period 2T = —- of Equation (6) in the form of the following series 
9 

is desired. 

f(t) = I (a. sin ̂ - + b. cos ̂ ) , (7) 
k=l,3,5 K c ~K L 

where a, and b, are vectors which are independent of time and they have 

an infinite number of components. The series (7) is equivalent to the 

infinite Fourier series for the components of vector f(t). These 

series converge, since the periodic solutions (7) of the differential 

equation system in all cases satisfy the Dirichlet conditions (Appendix 

A). 

Substituting Equations (7) into (6) and comparing coefficients of 

kst k9t 
sin —~— and cos —«— gives the following system of matrix equations: 

(£ - aA + j 0 B. - | e2£)a1 - j e£ a3 = 0 , 

(£ - aA - 1 k2e2£)ak - \ 3 i ( a k _ 2 + a k + 2 ) = 0, 

(k = 3 , 5 , . . . ) ; (7a) 

( I " <*A - \ Bl - \ eV)^ - 1 6£ b3 = 0 , 

(£ - a A - \ k2e2Cjbk - ^ B ( b k _ 2 + bR+2) = 0, 

(k = 3 , 5 , . . . ) . 
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Note that the above equations are uncoupled with respect to the 

a's and b's. Also it should be noted that in deriving the above equa

tions the following trigonometric identities were found useful: 

cos 9t s1n k|t = ̂ sin Ut|M + sin ik±|M} > and 

cos et cos *|t , ̂ c o s ik=|let + cos (k±|jet} . 

For non-trivial values of a, and b, the determinants of the 

coefficients of a, and b. must be zero. Thus the conditions for the 
~k ~k 

existence of periodic solutions with period 2T = -~ have the form 

E-aA±7>-eB^ -
1 
4 k - l e i 

- i -BB E-aA - | 62 

0 - ~ 3 B 

3B 

25 2 
£ - a A - ^ | G^C 

0 (8) 

Similarly, substitution of the series 

oo 

f(t) = g- bQ + ). (?k sin ~ 2 ~ ~k ~2~^ ' 
Is.-^ j 4 5 D 

(8a) 

into the differential Equation (6), the following conditions for the 

2TT 
existence of solutions with a period — = T are obtained: 

*Here two conditions corresponding to a's and b's are combined 
under the ± sign. 
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E - a A - e C 

eB E - a A - 49 C 

^•ei 

- j&B 

E - aA - 9e C 

= 0 and (9) 

£ - < * A -B B 0 0 

" ^ 3 B E - a A - 9 2 C - ^ B o 

0 - j ^ e i £ - a A - 4e2C_ - ^ B 

0 0 - ^Bi £ - a A - 9 6 2 C . 

= 0 . (10) 

The infinite determinants obtained belong to the class of normal 

determinants [2]. It may be noted here that the matrix elements in 

these determinants are infinite. 

In the following an observation of Equation (7a) is presented. 

An Observation of Equations (7a) 

V It is interesting to note that the terms involving 3 = -
mi 

(P, , m and i are defined in Equation (6)) in Equation (7a) can be 

neglected when $ is made vanishingly small. Then, Equation (7a) degen

erates into the following form 
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2 2 
[E - aA - ^4- C] a. = 0 and — - 4 - ~k 

k2fi 
[£ - aA - ^ C] bk = 0, where 

k = 1,3,5 . . . . 

For non-trivial values of a, and b, the determinants of the coeffi

cients a, and b must be zero. Thus the condition for the existence 

~k ~n 

of periodic solution given by Equation (7) with period 2T = — have the 
6 

form 

k2e2 

E - aA - ^-#- C 

k = 1,3,5 ... . 

= 0, where 

(12) 

Similarly, the following condition for the existence of periodic 

solution given by Equation (8a) can be derived as 

2 2 
E _ aA - ^ - C 

k = 0,2,3, 

= 0, where 
(13) 

An examination of Equations (12) and (13) reveals that these equations 

can both be represented as 

2 2 
E - aA - ~ - CI = 0, where 

k = 0,1,2,3,... 

(14) 
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It should be noted that this observation is physically realized 

when there is no damping in the system. An interpretation of the 

limiting process implied in Equation (14) will be discussed in the 

next section. 

Consider that the column is loaded with PQ + P-| coset. Then the 

frequency boundaries can be schematically represented as shown in Figure 

5(a) (numerical results are presented in Chapter IV). Note that y is 

the eigenvalue of Equation (14) for k = 2 . If the amplitude of the oscil

lating load, P-, coset is reduced slowly when the system is just on the 

2T or T type frequency boundary as shown in Figure 5(a), then the system 

will be vibrating with initial load at a frequency defined by the curves 

shown in Figure 5(b). Thus the equations which express the conditions 

for existence of solutions with the same period coincide in pairs when 

$ + 0 i.e. P-, •> 0. This means that the regions of instability, bounded 

by solutions with same period, degenerate into curves. These regions 

are determined from Equation (14). 

In the following sections special cases of physical interest are 

considered (free vibration and buckling) and discussed in connection 

with Equation (14). 

Free Vibration 

It was pointed out in Chapter I that if the load is independent 

of time, then the parametric excitation problem reduces to a free 

* 
Each of these degenerate curves may be physically visualized as 

a limiting process in which a resonance response is initiated for a 
very small value of P-,. This response may then be used as an initial 
condition to develop the indicated oscillations for P-, = 0. 
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2T 

k=l 

k=2 

2T 
2y 

(a) P = Constant > 0 (b) P = Zero 
l 

Figure 5. Schematic Representation of Dynamic Instability, 
P, = Constant > 0 and P, = Zero. 
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vibration with initial load. When 3 = 0 in Equation (6), the equation 

of the free vibration can be identified as 

d2f t 
C —k + [E - aA]f(t) = 0 (15a) 
~ dt^ 

Using f(t) = ae as a solution for simple harmonic motion in the 

above equation gives the following characteristic equation of the eigen

value problem associated with free vibration: 

| E - aA - ft2C| = 0 , (15) 

where ft is the eigenvalue parameter. That is, the roots for ft in the 

characteristic equation are the natural frequencies of free vibration 

with initial load. 

Comparison of Equations (14) and (15) 

A comparison of Equations (14) and (15) reveals that 

2 2 
^ r - = ^ for k = 1,2,3,. 

or 

= Y for k = 1,2,3... . (16) 

If definition of the lowest natural frequency of free vibration is to, 

then ft = to for P = 0. Therefore Equation (17) may be written as 

e = -^ for P = 0 k o 
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Examination of Figures 5(a) and 5(b) now reveals that 

Y = to. 

That is, the value of y indicated in Figures 5(a) and 5(b) can be 

related to a value of natural frequency associated with free vibration. 

Equation (16) is valid, of course, for P, ? 0. 

The preceding correlation can be useful in preliminary consider

ations of dynamic stability behavior. This follows from the fact that 

for vanishingly small values of P-,, the frequencies of the excitation 

force near which unboundedly increasing vibrations are possible can be 

determined from the above equation. However, if the excitation frequency 

of the force near which unbounded vibrations occur is known then fre

quency of free vibrations can be calculated from Equation (16) for each 

value of k. 

Buckling 

Note that if the displacement and the load are independent of 

time, then the eigenvalue problem associated with buckling is obtained. 

The characteristic equation of this problem can be obtained from Equation 
d2f 

(6) by setting — « = 0 and 3 = 0 . Thus, 
dr 

|E_ - aA| = 0, where (17) 

P , 2 

a = — ^ j - is the eigenvalue parameter which represents the buckling 
nu 

load. It should also be noted that in Equation (14) this corresponds 

to the case k = 0. 
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The characteristic equation for buckling can therefore be 

extracted either prior to or after substitution for f in Equation (15a) 

In the next section approximate equations for the boundary fre

quencies are presented. 

Approximate Equation for Frequency Boundary 

An approximate expression for the boundaries of the principal 

regions of instability is obtained by equating to zero the determinant 

of the first matrix element in the principal diagonal of Equation (8). 

£ ~ a A ± ^-3i - \ e2Cj = 0 (18) 

This approximation is equivalent to the assumption that the periodic 

solutions on the boundaries of principal regions of instability are 

harmonic functions [2], 

f(t) = ^ sin y- + b} cos — . (18a) 

Similarly, the conditions (9) and (10) may be approximated for the 

calculation of secondary regions of instability as [2] , 

E - a A - e'X = 0 (19) 

- a 

l 3 -
- 3 B 

E - a A - 9 C 

= 0 (20) 

which correspond to a harmonic approximation 
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f(t) = i b + a0 sin et + b 0coset (20a) 
~ 2 ~o -2 ~2 x ' 

It can be noted that if Equation (20a) is substituted into Equa

tion (6) and the coefficients of sinet and cos et are compared 

(I " aA)bo - 3j$b2 = 0 

- i-6B bQ + (E - a A - e2^)b2 = 0 

2 
where sinet cos et and cos et terms are neglected. Since b and b0 

3 ~o ~2 

are non-null vectors, Equation (20) is obtained as the condition for 

existence of the periodic solution with period T. Similarly Equations 

(18) and (19) can be verified. 

It should also be noted that equations (18) correspond to the 

truncation of the series solution (7) at k = 1. However equations (19) 

and (20) correspond to the truncation of the series solution (8a) at k = 2. 

Thus, k=l and k = 2 yield the boundaries of instability for the princi

pal and secondary regions respectively. Naturally, for more accuracy 

in the calculation of the boundary frequencies of the principal zone, 

an approximation involving a truncation of the series solutions (7) at 

larger values of k may be required. With approximations k > 2 not only 

more accurate results for the principal zones are obtained, but also 

additional zones of instability are obtained. These zones are defined 

as the third, fourth,... instability zones. 

Theoretically, it is possible to obtain instability zones for any 

odd integral value of k. However, literature survey and the experi

mental results reported in this thesis indicate that zones corresponding 

to k = 3,5,7... could not be observed experimentally. These observations 
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may be expected due to the smaller size of these zones and the effect 

of presence of structural damping in the system [2]. Similarly, insta

bility zones corresponding to k= 4,6,8... can be obtained, but again 

experimental results did not verify their presence.. However, an inves

tigation of improved results for the first principal and secondary 

zones due to k = 3 and k = 4 was considered. It was found that the 

boundary frequency values were improved by less than one percent. 

Typical numerical results and the analysis for k = 3 and k = 4 are 

presented in Appendix B. Also it should be noted that the equations 

for determining free vibration frequencies of a loaded system and the 

corresponding boundaries of static stability are Equations (15) and 

(17). An examination of these equations reveals that the harmonic solu

tions corresponding to k ^ 3 do not have any influence on the calcula

tions of the first or second free vibration frequency and buckling 

load. 

The matrix elements, E, A, B̂  and Ĉ  are of °° by °° order. The 

order of these elements is determined by the number of deflection 

nnx °° 
functions used among {sin — — } , in Lagrange's formulation of the 

X/ 11 

problem. To make the stability analysis tractable, it is necessary to 

approximate the actual deflection shape by a finite number of functions. 

This means that finite number of deflection shapes must be cautiously 

selected to represent the dynamic behavior of the column with suffi

cient accuracy. Three example cases are considered to illustrate this 

approximation in conjunction with the stability determinants of Equations 

(18) through (20) and (15) and (17). These analyses are presented in 

the next three sub-sections. 
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Case I 

Let the deflection shape of the subject column be represented by 

TTX 
sin —. Then the matrices involved in Equation (6) become , 

A = B = C = 1 

FT
 4 en 

i^iH^r1) 
P 2 

m v £ ' (21) 

P l TT ^ 

_L (JL) 

where, eu = ( f - U e ^ = (f- 1) (R - ̂ -cos ̂ s i n M ) 

Substituting Equation (21) into (18) and solving for e, yields the 

approximate formula for the boundaries of the principal region, 

= 2 EI /£) (1+!li)+l(2L)
2(p ± i) 

V v £ ' m v£ ; v o 2 ' 

P1 i V 2 

m 
(22) 

Similarly, substituting Equation (21) into (19) and (20) and solving 

for 0, the formulae for the boundaries of the secondary region are 

obtained as 

i * = 

FT 4 e,n P i-M?-
li (2L) (i + JLL) + _^ ( I L / 

m v£y v £ ' m x£y 

(23) 

and 

e* = 
FT 4 e n p« 2 II (Z) ( 1 +_H ) +_0 (IL^ 
m v£y v £ ' m v£ ; 

P, 2 4 
(—) (-) 

1/2 

Fil(-) [m V r)\^)*H\A 
(24) 
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Using Equation (21) in (15) yields the free vibration frequency of the 

loaded column: 

Q* = 
rT 4 e,, P ? II (Hf (1 + _LL) + _o (JL) 

lV2 
(25) 

Thus, the results for the dynamic stability of Case I can be sche

matically represented as shown in Figure 6. A three dimensional sche

matic representation of the primary and the secondary regions is given 

in Appendix B. To obtain the boundaries of static stability, 

Equations (21) and (17) are used to solve for P . 

2 

P* = - ^ ( 1 + ^ ) (26) 

It may be noted here that the negative sign in Equation (26) means that 

the buckling load is in the opposite direction of the external P as 

shown in Figure 3. Also, the effect of the region of discontinuities, 

namely the region from x = a to x = b with cracks or notches, on e*, 

ft* and P* is included in the term e-,-.. That is, as noted earlier 

— A K 
e . = ( T - 1)e •» where K is implicitly defined in Equation (3). 
m i n i K J M v ' 

An examination of the matrix, E_, in the equation of motion reveals 

that in general it must be a non-diagonal matrix. This implies that the 

representation of the deflection shape of the subject column by only 
TTX 

sin — may not be sufficient. Nevertheless, the above development 

yields formulae for the preliminary design of a column with discontinui

ties and a periodic external load. A more refined stability analysis 

is presented in the next sub-section. 
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2a 

Eq. (22) with + ~-

Eq. (22) with - -̂  

Principal 
Zone 

Eq. (23) 

Eq. (24) 
Secondary 

Zone 

Figure 6. Schematic Presentation of Instability Zones 
for Case I. 
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Case II 

The deflection shape of the column was represented by sin 7TX 

to derive the stability criteria of Equations (23) through (26) in 

the last sub-section. It was noted that these results are perhaps 

over simplified for the stability behavior of the column. In this 

section a more refined analysis is presented and additional character

istic features of the stability behavior are deduced. 

ITX 

Representing the deflection shape of the column by sin — and 
2TTX nirX °° 

s in —— ( the f i r s t two f unc t i ons among the { s i n — - } are used i n 

Equation (27)) , the matr ices invo lved i n the equat ion o f motion become, 

A = B = 
1 0 

E = 

C = 

1 + 11 

,2 e21 

,2 e12 

4 4 22 
2 + 2 - ^ 

£ 

, where (27) 

e l l e12 

e21 e22 
« ( * - ! ) 

D £ „ 2TTC . 2TTR 
R - ^ - c o s —— s i n — -

£7T £ £ 

1 TTC . TTR £ 3TTC . 3TTR 
-cos-—sin-—- ^—cos——sin—— 
7T £ £ 37T £ £ 

£ TTC . TTR £ „ 3TTC . 3TTR D £ _ 4TTC . 4TTR 
- c o s T s i n T - 3 7 c o s ^ ^ i n - r R - ^ c o s — s i n — 
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and 
P 2 
0 fM a 
m £ 

B.f£'2 
mV and .2 - f (|) 

Substituting Equation (27) into (18) yields the equations for the 

boundaries of principal regions as 

2M + ]1^ + ! 
w ( I + J - a ± w 

A 21 2 
4 w 

4 6 
d 12 2 
4 co 

w2 ( 24 + 24 ^ 2 ) . 4 a ± 2 3 1 e2 

= 0. (28) 

Equation (28) represents two quartic equations in e. These two 

equations (equations corresponding to ± sign in the determinant of Equa

tion (28)) are the conditions under which the equation of motion has 

periodic solutions, 

f ( t ) = ^ sin Y- + ^ cos ~ (29) 

4TT 

with period 2T = — . Formally, denote 

H - 2 n , c l l x + 1 d1 - u> (1 + — ) - « ± g 

d2 = OJ2(16 + 16 - p - ) - 4a ± 2| (30) 

H A 1 2 2 
d 3 " 4 I" w 

in the determinantal Equation (28). Then expanding the determinant 

y ie lds 

4(d ] +d 2 ) e 2 - 16 (d 2 -d 1 d 2 ) = 0 (31) 
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(32) 

The solutions to this equation can be written as 

1 /p 
81 = /2 [(d^dg) + /fd^- d2)

2 + 4d|] 

i n o 1/2 
e2 = - /2 [(d1 + d2) + /(d1 - d 2 ) ^ + 4d^ ] , 

/ o o V 2 
83 = /2 [(d] +d 2) - /(d1 - d 2 ) ^ +4d^ ] , and 

/— ~7 T 1/2 
84 = - /2 [(d 1+d 2) - /(d1 - d 2 ) ^ + 4d^] 

Since d. and d? each represent two definitions, there are eight roots 

of Equation (31). These roots may in general be complex, imaginary or 

real. To examine the above possibilities, consider the quantity 

(d1 - d 2 )
2 + 4d2 

in Equations (32). Clearly, this quantity is positive since d,, d? 

and d~ are real functions of the physical parameters, P , P,, EI, K, £ 

etc. This means that none of the roots in Equations (32) can be com

plex. 

To examine the remaining possibilities, consider the quadratic 

formula 

82 = 2 [(d]+d2)± / ( d 1 + d 2 )
2 + 4(d 2-d ]d 2) ] (33) 

which is equivalent to Equation (32). If e < 0, imaginary roots will 
2 

be obtained. If 0 > 0, real roots will be obtained. 
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2 
For the positive sign, 0 > 0 if d-. >_0 (an examination of 

el 1 e22 Equations (30) reveals for small values of -— and -— . d9 > d, 

and (d-. + d 0) > 0 if d, > 0.)- This corresponds to a condition on the 

applied load -P -P,; i.e., it must be greater than the lowest buckling 

load (compressive loads are negative in this development). 

Examination of Equation (33) with the negative sign reveals that 

2 2 
L - d,cL) > 0. Thus, if d« > d,d« 

2 2 2 
< 0, if (dQ - d,d9) > 0. Thus, if dQ > dnd9, imaginary roots may be 2 

obtained from negative sign of Equation (33). Conversely, if d~ < d-.do 

real roots are obtained. 
2 

Further examination of the inequality d~ < d,d0 reveals that this 

also corresponds to a condition on the applied load. That is, compres

sive loads exceeding the lowest buckling load cannot be permitted. 

To illustrate this, recall that the buckling loads are evaluated 

using Equation (17), 

P 0 7T 2 

|E_ - aA| = 0, where a = - — (—) 

Suppose that the column is loaded with the first buckling load, P*-,, 

as shown in Figure 7. Note that P , > 0, P-, > 0, P > 0, and negative 

sign indicates compression. Substituting Equation (27) into (17) and 

expanding the determinant yields 

[o)2(l .+ Jl) - a*][16w
2(l + ffi - 4a*l = d\ , (33a) 

* p*i 2 P + Pn 2 
where a = - -^- (f) = - -*—± (}) 

m v # / m v £ y 
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0 t=t-

-P + P, 
o 

-P 

P -Pi=-P*i 
0 *1 

w 

P(t ) 

t=t t=t 
time t 

Figure 7. Schematic for the Column Load-Time History 
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2 2 
An examination of the above equation reveals that dL >_ 0. If cL > 0, 

then left hand side of (33a) must be positive. It follows from Equa

tions (30) that 

d.,d2 w
2 ( l + 7 1 1 ) - a± 16a)2(l + -p-) - 4a±2| 

P l 2 

/ I T ' where 6 = - — (y) . At the buckling load (points t = t-, and t = t,) 

the above equation assumes the form, 

dl d2 = [aj2(1 + / L ) " «*H16u>2(l + / % - 4a*] 

= left hand side of Equation (33a) 

Therefore if |-P -P,| > |P*i| then d.d« < d- and the column is loaded 

beyond the first buckling load. Similarly it can be shown that the 

2 2 
column is loaded beyond the first buckling load when d^ = 0 and d 1d«<d^ 

It follows then that if the above inequalities are satisfied, 

Equations (31) yields eight real roots, four pairs of plus and minus 

real roots for e. The negative root may be dropped, since it is merely 

equivalent to a phase shift in the solution given by Equation (29). 

Thus 6-, and e^ roots are two positive roots of Equation (31) which 

describe the boundaries of the instability regions. e« corresponds to 

the boundaries for the lowest region and e, the next higher region. 

Similarly, the condition for an imaginary root for Case I can be 

obtained. For columns in the post buckling range an analysis developed 

by Lubkin and Stoker [29] should be consulted. It may be noted that 
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their analysis involved uncoupled Mathieu equations for uniform columns 

(no region of discontinuity). For a post buckling analysis a new sys

tem of equations of motion must be formulated for the column with dis

continuities. The present investigation is limited to columns loaded 

below the buckling load. 

The boundaries of the principal regions of instability can be 

found from Equation (28) using the method of successive approximations 

(Appendix B) as described below. 

Setting the first element of the diagonal of equation (28) to 

zero and solving for e gives 

2 ell 1 1/2 

= 2[</(l + Y 1 ) - a ± 1 3] (34) 

Substituting Equation (34) into the second element on the principal 

diagonal of the determinant in Equation (28), setting the determinant 

equal to zero, and solving for e yields, 

>* = 2 [o)2(l + Y1) - a ± 1 3 - C^ 2] , 

where 

16e12e21 

C] = ^ - z • (35) 
,, . ,, 622 ell 3a + 3 6 
15 + 16r~- F - T ^ T 

00 OJ 

Equation (35) is called the first successive approximation to e and the 

term c-. may be considered as a first correction to the initial approxi-
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mation given by Equation (34). Substitution of Equation (35) into 

the second element on the principal diagonal of the determinant in the 

Equation (28) and solving for 0 yields 

C2 = 

. = 2[co2(l + - J 1 ) - a ± 1 $ " C2u>2] 

L12  

M t - . l f i
 e22 e H o a ' 3 6 v 

(15 + 1 6 r ~ " — - 3 "2 * 2 T + V 

(36) 

Equation (36) represents the second successive approximation to e and 

c« is the corresponding second correction. This process of successive 

approximations may be continued until the corresponding numerical values 

of corrections do not change significantly. 

Similarly, setting the second element on the diagonal of Equation 

(28) equal to zero and solving for e gives 

o e9 1/2 
e* = 2[u (16 + 16 — ^ ) - 4a ± 23 ] • (37) 

Aj 

Substituting Equation (37) into the first element on the principal 

diagonal of determinant in Equation (28), setting the determinant 

equal to zero, and solving for e gives 

e 1/2 
)* = 2U)2(16 + 16 —£•) - 4a ± 23 + c^ 2] " , (38) 

where c, is defined by Equation (35). Equation (38) is the first 

successive approximation with the initial approximation given by Equa-
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tion (37) and the corresponding second successive approximation is 

¥ 1/2 
6* = 2[w

2(16 + 16 - ^ - ) - 4a ± 26 + c ^ 2 ] ' , (39) 

where c? is given by Equation (36). 

Thus, the analysis of Case II provides the location of the bound

aries of the first two principal regions as depicted qualitatively in 

Figure 8. It is clear that the instability zone A is of interest from 

a practical viewpoint because it occurs at lower frequency range. 

Corresponding to each principal instability zone, i.e. A and B, 

there exists a secondary instability zone, a free vibration frequency 

boundary and a buckling load. Using Equations (27) in (19) and apply

ing the above successive approximation technique, the first two succes

sive approximations formulae for the lower boundary frequencies of the 

first secondary zone of instability are obtained as 

2,, e^^^ - 2 1/2 

= [oo (1 + - — ) - a - c-jw ] , where (40) 

16e12e21 

I2 

c-, = — — — • ; and 

., , 1#;
 e22 ell 3a 

15 + 16 IT"* ~"~2 
O) 

? ell - 2 1/2 

i* = [u> (1 + -LL _ a _ c f] 9 where (41) 

(cont.) 
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P = Constant 
o 

Figure 8. Schematic Presentation of Principal 
Zones for Case II. 
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1 6 e12 e21 

15 + 16^-3 Vcl 

Similarly, for the secondary zone the first two successive approxi

mations formulae for the lower boundary frequency are 

e 1/2 
i* = [o)2(16 + 16 -~^) - 4a + c^u)2] and (42) 

l* = [co2(16 + 16 -^2.) - 4a + Z0J] 
1/2 

(43) 

wh ere c-, and c? are defined in Equations (40) and (41) respectively 

Note that c-, = c, 
3:=o 

and c ? = c ? 

!=o,c1=c1 

Use of Equations (27) in (20) gives a formula for the upper bound

ary frequencies of the secondary zone. If Equations (27) are substi

tuted into (20), then the upper boundary frequency corresponding to the 

first secondary zone is obtained from the determinantal equation: 

2 M + ]1^ A 12 2 
4 - — a) 

, c21 2 
4 w 

9 99 
u> (16+16 -—-) -4a 

2 n + 11^ J-
o) [\ + T—J-a-6 

0 

-43 

d 612 2 

-2 6 4 T^- a)2 co2 (16+16 v^-)-^-e 2 

= 0 

(44) 
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Setting the third element on the principal diagonal in the determin

ant of Equation (44) equal to zero and solving for 9 gives 

7 en 1/2 

= [</(! +1[ii) - a] 

Clearly, this initial approximation to obtain the results for 

the first secondary zone of instability is natural since the zone is 

located near the first fundamental frequency of vibration (Figure 5(a)T 

type solution). 

Using the above equation in the last element on the principal 

diagonal of the determinant in Equation (44), and expanding it by the 

third column yields: 

e^u) 
u) 2(16+16^-) 

-2 3 

- 4a -4|3 

e-. pU) 

7 7? 

u (15 + 16 -$•-
11 ) - 3a 

+ [u)2(l+r!l)-a-e
2] w2(1+!u)„a 4 ! i Z 

e21a) 7 99 
u (16+16 -—)-4a -40 

-23 a)2(15+16 ^ - J i ) - 3 a 
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-4 
e^u) 

w (I + —— ) -a 

p 2 e^-. to 

£ 

- 2 
e12w 

co2(16+16 -—-) - 4 a 

0 

0 

-43 

- 2 

£ 

= 0 

Denoting ||D, || , ||D0|| and | |DJ| as the minors of the non-zero e le

ments of the t h i r d column in the determinant of Equation (44) and 

solving for e gives 

U) ( I + ) - a 
D 

- 4 
e91u> | |DJ| 1 1/2 

(45) 

where 

[16</(1 + - ^ ) - 4a] [(15+16 -j±- - | V - 3 a ] - 1 6 3 ^ + ( 4 - ^ — ) 

D2|| = [^(l+^J-a] [16co
2(l + -p-)-4a] [15+16 -p-:-^l- 3a]u)

2-832 

- (4 - ^ - ) [(15 + 16 -P- - ^ a ) 2 - 3a] 
£ £ £ 

D3|| = 4 
e-. pco — — —- c 0 

[a) (l+-Ji)-a][16/(l+-^)-4a]- [4 -^—] +23^ 

Thus, Equations (45) and (40) are formulae* for the upper and 

lower boundary frequencies of the secondary zone of instability corre

sponding to the principal zone A in Figure 8. Similarly, the results 

Appendix B: Discussion on Equations (45) and (40) 
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for t he second boundary corresponding to Equation (42) is obtained 

as 

- - - ? - -.1/2 
e „ ID-. II 4e19w I DJI 

160,2(1.^2) . 4 a _ 4 3 _ L l L . _0^_ 1^ 
" l|DJ| l ||D2|| 

, (46) 

where 

DJI = -6 
r\ "IT O OO 1 1 ^ C I A O J L n 

2[</( l + - ^ ) " «] [u (15+ 16 ~ ^ - 4 1 ) ~ 3 a ] " " " T - ) ~* 

2,, . 11 22 1 .2 
o|| = [OJ (1 +~r~) ~ a l [<*> ( 1 6 + 16 - » ) - 4a ] [ - Tj- 3 - 3 a + co (1 5+16 

e22 e l l 
£ £ )1 

9 99 11 19 9 1 ^ ^ 

- [</(15+16 -££•- - L I ) - 3 a ] [4 - V ] , and £ £ £ 

4e-. 9G0-1 2 H-e-î eo-i 3 
3II = ["'(I +~) -a] [^(16 + 16 -f^)- 4a] ( 1| 21 ) -( ^ ^' ) -2 11 22 

Substituting Equation (27) into (15) and solving for fi by the 

successive approximation procedure, the first and second approxima

tions for the natural frequency with initial load P is obtained as 

- 21]/2 

[ 

M 11 x - 21 

2,, C 1 K - 2i 1 / 2 

and 

fi* = a) (1 + --~) - a - c. , where 

(47) 

(48) 

c-, and c? are defined by Equations (40) and (41) respectively. Equa

tions (47) and (48) are results corresponding to the instability zone A 
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shown in Figure 8. The natural frequencies associated with the insta

bility zone B are 

ft* = [u (16 + 16 -jp-) - 4a + c-,u J a nd (49) 

1/2 
= [to2(16+16 ~ ) - 4a + c2w2] , where (50) 

Equations (49) and (50) are the first and second successive approximations 

respectively. 

Using Equations (27) in (17) and solving for P by the method of 

successive approximations, the buckling load formulae for the first and 

second successive approximations are obtained as 

P^ = - m£ 2r *\ls - 2 

CT = 

ufO +-F-J-C 

I2 

, where 

and 

3 + 4 
e22 ell 

P. - -(^) 
m&_ 

TT 

2 n . e l K - 21 
U ( I + — ) - C203 

4e~2 4e12 

where 

(51) 

(52) 

i 
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Formula (51) and (52) represent the first buckling load of the column 

shown in Figure 3. The two successive approximations corresponding to 

the second buckling load are 

4-rr 
w2(16+16 -p-J + Cnto2! , and (53) 

>mi 
2 r 

-rv) 
4TT 

I D 2 ( 1 6 + 1 6 - p ) + 4c2< (54) 

The results of stability analyses for the case II are summarized 

in Figure 9. The principal zones A, B and the secondary zones C,D are 

qualitatively represented in Figure 9. The corresponding free vibration 

frequencies are indicated by fl, , ftp on t n e e axis. Substitution of 

C = z/2 in E_ of Equation (27) yields 

E = 

R+f sinM 

0 R -
I . 4TTR 
7J- sin - „ — 
4TT £ 

(f-D 

This means that for the special case in which the cracked or notched 

region is centrally located, Case II does not give better results than 

Case I. Indeed, in this case Case II reduces to Case I for the first 

primary and secondary zones. 

However, improved results have been obtained for non-central 

discontinuous regions, and additional results corresponding to the 
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2a 

Eq. (38) or (39) 

Eq. (38) or (39) 

Eq. (46) 

Eq. (35) or (36) 

Eq. (35) or (36) 

Eq- (45) 

Eq. (40) or (41) 

P = Constant 
o 
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Figure 9. Schematic Presentation of Instability Boundaries 
for Case II with P = Constant. 

o 
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second principal and secondary zones of instability have also been 

obtained. In the next subsection improved results are presented for 

C = z/2 by use of the method of successive approximations. 

Case III 

In the last two subsections the stability formulae with the rep-

TTX 

resentation of the deflection shape by sin — was developed in Case I 

and with sin ^— and sin —— was developed in Case II. Approximations 

for only the first primary and secondary zones of instability are pro

vided by the stability model of Case I. The first two primary and sec

ondary regions of instability are located in the e-p characteristic plane 

by use of the model in Case II. Naturally, a representation of the 
TTX 2TTX 3TTX 

deflection shape of the column by sin — , sin — — and sin — — will 

provide the first three primary and secondary regions of instability. 

Physically, among these three zones, the first primary and secondary 

regions, being in the lower frequency range, are of most interest. 

Therefore, the following presentation will be restricted to obtaining 

the first primary and secondary instability regions. If the deflection shape is represented by sin ̂ —, sin —J— and 

sin 
3TTX then matrices involved in the equations of motion become, 

1 0 

A = B = (55) 

0 0 



E = 

1 + 
11 

2 e21 

,2 e31 

,2 e12 

24 , 24 c 22 

3 2 . 2 2 ^32, 

,2 e13 

2 2 . 3 2 . ^ 3 

34+34 - ^ 

where, ( 5 6 ) 

n 
en 

e12 e13 

e21 e22 e23 

e31 e32 e33 

£=(fi) 

R - 75—cos — — s i n —— 
2TT £ £ 

1 TTC . TTR 
- cos—-SI n— 
TT £ £ 

£ 3TTC . 3TTR 

3 ^ 0 S ^ i n ^ 

£ TTC . TTR £ 3-ITC . 3TTR £ 2TTC . 2TTR J, 4TTC . 4TTR 

^ 0 S T ^ i n T - 3 ^ 0 S ^ ^ i n - r 2 ^ o s ^ i n — - 4 ^ o s ^ i n — 

D £ 4TTC • 4TTR 
R - 7—cos——sin—— 

4TT £ £ 

£ TTC . TTR £ 5TTC . 5TTR 

-cos-—s 1 n— - •£—cos——s I n — -
TT £ £ 5TT £ £ 

J> 2TTC . 2TTR £ 4TTC . 4TTR £ TTC . TTR £ b^C . birR n £ buC . 6TTR 
^-cos——sin—— - -T-cos——sin—— - c o s — s i n — - F - C O S — — s i n — - R - ^-cos——sin—— 
2 T T £ £ 4 T T £ £ TT £ £ 5TT £ £ OTT £ £ 

and 

0 / T T x 2 
a " " W 

p i . 2 

—(7) a n d 
2 _ E l . i r . ( 5 7 ) 

en 
-F^ 
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For the sake of simplicity here the case with C = £/2 will be con

sidered. Then, 

E = (f-1) 

R + f sin M 
2TT £ 

0 

R - ^ s i n ^ 
4fT £ 

1 c-^ 2 ^ R _ L T ^ 4 I T R ~—sin —— - 7j—sin—— 
CT\ £ 4TT £ 

H c . 2TTR £ - 4TTR 

75—sin —-— -jr— s i n —— 
2TT £ 4TT £ 

R + f sin^f 
6TT £ 

It is convenient to rewrite Equation (58) in the following form 

(58) 

E S 

§11 §12~° e13 

e21 ° e22 '23=0 

e31 e32 ° e33 

(59) 

Substituting Equation (59) into the _E matrix of Equation (56) yields 

E = 

1 + 
'11 

31 

16(1+-^-) 
£ 

0 

g C13 
£ 

3 

81(1 +-
B33x 
£ 'J 

(60) 

If Equations (55) through (57) and (60) are substituted into Equa

tion (18), the equations for the boundaries of the principal regions are 
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uj ( I +——;-a ± «-3-yj-0 a 13 2 
9 -;;— w 

q 31 2 
y —:— co 

? ?? 1 ? 
16u> (1 +-^)-4a±23-7"6^ 

81W
2(l+^-)-9a±| 

= 0 

The above equation is the condition under which the equation motion has 

a periodic solution given by Equation (29) with period 2T = —- and the 

3 . 
deflection shape represented by v(x,t) = £ f.(t)sin—^—. Clearly, this 

i = l n £ 

determinantal equation degenerates into the following two independent 

equations: 

CO ( I + — — j " a ± 7) 

a 31 2 
y ~~:— w 

i-e2 

4 e 
Q 13 2 
y ~ — co 

e„ 
81a)2(l + ̂ 3 ) - 9a ± | I92 

4 9 

= 0, (61) 

and 
9 99 1 9 

16o» (1 +-f^) -4a± 26 - | 6 = 0 (62) 

Equation (61) represents the frequency boundaries of the first and the 

third principal regions of instability, while the second principal region 

of instability is given by Equation (62). Applying the method of suc

cessive approximation to Equation (61), the boundaries of the first 

principal regions of instability are obtained as 
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• a ± l B-C-,,/1 'U 
I 

= 2 
2 el 1 1 211/2 

a) (1 + ~y~) ~a ± j B - Cpw I , where 

81 e 13 

Cn = 

80+81 ! M . ! R + % ± 4 
, and 

l l 2 ~ 2 
0) OJ 

(63) 

81e 
13 

£ 

80*8, ̂ - ^ - * | t *§-•<! 
0) CO 

The first and the second relations of Equations (63) are the first and 

second successive approximate formulae for the first principal region of 

instability. Clearly, using as a guideline the previous subsection, the 

formulae for boundaries of the second and third principal regions may 

be deduced. 

Similarly, substitution of Equations (55) through (57) and (60) 

into (19) followed by the method of successive approximations gives 

(1 +4 1) - a " ClW
; f2. 

2 ell — 2]1/^ 
03 (1 + -y) - a = C2w 

; and (64) 

Cl = Cl 
3=o 

and Cp = c? 
J=0 ,C-j =C-. 
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c, and c? are given by Equation (63). The relations in Equation (64) 

are the first and the second successive approximate formulae of the 

first secondary region of instability for the lower boundary frequen

cies. By use of Equations (55) through (57) and (60) in (20), then 

adopting the method of successive approximation yields the first succes 

sive approximate formula for the upper boundary of frequencies for the 

first secondary region of instability as 

2M + u \ 
D 9e 1 3 2 ||D 

D, 

1/2 

, where 

r 9 ,2 1 .2 1 . . 81 2 1 
[2 d3 + 2 d2 " 2 dl d2 " ~ T 6 ] ' 

dl d2 ~ dl d2 2 ^ dl " d3 d2 + dl d2 ' 

D3|| = d l d 2 d 3 - d 3
3 - f 3 2 d 3 ; with 

(65) 

9e-
d1 =a) 2(l+^l) - a , d2 £ 81a)

2(l+-|^-)-9a, and d 3 ^ ~ | ^ — . 

Substituting Equations (55) through (57) and (60) into (15) and 

solving for ft by the method of successive approximations the first and 

second approximations are obtained for the first natural frequency with 

initial load P as 
0 

n* = 
2 M 11> 7 2 

O) [ I + — ; — ) - a - C,U> 

ll/2 
, and (66) 
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n* = 2 # i +
e i ^ - 2 T / 2

 h 
w (1 + ̂ r~) " a - c o w » where 

(67) 

c-, and c« are defined in Equation (64). Using Equations (55) through 

(57) and (60) in (17) and solving for P by the method of successive 

approximations, the buckling load formulae for the first and second 

successive approximations are obtained as 

P* = 
02 r 

~[ 2' 
TT 

(1 + T 5 " Clw J' where 

9e 13 

cl = 

+ 9!33 31 
i a 

; and 

p* - - ( ^ 2 - ) 
TT t 

2 ci ] _ 2 
UJ (1+—r—)-cO0) I, where 

!1-
9e 13 

c2 = 

8+9 
:33 ^ - + c l Cl 

(68) 

(69) 

Formulae (68) and (69) are associated with first instability region. 

The results of stability analysis for Case III are summarized 

Figure 10. The first instability zones are qualitatively represented 

in Figure 10. Since only the first principal and the secondary insta

bility regions are physically of significance, the formulae correspond

ing to the A and B zones are enumerated in this subsection. The formulae 

corresponding to the second and the third i.e. zones D through E may be 
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2n. Third Primary Zone 

j i. t i t j t / ( Third Secondary Zone 

2n, Second Primary Zone 

* i * * * f Second Secondary Zone 

2ft-

Eq. (64) 

First Primary Zone 

First Secondary Zone 

P = Constant o 

Figure 10. Schematic Presentation of Instability Boundaries, 
for Case III with C = i/2. 
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deduced by use of the procedures of the previous subsection. However, 

they are qualitatively presented in Figure 10. Recall that the formu

lae derived in this subsection are for the special case C = £/2. It is 

also noteworthy that these formulae are representing behavior of the 

column better than the corresponding formulae for the special case 

C = £/2 in the previous two subsections. This conclusion is justified 

on the basis that in a vibration problem the results will, in general, 

be improved when the stiffness representation is improved; and Case III 

stiffness is better than Case II (Equations (56) and (21)) for C = £/2. 

The analyses presented in the last three subsections involve two 

types of approximations: 

o the representation of the deflection shape of the column by 

a finite number of sine functions of the independent variable, x; and 

o the use of a finite number of time dependent harmonic func

tions in the generalized co-ordinates, £(t). 
n — 9 

Specifically, sin -7-was used in Case I, {sin —jj—} in Case II 
£ x, n=:-| 

n=3 
and {sin ^—} in Case III for the deflection shape representation. 

1 n=l 
6t fit 

However, the generalized co-ordinates, f(t) = a. sin-y- + b-. cos y- and 

f(t) = j b + a?sin 61; + b? cos et were used in obtaining the solution 

of the equation of motion in all three cases. A greater number of 

deflection functions to represent the deflection shape and more time 

dependent harmonics in the generalized co-ordinates may be used to 

obtain improved results. However, a proper balance of these two should 
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yield sufficiently accurate results. 

Numerical results of these case studies are presented in Chapter 

IV. There, some additional features of the problem are discussed in 

conjunction with the experimental findings described in the next chap

ter. 

* 
Appendix B: An Analysis with k = 3 , k = 4 and Typical Numerical 

Results. 
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CHAPTER III 

EXPERIMENTAL PROGRAM 

Introduction 

The test facilities and procedures with the test specimen geome

tries for the dynamic stability and the stiffness measurements are 

described in this chapter. Also presented are data resulting from 

these measurements in tabular form. Some data reductions are given in 

graphical form along with the required calibrations involving these test 

measurements. The experimental results described here and analytical 

results presented in the previous chapter are correlated in the next 

chapter. 

Specimens 

Four specimens were considered for tests of the dynamic stability 

analysis. Their geometrical and physical parameters are described in 

Tables 1 and 2 in conjunction with Figure 11. The test specimens were 

used to get quantitative data for the dynamic and the stiffness reduc

tion analysis. The test facility, procedure for data recording and the 

calibration for the parametric stability tests are described in the next 

sections. 

Test Facility 

The test facility* used to conduct the dynamic stability 

The test facility is described in greater detail in Reference [23]. 



Table 1. Geometric Properties of Specimens 

Specimen No. Length Cross-section Slot Location of Length of No. of 
in inxin Thickness slot slot slots 

in in in 

1 36 3/8 x 1/2 -- -- — None 

2 36 3/8 x 1/2 1/16 18 0.2 1 

3 36 3/8 x 1/2 1/16 18 0.3 1 

4 36 3/8 x 1/2 1/16 18 0.4 1 
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Table 2. Physical Parameters of the Test Specimens 

Property Description Remarks 

Material 

Mass Per Unit Length 

Estimated Maximum Stress at 
Slot Tips 

Estimated Buckling Load 

Estimated Lateral Vibration 26.0 Hz 
Frequency 

Estimated Longitudinal Frequency 2916.0 Hz 
of Vibration 

End Conditions Simply Supported 

AL 7075-T6 

.490497 (10) 

15 ksi 

172.0 lbs 

These parameters were useful while conducting and designing the tests. 
Also, note that the values apply to all specimens, i.e., 1,2,3,4. 
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Figure 11. Geometries of the Specimens. 
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experiments is shown in Figure 12. The frame mounted on the isolation 

base provides the capability of applying mean axial loads to the speci

men through a screw mechanism at the top. The aluminum specimen is 

attached at the bottom end to a clevis connected to a crossbar fixed 

to the vertical columns of the frame. A load cell between the top speci

men clevis and the loading mechanism is used to determine the applied 

load. 

Four electrical resistance strain gages were bonded to the exter

nal surface of the thin walled tube part of the load cell. Two of the 

gages were aligned in the direction of the longitudinal axis of the tube. 

These gages were wired into two opposite arms of a Wheatstone bridge. 

The remaining two arms of the bridge were gages whose sensitive axes 

were oriented in the circumferential direction of the tube surface. 

The alternating component of the applied load was introduced by 

connecting the lower crossbar to the vibration exciter mounted on the 

top of the isolation base. The exciter shown in Figure 12 is designated 

as MB Model Cll-D by the manufacturer, MB Electronics. The system has 

a force range of ±50 pounds. The MB control system, Model T112531, con

sists of a power supply, a D.C. field supply, an oscillator, and a power 

amplifier. 

The response of the column specimen during most of tests was 

indicated by measuring the output from two strain gages (M-M: EA-13-125BT-

120) bonded back-to-back on the bending surfaces of the specimen at the 

location indicated by point D in Figure 11. The gages were aligned in 

the longitudinal direction of the specimen. These two active gages were 

wired in a circuit designed to measure the bending-strain difference 
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Figure 12. Dynamic Stability Test Facility. 
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between the two surfaces. 

The bridge from the load cell and the bridge for the column 

response were connected to Hewlett-Packard carrier pre-amplifiers 

(Model 8805A), and the signals generated were fed to two channels of a 

Model 7702B Hewlett-Packard recorder. 

Procedure for Data Recording 

The objective of the parametric excitation experiments was to 

determine the location of boundaries which separate the regions of 

stability and instability. The test conducted did not involve the 

development of unbounded displacement. However, significantly large 

amplitude displacements were observed during the resonance. 

Three parameters were involved in the experiments: the magnitude 

of the mean load, P ; the magnitude of alternating load, P,; and, the 

frequency of alternating load, e. Only tensile mean loads were applied 

because of particular interest in the effect of tensile loads on struc

tural elements with cracks or crack-producing discontinuities. However, 

the effect of compressive load is deduced in the next chapter using the 

analytical stability model developed in Chapter II. 

To record the dynamic stability data, the following procedure 

was adopted. 

1. Apply a mean load, P , using the screw mechanism. 

2. Set the shaker power supply to obtain the desired alternating 

load, P,, by observing the load cell response on the Sandborn recorder. 

Manufactured by the Sanborn Division of Hewlett-Packard. 
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3. Set the excitation frequency of the shaker a few Hz below 

the fundamental transverse natural frequency of the column (approximately 

calculated natural frequency of the column). 

4. With this P and P, slowly increase the frequency in steps 

of one half Hz until the bending strain response reaches maximum and 

then subsides to zero. The frequency corresponding to maximum bending 

* s 
strain is the secondary zone maximum response frequency. 0 from 

J r -i J m a x 

below. 

5. Set the excitation frequency of the shaker a few Hz above the 

fundamental transverse natural frequency of the column for the same P 
o 

and P-.. 

6. For this P and P,, slowly decrease the frequency in steps 

of one half Hz until the bending strain response reaches maximum and 

then subsides to zero. The frequency corresponding to the maximum bend-

• s 
ing strain is the secondary zone maximum response frequency, e from 

max 
c 

above. Then the average of the 0 from below and from above was 
3 max 

obtained. 

7. With loads P and P, in steps (1) through (6), set the exci

tation frequency of the shaker a few Hz below two times the value of 
es . 
max 

8. With this P and P, slowly increase the frequency in steps of 

one half Hz until the bending strain response reaches significantly large 

values. The frequency corresponding to this bending strain is the pri-

P 
mary zone lower boundary frequency, 0. . 

Appendix B: Experimental Instability Zone Response. 
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9. Set the frequency of excitation of the shaker a few Hz above 

two times the es , for same P and P-,. 
max o 1 

10. For this P and P., slowly decrease the frequency in steps 

of one half Hz until bending strain response becomes significantly large. 

The frequency corresponding to this response is the primary zone upper 

P 
boundary frequency 9.,. 

11. Repeat the procedure of steps (1) through (10) with differ

ent values of P and P,. 
o 1 

12. Repeat the procedure for different values of slot length in 

the column. 
The dynamic stability information obtained is presented in Table 3. 

Calibration for End Conditions 

Recall that the experimental data for parametric instability 

recorded in Table 3 are for the simply supported end conditions. These 

end conditions were simulated experimentally by pins and over-sized holes 

in the specimen and clevis. One of these end conditions is depicted in 

Figure 13. It is apparent that these end conditions are approximately 

simply supported. Therefore, the uniform column instability data were 

matched by the analytical uniform column instability formulae for simply 

supported end conditions using the effective length of the column. The 

analytical formulae [2] used in the calibration are 
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Table 3. Dynamic Stability Data Obtained in Experiments 

P(t) lb Frequency in Hz 

Secondary Zone Primary Zone 

P Pn o 1 
s lo t length in s lo t length in 

0 0.2 0.3 0.4 0 0.2 0.3 0.4 

9S 9S 9S 9S 

max max max max 
P P P P P P P P 

9L 6U 8L 6U 9L 9U 6L 9U 

30 10 

15 

20 

45 10 

15 

20 

50 10 

25 

60 10 

15 

20 

30 

31.0 31.0 30.5 30.5 

N 31.0 30.5 30.0 

31.0 31.0 30.0 29.75 

N 31.5 32.5 31.0 

N 31.5 32.5 31.0 

N 32.0 32.0 30.5 

33.0 N N N 

33.0 N N N 

N 32.5 32.5 32.5 

N 32.5 32.5 32.5 

N 32.5 33.0 32.0 

N 32.5 32.5 32.0 

63.0 63.0 63.0 63.5 63.0 63.0 X X 

N N 62.5 64.0 61.5 63.5 61.0 62.0 

62.25 64.0 63.0 64.0 61. 63.5 59.5 62.5 

N N 64.0 64.5 64.5 66.0 63.0 X 

N N 62.5 65.0 64.5 66.0 63.0 63.0 

N N 62.5 65.5 64. 66.5 62.0 63.5 

66.5 67.0 N N N N N N 

65.0 68.0 N N N N N N 

N N 65.5 66.0 X X X X 

N N 65.0 -6.5 66.5 67.0 66.0 66.0 

N N 64.5 67.0 66 67.5 64.5 67.0 

N N 64.0 67.5 64.5 68.0 64.0 67.5 

X - No resonance type response was found 

N - Frequency determination was not attempted. 

Appendix B: Experimental Instability Zone Response. 
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V / / // / t / / / f 
\ rft Z . 

Specimen bottom end 

Pin 

Clevis 

Cross-bar 

Shaker and cross-bar 
connecting fixture 

Shakerhead 

Figure 13. Simply Supported End Condition. 



74 

e[] = 2n [ l + M ] 1 / 2 , 

P - 9 n H l ] / 2 
>L - 2fi[ l - y] 

S 1 2 V2 
IM = fi[l + 3- y ] , and 

S 2 1/2 
r = n [ l - 2y£] , where (1 ) 

0 - 4 y ^ r < 1 + fe ) >and 

pi 
P = 2(P* + P J 

In Equations (1) P , P, and P* are the mean, oscillating load ampli

tudes and the buckling load of the uniform column. EI and m are the 

stiffness and the mass per unit length of the uniform column with length i. 

The calibration process is indicated in Figure 14, and the average 

effective length of the column specimens was found to be 33.85 inches. 

Thus, the data presented in Table 3 are for specimens of length 33.85 

with test simulated simply supported end conditions. Since the actual 

length between the pin holes was 35.5 inches, this suggests that the ends 

were not free of moments, i.e., restraints at ends caused the effective 

length to be smaller than the measured length. 

Effective Stiffness Measurements 

The details of the experimental program for the dynamic stability 

of columns with a slot and the resulting instability frequency boundar

ies have been presented. The effects of notches or discontinuities on 
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(Hz) 
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80 ~ 

60 -

40 -
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Analytical 

Experimental 

P^lbs) 

Figure 14. Calibration of End Conditions 
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the frequency boundaries are discussed in conjunction with the ana

lytical models in Chapter IV. However, it should be recalled that the 

analytical models of Chapter II contain the parameters K and R. These 

parameters represent the effects of regions of discontinuity on the 

dynamics of the column. Therefore, a unique relationship between K 

and R for the known values of K or R must be established to obtain the 

parametric stability results analytically. In this section the test 

set-up and the method used to determine EK for the four specimens are 

described. 

A four-point-load bending test was used in a universal testing 

machine (Instron). The test fixture and the set-up shown in Figure 15 

were used to record deflection vs, load in pure bending of the element 

containing the discontinuity. It may be noted that the dial-gages in 

Figure 15 were placed symmetrically with respect to the slot in the 

specimen. The data recorded in this test are reported in Table 4. 

An examination of Figure 15 shows that the beam element of length 

L was loaded as shown in Figure 16. It can be noted that L is less than 

the distance between the rigid pins (̂ 8) and (9), and L is greater than 

the distance between dial gages (G)-, and (5)o- The distance between 

the pins (6) to (8), a is equal to the distance between the pins (7) to 

(?). The load, 2P was applied by the Instron machine as shown in Figure 

15. 

For a deduction of effective stiffness EK of the beam element of 

AP 
the column with region of discontinuity, the slopes were measured 

in 
experimentally. The test specimens were tested with a = 1.965" and 



s 

TTT 
©!©2 ©3 

tr/ff////fjfff//j.' r>?sj>jff?.'s?> *?>*jj>j'rfrtr>?r/rf7jr>/)f} 

Instron Base / Front View Side View 

© © © @ - Rigid Frame for Four Point Loading of Specimen, © . 

© - Instron Moving End for Loading, (G), ? - Three dial-gages. 

© © © ® - Steel Cylindrical pins, © - Spherical Steel Ball for Point Loading 

Figure 15. Four-Point-Load Bending Test Sep-Up. 
^1 
^ j 
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Table 4. Four-Point-Load Bending Data 

Specimen 
No. 

Slot 
length 

Gage Reading in 0, 0001 inches 
- P 

lbs 

V/2 
in 0,0001 

Specimen 
No. 

inches Gage 1 Gage 2 Gage 3 

- P 
lbs 

inches 

00.0 00.0 00.0 12.5 00.00 
12.0 17.0 12.0 25.0 05.00 

1 0 23.5 35.5 24.0 37.5 11.75 1 0 35.0 53.0 36.0 50.0 17.50 
48.0 72.0 49.0 62.5 23.50 
60.0 90.05 61.0 75.0 30.05 

00.0 00.0 00.0 12.5 0.0 
12.0 19.0 12.0 25.0 7.0 

2 0.2 26.0 38.0 25.0 37.5 12.5 2 0.2 38.0 56.0 37.0 50.0 18.5 
50.0 70.0 50.0 62.5 25.0 
62.0 93.0 62.0 75.0 31.0 

52.5 73.0 76.0 12.5 8.75 
64.0 92.0 89.0 25.0 15.50 

3 0.3 76.0 110.0 101.0 37.5 21.50 3 0.3 88.0 130.0 112.0 50.0 30.00 
101.0 149.0 125.0 62.5 36.50 
113.0 168.0 138.0 75.0 42.50 

56.0 75.0 72.0 12.5 11.0 
69.0 95.0 84.0 25.0 18.5 

4 0.4 83.0 117.0 97.0 37.5 27.0 4 0.4 96.0 138.0 110.0 50.0 35.0 
110.0 160.0 124.0 62.5 43.0 
124.0 182.0 137.0 75.0 51.0 
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v(x),y , 

p = M r~* 
a o ^ _ 

Figure 16. Loading on the Beam Element. 

^ 
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£' = 6. 6.8". The values of y| ,,« were calculated by use of the formula, 

y | l 7 2 =
 D

2 

D1 + D3 

, where 

AP 

I'll 
D-|,D„ and D~ are the dial gages readings in inches. The slopes, — 

were determined by plotting the measured y| ,,„ v.s. P values (Table 4) 

as illustrated by Figure 17. 

The slopes, AP 
Ay £'/2 

for specimens 1 through 4 are presented in 

Table 5. Graphically the behavior of slot length vs. slope is given in 

Figure 18. 

AP 
Table 5. Slopes (f-) 

VII 

Specimen AP 

^ ' £ 7 2 
lb/in 

Slot length in 
inches 

2140.0 

2000.0 

1800.0 

1545.0 

0 

0.2 

0.3 

0.4 

the measured 

To compute the effective stiffness EK, a relation between EK and 

AP 
Ay £72 

= c . must be obtained. Using an energy approach 

n-rrx with (sin -,—} as the deflection functions for the beam element 
L n=l 



P(lb) 

81 

100 h 

80 U 

Slot length = 0.0" 

AP 
Ay 

= 2140.0 l b / i n 
V/2 

40 V 

VII 

(1000 x in) 

Figure 17, Deflect ion vs. Load. 
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AP 
Ay 

A 7 2 
( l b / i n ) 

2000 

1500 

1000 

500 

__J l__ ! l _ 
0.2 0.4 0.6 

s l o t l eng th ( i n ) 

Figure 18. S lo t Length vs . ( A P / A y ) | £ l / 2 
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depicted in Figure 11, the required relationship is deduced. It can 

be noted that the energy procedure was selected for estimating effec

tive stiffness EK because this approach is consistent with the analyses 

presented in the previous chapter. 

The strain energy and the work done by the end moments for the 

beam element shown in Figure 11, respectively are 

EI rl,42\f,2A E(K-I) rC+f\d2Vv2, , 
U = — / (—j) dx + —K-7y—L J (—p-) dx and 

' o dx^ c C-R dx^ 

A * = L 
W = [M £ 4 

d x x=0 

Thus, the to ta l po ten t i a l , n of the beam element can be wr i t ten as 

n EI r
L , d 2 v A E(K-I) r

C + R ,d 2Vx 2 . rM dv-,X=L ,9v 
n = y j (—2") dx + N

 2 •' J (—g-) dx - [M ^ ] . (2) 
o dx C-R dx x=0 

The def lect ion shape is approximated as 

3 
n-rrX v(x) = I a s i n - j — (3) 

n=l n L 

which is consistent with the deflection functions used in the previous 

chapter. Substituting Equation (3) into (2) and minimizing n with 

respect to a , n = 1,2,3 yields, 

n 7r EI n TT E(K-I) r -2 ^ nTTaPr, , ,n nl n 
" ^ 3 - an + ̂ 4 L J} ' aieni " — K " 1 ) - 1 1 = 0 , 

(4) 

with n = 1,2,3; 
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and 

C+R 
• riTTX _.. TTTX r • r 7TX . I 7TX . 

. = / sin - j — sin - j - dx 
C-R 

R - ^Wcos ^ s i n ^ f o r i = n 2 m L L 

(5) 

L CQS ii-nM s i n il-nM . L 
Wn) 

_C0Sin±iMsinin±fM 
(i+n)7T L L 

for n f i . 

Substituting C = L/2 (since the experiments were performed with 

C = L/2) and rewriting Equations (4) in matrix form as 

:£+(* + ̂ -s1n^)<f-l)] orK n r 1
 ti„ 2nR. 1 C,„4TTR1I, 

-9[T-11[27sl"T+4;s'nTlal 

arK 11 r1 d „ M i 1 O-;„4ITRI o i r ' i i ^ ] , i o 6irR,,K , n - 9 [ T - l ] [ 2 - s i n - r + ^ s 1 n - i - ] 81 [^ + ( r + g^sin — ) ( T - 1}] J |a 3 

= -AP 

(6) 

where A = 2 py —^ ; and 

z1
 + r R ] c-in4TTR irK 

{2 + [ L - 4 ^ S i n " — ] [ T - 1 ]} a„ = 0 

It is convenient to rewrite Equation (6) in the following form 

\ 
i + V f - i ) n3(f-D 

h3(f-D -^h 2(f-l) 

= -AP (7) 
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and h,a? = 0 , where 

, A R _, 1 2TTR 
h l = L + K s i n T - s 

h2 = 8 1 ( L + 6 7 s l n — ' 

A n , 1 • 2TTR , 1 . 4irR> 
h3 = - 9 ( 2 7 S l n l T + 4 7 s l n — ' ' 

h4 - 2 + ( L 
1 . 4TTRWK 

4 T s l n — ) ( T - 1 ) ; and 

M ^ EI 3 
77 

Solving Equations (7) for a-,, a« and a-yields 

a i = -AP w 

a„ = 0 

IIM 
a, = -AP |n II , where (8) 

l + h l ( f - l ) 

h 3(f-l) 

h 3(^-D 

81 u /K nv 

n 3 ( f - D 

^ + h2(f - 1) 

and 
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jr*h,(f-l) 

h 3(f-D 

It can be noted that the beam element shown in Figure 11 is loaded 

symmetrically and the geometry of the beam element is symmetric. There

fore, the coefficient a~ is zero; i.e. since h, / 0, it follows that a?=0 

Substitution of Equation (6) into Equation (2) yields 

v(x) = - AP { ||D] || sin ̂  + ||D2|| sin ~ } 

Differentiation of the above equation yields 

â P 
dv x = L A(||D 2 

D II } = c s, where 

AP c is the experimentally measured slope — 
x = £ ' / 2 

K 

Expanding the deter-

n'nants in the above equation and solving for -y 

£ = 1 + 
- h 2 ± / h | " h , - 4 h l h 3 

2h-
, where 

h3 = 39Acs + §1 , 

h„ = 2 ^ 8 5 " h l + T " c s A ( 3 h l " h2 + 2 h 3 > ' 

(9) 

h-.h« - hu, and definitions of 

h-., h ?, ho and A are given in Equation (7). 
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In applying the analysis, the value 2R will represent the length 

of the region in which the stresses differ from those of elementary 

beam theory. Thus, 2R will be of the order of the discontinuous region 

length plus twice the cross-sectional dimension. Then, Equation (9) pro

vides a basis for computation of the K of the beam element in terms of 

known parameters. 

In the next chapter numerical results for Equation (9), and the 

relationship between the parameters K and R using the slope (Ap/Ay)|£, .„ 

vs. slot length curve are presented in conjunction with the analytical 

models developed in the previous chapter. Also, the experimental and 

analytical results for the stability of the columns are correlated. 
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CHAPTER IV 

ANALYTICAL AND EXPERIMENTAL RESULTS 

In Chapter II the developments of the analytical stability models 

and the formulae for the instability analysis were presented. Experi

mental procedures and results for the columns with and without a region 

of discontinuity were reported in Chapter III. The present chapter 

includes the numerical evaluation of the effects of the discontinuities 

using both analytical and experimental results. It may be noted that 

these effects are examined by comparisons with corresponding uniform 

column results. The analytical and experimental results are correlated 

in graphical form using a non-dimensional notation. Finally, an applica

tion of the analytical stability models is illustrated. 

Non-dimensionalization 

Use of non-dimensional notation not only reveals obvious errors in 

an analysis, but also brings out universal characteristics of the analysis. 

Another advantage gained from non-dimensional notation is computational 

expediency. Therefore, the numerical results of the stability models 

are presented in non-dimensional form. The length parameters, R and C 

are non-dimensionalized with respect to the column length, i. The load 

parameters P-,, P and P* are non-dimensional ized with respect to the 

buckling load of the corresponding uniform column. The frequencies e*'s 

are non-dimensionalized with respect to twice the free vibration frequency 
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of the corresponding uniform column. However, the free vibration fre

quency n* is non-dimensionalized with the free vibration frequency of 

the corresponding uniform column. The effective stiffness parameter K 

is non-dimensionalizee' with I of the corresponding uniform column. Thus, 

ND L 

[ 1 
I 

0 0 0 0 0 0 0 r R i 

0 1 
i 0 0 0 0 0 0 c 

0 0 1 
2^* 

0 0 0 0 0 
e * 

0 0 0 1 0 0 0 0 
^* 

0 0 0 0 1 0 0 0 p l 

0 0 0 0 0 1 
p* 0 0 

p° 
0 0 0 0 0 0 1 

p* 0 p* 

0 0 0 0 0 0 0 1 
EI 

I IM 

EK 

(1) 

J D 

where 

and 

ND - subscript indicates non-dimensional quantities, 

D - subscript indicates dimensional quantities, 

UN - subscript indicates the corresponding uniform column 

dimensional quantities. 

It is convenient to drop the subscript ND in the following presentation 

and refer all the parameters hereafter in the non-dimensional form unless 

A Pl 
explicitly stated otherwise. The excitation parameter, y = n/-\ + p ) > 

(P, and P are non-dimensional loads as defined in Equation (1)), is 

also used. Note that for tensile loads, P > 0. 
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Using this non-dimensional notation in the next two sections, 

the effect of a discontinuity region on the column stability behavior 

is presented in graphical form. In the last section an application of 

the analytical model is illustrated. 

Examination of Discontinuity Effects by Analytical Models 

There are three parameters, R, K and C, which characterize the 

effects of the discontinuity on the stability behavior of the column. 

Recall that R is the non-dimensional size of the region of discontinuity, 

K is the non-dimensional reduced stiffness due to the presence of the 

discontinuity in the column, and C is the non-dimensional location of 

the discontinuity region. Further, R, K and C are involved in Cases I 

and II, while only R and K are involved in Case III. In Case III, the 

value of C is selected to be 0.5 because of special interest at that loca

tion. It can be noted that the second successive approximation stability 

formulae are used to present results for each case. 

The total effect of a discontinuity is the sum of three effects. 

To examine these effects, however it is convenient to vary only one of 

the parameters and hold the others constant. For Case I as an example, 

the effects of a discontinuity may be identified and evaluated as fol

lows: 

o Size of Discontinuity: Vary the parameter R and hold K and C 

constant in the stability formulae. 

o Effective Stiffness: Vary the parameter K and hold R and C 

constant in the stability formulae. 
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o Location of Discontinuity: Vary the parameter C and hold R 

and K constant in the stability formulae. 

Clearly, these effects of a discontinuity influence the response in 

terms of parametric stability, free-vibration, and static stability 

through the stability formulae. 

Parametric Stability 

The basic parametric stability formulae of Equation (1) in Chapter 

III, for the uniform column are presented in Figure 19. It can be noted 

that the zones of instability in the figure represent both the compres

sive and tensile mean loads. An examination of Equation (1) in Chapter 

III reveals that the column will be loaded with the buckling load when 

P = 1/2. Since the stability results for the column loaded below the 

buckling load are of interest, the values of y are chosen to be 0 £ M <_ 1/2 

in the graphical presentation. The boundaries of the zones of instability 

for the uniform column are shown along with corresponding stability 

boundaries for the columns with a region of discontinuity in presenta

tions which follow. This facilitates an evaluation of the effects of 

the discontinuities. 

Size of Discontinuity. Figures 20 and 21 show the influence of 

the size of discontinuity using the stability models, for Case I and 

Case III. The solid lines represent the corresponding uniform column 

stability boundaries. The following observations can be made for the 

stability behavior: 

o For non-zero values of C, K, P and R, the instability zones 
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1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0 

Figure 19. Dynamic Stability of Uniform Column. 
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1.4h C =: 0.5 

K = 0.5 

P = -0.5 (compression) 

Uniform Column 

— R = 0.04 

---• R = 0.01 

1.2 

1.0 

0.8 -

0.6 

0.4 

0.2 

0.0 

0.0 0.1 0.2 0.3 0.4 0.5 

Figure 20. Effect of R on the Dynamic Stability with 
C = 0.5, K = 0.5 and P = -0.5, Case I. 
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1.4 
C =0.5 

K = 0.5 

P = -0.5 (compression 

Uniform Column 

R = 0.05 

R = 0.1 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 " 

0.0 
0.0 

Figure 21. Effect of R on the Dynamic Stability with 
C = 0.5, K = 0.5 and P - -0.5, Case III. 
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occur at a lower frequency range and are larger than the corresponding 

uniform column instability zones. 

o For given values of C, K and P^ with the decreasing values of 
3 O 3 

R i.e. size of discontinuity region, the instability zones approach the 

corresponding uniform column instability zones. 

Physically, the size of the discontinuity cannot be greater than the 

length of the column, which means the possible range of R is 0 £ R <_ 1/2 

when C = 1/2. 

From Equation (24) of Chapter II in non-dimensional form as 

11/2 

1 + 11 + P 1 
ell 

2[1 + -^ + PJ 

it is observed that 

0 < 1 + 11 + P 
£ 0 

ell 
2[1 + ---— + P i 

if e* >0 

Substitution of C = 0.5, P = -0.5, P. = 0.5 and using Equation (21) 

of Chapter II in non-dimensional form with K = 0.5 in above inequality 

yields 

Q 
0 1 R 11 if e* > 0 and (~ + -y^ > 0 . 

Thus, the stability analysis using Case I with the values of C, P , P, 

Appendix B: A Comparison of the Widths of the Instability Zones. 
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and K illustrated above is valid for 0 < R < 7. It can be noted that 

R = j implies that the size of the discontinuity region is equal to one 

half the column length. Similarly, the ranges of R for Case I and Case 

II can be established for qiven values of P, and P . Recall that the 
3 1 0 

Case II analysis reduces to Case I when C = 0.5. Therefore, results 

presented in Figure 20 also apply to Case II. 

Effective Stiffness. The influence of the effective stiffness, 

K on the dynamic stability behavior using Case I and Case III are exem

plified in Figures 22 and 23 respectively. It can again be noted that 

Case I reduces to Case II when C = 0.5. An examination of the results 

presented in these figures show that as the effective stiffness approaches 

the uniform column stiffness, the instability zone with effective stiff

ness approaches the corresponding uniform column instability zone. Also, 

the instability zones enlarge as the effective stiffness decreases. 

Clearly, K can assume any value in the interval 0 <_ K <_ 1. When k = 1 , 

the results for the uniform column are obtained. However, if K = 0 and 

R f 0 then the idealized column degenerates into the configuration shown 

in Figure 24. The shaded region in the figure represents a distributed 

mass of length 2R with zero bending stiffness. Physically, zero bending 

stiffness elements can be interpreted as cable or string elements. Clearly, 

such a system is unstable for oscillating compression but for oscillating 

tension a meaningful dynamic stability result is possible. It may, in 

fact, be a condition which may be approached in a composite material in 

which extensive cracking has occurred in surface layers. 

It can be noted that the uniform column results can be recovered 

if both K and X approach zero. 
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1.4 

1.0 

0.6 

0.4 

0.2 

0.0 

c = 0.50 

R = 0.045 

P = - .5 (compression) 

K = 1.0 

K = 0.5 

K = 0.01 

1.2 -

0.8 -

0.0 

Effect of K on the Dynamic Stability with 
C = 0.50, R = 0.045 and P = -0.5, Case I 

o 
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1.4 

C = 0.5 

R = 0.045 

P = -0.5 (Compression) 

Uniform Column 

K = 0.01 

K = 0.20 

1.2 

1.0 

0.8 

o.6 r 

0.4 

0.2 

0.0 _L 

0.0 0.1 

Figure 23. 

0.2 0.3 0.4 0.5 

Effect of K on the Dynamic Stability with 
C = 0.5, R = 0.045 and PQ = -0.5, Case III. 
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P( t ) 

/fTTn 

k - 2 R — M 

4 C —* 

P( t ) = P +P_ COS 0t 
0 I 

PW7T 

Figure 24. A Degenerate Result 
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Location of Discontinuity. The influence of the location of the 

discontinuity region, C, on the dynamic stability is depicted in Figure 

25 for Case I. For R = .02, K = 0.01 and P = -0.5 the instability 
o 

zone occurs at a lower frequency range and becomes larger as the region 

of discontinuity moves towards the center of the column. However, when 

the region of discontinuity moves toward either end of the column, the 

dynamic stability behavior of the column approaches that of the uniform 

column. Similar results can be obtained using Case II. It can be 

recalled, however, that Case III is applicable only for C = .5. 

In the above discussion the effects of parameters R, K and C on 

the stability behavior of the column are considered. The parameters R 

and C represent the geometric characteristics of the column and K repre

sents geometric-material properties of the column. However, the param

eter P and P, represent the loading characteristics of the column. The 
influence of P on the instability is illustrated in Figures 26 and 27 

0 j » 

for Case I and Case III respectively. It may be noted that, for C = 0.5, 

R = 0.045 and K = 0.01 the instability zones occur at a lower frequency 

range and are enlarged as P decreases from zero to compression. Recall 

that the corresponding Case II result is the same as for Case I since 

C = 0.5. 

Free-Vibration 

In previous paragraphs we considered the influence of a region of 

discontinuity on the parametric stability behavior of the column. The 

influence of a region of discontinuity on the free-vibration behavior 

of the column is depicted in Figures 28 through 32. It can be noted 
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1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

R = 0.02 

K = 0.01 

P = 
0 

-0.5 

Uniform Column 

C = 0.3 

C = 0.5 

0.2 

0.0 _L 

0.0 0.1 

Figure 25 

0.2 0.3 0.4 0.5 

Effect of C on the Dynamic Stability with 
R = 0.02, K = 0.01 and P •0.5, Case I 
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1.4 C = 0.50 

R = 0.045 

K = 0.01 

Uniform Column 

P = 0.0 
o 
P = -0.5 
o 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0 0.1 

Figure 26. 

0.2 0.3 0.4 0.5 

Effect of P0 on the Dynamic Stability with 
C = 0.5, R = 0.045 and K = 0.01, Case I. 
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Effect of P on the Dynamic Stability with 

C = 0.5, R = 0.045 and K = 0.01, Case III. 
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-0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 

Figure 28. Effect of R on the Free-Vibration Frequency with 
C = 0.5 and K = 0.50, Case I and Case II. 
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C = 0.50 

K = 0.50 

R=0.00 

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 o 

Figure 29. Effect of R on the Free-Vibration Frequency with 
C - 0.5 and K = 0.50, Case III. 
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J — P , 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

Figure 30. Effect of K on the Free-Vibration Frequency with 
C = 0.5 and R = 0.045, Case I and Case II. 
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C = 0.50 

R = 0.045 

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 

Figure 31. Effect of K on the Free-Vibration Frequency with 
C = 0.50 and R = 0.045, Case III. 
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K = 0.01 

R = 0.02 

J i I l J p 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

Figure 32. Effect of C on the Free-Vibration Frequency with 
K = 0.01 and R = 0.02, Case I. 
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that U+, P , R, K, and C are the non-dimensional parameters. An exami

nation of these figures reveals the following free-vibration behavior 

for a column with a region of discontinuity: 

Size of Discontinuity. An examination of Figures 28 and 29 

shows that for given values of C, K and P , the free-vibration frequency 

decreases as R increases. However, for given values of C, K and R the 

frequency increases as P increases from compression to tensile load, and 

the frequency approaches the corresponding uniform column frequency. 

(Note that the vibration frequency is nondimensionalized with respect 

to frequency of axially loaded uniform column.) It can be noted that 

the frequency increases more rapidly in the compression range than the 

tensile range as P increases. 3 o 

Effective Stiffness. Figures 30 and 31 reveal that for given 

values of C, R and P , the free-vibration frequency decreases as K 

decreases. However, for given values of C, R and K the frequency in

creases as P increases from a compressive to a tensile load, and the 

frequency approaches the corresponding uniform column frequency. Note 

that the frequency increases more rapidly in the compression range than 

in the tensile range as P increases. 3 o 

Location of Discontinuity. The influence of the location of a 

region of discontinuity on the free vibration frequency is shown in Fig

ure 32. For given values of K, R and P , the free-vibration frequency 

decreases as C approaches 0.5 (the center) from zero. For given values 

C, R and K the frequency increases as P increases from compression to 

tensile load and the frequency approaches the corresponding uniform column 
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frequency. Note that the frequency increases more rapidly in the com

pressive range than in the tensile range as P increases. In addition 

to the above observations, the following points can be made: 

o When the effective stiffness approaches zero and the size of 

discontinuity is non-zero, we obtain the free-vibration frequency of 

the column shown in Figure 24. However if the size of the discontinuity 

also, approaches zero, then the uniform column frequency is recovered. 

o When effective stiffness approaches the corresponding uniform 

stiffness or size of the discontinuity approaches zero or center of the 

region discontinuity approaches either end, then again the uniform col

umn frequency is recovered. Clearly, the center of the region of dis

continuity cannot be exactly at x = 0 or x = i. 

Static Stability 

The influence of a region of discontinuity on the buckling load 

is shown in Figures 33 and 34. In Figures 34 the first and second 

successive approximations are indicated by solid and dashed lines. An 

examination of these figures and Equations (26), (48) and (52) of Chap

ter II in non-dimensional form reveals the following buckling load 

behavior of the column. 

Size of Discontinuity. For given values of C and K the buckling 

load decreases as the size of discontinuity, R, increases. This behavior 

is linear with small values of R and when R approaches zero, P* 

approaches 1, i.e., uniform column result. We recall that 0 <_ R <_ 1/2, 

and Equations (25), (48) and (67) of Chapter II suggest that this range 

of R depends on the initial load, P . An examination of Equations (26), 
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Figure 33. Effects of K, R and C on the Buckling Load, Case I 
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l.oo r 

Corrected Effect 
of K 

Figure 34. Effect of K and R on the Buckling Load, Case III 
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(52) and (68) of Chapter II reveals that when R = 1/2 the buckling load 

reduces to PT = 1 + TT(K - 1) for any value of C. When values of R are 

sufficiently large the P* and R relations become non-linear. 

Effective Stiffness. For given values of C and R the buckling 

load increases linearly with K. It can be noted that the buckling load 

approaches the corresponding uniform column buckling load as K approaches 

1, i.e. effective stiffness approaches the uniform stiffness. 

Location of Discontinuity. For given values R and K P* versus C 

is symmetric with respect to the line C = 1/2, and the slopes are 

3P* 

3C 
= 0 . 

0 0 , 0 1 / 2 

The buckling load decreases as the discontinuity moves toward the center 

of the column. If the discontinuity is at either end of the column, the 

uniform column buckling load is recovered. It can be noted, however, 

that the center of the discontinuity cannot be at C = 0 or C = 1.0. Note 

that the results presented in Figure 27 are for Case III where C = 0.5. 

Correlation of Experimental and Analytical Results 

In the last two sections, an examination of analytical stability 

models was presented. Three parameters: size of discontinuity, effec

tive stiffness; and, location of discontinuity were considered in the 

evaluation of effects of discontinuity on the stability of a column. Sub-
dp 

stituting the four-point-load bending results of -j— versus slot length, 

S into Equation (9) of Chapter II, the effective stiffness parameter, 

K for each specimen is obtained. The non-dimensional effective stiffness 
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versus slot length S is graphically presented in Figure 35. Examina

tion of this figure reveals that the effective stiffness decreases 

rapidly as the length of slot increases. Using these values of K with 

the corresponding values of R given in Figure 36 in the parametric 

stability formula of Equation (63) of Chapter II, the boundaries of 

instability for the column are obtained. These boundaries of insta-

•k 

bility with the corresponding experimental results are presented in 

Figures 37 to 46. It can be noted that Figure 37 represents the uniform 

column result and Figures 38 to 46 represent the parametric instability 

results for the columns with slot lengths, S = 0.2, 0.3 and 0.4 inches 

at the center i.e. C = 0.5. An examination of Figures 37 to 46 reveals 

that the parametric stability behavior obtained by the experiments and 

the analytical stability model are in reasonable agreement. The pres

ence of a slot in the column lowers the principal and secondary insta

bility zones slightly. The non-dimensional load parameters y and P 

were computed using the uniform buckling load, 195.0 pounds. The 

effective length of the column was 33.85 inches and the column was simply 

supported at both ends. The frequencies were non-dimensionalized by 

* 
Note that for a uniform column with a given value of P and 

p1 
M = 9(P + P —X ' experiments were conducted to obtain the lower and 

d{ o *l j 

upper boundary frequencies of the secondary instability zone. It was 
found that the values of these frequencies differed by a fraction of a 
Hz. Taking into account the possibility of statistical scatter in the 
experimental data, the procedure for data recording presented in Chapter 
III was adopted. Thus, only a single point is shown for the secondary 
zone for each value of P-, as noted in Chapter III this represents the 
average value of es from above and from below. 3 max 
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Figure 35. Slot Length Versus Non-dimensional Effective Stiffness 
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Figure 36. Slot Length Versus Non-dimensional Size of Discontinuities 
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Figure 37. Dynamic Stability with 
S = 0.0, P = .136 and .204. 
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Figure 38. Dynamic Stability with 
S„ = .2 and P_ = .136. 
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Figure 39. Dynamic Stability with 
S„ = .2 and P = .1875. 
£ 0 
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Figure 40. Dynamic Stability with 
S„ = .2 and P = .235. z o 
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Figure 41. Dynamic Stability with 
Sn = .3 and P = .136. 
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Figure 42. Dynamic Stability with 
S = .3 and P = .1875 
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Figure 43. Dynamic Stability with 
S0 = .3 and P = .235. 
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Figure 44. Dynamic Stability with 
Sn = .4 and P = .136. 
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Figure 45. Dynamic S t a b i l i t y with 
S. = .4 and P = .1875. 
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twice the corresponding uniform column frequency. These non-dimension

al izing parameters were computed using Equation (1) of Chapter III. 

The results for the free vibration frequencies with initial load 

and the buckling loads were obtained using Equation (67) and (69) of 

Chapter II respectively. These results are presented in non-dimensional 

form in Figures 47 and 48. An examination of these figures reveals that 

there is a reduction in vibration frequency and buckling load due to 

the presence of a slot in the column. The reduction on the vibration 

frequency and buckling load increases with an increase in the slot length. 

The frequency of vibration decreases more rapidly in the compressive 

load range than the tensile load range. Note that the buckling load 

decrease more rapidly with the increase of the slot length. The vibra

tion frequency and the buckling load results presented in Figures 47 

and 48 are deduced using the analytical stability model. Similarly, the 

parametric instability zones for compressive mean loads can be obtained 

analytically corresponding to Figures 37 through 46. Note that these 

results can be deduced using Equation (63) of Chapter II in conjunction 

with the effective stiffness and the corresponding size of discontinuity, 

i.e., R presented in Figures 35 and 36. 

Recall that the global properties can be correctly deduced from 

analyses which do not include a detailed representation of localized 

effects. The stability model developed in this dissertation is con

cerned with determining the global properties of the column; i.e. fre

quencies and buckling load. Therefore, the static and dynamic stability 

results are valid for the column with any type of discontinuity with the 
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Figure 47. Free Vibration Results for the Test Specimens 
Using Analytical Model. 
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Fiqure 48. Analytical Buckling Loads for the Tests 
Specimens. 
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given values of effective stiffness and location and size of the discon

tinuity considered in this investigation. If the results presented in 

Figures 35 and 36 are cross plotted as shown in Figure 49, then the 

dynamic stability results for any column are obtained. Note that the 

column should have K, R and C values given in Figure 49; and simply 

supported end conditions. 
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Figure 49. Effect ive St i f fness vs. Size of Discont inui ty, 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

An analytical stability model was developed to determine the 

boundaries of instability for a bar within which a region of discontinu

ities is present. The governing equations of motion were derived using 

Lagrange's equations. Using a series solution in these equations a set 

of approximate stability formulae were obtained. The effects of a region 

of discontinuity were evaluated in terms of the size of discontinuity, 

the effective stiffness and location of discontinuity i.e. R, K and C. 

A two-part experimental program was conducted. The first part of 

the program was conducted to obtain the effective stiffness of the bar 

element with a region of discontinuity using a four-point-load bending 

test technique. The second part of the program was conducted to deter

mine the boundaries of instability for a column with a region of discon

tinuity. In this part only the parametric dynamic loading of main inter

est in the present investigation was considered to obtain the dynamic 

stability results. These results indicated a slight effect of a region 

of discontinuity on the dynamic stability behavior of the bars tested. 

The values of effective stiffness obtained by four-point-load bend

ing tests were used in the analytical stability formulae to deduce the 

parametric stability, the free vibration and the buckling load results. 

The parametric stability results were in good agreement with experi

mental results. 
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Note that the analytical model can be used to deduce the sta

bility results when the K and R relation is known. However, if this 

relation is not known then a relatively simple four-point-load bending 

test will provide the K and R relation. It should also be possible to 

provide the K and R relation using a finite element analysis to deduce 

the desired stability results by the analytical stability model presented 

in this report. 

To realize a wider scope of application and to gain reliability 

in the results deduced by use of the analytical stability model, a 

variety of regions of discontinuities may be considered in a future 

investigation. For example, a test program involving columns with a 

region of discontinuities consisting of various distributions of small 

internal or surface cracks should be of a practical interest. 
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APPENDIX A 

JUSTIFICATION FOR PERIODIC SOLUTIONS OF EQUATION (6) 

OF CHAPTER II 

In this appendix some of the theorems related to the theory of 

linear homogeneous differential equations with periodic coefficients 

are presented. It can be noted that these theorems can be extended by 

mathematical induction to a system of equations involving more than two 

equations. A study of the structure and character of a system of 

coupled Mathieu equations using theorems is also presented. Finally, 

the forms of the solutions to obtain frequency boundaries of instability 

are discussed. 

Theorems From the Theory of Linear Homogeneous Differential 
Equations with Periodic Coefficients 

To study the behavior of solutions of Equations (6) in Chapter II 

the following theorems were found to be yery useful. A general develop

ment of these theorems can be found in references [2, 32-36]. 

Theorem I 

d2f 
Let - g - + a ^ + a 1 2 f 2 = 0 , 

at 

d2 f? 

- r + a 2 1 f l + a22 f2 = ° ( 1 ) 

dt 

a . - ( t ) - a..{t + T) ; i , j = l , 2 , i . e . 
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a.-(t); i, j = l,2 are periodic functions of the independent variable t 

with period T. If f, = f-.(t) and f„ = f9(t), are solutions of Equation 

(1), then f-.(t + T) and f«(t + T) are also solutions of the system of 

Equation (1). 

Proof. 

Let z = t + T, then the system of Equations (1) transform into 

d 2 M z ) 
—Y + a^UJf^z) + a12(z)f2(z) = 0, 

d2f>(z) 
—f + a21(z)f1(z) + a22(z)f2(z) = 0. 

or 

d 2Mt+T) 
~Y + an(t+T)f1(t+T) + a12(t+T)f2(t+T) = 0 
dt 

d2f9(t+T) 
~Y + a21(t+T)f1(t+T) + a22(t+T)f2(t+T) = 0 
dt 

Since a^.ft) = a^.ft+T), i,j = 1,2 we get 

d2f1(t+T) 
—f + an(t)f1(t+T) + a12(t)f2(t+T) = 0 , 
dt 

d2f0(t+T) 
—£ + a21(t)f1(t+T) + a22(t)f2(t+T) = 0; 

(2) 

thus f-, (t+T) and f?(t+T) are also solutions of Equation (1). Hence 

the proof is complete. 
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Theorem II 

The system of Equations (1) can be transformed into a system of 

four first order linear homogeneous differential equations with periodic 

coefficients. 

Proof. 

Let f-, = x, 

can be written as 

f2 = x2 

df-, dx, 
= x„ = 

dt 3 dt 

df„ dx2 

-7T— = x. = -pr— , and system of Equations (1) 

dx, 

&T ~ X3 = ° 

dx9 

• - x„ = 0 
dt 4 

dx~ 
+ a-.-.x-, + aonx0 = 0 dt "11 1 21 2 

dx 
+ a^nxn + a^Xo = 0 

dt u2ri 22"2 

or in matrix notation: 
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— 
x l 0 0 -1 0 xl 0 

d 
x2 

+ 

0 0 0 -1 x2 0 

dt 
x3 

an a12 0 0 X3 0 

x4 a21 a22 0 0 x4 0 

or 
dX 

d t + ^ X = 0 (3) 

Note that above equations are a system of four first order linear dif

ferential equations and A is a periodic matrix with period T. Hence 

the proof is complete. 

Applying the fundamental existence theorem [34] to the system of 

Equations (3), there exists a set of four linearly independent solutions 

^•j(t), <|>2j(t), 4>3j.(t), * 4-(t); j = 1,2,3,4, subject to a 

set of initial conditions <J>..(0) = c..; i = 1,2,3,4 as constants. 
I J l J 

This system of solutions, called the fundamental system, forms a matrix 

i(t) = 

4>21(t) 

• 3 1(t) 

^ 4 1 ( t ) 

4>12(t) *13(t) 4>14(t) 

<f>22(t) <J>ooU) 

32 

23 

(t) 4»33(l:) 

*y,o(t) */.o(t) '42 43 

*34(t) 

•44ft) 

where the first subscript denotes the number of function and the second 
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subscript the number of solution. In the following a theorem involving 

<|>(t) with initial condition 

*(0) = 

1 0 

1 

= l_ is stated and proved 

Theorem III 

If ^(t) is a matrix solution of the system of equation (3) with 

initial conditions j>_(0), then ^(t + T) is also a matrix solution with 

initial condition j>(T). 

Proof. 

Since ^(t) is a matrix solution of equation (3), we get 

^ W t ) ] + A(t)£(t) = 0. 

Let z = t + T, then above equation transforms into the following 

^ [i(t+T)] + A(t+T)i(t+T) = 0 . 

Since A(t+T) = A_(t), then £(t+T) is also a solution of equation (3) and 

the initial condition d>(t+T)| = <t>(T). 
lt=0 ~ 

Theorem IV 

Let *(t) be a matrix solution of the system of Equations (3) with 

initial condition <£_(0) - 1 then <$_(t+T) = ^(t)^(T). 
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Proof. 

It follows that £(t+T) is also a matrix solution of Equations (3) 

with initial conditions ^(T) (by Theorem III). From theory of linear 

homogeneous differential equations the solutions £(t+T) can be repre

sented in a linear combination of the functions £(t). 

Thus 

!(t+T) = <f>(t)B , (4) 

where B̂  is a matrix of order 4 x 4 with constant elements. Substitution 

of t = 0 in Equation (4) yields, £(T) = £(0)B_. Since £(0) = l_ then 

B̂  = £(T). Using this result in Equation (4) gives the desired result: 

l(t+T) = i(t)!(T) (5) 

Example: 

Given a second order linear homogeneous differential equation, 

H+ y = 0 , (5a) 
dr 

show that Equation (5a) can be transformed into a system of two first 

order linear homogeneous differential equations and a matrix solution 

of this system, _$_(t) with initial condition £(0) = 1 satisfies Equation 

(5). 

Using the transformation, 

x-, = y 

x2 dt dt 
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into Equation (5a), the following system of two first order linear 

homogeneous differential equations can be obtained. 

dX 

dt = A * • 
(5b) 

where 

Let 

then 

Ai = 

A = 
0 1 

1 0 

and X = 

i(t) = 

cos t sin t 

-sin t cos t 

Jhf[A(t)] = 

-sin t cos t 

-cos t -sin t 
and 

-1 0 

cos t sin t 

-sin t cos t 

-sin t cos t 

-cos t -sin t 

(5c) 

Thus the matrix, ^(t) defined in Equation (5c) is a solution of Equa

tion (5b) with the initial condition, 

i(0) 
1 0 

0 1 

= I 

Since A(t+T) = A(t), then using Theorem III 
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<|>(t+T) = 

cos(t+T) sin(t+T) 

-sin(t+T) cos(t+T) 

(5d) 

is also a solution of Equation (5b). Evaluation of the product of 

the matrices $_(t) and £(T) gives 

i(t)±(r 

cost sint 

-sint cost 

cos T sinT 

-sinT cos T 

or 

i(t)i(T) = 

cost cos T - sint sinT cos t sin T + sin t cos T 

-sint cos T - cost sin T -sin t sin T + cos t cos T 

• (5e; 

Using the trigonometric identities, 

cost cos T - sint sinT = cos(t+T) and 

cost sinT + sint cos T = sin(t+T) , 

into Equation (5e) gives 

*(t)4>(T) = 

cos(t+T) sin(t+T) 

-sin(t+T) cos(t+T) 

An observation of the above equation and Equation (5d) reveals the 

following result: 

i(t+T) = i(t)i(T) . 
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Thus the Theorem IV can be verified for the Example. 

Theorem V. 

If \±{T) - \il_\ = 0 has distinct roots y,, y~, y- and y. then 

find.,) 
^(t) = e1 ' P (t) (6) 

is a solution vector of the system differential Equation (3) where X. 

is an i vector solution and P-(t) is the i corresponding periodic 

vector with period T. 

Proof. 

Since \$_{T) - pjj = 0 has distinct roots y, , y?, y~ and p., then 

there exists a nonsingular matrix _S such that 

S"V(T)S=D (7) 

where _D is the diagonal matrix with the eigenvalues of ^(T) as diagonal 

elements. 

Define a matrix ^(t) = ^(t)S^ . 

Since ^(t) is a matrix solution of Equation (3), then 

di(t) 
^ + A(t)cj>(t) = 0 . 

Therefore 

di(t) 
Ŝ  + A(t)i(t)i = 0 dt 

and since Ŝ  is a matrix with constant elements ±{t) is a matrix solution 

of Equation (3). By using Theorem II ^(t+T) is also a solution of 
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Equation (3). Further, 

iMt+T) = <|>(t+T)S and 

using the result, £(t+T) = £(t)£(T) of Theorem IV gives 

i(t+T) = i(t)i(T)S . 

From Equation (7) £(t)_S = S_ ̂  and substituting this result in above 

equation yields 

i(t+T) = i(t)S D . 

Recall that (̂t)_S = ̂ (t), then above equation becomes 

i(t+T) = i(t)D . (8) 

I f X,, X?, X- and X. denote the vector solut ions of Equation (3) and 

i f these are also the vector columns of £ ( t ) then from Equation (8) i t 

fol lows that 

X.(t+T) = vfa{t) (9) 

i = 1,2,3,4. 

Let 

R(t) = 

t 
T " • M l 
T i n y-

t , 
f l n y 2 o 

o 
t , 
T l n y 3 

t , 
T l n y 4 

and (10) 



Then 

P(t) = ^(t)R_1(t) 

P.(t+T) = i(t+T)FfV+T), 

and using Equation (8) yields 

P(t+T) = 4»(t)D R_1(t+T) 

It can be verified using Equation (10) that R~ (t+T) = R 

Therefore 

Recall that 

R~V) 

J_ 
yl o 

o 

P(t+T) = ip(t)D R ' V j R ' V ) 

o 
D = 

o 
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Thus D R (T) = 1 and 

P(t+T) = i(t)R_1(t) . 

It follows by use of Equation (11) into the above equation that 

P(t+T) = P(t) 

It follows that whenever ^(T) can be diagonalized, one obtains four 

linearly independent solutions, which satisfy Equation (9) and these 
flny. 

have form X.(t) = e P-(t) where P-,(t) are vectors with period T. 

When characteristic roots are multiple roots, the structure of the solu

tions of Equation (6) is similar. A discussion of these solutions can 

be found in reference [2]. 

Theorem VI 

Let the matrix Â  in Equation (3) satisfy 

A(-t) = A(t) (12) 

i.e. it is even function t. If a root of |$_(T) - p_I_| = 0 is p, , then 

— is also a root of |£(T) - pl_| = 0. 
pl 

Proof. 

By Theorem V a solution of differential Equation (3) has the form 

t, 
T l n pl 

^(t) - eT ] ?}{t) . 

Since A(-t) = A, the differential Equation (3) does not change its form 

when t is replaced by -t. Consequently, if 
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yln P] 
^ = e1 ' P^t) (13) 

is one of the solutions of Equation (3), then 

-tin P1 yln (p-) 
X^-t) = e T ' P^-t) = e1 Pl P^t) (14) 

is also one of its solutions, i.e. 1/p, is one of the characteristic 

roots. 

A more general theorem (Liapunov Theorem [2]) corresponding to 

this theorem does not require A_(-t) = A_(t), to obtain the results. 

However, in the present investigation this condition is satisfied (Equa

tion (6) in Chapter II). 

It may be noted that the two solutions (Equations (13) and (14) 

are often called a pair of solutions which correspond to a pair of 

reciprocal characteristic roots i.e. p, and -—. 
i P1 

Characteristic Exponent and Stability Behavior 

The system of differential Equations (1) has an identically van

ishing solution 

fr(t) = 0, f2(t) = 0-

Besides this trivial solution, which represents the initial equilibrium 

state in the mechanical problem under consideration, the system also 

admits nontrivial solutions, whose form has been examined in previous 

sections. 
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The characteristic exponent is defined by the equation h = ylny, 

where h may be complex. From the form of the solution (Equation (6)) it 

follows that if all characteristic exponents have negative real parts, 

then the general solution of Equation (1) will damp out with time. In 

other words, the initial equilibrium state is stable. But if among the 

characteristic exponents there appears even one which has positive real 

part, then the system will have particular solutions increasing unboundedly 

with time; consequently, the initial state is unstable. 

Taking into account that 

In y = In|y I + i arg y 

gives the following conclusion. If all the roots of the characteristic 

equation have absolute values smaller than unity, then the initial equil

ibrium state is stable. If among the characteristic roots there appears 

even one with an absolute value greater than unity, then the initial 

equilibrium is unstable. 

To the characteristic roots with absolute values equal to one 

there correspond purely imaginary characteristic exponents. In this 

case either stability or instability can take place. If the character

istic numbers are non-repeated, then the corresponding solution will be 

bounded for all time. In the case of multiple roots, the character of 

the solution will depend on the structure of elementary divisors, i.e. 

type of multiplicity of roots. If the elementary divisors are repeated, 

then secular instability, specified by the appearance in the general 

integral of secular terms of the types t P(t) will take place [21. 
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Determination of Conditions for Periodic Solutions 
On the Frequency Boundary and Dirichlet's Conditions 

Consider a pair of particular solutions of Equation (1) corre

sponding to a pair of reciprocal characteristic roots, p.. and — : 
i P-, 

Tln (p,) 
V t ) = P1(t)e

r ' 

-Tln (PJ 
f3(t) = P3(t)e

 T ] (15) 

Let p-, be real and different from ±1; then one of the particular solu

tions will unboundedly increase with time. Therefore, the region of 

real p will be the region of unboundedly increasing solutions (region 

of instability). 

By varying the coefficients (a.., i,j = 1,2,...,4 in Equation (1)) 
• J 

of the system, one can obtain the condition that the characteristic 

number will remain p, = 1 or p, = -1 and will be multiple. In the first 

case the solution will be periodic with period T (substitution of y, =p-, =1 

in Equation (9) gives X(t+T) = X(t)); in the second case it will be 

periodic with period 2T (substitution of u-. = P-J = -1 in Equation (9) 

gives X(t+T) = -X(t), it follows then X(t+2T) = X(t)). Upon further 

variation of coefficients (a.., i, j = 1,2,...,4 in Equation (1)), the 

considered pair of characteristic roots will become complex conjugates 

p1 = a+ib and p? = a- ib and by virtue of the relation p.p^ = 1, will 

have absolute value equal to one. The region of complex roots is thus 

a region of bounded solutions. It can be noted that when imaginary roots 
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are repeated linearized equations of present investigation are not 

adequate. However when more than two real roots are repeated, it 

should be noted that linearized equations indicates secular instability. 

Hence it follows that on the boundaries of the regions of insta

bility the differential equation system has periodic solutions with per

iod T or 2T. More precisely, two solutions with same period bound the 

region of instability, and two solutions with different periods bound 

the region of stability. 

On this basis the series solutions used in Chapter II can be justi

fied to obtain the frequency boundaries. It can be noted that the 2T 

and T type solutions are an odd-harmonic and even-harmonic Fourier 

series representing f(t), 0 < t < T; satisfying Dirichlet's conditions 

in the manner of the following theorem. 

Dirichlet's Theorem 

For -7T £ x <_ TT suppose f(x) is well defined, is bounded, has only 

a finite number of maxima and minima, and has only a finite number of 

discontinuities. Let f(x) be defined for other values of x by the 

periodicity condition f(TT + Z-n) = f(x). Then Fourier series for f(x) 

converges to 

\ [f(+x) + f(x-)] 

at every value of x and hence it converges to f(x) at points where f(x) 

is continuous. 

The conditions imposed on f(x) are called Dirichlet conditions 

[34]. 
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APPENDIX B 

ADDITIONAL RESULTS AND DISCUSSIONS 

An analysis with k = 3, k = 4 and typical results are presented in 

this appendix. Also, features and procedure of the method of successive 

approximation are discussed. Additionally, notes on some points of in

terest are presented. 

An Analysis with k = 3, k = 4 and Typical Numerical Results 

It should be recalled that the harmonic approximations Equations 

(18a) and (20a) of Chapter II are periodic functions of t with period 2T 

and T respectively. These approximations correspond to series solutions 

00 

f(t) = I a . s i n ^ + b. cos-kfs (1) 
k=l ,3,5 ~K <L 

and 

oo 

f ( t ) = l b + I a s i n ^ + b c o s ^ (2) 
1 ~° k=2,4,6 K L K <L 

truncated at k = 1 and k = 2 respectively. 

If above series are truncated at k = 3 and k = 4, then 

f (t) = a, sin —- + b, cos 4- + a~ sin -«-+ b~ cos -p— and 

f (t) = o- b + a0 sin et + b0 cos et + a- sin 2et + b- cos 2et - ' 2-0 ~2 ~2 ~4 ~4 

are the approximations with periods 2T and T respectively. 
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The conditions of existence of periodic solutions can be identi 

fied from equations (8), (9) and (10) of Chapter II 

E - aA ± IgB 

3B 

\ Q2Z - }eB 

E -aA - 6 C 

- \ 3 B 

E - a A - | 02C 

= 0 , 

£ 3 i 

E - aA - 46 C 

= 0 and (3) 

E - aA 

^ B 

0 

E -aA - e'C 

- ^ B B 

- \ 6 B 

E -a A - 402C 

= 0 

It can be noted that the order of matrix elements Ê , A and Ĉ  is 

NxN, when the series (2) of Chapter II is truncated at n = N. An obser

vation of equations (3) reveals that it should involve a polynomial equa

tion greater than two for N ̂ > 1 and k 2 3 . Therefore, using the method 

of successive approximation on Equation (3) boundary frequencies were 

computed for primary and secondary zones. It was found that these values 

were improved by less than 1% when compared to the results of Case I, 

Case II and Case III. A comparison of these results is presented in 

Table 6. The physical parameters are in non-dimensional form as defined 

by Equation (1) in Chapter IV. 

It was pointed out in Chapter II that in a vibration problem 



Table 6. Typical Numerical Results for Primary Upper Frequency Boundary 
with P = -.5, K = .5, C = .5 and R = .045 

k = 1 
n = 1 

k = 1 
n = 2 

k = 1 
n = 3 
.* 

k = 2 
n = 1 

k = 3 
n = 2 
.* 

k = 3 
n = 3 * 

Method 

95425 .9542532 .9520357 .95425 Exact: Using 
Quadratic Formula 

.9542532 .9520354 .954232 .9520354 Successive 
Approximation 

.3 
1.1027 1.1002723 1.0983802 1.10433 

1.1002723 1.0983807 1.1043282 1.1024582 

Exact 

Successive 
Approximation 

475 
1.17711 1.1771148 1.1753626 1.18525 

1.1771148 1.1753634 1.1852549 1.1835405 

Exact 

Successive 
Approximation 
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stiffness must be represented better than the approximation for the time 

functions to describe the motion. Therefore a reasonable balance between 

the space functions sin ^ — and time functions f (t) is one time function 
X* ""II 

and more than one space functions (Table 6). 

A Discussion On the Method of Successive Approximation 

An observation of Equation (3) suggest that these equations involve 

a polynomial in 8 with degree greater than four for k > 1 and N > 1. 

Therefore, it is appropriate to extract roots of such equations by a 

numerical method. There are several numerical methods that can be used 

to obtain the roots of a polynomial equation. Among these a few are listed 

below [371. 

o Method of Successive Approximation 

o Newton-Raphson Method 

o Half-interval Method 

o Searching Method 

These numerical methods can be classified as "iterative" methods. The 

iterative methods require an initial approximate value of the roots and 

the value of roots is refined by substitution of the initial approximate 

value into a rearrangement of the polynomial equation. When a good ini

tial value is not known an approximate value may be obtained by searching 

for a sign change of the polynomial expression. 

In the present investigation the method of successive approximation 

was chosen, with initial values taken from the result of Case I or from 

uniform column results of Equation (1) in Chapter III. To illustrate the 
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method consider Equation (28) of Chapter II 

A D 

dl "T 

d2 - T 

= 0, where (4) 

d-,, d? and d, are defined by Equation (30) in Chapter II. Expanding the 

determinant in Equation (4) gives 

d, - ^ ) ( d 2 - ^ ) - d 3 < = 0. (5) 

Equation (5) can be rewritten as 

9 2 - d 
d3 9 2 - d 

62 or (6) 

a A 

T ' d2 
( V T > 

(7) 

If ^ < (d2 -T-) and then 

= d. 

= d1 -

(d2 - f) 

f =dl 
(A i-^ 
(d2 - — ) 

(8) 
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t h 9 
will give the i successive approximate value of the root near e = 4 d, 

1 i 2 2 
and the error due to this is j \ e. - e. -, |. The error can be made as 

small as desired by evaluating required i successive approximation for 

9 using algorithm given in Equation (8). Similarly, the root near 

1 /? 
8 = 2(d?) can be evaluated using Equation (7) and corresponding 

algorithm. 

It can be noted that the initial value of the root of Equation 

e2 
(4) is obtained by d1 - ~r- = 0 i.e. first element on the principal 

e 2 

diagonal is made zero. Solving this equation for -j- and substituting in 

the second element of the principal diagonal of the determinant in Equation 

e2 

(4) and solving the equation for -j- , gives the second equation in Equa

tions (8). Thus, the method of successive approximations used in Chapter 

II is identical to the algorithm (8). 

Discussion on Equations (45) and (40) of Chapter II 

It can be noted that these equations are the formulae for the 

upper and lower boundary of secondary zones. In evaluating the numerical 

values of these boundaries, an algorithm corresponding to Equations (8) 

was developed to get the i successive approximation. It was found that 

the first successive approximation gave the results within the error of 

one percent of the next approximation. 

Experimental Instability Zone Response 

In the experiments it was \jery difficult to record the values for 

upper and lower secondary instability boundary frequency because the zone 

thickness was wery small. However, there was evidence of existence of 

file:///jery
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c 

this zone. Therefore it was reasonable to record e , i.e. frequency 
max 

when the bending strain amplitude was maximum near that zone. In the 

experimental investigation of Bolotin [2] these zones were not found. 

The possible reason he gave was the presence of structural damping and 

small thickness of the zone. 

Similarly, for small values of P-, there is a possibility of not 

observing the instability for even primary zones. 

A Schematic Representation of the Principal 
and the Secondary Regions 

An observation of Equation (1) of Chapter III reveals that the 

principal and secondary regions for the uniform column can be represented 

schematically as shown in Figures (50) and (51) respectively. Note that 

the parameters 8, P and P.. are represented in the dimensional form. 

The dimensional quantities P* and w are the first buckling load and 

fundamental natural frequency of vibration for the uniform column. 

A Comparison of the Widths of the Instability Zones 

A typical set of non-dimensional values for the widths of the 

instability zones of a column with a region of discontinuities and the 

corresponding uniform column are presented in Table 7. Note that the 

stability model (Case III of Chapter II) with y = 0.4, R = 0.045, C=0.5 

Table 7. A Typical Comparison of the Widths 
of the Instability Zones 

Instability Width for a Width for the 
Column with a Corresponding 

Region of Discontinuities Uniform Column 

Principal 0.46162 0.40862 

Secondary 0.1296061 0.10085 
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Fiqure 50. The Principal Region 
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> P. 

Figure 51. The Secondary Region. 
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K = 0.01 and P = -0,5 was used to compute the widths of the instability 

zones for the column with a region of discontinuities. However, Equa

tions (1) were used to evaluate the widths of the instability zones for 

the corresponding uniform column. An examination of Table 7 reveals 

that the widths for the column with a region of discontinuities are 

slightly larger than the widths for the corresponding uniform column. 
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