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SUMMARY 

 

A micromachined magnetic field sensing system capable of measuring the direction 

of the Earth’s magnetic field has been fabricated, measured, and characterized. The 

system is composed of a micromachined silicon resonator combined with a permanent 

magnet, excitation and sensing coils, and a magnetic feedback loop. Electromagnetic 

excitation of the mechanical resonator enables it to operate with very low power 

consumption and low excitation voltage. The interaction between an external magnetic 

field surrounding the sensor and the permanent magnet generates a rotating torque on the 

silicon resonator disc, changing the effective stiffness of the beams and therefore the 

resonant frequency of the sensor. By monitoring shifts of the resonant frequency while 

changing the orientation of the sensor with respect to the external magnetic field, the 

direction of the external magnetic field can be determined. 

MEMS-based mechanically-resonant sensors, in which the sensor resonant 

frequency shifts in response to the measurand, are widely utilized.  Such sensors are 

typically operated in their linear resonant regime. However, substantial improvements in 

resonant sensor performance (functionally defined as change in resonant frequency per 

unit measurand change) can be obtained by designing the sensors to operate far into their 

nonlinear regime. This effect is illustrated through the use of a magnetically-torqued, 

rotationally-resonant MEMS platform. Platform structural parameters such as beam width 

and number of beams are parametrically varied subject to the constraint of constant 

small-deflection resonant frequency. Nonlinear performance improvement 

characterization is performed both analytically as well as with Finite Element Method 



 xviii

(FEM) simulation, and confirmed with measurement results. These nonlinearity based 

sensitivity enhancement mechanisms are utilized in the device design. 

The fabrication is based on a one-mask, single wafer silicon bulk micromachining 

process. The top side silicon wafer is etched by inductively-coupled-plasma (ICP) to 

form a movable resonant disc, a recess for a permanent magnet, and support beams. The 

permanent magnet is adhered to the center of the moving disc. The excitation and sensing 

coils and associated electronics are hybrid-assembled with the sensor. Micromachining 

fabrication technology enables the beam width of the mechanical resonator structure to 

have a very high aspect ratio of approximately 10:1. Furthermore, complementary metal-

oxide-semiconductor (CMOS) compatibility is another advantage of the bulk silicon 

micromachining. 

The complete magnetic sensing system consumes less than 200 microwatts of 

power in continuous operation, and is capable of sensing the direction of the Earth’s 

magnetic field. Such low power consumption levels enable continuous magnetic field 

sensing for portable electronics and potentially wristwatch applications, thereby enabling 

personal navigation and motion sensing functionalities. A total system power 

consumption of 138 µW and a resonator actuation voltage of 4mVpp from the ±1.2V 

power supply have been demonstrated with capability of measuring the direction of the 

Earth’s magnetic field. Sensitivities of 0.009, 0.086, and 0.196 [mHz/(Hz·degree)] for the 

Earth’s magnetic field were measured for 3, 4, and 6 beam structures, respectively 
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CHAPTER 1 

INTRODUCTION 

 

 

 

There have been increasing demands for integration of a magnetic field sensor 

which can detect the direction of the Earth’s magnetic field into complex electronic 

systems. Such an electronic compass system will find application in ultra low power 

mobile devices such as wristwatches and portable Global Positioning Systems (GPS). 

The objective of this research is to develop a small size, low power consumption, and low 

operation voltage magnetic field sensor that can detect the direction of the Earth’s 

magnetic field. In this chapter, the research overview and motivations are presented. 

 

1.1 Compass overview 

The first magnetic device ever used is the magnetic compass, which provides an 

easy and inexpensive way to determine direction relative to the Earth’s magnetic poles. It 

is one of the oldest navigation instruments and is still widely used by ship captains, pilots, 

and hikers. The simplest compass is nothing more than a magnetized needle supported by 

a low friction pivot that allows it to freely rotate upon interaction with an external 

magnetic field. In many applications, electronic devices are now replacing the 

magnetized needle type compass since it is not readily adaptable to digital output or 

interfacing with other electronic components and hence is difficult to integrate into more 

complex electronic systems. 
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1.2 Motivation and requirements for today’s compass 

A Global Position System (GPS) has been operated by the U.S Department of 

Defense (DoD) since the early 1970s. Initially, this system was targeted mainly for 

military purposes to track precise position information of military movements around the 

world. To meet this demand, the 24 satellites orbiting the globe transmit microwave 

signals continuously. A receiver can calculate precisely its time, three-dimensional 

position, and velocity of movement by receiving GPS signals from at least four different 

satellites simultaneously. Since 1991 an agreement between the DoD and the 

International Civil Aviation Organization has made it possible for the civilian community 

to use the GPS without any direct user charge.  

Mobile devices tend to provide multi-functionality. A cell phone, for example, can 

provide several different functions such as making a phone call, sending and receiving an 

e-mail, taking a digital picture, and listening to digital music. Furthermore, cell phones 

will soon be equipped with GPS systems since the Federal Communications Commission 

(FCC) required last year that cellular companies equip all new cell phones with GPS 

tracking devices that can pinpoint a user’s location within 300 feet. This new 

functionality of cell phones will enable law enforcement agencies to determine the 

origination of 911 emergency calls made on cell phones. However, people want the GPS 

system to provide not only the information of the location of a 911 call, but also the 

information for navigation. A GPS receiver can provide accurate information about its 

position and velocity, and from the velocity vector it can determine the direction in which 

it is moving. The direction of movement is not necessarily the same as the heading or 

direction in which the GPS receiver is pointing. A single-antenna GPS receiver cannot 



 3

determine heading, but a compass can. When GPS signals are not strong enough, a GPS-

based navigation system might have to resort to dead reckoning. GPS systems with a 

built-in electronic compass will be a good solution for this kind of problem. In Japan, 

close to eight million cell phones, mostly from KDDI Corporation of Japan, offer users 

GPS functionality. The “KDDI au” handset with GPS functionality uses “Mobile Station 

Modem” (MSM) series chips from Qualcomm Inc. Qualcomm later acquired SnapTrack 

in 2000, which provides the main technology for navigation functionality on cellular 

phones. When the position is to be determined, a remote server, called the position 

determination entity (PDE) server, needs to receive the GPS information from the 

handset and returns the calculated position information to the handset so that the map 

data is displayed. It takes about 50 seconds to display the map data on the screen. Many 

users are dissatisfied with such a long waiting time. To resolve this issue, a new method, 

called the mobile station (MS) based approach, has been developed. The initial 

measurement is the same, but the subsequent measurement is completed by the handset 

alone, reducing the time required to display the map to only 1-3 seconds. Measurement 

time is shortened and users need to pay a communication charge for the initial 

measurement only. The handset with a built-in electronic compass with GPS functionality 

enabled this approach. The A5501T, A5502K, and A5503SA models supporting this 

service have been sold since December 2003 in Japan. The electronic compass will be 

invaluable in cases where people don’t know where they are going even though the 

navigation software displays a map. LG Electronics of Korea released a new cell phone 

last year, called “Qiblah,” for Islamic users in the Middle East. An electronic compass 

points toward Mecca when users input their location. Such phones enable Muslims to 
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more easily locate the direction of Mecca, which they must face during their daily prayers. 

Cellular phones are becoming increasingly sophisticated, with a variety of functions that 

result in high power consumption. However, phone size is getting smaller. Therefore, a 

single component in a handset device should be compact, and consume low power; these 

constraints extend to an electronic compass. A conventional wristwatch can be combined 

with a magnetic sensor to provide time information and direction information. The 

Suunto M9 Wristwatch incorporates watch, barometer, thermometer, altimeter, 3D 

compass and GPS altogether (see Figure 1.1 (a)). Another example is the Casio (PAG50-

1V) Pathfinder Triple Sensor Tough Solar Watch (see Figure 1.1 (b)). It measures and 

displays direction as one of 16 points. Measuring range is 0° to 359° and measuring unit 

is 1°. 

 

 

 

                

(a) Suunto M9 Wristwatch w/ GPS          (b) Casio (PAG50) Pathfinder solar watch 

 
Figure 1. 1. Wrist watches that provide directions. 
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For mobile electronic applications, there are several requirements for the magnetic 

field sensor along with sensitivity sufficient to measure the direction of the Earth’s 

magnetic field: 1) low power consumption, 2) small size, 3) low operational voltage, and 

4) CMOS compatible fabrication. Recent advances in the manufacturing process, a 

micromachining process, enable such a sensor to be built in a micro size with CMOS 

compatible processes. The potential for mass production is also one of the advantages of 

the micromachining process. The sensor needs to be built on the substrate whose 

mechanical and electrical properties are not changed over long period of time to avoid 

performance degradation. 

 

1.3 Contributions and research overview 

A micromachined magnetic field sensing system capable of measuring the direction 

of the Earth’s magnetic field has been fabricated, measured, and characterized. The 

system is composed of a micromachined silicon resonator combined with a permanent 

magnet, excitation and sensing coils, and a magnetic feedback loop for the completion of 

the system. The fabricated resonant magnetic sensor demonstrated a capability of 

measuring the Earth’s magnetic field with ultra-low power consumption and low voltage 

operation. A CMOS compatible fabrication process makes it suitable for further 

integration with other electronic components. External electronic circuitry provides a 

magnetic feedback loop such that the resonator always oscillates at its resonant frequency. 

It is also observed that sensitivity of the fabricated resonant magnetic sensor can be 

increased by maximizing nonlinearity. The overview of the research is shown in Figure 

1.2.  
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A theoretical model has been developed to provide an analytical tool for 

understanding and predicting of the behavior of the mechanical resonator. It has been 

observed through the modeling that the nonlinearity needs to be maximized for the 

maximum sensitivity. Geometry parameters such as beam width and the number of 

beams are adjusted to produce best performance in terms of sensitivity subject to 

fabrication constraints, for example device thickness and aspect ratio. It suggests that the 

beam width should be narrow while the number of beams should be increased for a given 

resonant frequency. The results of the theoretical modeling are verified with Finite 

Element Method (FEM) simulation using ANSYS. 

Based on the results of the modeling and simulations, mechanical resonators were 

fabricated and tested with combinations of different beam widths and numbers of beams. 

Two resonator actuation schemes were considered: electrostatic and magnetic. The 

resonator was driven electrostatically using an approximately 20 µm pitch comb drive 

and exhibited very low power consumption. A wafer fusion bonding process was used to 

provide an electrical isolation between exciting and detecting ports. To achieve low 

voltage drive, an all magnetic operation system has been implemented in which the 

mechanical resonator is excited and sensed electromagnetically through coils.  

A complete magnetic sensing system consumes less than 200 microwatts of power 

in continuous operation, and is capable of sensing the Earth’s magnetic field. Such low 

power consumption levels enable continuous magnetic field sensing for portable 

electronics and potentially wristwatch applications, thereby enabling personal navigation 

and motion sensing functionalities. A total system power consumption of 138 µW and a 

resonator actuation voltage of 4mVpp from the ±1.2V power supply have been 
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demonstrated with capability of measuring the direction of the Earth’s magnetic field. 

Both three and four beam structures show higher performance as the beam width 

decreases. When the structures have the same linear stiffness coefficient, the structure 

with narrow beam width and more beams showed higher normalized performance than 

one with wider beam width and less beams at all the measured external magnetic fields, 

demonstrating the beneficial effects of nonlinear maximization. 
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Figure 1. 2. Overview of research. 
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1.4  Outline of thesis 

Research motivation and overviews are given in the first chapter. Because of the 

larger number of magnetic field measurement principles and techniques an overview of 

this area is presented in the second chapter. Theoretical modeling and FEM simulation is 

presented in the third chapter. Fabrication and measurement results are discussed in the 

fourth chapter. A complete system with electronic circuit is presented in the fifth chapter. 

Conclusions are given in the sixth chapter. 
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CHAPTER 2 

REVIEW OF MAGNETIC FIELD SENSORS 

 

 

Because of increasing demands on the integration of the magnetic field sensor with 

mobile electronic devices, such as a wristwatch and navigator, there have been extensive 

efforts to reduce power consumption, physical size, and manufacturing cost of magnetic 

sensors without degrading sensitivity. Thanks to the recent advanced MEMS technology, 

many sensors now can be fabricated in a small size with improved performance. This 

leads to the development of a micromachined resonant type magnetic sensor which can 

provide low power consumption, medium sensitivity, and small size adequate to the 

integration with other electronic components. In this chapter, magnetic field sensors are 

reviewed in terms of their sensitivity, power consumption, and physical size. The concept 

of the presented resonant magnetic sensor is given at the end of the chapter. 

 

2.1 Overview of magnetic field sensors 

The magnetic sensor is considered a transducer that converts a magnetic field into 

an electrical signal. Fifteen different categories of magnetic sensors are listed in Figure 

2.1, which compares approximate sensitivity ranges [1, 2]. The sensitivity range for each 

concept highly depends on the readout electronics along with frequency response, 

physical size, and power applied to the sensors. 
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Figure 2. 1. Estimated sensitivity of different magnetic sensors. The symbols E and GMN 
are used to indicate the strength of the Earth’s magnetic field and geomagnetic noise, 
respectively [2]. 
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Table 2. 1 Features of magnetic field sensors [2, 3]. 

Magnetic sensors Features 

Search-coil sensors 

• Wide sensitivity range from 20 fT to no upper limit. 
• Sensor itself consumes no power. Power 

consumption is limited by readout electronics. 
• Sensitivity scales down with area making 

miniaturization counter productive. 
• Static magnetic field can not be measured. 

Hall-Effect sensors 

• Inexpensive Hall-Effect sensors are generally made 
of silicon (~106 nT). For higher sensitivity, the III-
V semiconductors (InSb) are used (~100 nT) [2]. 

• Lowering power consumption degrades sensitivity. 
• Typical power consumption of around 100 mW [2]. 
• Suffer from large offset and temperature dependence. 

Therefore, an offset reduction or compensation 
method should be used [4]. 

Fluxgate sensors 
• Typical power consumption of 0.1 mW ~ 1 mW [5]. 
• Static magnetic field can be measured. 
• Sensitivity scales down rapidly as it is miniaturized. 

Magnetoresistive (MR) 
sensors 

• Sensitivity is around 10 nT. 
• The sensitivity scales down with power supplied due 

to a linear dependence on drive voltage [5]. 
• Typical power consumption of 0.5 mW [2]. 
• Deposition of the magnetic film is not easy [6]. 
• There is upper limit to their sensitivity range. 

MEMS (Ferromagnetic 
magnetometer )[7] 

• Measured magnetic fields as low as 100 µT. 
• Required a complex detection scheme to measure the 

small displacement of the magnetometer. 
• Power consumption is limited by electronic circuitry. 

MEMS (thermal 
excitation, resonant) [8]. 

• Demonstrate the compass function. 
• Consumes about 5 mW for thermal actuation. 

MEMS(all magnetic, 
resonant) 

• Demonstrate measuring the Earth’s magnetic field. 
• Power consumption is limited by electronic circuitry. 
• CMOS compatible silicon processing. 
• Very simple detection scheme using feedback loop. 
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Features of magnetic field sensors such as sensitivities and power consumptions are 

summarized in Table 2. 1. 

Search-coil sensors have advantages of being high sensitive and low power, but 

their sensitivity scales down with area, making miniaturization counterproductive. When 

all of the linear dimensions of the search coil are divided by a scaling factor of s, the 

scaling effect for the sensitivity of the search coil is then to the inverse second power of 

the scaling factor (s-2). Because search-coils can detect a time-varying magnetic field, it 

cannot detect a static magnetic field such as the Earth’s magnetic field.  

Semiconductor-based magnetic sensors, such as Hall-Effect sensors, 

magnetotransistors, and magnetodiodes, are very compact in size. The Hall-Effect sensor 

is widely used since its manufacturing is low-cost and CMOS compatible. However, 

these simple devices usually suffer from large offset, temperature dependence and some 

sort of offset reduction or compensation method should be used [9]. 

The most sensitive low-field sensor is the superconducting quantum interference 

device (SQUID) developed around 1962 [10]. It is based on Brian J. Josephson’s work on 

the point-contact junction designed to measure extremely low currents [1]. The device 

has three superconducting components: the SQUID ring itself, the radio-frequency coil, 

and the large antenna loop. All three must be cooled to a superconducting state [1]. The 

SQUID itself can be very small, but the need for liquid-helium coolant makes the 

complete instrument bulky and heavy. 

A fluxgate magnetometer typically consists of a ferromagnetic material wound with 

two coils, a drive and a sense coil. A MEMS-based fluxgate sensor can be very compact 

in size [11, 12]. However, its front-end circuitry tends to be complex to drive the core 
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into saturation and sense the output from the coil, and maintaining the saturation flux 

requires consumption of power. A core material should be selected carefully to have low 

coercivity and saturation values for low power consumption [2]. Its sensitivity scales 

down rapidly as it is miniaturized. 

Magnetoresistive sensors (MR) feature a high sensitivity, low cost manufacturing, 

and compact size. However, their poor 1/f noise performance and linearity, combined 

with the narrow dynamic range of these sensors makes them unattractive and unsuitable 

for many low noise applications [13]. Furthermore, their sensitivity is degraded as the 

power consumption is reduced [3].  

Recently Lorentz-force based resonant micromechanical magnetic sensors have 

been reported with good performance, but suffer from the sensitivity, which is scaled 

down with both dimension and power dissipation (i.e., driving current) [8, 14]. 

Ferromagnetic micromechanical magnetometers developed by Jack W. Judy, et al. 

exhibited a high sensitivity without any scaling down effect with both dimension and 

power. However, the total system including detection component is not compact since 

they used a laser Doppler vibrometer (Polytec OFV-511) to measure the small 

displacement of the magnetometer [5]. Resonant magnetic field sensor with frequency 

output developed by Robert Sunier, et al. is fabricated using an industrial CMOS process, 

followed by a two-mask micromachining sequence to release the cantilever structure. A 

total actuation power around 5 mW was reported [8]. 

Each of the sensor approaches discussed above will be briefly described. 
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2.2 Search coil sensors 

The search-coil magnetometer utilizes the voltage induced in the coil, which is 

proportional to the changing magnetic field in the coil. The sensitivity depends on the 

permeability of the core and the number of turns of the coil. The operation of the 

induction coil magnetometer can be explained with Faraday’s law of induction (see 

Figure 2.2). A current is induced in a conducting loop when the magnetic flux linking the 

loop changes and a voltage proportional to the rate of change of the flux is generated 

between its leads. A flux through the coil will change if the coil is in a magnetic field that 

varies with time or if the coil is moved through a nonuniform field. A ferromagnetic core 

is placed inside the coil to capture the magnetic field. The sensitivity of the search-coil 

magnetometer is related to the permeability of the core materials, the area of coil, the 

number of coil turns, and the rate of change of the magnetic flux through the coil [1]. The 

higher inductance results in slow dissipation of the induced current and the lower 

resistance of the coil results in quick dissipation of the current. In practice, however, the 

electronic readout circuitry limits the frequency response of the sensor. The useful 

frequency range is typically from 1 Hz to 1 MHz. The ratio of the coil’s inductance to its 

resistance sets the upper limit [1]. The application of the induction coil sensing will be 

given in the proposed research section.  
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Figure 2. 2. Induction coil (search-coil) magnetometer based on Faraday’s Law of 
Induction. When the flux density through the coil changes, a voltage appears between the 
coil’s leads [1]. 
 
 
 
 
 

2.3 Hall-Effect sensors with magnetic flux concentrator 

Hall-effect sensors utilize galvanomagnetic effects, which occur when a material 

carrying an electric current is exposed to a magnetic field [15]. Inexpensive Hall-effect 

sensors are generally made of silicon. More sensitive sensors can be made of the III-V 

semiconductors, which have higher electron mobility than silicon. Most commercially 

available Hall-effect magnetometers have sensing elements made of the III-V 

semiconductor indium antimonide (InSb). This type of sensor can detect either static or 

time-varying magnetic fields. The frequency limitation is about 1 MHz. Their power 

requirement is between 0.1 and 0.2W [2]. 

A detectable limit as low as 10 pT was reported for the combination of a Hall 

sensor and magnetic concentrators [16]. The characteristics of the Hall element can be 

improved by coupling them with the integrated magnetic concentrator [17]. The principle 

of the operation of the integrated magnetic concentrator is illustrated in Figure 2. 3. 
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Figure 2. 3. Planar magnetic flux concentrator [18]. 
 
 
 
 
 
 

A high-permeability ferromagnetic layer is deposited on the chip’s surface. In the 

middle of the chip, the ferromagnetic layer is etched and split into two pieces so that two 

ferromagnetic pieces are divided by a very narrow air gap. The magnetic concentrators 

now can capture the external magnetic field parallel with the chip’s surface. In the 

vicinity of the air gap, the magnetic flux splits into two parts. One part keeps flowing in 

the horizontal direction. The other part is the fringing magnetic field created around the 

air gap. The simulation result shown in Figure 2. 4 shows that the fringing magnetic field 

has a strong vertical component near the edges of the magnetic concentrator [18]. 

Therefore, the magnetic concentrator will change the direction of the magnetic field from 

horizontal to vertical. This vertical component of the fringing magnetic field can be 

sensed by the Hall elements placed below the magnetic concentrator near the air gap [18]. 

Hence, two advantages result from the flux concentrator. It changes the direction of the 

magnetic field from horizontal to vertical so that the planar Hall element can be used to 

detect the external magnetic field parallel to the surface.  



 18

 

Figure 2. 4. Simulation of the fringing magnetic field around flux concentrator [18]. 
 

 

 

It also focuses the magnetic flux into a small area that can be considered an 

amplification of the magnetic field. The amplification factor depends on several factors 

[17]: the width of the air gap, the shape of the magnetic concentrator, the position where 

the fringing magnetic field is measured, etc. The maximum amplification is achieved 

when the gap distance is equal to the concentrator’s thickness [17]. The nickel-iron alloys 

are good candidates for the ferromagnetic magnetic material because of their favorable 

magnetic and mechanical properties. In particular, the Ni (81%)-Fe (19%) composition 

permalloy shows a soft ferromagnetic behavior with low minimum coercive force and 

maximum permeability, while it has excellent stainless-steel-like mechanical properties 

and a very low magnetostriction [19]. It has been shown that for a given gap, the 

sensitivity of the Hall sensor is proportional to the length of the concentrators, while it 

can be doubled at best by increasing the width [20]. Therefore, long concentrators are 

preferred to wide ones. Various shapes of the flux concentrator are simulated to find 

optimum structure design as shown in Figure 2. 5 [21]. Among them, the amplification of 

the external magnetic flux is the biggest with the T-shaped flux concentrator [21].  
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Figure 2. 5. Shapes of magnetic flux concentrators [21]. 
 
 
 
 
 

2.4 Fluxgate magnetic sensors 

The fluxgate magnetometer is the most widely used sensor for compass-based 

navigation systems. Fluxgate type sensors can measure not only the absolute strength of a 

surrounding magnetic field, but also the difference in field strength between two different 

points within a magnetic field. The sensitivity range is from 10-2 to 107 nT [2]. 

 

V induced

V excitation

Excitation coil Pick-up coil

magnetic core

External
magnetic field

 

Figure 2. 6. The basic configuration of the fluxgate sensor [22]. 



 20

The measurement principles of fluxgate sensors can be divided into second 

harmonic principle, pulse position principle, and pulse-height principle [23]. The so-

called second harmonic device is the most common type, which consists of two coils, a 

primary and a secondary, wrapped around a common high-permeability ferromagnetic 

core. Figure 2. 6 shows the basic fluxgate sensor configuration. A drive signal applied to 

the primary coil (excitation coil in Figure 2. 6) is large enough to cause the core to 

oscillate between saturation points. Then a periodic pulse voltage is induced in the 

secondary coil (pick-up coil in Figure 2. 6). When a DC external magnetic field is applied, 

the phase of the induced pulse is changed. The second harmonic sensing principle utilizes 

the fact that the even harmonics, especially the second harmonic, are produced in the 

pick-up coil when the induced pulse phase is changed due to the external magnetic field. 

The fluxgate is the most sensitive among the magnetic sensors, which can be used at 

room temperature [24]. The main drawbacks of the conventional fluxgate sensors are 

their large size, high power consumption, and cost. There have been several efforts to 

build a small, fully integrated micro fluxgate sensor [15, 22, 25-36]. Kawahito et al. 

presented a fluxgate sensing element for a high-performance silicon-based integrated 

magnetic sensor [22]. The sensor core used is permalloy film formed by electrodeposition. 

They achieved sensitivity of 5.8 V/T at 100 kHz; it is difficult to achieve sensitivity of 

over 1 V/T (~ 400 V/AT = 0.4 V/T with 1 mA supply current for typical Hall sensors 

[23]) using silicon Hall elements. Liakopoulos et al. showed very good linear response 

over the range of –500 µT to +500 µT, with a system sensitivity of 8360 V/T at 100 kHz 

with amplifiers (418 V/T for 100 kHz without amplifiers) and a resolution of 60 µT by 

constructing three-dimensional planar solenoid coils for the excitation and sensing 
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elements [25]. They reported a power consumption of about 100 mW. Gottfried-Gottfried 

et al. combined a planar technology for the fluxgate with a CMOS-ASIC for readout and 

signal processing [26]. A sensitivity of 9200 V/T was achieved at 350 kHz. A printed 

circuit board (PCB) has also been used to realize fluxgate magnetic sensors [27, 28]. 

Dezuari et al. presented a hybrid PCB/magnetic metal foil technology to build a relatively 

inexpensive fluxgate sensor with sensitivity of 60 V/T at 30 kHz [27]. Most of the 

fluxgate sensors, however, have been developed to measure the absolute magnetic field 

intensity [22, 25, 26]. There has been research on building 2-D fluxgate sensors to 

measure the direction of the external magnetic field [27, 29-32, 37]. Dezuari et al. 

showed in their experiments the potential of the fluxgate device for application as a 

magnetic compass [27]. They applied the external field perpendicular and parallel to the 

detection coil and showed the dependence of the second harmonic output voltage on the 

orientation of the external field. Kawahito et al. presented a single-chip integrated micro-

fluxgate sensor with a Σ∆ analog-to-digital converter (ADC) based on a CMOS process 

[29]. They reported a power consumption of 325 mW from a 5 V supply and an angular 

resolution of 4° at a magnetic induction of 50 µT. Kejik et al. developed a 2-D planar 

fluxgate sensor using similar orthogonal planar coils and a ferromagnetic ring-shaped 

amorphous metal core, mounted on a PCB substrate [37]. They reported a sensitivity of 

55000 V/T at 8.4 kHz with a precision angle better than 1°. Chiesi et al. developed a two-

axes parallel fluxgate magnetometer[30]. They reported a sensitivity of 3760 V/T at 125 

kHz and a power consumption of 12.5 mW. The angle error on the Earth’s magnetic field 

is ±1.5°. Hwang et al. presented a micro fluxgate sensor fabricated on silicon substrate 

[31]. They reported a sensitivity of 210 V/T at 1.2 MHz and estimated the power 
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consumption of ~14 mW. Drljaca et al. developed a single-core fully integrated CMOS 

fluxgate sensor[32]. They reported a sensitivity of 160 V/T at 250 kHz and a power 

consumption of 17 mW for the biasing, driving, and readout electronics. The 

performances for the 2-D fluxgate sensors reviewed so far are summarized in Table 2. 2. 

 

 

Table 2. 2. The performance of the various 2-D fluxgate sensors. 

 
Power 

consumption 
[mW] 

Sensitivity [V/T] Angular resolution 

Kawahito et al.[29] 325 - 4° at 50 µT 

Kejik et al. [37] - 55 @ 8.4 kHz Better than 1° at 50 
µT 

Chiesi et al. [30] 12.5 3760 @ 125 kHz 1.5° at 19 µT 

Hwang et al. [31] 14 210 @ 1.2 MHz 5.5° at terrestrial 
field 

Drljaca et al. [32] 17 160 @ 250 kHz - 
 

 

2.5 Magnetoresistive (MR) sensors 

A magnetoresistive (MR) effect is observed in soft ferromagnetic materials such as 

Co, Ni, and Fe and all metal materials. These type sensors use a change in resistance ∆R 

caused by an external magnetic field H. 

Anisotropic magnetoresistance (AMR) and, recently giant magnetoresistance 

(GMR), sensors are the latest competitors of micro fluxgate sensors. The 

magnetoresistive sensors are made of a nickel-iron (Permalloy) thin film deposited on a 

silicon wafer and patterned as a resistive strip. One of the typical configurations is to 

connect four of these resistors as a Wheatstone bridge. In the presence of an external 
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magnetic field, the magnetoresistive characteristic of the Permalloy caused a resistance 

change in the bridge and a corresponding change in voltage output. The AMR sensors 

have high resolution and high bandwidth, but they saturate at a small magnetic field (less 

than 1 mT) and they may require a complex resetting procedure [33]. The AMR sensors 

are smaller, but less precise than the fluxgate sensors [34]. The GMR magnetic sensors 

also have high resolution and high bandwidth but have a high hysteresis and can be 

destroyed by a low magnetic field [33]. Commercialized magnetoresistors show generally 

a resolution of 10 nT with a sensor size of several milimeters, but their drawback is the 

limited precision resulting from the large temperature coefficient of sensitivity (typically 

600 ppm/°C, compared to 30 ppm/°C for fluxgate) [35]. Both magnetoresistors and 

fluxgates need to periodically saturate their cores to remove offset caused by residual DC 

magnetization. As a result, similar electronic circuits are adopted for both applications 

and there are no major differences in power consumption [35]. There are commercially 

available AMR sensors such as the Honeywell AMR type HMC1051 and the Phillips 

AMR type KMZ52. The power consumptions are around 130 mW for the KMZ52 and 

more than 100 mW for the HMC1051 [38, 39]. Table 2. 3 summarizes the performance of 

other sensors of these companies.  

 

 

Table 2. 3. Characteristics of some AMR sensors [33]. 

 HMC 1021 KMZ10A 

Power Consumption ~ 100 mW ~ 130 mW 

Sensitivity 50 mV/mT 64 mV/mT 

Resolution at DC field 3 µT 30 µT 
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2.6 MEMS-based magnetic sensors 

Resonant magnetic sensors also have been developed for high-sensitivity 

applications. A silicon substrate is generally used since it shows the excellent mechanical 

properties of single-crystal silicon, such as high modulus, extremely low dislocation rate, 

good resistance to fatigue, and low thermal expansion coefficient. Furthermore, a 

magnetic sensor built on a silicon substrate is easily combined with CMOS circuitry. 

Donzier et al. realized a silicon beam resonant magnetic field sensor [36]. The excitation 

of the resonator was achieved by the Lorentz force generated by an alternating current 

flowing through a coil deposited on the surface of the beam. The vibration amplitude is 

transformed into an electrical signal by a piezoresistive gauge bridge diffused in the 

silicon resonator. Kadar implemented a torsional resonant magnetic field sensor [6]. The 

excitation of the resonator is achieved by the external magnetic field and the current 

flowing through a coil on the surface of the silicon device. The detection of the torsional 

movement was done by converting the changes of the sensing capacitors into the 

electrical signal output using charge amplifiers. Judy et al. developed a ferromagnetic 

micromechanical magnetometer that integrates electroplated cobalt-based magnetic 

materials with surface micromachined polysilicon structures [7]. Their prototype devices 

measured a magnetic field as low as 100 µT. It was further developed by Yang et al. By 

optically measuring the small displacement, it detected magnetic fields as low as 500 nT. 

However, the total system they used was not compact due to a laser Doppler vibrometer 

(Polytec OFV-511) [5]. Recently, a CMOS integrated resonant magnetic field sensor with 

frequency output was reported [8]. It exploits the Lorentz force developed on a 

mechanical resonator, a cantilever structure which is embedded as the frequency-
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determining element in an electrical oscillator. It consumes around 5 mW for the thermal 

actuation. 

A low power resonant micro-machined compass (see Figure 2. 7) was fabricated 

and demonstrated as a magnetic compass by Leichle [40]. He built the resonant comb 

drive structure using an epoxy (SU-8) and glued the permanent magnet (NdFeB) onto the 

surface of the epoxy structure. The interaction between an external magnetic field and the 

permanent magnet causes a shift of the fundamental resonant frequency (fc) of the device. 

As a result, the amplitude of the direction of the external magnetic field can be 

determined from this shift of the resonant frequency. A small AC signal was 

superimposed on the relatively high DC signal to actuate the comb drive resonator 

electrostatically. He reported a minimum resolution of 45° at 30 µT or less, at an 

excitation voltage of 10 V. The power consumed to actuate the resonator was on the order 

of 20 nW [40]. However, the SU8 structure is not compatible with some of the silicon 

based CMOS processes [41]. Furthermore, the mechanical properties of SU8 are not good 

in terms of quality factor and thermal coefficient. To overcome these drawbacks (not 

CMOS compatible, poor mechanical properties of SU8 structure), a silicon-based 

resonant magnetic sensor is designed, fabricated, and measured with low power 

consumption and low operation voltage (see section 2. 8). The device is also 

characterized to maximize the sensitivity at given physical dimension by maximizing 

nonlinearity. 
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Figure 2. 7. Photograph of a fabricated resonator incorporating a permanent magnet [41]. 
 

 

 

2.7 MEMS-based mechanical resonator 

Micromachined mechanical resonators are widely used as key sensing elements as 

is shown in the previous subsection. Micromechanical oscillators have been considered as 

an attractive replacement for quartz crystal oscillators as timing references since they are 

not only CMOS compatible, but also can be small. Much research has been done on 

replacing the quartz crystal with MEMS resonators [42-48]. The resonant frequency of 

the MEMS resonator can be extracted by configuring it within a positive oscillation 

feedback loop. Figure 2. 8 shows a typical schematic for the micro-resonator oscillator. If 

we connect the output terminal to the frequency counter, we can find the resonant 

frequency of the resonator. The MEMS resonator can be described by an electrical 

equivalent circuit composed of series LCR circuits[42]. The equivalent circuit for a two-

port micromechanical resonator is presented in Figure 2. 9. The parasitic feedthrough 
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capacitor (C0) couples the drive voltage over to the port where the motional current is 

sensed [42]. This parasitic capacitor is one of the main sources of phase shift in the 

feedback loop used in the oscillation circuit. To bias and excite the device, a direct 

current (DC)-bias voltage Vp is applied to the resonator, while an AC excitation voltage is 

applied to one drive electrode. The polarization voltage (Vp) has two purposes. The first 

function is to avoid having the microstructure moving at twice the frequency of the 

applied drive voltage. The second function of the polarization voltage is to amplify the 

output motional current resulting from the microstructure motion [43]. A motional output 

current i0 arises at the output port when the device is in oscillation, creating a time-

varying capacitance between the micro-resonator and the electrodes. 

 

 

 

 

 

Figure 2. 8. System-level schematic for the micro resonator [47]. 
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The motional current is proportional to the DC-bias Vp and the time-varying 

capacitance is given by: 

 
t
x

x
CV

t
CVi pp ∂

∂
∂
∂

=
∂
∂

=0  (2. 1) 

where x is the displacement of the beam and xC ∂∂ /  is the change in capacitance per unit 

displacement. For the interdigitated-comb drive resonator, the capacitors vary linearly 

with displacement. Thus, xC ∂∂ /  is a constant, given approximately by the expression: 
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where N is the number of finger gaps, h is the film thickness, and d is the gap between 

electrode and resonator fingers [44]. α is a constant that models additional capacitance 

resulting from fringing electric field. For comb geometries, α = 1.2 [45]. At a given 

resonant frequency, i.e., given tx ∂∂ / , the output current is proportional to the DC bias 

voltage (Vp), the number of the comb fingers and the thickness of the structure. The 

smaller the gap (d) is, the larger the output current (i0) is. For the frequency-selective 

element, the series resistance, also called motional resistance, is of most interest. The 

larger Rx needs more gain, and thus more power dissipation, from the amplifier sustaining 

oscillation [46]. 
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Figure 2. 9. Equivalent circuit for a two-port micro resonator composed of LCR. In the 
equations, k is the system spring constant and ( )nxC ∂∂ /  is the change in capacitance per 
displacement at port n of the micro resonator [42]. 
 
 
 
 
 

2.8 A low power micromachined resonant compass 

This dissertation presents a complete magnetic sensing system that consumes less 

than 200 microwatts of power in continuous operation, and is capable of sensing the 

Earth’s magnetic field. Such low power consumption levels enable continuous magnetic 

field sensing for portable electronics and potentially wristwatch applications, thereby 

enabling personal navigation and motion sensing functionalities. The system is composed 

of a micromachined silicon resonator combined with a permanent magnet, excitation and 

sensing coils, and a magnetic feedback loop for the completion of the system. A total 

system power consumption of 138 µW and a resonator actuation voltage of 4mVpp from 

the ±1.2V power supply have been demonstrated with a sensitivity of 0.11 Hz/degree for 

the Earth’s magnetic field. The power consumption level is at least 1-2 orders of 

magnitude smaller than previously reported values (a few mW range) for Earth magnetic 

field sensors in the literature [2, 32, 49, 50]. It can be operated continuously more than 

3000 hours with a standard wristwatch battery (CR2025; 3V, 140 mAh). 
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The resonant structure consists of a permanent magnet torsionally supported on a 

resonant disc. The interaction between an external magnetic field H such as the Earth's 

magnetic field and the magnetization of the permanent magnet M generates a torque 

which changes the stiffness of the beam, resulting in a change of the resonant frequency 

of the sensor (Figure 2. 10). The resonator with electromagnetic sensing and excitation 

coils is hybrid integrated with self-oscillation electronics and gives a resonant frequency 

shift as a function of the strength and orientation changes of the external magnetic field H. 

 

 

 

Figure 2. 10. Principles of operation. M is the magnetization direction of the magnet, H is 
the direction of the external magnetic field, α is the rotational angle of the permanent 
magnet, φ is the small oscillation angle, θ is the angle between the H and the M . 
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The fabrication is based on a two-mask, single wafer silicon bulk micromachining 

process. A recess is inductively-coupled-plasma (ICP) etched into the bottom side silicon 

wafer to reduce the thickness of the resonator structure (Figure 2. 11 (a)). The top side 

silicon wafer is etched by ICP to form a movable resonant disc, a recess for a permanent 

magnet, and support beams (Figure 2. 11 (b)). The permanent magnet is adhered to the 

center of the moving disc (Figure 2. 11 (c,d)). Figure 2. 11 (e,f) show SEM images of the 

fabricated device which has 4 beams that are 17 µm wide, 2mm long, and 110 µm thick.  

 

 

 

 
 
 

 
Figure 2. 11. Schematic views of the fabrication processes (a,b,c) and fabricated 
structures (d,e,f); (a) Bottom recess etch, (b) RIE deep silicon etch, (c) assembly of the 
magnet, (d) complete image after assembly of magnet, (e,f) SEM images of the fabricated 
resonator 
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The excitation and sensing coils and associated electronics are hybrid-assembled 

with the sensor (Figure 2. 12). The resonance frequency is automated for data-acquisition 

for every second with a device rotation of 1 rpm. A driving voltage of 4mVpp and a 

power consumption of 9.64 µW are measured for the excitation of the resonant sensor. 

Sensitivity of 0.11Hz/degree is obtained for the Earth’s magnetic field, and of 0.24, and 

0.54 Hz/degree are achieved for the applied fields of 0.195 mT and 0.39 mT respectively. 

 
 

 

 

 

 

 

Figure 2. 12. The completed sensing systems with electromagnetic excitation and sensing 
coils and electronic circuitry. 
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2.9 Conclusions 

The sensors reviewed so far exhibit variable sizes, performance, complexity of 

configurations, and applications. However, such sensors are not the best candidates for 

mobile electronic components such as cellular phone applications and wristwatch 

applications, which require ultra-low-power consumption. A wristwatch consumes 

approximately 4.5 µW with a 309 battery (voltage of 1.55 V and typical capacity of 80 

mAh). Therefore, the compass should consume the same order of power consumption as 

the wristwatch. Search-coil magnetometers have the advantage of being low power (all 

power is consumed by sense electronics), but their sensitivity scales down with area. 

Fluxgate magnetometers have a high sensitivity, but it scales down rapidly as it is 

miniaturized. Although Hall-Effect sensors are very compact, the sensitivity and power 

consumption of these magnetometers are not competitive. MEMS-based resonant 

magnetic sensor shows very high sensitivity and possible low power operation.  

The goal of this research is to develop a low power consumption compact magnetic 

sensor which is capable of measuring the Earth’s magnetic field. A micromachined 

resonator is used as a frequency selective element in the entire oscillating structure for 

high sensitivity and the search-coil actuation and detection schemes are combined with it 

for low power consumption and low voltage operation. The silicon substrate enhances the 

performance of the sensor in terms of better mechanical properties such as consistent 

thermal coefficient, stiffness, and good quality factor. The CMOS compatibility is also an 

advantage of silicon-based sensors compared to the previously demonstrated epoxy-based 

structure. 
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CHAPTER 3 

THEORETICAL MODELING AND CHARACTERIZATIONS 

 

 

 

In this chapter a theoretical model for the mechanical resonator is provided. An 

optimized design is suggested based on the theoretical model and fabrication constraints. 

Furthermore, sensitivity is characterized as a function of beam width and number of 

beams. 

 

3.1 Theoretical modeling 

Theoretical modeling is carried out to gain a fundamental understanding of a 

mechanical resonator and the sensitivity characteristics of the micromachined resonant 

magnetic sensor. A thorough understanding of both the linear and nonlinear models is 

necessary for successful design and fabrication of the micromachined resonant magnetic 

sensor. 

 

3.1.1 Linear modeling 

The resonator can be simplified to a torsional vibratory system with one degree of 

freedom, shown in Figure 3.1. 



 35

ϕ  

Spring 

Mass 

⇔ 

Mass 

Spring 
element 

Damping 
element 

 

Figure 3. 1. Schematic of a single degree of freedom torsional vibratory system (left) and 
its equivalent mechanical model [41]. 
 
 
 
 
 

The governing equation describing the motion of the resonator is obtained by 

summing the moments acting on the resonator disk [51]. At small oscillation, this 

equation is: 

 )(tTkcI l =++ ϕϕϕ &&&  (3. 1) 

where I is the mass moment of inertia of the system, kl is the linear torsional stiffness 

coefficient of the beams, c is the damping constant and T is an external applied torque. 

Assuming negligible damping, and no external torque, Equation (3.1) becomes: 

 0=+ ϕϕ lkI &&  (3. 2) 

The fundamental resonant frequency of this system, f0, is:  

 
I
kf l

π2
1

0 =  (3. 3) 

For small rotational angle of the cylindrical mass, the torsional stiffness coefficient 

of one beam, kl, can be approximated to its stiffness coefficient under lateral load, kll, 
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times the squared radius of the center silicon disk, rsi, (Figure 3. 2). The relationship 

between the torque applied and the angle of rotation can be expressed as, 

 ϕδϕ 2
sillsillsil rkrkrPkT ≈×=×=⋅=  (3. 4) 

 2
silll rkk ≈⇒  (3. 5) 

 

 

 

Figure 3. 2. A torsional stiffness approximation from the lateral stiffness coefficient. 
 

 

 

 

The stiffness coefficient of a one beam with one end guided and one end fixed is 

given by Roark’s formulas for stress and strain [52]: 

 3

12

b

b
ll l

EIk =  (3. 6) 

where lb is the length of the beam, and Ib is the moment of inertia of the section of the 

beam with respect to the neutral axis: 
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3
bb

b
wtI ⋅

=  (3. 7) 

where tb is the thickness and wb is the width of the beam, respectively. Hence, 

 2
3

3
2

si
b

bb
silll r

l
wtErkk ⋅
⋅⋅

=⋅=  (3. 8) 

The mass moment of inertia of the resonator is obtained by adding the mass 

moments of inertia of the silicon central disc and the mass moment of inertia of the 

cylindrical permanent magnet. The expression of the mass moment of inertia is obtained 

from [53]: 
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where tsi, ρsi, and rsi are the thickness, density, and radius respectively of the central disc 

of the silicon resonator and tm, ρm, and rm are the thickness, density, and radius 

respectively of the permanent magnet. 

The resonant frequency of the resonator is obtained by substituting Equation (3. 8) 

and Equation (3. 9) into Equation (3. 2), and is finally given below: 
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Figure 3. 3. Schematic drawing of the device including the definition of the angles. 
 

 

 

Although the idealization of Figure 3. 1 is useful in gaining understanding of 

resonator performance, it is unrealistic to fabricate using standard micromachining 

approaches. Instead, consider the planar resonator shown in Figure 3. 3. ϕ is the angle of 

oscillation, and θ is the angle between the direction of the magnetization, M, (which is 

fixed with respect to the geometry of the magnet) and the external magnetic field, H. 

When the direction of magnetization is parallel to the external field, the magnetic torque 

is zero and the static resonator does not experience any rotation. However, when the 

resonator is oscillating the torque increases as the rotational resonator is pulled away 

from its equilibrium position. Assuming small oscillation and negligible damping, the 

Equation (3. 1) now can be expressed as: 
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 ( ) 0sin0 =−−+ ϕθϕϕ TkI l&&  (3. 11) 

For simplicity, T0, is the amplitude of the magnetic torque, and is given by 

Equation (3. 12) for a permanent magnet of volume V and magnetization M. When the 

direction of magnetization is parallel to the external field, the expression of the resonant 

frequency is given by Equation (3. 13): 

 MVHT 00 µ=  (3. 12) 

 
I

Tkf l θ
π

cos
2
1 0

0
+

=  (3. 13) 

where θ is 0° or 180°. 

 

 

3.1.2 Nonlinear modeling 

When the magnetization and the magnetic field are not perfectly aligned (θ is not 

0° or 180°), the silicon center disc rotates by an angle α due to the magnetic torque (see 

Figure 3. 3). This angle is determined by solving the equilibrium equation stating that the 

sum of the torques acting on the system has to be zero: 

 ( ) 0sin0 =−− αθα Tkl  (3. 14) 

where kl is the torsional linear stiffness coefficient of beams. In the case of large 

rotation angles, the beams are subject to large deflections and their load-deflection 

behavior is no longer linear. A cubic term multiplied by a torsional nonlinear stiffness 

coefficient, knl, has to be added to the equilibrium equation: 

 ( ) 0sin0
3 =−−+ αθαα Tkk nll  (3. 15) 
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Nonlinear effects have to be taken into account whenever the deflection 

(approximated to the product of the angle of deflection, α, and the radius of the silicon 

center disc, rsi) is comparable to or larger than the width of one beam, wb. The beams tend 

to get stiffer as the angular deviation increases. Hence, the resonator oscillating around 

the new equilibrium position, α, exhibits a higher resonant frequency. The expression of 

the fundamental resonant frequency of the sensor is obtained by solving the differential 

equation satisfied by the angle of vibration, ϕ: 

 ( ) ( ) ( )( )ϕαθϕαϕαϕ +−=++++ sin0
3 TkkI nll&&  (3. 16) 

For small oscillation angles of φ, Equation (3. 16) becomes: 

 ( )( ) ( ) 3
00

2 sincos3 αααθϕαθαϕ nllnll kkTTkkI −−−=−+++&&  (3. 17) 

Hence, the resonant frequency of the system is: 

 
( )

I
Tkk

f nll αθα
π

−++
=

cos3
2
1 0

2

0  (3. 18) 

To solve this equation kl, knl, and the relationship between θ and α have to be 

determined. The kl, and knl can be approximated by the nonlinear equations of the beam 

that has one end clamped and one end guided subject to large deflection [54] although the 

limits of this approximation will be verified by finite elements. The deflection δ for a 

concentrated load P at the end of a beam of length lb, thickness tb, second moment of 

inertia Ib, and elastic modulus E, can be found by simultaneously solving the following 

equations (Figure 3. 4): 
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Figure 3. 4. Beam with large deflection [54]. 
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where N is the normal force that develops in the beam as the result of the applied force. 

The numerical values for applied force (P) and the resultant deflection (δ) are calculated 

at a given u (Equation 3. 21) thereby generating the relationship between the deflection 

and the force. The numerical values used for the theoretical modeling are summarized in 

Table 3. 1. A cylindrically shaped permanent magnet is used throughout modeling and 

measurement (Figure 3. 5). This relationship of the force and the deflection is plotted in 

Figure 3. 6 using Microsoft EXCEL. 
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Figure 3. 5. A silicon resonator structure with permanent magnet. 
 

 

 

 

 

Table 3. 1. Parameters used for theoretical modeling. 

Young’s modulus (Esi) 165 GPa Young’s modulus (Emagnet) 152 GPa 

Density of silicon 2330 kg/m3 Density of magnet 7440 kg/m3 

Beam thickness (tb) 200 µm Magnet radius (rm) 800 µm 

Beam width (wb) 20 µm Magnet thickness (tm) 800 µm 

Beam length (lb) 2 mm Number of beams 4 

Center disc radius (rsi) 1 mm Mass moment of inertia 3.285·10-12 
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Deflection vs. Force
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Figure 3. 6. The deflection to force graph which takes the nonlinearity of the beams into 
account. 

 

 

 

The functional relationship between deflection and force is described using the 

following equation: 

 3
,, δδ δδ nll kkP +=  (3. 22) 

where kδ,l and kδ,nl are lateral linear and nonlinear stiffness coefficients, respectively. 

The Equation (3. 22) is modified further to find the stiffness coefficients easily as, 

 lnl kkP
,

2
, δδ δ

δ
+=  (3. 23) 

Now, the nonlinear stiffness coefficient is the slope of the new curve and the linear 

stiffness coefficient is the intercept of the curve with the y axis (Figure 3. 7). The 

numerical values of kδ,l and kδ,nl are found to be 33.19 N/m and 5.13×1010 N/m, 

respectively from Figure 3. 7.  
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P/δ vs δ^2
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Figure 3. 7. P/δ vs. δ2 curve. kδ,nl and kδ,l cab be easily calculated from this curve. 
 

 

 

Numerical values of the torsional linear and nonlinear stiffness coefficients are 

obtained by considering the torque and force relationship (Figure 3. 2): 

 3
,,

3 δδαα δδ ⋅⋅+⋅⋅=⋅=+= sinlsilsinll rkrkrPkkT  (3. 24) 

 34
,

2
, αα δδ ⋅⋅+⋅⋅= sinlsil rkrk  (3. 25) 

Therefore, the torsional linear (kl) and nonlinear stiffness (knl) coefficients of the 

resonator with the number of beams (Nb) are, 

 2
, silbl rkNk δ=   and  4

, sinlbnl rkNk δ=  (3. 26) 

Hence, the numerical values of the torsional linear and nonlinear torsional stiffness 

coefficients of the single beam were calculated to be 3.32×10-5 Nm and 5.13×10-2 Nm, 

respectively. The kl and knl of the resonator are calculated by multiplying the number of 

beams by these numbers (Equation 3. 26). As expected, the value of the linear stiffness 
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coefficient of one of the beams acquired from this model is very close to the value given 

by Equation (3. 8) of 3.3×10-5 Nm.  

As shown in Equation (3. 15), the deviation angle α is a function of the stiffness 

coefficients of the beams, the magnitude of the magnetic torque and the angle formed by 

the direction of the magnetization and the magnetic field. The nonlinear Equation (3. 15) 

is numerically solved using MATLAB. The linear and nonlinear torsional stiffness of 

132.13×10-6 Nm and 18.7×10-2 Nm are used along with the structural dimensions listed in 

Table 3. 1. 

Figure 3. 8 shows the plot of α (in degree) as a function of θ (in degree). The graph 

shows that the larger the equilibrium angle (α), the greater the magnitude of the external 

magnetic field. The graph also shows that the shape of the curve is very close to the sine 

function of theta (θ). Assuming the magnitude of alpha is small compared to θ and knl, the 

Equation (3. 15) can be written as the Equation (3. 27). Figure 3. 9 show the 

approximation of the α-curve into the arbitrary sine functions. 

 θα sin0Tkl ≅   

 θα sinU≈⇒  (3. 27) 

where U is an arbitrary number. 
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Figure 3. 8. Variation of the equilibrium angle according to the direction of the external 
magnetic field with 50 µT, 0.975 mT, and 1.95 mT respectively. Torques associated with 
these fields are calculated from Equation (3. 12). 
 
 
 
 

 

Figure 3. 9. An approximation of the α with arbitrary sine function. 
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Once the kl, knl, and α are found, the resonant frequency is calculated using 

Equation (3. 18). The change of resonant frequency of the magnetic field sensor 

according to the direction of the external magnetic field is shown in Figure 3. 10. The 

resulting frequency curve is matched with the shape of α2 as shown in Figure 3. 9. 

Therefore the sensitivity is mainly determined by the product of knl and α2  as shown in 

Equation (3. 18). 

 
 
 
 

 

Figure 3. 10. Variation of the resonant frequency according to the direction of the 
magnetic field. 
 
 
 
 

In order to maximize the sensitivity, defined with units as Hz/degree, it is required 

to maximize not only knl, but also α at a given torque (Equation 3. 18). Equation (3. 27) 

shows that the kl needs to be minimized to maximize an α at a given torque. Therefore, 
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minimizing kl and maximizing knl is suggested to achieve the maximum sensitivity. 

Minimizing the kl can be achieved by either increasing the length of the beam or reducing 

the width of the beam. In both cases, the mechanical resonator is becoming more brittle 

to shocks and vibrations and can be easily broken. There is another concern with 

minimizing kl. Lowering the value of kl results in lower resonant frequencies which make 

the electrical measurements difficult due to low frequency noise. 

 

3.2 Characterization using theory 

In this section, the sensitivity of the resonator is characterized by varying the width 

of the beam and the number of beams. This characterization gives a path toward an 

optimum design to achieve the maximum sensitivity. 

 

3.2.1 Beam width characterization 

In this section, the sensitivity of the resonator is characterized by varying the width 

of the beams. The sensitivity is defined as the amount the resonant frequency changes 

over unit angle (θ) difference. Three different beam widths of 10, 20 and 30 µm are used 

for this characterization. All other parameters are listed in Table 3. 1. The simulation 

follows the steps illustrated in Figure 3. 11. The graphs of the deflection vs force are 

plotted using Equations (3. 19 ~ 3. 23) which correspond to the 10, 20, and 30 µm in 

beam width, respectively (Figure 3. 12). The lateral stiffness of the beams, kδ,l and kδ,nl, 

are calculated from Figure 3. 13. The torsional stiffness of the beams, kl and knl, are found 

using Equations (3. 24 ~ 3. 26). Once the kl and knl are determined, α is calculated as a 
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function of θ using Equation (3. 15). The resonant frequency can be determined using 

Equation (3. 18). 

 

 

 

 

 

Figure 3. 11. The numerical simulation sequences. 
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Figure 3. 12. Deflection to force curves calculated for 10, 20 and 30 µm in beam width. 
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Figure 3. 13. P/δ vs. δ2 curves for the three different beam widths. A kδ,l is the cross 
section of the curves with y axis and kδ,nl is the slope of the curves. The total system 
stiffness is calculated using Equation (3. 26). 
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Table 3. 2. Simulation results with varying beam width. Note that the number of beams is 
already considered for calculating the kl and knl (Equation 3. 26). All other parameters are 

listed in Table 3. 1. 

∆fc/(fc· degree)  

[10-3 Hz/(Hz·degree)] 
Beam width 

kl  

[10-6 Nm] 

knl  

[10-2 Nm]

Resonant 

frequency 

at θ=0°. 

fc [Hz] 

50 µT 0.975 mT 1.95 mT 

10 µm 16.56 9.12 358.3 1.5 21.5 27.8 

20 µm 132.13 18.70 1009.4 0.0112 2.0 4.88 

30 µm 445.48 31.60 1853.5 0.00094 0.11 0.44 

 

 

 

The numerical values of the kl and knl are listed in Table 3. 2 along with resonant 

frequencies and the normalized sensitivities evaluated at 50 µT, 0.975 mT, and 1.95 mT 

of the external magnetic field for the three different beam widths, respectively. As the 

beam width increases, both the linear and nonlinear stiffness increase as well. The 

increasing rate of the nonlinear stiffness, knl, is not as high as compared to the rate of 

linear stiffness, kl. The resonant frequency evaluated at θ = 0° also increases as the linear 

stiffness increases. A normalized sensitivity is the sensitivity whose value is divided by 

the resonant frequency at θ = 0°. 

As shown in Equation (3. 18), the resonant frequency is determined by four terms, 

i.e., kl, 3knl·α2, T0·cos(θ - α), and the second moment of inertia, I. Among them, knl·α2 and 

T0·cos(θ - α) play key roles in determining not only the shape of the resonant frequency, 

but also the sensitivity. If the knl·α2 is larger than T0·cos(θ - α), then the resonant 

frequency curve is similar in shape to the sine squared function (section 3.2.1.1) as shown 
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in Equation (3. 27). However, if the T0·cos(θ-α) is larger than knl·α2, then the resonant 

frequency curve follows the shape of the cosine function (section 3.2.1.2). The magnitude 

of the knl·α2 term can be adjusted by changing the structural dimensions (for example, 

changing the beam width). 

 

3.2.1.1 CASE 1: knl·α2 is larger than T0·cos(θ - α) 

The simulation results for this case are listed in Table 3. 2 (gray background). The 

numerical values of the 3knl·α2  and T0·cos(θ - α) for the 10 µm beam width are plotted in 

Figure 3. 14 (a – c) which show larger magnitude for the 3knl·α2 term as compared to the 

T0·cos(θ - α) term at all external magnetic field values of 50 µT, 0.975 mT, and 1.95 mT, 

respectively. The comparison results for the 10 µm and 20 µm beam width are plotted in 

Figure 3. 14 (d – g) which show larger magnitude for the 3knl·α2 term compared to 

T0·cos(θ - α) term at the external magnetic field values of 0.975 mT and 1.95 mT, 

respectively. The magnitudes of the term 3knl·α2  are larger than the term T0·cos(θ - α) by 

at least one order of magnitude (Figure 3. 14 (a) – (g)). In this case, the resonant 

frequency is determined mostly by 3knl·α2 term. Even though the nonlinear stiffness 

increases as the beam width increases, the product of the knl and α2 decrease as the beam 

width increases since the decreasing rate of the α2 is faster than the increasing rate of the 

knl (Figure 3. 15). Therefore, the normalized sensitivity decreases as the beam width 

increases which means that the normalized sensitivity is highest for a 10 µm beam width. 

The resonant frequency curve is similar in shape to the sine squared function as shown in 

the previous section (Figure 3. 16 (a) – (f)). The normalized sensitivity increases with a 
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larger external magnetic field since the equilibrium angle, α, becomes larger with 

increasing external magnetic field at a given kl and knl (Table 3. 2). 

The condition for knl·α2 to be larger than T0·cos(θ - α) can be achieved by making 

either knl or α sufficiently large enough such that knl α2 is an order of magnitude larger 

than T0·cos(θ - α). Increasing knl is not favorable since it is accompanied with increase in 

kl which results in a decreased α (Table 3. 2). Therefore, increasing α is favorable since 

the knl·α2 is proportional to the square of the α while it is proportional to just knl. The 

equilibrium angle, α, increases when either kl decreases or T0 increases (Equation 3. 15). 

The numerical value of T0 is determined by the volume and the magnetization of the 

permanent magnet and also by the applied external magnetic field (Equation 3. 12). So in 

order to increase the torque T0, it is required to increase either the volume or the 

magnetization of the permanent magnet at a given external magnetic field. The calculated 

values of the T0 are 7.55 x 10-10, 1.47 x 10-6, and 2.94 x 10-6 for 50 µT, 0.975 mT, and 

1.95 mT of the external magnetic fields, respectively.  

 
 
 
 

Comparison of 3·k nl ·α 2  and T 0 ·cos(θ-α )
wb = 10 µm, B_external = 50 µT
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                             (a) Beam width is 10µm, External magnetic field is 50 µT. 
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Comparison of 3·k nl ·α 2  and T 0 ·cos(θ-α )
wb = 10 µm, B_external = 0.975 mT 
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                        (b) Beam width is 10µm, External magnetic field is 0.975 µm. 
 

Comparison of 3·k nl ·α 2  and T 0 ·cos(θ-α )
wb = 10 µm, B_external = 1.95 mT
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                        (c) Beam width is 10µm, External magnetic field is 1.95 mT. 
 

Comparison of 3·k nl ·α 2  and T 0 ·cos(θ-α )
wb = 20 µm, B_external = 0.975 mT
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                         (d) Beam width is 20µm, External magnetic field is 0.975 mT. 
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Comparison of 3·k nl ·α 2  and T 0 ·cos(θ-α )
wb = 20 µm, B_external = 1.95 mT
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                            (e) Beam width is 20µm, External magnetic field is 1.95 mT. 
 

Comparison of 3·k nl ·α 2  and T 0 ·cos(θ-α )
wb = 30 µm, B_external = 0.975 mT
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                            (f) Beam width is 30µm, External magnetic field is 0.975 mT. 
 

Comparison of 3·k nl ·α 2  and T 0 ·cos(θ-α )
wb = 30 µm, B_external = 1.95 mT
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                           (g) Beam width is 30µm, External magnetic field is 1.95 mT. 
Figure 3. 14. Comparisons of the 3knlα2 and T0cos(θ-α). 
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3·k nl ·α 2  for different beam widths
B_external = 1.95 mT
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Figure 3. 15. knl·α2 as a function of the θ for the 10, 20, and 30 µm beam widths. Note 
that the knl increases while the knl·α2 decreases as the beam width increases  
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Figure 3. 16. An equilibrium angle ((a), (d), (e)) and the resonant frequency ((b), (d), (f)) 
as a function of θ. (a, b) Beam width 10 µm, (c, d) beam width 20 µm, (e, f) beam width 
30 µm. 
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3.2.1.2 CASE 2: knl·α2 is comparable to T0·cos(θ - α)  

The simulation result corresponding to this case is given in Table 3. 2 (20 µm beam 

width evaluated at 50 µT). The magnitudes of the 3knl·α2  and T0·cos(θ - α) are in the 

same order as shown in Figure 3. 17. The resulting resonant frequency profile is in 

transition from a cosine to a sine squared shape (Figure 3.18). 
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Figure 3. 17. Comparisons of the 3knlα2 and T0·cos(θ-α) for the beam width of 20 µm 
evaluated at 50 µT. Note that the3knlα2 is comparable to T0·cos(θ-α) in magnitude. 
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Figure 3. 18. Resonant frequency as a function of theta. Note that the profile of the 
resonant frequency is in transition from cosine to the sine squared function in shape. 
 
 
 
 
 
3.2.1.3 CASE 3: T0·cos(θ - α) is larger than knl·α2 

The simulation result corresponding to this case is given in Table 3. 2 (30 µm beam 

width evaluated at 50 µT). The magnitude of the 3knl·α2  and T0·cos(θ - α) is compared in 

Figure 3. 19 which shows the term T0·cos(θ - α) being larger than 3knl·α2 by at least one 

order of magnitude. In this case, the resonant frequency profile is determined mostly by 

the T0·cos(θ - α). The numerical value of α is the only parameter in the term T0·cos(θ - α) 

which is affected by the beam width variation. It is negligible in this case since the 

rotating torque from a field with a value 50 µT is too small to generate a value of α that is 

comparable with the value of θ. Therefore, T0·cos(θ - α) is almost identical for the 

different beam widths (Figure 3. 20). The resonant frequency can be modeled using kl, T0, 

and I whose expression is identical to the Equation (3. 13) of the linear modeling section 

(Equation 3. 28): 
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The resonant frequency curve is similar in shape to a cosine function (Figure 3. 21 

(a, b)). The normalized sensitivity is very small comparing to the first case (Table 3. 2). 
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Figure 3. 19. Comparisons of the 3knlα2 and T0·cos(θ-α). The beam width is 30µm and an 
external magnetic field is 50 µT. Note that the T0·cos(θ-α) is larger than 3knlα2 in 
magnitude at least by more than one order. 
 
 
 
 



 61

T 0 ·cos(θ - α)  for different beam widths
B_external = 50 µT
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Figure 3. 20 T0·cos(θ-α) as a function of the θ for the 20 and 30 µm beam widths 
calculated at the external magnetic field of the 50 µT. Note that the T0·cos(θ-α) is 
identical for both beams. 
 
 
 
 
 
 
 

 

Figure 3. 21. Resonant frequency as a function of theta. A beam width is 30 µm and an 
external magnetic field is 50 µT. Note that the profile of the resonant frequency is similar 
to a cosine function in shape. 
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The condition for T0·cos(θ - α) to be larger than knl·α2 can be achieved by making 

either knl or α sufficiently small enough such that the term knl α2 is an order of magnitude 

smaller than the term T0·cos(θ - α). As was stated in case 1, value of knl α2 is more 

sensitive to the magnitude of α than to that of knl. The numerical value of α can be 

reduced either by decreasing the applied torque at a given beam width, or by increasing 

beam width at a given torque, i.e., given external magnetic field (Equation 3. 15). By 

decreasing the applied external magnetic field from 0.975 mT to 50 µT, the resonant 

frequency is more dependent on the value of T0·cos(θ - α) rather than knl α2. By 

increasing the beam width from 10 µm to 30 µm at an external magnetic field of 50 µT, 

the profile of the resonant frequency changes from a sine squared function to a cosine 

function which shows the same results as in the case of decreasing the applied external 

magnetic field at the same beam width. 

The dependence of the resonant frequency on either knl α2 or T0·cos(θ - α) is 

simulated by changing the beam width from 10 µm to 100 µm at the external magnetic 

field of 1. 95 mT (Table 3. 3). To investigate the transition, the maximum value of the 

3·knl·α2 is calculated to compare it with the magnitude of the T0·cos(θ-α). The numerical 

value of the T0·cos(θ-α) depends on externally applied torque, but not the beam width 

variations as was discussed in previous sections. As shown in Table 3. 3, the nonlinear 

stiffness (knl) increases as the beam width increases, but the maximum value of the 

3·knl·α2 decreases as the beam width increases since the value of the α is getting smaller 

with wider beam widths. In this simulation, T0·cos(θ-α) is the dominant term starting 

from 40 µm beam widths in determining both the sensitivity and the shape of the resonant 

frequency curve. 
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Figure 3. 22 shows the shapes of knl·α2 and T0·cos(θ-α) as a function of theta (θ) 

when the beam width is 100 µm, and the external magnetic field is 1.95 mT. T0·cos(θ-α) 

is one order of magnitude larger than knl·α2. Therefore the resonant frequency curve 

mostly depends on the T0·cos(θ-α) (Figure 3. 23).  
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Figure 3. 22. Magnitude comparison of the knl·α2 and T0·cos(θ-α) for the 100 µm beam 

width and the external magnetic field of 1.95 mT. 
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Figure 3. 23. Resonant frequency vs. theta curve. Note that the beam width is 100um and 
other dimensions are listed in Table 3. 1. 
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Table 3. 3. Comparison of the magnitudes of the knl·α2 and T0·cos(θ-α) at 1.95 mT. 

Beam 

width 

[µm] 

kl 

(x 10-6) 

knl 

(x 10-2) 

Max(3·knl·α2) 

(x 10-6) 

T0·cos(θ-α) 

(x 10-6) 

Sensitivity 

∆fc/(fc· 

degree) 

10 16.56 9.12 244 2.94 27.8·10-3 

20 132.13 18.70 147.8 2.94 4.88·10-3 

30 445.48 31.60 39.09 2.94 4.4·10-4 

40 1054.76 39.24 9.12 2.94 3.36·10-5 

50 2063.8 49.2 3.00 2.94 7.93·10-6 

60 3563.4 59.2 1.21 2.94 4.59·10-6 

70 5655.24 68.8 0.56 2.94 2.89·10-6 

80 8450.88 78.8 0.29 2.94 1.93·10-6 

90 12026.48 88.4 0.16 2.94 1.36·10-6 

100 16576 98.4 0.09 2.94 9.87·10-7 

 

 

 

 

 

3.2.2 Beam width and number of beams characterization 

In the previous sub-sections, the sensitivity is characterized in terms of the 

variation in beam widths while the number of beams is kept constant at 4. It is 

recommended that the linear torsional stiffness, kl, should be minimized to achieve 

maximum sensitivity. In this sub-section, the resonator is characterized to maximize the 

sensitivity at a given linear torsional stiffness by changing both the number of beams and 

the width of the beams simultaneously. 

Comparing cases 1, 2, and 3 from the previous sub-sections, the sensitivity is 

maximized when the numerical value of the knl·α2 is larger than that of the T0·cos(θ-α). 
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This can be achieved by minimizing the linear torsional stiffness, kl, thereby maximizing 

the equilibrium angle, α, at a given torque (Equation 3. 15, section 3. 2. 1. 1). The 

sensitivity will be further maximized if knl is maximized at a given kl. This is achieved by 

narrowing down the beam width so that each beam undergoes more stress at a given 

deflection. The number of beams needs to be adjusted to maintain the same linear 

torsional stiffness. For example, the narrow width of beams, the more number of beams.  

Three different geometries are used for this characterization in terms of the 

different combinations of the number of beams and the width of the beams (Figure 3. 24). 

The combinations are 20, 15.88, and 12.61 µm in beam width for 4, 8, and 16 beams, 

respectively. 

 

 

 

 

Figure 3. 24. Three different resonator geometries. (a) 3 beams, (b) 4 beams, and (c) 16 
beams. 
 
 
 
 

The deflection vs force curves are plotted for the three structures in Figure 3. 25 

using the Equation (3. 19 – 3. 21). They are re-plotted in Figure 3. 26 to find the lateral 

linear and nonlinear stiffness coefficients of kδ,l and kδ,nl. The torsional linear and 

(a) (b) (c) 
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nonlinear stiffness coefficients of kl and knl are calculated by multiplying the number of 

beams with the radius of the silicon center disk with kδ,l and kδ,nl. (Equation 3. 26). The 

cross section of the curve with the y axis is corresponding to the kδ,l while the slope of the 

curve is corresponding to the kδ,nl (Figure 3. 26). Even though the lateral nonlinear 

stiffness coefficient, kδ,nl , decreases as the number of beams increase (Figure 3. 26), the 

numerical value of the converted knl increases as the number of beams increases in this 

simulation (Table 3. 4). The simulation results and the parameters are summarized in 

Table 3. 4.  
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Figure 3. 25. Deflection vs. force curves for 4, 8, and 16 beam structures with 20, 15.88, 
and 12.61 µm in beam width, respectively. 
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P/δ vs. δ^2

-50

50

150

250

350

450

550

650

750

0.E+00 3.E-09 6.E-09 9.E-09 1.E-08 2.E-08

δ^2

P/
δ

4 beams, wb = 20 µm

8 beams, wb = 15.88 µm

16 beams, wb = 12.61 µm

 

Figure 3. 26. P/δ vs. δ2 curves to calculate the kδ,l and kδ,nl. The cross section of the 
straight line with the y axis is the kδ,l, and the slope of the line is the kδ,nl. 
 
 
 
 
 
 
 
 
 

Table 3. 4. Characterization of the beam width and the number of beams. Note that the 
number of beams is already considered for calculation of kl and knl. 

Sensitivity 

∆fc/(fc· degree)  

[10-3 Hz/(Hz·degree)] 

Number 

of 

beams 

Width 

of beam 

[µm] 

kl  

[10-6 

Nm] 

knl 

[10-2 

Nm] 

Resonant 

frequency 

at θ=0°. 

fc [Hz] 50 µT 0.975 mT 1.95 mT 

4 20 132.13 18.7 1009.38 0.0112  2.001 4.879 

8 15.88 132.28 29.1 1009.95 0.0153  2.756 6.157 

16 12.61 132.47 46.2 1010.68 0.022  3.727 7.659 
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As shown in Table 3. 4, the torsional linear stiffness coefficients, kl, are set to be 

very close for the three designs by reducing the beam width for the designs with more 

beams. The four beam structure with a 20 µm beam width shows the lowest kl while the 

sixteen beam structure with a 12.61 µm beam width shows the highest numerical value 

for kl. The resonant frequency of the four beam structure is lowest as expected due to its 

lowest linear stiffness coefficient. The torsional nonlinear stiffness coefficient, knl, 

increases as more beams are used. The numerical value of the α is inversely proportional 

to kl. Therefore, it decreases as more beams are used at a given torque in this simulation. 

Figure 3. 27 (a) shows that the four beam structure has the highest magnitude of α while 

the sixteen beam structure has the lowest for a given value of θ. However, the sixteen 

beam structure shows the highest magnitude for knl·α2 while the four beam structure 

shows the lowest value for a given θ since the magnitude of the knl is highest at the 

sixteen beam structure and eight, and four beam structure in that order (Figure 3. 27 (b)). 

The resonant frequencies are evaluated at 50 µT, 0.975 mT, and 1.95 mT for three 

structures (Figure 3. 28 (a-c)). In this characterization, the concept of increasing 

sensitivity by increasing the nonlinear stiffness coefficient at a given linear stiffness is 

demonstrated. Increasing the nonlinear stiffness coefficient at a given linear stiffness 

coefficient is achieved by using thinner beams as more beams are used. The sensitivity is 

maximized in this way while keeping the linear stiffness the same (Table 3. 4). The value 

of the linear stiffness decreases as the beam width is reduced which causes following 

problems: 1) a brittle mechanical structure which is susceptible to environmental shocks, 

2) complicated electronic measurement system to remove low frequency noise. The 

number of beams and the beam width characterization performed in this section shows 
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one way of avoiding these problems caused by using thinner beams. The weakness of this 

structure with thin beams is compensated by increasing the number of beams, thereby 

maintaining the same level of the mechanical stability. The fundamental natural 

frequency is not lowered for the same reason, i.e., more beams with narrower beam width. 

 

 

 

 

 

 

Figure 3. 27. The equilibrium angle and torsional nonlinear stiffness coefficient 
comparison for the 4, 8, and 16 beam structures evaluated at the external magnetic field 
of 1.95 mT. (a) Comparison of the equilibrium angle. (b) Comparison of the knl·α2. 

 

(a) (b) 
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                                   (a) Resonant frequencies at 50 µT. 

 

 

 

               

                                 (b) Resonant frequencies at 0.975 mT. 
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                                      (c) Resonant frequencies at 1.95 mT 

Figure 3. 28. Resonant frequencies for three different designs. (a) B = 50 µT, (b) B = 
0.975 mT, and (c) B = 1.95 mT. 

 

 

 

 

3.3 Characterization using Finite Element Method (FEM) 

Finite Element Method (FEM) is used not only to provide verification of the 

theoretical modeling, but also to estimate the performance of the fabricated device. In this 

section, ANSYS (version 9.0, an academic edition) is used to perform the FEM 

simulation. The same characterizations are performed in this section which is 

corresponding to what are characterized in the Section 3. 1. The first characterization is 

about the performance of the resonator when the beam width changes while the number 

of beams is remained same. The second characterization is about the performance of the 
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resonator when both the beam width and the number of beams change while the linear 

stiffness coefficient is remained same.  

The sequence of the simulation is shown in Figure 3. 29. Comparing to Figure 3. 11, 

the way to find kl and knl is changed from the large deflection equations (Equations 3. 19 

– 3. 21) to the FEM simulation using ANSYS.  

 

 

 

 

 

Figure 3. 29. Flowchart of the characterization using ANSYS. 
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A torque is applied as a form of force as shown in Figure 3. 30. The rotational 

angle is monitored and the torque-angle relation is plotted to find kl and knl. The resonant 

frequency is calculated from the Equation (3. 18). 

 

 

 

 
Figure 3. 30. Resonator model for the ANSYS simulation. The ends of the beam are 
confined and the torque is applied in the form of four forces on the center disk. 

 

 

 

There are three different geometries in terms of the number of beams, i.e., four, 

eight, and sixteen, as shown in Figure 3. 30. Four beams structure is simulated with 

increasing beam width to characterize the effect of the beam width variations on the 

sensitivity of the resonator. The widths of the eight and sixteen beam structure are 

determined such that their linear stiffness coefficients are all equal to each other and to 

one of the four beam structures. Thereby the effect of the different number of beams 

whose linear stiffness is all the same is characterized. The dimensions of the resonator are 
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summarized in Table 3. 5. The primary resonant mode shapes are shown in Figure 3. 31 

for the four, eight, and sixteen beam structures. 

 

 

 

Table 3. 5. Structural dimensions used for the ANSYS simulation. 

Number of beams 
Beam width 

[µm] 

Resonant 

frequency 

[Hz] 

Mass moment of 

inertia 

[x 10-12] 

4 10 758.73 3.146 

4 20 2103.20 3.327 

4 30 3884.06 3.533 

8 15.908 2106.45 3.345 

16 12.675 2106.89 3.390 

 

 

 

 

 

Figure 3. 31. The primary resonant mode shape for the resonators. (a) Four beam 
structure, (b) eight beam structure, and (c) sixteen beam structure. 
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3.3.1 Beam width characterization 

The effect of the increasing or decreasing beam width at a given number of beams 

is characterized. The number of beams is four and the widths of beams are increasing 

from 10 µm to 30 µm by the 10 µm increment. All other parameters are listed in Table 3. 

1. A nonlinear large deflection simulation is performed using ANSYS. A torque load is 

applied in the form of force in the ANSYS CLASSIC version as shown in Figure 3. 30. 

The rotational deflection, i.e., rotational angle, is recorded as the applied torque increases. 

The simulation follows the steps illustrated in Figure 3. 29. The graphs of the rotational 

angle, α, to applied torque are plotted for the four beam resonator structures of the 10, 20, 

and 30 µm in beam width, respectively (Figure 3. 32). The torque is related to the 

rotational angle, α, as 

 

 3αα nll kkT +=  (3. 29) 

 lnl kkT
+= 2α

α
 (3. 30) 

 

The torsional linear stiffness, kl, is the cross section value of the straight line whose 

slope is the torsional nonlinear stiffness, knl, in Figure 3. 33. Once the kl and knl are 

determined, α is calculated as a function of θ using Equation (3. 15). The resonant 

frequency can be determined using Equation (3. 18). 
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Torque(T ) vs . rotation angle (α)
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Figure 3. 32. A torque to rotational angle curves corresponding to the 10, 20, and 30 µm 
in beam width with four beams. 

 

 

 

         

T/α  vs. α 2 
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Figure 3. 33. T/α vs. α2 curves for the three different beam widths. A kl is the cross 
section of the curves with y axis and knl is the slope of the curves. 
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As the beam width increases, both the numerical values of the kl and knl are 

increasing. The higher linear stiffness coefficient results in the higher resonant frequency 

and the small rotational angle at a given torque. The higher nonlinearity stiffness 

coefficient, knl, boosts up the value of the knl·α2 in the Equation (3. 18). The shape of the 

resonant frequency curves depends on the relative magnitude of the two terms, knl·α2 and 

T0·cos(θ-α) as is shown in the section 3. 2. 1. When the external magnetic field of 50 µT 

is used for simulation, the magnitude of the knl·α2 is larger than the T0·cos(θ-α) for 10 µm, 

comparable for 20 µm, and smaller for 30 µm in beam width. Therefore, the shape of the 

resonant curves move from the sine squared function to cosine function as the beam 

width increase (Figure 3. 34 (a–c)). 

 

 

 

 
 
                                                                        (a) 
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                                                                        (b) 
 
 
 
 

 
                                                                        (c) 
 
Figure 3. 34. Resonant frequency curves evaluated at 50 µT. (a) 10 µm beam width, (b) 
20 µm beam width, and (c) 30 µm beam width. 
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When the external magnetic field of 0.975mT and 1.95 mT are used for the 

simulation, the all three cases show the larger magnitude of knl·α2 compared to the 

T0·cos(θ-α). The resonant frequency curves follow the shape of the sine squared function 

(Figure 3. 35 (a-c)). 

 

 

 

                    
                                                                     (a) 



 81

                     
                                                                        (b) 

 

 

                     
                                                                            (c) 
 
 
Figure 3. 35. Resonant frequency curves evaluated at 0.975 mT and 1.95 mT. (a) 10 µm 
beam width, (b) 20 µm beam width, and (c) 30 µm beam width. 
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Table 3. 6. A FEM simulation results with four beams structures. All other parameters are 
listed in Table 3. 1. 

∆fc/(fc· degree)  

[10-3 Hz/(Hz·degree)] 
Beam width 

kl  

[10-6 Nm] 

knl  

[10-2 Nm] 

Resonant 

frequency 

at θ=0°. 

fc [Hz] 

50 µT 0.975 mT 1.95 mT 

10 µm 73.3 83.8 758.73 0.10 11.44 17.63 

20 µm 581.0 191.96 2103.2 0.0018 0.320 1.130 

30 µm 1936.7 320.2 3884.06 0.00022 0.012 0.055 

 

 

 

The simulation results with gray background in Table 3. 6 are corresponding to the 

case 1 of the section 3. 2. 1. in which the magnitude of the knl·α2 is larger than that of the 

T0·cos(θ-α) so that the resonant frequency curves are similar to the arbitrary sine squared 

function in shape (Figure 3. 34 (a), Figure 3. 35 (a-c)). The simulation results of the 20 

µm in beam width evaluated at the external magnetic field of the 50 µT is corresponding 

to the case 2 of the section 3. 2. 1. in which the magnitude of the knl·α2 is comparable to 

that of the T0·cos(θ-α). The simulation results of the 30 µm in beam width evaluated at 

the external magnetic field of the 50 µT is corresponding to the case 3 of the section 3. 2. 

1. in which the magnitude of the knl·α2 is smaller than that of the T0·cos(θ-α). The rate 

increase of the squared rotational angle (α2) is greater then rate decrease of the knl as the 

beam width decreases. As a result, the product of knl·and α2 increase as the beam width 

decreases. Therefore, the normalized sensitivity increases at every external magnetic field 

tested as the beam width decreases (Table 3. 6). The FEM simulation using ANSYS is 

well matched with the characterization result using theory. 
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3.3.2 Beam width and number of beams characterization 

In this section, the sensitivity is characterized in terms of both the variation of the 

beam width and the number of beams while the linear stiffness coefficient is remained 

same. The sensitivity is maximized at a given linear stiffness coefficient by increasing the 

nonlinearity of the resonator. 

Three different geometries are used for this characterization in terms of the 

different combinations of the number of beams and the width of beam (Figure 3. 30). The 

structures are 20, 15.908, and 12.675 µm in beam width for 4, 8, and 16 beams, 

respectively. The width of beam is selected such that the linear stiffness coefficients are 

the same for all three structures. The simulated resonant frequencies are 2103.2, 2106.45 

and 2106.89 Hz for four, eight, and sixteen beams, respectively. 

ANSYS is used to simulate the amount of the rotation in angle as a result of the 

torque applied on the center disk. The torque-to-angle curves are plotted for three 

structures in Figure 3. 36. The curve for the sixteen beam structure shows higher 

nonlinearity, i.e., small rotation at a given torque. They are re-plotted in Figure 3. 37 to 

find the numerical values of the torsional linear and nonlinear stiffness coefficients of kl 

and knl. The simulation results and the parameters are summarized in Table 3. 7. 
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Torque (T ) vs rotation angle (α )
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Figure 3. 36. A torque to rotational angle curves corresponding to the 20, 15.908, and 
12.675 µm in beam width for the four, eight, and sixteen beam structures, respectively. 
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Figure 3. 37. T/α vs. α2 curves for the three different beam widths. A kl is the cross 
section of the straight line with y axis and knl is the slope of the straight line. 
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Table 3. 7. Characterization of the beam width and the number of beams using ANSYS. 

Sensitivity 

∆fc/(fc· degree)  

[10-3 Hz/(Hz·degree)] 

Number 

of 

beams 

Width 

of beam 

[µm] 

kl  

[10-6 

Nm] 

knl 

[10-2 

Nm] 

Resonant 

frequency 

at θ=0°. 

fc [Hz] 50 µT 0.975 mT 1.95 mT 

4 20 581.0 192.0 2103.20 0.0018  0.320 1.130 

8 15.908 586.0 333.2 2106.45 0.0024  0.5316 1.7466 

16 12.675 594.0 517.6 2106.89 0.0031  0.7683 2.3612 

 

 

 

As shown in Table 3. 7, the torsional linear stiffness coefficients, kl, are set to be 

very close for the three designs by reducing the beam width for the designs with more 

beams. The four beam structure with 20 µm in the beam width shows lowest kl while the 

sixteen beam structure with 12.675 µm in the beam width shows highest numerical value 

for the kl. The resonant frequency of the four beam structure is lowest as is expected due 

to its lowest linear stiffness coefficient. The torsional nonlinear stiffness coefficient, knl, 

increases as more beams are used. The numerical value of α is inversely proportional to kl 

(Equation 3. 15). Therefore, it decreases as more beams are used at a given torque in this 

simulation. Figure 3. 38 (a) shows that the four beam structure has the highest magnitude 

of α while the sixteen beam structure has lowest one at any θ. However, the sixteen beam 

structure shows the highest magnitude of the knl·α2 while the four beam structure shows 

the lowest value at any θ since the magnitude of the knl is highest at the sixteen beam 

structure and eight, and four beam structure in that order (Figure 3. 38 (b)).  
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Figure 3. 38. The equilibrium angle and the torsional nonlinear stiffness coefficient 
comparison for the four, eight, and sixteen beam structures simulated at 1.95 mT. (a) 
Comparison of the equilibrium. (b) Comparison of the knl·α2. 

 

 

 

The resonant frequencies are evaluated at 50 µT, 0.975 mT, and 1.95 mT for three 

structures (Figure 3. 39 (a-c)). In this characterization, the same results are acquired using 

FEM simulation as is shown in the section 3. 2. 2. The normalized sensitivity increases 

by maximizing the nonlinearity at a given linear stiffness (Table 3. 7). Increasing the 

nonlinear stiffness coefficient at a given linear stiffness coefficient is achieved by using 

thinner beams as more beams are used. The sensitivity is maximized in this way while 

keeping the linear stiffness the same (Table 3. 7). A good agreement is made between 

characterization using theory and characterization using FEM simulation. 

 

 

 

 (a)  (b) 



 87

 
                                                               (a) 

 

 

 

 
                                                              (b) 
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                                                             (c)  

Figure 3. 39. Resonant frequency as a function of theta. (a) B = 50 µT, (b) B = 0.975 mT, 
and (c) B = 1.95 mT. 

 

 

 

3.4 Comparison between theory and FEM simulation 

Even though the characterization results from the theory and FEM simulations are 

well matched, there is a discrepancy in numerical values for linear and nonlinear stiffness 

coefficients. This mainly can be attributed from the fact that the nonlinear theory used in 

Section 3.2 does not consider a bending moment developed at the joint of beam and the 

center silicon disk. The bending moment can be taken into account by selecting proper 

boundary condition at the edges of beams. One example is to develop a torque at the 

center of beam and measure an angular rotation as shown in Figure 3. 40. However, this 

theory is valid when a rotation torque is replaced by force F1 and F2 while d approaches 



 89

zero at the center of the clamped-clamped beam (Figure3. 40) However, the torsional 

resonator that was fabricated and measured has slightly different geometry as shown in 

Figure 3. 41 in which torsional stiffness (kθ) can be calculated more accurately by 

applying forces at the edge of the center disk since the center disk is a rigid body 

structure. This rigid body effect of center disk must be considered for calculation of 

torsional stiffness since portions of beams embedded in the center disk dose not undergo 

significant bending. The torsional resonator shown in Figure 3. 41 is simulated in two 

different ways by changing numerical value of d. 

A linear stiffness coefficient of Figure 3. 40 is found to be [55], 
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  (3. 31) 

 

 

 

Figure 3. 40. Clamped-clamped beam structure with applied torque in the center [55]. (a) 
Torque is applied by F1 and F2, (b) Resultant torque and angular displacement. 
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Figure 3. 41. Torsional resonator that has to be modeled. 
 

 

 

The amount of bending moment that is generated from the forces depends on the 

distance of d (Figure 3. 40). The linear stiffness coefficients from Equation (3. 31) for 

d=0 (CASE B) and d=1 (CASE C) are simulated and compared with FEM simulation 

results in Table 3. 8. Moment developed at the joint of beam and disk is considered in 

CASE B and C while it is not considered in CASE A (theory used in Section 3. 2). The 

simulation results clearly show that a torsional stiffness calculated from the model in 

which moment at the end of beams are considered is more close to what was evaluated 

using ANSYS simulation (CASE D). Furthermore, the simulation results are improved 

when we consider rigid body effect of the center disk by applying force with finite value 

of d (1 mm) (CASE C) rather than with banishing value of d (CASE B). This implies that 

if moment and rigid body effect of center disk are modeled more accurately, then the 
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torsional stiffness calculated from theory will be well matched with FEM simulation 

results. Structural parameters used for simulation are listed in Table 3. 9. 

 

Table 3. 8. Comparison of numerical values of kl from nonlinear theory and clamped-
clamped beam theory. Note that kθ is corresponding kl in this table. 

CASE A B C D 

Beam width 

Theory in 

Section 3.2 

[10-6] 

Equation 3. 31 

[10-6] 

Equation 3. 31 

[10-6] 

FEM results in 

Table 3.6 

[10-6] 

10 µm 16.56 22 33 73.3 

20 µm 132.13 176 264 581 

30 µm 445.48 594 891 1936.7 

  d = 0 d = 1 mm  

 

Table 3. 9. Structural parameters used to simulation. 

wb (beam width) 10 ~ 30 µm d 1 mm 

t (beam thickness) 200 µm E (Young’s modulus) 165 G 

L (total beam length) 6 mm   

 

 

 

3.5 Optimum design for the maximum sensitivity 

In this section, an optimum design is suggested based on the characterization of the 

previous sections and the fabrication constraints. The characterization on the beam width 

recommends having thinner beam width at a given number of beams. The 

characterization on the beam width and the number of beams recommends having more 

beams with thinner beam width at a given linear stiffness i.e., given operating resonant 
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frequency. The constraints imposed by fabrications need to be considered also at the 

design stage. Aspect ratio of the silicon etching is one of the big constraints imposed by 

the Inductively Coupled Plasma (ICP) machine. The Bosch process enables a high aspect 

ratio structure up to 1:15 by alternating deposition and etching steps. However, aspect 

ration of 1:10 is recommended in this optimization to achieve uniform and good vertical 

profiles of the beam structure. A standard 2 inch silicon wafer has around 300 µm in 

thickness and can be easily thin down to the 100 µm using either silicon back side etching 

technique or polisher. Aspect ratio limitation of the etching process gives 10 µm in beam 

width for the 100 µm thick silicon wafer. It is stated that the linear stiffness should be 

minimized to increase the sensitivity of the resonator, thereby lowering the resonant 

frequency. If the resonant frequency is too low, the performance of the overall 

measurement system is reduced due to the low frequency noise from the circuitry 

components and the noise from the sensing coil component. Many mechanical and 

electrical noises surrounding the sensor are limited in the low frequency region. The 

sensing coil detects not only the resonance of the permanent magnet, but also the time 

varying magnetic field around it. For example, the 60 Hz ac electrical signal generates a 

time varying magnetic field and the sensing coil generates and passes an undesirable 

harmonics from it into the circuitry whose main function is amplifying and phase shifting. 

Therefore, the resonator is designed to operate higher than certain frequency. If the 

operating frequency is too high, then the sensitivity is not high enough to measure the 

low magnetic field such as the Earth’s magnetic field. In this optimization, the operating 

frequency is selected to be around 1 kHz. The number of beams is determined from the 

parameters such as the beam width of 10 µm, the operating frequency of around 1 kHz, 



 93

the beam length of the 2 mm, and the thickness of the 100 µm. The number of beams is 

twelve and the resonant frequency is 972.1 Hz. The design sequences are described in 

Figure 3. 42. The parameters are summarized in Table 3. 10. 

 

 

 

Table. 3. 10. Structure dimensions for optimum design. 

Number of beams 12 

Length of beams [mm] 2 

Width of beams [µm] 10 

Thickness of beams [µm] 100 

Radius of center disk [mm] 1 

Resonant frequency [Hz] 972.1 
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Figure 3. 42. Flowchart for optimum design. 
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Figure 3. 43. A torque to rotational angle curve simulated using optimum design 
parameters. 
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Figure 3. 44. T/α vs. α2 curve. Note that a linear trendline is superimposed on the 
simulated data showing the kl and knl. 
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ANSYS is used to simulate the amount of the rotation in angle as a result of the 

torque applied on the center disk. The torque-to-angle curves are plotted in Figure 3. 43. 

The numerical values of the torsional linear and nonlinear stiffness coefficients of kl and 

knl is calculated in Figure 3. 44. A linear trendline is added on the simulation result to 

confirm the linear relations between T/α vs. α2. 

The optimized design simulated at the applied torque which is equivalent to the 

external magnetic fields of 50 µT, 0.975 mT, and 1.95 mT. The magnitudes of the 3knl α2 

are greater than those of the T0·cos(θ-α) for the all three external magnetic fields (Figure 

3. 45 (a – c)). Therefore the shapes of the resonant frequency curves follow the shape of 

the sine squared function (Figure 3. 46 (a, b)). 

 

Comparison of 3·k nl ·α 2  and T 0 ·cos(θ-α )
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Comparison of 3·k nl ·α 2  and T 0 ·cos(θ-α )
wb = 10 µm, tb = 100µm, B_external = 0.975 mT
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Comparison of 3·k nl ·α 2  and T 0 ·cos(θ-α )
wb = 10 µm, tb= 100 µm, B_external = 1.95 mT
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Figure 3. 45. A comparison of the 3knl α2 and T0·cos(θ-α) in profile. (a) B = 50 µT, (b) B 
= 0.975 mT, and (c) B = 1.95 mT. 
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                                                               (a) 

 

 

 
                                                               (b) 

 

Figure 3. 46. Resonant frequency evaluated at (a) B = 50 µT, (b) B = 0.975 mT, and (c) B 
= 1.95 mT. 
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Table 3. 11. Simulation results for the optimized design. 

Sensitivity 

∆fc/(fc· degree)  

[10-3 Hz/(Hz·degree)] 

Number 

of 

beams 

Width 

of beam 

[µm] 

kl  

[10-6 

Nm] 

knl 

[10-2 

Nm] 

Resonant 

frequency 

at θ=0°. 

fc [Hz] 50 µT 0.975 mT 1.95 mT 

12 10 108 156.6 972.1 0.1197  9.3618 15.1540 

 

 

 

The simulation results are summarized in Table 3. 11. The resonant frequency is 

972. 1 Hz. The normalized sensitivities are 0.1197, 9.3618, and 15.1540 Hz/(Hz·degree) 

for 50 µmT, 0.975 mT, and 1.95 mT, respectively. The beam deflection shape at the 1.95 

mT is shown in Figure 3. 47. 
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Figure 3. 47. The large deflected beam shapes simulated by ANSYS. 
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3.6 Conclusions 

In this chapter a theoretical modeling for the mechanical resonator is developed. A 

nonlinear modeling is used to address the important nonlinear behavior of the resonator. 

The sensitivity of the resonator is simulated with several different beam widths at a given 

number of beams and characterized. The sensitivity of the resonator is simulated with 

several combinations of the beam widths and the numbers of beams at a given linear 

stiffness coefficient and characterized. Two methods of the characterization are used: 1) a 

numerical method, 2) a Finite Element Method. A numerical method is solving the 

nonlinear equation numerically while the FEM is simulating the nonlinear behavior of the 

resonator using ANSYS. Both methods produce the same characterization results. The 

sensitivity of the resonator increases as the beam width decreases at a given number of 

beams. The sensitivity of the resonator increases as the number of beams increase at a 

given linear stiffness which accompanies thinner beam width. 

An optimum design is presented considering constraints on the fabrication and 

measurement efficiency. The aspect ratio of the beams is limited to 1:10 due to the 

capability of the silicon etching process. The beam width is minimized to maximize the 

sensitivity of the resonator. The resonant frequency of the resonator is set to be 972.1 Hz 

to avoid the problems such as low frequency noise of the measurement circuitry and the 

environmental harmonics picked up by the sensing coil. Base on those constraints, the 

number of beams are set to be twelve. The resonator is simulated at the external magnetic 

fields of 50 µT, 0.975 mT, and 1.95 mT using ANSYS. 

 



 102

CHAPTER 4 

LOW POWER / LOW VOLTAGE RESONENT MAGNETIC FIELD 

SENSOR 

 

 

A magnetic field sensor incorporating a micromachined silicon mechanical 

resonator and a permanent magnet is fabricated. The device is tested and characterized to 

determine the direction of the various external magnetic fields including Earth’s magnetic 

field. Two different excitation and detection schemes are used to achieve low power 

consumption and a low voltage operation: 1) electrostatic excitation and magnetic 

detection, 2) electromagnetic excitation and electromagnetic detection (Table 4. 1). A 

complete magnetic sensing system is presented by implementing electronic circuitry 

performing positive feedback to make a self oscillating resonator. 

 

 

 

Table 4. 1 Different excitation and detection schemes. 

 
Excitation 

method 

Excitation 

component 

Detection 

method 

Detection 

component 

Scheme 1 Electrostatic Comb-drive Magnetic 
Hall-Effect 

sensor 

Scheme 2 Electromagnetic Coil Electromagnetic Coil 
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4.1 Electrostatically excited and magnetically sensed comb drive magnetic sensor 

Electrostatic excitation and capacitive detection techniques are widely used for 

silicon resonators and inertial sensors because they consume very little power and can be 

implemented with other electronic components on the same silicon substrate. However, 

the crosstalk between excitation and detection is a considerable limitation for a capacitive 

detection. This crosstalk makes it difficult to isolate the sensed signal from the excitation 

signal. Several researchers have addressed this problem and suggested many different 

ways to avoid the unwanted communication between excitation and sensing ports often 

adding up the complexity of the electronic circuitry [56-59]. Also complex circuitry to 

read out extremely small capacitance variation may be required. In this section, a new 

method is presented to avoid the crosstalk between excitation and sensing ports by using 

a Hall-Effect sensor to detect the motion of the permanent magnet. Utilizing a Hall-Effect 

sensor as the detection component not only enables the detection scheme to be much 

simpler but also provides very effective isolation between sensing and detection ports. 

 

 

4.1.1 Electrostatic actuation 

Two configurations of electrostatic excitation are possible by implementing either a 

lateral comb drive structure or vertical comb drive structure. There are several drawbacks 

to the vertical driving of the micro-mechanical resonator [60]. The first one is that the 

electrostatic force with voltage control is nonlinear unless the amplitude of the vibration 

is limited to a small fraction of the capacitor gap (Figure 4. 1). 
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Figure 4. 1. Typical configuration for the vertical electrostatic excitation. 
 

 

 

For an idealized parallel plate capacitor in Figure 4.1, the capacitance is given by, 

 
z
AC ε

=  (4. 1) 

 

where ε is the permittivity, and A is the parallel plate area. The electrostatic force in the z 

direction is given by,  
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where E is the stored energy in the capacitor, C is the capacitance, and VP is the applied 

voltage. This equation clearly shows that the electrostatic force is a nonlinear function of 

the capacitor gap. To maintain linearity the vibration amplitude should be small 

compared to the capacitor gap. There also exists a pull-in voltage which is the maximum 

voltage that can be applied to the parallel plate without losing stability of the equilibrium 
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that exists between the electrostatic force pulling the plate down and the spring force 

pulling the plate up [61]. It is readily shown that the pull-in occurs at, 

 03
2 ggPI =  (4. 3) 

where g0 is the gap at zero volts and zero spring extension [61]. And at this value of the 

gap, the pull-in voltage is given by, 
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=  (4. 4) 

where k is the spring constant, A is the area of the parallel plate, and ε is the permittivity 

of free space. 

Secondly, the quality factor Q of the resonator is very low at atmospheric pressure 

because of squeeze film damping in the micron-sized capacitor gap [62, 63]. 

More than 10 years ago, Tang and Howe introduced a laterally driven comb drive 

actuator [64]. Since then extensive research has been carried out either to design an 

optimum lateral comb drive structure or to implement the electrostatic actuator using this 

structure since it offers a nearly constant force over a large range of displacements 

(Equation 4. 7) [65-67]. A key feature of the laterally driven comb drive is that xC ∂∂  is 

a constant (Equation 4. 6), independent of the displacement x, as long as x is less than the 

overlap between the comb fingers, l (Figure 4. 2). Lateral comb drives provide linear 

electromechanical transfer functions for large displacements, in contrast to the parallel 

plate vertical drives [64]. They are driven by superimposing a direct current (DC)-bias 

voltage Vp to the resonator and an AC excitation voltage which is applied to the one of 

the drive electrodes. The polarization voltage (Vp) has two purposes: the first one is to 

avoid having the microstructure moving at twice the frequency of the applied drive 
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voltage and the second one is to amplify the output current resulting from the 

microstructure motion (Equation 4. 8) [43].  

 

 

 

 

Figure 4. 2. Typical lateral comb drive configuration. Note that only excitation part is 
shown [57]. 

 

 

 

A capacitance of the typical lateral comb drive structure can be modeled as, 

 
g

hxlN
g
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⋅⋅⋅
=

εαεα  (4. 5) 

where N is the number of finger gaps, h is the film thickness, x is the displacement of the 

beam, and g is the gap between the electrode and the resonator fingers [44]. The constant 
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α models additional capacitance resulting from fringing electric fields. It is 1.2 for comb 

geometries [45]. For the interdigitated-comb drive resonator, the capacitance varies 

linearly with displacement. Thus, the change in capacitance per unit displacement, 

xC ∂∂ / , is a constant, given approximately by, 
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The force can be calculated from the Equation (4. 6) as, 
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where U is energy associated with applied voltage between comb drive gaps. To excite 

the resonator, a small AC signal is superimposed on the DC signal as shown in Figure 4. 

2. The equation (4. 7), thus can be given as, 
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The second term of the Equation (4. 8) is only interested since it comes out of the 

applied excitation signal. The third term is negligible assuming small AC signal and first 

term contains only the DC component. 

 

4.1.2 Design and Fabrication 

A micromachined magnetic sensor consists of a mechanical resonator and a 

permanent magnet. The silicon disk needs to have a rectangular shaped trench to hold the 

permanent magnet securely (Figure 4. 3). The beams are designed to be strong enough to 

hold the permanent magnet and also to enable the lateral torsional vibration mode as the 

primary resonant one (Figure 4. 4). The designed structure is simulated using the ANSYS 
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finite element software to confirm the first resonant mode shape. Table 4. 2 summarizes 

the structural dimensions. More details about the permanent magnet are found in Table 4. 

3. 

 

 

 

Table 4. 2. Structural dimension for the silicon resonator. 

Number of beam 3 Comb finger width 20 µm 

Width of beam 20 µm Comb finger gap 20 µm 

Length of beam 2 mm Magnet thickness 800 µm 

thickness 200 µm Magnet diameter 1.6 mm 

 

 

 

 

 

Figure 4. 3. Design of the silicon resonator which has the 3 beams to support the 
permanent magnet. 
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Figure 4. 4. A FEM simulation using ANSYS. The first resonant mode is a lateral 
torsional shape with the resonant frequency of 2541 Hz. 

 

 

 

The fabrication of the comb drive magnetic sensor is based on bulk silicon 

micromachining. An intermediate silicon dioxide layer is used for electrical isolation of 

the driving ports and the sensing ports. The oxide layer of 0.7µm is thermally grown in 

the Lindberg furnace (Figure 4. 5 (A)). 

Two wafers are bonded together using a silicon wafer fusion bonding technique 

(Figure 4. 5 (B)) [68, 69]. Wafer bonding is a key technology to create inexpensive thick 

film silicon-on-insulator (SOI) materials of high quality. The surfaces to be bonded have 

to be flat having an average roughness typically in the order of less than about 10 Å [70]. 

The surface preparation step involves cleaning the mirror-smooth, flat surfaces of the two 

wafers to from the hydrated surfaces. A particle on the surface results in a void between 

the bonding surfaces. Effects of hydrophobic and hydrophilic surfaces on the bonding 
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quality have been researched [71]. Following this preparation, the wafers are brought into 

the contact in a cleanroom by gently pressing the two surfaces together at one central 

point. The initial weak contact is created at this time by a surface attraction of the two 

hydrated surfaces. The bonding is strengthened by high temperature annealing typically 

at 1100°C for a couple of hours. Infrared imaging system is used to inspect the interface 

bonding states, i.e., the size and the density of the bonding defects such as voids (Figure 4. 

6). 

The adhesion of silicon beams to the substrate, known as “stiction”, has been found 

and studied in 2D silicon surface micromachining [72, 73]. It has been referred as a major 

factor that influences the reliability of silicon surface micromachined devices [74]. 

Stiction problem can be traced to a very thin oxide layer that is often used as a sacrificial 

layer to form moving 3D structures. Strong capillary forces are developed in the 

fabrication process during the wet etch of the sacrificial layers, in this case SiO2. The 

magnitude of these forces is in some cases sufficient to deform and collapse these 

structures to the substrate resulting in device failure [72]. The oxide underneath the 

movable structure is completely removed not only to avoid a stiction but also to prevent 

the electrostatic levitation (Figure 4. 5 (C), Figure 4. 7) [75]. 

The upper silicon wafer is etched by Inductively Coupled Plasma (ICP) to realize 

the movable resonant disc structure (containing a recess for the permanent magnet), 

support beams, and contact electrodes (Figure 4. 5 (D)). Both the bottom and the top side 

of the silicon wafer is etched using deep Reactive Ionic Etching (RIE) technology. A 

metal shadow mask created using the IR laser is used to generate the contact electrode 

using the E-beam evaporation (Figure 4. 5 (E), Figure 4. 8). 
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The permanent magnet is glued on the center of the moving structure using epoxy 

glue (Figure 4. 5 (F)). A commercially available permanent magnet is used. Properties of 

the permanent magnet are summarized in Table 4. 3. Contact electrodes on the silicon 

devices and pads on the handling glass substrate are connected using wire bonding 

(Figure 4. 5 (g)). Fabrication has the following characteristics: CMOS-compatible, low-

cost, low-temperature and simple two-mask fabrication (Figure 4. 5). 
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Figure 4. 5. Fabrication sequence to build the comb drive electrostatic resonator. 
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Table 4. 3. The properties of the permanent magnet [76].  

Material NdFeB (Grade N48) Pull force 0.20 lb 

Diameter 1.6 mm Surface field 0.18 Tesla 

Thickness 0.8 mm Br,max 1.42 Tesla 

Coating material Ni BH,max 3.82 G A/m 

Magnetization 

direction 

Axial (Poles on flat 

ends) 
Weight 11.8 mg 

 

 

 

 

 

 

 

Figure 4. 6 Infrared image to inspect the wafer bonding quality. 
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Figure 4. 7 Bottom trench is formed to prevent a “stiction” during the release. 
 

 

 

 

 

 

Figure 4. 8 Alignment of the metal shadow mask with the fabricated comb-drive silicon 
device. The metal shadow mask is manufactured using IR laser machining. 
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Scanning Electron Microscope (SEM) images of the fabricated silicon resonator are 

shown in Figures 4. 9 - 10. The comb finger structure has about 1:10 aspect ratio defined 

as the ratio of width to thickness. The gaps between comb fingers are carefully examined 

to make sure all the fingers are not connected to each other. A relatively high DC 

polarization voltage is applied between fingers therefore a high current might flow 

through if the fingers were to short-circuit. Figure 4. 11 shows the image of the complete 

device. The permanent magnet is well sitting in the center of the resonator disk. The 

measurement setup is discussed in the next section showing the electrical connection and 

the Hall-Effect sensor assembly. 

 

 

 

Figure 4. 9 A SEM image of the fabricated silicon resonator structure. There is a 
rectangular shaped trench in the center to hold a permanent magnet. 
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Figure 4. 10. A SEM image of the comb-drive structure. The width of the comb finger is 
20 µm and the gap between fingers is 20 µm. 

 

 

 

 

 

Figure 4. 11. A complete sensor picture. A permanent magnet is secured inside the trench. 
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4.1.3 Electromechanical model 

The natural frequency of the fabricated comb drive resonator can be modeled using 

equation (4. 8) and Hooke’s law: 

 staticlacacppx xk
g

hNVVVVF ×=
⋅⋅⋅

+⋅+= ,
22 )2(

2
1

δ
εα  (4. 9) 

where kδ,l is a lateral linear stiffness coefficient of the system and xstatic is the static 

displacement of the comb drive when the mechanical torque is developed on the 

resonator. xstatic is usually a very small value which is not easy to measure electronically. 

However at resonance, the static displacement is amplified by the quality factor, Q [77]: 

 xresonance = xstatic ·Q (4. 10) 

Therefore, kδ,l can be expressed using equation (4. 9 - 10): 

 Q
x

F
x
F

k
resonance

x

static

x
l ==,δ  (4. 11) 

The natural frequency of the resonator can be expressed using Equation (3. 26) and 

(4. 11): 
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where N is the number of beams and I is the mass moment of inertia of the resonator 

which can be calculated using equation (3. 9). 

 

4.1.4 Measurements 

A fabricated resonator is assembled with a permanent magnet as shown in Figure 4. 

11. The excitation ports are then connected to the power supply to provide both the AC 
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(Vac) and DC (Vp) voltages (Figure 4. 12). A 50 V DC voltage is supplied along with 5 

Vpp AC voltage to excite the resonator. The quality factor, Q, is calculated to be 950 from 

the measurement. Fx is calculated to be 2.89 µN using Equation (4. 9) and kδ,l is 44.07 

using the measured displacement at resonance of 20 µm. From the equation (4. 12), the 

resonant frequency is 1782.00 Hz. 

A commercially available Hall-Effect sensor (Allegro 3503) is used to measure the 

resonant frequency of the fabricated silicon resonator on which a permanent magnet is 

glued. Figure 4. 12 shows a schematic of the overall measurement setup. The gap 

between the permanent magnet and the Hall-Effect sensor is about 100 µm which is close 

enough for the Hall-Effect sensor to detect the vibratory movement of the permanent 

magnet (Figures 4. 13 - 14).  

 

 

 

Figure 4. 12. Configuration of resonant frequency measurement using Hall sensor. 
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Figure 4. 13. Relative position of Hall-Effect sensor to the permanent magnet. 
 

 

 

 

 

 

Figure 4. 14. The assembly of the Hall-Effect sensor with resonator.  
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The output signal from the Hall-Effect sensor is passed through a low pass filter to 

remove the high-frequency noise. The output signal of the Hall-Effect sensor is 

completely isolated from the excitation port, in other words, the Hall-Effect sensor only 

responds to the time-varying magnetic field generated by the movements of the 

permanent magnet not to the excitation signal of the input port. The resonant frequency is 

monitored using an HP 3561 dynamic signal analyzer. 

A solenoid coil is built to provide a uniform external magnetic field (Figure 4. 15). 

The magnetic flux density inside the solenoid coil is measured at several DC current and 

plotted in Figure 4. 16. 

 

 

 

 

  

 

Figure 4. 15. A solenoid coil is used to provide uniform external magnetic field. The 
magnetic sensor is placed inside the solenoid coil and tested with various rotational 
angles. 
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Figure 4. 16. Solenoid coil measurement. 
 

 

 

The device is placed inside the solenoid coil and the resonant frequency is 

measured every 22.5 rotational degree. The output signals on the HP 3561 dynamic 

signal analyzer are clearly distinguishable whether the resonator is resonating or not 

(Figure 4. 17). The resonant frequency is plotted in Figure 4. 18. The sensitivity is 

normalized to the resonant frequency measured when the θ is zero (Table 4. 4). The 

normalized sensitivity calculated over 180° ~ 360° is higher than that calculated for 0° ~ 

90°. All of the beams do not have exactly the same dimensions after fabrication even 

though they are designed to be the same. These unbalanced beams cause unequal 

amounts of rotation for the same magnitude torques (both clockwise and counter 

clockwise). Therefore, the resonant frequency curves are not perfectly symmetric about y 



 122

axis at 180 degree of the θ. A high DC voltage requirement of the electrostatic resonator 

is the one of the drawbacks for the possible mobile applications. 

 

4.1.5 Conclusions 

A comb drive torsional resonator is fabricated and tested to measure the direction 

of the external magnetic field. The resonator was driven electrostatically and sensed 

using Hall-Effect sensor. An electromechanical model was developed to analyze the 

actuation of the comb drive. The resonant frequency of 1782 Hz was calculated from this 

model. However, the measured resonant frequency is 2370 Hz. The discrepancy is mainly 

attributed to fabrication tolerance. For example, non-uniform beam width and slightly off 

positioned permanent magnet can result in a mass moment of inertia different from the 

calculation. Even though the fabricated comb drive resonator is demonstrated as a 

magnetic sensor measuring the direction of the external magnetic field, high DC voltage 

used is not compatible with most mobile devices, such as a wristwatch. To reduce the 

excitation voltage, the gap of the comb drive fingers needs to be narrowed. However, 

there is a minimum gap which is limited by fabrication. For example, the ICP silicon 

etching process in Georgia Tech cleanroom can create a uniform gap of 20 µm up to 200 

µm in thickness. Therefore, electrostatic actuation is not preferred for a high aspect ratio 

mechanical resonator whose operation voltage is provided from conventional small 

battery, such as wristwatch battery. 
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Figure 4. 17. Output signal on HP 3561 dynamic signal analyzer. (a) Before the 
resonance, (b) at resonance, and (c) after resonance. 
 

(a) 

(b) 

(c) 
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Figure 4. 18. A magnetic field direction measurement at the external magnetic field of 
1.94 mT and 3.83 mT.  

 

 

 

 

 

 

Table 4. 4. Comparison of the normalized sensitivities. The unit of the sensitivity is 
[mHz/(Hz·degree)]. 

 1.94 mT 3.83 mT 

0° ~ 180° 0.038 0.114 

180° ~ 360° 0.118  0.224 
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4.2 Magnetically excited and sensed micromachined resonant magnetic sensor 

A micromachined resonant magnetic sensor was fabricated and tested with 

electromagnetic actuation and search-coil sensing which enables a low voltage actuation 

along with low power consumption. 

 

4.2.1 Electromagnetically excited resonator 

An electromagnetic actuator typically has low power consumption [5] and yet 

produces a large displacement [7, 78] of more than 50µm. Furthermore, the 

electromagnetic actuator enables low actuation voltage which is desirable in many 

applications such as an integrated circuits to reduce noise or eliminate the need for 

voltage converters [79]. The electromagnetic actuator has practical MEMS applications 

in magnetic sensors [80], optical switches [81, 82], RF switches [83], and micro-valves 

[84]. An example of the electromagnetic actuation is shown in Figure 4. 19. An 

electroplated polymer magnet is suspended over the integrated planar coil structure. A 

static deflection and resonant frequency was measured by flowing direct current (DC) 

and alternating current (AC) through the planar coil respectively [85]. 

Most of the magnetic actuators developed so far utilize soft magnetic materials [85]. 

However, hard magnetic materials such as permanent magnets are desirable for 

application of larger forces and deflections [85]. Magnetic actuation using permanent 

magnet has been reported either using hybrid assembled, commercially available 

permanent magnets [86-88], or using electroplated CoNiMnP permanent magnets[89]. 
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Figure 4. 19. Schematic view of the cantilever beam microactuator [85]. A polymer 
magnet magnetized in thickness direction is screen-printed onto the free end of a copper 
cantilever beam. 

 

 

 

4.2.2 Design and FEM simulation 

As is discussed in Chapter 3, the sensitivity of the resonant magnetic field sensor is 

determined by several parameters such as beam width, beam length, and thickness. To 

make the resonator vibrate with its lateral mode as the primary resonant mode, a high 

aspect ratio beam is designed, i.e., the width of beam is relatively small compared to the 

height of the beam. The sensitivity of a laterally moving resonator is greatly changed by 

changing the width of the beam (Table 3. 3). The normalized sensitivities summarized in 

Table 3. 3 are represented in Figure 4. 20. Four different designs are used to characterize 

the relations of the sensitivity to the geometrical parameter, i.e., beam width (Table 4. 5). 

ANSYS is used to determine the dimensions of the resonator so that it resonates with the 

expected resonant frequency (Figure 4. 21). 
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Figure 4. 20. Sensitivities over 10 to 100 µm in beam width for the four beams structures 
(more details are found in Table 3. 3). 

 

 

 

 

Table 4. 5. Design parameters and simulation results. 

 Design A Design B Design C Design D 

Number of beams 3 4 8 16 

Width of the beam 21.2 µm 21.4 µm 19.6 µm 15.0 µm 

Length of the beam 2 mm 2 mm 2 mm 2 mm 

Thickness of the beam 200 µm 200 µm 200 µm 200 µm 

Resonant frequency 

[Hz] (simulation) 
2014.21 2352.9 2910.8 2737.43 

Resonant frequency 

[Hz] (measurement) 
2102 2492 2989 2802.5 
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Figure 4. 21. ANSYS simulated design. (a) 3 beam, (b) 4 beam, (c) 8 beam, and (d) 16 
beam structures. 

 

 

 

4.2.3 Electromagnetic modeling 

The natural frequency of the fabricated resonator can be modeled using magnetic 

toque and mechanical torque developed on the resonator: 

 Tmechanical = kφ φstatic (4. 13) 

 magnetmagnetic VBMT ⋅×= )(
rr

 (4. 14) 
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where Vmagnet and M is the volume and magnetization of the magnet, respectively. B 

is the magnetic field generated from the excitation coil which can be approximated using 

Biot-Savart law (Figure 4. 22) [90] : 

 ( ) N
rz

rIBz 2/322

2
0

2 +

⋅⋅
≅

µ  (4. 15) 

where µ0 is the permeability of free space, z is the distance from coil to a point on 

the axis of a circular loop of radius r that carries a direct current I, and N is the number of 

turns of the coil. In measurement setup, the distance from excitation coil to the permanent 

magnet is approximately 5 mm and the direction of Bz is perpendicular to the direction of 

M. 
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Figure 4. 22. Approximated model for an electromagnetic actuation. 
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When the resonator reaches its equilibrium position, the mechanical torque and 

magnetic torque are the same in magnitude. Since Bz and M are perpendicular, kφ can be 

calculated as, 

 
static

zmagnet

static

magnetic

static

mechnical BMVTTk
ϕϕϕϕ ===  (4. 16) 

and φstatic is the static rotation of the resonator at equilibrium. φstatic can be 

calculated from the measured Q (626.38) and φresonance, angle displacement at resonance: 

 
Q

resonance
static

ϕϕ =  (4. 17) 

where φresonance is set to be 0.02 radian (1.146°). 

The natural frequency of the resonator can be given as: 
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Numerical values in Table 4. 5 are inserted above equations to calculate the 

resonance frequency: 
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Calculated kφ (532×10-6) is very close to the numerical value (581×10-6) from the 

FEM simulation (Table 3. 6), demonstrating good approximation of the solenoid 

excitation coil with single turn circular loop using the Biot-Savart law. The calculated 

resonant frequency is 2025.44 Hz (Equation 4. 22) and the measured resonant frequency 

is 2492 Hz (Figure 4. 29). The discrepancy is mainly attributed to fabrication tolerance. 

For example, non-uniform beam width and slightly off positioned permanent magnet can 

result in a mass moment of inertia different from the calculation. 

 

4.2.4 Fabrication and assembly 

Fabrication of the mechanical resonator is similar to that of the comb-drive 

structure except that a comb-drive structure and an electrical isolation layer are not 

required any more. Therefore, the Wafer fusion bonding process is not used for this 

fabrication process. The processing time is reduced and fewer materials are consumed as 

compared to the electrostatically excited comb-drive devices since only one single wafer 

is used without wafer bonding process. One or two photo lithography processes are used 

depending on whether the back side of the silicon is etched or not. 

Fabrication starts with silicon etching to form a beam structure and the movable 

resonant disc structure which contains the recess for the permanent magnet (Figure 4. 23 

(A)). The magnet is glued on the center of the resonator (Figure 4. 23 (B)) followed by 

the excitation and detection coil assembly (Figure 4. 23 (C)). A magnet wire is wound by 

hand to make both the excitation and detection coils (Figure 4. 24). 
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Figure 4. 23. Fabrication sequences of the mechanical resonator structure. 

 

 

 

   

              (a) Excitation coil                                       (b) Sensing coil  

Figure 4. 24. Excitation and sensing coils. 
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Both the excitation and sensing coils are secured onto the acryl plate not to move 

during the measurement. The dimensions of the coils are shown in Table 4. 6. Figure 4. 

25 shows the images of the fabricated devices which have three, four, eight, and sixteen 

beams, respectively. 

 

 

 

Table. 4. 6. Parameters of the excitation and sensing coils. 

 Excitation coil Detection coil 

Number of turns 300 30 

Resistance [Ω] 6.6 2.5 

Inductance [µH] 16.5 5 

Length [mm] 20.28 2 

Diameter [mm] 1.0 7 
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Figure 4. 25. The SEM images of the fabricated resonators. (a) 3 beam structure, (b) 4 
beam structure, (c) 8 beam structure, and (d) 16 beam structure. 

 

 

 

4.2.5 Open loop measurements 

The fabricated devices are measured in two different ways: 1) open loop 

configuration (Section 4. 2), 2) closed loop configuration (Chapter 5). A position of the 

detection coil relative to the excitation coil and the permanent magnet is important to 

avoid the crosstalk between those coils and to maximize the signal output from the 

detection coil (Figure 4. 26). A magnitude of the excitation signals need to be small for 

the small oscillation but high enough for the excitation. The self resonating sensing 

systems are enabled using a positive closed loop feedback configuration (Chapter 5). The 

sensor is measured at several different external magnetic field at each rotation angle of 30 

degree. A measurement configuration is shown in Figure 4. 26. The excitation coil is 

connected directly to the function generator which provides time varying sinusoidal or 
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square wave signal. The output signal is monitored through the HP 3561A dynamic 

signal analyzer in which the spectrum analysis is performed from 125 µHz to 100 kHz. 

 

 

 

 

Figure 4. 26. Open loop measurement configurations. A sweeping signal is provided by 
the function generator to the excitation coil and the resonant frequency is monitored 
using spectrum analyzer (HP 3561A Dynamic signal analyzer). 

 

 

 

A detection coil is placed under the permanent magnet to maximize a response 

from the oscillatory movement of the permanent magnet while minimizing coupling with 

the excitation coil (Figure 4. 27). The detection coil is placed well below the beam 

structure so that it is not disturb the movement of the beams. The input and output ports 

of the resonator are physically isolated from each other. The excitation coil is placed in 

plane with the permanent magnet (Figure 4. 28). 
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Figure 4. 27. The detection coil is placed under the permanent magnet. 
 

 

 

 

Figure 4. 28. Complete open loop measurement system. The excitation coil is placed in 
plane with magnet while the detection coil is located under the magnet to minimize the 
crosstalk between those two coils. 
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Figure 4. 29. Resonant peak of the resonator. The Q factor of the resonator is calculated 
to be 626.38. 

 

 

The measurement is performed inside the solenoid coil in which a uniform external 

magnetic field is generated. The device is measured at every 30 degrees rotation (Figure 

4. 30 – 4. 33). External magnetic field of the 0.975 mT and the 1.95 mT is uniformly 

generated inside solenoid coil by applying suitable DC current. The normalized 

sensitivity is calculated and shown in Table 4. 7. 

 

 

Table 4. 7. Normalized sensitivities [mHz/(Hz·degree)].  

 0.975 mT 1.95 mT 

Number of beam 0° ~ 180° 180° ~ 360° 0° ~ 180° 180° ~ 360° 

3 0.880 0.680 2.23 2.02 

4 0.068 0.112 0.325 0.357 

8 0.070 0.027 0.231 0.147 

16 0.128 0.089 0.401 0.289 
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Figure 4. 30. Measurement result for the 3 beam structure. The resonant frequency is 
2102 Hz at θ = 0°. 

 

 

 

Direction measurement
(4 beams)
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Figure 4. 31. Measurement result for the 4 beam structure. The resonant frequency is 
2492 Hz at θ = 0°. 
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Figure 4. 32. Measurement result for the 8 beam structure. The resonant frequency is 
2989 Hz at θ = 0°. 

 

 

 

 

Direction measurement
(16 beams)
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Figure 4. 33. Measurement result for the 16 beam structure. The resonant frequency is 
2802.5 Hz at θ = 0°. 
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4.2.6 Comparison between FEM simulations and measurements 

Measurement results are compared with predictions from the FEM simulations. 

Structural dimension used for FEM simulation obtained from the fabricated mechanical 

resonator. Predictions from FEM simulations are not exactly matched with measurement 

results as shown in Table 4. 8. However, FEM simulations are still useful to predict 

sensing performance and optimum designs. For example, FEM simulation predicts that 3 

beams with 21.2 µm produce better sensing performance than 16 beams with 15 µm and 

the measurement results are the same (Table 4. 8). The discrepancy is mainly attributed to 

fabrication tolerance. For example, non-uniform beam width and slightly off positioned 

permanent magnet can result in a mass moment of inertia different from the calculation. 

Assembly of permanent magnet is another source of discrepancy since FEM simulation 

does not consider any effect of glue which is used for assembly of permanent magnet 

with resonator on stiffness change. 

 

 

Table 4. 8. Comparison of normalized sensitivities between FEM and measurements. 

FEM simulation (ANSYS) Measurement 

0.975 mT 1.95 mT Number 

of beam 

beam 

width 

[µm] 

kl 

[10-6] 

knl 

[10-2] 

0.975 

mT 

1.95 

mT 
0 ~ 

180º 

180 ~ 

360º 

0 ~ 

180º 

180 ~ 

360º 

3 21.2 519 168 0.421 1.407 0.880 0.680 2.23 2.02 

4 21.4 712 221.3 0.225 0.799 0.068 0.112 0.325 0.357 

8 19.6 1100 399.4 0.114 0.420 0.070 0.027 0.231 0.147 

16 15 977 571.3 0.222 0.793 0.128 0.089 0.401 0.289 
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4.2.7 Beam width characterization 

The devices are characterized as a beam width is changed. Thinner beam is 

expected to give higher sensitivity since it is more compliant to the externally applied 

torque. Two different beam widths are selected for the 3 beam and 4 beam structures 

respectively. ANSYS simulations are performed to confirm the proper resonant modes of 

the designs (Figure 4. 34). The thinner beam structure shows the lower resonant 

frequency as is expected. The simulation results and the structural dimension are 

summarized in Table 4. 9. 

 

 

 

 

Figure 4. 34. ANSYS modal analysis. (a) 3 beam structure and (b) 4 beam structure. 
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Table 4. 9. Resonant frequency simulated by ANSYS. All of the devices have the same 
thickness of 200 µm and beam length of 2 mm.  

Number of the 

beams 
Device number

Width of the 

beam [µm] 

Resonant 

frequency [Hz] 

(simulated) 

Resonant 

frequency [Hz] 

(measured) 

009 17.2  1475.1  1580 
3 

017 21.2  2014.2 2102 

018 15.6  1475.3 1498 
4 

007 21.4  2352.9 2492.5 

 

 

 

The measurement results confirm that thicker beam structures give higher resonant 

frequencies (Table 4. 10). The external magnetic field of 0.975 mT and 1.95 mT are used 

for these measurements.  

For the three beam structures, the beam widths of the measured device are 17.2 and 

21.2 µm. For the four beam structures, the beam widths of the measured device are 15.6 

and 21.4 µm. The resonant frequency is measured every 30 rotational degree at the 

external magnetic fields of 0.975 mT and 1.95 mT, respectively. The sensitivity is 

decreasing as the beam width is increasing when other structural parameters are 

maintained the same (Figures 4. 35 - 36). 
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Figure 4. 35. Measurement results of the 3 beam structure. 
 

 

 

 

Beam width characterization
(4 beams) 
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Figure 4. 36. Measurement results of the 4 beam structure. 
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Table 4. 10. Normalized sensitivities [mHz/(Hz·degree)].  

0.975 mT 1.95 mT Number 

of beams 

Beam width 

[µm] 0° ~ 180° 180° ~ 360° 0° ~ 180° 180° ~ 360°

17.2 1.169 0.870 2.969 2.617 
3 

21.2 0.122 0.111 0.538 0.522 

15.6 1.142 1.068 3.319 3.07 
4 

21.4 0.067 0.078 0.323 0.323 
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Figure 4. 37. A characterization of the beam width. Sensitivity decreases as the beam 
width increases for both 3 and 4 beam structures. 
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The normalized sensitivities are summarized in Table 4. 10. Due to the unbalanced 

beam width after fabrication, the measurement results show that the resonant frequency 

curves are not perfectly symmetric about y axis at 180 degree of the θ. Sensitivity 

decreases as the beam width increases both three and four beam structures (Figure 4. 37). 

 

 

4.2.8 Conclusions 

Resonant mechanical resonators without comb drive structure was designed and 

fabricated. There were four different designs in terms of numbers of beams: 3, 4, 8, and 

16. The resonator was driven and sensed electromagnetically using coils to achieve low 

power consumption and low actuation voltage. An electromagnetic model was developed 

to discuss the electromagnetic actuation analytically. Sensitivity decreases as the beam 

width increases when no other structural parameters are changed. 
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CHAPTER 5 

COMPLETE MAGNETIC SENSING SYSTEM WITH MAGNETIC 

FEEDBACK CLOSED LOOP 

 

 

 

The micromachined resonator assembled with permanent magnet and 

excitation/detection coils is embedded in the magnetic feedback loop to complete the 

magnetic sensing system. The electronic circuitry is built to provide the positive feedback 

loop. The devices are characterized in terms of the number of beams and the width of the 

beam. 

 

5.1 Overall system view 

A resonator is often embedded in the positive feedback loop to form a self resonant 

oscillator system [44, 50, 91-94]. A typical configuration of the self oscillating resonator 

is shown in Figure 5. 1. In this configuration, the resonator is forced to oscillate at its 

resonant frequency without externally applied driving signal. This type of configuration 

is useful in many resonant sensing applications if the resonance frequency is the output 

signal of interest. The resonator embedded in the positive closed loop tracks the changes 

in the resonant frequency and oscillates at its new resonant frequency. The condition for 

positive feedback is that a portion of the output is combined in phase with the input. 
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Figure 5. 1. A feedback loop configuration of resonant sensor with frequency output [95]. 
 

 

 

 

Figure 5. 2. The mechanical resonator assembled with excitation and detection coils. A 
permanent magnet is adhered onto the center disk of the resonator.  
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The Neodymium-iron-boron (NdFeB) permanent magnet is adhered to the 

mechanical resonator, and the excitation and detection coils are assembled with the 

resonator (Figure 5. 2). Electrical properties of these coils are summarized in Table 5. 1. 

In this configuration, the excitation and detection coils are placed in the same plane, 

thereby maximizing the magnetic flux linkage between the permanent magnet and the 

detection coil. The crosstalk between two coils is negligible in the positive closed loop 

configuration. Excitation coil generates a time varying magnetic field around the 

permanent magnet. The resonator oscillates if the natural frequency of the resonator is 

matched with the frequency of the time varying magnetic field generated from the 

excitation coil.  The permanent magnet adhered to the oscillating resonator generates 

another time varying magnetic field. The detection coil produces the induced voltage 

from this time varying magnetic field generated by the oscillating permanent magnet. 

The output of the detection coil is connected to the input of the positive closed loop 

circuit (Figure 5. 3). The output signal is amplified at the first stage of the circuit and then 

passed through a phase shifter and Schmitt trigger. The phase shifter adjusts the phase of 

the closed loop such that the output signal is fed into the excitation circuitry in phase. 

Both the resonant signal and noise signal which is coming out of the detection coil are 

amplified at this stage. This noise signal can cause malfunction of the circuitry by 

producing a signal with unstable frequency. The purposes of the Schmitt trigger are 

improving noise immunity and limiting the peak-to-peak magnitude of the excitation 

signal for the small oscillation of the resonator. A frequency counter is connected at the 

end of the circuitry to read the resonant frequency of the resonator. The mechanical 
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resonator works as a frequency determining element in a self oscillating amplifying 

feedback loop. 

 

 

Table 5. 1. Properties of excitation and sensing coils. 

 Excitation coil Sensing coil 

Number of turns 300 300 

R [Ω] 8.5 7.24 

L [µH] 45.2 37.2 

 

 

 

 

 

Figure 5. 3. Complete magnetic sensing systems. 
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All automatic measurement system is implemented using an analog wall clock 

(Figure 5. 4). The second hand of the watch makes full rotation continuously with the 

angular speed of 1 revolution per minute (RPM). The Helmholtz coils are placed on the 

wall clock such that the rotational axis of the magnetic resonant sensor is placed in the 

center between two Helmholtz coils (Figure 5. 5 (a), (b)). The sensor is placed on the 

center of the second hand of the wall clock. While the sensor rotates the frequency 

counter measures the frequency and stores it into the spreadsheet every second. An 

external magnetic field is applied through the Helmholtz coils. 

 

 

 

 

Figure 5. 4. Overall measurement systems. 
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Figure 5. 5. Automated measurement systems. (a) A wall clock is utilized to build an 
automated rotating set up. (b) Magnetic sensor is placed on the second hand on the wall 
clock between Helmholtz coils. A magnified view of the sensor inside Helmholtz coils. 

 

 

 

5.2 Positive feedback circuitry 

The circuitry is composed of amplification, phase shifting, Schmitt triggering, 

passive voltage divider, and voltage follower functions in that order. Amplification is 

implemented two stage cascade op amp configurations (Figure 5. 6). 

 

Figure 5. 6. An overview of the positive feedback circuitry. 
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The phase shifter shown in Figure 5. 7 produces a signal at the output Vout which is 

equal to the input Vin with a phase shift φ given by the following formula, 

 )(tan2 31
1 RCωϕ −=  (5. 1) 

 

 

 

        

Figure 5. 7. A phase shifter circuit. Note that R2 is set to be equal to R1 to provide unit 
gain. 

 

 

 

The Schmitt trigger is a comparator application which switches the output negative 

when the input passes upward through a positive reference voltage (Figure 5. 8). It then 

uses negative feedback to prevent switching back to the other state until the input passes 

through a lower threshold voltage, thus stabilizing the switching against rapid triggering 

by noise as it passes the trigger point. 
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Figure 5. 8. (a) A typical Schmitt trigger circuit, (b) An example of analog to digital 
conversion with hysterisis.  

 

 

 

A voltage follower is often used at the end of the circuit to connect to the load 

(Figure 5. 9). The effective isolation of the output from the signal source is the one of the 

advantages of using a voltage follower since the input impedance of the op amp is very 

high. Thereby it draws very little power from the signal source, avoiding "loading" 

effects. The voltage follower with an ideal op amp gives simply, 

 inout VV =  (5. 2) 

 

 

 
 
Figure. 5. 9. A typical configuration of the voltage follower. Vout is equal to Vin with ideal 
OP amp. 
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Table 5. 2. Components used for positive feedback circuitry. 

R1 100 Ω R8 1 KΩ 

R2 10 KΩ R9 1 KΩ 

R3 100 Ω VAR1 1 ~ 1000 Ω 

R4 10 KΩ VAR2 1 ~ 1000 Ω 

R5 1.48 KΩ C1 1 µF 

R6 1 KΩ C2 1 µF 

R7 1 KΩ OP AMP TLV2461CP, OP490 

 

 

 

 

 

Figure 5. 10. The completed circuitry assembled onto the PCB board. The PCB board is 
fabricated with standard lithography and etching process on to the blank PCB board. Note 
that a voltage follower is added at the end of the circuitry to provide effective isolation of 
the inductor load, i.e., excitation coil from the signal conditioning circuitry. 
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All the circuit components (Table 5. 2) are integrated on the PCB board to 

minimize electrical noises (Figure 5. 10). 

 

5.3 Power consumption 

Complete magnetic sensing system consumed 138 µW power including 0.24 µW 

for the actuation (Figure 5. 11). Supplied voltage and current were measured from the 

power supply directly and multiplied to calculate the power consumption of complete 

magnetic sensing system.  

 

 

 

1.2 V

1.2 V

-

+

-

+

39 µA

76 µA

 

 

Figure 5. 11. Measurement of power consumption of complete magnetic sensing system. 
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Power consumption for the excitation is calculated using following Equations 

(Figure 5. 12), 

 Vext,pp = 4.0 mVpp (5. 3) 

 Vext,max = 2.0 mV (5. 4) 

 Vext,rms = 
2

002.0
2
max, =extv

 (5. 5) 

 A
R

V
I

coil

rmsext
rmsexcitation µ4.166

25.8
002.0,

, ===  (5. 6) 

 WRIP coilrmsexcitationexcitation µµ 24.05.8)4.166( 22
, =⋅=⋅=  (5.7) 

 

 

 

 

 

Figure 5. 12. Measurement of excitation power consumption. Electrical properties are 
listed in Table 5. 1. 
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5.4 Beam width and number of beams characterization 

Mechanical dimensional parameters of the resonator, such as resonator thickness, 

beam length, beam width, and number of beams, are related with the sensitivity. To 

maximize the nonlinearity of the resonator with small oscillations, the width of beam 

needs to be small so that it generates more stress at a given rotational torque. However, if 

the width of beam is too small then the resonator might be easily broken either during the 

mounting of the permanent magnet or during the operation due to the vibration of the 

permanent magnet. This problem can be solved either by making the beam thicker or 

increasing the number beams. Characterization of this relationship between the width of 

the beam and the number of the beams to the sensitivity would give an idea for the 

optimum combination of those parameters. 

To characterize the magnetic sensor, 3 different designs are compared (Figure 5. 

13). The resonant frequency is measured every 30 rotational degree at the external 

magnetic fields of the Earth’s magnetic field, 0.195 mT, and 0.39 mT (Figure 5. 14 – 5. 

16). 

 

 

Figure 5. 13. Three different designs. (a) 3 beam structure with 18.5 µm in beam width, 
(b) 4 beam structure with 14.6 µm in beam width, and (c) 6 beam structure with 13.1 µm 
in beam width. 
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Magnetic field direction measurement
3 beams (16.5 um)
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Figure 5. 14. Measurement results of the 3 beam structure. 
 
 
 
 

Magnetic field direction measurement
4 beams (14.5 um)
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Figure 5. 15. Measurement results of the 4 beam structure. 
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Magnetic field direction measurement
6 beams (13.1 um)
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Figure 5. 16. Measurement results of the 6 beam structure. 
 

 

Table. 5. 3. Comparison of the normalized sensitivity [mHz / (Hz·degree)] 

Normalized sensitivity [mHz / (Hz·degree)]

Nb 
wb 

[µm] 

Resonant 

frequency 

[Hz] 
Earth field 0.195 mT 0.39 mT 

3 18.5 1881 0.009 0.017 0.036 

4 14.6 1248.25 0.086 0.192 0.431 

6 13.1 1437.45 0.196 0.509 0.876 

 

 

 

The sensitivity is normalized to its resonant frequency at θ = 0° (Table 5. 3). If the 

same number of beams is used, then the structure with narrow beams shows the lower 

resonant frequency and the higher sensitivity. However, the six beam structure shows the 

higher normalized sensitivity than four beam structure for every external magnetic field 

although the four beam structure shows the lower resonant frequency (1248.25 Hz for 
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four beam structure vs. 1437.45 Hz for six beam structure). This implies that the 

sensitivity increases as the beam width decreases while more beams are used to maintain 

the linear stiffness of the system. 

 

5.5 Conclusions 

This chapter presents a complete magnetic sensing system that consumes less than 

200 microwatts of power in continuous operation, and is capable of sensing the Earth’s 

magnetic field. The system is composed of a micromachined silicon resonator combined 

with a permanent magnet, excitation and sensing coils, and a magnetic feedback loop for 

the completion of the system. A total system power consumption of 138 µW and a 

resonator actuation voltage of 4mVpp from the ±1.2V power supply have been 

demonstrated with measurement of the direction of the Earth’s magnetic field. 

Sensitivities of 0.009, 0.086, and 0.196 [mHz/(Hz·degree)] for the Earth’s magnetic field 

were measured for 3, 4, and 6 beam structures, respectively. 

The resonance frequency is automated for data-acquisition for every second with a 

device revolution of 1 rpm. A driving voltage of 4mVpp and a power consumption of 0.24 

µW are measured for the excitation of the resonant sensor. 

Both three and four beam structures show higher performance as the beam width 

decreases. Although the frequencies were not exactly matched, the six beam structure 

showed higher normalized performance at all the measured external magnetic fields as 

expected, demonstrating the beneficial effects of nonlinear maximization which is 

discussed in Chapter 3. 
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CHAPTER 6 

CONCLUSIONS 

 

 

MEMS-based mechanically-resonant sensors, in which the sensor resonant 

frequency shifts in response to the measurand, are widely utilized. Such sensors are 

typically operated in their linear resonant regime.  However, substantial improvements in 

resonant sensor performance (functionally defined as change in resonant frequency per 

unit measurand change) was obtained by designing the sensors to operate far into their 

nonlinear regime [96]. This effect is illustrated through the use of a magnetically-torqued, 

rotationally-resonant MEMS platform. Platform structural parameters such as beam width 

and number of beams are parametrically varied subject to the constraint of constant 

small-deflection resonant frequency. Nonlinear performance improvement 

characterization is performed both analytically as well as with FEM simulation using 

ANSYS, and confirmed with measurement results. 

Nonlinear effects in resonating structures was exploited to achieve high sensing 

performance. A disc type resonant magnetic sensor, which contains a permanent magnet 

and is supported by multiple microbeams, has been characterized for the nonlinear effects 

on sensitivity as a function of beam width and the number of beams using analytical 

model as well as numerical analysis. As beam width decreases, the numerical values of 

linear (kl) and nonlinear (knl) spring coefficients decrease. However, knl decreases far 

more slowly than kl. Therefore, the normalized performance increases as the beam width 

decreases for a fixed number of beams. Alternatively, when the linear stiffness is held 
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constant, sensor performance is maximized by increasing the nonlinearity of the resonator.  

Maximum sensitivity would therefore be achieved by having an infinite number of beams 

of vanishingly small width. However, the minimum beam width is limited due to aspect-

ratio-based fabrication limitations. 

Resonators of differing beam width and number, but the same nominal kl, are 

fabricated and characterized at various external magnetic fields. The test structure 

consists of a mechanically-resonant silicon platform supported by varying numbers and 

geometries of silicon beams and bearing a permanent magnet. This structure has been 

previously demonstrated as a magnetic sensor [97]. Although the three-beam and four-

beam structures were reasonably well-matched, fabrication discrepancies led to the kl of 

the six-beam structures not being exactly matched. Both three and four beam structures 

show higher performance as the beam width decreases. Although the frequencies were 

not exactly matched, the six beam structure showed higher normalized performance at all 

the measured external magnetic fields as expected, demonstrating the beneficial effects of 

nonlinear maximization. 

A total system power consumption of 138 µW and a resonator actuation voltage of 

4mVpp from the ±1.2V power supply were demonstrated with capability of sensing the 

direction of the Earth’s magnetic field. The system is composed of a micromachined 

silicon resonator combined with a permanent magnet, excitation and sensing coils, and a 

magnetic feedback loop. Sensitivities of 0.009, 0.086, and 0.196 [mHz/(Hz·degree)] for 

the Earth’s magnetic field were measured for 3, 4, and 6 beam structures, respectively. 

The resonance frequency is automated for data-acquisition for every second with a device 
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revolution of 1 rpm. A driving voltage of 4 mVpp and a power consumption of 0.24 µW 

are measured for the excitation of the resonant sensor. 

Nonlinear performance improvement characterization performed both analytically 

as well as with FEM simulation was confirmed with measurement result from the 

magnetically-torqued and rotationally-resonant MEMS platform. Characterization results 

provide a useful way to enhance sensing performance of the resonant-based sensors by 

maximizing structural nonlinearity 
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