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SUMMARY

In 2003, Gomory and Johnson gave two different three-slope T-space facet constructions,
both of which shared a slope with the corresponding Gomory mixed-integer cut. We give a
new three-slope facet which is independent of the GMIC and also give a four-slope T-space
facet construction, which to our knowledge, is the first four-slope construction. We describe
an enumerative framework for the discovery of T-space facets.

Using an algorithm by Harvey for computing integer hulls in the plane, we give a heuristic
for quickly computing lattice-free triangles. Given two rows of the tableau, we derive how
to exactly calculate lattice-free triangles and quadrilaterals in the plane which can be used
to derive facet-defining inequalities of the integer hull. We then present computational
results using these derivations where non-basic integer variables are strengthened using

Balas-Jeroslow lifting.
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CHAPTER I

INTRODUCTION

1.1 Development of the Corner Polyhedron

In mathematics, computer science and operations research, many well-known and frequently

encountered problems can be formulated as an integer program
/

(P1) max dz

s.t. Az

IA
o>

SU/

AV
o

' integer

where

A" = m xn integer matrix
¥ = integer n-vector

b = integer m-vector

¢ = integer n-vector

This problem is NP-hard, even when the inputs are restricted to be in {0,1}. Without
the integer restriction on z’, the problem can be solved in polynomial-time by the ellipsoid
method.

If we add slack variables to (P1), then an equivalent formulation is

(P2) max cx

st. Ar = b
r > 0
x integer



where A = (A’,I) and

A = mx (m+n) integer matrix
x = integer (m + n)-vector

b = integer m-vector

¢ = integer (m + n)-vector

Observe that A contains an m x m identity matrix corresponding to the slack variables
that were added. In the sequel, it will be explained why this is desirable.

Now let B be a basis of A, i.e. a non-singular submatrix consisting of m column vectors
of A. Then without any loss of generality, we may assume that the columns of A have
been rearranged such that zi,...,z,, are the basic variables and xy,41,...,Zmin are the

non-basic variables and the above formulation can be expressed as

(P3) max cprp + cyzn
st. Bxp + Nzy=0b
rB =
rp  integer
zy > 0

Ty  integer

Now by the invertibility of B, we may solve
Bxgp+ Nxny=10>

for xp to get

zp=B'b— B 'Nay (1)



Now substituting and dropping the constant term, we get

(P4) max cyzy —cgB 'Nzy

s.t. xp
IR
IR
TN

TN

= B 'b— B !Nay
> 0

integer

> 0

integer

Recall that the notation ¢ = b mod n means that n divides a —b. We may use this notation

to express that a number a is integer by writing a = 0 mod 1. Extending this notation to

vectors, we say that x is integral if = 0 mod 1. Hence we have the following chain of

equivalences

xp integer

O

and substituting above, we get

B7'b— B™!Nzy integer
B — B7'Nazy =0mod 1
B ' =B 'Nzy mod 1

B 'Nzy =B 'bmod 1

(P5) max cyzy —cgB 'Nay

s.t. rB

rp

= B '%— B 'Nzy

> 0

B !Nzy = B 'bmodl

TN

TN

> 0

integer

Now if we convert the problem to a minimization problem and consider x to be independent

variables and zp dependent variables, we may then assume that xp is defined to be

zp=B'%— B 'Nzy



and hence drop it from the formulation. So we now have

(P6) min (cgB N —cy)zy

Y]

s.t. rB 0

B 'Nzy = B lbmod1
TN > 0
TN integer
Now if we relax the non-negativity of the basic variables, we obtain the Corner Polyhedron
associated with the basis B
(P7) min (cgB7IN —cn)zy
st. B 'Nzy = B 'bmodl
zy > 0
TN integer
Let ¢ = cg B"'N — cy be the reduced costs. If we let g; denote the jth column of BN

and gg denote B_lb, then we may express the above as
j=n
(P8) min Zéjxm+j
j=1

j=n
s.t. E 9jiTm+j
J=1

Tm+j > 0

go mod 1

Tm4j integer

By the integrality of the x,4;, we have that z,,;,; = 0 mod 1 and we may repeatedly add
this to or subtract this from any of the m congruences above. By adding the appropriate

integral multiples to each congruence, we may obtain g; where
gj=gjmodl, and 0<7g; <1

Similarly, we may add the appropriate integral multiple of 1 = 0 mod 1 to each congruence
to obtain g, where

Jgo=gomod1l, and 0 <g, <1



The final system is

j=n
(PQ) min Z CiTm+j
j=1

j=n
J=1

LTm+j > 0

?0 mod 1

Tm4j integer
and is known as the Group Minimization Problem.

At this point, we would like to emphasize the point that solving Problem (P9) does
not necessarily mean that Problem (P1) has been solved, as (P9) is a relaxation of (P1).
The optimal integer solution z%; to Problem (P9) must be plugged into Equation 1 and if
x> 0, then Problem (P1) is solved by z* = (27, z}). A formal proof of this fact is given

in Theorem 3 of [35].

1.2 A sufficient condition for xg >0

First, we consider the following lemma

Lemma 1.2.1 If (z, ;)i is a solution to (P9), then Y " x% . < |det(B)| — 1.

m-1

We omit a proof as the validity of this result will be immediate when the shortest-path

problem is introduced in the sequel. Now, consider the following definition
Kp ={y € R™ | y = Bz for some z € R" where z > 0}

In words, Kp is the cone consisting of the non-negative linear combinations of the columns

of B, or equivalently, the points in ™ for which B is a feasible basis. Now define
Kp(d) ={y € Kp | |y — 0KB| = d}

which is a set consisting of the points in Kp whose Euclidean distance from the boundary
of Kp is at least d. Observe that Kp = Kp(0). Figure 1 illustrates these definitions where
B = [b bo).

We now present the theorem from [35] which gives a condition under which it is guar-

anteed that zg > 0.



Kp(d)

Figure 1: An example of Kp and Kp(d).

Theorem 1.2.2 Gomory [1969] Ifb € Kp(Imax(| det(B)|—1)) where Imax is the (Euclidean)

length of the longest non-basic column, then ' = B~1b - B_lNa?j‘V > 0 for every optimal

solution x to (P9).

Proof
[Nzyll =

IN

IN

<

12251 Niay il
> i NGl 441
> im NGl i
Imax Y i1 Tt

(| det(B)] 1)

since z* ,. >0

m-1

by definition of lyax

by Lemma 1.2.1

Now observe that if b € Kp(lmax(|det(B)| — 1)), then b — N2} € Kp and so B71b —

B Nzt >0. |

Observe that if the solution to the LP relaxation is degenerate, then xp lies on the

boundary of the cone and the condition given in Theorem 1.2.2 cannot be satisfied, unless

| det(B)| = 1. It has been shown by Balas that when the variables in (P1) are binary, then

the condition is never satisfied.



(0,0) | \

Figure 2: An example of Kp and Kp(d).

1.3 Geomelry

Let A denote the set of non-zero columns in (P9), that is
N={g;lg;#0forj=1,...,n}

and let n’ = |[N|. We must have that n’ < n. The set {gy,...,g,} in general may contain
zero columns and duplicate columns and it is clear that a zero column serves no purpose
in solving (P9). If g, = g, for r # s, then both of these columns are not necessary and it
is desirable to only keep the one with smaller reduced cost. The set N consists of distinct,

non-zero columns.
Let us introduce the variable ¢(g) corresponding to ¢ € N and let T be the n'-vector

whose components are t(g). Observe that

1.4 Numerical example

We now consider a simple numerical example from Appendix 1 of Gomory’s original paper



max 2z 4+ w2 + x3 + 3xz4 + x5

s.t. 209 + x3 4+ 4dxy + 25 41

IA

IN

3r1 — 4x9 + 4dx3 + x4 — T3 47
z, > 0 +=1,...,5
r; integer ¢=1,...,5

If we solve the linear programming relaxation, then the basis consisting of the first two

columns

is optimal. Observe that

and

B~ =

3/6 0 47

43

123/6!

4/6 2/6 14 210
BTN = /6 2/

3/6 0 41 -1 0 1

2 3 1 4/6 2/6

3/6 2 1 3/6 0

As expected, we have that the reduced costs

c=cgB'N—cn=|21/6 5 2 11/6 4/6

!There is a typo in Appendix 4 of [35].



are non-negative. Now problem (P8) is

max %1:1:3 + dx4 + 2z5 + %:126 + %177
st. 2z3 + 3z4 + wm + Gxe + %m = 43 mod1
%xg, + 2z4 + x5 + %xﬁ + Ox7 = %3 mod 1
Toy; = 0 i=1,...,5
To4; integer 1=1,...,5
and problem (P9) is
max %563 + Sx4 + 2z5 + %l‘ﬁ + a7
st. Ors 4+ 0xqy + Ozs + %:1:6 + %1‘7 = Omod1
%xg + Oxy 4+ Oxyz —+ %xg + Oxy = % mod 1
Toys > 0 i=1,...,5
To4; integer 1=1,...,5
The columns in the group minimization problem are
g1 = ’ y 92 = ’ y 93 = ’ y 94 = % y g5 = %
g 0 0 3 0

Let G denote the set of vectors in R? generated by g1, ..., g5 under addition modulo 1. It is

not difficult to see that GG is an Abelian group. In fact, considering multiples of g4, we get

k ‘ 0 1 2 3 4 5
0 4/6 2/6 0 4/6 2/6

kga
0 3/6 0 3/6 0 3/6

and so G is cyclic of order 6 with g4 as a generator. Since ¢(6) = 2 where ¢ is the Euler
phi function, there is another generator of G which turns out to be
2/6
3/6
although it is not present as a column in the problem.
For a general integer program, the group generated by the non-basic columns trans-
formed by B~! under addition modulo 1 will always be a finite Abelian group, although

not necessarily cyclic like the example above.



Let M(I) denote the set of all integer m-vectors and M (B) denote the X-module gen-
erated by the columns of the basis matrix B. If f denotes the homomorphism from M (1)

onto G = M(I)/M(B), then the previous discussion can be rewritten

f(Bxp) + f(Nzn) = f(b)

and by the integrality of z g,
f(Nazn) = f(b).
The module M (B, N) is isomorphic to the module M (I, B~ N) by the mapping induced
by B~1.
The order will always be equal to |det(B)|, as long as the original constraint matrix
contains the m x m identity matrix. Otherwise, we can only say that the order of the group
will be a divisor of | det(B)|.

Now we consider Theorem 1.2.2 for this problem. Observe that

1 0
0 1

[\

|
—_

1 4
lmax = max s ,
4 1

= max{m,\/ﬁ,\/g,l,l}
N

and 50 Iymax (| det(B)| — 1) = 5V/17.
1.5 Solution by Dynamic Programming

In [35], the group minimization problem is cast as a dynamic programming problem as

follows. For any set S C N and h € G, ¢(S, h) is defined to be

¢(S;h) = min 3 cqc(g)t(g)
s.t. deS t(g)g =h
tg) > 0
t(g) integer
This is the same as the original group minimization problem except that only the subset

S of columns is allowed and the right-hand size is changed to h € G. For the recursion, we

10



must decide for each ¢’ € S whether to use the column (¢(¢’) > 1) or not (t(¢') = 0). The

choice is dictated by whichever choice results in a lower objective value and so we have

¢(S,h) = min {&(S — g, h),e(g') + &(S.h = )}

Then the optimal objective value for the problem with right-hand side g can be determined
by evaluating ¢(N, g). By maintaining appropriate bookkeeping during the recursion, the
optimal solution can be determined.

In order to solve the group minimization problem by dynamic programming, it suffices

to consider each group element one by one. So we define

¢'(k,h) = min YT, c(g:)t(g:)
st i tgi)gi = h

tg) = 0

t(g;)  integer
@' (k, h) is the optimal objective value for the group minimization problem using the first &
group elements and with right-hand side h. The optimal objective value for the problem
with right-hand side ¢ is then ¢'(n, g). To make the recursion work, we set ¢'(0,h) = M
where M represents an arbitrarily large value. Since B is assumed to have been an optimal

basis, we have that ¢(g;) > 0 for all i and hence, ¢'(k,0) = 0 for all k.

The difference between ¢'(k, h) and ¢'(k — 1, h) is that we are allowed to use the group

element g in the former.
¢,(k) h) = min {¢,(k -1 h’)7 C(gk) + ¢/(k7 h — gk)}

Observe that in the second term, we use ¢'(k,h — gi) instead of ¢/(k — 1,h — gi). This
allows for the element g; to be used more than once.

Unfortunately, we cannot directly apply this framework to most problems and in fact,
we will quickly run into difficulty with the earlier numerical example. The difficulty is that
not every non-basic column generates the entire group, and so the recursive procedure gets
“stuck.” When computing ¢'(k,h) for some h € G\ < gr >, then ¢'(k,h — gi) is not

available.

11



In the numerical example, if we drop the columns corresponding to the identity element

and rearrange and rename the columns, we get

+ o+

+

vVo+ o+ +

From the following table, observe that the first column generates the entire group, the

second column generates a subgroup of order 3 and the third column generates a subgroup

of order 2.
0
g
0
igl 1=0
Jjg2| 7=0,3
kgs | k=0,2,4

For k = 1, we have

qJ)l

@' (1,4

(
¢'(
(
(

¢' (1,50

The first row of the table below shows the elements of the group.

¢'(1,91)
1 291
1,3

c(g1) +¢' (1,591 —

The next two rows

follow by definition and we have just derived the fourth and fifth rows. In the sequel, we



derive the remainder of the table.

0 4/6 2/6 0 4/6 2/6

’ 0 3/6 0 3/6 0 3/6
#0,9)| M M M M M M
LTI T
CUI T T 2
CUINE T T

For k = 2, we have

¢'(2,92) = min{¢/(1,05),¢(g2) +¢'(2,0)} = min{Z 14+0} = 1
¢/(27292) = min{¢/(17292)7c(92)+¢,(2792)} = mm{%,%—i—%} = %
¢'(2,3g2) = min{¢'(1,3g2),c(g2) + ¢'(2,2¢2)} = min{0,%+2} = 0

Now we are stuck. However, for ¢'(2,¢1), the trick is to assume that ¢/(2,¢91) =

&' (1,g1) = %. This may be an overestimate of the true value. Proceeding,

¢'(2,91+92) = min{¢'(1,91 + g2),c(g2) + ¢'(2,91)} = min{32, 2} = 1>
¢'(2,01 +292) = min{¢'(1, 91+ 292),c(g2) + &' (2,91 + g2)} = min{22, ¥} = 2

#'(2, 91 + 3g2) min{¢'(1, g1 + 392), c(g2) + ' (2, g1 + 2g2)} = min{i, 23} = 1

Now observe that ¢'(2,¢91) = ¢'(2,91 + 3g2). By a theorem of T. C. Hu, this justifies the

earlier estimate and so in fact, ¢/(2,¢91) = %. Now for ¢'(2,91 + ¢2), we assume that

(2,91 +92) = ' (1,91 + g2) = %. Proceeding,

¢'(2,91+292) = min{¢'(1,g1 + 292),c(g2) + ¢'(2,91 + g2)} = min{32, 31} = 37
¢'(2,91 +3g2) = min{¢'(1, g1+ 392),¢c(g2) + ¢ (2,91 + 2g2)} = min{H H} =L
¢'(2,91 +4g2) = min{¢'(1, 91 +4g2),c(g2) + ¢'(2,91 + 3g2)} = min{33, 2} = 1

Now this does not agree with our earlier estimate, but now we estimate that ¢'(2, g1 +¢g2) =

15 .
& - Proceeding,

¢'(2,91+292) = min{¢/(1,g1 + 292),c(g2) + ¢'(2,91 + g2)} = min{32, L2} = 31
¢'(2,91 +3g2) = min{¢/(1,91 + 3g2),c(g2) + ¢'(2,91 + 292)} = min{ G, B} = &
¢'(2,91 +4g2) = min{¢'(1, g1 + 492),c(g2) + ¢ (2,91 + 3g2)} = min{32, 2} = 1

13



Now we have ¢'(2, g1 +4¢2) agreeing with our estimate for ¢/(2, g1+g2) and so ¢'(2, g1+9g2) =

%. For ¢'(2,91 + 2g2), we assume that ¢'(2, g1 + 2g2) = ¢' (1,91 + 292) = 55 . Proceeding,

¢/(27gl + 392) = min{(b/(lvgl + 392>7 0(92) + ¢/(2agl + 292)} = min{%a 569} - %
¢'(2,91 +4g2) = min{¢/(1, g1 + 4g2), c(g2) + ¢'(2,91 + 3g2)} = min{33, 8} = 33
¢'(2,91 +592) = min{¢'(1, g1+ 592),¢c(g2) + ¢(2, 91 + 4g2)} = min{32, 37} = 37

Again, this does not agree with our earlier estimate, so we now must estimate that ¢'(2, g1 +

2g2) = %. Proceeding,

¢'(2,91 +3g2) = min{¢'(1, g1+ 392),¢c(g2) + ¢(2,91 + 2g2)} = min{H L} =L
¢'(2,91 +4g2) = min{¢/(1, g1 + 4g2),c(g2) + ¢'(2,91 + 3g2)} = min{33, 2} = 2
¢'(2,91 +5g2) = min{¢/(1, g1 + 5g2),c(g2) + &' (2,91 + 4g2)} = min{ %, 2} = ¢

Again, this does not agree with the revised estimate, so we now must estimate that ¢'(2, g1 +

2g2) = %. Proceeding,

¢'(2,91 +392) = min{¢'(1, g1+ 392),c(g2) + &' (2,91 + 292)} = min{, 2} = 1
¢'(2,g1 +4g2) = min{¢'(1, 91 +4g2),c(g2) + ¢'(2,91 + 3g2)} = min{ 33, 12} = 12
¢'(2,g1 +5g2) = min{¢'(1,91 +5g2),c(g2) + ¢ (2,91 + 4g2)} = min{ 32, 2} = 2

We now have agreement and so ¢'(2, g1 + 2g2) = %9. For k = 3, we have

#'(3,93) = min{¢'(2,93),c(g3) + ¢'(3,0)} = min 15 21—|—O} = %5

¢'(3,2g3) = min{¢'(2,2g3),c(g3) + ¢'(3,93)} = min{0,2 + 2} = 0

We assume that ¢'(3,91) = ¢'(2,91) = %. Proceeding,

¢'(3,91+93) = min{¢/(2,91 +g3),¢(g3) + ¢'(3,91)} = min{§, ¥} = §
#(3,91+2g3) = min{¢'(2,01+2g3), c(g3) + ¢/ (3,01 + g3)} = min{ g, T} = §
This agrees with the estimate and so we have that ¢/(3,¢91) = Fl. We now assume that
&'(3,91+93) =9 (2,91 +g3) = %. Proceeding,

¢'(3,91 +293) = min{¢'(2, g1 + 293),c(g3) + ¢'(3,91 + g3)} = min{L, 32} = 1

— 6
¢'(3,91 +3g3) = min{¢/(2,91 + 3g3),c(gs) + ¢'(3,91 + 293)} = min{3, 32} = 3
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This does not agree with our estimate and so we revise it to ¢'(3, g1 + g3) = %. Proceeding,

¢/(37gl + 293) - min{¢’(2, g1+ 293)7 C(g3> + ¢/(3791 + 93)} = min{%7 %} = %
¢/(3791 + 393) = min{¢/(2a g1 + 393)1 0(93) + ¢/(3,gl + 293)} = min{%v %} = %
This agrees with the estimate and so we have that ¢/(3,91 + g3) = &  We assume that

6
¢'(3,92) = ¢/(2,92) = 3. Proceeding,

¢'(3,92 +93) = min{d(2,92 + g3),c(gs) + ¢'(3,92)} = min{F, T} = 7
¢'(3,92 +2g3) = min{¢'(2, 92 +293),¢(g3) + ¢/(3, 92 + g3)} = min{, §} = §
This agrees with the estimate and so we have that ¢'(3,g2) = %. We now assume that
&'(3,92+93) = '(2,92+ g3) = %. Proceeding,
¢'(3,92+293) = min{¢'(2, 92+ 293),¢c(g3) + ¢(3,92)} = min{3, L} = 2
¢'(3,92 +3gs) = min{¢'(2, g2 +3g3),¢(g3) + ¢(3,92 + g3)} = min{ G, T} = 7
This agrees with the estimate and so we have that ¢/(3, g2 + g3) = %. We are now ready

to solve the integer program. Observe that ¢/(3,3¢g1) = %5 and so g = 1. Now

11
¢'(3,391 — 92) = ¢'(3,91) = 5

and so 1 = 1. So we have that 1 = x9 = 1. In the original variables, this corresponds to
the solution
r3=x4=x5=0,2g =a7=1
Now solving for the basic variables, we get
x1 43 1 42

=B %— B 'Nay = - =
T9 123/6 3/6 20

which are non-negative. Hence, we have solved the integer program. Observe that it
is relatively simple for us to solve the same problem with a different RHS which is one

advantage of the dynamic programming approach.
1.6 Shortest path formulation
Consider the directed graph H(G,N,¢) = (N, A) where

N = elements of the group generated by {g;,...,3,}

A = {(r,s) | s—r =g, mod1 for some j}

15



The graph has a node for each group element and an arc (r,s) from node r to node s
whenever s —r is equal to a column in (P9) modulo 1, say g;. The traversal of the arc (r, s)
corresponds to incrementing x,,4; and so we naturally assign the cost of arc (7, s) to be the
value ¢;.

This construction is best illustrated by an example. Continuing the numerical example,
we first have six nodes with one node for each element of the group. Since the group in the
example is cyclic and generated by g4, the group element kg4 is labeled by k in Figure 3.
We first add the arcs corresponding to g4. Since the reduced cost of g4 is 11/6, the arcs are

labeled with 11/6.

11/6 11/6 11/6 11/6 11/6

© @

t |
11/6

Figure 3: Network with arcs corresponding to g4 added.

Now we consider the group element

g1 = = 394
3/6

which has a reduced cost of 21/6. Since
094 + g1 = 094 + 394 = 394,

we add an arc from node 0 to node 3 with a cost of 21/6. Since
1gs + g1 = 194 + 394 = 4ga,

we add an arc from node 1 to node 4 with a cost of 21/6 and similarly for the remaining 4
arcs. The resulting network is shown in Figure 4.

Now we consider the group element

2/6
g5 = = 294
0
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21/6 21/6 21/6

11/6 11/6 11/6 11/6 11/6
© ®© ©) ® O,

®

S~ > S

21/6 21/6 21/6

11/6

Figure 4: Network with arcs corresponding to g; and g4 added.

which has a reduced cost of 4/6. Adding six arcs of cost 4/6 appropriately to the network
in Figure 4, we obtain the network shown in Figure 5.

Now observe that go and g3 are both the identity element and have non-negative reduced
costs. Hence, adding them to the network would be nothing more than just adding self-loops
at each node, which serves no purpose.

Now to solve the Group Minimization Problem, it suffices to compute the shortest path
from the node representing the identity element of G to the node representing the right-hand
side of the problem. For the numerical example, we want the shortest path from 0 to 3 in
Figure 5. It can be computed using Dijkstra’s algorithm that the paths (0,2, 3) and (0, 1, 3)

are both shortest paths from 0 to 3 with cost 15/6. Both paths correspond to the solution
vy = (a5, 23, x5, 25, 27) = (0,0,0,1,1)
which is the same solution that we found via dynamic programming.

1.7 Basic properties

The group problem on the unit interval can be considered when the group is finite or infinite,
and with or without continuous variables. There are only a handful of known constructions
which give facets of the infinite group polyhedron. When the group is finite, the extreme
inequalities are completely known. Let T'(U,up) denote the set of functions ¢ which satisfy

Z ut(u) = ug

uelU

17



4/6 4/6

11/6 11/6 11/6 11/6 11/6

©
21/6 21/6 21/6
4/6 /

4/6

11/6
Figure 5: Network with arcs corresponding to g1, g4 and g5 added.

where the operations are addition and multiplication modulo 1. Here, U is a subset of [0, 1].

Let T (U, up) denote the set of solutions #' = (¢,s,s7) which satisfy

Zut(u)—i—s/I—s/::uo
uelU

where the operations are again addition and multiplication modulo 1.

Definition For P(U,uyg), a valid inequality is a function 7 : U — R such that
m(u) >0 forall ue I, 7(0) =0

and

> w(u)t(u) > 1 for all t € T(U, u).
uelU

Definition For PT(U,ug), a valid inequality is a function 7’ = (7, 7", 7~) where 7 is as

above and 77,7~ € R such that

Z m(u)t(u) +7tsT + 7787 > 1 forall t' € T (U, up).
uelU
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Inequalities vary in their usefulness and a desirable property of a valid inequality is

minimality.

Definition A valid inequality = for P(U, ) is a minimal valid inequality if there does not
exist a valid inequality p for P(U,ug) with p(u) < w(u) for all u € U with p(u) < 7(u) for

at least one v € U.

In order to show a valid inequality is minimal, the definition cannot be applied di-
rectly. We will see later a theorem which gives a simple characterization of minimal valid

inequalities. A property that is even more desirable than minimality is extremality.

Definition A valid inequality 7 for P(U,ug) is an extreme valid inequality if there does not

exist valid inequalities p and o for P(U, ug) such that 7 = £p + 10.

Theorem 1.1 of [36] says that the extreme valid inequalities are a subset of the (strictly

larger) set of minimal valid inequalities.
Theorem 1.7.1 The extreme valid inequalities are minimal valid inequalities.

Theorem 1.2 of [36] says that the minimal valid inequalities are a subset of the (strictly

larger) set of subadditive valid inequalities.
Theorem 1.7.2 The minimal valid inequalities are subadditive valid inequalities.

The set of valid inequalities is a convex set which contains the strictly smaller convex
subset of subadditive valid inequalities. The extreme points of the set of subadditive valid
inequalities contain all the extreme valid inequalities. Theorem 1.3? from [36] allows us to

actually extract the extreme valid inequalities:

Theorem 1.7.3 If7w (or7') is extreme among the subadditive valid inequalities for P(U, ug)
(or P (U,up)), that is, = (or 7') is not the midpoint of any two different subadditive valid
inequalities, and if © (or ') is also a minimal valid inequality, then it is an extreme valid

tnequality.

*There is a typo on p. 33 in [36] and the theorem is mistakenly labeled as Theorem 1.1.
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When this theorem is specialized to G, the cyclic group on n elements, we get Theo-

rem 2.2 of [36].

Theorem 1.7.4 The extreme valid inequalities for P(Gp,ug),ug € Gn, are the extreme

points of the solutions to

r(g) > 0,7(0)=0

m(g:) +7(g;) = 7(gi+ g5)

™ (uo) > 1
which satisfy the additional equations

m(gi) + m(uo — gi) = 1,9 € Gn,
1.8 2-row theory

Previous work in this area has focused on essentially applying integrality arguments to a
linear combination of the rows of Az = b. Currently, there is substantial interest in applying
integrality arguments to two rows simultaneously in the hopes of generating cutting planes
that cannot be obtained from arguments involving a single row.

The initial results in this area were obtained by Dey and Richard [26], Andersen, Lou-
veaux, Weismantel and Wolsey [1], Borozan and Cornuéjols [14], Cornuéjols and Margot [21],
and Dey and Wolsey [27]. Computational results were obtained by Espinoza [30].

Suppose we have a mixed-integer programming problem of the form:

min cx
st. Ar=0»
z; >0forj=1,...,n
xj€Zforj=1,...,p
for p < n, where A is a rational m x n matrix, c is a rational 1 x n-vector and b is a rational
m X 1-vector. Without loss of generality, A is assumed to have full row rank.

If B and J are the basic and non-basic variables respectively of a solution of the LP
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relaxation, then the solution can be represented as
T = fi +erxj fori € B.
jeJ

and the system can be rewritten as

min cx

s.t. xi:fi—FZijj forie BN{1,...,p}
J€J
xi:fi+27’jx]~ forie BNn{p+1,...,n}
JjeJ
zjeZforje{l,....p}NB
zjeZforje{l,....p}nJ
z; >0forjeB

xj>0forjeJ

By feasibility, we have f; > 0 for all i = 1,...,n. If for all i € BN {1,...,p}, we have that
fi € Z, then the basic solution is an optimal solution of the mixed-integer linear program.
Otherwise, we will want to generate one or more cutting planes that are violated by this
solution, but are satisfied by all feasible solutions of the mixed-integer LP.

Recall that in Gomory’s corner polyhedron, we relax the non-negativity constraints on

the z; for ¢ € B and so the constraints
z; >0forjeB
get dropped. However, the constraints

l‘i:fi—FZzjj forie Bn{p+1,...,n}
Jj€J
can also be dropped since these variables are not otherwise constrained.
If we further relax the integrality constraints on the non-basic variables x;, i.e. we drop

the constraints

xzjeZforje{l,....ptnJ,
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then our problem becomes

min cx

s.t. xi:fi—Ferxj forie BN{1,...,p}
jeJ
zje€Zforje{l,....,p}NB
x; > 0for j e J.

This can be rewritten as

k
r = f+ersj
i=1

T € Zqg

s > 0
where s is now the set of non-basic variables, and ¢ = |{1,...,p}NB|. Rs(r!,...,7¥) is used
to denote the convex hull of all vectors s satisfying the above constraints, where f, 7!, ... 7"

are all ¢ x 1 rational vectors.
A further relaxation first suggested by Gomory and Johnson is to relax the finite di-
mensional space of variables to an infinite dimensional space. Instead of only considering
k

the particular r!,...,r*, consider any ¢-dimensional rational vector 7. The problem then

becomes

r = f+zrsr

reQq

T € Zy

s > 0 with finite support
The convex hull of all vectors s > 0 satisfying the above constraints is denoted by Ry.
Recall that the vector s > 0 has finite support if [{r : s, > 0}| < oo. In order to avoid
issues such as convergence, only vectors s with finite support are considered. By setting
sp =0 for r € QI\{rl,...,7¥}, Ry(rl,...,7¥) is observed to be a face of Ry. Ry is simpler
than Rg(rl,...,r%), but is not a closed set. By a theorem of Meyer [44], Ry(rt,... %)
is a polyhedral set. As an aside, the model where the integer variables are required to be
non-negative has been studied and results for this model have been obtained by Fukasawa

and Giinlik [32].
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The g = 2 case where just two rows of the tableau are simultaneously considered was
studied by Andersen, Louveaux, Weismantel and Wolsey [1] where they showed that all the
non-trivial facets of R¢(r!,...,7¥) are the intersections cuts of Balas [3]. In our own results
in the sequel, we only consider the g = 2 case.

We will assume that f € Q%\Z9, so the basic solution s = 0 is not a feasible solution.
A linear inequality as > 3 is valid for Ry (respectively Ry(rl,... rk)) if it is satisfied by
all the feasible solutions of Ry (respectively R¢(r?,... ,7%)). A valid inequality of the form
s; > 0 is considered trivial. Since s = 0 is not a feasible solution for R, we are interested

in valid inequalities that cut it off and they are of the form

Z P(r)s, > 1

where ¢ : Q%> — R U {+oc} and s has finite support. In general, 1) need not be finite or
continuous. In the event that for some r we have s, = 0 and ¢ (r) = 400, then the product
(r)s, is defined to be 0. Observe that the restriction of a valid inequality for R; to the

space 11, ..., rF

results in a valid inequality for R¢(r!, ..., k).

Not all valid inequalities are equal, however. For example, a function 1 that is 400
everywhere is valid, but basically useless. A valid inequality > ¢ (r)s, > 1 is minimal if
there does not exist another valid inequality Y ¢'(r)s, > 1 such that ¢/'(r) < 1(r) for all
r € Q? and ¢'(r) < 9(r) for at least one r € Q2. In the event that ¢(r) = +o0, then the
convention is that ¢/(r) < ¢ (r) if and only if ¢/(r) < cc.

Minimal inequalities are of interest because they are the (non-trivial) inequalities that

characterize Ry. In [14], Borozan and Cornuéjols showed that for a minimal valid inequality

> 4(r)s, > 1, ¢ has a number of important properties.

Theorem 1.8.1 If ¢ : Q7 — R U {+o0o} is a minimal valid function, then 1 is zero at the

origin, subadditive and positively homogeneous.

Recall that v being positively homogeneous means that (Ar) = M)(r) for any r € Q?
and A € Q where A\ > 0. The proofs of these properties are fairly straightforward. The
basic idea is that if ¢ is minimal and valid, a slightly different 1’ can be defined and then

shown to be valid.
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This is done by considering a feasible (7,5) € Ry and then defining a slightly different

(Z,8). The ¢' and § > 0 are specially chosen so that

D W ()5 =) w(r)s,
and
T=f+Y 15 =f+> 15
both hold. Then (7, 5) is a feasible point of Ry and by 1 being valid, we have
D (s =1

and hence 1’ is valid. But ¢ is minimal and we get that ¢ (r) < ¢/(r) for an r which shows
the desired property.
Now if 7 is a function that is valid but not necessarily minimal, then we know at least

that it is non-negative everywhere by the following theorem.
Theorem 1.8.2 If1¢: Q? — RU {400} is a valid function, then (r) >0 for all r.

For minimal valid functions, we know that they are subadditive and positive homoge-

neous and from this, convexity immediately follows.
Theorem 1.8.3 If 1 : Q? — RU {400} is a minimal valid function, then v is convez.

Borozan and Cornuéjols also show that for general ¢, a minimal valid function v for
Ry that is finite has at most 27 pieces and that such a 9 can be extended to a continuous
function of R?. Borozan and Cornuéjols found a very nice and simple characterization of

validity in terms of lattice-points in the following theorem.

Theorem 1.8.4 If ¢ is a non-negative, positively homogeneous and subadditive function,

then (x — f) > 1 for all x € Z9 is necessary and sufficient for 1 to be valid for Ry.

We discuss the argument behind this theorem as it nicely illustrates and employs the

properties of minimal valid functions. Suppose v is a non-negative, positively homogeneous
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and subadditive function. Suppose further that for all x € Z%, we have ¢(z — f) > 1. If

(x,s) € Ry, then

l‘:f—FZT‘ST

and by re-arranging and applying ¢ to both sides, we have

) (Z rsr> =z — f).
So we get

D b(r)se = a(rs,) = ¢ (Z rsr> =z —f)>1

where the first equality follows from positive homogeneity and the second inequality follows
from subadditivity. Since (z,s) was an arbitrary element of Ry, this shows that ¢ is valid.

On the other hand, if there exists T € Z? such that (T — f) < 1, then for

1 ifr=z—f
Sy =
0 otherwise

we have (7,5) € Ry and

contradicting the validity of .
Now suppose we have a function v that is minimal. The necessary and sufficient condi-

tion for validity leads naturally to the following definition. Define
By ={zeQ:¢(z—f) <1}

Since 9 is a convex function, By, is a convex set (in Q?). In a sense, By is another represen-
tation or “view” of i and there is a close connection between them. When % is a minimal
valid function of v, By, has the very important property of being lattice-free which means
that it does not contain an integral point in its interior. Integral points are allowed to exist
on the boundary of By, however.

If ¢ is minimal valid and Z € Z9, then we have that ¢(z — f) > 1. If T € By, then by
definition ¢ (T — f) < 1 and so we must have (T — f) = 1. If T were in the interior of By,

then consider any point T where

ze{f+XNz—f)eBy:A>1}.
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By positive homogeneity, it must be the case that ¢(Z — f) > 1 contradicting T belonging

to By. This is the basic argument behind the first part of the following theorem:

Theorem 1.8.5 If ¢ is a minimal valid for Ry, then cl(By) is a lattice-free convex set in
R?. In addition, f € By and if (r) < +oo for all r € Q¢, then f is in the interior of

Cl(Bw)

It is of course desirable to find functions v with the lowest possible coefficients and the

following result shows that in terms of the By, larger lattice-free sets are better.

Theorem 1.8.6 If¢,¢' : Q7 — RU {+o0} are convex functions, then b < ' if and only

if Bw/ - Bw.

Naturally with these results, maximal lattice-free convex sets are of interest. In 1989,
Lovasz showed the following Minkowski-Weyl-style theorem concerning maximal lattice-free

convex sets.

Theorem 1.8.7 A maximal lattice-free convex subset of R™ is an irrational hyperplane or

a full-dimensional polyhedron which is the sum of a polytope and a rational linear space.

First recall that for a set S and a point z € S, a vector r is called a recession direction
of § if
{z+Ar:A>0}CS.

The recession cone of S is simply the set of all recession directions. Now given a maximal
lattice-free convex set B, a corresponding function ¥p : Q¢ — R can be defined that is

non-negative and positively homogeneous satisfying
B¢B =BnNQI.

If r € Q7 is in the recession cone of B, then ¥p(r) is defined to be zero. Otherwise, if
r € Q7 is not a recession direction, then if A > 0 is such that f + Ar is a boundary point of
B, ¢p(r) is defined to be 1/\. Borozan and Cornuéjols show that this construction results

in a minimal valid function for Ry.
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Theorem 1.8.8 If B is a full-dimensional mazximal lattice-free convexr subset of RY and

f € QY is in the interior of B, then vp is minimal valid for Ry with cl(By,) = B.
Observe that by construction, g necessarily satisfies
Yp(zr — f) > 1for all z € 29

since B is lattice-free. By its definition, g is non-negative and positively homogeneous,
and so to show validity, it suffices to show subaddivity by applying Theorem 1.8.4. This is a
pretty straightforward case-analysis depending upon whether the points are in the recession
cone or not. Showing that ¥ p is minimal is also not too difficult.

The interesting thing about this construction is that Borozan and Cornuéjols show that
any minimal valid function ¢ for R; that is finite everywhere must arise from some B,
where cl(By) is a maximal lattice-free convex set.

By Lovéasz’s Theorem 1.8.7, cl(By) is a polyhedral set and by results due to Doignon [28],
Bell [10], and Scarf [47], this polyhedron can have at most 29 facets. The argument essen-
tially just uses the pigeonhole principle. Each facet must have an integral point in its relative
interior and if there were more than 29 facets, then there exists distinct =1,z € Z9 which
are congruent modulo 2 and their midpoint is also integral and would be in the interior
of the polyhedron. This contradicts its choice as being lattice-free. From this, it can be
argued that 1 is piecewise-linear with no more than 27 pieces. The theorem that Borozan

and Cornuéjols showed is stated below.

Theorem 1.8.9 If f € QI\Z and ¢ is a minimal valid function for Ry with 1 (r) < oo for
all r € Q?, then ¥ is a non-negative, positively homogeneous and piecewise-linear convex
function with at most 29 pieces. P can also be extended from Q2 to RY in a continuous

fashion.

Borozan and Cornuéjols also consider the difficult case where f lies on the boundary of
cl(By). This case is difficult because when r points away from cl(By,), we must define 1 (r)
to be +o00. This is the degenerate case. In order to even define v in this case, we have to

concern ourselves with each face of cl(By) that contains f.
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In the case of ¢ = 2, Cornuéjols and Margot showed by case analysis of all the possible
two-dimensional maximal lattice-free convex sets and degeneracies occurring at edges and
vertices that degenerate cases are not needed for Rf(rq,...,r;). They did this by showing
that if ¢ was a minimal valid function that was degenerate, another minimal 1)’ that is
non-degenerate could be constructed that is identical for r!,...,7*. In [50], Zambelli later

gave a short argument to show that this is true for general q.
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CHAPTER II

NEW FACETS OF T-SPACE

In 2003, Gomory and Johnson gave two different three-slope T-space facet constructions,
both of which shared a slope with the corresponding Gomory mixed-integer cut. In this
chapter, we give a new three-slope facet which is independent of the GMIC. We also give
a four-slope T-space facet construction, which to our knowledge, is the first four-slope
construction.

Let G denote the interval [0, 1) under addition mod 1. For each u in the Abelian group
G, we assign a non-negative integer t(u). If > t(u)u = wg, then {t(u)} is a path to uy.
To avoid issues about convergence, ¢ is assumed to have finite support. Typically, ug is
the fractional part of the value of an integer-constrained variable in a tableau row from an
integer or mixed-integer program. T-space is the vector space with a dimension for each
non-zero element of G.

A function 7 defined on G is a walid function with rhs element ug if 7 is continuous,

non-negative, m(0) = 0, w(up) = 1 and

Z t(u)u = up implies Z m(u)t(u) > 1

A function 7 is subadditive if m(u1 +ug2) < 7(u1) 4+ w(uz) for all ui,ug € G. A valid function
need not be subadditive, but can always be improved to be subadditive and so we may
restrict our attention to only subadditive functions.

A valid function 7 is minimal if there does not exist a 7’ such that 7/(u) < 7(u) for all
u € G and 7' (v) < w(v) for some v € G. The following theorem from [36, 38] gives a simple

necessary and sufficient condition for a valid function to be minimal.

Theorem 2.0.10 (Minimality Theorem [36, 38]) A valid function 7 is minimal if and only
if ™ is subadditive and the symmetry condition m(u) + m(ug — u) = w(ug) = 1 holds for all

u € G.
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By choosing u = up/2 and u = (1+wug)/2, observe that any minimal function = is forced
to pass through the halfway points P, = (up/2,1/2) and P, = ((1 + ug)/2,1/2). Once
the symmetry of a piecewise linear function 7 has been established, a useful theorem to

establish its subadditivity is the following theorem:

Theorem 2.0.11 (Subadditivity Checking Theorem [38]) If 7 is piecewise linear, minimal
and m(uy + ug) < w(uy) + 7(ug) whenever uy and uy are convex endpoints of w, then m is

subadditive.

A path {t(u)} lies on an inequality w if Y w(u)t(u) = 1. Let P(w) denote the set of
paths which lie on the inequality 7. Then 7 is a facet if P(7*) D P(w) implies 7* = 7. Let

E(7) denote the set of equalities satisfied by 7. Then,

Theorem 2.0.12 (Facet Theorem [38]) If w is subadditive and minimal, and if the set E(r)

of all equalities has no solution other than w itself, then w is a facet.

An important tool that will be used repeatedly is the following lemma.

Lemma 2.0.13 (Interval Lemma [38]) Let U = [uy,uz],V = [v1,v2] and U +V = [u; +
vy, ug + va] be three closed intervals in G. If, whenever u € U and v € V', we have m(u) +

m(v) = w(u+v), then w(u) must be a straight line with some constant slope s for allu € U, V,

and U + V.

The cylindrical space S is the set of all points (u,h) where v € G and h is any non-
negative real number. The u values are plotted horizontally and the h values are plotted
vertically. In S, the origin is represented twice, once by O; = (0,0) and also by O2 = (1,0).
Given u € G, the corresponding real number in [0, 1) is denoted n(u).

The cylindrical topology of S gives the property that a non-origin point can be connected
by a straight line to the origin by countably-infinite different lines. In .S, multiplying a vector
by a non-integer scalar is not well-defined. So given a vector (u,h), an s-vector is (u,h)
with one of the slopes s = h/(n(u) + n) for some integer n.

A major result with a remarkably simple proof is the following;:
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Theorem 2.0.14 (Gomory Johnson Two-Slope Theorem [36, 38]) If m(u) is subadditive,

minimal and has only two slopes, then it is a facet.

The Two-Slope theorem was first proved in [36] and a different proof using the Interval
Lemma and the Facet Theorem is given in [38].
A technical result on subadditive functions which will be needed is the following lemma

from [37):

Lemma 2.0.15 If 7 is a subadditive function on [0,1] and if 7(u) — 0 as u | 0 and

m(u) — 0 as u 1 1, then 7 is continuous at every u € [0, 1].
The following result can be helpful when showing subaddivity:

Lemma 2.0.16 (Separation Lemma [38]) If w is a piecewise linear function with the slopes
s of all of its segments satisfying s~ < s < sT, w' is an upward pointing s-vector with slope
sT, and w™ is an upward pointing s-vector with slope s~ , then if p lies on 7w, p+w™ +w™

cannot lie below .
2.1 Construction 1

The shooting experiments conducted in [39] suggest that a relatively small number of facets
of the corner polyhedra are important. Instead of looking at the most frequently hit facets,
we observed the unusual structure in some of the less frequently hit facets. In Figure 6, the
first two facets had vertices only at the heights 0,1/3,2/3, and 1 and the last two facets
had vertices only at the heights 0,1/4,1/2,3/4 and 1.

We will construct a piecewise-linear function m whose vertices have only four possible
heights: 0,1/3,2/3, and 1. We require that ug < 0.5. We first define 7 on the interval
[0,1(ug)] by constructing the vertices of its line segments. The line segments will start from
the origin O; and end at R = (uo, 1).

Choose A such that A > 3max{1/n(ug),1/(1 —n(up))} and define
a=mn(uy)/2—3/2X and =1/2 —n(ug)/2 — 3/2\.

Observe that 6/A +2a+ 28 =1 and a, 3 > 0.
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Facet 143: 12 hits, 4 slopes Facet 252: 11 hits, 4 slopes

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Facet 359: 11 hits, 4 slopes Facet 363: 11 hits, 4 slopes
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Figure 6: Some facets from a shooting experiment which motivated Construction 1.

Let v; be the s-vector from O; to (1/A,2/3) with slope 2)\/3 and let vj, be the s-vector

from O1 to Oy with slope 0 and length 1. Then we define
A=071+v;, and AA=R — v;.
We then add horizontal line segments to these two points to define
B =A+avy, and BB = AA — avy,.

Observe that h(A) = h(B) = 2/3 and that h(AA) = h(BB) = 1/3. By the choice of «, we
have that u(BB) = u(B) + 1/A.
Now we define 7 on the interval [n(up), 1]. Let vg be the s-vector from O3 to (1—1/X,1/3)

with slope —\/3. Then we define
C =09+ v and CC = R — vy.
We then add horizontal line segments to these two points to define
D =C - pv, and DD = CC + (v,
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1o R/

BB AR D

Figure 7: Example of Facet Construction 1 with ug = 0.5 (o = ).

Observe that h(C) = h(D) = 1/3 and h(CC) = h(DD) = 2/3. By the choice of 3, we have

that u(D) = u(DD) 4+ 1/\.

Theorem 2.1.1 The w(u) formed by the direct segments connecting the successive pairs of

points in the sequence O1, A, B, BB, AA,R,CC,DD,D,C, 05 is a facet.

2.1.1 Minimality and Subadditivity

For a piecewise-linear function, it suffices to check the symmetry condition for the vertices
of each line segment. Observe that A + AA = R and B + BB = R and so w(u) for
u € [0,m(up)/2] is symmetric to m(u) for v € [n(uo)/2,n(up)]. On [n(up), 1], we have that
C+CC=Rand D+ DD = R and so 7 satisfies the symmetry condition.

We now prove that 7 is subadditive by showing that m(u;+ug2) < 7(u1)+7(u2) whenever

u1 and ue are convex endpoints of w. Observe that

O = (0,0)=(1,0)
BB = (2/A+a,1/3)
AA = (2/A+20a,1/3)
CC = (4/X+2a,2/3)
DD = (4/A+2a+,2/3)
D = (5/A+2a+3,1/3)

= (5/A+2a+23,1/3)
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Table 1: Subadditivity of Construction 1.

u v | 7m(u) +7(v) [uto m(u+v)
BB | BB 2/3 | CC 2/3
BB | AA 2/3 4/X + 3a 2/3
BB | CC 1
BB | DD 1
BB| D 2/3 1A+a—g <2/3
BB| C 2/3 B 2/3
AA | AA 2/3 |4/ +4a <2/3
AA | CC 1
AA | DD 1
AA| D 2/3 1A+20—8 | <2/3
AA| © 2/3 1/) + 20 <2/3

cc | co 4/3
cC | DD 4/3

cc| D 1

cc| C 1

DD | DD 4/3

DD| D 1

DD | C 1
D | D 2/3 cc 2/3
D | C 2/3 DD 2/3
c | c 2/3 AN+20+28| <2/3

are the convex endpoints of 7. We enumerate all of the 28 possible cases, of which 7 cases
involve O and are omitted in Table 1, due to the subadditivity condition being trivially
satisfied. In 11 of the remaining cases, we find that 7(u) +7(v) > 1 and we do not compute
either u+ v or 7(u+ v) since w(w) < 1 for all w and the subadditivity condition is trivially

satisfied.

2.1.2 Uniqueness

Now that we have shown 7 to be minimal and subadditive, it remains to show that m(u) is
the only solution to all the equalities F(7) and then invoke the Facet Theorem. Consider a
function 7* that satisfies all the equations E(r).

We first consider the line segments of the graph of © with slope 2)\/3. We choose both

U and V; in the Interval Lemma to be [0,1/2\]. Then the interval U; + Vi is [0,1/\] =
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[u(O1),u(A)]. Now for any v € Uy and v € Vi, we have that (u,7(u)), (v,7(v)) and
(u+v,m(u+v)) € [0O1,A] and so 7(u) + 7(v) = 7(u + v). By the choice of 7*, we must
also have 7*(u) + 7*(v) = 7*(u + v). By the Interval Lemma, 7* must be a straight line
segment on U3 U Vi U (Uy + Vi) = [u(O1), u(A)] with some slope s;.

Now consider

Us = [0,1/2)\] C [u(O1),u(A)], and

Vs

2/X+2a,2/A 4+ 200+ 1/2)] C [u(AA), u(R)]

Then
U+ Vo = [2/n+2a,3/n + 2a] = [u(AA), u(R)].

Since 7(u) +7(v) = m(u+wv) for u € Uy and v € Vo, we must also have that 7*(u) +7*(v) =
7™ (u+wv) for u € Uy and v € Vo, By the Interval Lemma, 7* must be a straight line segment
with some constant slope on Us, V5 and Us 4+ Vo = [u(AA), u(R)]. Since Uy = Us, the slope
must be s7.

We now consider the line segments with slope —\/3. Let

Us = [3/A+2a+1/2)\4/n+ 2a] C [u(R),u(CC)], and

Vs = [5/XA+ 20+ 28+ 1/2),1] C [u(C), u(0)]

Then
Us 4+ V3 = [3/A+ 2,4/ + 2a] = [u(R),u(CC)].

By the Interval Lemma, 7* must be a straight line segment with some constant slope sy on

Us, V3 and Uz + V3. Let

Uy = [A/A+2a+6+1/2X\,5/ 4+ 2a+ 5] C [u(DD),u(D)], and

Vi = [5/A+ 20+ 28+ 1/2),1] C [u(C), u(O2)]

Then

Us+Vi=14/ 4+ 2a+ 5,5/A+ 20+ 3] = [u(DD),u(D)].
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By the Interval Lemma, 7* must be a straight line segment with some constant slope on

Uy, V4 and Uy + Vy. Since V4 = V3, the slope must be sg. Let

Us = [1/A+a+1/2\,2/\+a] C [u(B),u(BB)], and

Vs = [5/A+20+28+1/2)1] C [u(C), u(Os)]

Then
Us+ Vs =[1/A+ 1o, 2/\ + 1a] = [u(B),u(BB)].

By the Interval Lemma, n* must be a straight line segment with some constant slope on
Us, V5 and Us + V5. Since Vi = V4 = V3, the slope must be ss.

Let Us = Vs = [5/A + 20 + 28 4 1/2X,1] C [u(C), u(O3)]. Then
Us + Vo = [5/\ + 2a + 26, 1] = [u(C),u(02)).

By the Interval Lemma, 7* must be a straight line segment with some constant slope on
Us = Vg and Ug + V. Since Vg = V5 = Vy = V3, the slope must be so.
We now finally consider the horizontal line segments. In this case, we choose m > 2 and

let

U = [6/n+2a+6,5/n+2a+ (m+1)/m] C [u(D),u(C)], and

Vi = [b/n+2a+06,5/n+2a+ 512m —1)/m] C [u(D),u(C)]

Then U; + V7 = [4/X + 20,4/ X + 2+ 3] = [u(CC),u(DD)]. By the Interval Lemma, 7*
must be a straight line segment with some constant slope s3 on U7 U V7 U (U7 + V7). Now we
may make m as large as we wish, and by the continuity of 7*, we have that 7* is a straight
line segment on the entire closed interval [u(D),u(C)] with slope ss.

For sufficiently large m, let

Us = [2/A+a+a/m,2/X\+2a] C [u(BB),u(AA)], and

Vs = [5/A+a(m—1)/m+28,5/A+a+28] C [u(D),u(C)]

Then Ug + Vg = [1A, 1A + a] = [u(A),u(B)]. By the Interval Lemma, 7* must be a straight

line segment with some constant slope on Ug = Vg and Usg + Vg. Since Vg and V7 have

36



non-empty intersection, the slope must be s3. Again, we may make m as large as we wish,
and by the continuity of 7*, we have that 7* is a straight line segment on the entire closed
interval [u(BB),u(AA)] with slope s3.

Now observe that the following equations belong to E(m):

x(B) + m(BB) = =(R)
(D) + =(C) = =(DD)
(D) + w(D) = =(CC)
x(D) + w(DD) = =(R)
#(BB) + =(C) = (B

and hence, must also be satisfied by 7*. By first principles, we have that 7*(01) = 7*(02) =
0 and 7*(R) = 1. Over the interval [n(uo), 1], a height decrease of 1 occurs from which it
follows that

—7*(C) + 7 (CC) + 7*(D) — 7*(DD) = 0

This equation together with the above five equations yields a system of six equations in six

unknowns with the unique solution
7 (BB) =7"(D) =n*(C) =1/3,7*(B) =7*(CC) = n*(DD) = 2/3.

Observe that 7" has the same values as 7 for the points B, BB,C,CC,D and DD. By
the slope condition on the intervals corresponding to the line segments with slope ss, it
follows that 7 and 7* have horizontal segments on those intervals and 7*(A4) = 2/3 and

m*(AA) = 1/3. Hence, 7* must be equal to .
2.2 Construction 2

We assume that ug > 0.5. Through Oy, construct a line Lt with positive slope st > 1/n(ug).
Similarly, through Oz, construct a line L~ with negative slope s~ < 1/(n(up) —1). Without
any loss of generality, and in the interest of cleaner notation, we will frequently use ug
hereinafter when we actually mean n(up). Let v; be the direct vector from O; = (0,0) to

Py = (up/2,1/2) and vy be the direct vector from Oz = (1,0) to P, = ((1+wup)/2,1/2). For

1 st —s~
0< X\ <min{—-,———
= mm{Z’s*(lsuO)}’
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Figure 8: Example of Facet Construction 2 with ug = 0.7.

let A be the point

A1 = (Mug/2,A1/2)

and B be the complementary point R — A. For

1 < < mi 1 st —s™
R P T

let C' be the point

AUy = (1 + )\Q(UO — 1)/2,)\2/2)

and D be the complementary point R — C.

Now through A, construct a line with slope s~. Within the vertical strip {(u,h) : 0 <
n(u) < u(A),h > 0}, this line has a unique intersection with the line Lt at a point, call it
AA. Let vz denote the direct vector from A to AA with slope s7. Let BB = R — AA.

Through C, construct a line with slope s™. Within the vertical strip {(u,h) : u(C) <
n(u) < 1,h > 0}, this line has a unique intersection with the line L™ at a point, call it CC.

Let vy denote the direct vector from C to CC with slope s™. Let DD = R — CC.

Theorem 2.2.1 The 7(u) formed by the direct segments connecting the successive pairs of

points in the sequence O1,AA, A, B,BB,R,DD,D,C,CC,O5 is a facet.
2.2.1 Example

Suppose that ug = 7/10. Then the slopes of the GMIC are 10/7 and —10/3. Now let

st =2>10/7, s~ = -4 < —10/3 and A\ = \y = 1/4.
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We have that A = (7/80,1/8) and C' = (77/80,1/8), and by symmetry, B = (49/80,7/8)
and D = (59/80,7/8). AA = (19/240,38/240) and CC = (29/30,2/15), and by symmetry,

BB = (149/240,202/240) and DD = (11/15,13/15).
2.2.2 Minimality and Subadditivity

We check the symmetry condition for each vertex of m. Observe that AA + BB = R,
A4+ B =R, DD+ CC = R, and D+ C = R. It suffices to check subadditivity for the
convex vertices of m: A, BB, DD, and C. The origin is a convex vertex, but we may omit

it because of the subadditivity condition being trivially satisfied. A short calculation shows

that
. )\1(1 — S_U())
u(BB) = wup— ST
o )\1(1 — Sf’lL(])
B sTAa(ug — 1) — Ao
u(CC) = 1+ st —57)

— S+)\2(UO—1)—)\2
oo = (s )

S+)\2(U0 — 1) — )\2

u(DD) = wug— 25+ —5)
sTho(ug — 1) —
nDD) = 1—s—< A;((Sﬁ_?_) Az)

We first observe that by the choice of A1, we have that

st —s™ M1l—s"uy 1
A —_—_— s gt — o o
LS st(1 — sup) S s T2
)\11*8 U 1
1—st—= -
< 2 st —s
1
and by the choice of A9, we have that
T s A —1)=A 1
>\2<_SS @‘S2(u0)_2<7
s7(st(up—1)—1) 2(st —s7) 2
S+/\2(UQ — 1) — )\2 1
1— s~ -
< s < 2(st —s7) ) ~ 3
1
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By the Subadditivity Checking Theorem, it suffices to consider the following cases:

Case 1: p; = A,pa = A. In this case, observe that A + A = (Ajup, A1) = MR and so
A+ A lies on the line segment of 7 connecting A and B and so the subadditivity condition
is satisfied.

Case 2: p1 = A,p2 = BB. Observe that A+ BB = A+ (R — AA) = R — v3. Now
DD =R—-CC =R—ov3 for o >1. So A+ BB lies on the line segment of m between R
and DD and the subadditivity condition is satisfied.

Case 3: py = A,ps = C. Observe that A+ C = (AA —v3) + (CC —vyg) = (T — 1)vg +
(o0 — 1)vs. By the Separation Lemma, A + C' cannot lie below 7.

Case 4: py = A,po = DD. If u(A) +u(DD) < u(C), then we have

7(A) + n(DD)

_ ﬁ —l—l—Si <S+)\2(UO 1) )\2)

2 2(st —s7)
)\1 1 S+)\2(UO — 1) — )\2
— +1
~ 2+ +1—u0< 2(st —s7)
)\1 1 8+)\2(UO — 1) — )\2 )\1
11 - =
~ ZjL Jr1—u0< 2(st —s7) 2
_ ﬁ+1+ 1 £_8+)\2(UQ—1)7—)\2
2 up— 1\ 2 2(st —s7)
1 )\1 Al )\1 S+/\2(’LLO — 1) — /\2
— g — S+ 2 —1-
u0—1<2“0 g T T (st — )
1 )\1 S+)\2(UQ — 1) — )\2
= = —1—
u0_1<2u0+u0 2(st —s7)
. )\1 S+)\2(UO — 1) — /\2
= 7T<2U0+u0— 2(3+—3_>
= 7w(A+ DD)

If w(C) < u(A) +u(DD) <1 or n(u(A) +u(DD)) < u(A), we trivially have w(A) +
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m(DD) > n(A+ DD) since m1(A+ DD) < 1/2. If u(A) < n(u(A) + w(DD)) < u(B), then

)\1 s+/\2(u0 — 1) — /\2
A+ DD) = — —
7(A+ DD) 7r<2uo—|—u0 ( 25— 5)
. 1 /\1 S+A2(UQ — 1) — )\2
T w ( g e < 2(st —57)
_ ﬁ—‘rl—i S+/\2(U()—1)—/\2
2 uo 2(st —s7)
)\1 1 8+)\2(UO — 1) — )\2
— +1
< 2+ +1—u0< 2(st —s7)
A1 (5T h(ug — 1) — Ao
2 g
<3 * y ( 2(st —s7)
= w(A)+7n(DD)
Now
uw(A)+u(DD) < wu(A)+u(D)
AUg 1 —ug
= A
5 + ug + A2 5
5 1
< ZU() + 1(1 - U())
< 1+u(B)

and so we do not have to consider the case where u(B) < n(u(A) +u(DD)) < u(DD).
Case 5: p1 = BB,p2 = BB. Since n(BB) > 1/2, we have (BB + BB) <1 < 2n(BB)
and subadditivity is trivially satisfied.

Case 6: py = BB,py = C. We first consider the case u(A) < n(u(BB) + u(C)) < u(B).

1 S+UO—1
A - s — <1
2 > U st AosT
Tug— 1 \sT(1—s—
o stTug 187 ( ST up) <1
AgsT st — s~
ug 2 st —s~ 2ug
o 1_S+)\1(1—S_’LLQ) é> 1_i>\1(1—5_’LL0) &Uo—l
2(st —s7) 2 ug 2(st —s7) 2w
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and hence,

7(BB) +7(C) = 1—stoli—8 U0) 72

ug 2(st —s7) 2w
1 A(l—s"uw A
= (S 3 )

If 0 < n(uw(BB)+u(C)) <u(A) or n(u(BB)+u(C)) > u(C), we trivially have 7(BB) +
m(C) > (BB + C) since (BB + C) < 1/2. By the assumption that uy > 0.5, the case
that u(D) < n(u(BB) 4+ u(C)) < u(C) does not occur.

Case 7: py = BB,p2 = DD. Since n(BB) > 1/2 and n(DD) > 1/2, we have n(BB +
DD) <1< w(BB)+ n(DD) and subadditivity is trivially satisfied.

Case 8: p1 = C,po = C. This is similar to Case 1. C'+ C lies on the line segment of 7
between D and C, so the subadditivity condition is satisfied.

Case 9: p; = C,po = DD. This is similar to Case 2. Observe that C' + DD =
C+(R—CC)=R—wv4. Now BB = R—71vy for 7 > 1. So C + DD lies on the line segment
of m between BB and R and the subadditivity condition is satisfied.

Case 10: p1 = DD,py = DD. This is similar to Case 5. We have that 7(DD + DD) <

1 < 2n(DD,).
2.2.3 Uniqueness

Suppose that 7* satisfies all the equations satisfied by m. The segments of 7 with slope s™
can be dealt with using the Interval Lemma in a manner similar to the previous construction.
Let

€= %min{u(AA),u(R) —u(BB),u(D) —u(DD),u(CC) —u(C)}
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which is half the length of the smallest interval corresponding to a segment of © with slope

sT. Then for any interval [uj, us] in
ST = {[0,u(AA)], [w(BB), u(R)), [u(DD), u(D)], [u(C), u(CC)]}

we may apply the Interval Lemma by choosing U = [0,€],V = [u1,us — €] and U +V =
[u1,u2]. Then, since for any v € U and v € V, we have w(u) + 7(v) = 7(u + v), it follows
that 7* must be linear on U UV U (U + V) with some slope s'*. Now all the intervals
[u1,ug] € ST must have the same slope st since each interval has the same slope as 7 on
U = [0, ¢€]. The segments of m with slope s~ can be dealt with in a similar manner.

By the choice of A, we have that u(A4) < up/4 and so u(P; — A) > up/4. So we may
choose U = [A, P, — AL,V = [P, — A, P)] and U +V = [P,2P; — A] = [P}, B] in the
Interval Lemma and we get that 7* is linear with a single slope over U,V and U + V. Now
UUVU(U+V)=[A,B] and 7* must be continuous by, and so 7* is linear over [A, B] with
a single slope, say s1. Now we argue that on [u(A),w(B)], the slope of 7* is the same as the
slope of 7. Observe that 7(24) = 27w(A) and 27(P;) = n(R) = 1, which are relations that
must also be satisfied by 7*. Now 7%(24) = 27*(A) implies that the line passing through
(u(A), 7*(A)) and (u(B),7*(B)) also passes through O;. 7*(P;) = 1/2 implies that the line
passes through Pj, and in the vertical strip {(u,h) : 0 < n(u) < n(ug), h > 0}, there is only
one line passing through O; and P;. Hence, 7 and 7* have the same slope on [u(A), u(B)].
This exact same line of argument can be used to show that = and 7* have the same slope

on [u(D), u(C)].
2.3 Merit Index

In [38], Gomory and Johnson introduced the notion of the merit indez as a way to compare
the quality of different facets. The merit index M I(7) of a function 7 is defined to be twice
the area of the set of points (x,y) in the unit square such that 7w(x) + 7(y) = 7(x +y). The
maximum possible merit index of a function is 1.0. The GMIC has merit u2 + (1 — ug)?.
The merit index of the example for Construction 1 and the corresponding GMIC is

shown in Figure 9.
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Figure 9: Merit index for GMIC and Construction 1.
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Figure 10: Merit index for GMIC and Construction 2.
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CHAPTER III

FINDING NEW FACETS OF T-SPACE

3.1 Other cuts and the T-space framework

In classical derivations of the Gomory mixed-integer cut, the following simple two-variable

mixed-integer set is usually first considered
Xz ={(z,y) ERXZ:x+y>ba>0}
By a simple case analysis, it can be shown that

+y > [b]

Sablls

is the only non-trivial facet of X. The notation b represents the fractional part of b, i.e.
b=>b—|b).

This simple result applies more generally because given an equation defining a mixed-
integer set with more than two variables, one can extract an integral part out of the inequal-
ity and a continuous part, and then apply the above inequality to derive a valid inequality.
If we take a row of the tableau corresponding to a basic integer variable that is fractional,
then the set

X% ={(y,z,v) € Z x 7N x R? :y+Zajwj+v1 —vy =b,x >0,v >0}
JEN
is of interest. If we take the floors of the coefficients of the integer variables with indices in
S C N and take the ceilings for N\S, then the equation can be rewritten as
y+ ) lagleg+ Y Taglay+ Y djeg— Y (1—dj)aj+o—v2=b.
jes JEN\S JeES JEN\S
Since } ;e n\s(1 — dj)z; and vz are non-negative, it follows that

y—l—ZLaijj—i— Z {aﬂxj%-zdjxj-i-vlzb,

jes JEN\S jes
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and by the integrality of the first three terms, we can apply the basic mixed-integer inequal-

ity to obtain
D djmi o =b [ [0 = [ v+ laglzi+ Y (o]
jes jeS JEN\S
which is equivalent to
ZdjSEjJrUlZi) [b—|*b+2djx]’* Z (1*dj)l‘j+1}1*02
jes jes JEN\S

and can be rewritten

dj 1—(ij U1 V92
Z it 2 1-67 b 1-b

Now since

A 1—d. R
a—Jg ! C;Ajifandonlyifcijgb,

one should choose

S={jeN:d;<b}

to get the best possible inequality. This is of course not the only possible derivation. For
example, Gomory gave a disjunctive proof of his inequality in 1963.

In 2006, Dash and Giinliik [23], considered a slightly more general mixed-integer set
{(v,y,2) ERXZ* v+ ay+2z > B,v,y > 0}

with one continuous and two integer variables, where 0 < o« < 8 < 1. They found valid
inequalities that are facets when some conditions are satisfied and called them two-step
MIR inequalities. Dash and Giinliik’s work has been generalized even further by Kianfar
and Fathi’s [42] n-step MIR facets.

In 2003, Cornuéjols, Li and Vandenbussche [20] found that by scaling the equation
by a positive integer k before applying the mixed-integer inequality results in different
inequalities. They called the resulting inequalities k-cuts, and so the Gomory mixed-integer
cut can be viewed as just a 1-cut. They only considered positive integers k as the (—k)-

cut is just a scalar multiple of the corresponding k-cut. The idea of first multiplying the
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tableau row by a non-zero scalar to obtain different cuts was discussed even earlier in 1972
by Garfinkel and Nemhauser [33].

Cornuéjols, Li and Vandenbussche did computational experiments on randomly gener-
ated 0-1 and bounded knapsack problems and also on integer programs with multiple rows.
The k-cut over various values of k had roughly the same performance as the GMIC for
both the 0-1 and bounded knapsack problems, and adding multiple k-cuts simultaneously
closed a signifcant percentage of the gap in most cases. However, for integer programs with
multiple constraints, the performance was far poorer and the additional improvement on
top of the GMIC was minimal.

All of these inequalities and more can be viewed within the T-space framework. The
importance of subadditivity and the connection between generating cutting planes and the
theory of T-space was discussed in 1972 by Gomory and Johnson [36, 37]. The theory
leads to a far simpler and “graphical” derivation of Gomory’s mixed-integer cut which we
describe now. The process can be used to derive valid inequalities for both pure integer
and mixed-integer programs. Given a function 7 : [0,1] — R™ from the T-space theory, 7
can be directly applied to a tableau row corresponding to an integer basic variable that is
fractional and give a valid inequality that is violated by the current basic feasible solution.

For a non-basic integer variable, the coefficient of the variable in the inequality is simply
the value of 7 at the fractional value of its coefficient. For a non-basic continuous variable
with positive coefficient, the coefficient of the variable in the inequality is the slope of 7 to
the right of the origin. For a non-basic continuous variable with negative coefficient, the
coefficient of the variable in the inequality is the slope of 7 to the left of 1 (or equivalently,
the slope to the left of the origin). The right-hand size of the inequality is the value of =
at the fractional value of the basic integer variable, and is typically 1. The basic variable
itself has a coefficient of 0 in the inequality. For the equation defining X, we get

Z m(aj)z; + 7 v — T vy > 7(b)
JEN

where



and

If 7r(l3) = 1, then the right-hand size of the inequality is simply 1. Since 7~ < 0, the derived
inequality only has non-negative coefficients.

Consider the following numerical example from [38]*

x1 +4.72t; — 2.93ty + 0.51t5 + 0.14t4 + 1.1tT — 1.4t = 2.79

which is a tableau row where x1,%1,...,ts are integer-constrained variables and ¢* and ¢~

are continuous variables. 7 is basic and the rest are non-basic variables. The coefficients
4.72,-2.93,0.51,0.14

of the non-basic integer variables t1, ..., t4 have respective fractional parts
0.72,0.07,0.51,0.14.

Consider the two-sloped, piecewise-linear function m which passes through the points (0, 0),
(0.79,1) and (1,0). This 7 in fact yields the Gomory mixed-integer cut for this problem.
Evaluating 7 at the fractional parts of the coefficients of the non-basic integer variables, we
get

0.911,0.089,0.646,0.177

respectively. The coefficients of the continuous variables ¢ and ¢~ are 1.1/.79 and 1.4/.21

respectively. The inequality that is derived is
0.911t1 4 0.089t5 4 0.646t3 + 0.177t4 + 1.392tT + 6.667t~ > 1.

Using this procedure, any facet of the infinite group polyhedron can be directly used
to generate cutting planes for practical problems, with perhaps, the Merit Index and the
closely-related Intersection Index giving some guidance regarding the quality of facets. The

theory does not require the computation of the determinant of the basis matrix or even

'We correct the typos in [38].

48



L |m=1/.79 (0.79,1)
911 ................... .
646k m = _1/'21
A7
.089¢;
o AN | 1
T =N

Figure 11: 7 function illustrating the cutting plane construction process.

knowledge of which group is actually present in a given problem. Because of this, it is
desirable to find as many families of facets of the infinite group polyhedron as possible as
the more facets that are known, the more variety of cutting planes that can be produced.
Ultimately, it would be desirable to find results that allow us to take a given facet of the
infinite group polyhedron, and make local changes to it which preserve facetness. This way,
facets can be specially tailored for the specific problem at hand. Knowledge of more infinite
group facets lead us in that direction.
Recall that the master cyclic group polyhedron P(n,r) is the convex hull of
1 Ly r
{u ez ; <n> u; = E(modl),u > 0}

where n,r € Z and 0 < r < n. Suppose

n—1
Z T Usq Z 1
=1

is a facet of P(n,r). Recall that such a non-trivial facet is necessarily an extreme point of

the system
o= 1 (2)
mi+m; = m where r = (i + j)(modn) (3)
™+ Uy > Ti+j( mod n) (4)
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For a direction vector d > 0, recall that shooting is the procedure of determining the last
facet hit by the ray

{Ad:X>0}
before entering the polyhedron. It is determined by solving the LP with objective function

min wd
st. (2)—(5)
since
max A
s.t.  w(Ad) =1 for facet
< max 1/7nd
s.t. 7 is a facet
< min wd
s.t. mis a facet.

Now the straight-line interpolation of 7 is the piecewise linear function

0 ifz=0
h(z) =19 = if:%:%forie{l,...,n—l}

Sh(L)+ (1 —8)h(HL) ifd =0 forie {1,...,n— 1}

These functions h derived from facets of P(n,r) can be used to derive cutting planes in
exactly the same manner as described above for T-space facets. If the tableau row of a pure
integer program has right-hand side b and if 7 is the smallest positive integer such that
the tableau row multiplied by 7 becomes integral, then P(7, ﬁB) is the canonical master
polyhedron. Generally, choosing n to be the absolute value of the determinant of the basis
matrix suffices. However, m can be extremely large in practice and it becomes infeasible to
work with P(7,7b) directly.

In 2003, Gomory, Johnson and Evans conducted shooting experiments to find “impor-
tant” facets of P(n,r) for n < 30. They fired 10,000 shots at each polyhedron they studied.
Their computational results showed that generally the GMIC and 2-slope facets are impor-

tant due to being hit frequently. In the shooting framework, facets with large solid angle
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subtended at the origin are considered important. The shooting approach of course only
applies to non-trivial facets, as the non-negativity constraints have zero probability of being
hit and hence, would be judged unimportant. Despite this shortcoming of shooting, this
empirical approach is generally accepted.

In [23], Dash and Giinliik extended the shooting experiments of Gomory, Johnson and
Evans by considering P(n,r) for n < 200. They fired 100,000 shots at each polyhedron
they studied. For n < 90, they kept track of all facets that were hit along with the number
of times they were hit. For greater n up to 200, they only kept track of hits on MIR-based
facets. This was likely due to the number of MIR-based facets growing quadratically in n
whereas the number of facets of P(n,r) grows exponentially in n.

In their empirical experiments, Dash and Giinliikk did again find that a small number
of facets were hit a non-negligible fraction of the time, and most of them were MIR-based.
They found that MIR and two-step MIR facets were frequently hit facets of P(n,r).

A number of facets for finite master polyhedra in [2] called seeds were shown to be facets
for the infinite group polyhedra in [38]. Recall that we previously mentioned Theorem 3.2
of [37] which allows us to take a facet 7 of the infinite group problem P(I,up) and obtain a
facet of a finite group problem P(G,,,u) as long as the vertices of 7 belong to G,,. Hence,
the group problem in the finite group case and the infinite unit interval group are closely
related.

Patterns in the structure of facets for corner polyhedra and master equality knapsack

polyhedra and mapping relationships between them are discussed in [2].
3.2 Enumerative algorithm

Because of the lack of a shooting theorem for the infinite group polyhedron, we describe in
this chapter an enumerative and heuristic process which can be used to identify candidate
facets of the continuous interval problem. The idea is that we choose positive integers m
and n with m even, and divide the unit square into a checkerboard with m equally-spaced

rows and n equally-spaced columns. We then have (m + 1) x (n + 1) grid points at

vi; = (i/m,j/n) for i € {0,1,...,m},5 € {0,1,...,n}
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There are m"™*! functions on the unit interval with vertices occurring at the grid points.
We are interested in enumerating those functions which give candidate facets of the infinite
group polyhedron.

Recall that any minimal function 7 must pass through the halfway points P; = (ug/2,1/2)
and P = ((1 4+ uo)/2,1/2). We also have that 7(0) = 0, 7(1) = 0, and 7(up) = 1. By mini-
mality, once 7 is determined on [0, ug/2], it is determined on [ug/2, up]. Likewise, once 7 is
determined on [ug, uo/2 + 1/2], it is determined on [ug/2 + 1/2,1].

We assume that ug is rational and that the even positive integer m has been chosen
such that ug/2 = i/m for some integer i € {0,1,...,m — 1}. The enumeration process
entails the selection of n + 1 values to determine a function 7. For validity, the value of the
function at 0 and 1 must be 0 and the value at up must be 1. By the minimality condition,
our only degrees of freedom are the grid points which fall in the intervals [0, uo/2] and
[uo, up/2 + 1/2].

If we were to combinatorially enumerate all such possible functions, we would get a
number of functions that are not even subadditive. The following lemma on subadditive

functions is Lemma 2.4 from [37].

Lemma 3.2.1 If 7 is a subadditive function on [0,1] and if

m(u)

li =
i B,
then
ulv ‘u| - ‘U’
for any v € [0, 1].
A similar result can be shown for
m(u)
ull 1 — \u]
and
Jim sup 7 = ().
ulv ‘U| - |u’

We use these results in the enumeration procedure to cut-off candidate functions that
are not subadditive. In addition, recall that for a piecewise-linear subadditive function that

it suffices to check the convex vertices.
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Theorem 3.2.2 (Subadditivity Checking Theorem [38]) If m is piecewise linear, minimal
and w(uy + u2) < w(u1) + 7(ug) whenever uy and ug are convex endpoints of w, then 7 is

subadditive.

Algorithm 1 Enumerative algorithm for finding candidate infinite group facets

1: m « even positive integer such that ug/2 = i/m for some integer i € {0,1,...,m — 1}
2: n « positive integer

3: for assignment o; of values in {0,1/n,2/n,...,1} to grid points in [0, ug/2] do

4:  for assignment oy of values in {0,1/n,2/n,...,1} to grid points in [ug/2+1/2,1] do
5: 7T(0) — 0

6: (1) <0

7: m(ug) «— 1

8: assign values to 7 on grid points in [0, ug/2] according to o1

9: assign values to 7 on grid points in [ug/2, ug] using o1 to maintain minimality

10: assign values to m on grid points in [ug/2 + 1/2, 1] according to o9

11: assign values to 7 on grid points in [ug, up/2+ 1/2] using o2 to maintain minimality
12: if m can’t be cut-off using subaddivity properties, etc. then

13: print

14: end if

15:  end for

16: end for

1

In the algorithm, the choice for 7(--) and W(mT_l) leads immediately to the coefficients
multiplying the continuous variables. These can be chosen as desired depending upon the
importance of the continuous variables relative to the integer-constrained variables. In
addition, we may also assign the values to grid points such that we only consider functions
7w with a fixed number of slopes. Functions with two slopes are already taken care of by the
Gomory-Johnson two-slope theorem, but there is currently no known similar theorem for
three or more slopes.

In Figures 12- 16, we show the output of our algorithm with m = 10 and n = 9. Even
for these relatively small values, almost 500 functions were found and for the sake of brevity,
we show just a subset of them. Observe that Plot 400 in Figure 16 is exactly the ug = 0.5
case of Construction 1 which we showed to be a facet of the infinite group polyhedron in

the previous chapter. Plot 74 in Figure 13, Plot 81 in Figure 14 and Plot 408 in Figure 16

are already known to be facets by theorems of Gomory and Johnson.

53



10

0.8

0.6

0.4

0.2

15

1.0

0.8

0.6

0.4

0.2

17

10

0.8

0.6

0.4

0.2

19

10

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 10

22

10

038

0.6

0.4

02

16

10

038

0.6

0.4

0.2

18

10

08

0.6

0.4

0.2

20

10

0.8

0.6

0.4

0.2

0.2

0.4

23

0.6

0.8

10

Figure 12: Output of enumerative algorithm.
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Figure 13: Output of enumerative algorithm, continued.
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Figure 14: Output of enumerative algorithm, continued.
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15: Output of enumerative algorithm, continued.
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Figure 16: Output of enumerative algorithm, continued.
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CHAPTER IV

HEURISTIC LATTICE-FREE TRIANGLES

4.1 Integer hulls in two-dimensional space

The integer hull of a polyhedron is the convex hull of the integral vectors inside of it. In the
course of doing research in integer solvers for Constraint Logic Programming, W. Harvey
found in 1999 [41] an optimal algorithm for computing the integer hull of a two-dimensional
convex region defined by a set of linear inequalities. In computational geometry, a number
of algorithms for computing the convex hull of a finite set of points are well-known, but
the algorithms cannot handle an infinite set of points. In Harvey’s algorithm, the region
defined by the inequalities can be unbounded.

Given a pair of rational inequalities, they can be rewritten as

ax+by <
asx + by < o

where all the coefficients are integer, and we may assume without loss of generality that

ged(ag, b)) =1 for i = 1,2. If we let

A a1 by |
as by
we may assume that det(A) = a1by — bjag > 0 since the inequalities can be swapped. If
the supporting lines happen to intersect in an integral point, then that integral point is the
integer hull and we are done. Observe that the set of integral points that satisfy the pair
of inequalities does not change when rewriting the inequalities.
Recall that a non-singular matrix U is called unimodular If U is integral and det(U) =

+1. The first step is to apply a unimodular transformation from variables z,y to variables

X,Y where the second inequality is transformed into a simpler form:

tX + uwY < ¢

X + < c¢2
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and by unimodularity, the set of feasible integral points is not altered. So we desire an

integral matrix

a B
U—
L ’7 -
with det(U) = %1 such that
A — ar b a [ _ t u
as b2 Y 1) 1 0

In addition, it is desirable for the first inequality to have a convenient orientation, and so

U is chosen to satisfy the additional constraint
u>0andt <0.
Since ged(ag, by) = 1, there exists ag, vy € Z such that
azag + bayo =1

and if we let

a = ag+ by —W
B = by

arag +Y0b1
To= 70— a2 __W
b = —az

then we have

det(U) = —ag0pn — bg’yO =-1

and

u=a10 + b16 = a1by — asb; > 0.

For ¢, we have

t = aa+bry

arag + Yob aioo + Yob
= o (a0ron |- )+ (0 - |- )

ajog + 7051J

= ayog + b1yo + det(A) \‘ det(A)

< 0
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Now that we have the desired transformation, let (x,y;) denote the integral point on the
supporting line

tX +uY =

with the largest X coordinate such that X < c¢o. To find (21, y1), we can first find an integral

point (zg,yo) on the supporting line using the Euclidean algorithm, and then compute

(T1,91) = <CL“0 + {02 ;on w, Yo — {02 ;xOJ t) .

The coordinate system (X,Y) is then translated to a new system (X', Y”) by

X = X-n

Y/ = Y- Y1
so that (x1,y1) is the new origin. Applying the translation, the inequalities are now

tX' +uY’ < 0 (6)

X'+ < ¢ —x7. (7)

By the translation and the choice of the point (x1,y;), there does not exist an integer point
between the origin in (X', Y”’) space and the intersection of the supporting line of (6) and
the vertical supporting line of (7).

So the idea is to now rotate the supporting line of (6) clockwise until we hit the first
integer point with X’ coordinate less than or equal to co — x1. In terms of the slopes of a
line through the origin and this first integer piont, the slope p/q of the line should be less
than —t/u so that we are rotating clockwise, and to be feasible to the second constraint, ¢
should be at most ¢y — 1. To describe how to find p/q, we first need some definitions from
number theory.

Recall that any real number = can be represented as a continued fraction

1
T =m0+ I

P
T+ ——
$3+"
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where zg € Z and z; € Z* for all i > 0. A standard notation for this expression is
[zo; 21, X2, . . ..

The representation is finite if and only if x € Q. The integers xg, z1,... are called partial
quotients and for any n/m € Q, they are precisely the quotients computed in the course of
the Euclidean algorithm when computing ged(n, m).

If we consider only the first k terms of the continued fraction expansion, then the result

Pr/ak = [X0; 1, ..., Tk)

is called a principal convergent of x. Observe that the odd convergents decrease and the
even convergents increase. The p; and ¢ can be quickly computed using the following

second-order recurrence:
Dk = TgPr—1+ Dk—2
Gk = Trqr—1 1+ qk—2

for k > 1 with initial conditions

po=To,q = 1,p-1=1,q-1 =0.

If z;, > 1, then the intermediate convergents are defined to be

Pk—2 + JPk—1
Qk—2 + Jqk—1

for j =1,...,2r — 1. We can now state the following theorem from an 1898 algebra book

by Chrystal [17]:

Theorem 4.1.1 The largest fraction p/q with ¢ < D and p/q < x can be found from the
set of even principal convergents of x, and their intermediate convergents when they exist,

by taking the fraction with the largest denominator at most D.
Having found p/q, then the inequality
—pX' +qY’ <0
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gives the next segment of the integer hull. If this inequality intersects the supporting line
of (7) in an integer point, then we have computed the entire integer hull. If not, then the
next segment of the integer hull needs to be computed and that can be done by first doing
a translation. We find the integer point with the largest X’ value with X’ < ¢y — 1 on the
supporting line

—pX' +qY' =0.

This computation is made easier by the fact that we already know that the origin is an
integer point on the supporting line. We translate and then repeat. It is not necessary to
compute the convergents of p/q as we already computed them in the course of computing
the convergents of —t/u.

Harvey’s algorithm can handle any number of inequalities and is incremental in that
an inequality is handled one at a time, but for our purposes, we are only concerned with
computing the integer hull of a pair of inequalities. For n inequalities, the running time of
the algorithm is O(nlog Apax) where Apax is the magnitude of the largest integer in the
input. Harvey has shown that his algorithm is optimal by exhibiting instances based on the

Fibonacci sequence which results in Q(nlog Amax) output constraints.
4.1.1 Numerical example
Consider the region spanned by

11z +9y < 10

—x+5y < 2

shown in Figure 17.

—
N[ =
N[ —
SN—

Figure 17: Numerical instance used to illustrate Harvey’s algorithm.
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Now az(—1) + b2(0) = 1, so the unimodular transformation can be given by
U =

resulting in t = —11 and u = 64. In (X, Y )-space, we have

—11X +64Y < 10

X + < 2
Now the point (x1,y1) = (—30,—5) is the largest integral point on the supporting line

—11X +64Y =10

with X < 2, and so the transformed inequalities in (X', Y”')-space are

—11X"+64Y" < 0
X'+ < 32
as shown in Figure 18.
11
(32,4)

Figure 18: The numerical instance transformed by Harvey’s algorithm.

In addition,
-1 5 —-30

01 -5

is
:p:0+—1
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and the convergents are 0, %, %, % and (15711. The p/q that we desire is 1/6 and the farthest

right integer point on the supporting line
—X'+6Y' =0

satisfying X’ < 32 is (30,5). This corresponds to (0,0) in (z,y)-space. If we translate, then
the next p/q is simply 0 and in the new translated space, the final integer point is (2,0)
which corresponds to (—2,0) in (x,y)-space. So we have determined that the vertices on

the integer hull are (—2,0), (0,0), and (5, —5).
4.2 A heuristic for finding lattice-free triangles

Consider a point

f= € R?,
fy
and let
Tz Tox T3z
L= T2 = T3 =
Ty T2y T3y

be three vectors in R? whose non-negative cone is all of R?. We are interested in determining

a triangle with vertices
{Uh V2, U3}

such that vertex v; lies on the open ray
ray; = {x € R?: 2 = f + \jr; for \; > 0}

where the triangle has no integral points in its interior. Convex sets which do not contain
integral points in their interior are called lattice-free. Integral points are allowed on the
boundary. For reasons which will become clear in the sequel, we are interested in triangles
that are maximal.

In a result due to Dey and Wolsey [27], the maximal lattice-free triangles in R? can be

partitioned into three classes:

e Type 1: the vertices are integral and there is one integral point in the relative interior

of each edge
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e Type 2: there are multiple integral points in the relative interior of one edge with the
opposing vertex being non-integral, and the other two edges have exactly one integral

point in their relative interior

e Type 3: the vertices are non-integral and there is one integral point in the relative

interior of each edge

In Figure 19, we show examples of each of the types of triangles.

Type 1 Type 2 Type 3
Figure 19: Examples of Type 1, 2, and 3 triangles.

The relative strength of various types of inequalities is naturally of interest. The notion

of strength can be made precise. Suppose @@ € R’'\{0} is a polyhedron of the form
Q= {z:Ax > b}

where A > 01is an m xn matrix and b > 0 is an m-vector. For a scalar o > 0, the polyhedron

a( is defined

a@ ={z: aAx > b}.
Whenever o > 1, Q € aQ and when a = +o00, a@) is defined to be R”}. In measuring
the strength of inequalities for the Traveling Salesman Problem, Goemans [34] considered
how much a polyhedron had to be “blown up” to contain a relaxation. In [9], Basu,
Bonami, Cornuéjols and Margot showed the following theorem, which generalizes a theorem

of Goemans.
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Theorem 4.2.1 IfQ is as above and P C R} is a convex set such that P 2 Q, the smallest

o > 1 such that P C aQ is

bi
z:IEa},(m { inf{a’zx : z € P} ~ 0}

If inf{a’z : € P} = 0, then is defined to be +o0o0. The theorem allows one

to compute the « for any polyhedron @ in the non-negative orthant (where 0 ¢ @) and
corresponding relaxation P by optimizing in the direction of the non-trivial facets of ) over
the relaxation.

Suppose that B is a maximal lattice-free triangle and v is the corresponding minimal

function that defines a facet
k

> w(ri)s; =1

i=1
of Rf(rl, ...,7F). Hence, the set {ry,...,r;} is assumed to contain rays that point to the

vertices of B. By the theorem, the optimization problem
k
min Zw(rj)sj cse Sp(rt, k)
j=1

is of interest.

Without any loss of generality, it can be assumed that for any r; with ¢(r;) > 0 that
the ray r; is scaled so that f-+7; lies on the boundary of the lattice-free set By,. In addition,
Cornuéjols and Margot [21] showed that the triangles and quadrilaterals defining facets of
Rf(rl, ...,7®) are rational and so the scaling can be done using only rationals.

In considering strength, it turns out that not all of the rays r; are needed to do analysis.
Suppose that Bjy,..., By, are lattice-free convex sets containing f in their interior and
R. C {1,...,k} such that if j ¢ R., then there exists s,t € R, such that r; can be

expressed as the convex combination of r; and ;. Basu et al. showed that the two problems
k
min Z 8;
J=1
k
s.t. Z¢Bp(rj)sj >1lforp=1,....m
j=1

s>0
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and

min E Sj

JER.

s.t. Z 1/13p(7"j)sj >1forp=1,....m
JER.

s>0
have identical optimal objective values. The proof is a fairly straightforward induction.

So we may assume that we have three rays {ry,r2,r3} such that the vertices of T are

exactly {f +ri, f+re, f+r3}. If

k

D w(ri)s; =1

Jj=1

is the inequality generated by T, then Basu et al. showed that
k
min Zlﬁ(rj)sj cse Syt rh)
j=1
is a piecewise-linear function of f when f lies in the interior of T" by computing
3
ZSPLIT = min Z Sj
j=1
3
s.t. ng(rj)sj > 1 for all splits B
j=1

s>0

Now, a Type 1 triangle T with integral vertices {z1,x2, 3} and interior integral points
{y1,y2,y3} can be transformed via a unimodular transformation into a triangle with vertices

{(0,0), (2,0), (0,2)} and interior integral points {(0,1),(1,0),(1,1)}. See Figure 20.

T3 .
Y1
Y2
1 Y3 T2 )

Figure 20: Subdivided Type 1 triangle with some level curves.
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When f lies in the interior of the subtriangle with vertices {y1, y2,y3} (i.e. the shaded
region in Figure 21), then zgprrr = 1/2. When f = (f1, f2) lies in the interior of the corner
subtriangle with vertices

{$17 Y2, y3}

or on the interior of the line segment connecting 3o and ys, then

1
zspuir =1 — o—F——

3—fi—rf2

The two other corner subtriangles with vertices

{y27 zs, yl} and {y37 Y1, .’IZ’Q}

are symmetric.

So zsprrT ranges from 1/2 in the center subtriangle of T' to 2/3 at the vertices of T'. It
follows that the potential improvement of Type 1 triangles relative to the split closure is
limited by a factor of 2.

Basu et al. showed that for any « > 0, there exists f,r1,...,r; such that

Se(riy ..o 7k) g aRg(ry,...,r5).

In other words, there are problems for which the split closure is an arbitrarily bad ap-
proximation of the integer hull. They exhibited a number of integer programs where when
optimizing in the direction of a facet from a Type 2 or Type 3 triangle or a quadrilateral,
the optimal value over the split closure is arbitrarily close to zero.

For f = (0, f2) where f2 € (0,1), suppose the three rays are

—1 1 —1
=M y T2 = (2 y T3 = U3
t1 to t3

for p; > 0 and rational t; satisfying
—11 < to < —13.

Then Basu et al. show that

1 1—-fa fo
ZSPLIT < < + —
t1 — 13 251 w3
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If 1 = pg = 1, then the bound on zgpyT simplifies to 1/(¢; —t3). As t; —t3 grows large, the
split closure performs more and more poorly. The proof involves bounding the split closure
with pseudo-splits, which in general may contain integral points in their interior and may
not be valid for R¢(r?,... ,7*). We do not get into the notion of a pseudo-split here.

For a concrete example, consider their example of the Type 2 triangle with long vertical
edge passing through (—1,0) and the other two edges passing through the points (0,0) and
(0,1). Here f = (0, f2) for fo € (0,1) so that f lies in the relative interior of the line segment

joining (0,0) and (0,1). Then the rays from f to the vertices are of the desired form.

f—i—rl/

(_170)

f+7“3\

Figure 21: Type 2 triangle with large gap relative to the split closure.

So the theory suggests that Type 2 triangles are interesting. In addition, in the proof
by Basu et al. that

Te(ri, ... m6) S Sp(re, ..., 1),

the split S corresponding to a violated split inequality is shown to contain within it a
Type 2 triangle whose corresponding inequality is also violated. This all suggests that
Type 2 triangles, especially ones where the edge with multiple integral points is “long,” are
of interest for computational experiments.

We now describe our heuristic algorithm for finding lattice-free triangles, which finds
triangles that are “close” to being Type 2. Our heuristic returns a triangle that is in general
a Type 2 triangle or very close to being one, and it may be possible to return a Type 1

triangle, but it will never return a Type 3 triangle.
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Algorithm 2 Heuristic algorithm for finding lattice-free triangles

1: Triangles < {}

2: IH; = Integer-Hull({ray,, ray,})

3: IHy = Integer-Hull({rayy, rays})

4: IH3g = Integer-Hull({ray,,rays})

5. for each pair of adjacent points {(z1,y1), (x2,y2)} in IH; do

6:  p1 < point where the line between {(z1,y1), (22, y2)} intersects ray,
7. p2 < point where the line between {(x1,y1), (z2,y2)} intersects ray,
8 for each vertex v in IHy do

9 if v # p; then

10: find point where the line between v and p; intersects rays, if it exists
11: end if

12:  end for

13:  ph «— the closest intersection point to f

14:  find pf§ by handling IH3 analogously

15:  ps « closer of p§ and p4 to f

16:  Triangles < Triangles U {(p1,p2,p3)}

17: end for

18: Handle IHs and IH3 analogously

The basic idea of the heuristic is to walk down the integer hull of one of the sectors
and for every pair of adjacent vertices on the hull, to compute the line that passes between
them. We then see where this line strikes the two rays that constitute the sector to obtain
the points p; and ps. Then we determine point p3 by respecting the integer hulls of the two

other sectors.
4.2.1 Numerical example

Let

1/2 —5/4 —1/4 3/4
[= yT'1 = y T2 = T3 =
1/2 —1/4 3/4 —11/12

The sector formed by r; and r3 can be written as

11z +9y < 10

—r+5y < 2
and we determined earlier using Harvey’s algorithm that the vertices on its integer hull are
(—2,0),(0,0), and (5,—5). The sector formed by r; and 73 has (—2,0),(0,1) and (0,2) as
the vertices on its integer hull. The sector formed by 79 and r3 has (0, 2), (1,0) and (5, —5)

as the vertices on its integer hull. See Figure 22. In the figure, the length of the vectors
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r; have been increased for visual purposes. Observe how in this example that an integral

point can belong to more than one integer hull.

Figure 22: Numerical instance used to illustrate the heuristic algorithm.

Now we will give an example of a triangle found by the heuristic algorithm. Suppose
that (z1,y1) = (—2,0) and (x2,y2) = (0,0) in Line 5 of the algorithm, while handling IHs.
The point p; is simply (—2,0) on ray; and the point ps is (10/11,0) on ray;.

The point p4 is (2/7,8/7) on ray, that is intersected by the line between (—2,0) and
(0,1). The point p4 is the point on ray, that is intersected by the line between (10/11,0)
and (0,2), namely (0,2) itself. Since pj is closer to f, the computed triangle has vertices
{p1,p2, 5} = {(—2,0),(10/11,0),(2/7,8/7)} and is shown in Figure 23. Observe that the
computed triangle is not quite a Type 2 triangle since the edge joining ray, and rays does

not contain an integer point in its relative interior.
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Figure 23: Triangle found by the heuristic algorithm.
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CHAPTER V

EXACT TRIANGLES AND QUADRILATERALS

5.1 Grobner bases

We first give an overview of the theory of Grébner bases originally developed by B. Buch-
berger in his 1965 Ph.D. thesis at the University of Innsbruck in Austria. The theory is now
widely used in symbolic computation and implemented in popular mathematical software
packages such as Maple and Mathematica. The theory is attractive in that it can essentially
be applied with knowledge of just polynomial arithmetic. Our notation and development
closely follows that of [15].

Let [x1,...,2,] denote the set of monomials with coefficient 1 over the variables z1, ..., x,.
If R is a field, let R[z1,...,z,] denote the ring of polynomials in x1, ..., z, with coefficients
from R. As usual, let p | ¢ denote that ¢ is a multiple of p, p/q denote the quotient of p
divided by ¢, and LCM(p, q) denote the least common multiple of p and q.

Define

C(p,t) = coefficient of ¢t in p € R[z1,...,Ty)].

and define

to be the monomial of ¢ in p. We also define
S(p) ={t: C(p,t) # 0}

to be the support of p.
In the sequel, the ordering of the monomials in a polynomial is important. Suppose that

< is a total ordering on [x1,...,z,]. Then < is defined to be admissable if
forallt#1,t>1
and for all ¢, u, v, we have that

u < v implies that ¢ -u < ¢ - v.
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As an example, the lexicographic ordering on [z1,x3] with x; < x2 orders the power

products of [z1,x2] as follows:

1 < x < x% =< 1::{’ =<
Ty < TT2 < T < aimy <
3 < mai < 233 < adad <
and is an example of an admissible ordering. Observe that if p | ¢, then p < q.
Another admissible ordering is the “total degree lexicographic” ordering where the terms
are first ordered by their total degree, and then terms with the same degree are ordered

lexicographically. For example, the total degree lexicographic ordering on [z1,z2] with

x1 < xo orders the power products of [z1, z3] as follows:

1 < x1 =< X2 <
< maze < 13 <
l‘{’ < l’%l‘Q < 1‘11}% < ZL‘% <

It is an easy fact that for any admissible ordering <, that for all u, v,
u | v implies u < v.

By a combinatorial result known as Dickson’s lemma, it can be shown that for any admissible
ordering <, there does not exist an infinite descending chain. A relation with such a property
is called Noetherian.

Suppose we fix some admissable ordering < on [z1,...,x,]|. Then given a polynomial p,
it is desirable to have notation for various parts of p. The Leading Power Product of p is
defined to be

LPP.(p) = maxS(p)

and the Leading Coefficient of p is defined to be
LC«(p) = C(p, LPP«(p)).
These two are used to define the Leading Monomial of p which is simply

LM« (p) = LC<(p) - LPP<(p).
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Now, the part of p Higher than ¢ is defined to be

H<(p7t) = Z C(p7u)'u

ueS(p),u>t
With these definitions, we can now show how < can be extended to a relation on

R[zy,...,xy,). For any u,v, we have that u < v if there exists
te S)\ S(u)

such that

H_(u,t) = Hs(v,t).

The extended relation < can be shown to be a partial order on R[z1,...,z,] and to be
Noetherian. In addition, < has the property that for all non-zero polynomials p, we have
p > 0.

Given a polynomial g and a set of polynomials F, it is of interest to reduce g modulo
the polynomials in F' to a smaller polynomial with respect to the ordering <. We will make
this notion precise and set a notation.

For f € F, the polynomial g reduces to h modulo f, written
g —yh,
if there exists ¢ € S(g) such that
LPP(f)[tand h=g— f-M(g,t)/LM(f).
We say that g reduces to h modulo F', written
g —rh,

if there exists f € F such that ¢ — h. In general, a polynomial g can be repeatedly
reduced until no terms are divisible by any of the leading power products of any f € F. In

this case, where there does not exist A such that

g—rh,
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we say that g is reduced modulo F' and write

9p-

Now it can be shown that —r is a Noetherian relation and that if g —F h, then g > h.
Now let —7 be the reflexive-transitive closure of — . By the absence of any infinite chains
of reductions modulo F',

g—Fh
is equivalent to g reducing to h by finitely-many reduction steps modulo F. By repeatedly
performing reductions steps until no further reductions are possible, it follows that there

exists an algorithm RF such that
9 —F RF(F.g).

RF(F,g) is said to be a Reduced Form of g modulo F. In general, given a g and F, a
reduced form is not unique. However, the case where for a given F', the reduced form is
always unique is important and motivates the definition of a Grobner basis.

To make this notion precise, let «——* denote the reflexive-symmetric-transitive closure

of a Noetherian relation —. Then, — is said to have the Church-Rosser property if
x +—" y implies that there exists z such that z —* z «* y.

Then F is defined to be a Grébner basis if — has the Church-Rosser property. For a given

F, we are interested in the algorithmic problem of finding a Grébner basis G such that

It turns out that an algorithm for computing a Grébner basis is easily found. An impor-
tant concept in the algorithm is the notion of an S-polynomial. If fi, fo are two monic

polynomials, then their S-polynomial is defined to be
SP(fi,f2) = LCM - f/LPP(f1) — LCM - fo/LPP(f3)

where

LCM = LCM(LPP(f,), LPP(f2)).
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The S-polynomial basically multiplies f; by a monomial such that the leading term of f; is
equal to the least common multiple of f; and fs, and then takes the difference so that the
least common multiple vanishes.
The central theorem of Grobner bases is the following: F'is a Grobner basis if and only
for all f1, fo € F,
RF(F,SP(f1,f2))=0.

Given some F, we can use this theorem to test if it is a Grobner basis, but more

importantly, we can also compute a Grébner basis for F. A naive algorithm is:

Algorithm 3 Naive algorithm for computing a Grébner basis
1: G+— F
2: for any f1, fo € G do
3: h — RF(G, SP(fl,fQ))
4: if h =0 then
5 do nothing
6: elseif h # 0 then
7: G — GU{h}
8
9

end if
: end for

This algorithm can be shown to be correct, in that at the termination of the algorithm,
G is a Grobner basis and Ideal(F') = Ideal(G). Given some finite F', the Grobner basis G
computed by the algorithm may not be unique. However, there is a canonical form that is
guaranteed to be unique. G is said to be a reduced Grobner basis if all the polynomials in
G are monic and

for all g € G’QG\g'

An important property of a Grobner basis is that the question of whether f € Ideal(F)

is easily decided.
f € Ideal(F) if and only if RF(Grobner-Basis(F), f) = 0.

For a general set of polynomials F', this is difficult to decide.

If F is a finite subset of R[z1,...,z,] and i < n where < is such that

1 <22 <...<24,
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then

Grobner-Basis< (F) N R[z1, ..., 2]

is a Grobner basis for

Ideal(F) N R[x1, ..., x;].

This is known as the “Elimination Problem” as it allows us to determine the solutions of
the system of equations F' just by first finding the solutions of the polynomial in just the
first variable, then substituting those values into the next polynomial and so forth. It is
extremely powerful to be able to find all solutions by solving “variable by variable.” This

certainly does not work in general.
5.2 FExact formula for a triangle problem

In the sequel, we will need a solution to the following problem in order to be able to do

computations. Consider a point

Jz
f= € R?,
fy
and let
Tz T2x T3z
= , T2 = , '3 =
Ty T2y T3y

be three vectors in R? whose non-negative cone is all of RZ. We are interested in determining
a triangle with vertices

{v1,v2,v3}
such that vertex v; lies on the open ray
{$€R22$:f—|—)\ﬂ‘i for \; > 0}
and the line segments
[v1, v2], [v2,vs], and [vs,v1]
contain the points

DPix D2z D3z
p1= , P2 = , and pg =

P1y D2y D3y



respectively. To this end, we let

fr Tix
fy Tiy

Now the vector from vy to v1 is
(f F 1) = (f + Aarg) = A1 — dar

and the vector from p; to v is

f+Xri —p1.

To model that p; lies on the line segment [v1,v9], we write
(f +Ar —p)p = Air — Agrg
for some p1. Similarly, for the point ps we obtain
(f + Aar2 — p2)p2 = Aora — Asrs
for some ps and for the point p3, we have
(f + Asrs — p3)ps = Asrs — A1t
for some ps3. So we have obtained a system of six equations in the six unknowns

AL, A2, A3, 1, f2, (3

and the system is not linear in these variables. So we compute a Grobner basis. In Mathe-

matica, the command is

GroebnerBasis[{(fx + ll*rlx - plx)*mul == ll*rlx - 12*r2x,

(fy + 1lixrly - ply)*mul == llxrly - 12xr2y,

(fx + 12*r2x - p2x)*mu2 == 12*%r2x - 13*r3x,

(fy + 12*r2y - p2y)*mu2 == 12xr2y - 13*r3y,
(fx + 13*r3x - p3x)*mu3 == 13%r3x - ll*rix,
(fy + 13%r3y - p3y)*mu3d == 13*r3y - ll*rly},

{mul,mu2,mu3, 13,12,11}]
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The last line of the command indicates that we want a lexicographic ordering with
1 > 2 = s = Az = Ao = AL

Running this command on Mathematica 6.0 on a Linux machine resulted in an output
with 32 polynomials {g1,...,g32}. The output of GroebnerBasis[] in Mathematica is in
general not a reduced basis. Wolfram Research, the publisher of Mathematica, calls the

output a “semi-reduced” Grébner basis. The first polynomial g, that was returned is

2 2 2
Alp?yleTZyTSIfm + )‘lp3y7"1y7'2y7"3xfx - Alplyrlyr2xr3yfx
2 2 2
)\1p2yrlyr2$r3yfx + AlplyrleerSyfx - )\1p3yrlxr2yr3yfx
fy)\lplyrlyr2rr31fx - )\lplyp2yr1yr2a:r3mfx - fy>\1p3yr1yr2mr3xfw
A f + A 2 2 f _ A 2 2 f
1P2yP3yT1yT22T3x J2 1 P2xT1y T2yT3z Jz 1 P3xT1y T2yT3z )z
fyMP1yT12T2y 32 fz +  fyAP2yT1aT2yT32 [ MP1yP3yT12T2y T3z [z
A1p2yp3y7'lcn7a2y7ﬂ3;rfm + fy)\1p2xr1yr2yr3xfa: )\lplxp2yrly742yr3:vfz
fy)\1p3zrlyr2yr3xfz + )\1p2yp3ac7“1y7'2y7"3zfa: - Alplxp3y7“1y7ﬂ2yr3a:f:p
2 2

)‘1p2:cp3yleT2yr3xfx - A\ prTlelyTZyTSIfx + N pByTlelyTQyTiixfx
A 2 2 _ A 2 2 _ by

1“P1aT1y 2273y [ 1°P22T1y 2273y far fyAip2yT12T2273y [
MP1yP2yT12T2:T3y fr +  fyAP3yT1aT2eT3yfe —  AMP1yDP3yT1272273y f
fy)\lplzrlyTQzTSyfz - fy>\1p2mrlyr21r3yfm + Alplyp2xrly7‘2xr3yfx
Alplxp?yleTZxTSyfx Alplyp3x7'1yr2x7'3yfx - Alp?yp3xrly7'2x7'3yfx
A 2 A 2 A 2 2

1 plyrlmrlyTerfiyf;t 1 p2yrlmrlyr2xr3y‘fm + 1 P1yTix r2yr3yfm

2 2

A DP3yT1z 7“2y7“3yfw - fy)\lplxrlacTZyrZ&yfx - )\1p1yp2:p7“1x7“2y7“3yf:p

fy)‘lpi'sx'rlx'r?y'r?)yfx - Alplyp3x7‘1zr2y7"3yfx + )\lpleSyrleZyTZSyfx
2 2
MD2zP3yT1aT2yT3y e — M “PlaTialiyT2ysyfe  + A D32T12T1yT2y T3y fo
2 2 2 2 2 2

fy)‘l D121y 72273z  + A1 D1zP2yT1y 72273z + fy>\1 D321y " T227 32

M2P2yP3ar1y®Toe3e — [P MPLT1yTeTse + fyMPLePay 1y 22 30
2

fy " Ap3aT1yT22T32 - —  fyAMP1yP3eT1yT22732 —  fyAD2yP3aT1yT 22732
MP1yP2yP3aT1yT22T3z  +  fyMP1aP3yT1yT2:73:  —  A1P12P2yP3yT1yT227 32
fui? — )2 fuli?

yAl PlyT12T1yT22732 1 PlyP2yT12T1yT227 3z yA1l P3yT12T1yT227 32
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2
+ A DP2yP3yT12T1yT 22732
A 2 2
1 PlyP3yT1z " T2yT 32
2 2
A1 P1eP32T1y T2y 32

JyA1P1yP22T 1272y 3

+ o+ o+ o+

fyA1p2xp3yrle2yr3x
- fy)\lplmPZmrlyTer&n
A1P12P2:P3yT 1y T2y 32
Y 2
1 P1yP22T12T1yT2y 732
B
1 P1zP3yT12T1yT2y 732
2 2
fy)\l P3yT1z"T22T3y
A 2 2
1 P2zP3zT1y 2273y
)
- fy 1P32T12722T3y
—  A1P1yP2yP32T 1272273y
- fy)\lplxp3xrlyr2xr3y
+ A1pl:r:p2yp3z7'13/742907a3y
— A2
fy 1 P3xT12T1yT227 3y
M2
1 P2zP3yT12T1yT22T3y
+ fyAlplxp%crle2yT3y

- A1plaap2xp$y7qlx7'2y743y

_l’_

_l’_

_l’_

2 2
FyA Py 12 T2y 32
A 2 2
1 P2yP3yT1z " T2yT 32
)
fy 1P12T12T2yT 32
fyAlpleQyTleQyTSI
)\lplyp2xp3yrlxr2yr3x
fy/\lplmp3xr1y7"2yr3m
A 2
fy 1 PlaT12T1yT2yT 32
A 2
1 P1yP3xT12T1yT2y7T 32
2 2
SFyA1 P2y 1212273y
2 2
A P1yP3yT1z"T22T3y
)
fy  AMP22T 1272273y
JyAMP1yP3aT 1272273y
fyA1p21p3yT1xr2mr3y
fy>\1p2:1:p3m7"1y'r236'r3y
foM?
yA1l D227 12T 1yT22 73y
A 2
1 P1yP3xT12T1yT2273y
2 2
A1 P1yP2aT 1z T2y T3y
fy>\lp2:r:p3$r1x7"2y7'3y

2
A1 P1aP2:T 1271y T2y T3y

+

+

2 2
FyA1 D2y 12 T2y 732
A 2 2
zP2x T 1y y!3x
1 P1zP22T1y T2yT'3
£2A
y AP22T12T2yT32
fyAlplxp?)yTleQyTSx
AlplachypBy'rlw'r?g/743:v
A1P12D2yP32T1yT2yT 32
fuA 2 0w T 1T 1y T2uT
yANl P2xT12T1yT2y 732
A 2
1 D2yP3xT12T1yT2y T 32
A 2 2
1 PlyP2yT1z 72273y
2 2
A P1aP32T1y 2273y
JyA1P1yP22T 1272273y
JyA P2y P32 1272273y
yP22P3yT 1272273y
A1D1yP22P3yT 1272273
yP22P32T1y 72273y
AMD1yP22P32T1yT2273
A 2
1 P1raP2yT1aT1yT2273y
A 2
1 P1zP3yT12T1yT2273y
2 2
A1 P22P3yT 12 T2y T3y
yP2zP3zT1272y 73y
A1D1yP22P32T 1272y 73

2
A D22D32T 1271y T2y T3y -

As expected, observe that this polynomial is a univariate polynomial in the variable .
Fortunately, it is just a quadratic equation. Before solving it, we list the remaining 31
polynomials that were computed.

The next polynomial gs is

2 2 2
- fy)‘lplyr2yr3xrlx + fy>\1p2yr2yr3zrlx + Alplyp?;y"”?yr?)xrlx
2 2 2
—  AND2yP3yT2y 3271 —  JyAP2yT2:T3yT 12+ A1D1yP2y 223y e
2 2 2
+ fy)\1p3yr21T3yrlm )\lplyp3yr2xr3yrlx + fx)\lplyTeriiy"”lz
- AlPlprx'rQyTSyrlx2 fx)\1p3yr2yr3yrlx2 + )‘1p2xp3y7‘2y7"3y'r1902
2 2 2
—  fyAaP1aToy e+ fyAePoaToy T3eT1e + A2D1aP3yT2y T3 1

82



+ 4+ o+ o+ o+ o+ o+ o+

2
)\2p2xp3y7'2y T3xT1x
fyA1p3y7a1y7a2m7a3m7alz
fy)\1p2xrlyr2yr3wrlx
Alplyp?m:"nly7"2317'3:67"1:(:
)\12?1:1:]93y7°1y7"2y7“3;c7'1x
A2P1yP3yT22T2yT 32T 1z

2
A2D1yP2yT 22 T3y e

2
feXaD12T2y T3y T 12

2
)\2p2xp3xr2y T3yT1x
fx>\1p2yrlyr2xr3yrlw
Alplyp3xrlyr2xr3yrlx
folplmrlyTQyTByrlx
A1P22P32T1yT2y T3y 12
A2D1y P22 20T 2y T3y T 1
)\2p2yp3mr2:cr2yr3yrlx

2
fyA2p1yT1yT2m T3z
A 2

2P2yP3yT1yT22"T3x

2
f:r:)\2p3xrlyr2y T3z

2
A1P12P2yT 1y " T227 3

2
fm)\1p2x7“1y T2yT3x

2
A1P12P32T1y T2y 3z
fx>\2p2yr1y7'2xr2y7'3x
)\2p1yp3$7'1y7'2z7'2y7'3z

2
fx>\2p1yrlyr2x T3y
A T1yT20 2T

2P2yP3xT1yT22 T3y

2
)\lpla:pf%wrly 2273y

JeA2P2eT1y 202y T3y

+ o+ o+ o+ o+ o+

fyAlplyrlyTQxTerlm
A1D2yP3yT 1y 22732 1z
Alplprz""lyTer?)zrlz
AlpZyprler2yT3xrlx
JyA2D1yT2272y 7327 12
A2D2yP3yT22T2yT 32T 1z
2
fy>‘2p3y""21 T3yT1x
by 2
xP22T2y " T3y 1z
2P12P22T2y T3yT'1
[z AM1D1yT1yT2273y T 12
A1P12P2yT1yT 2273y T 1
Alplxp3yler2xr3yrlx
MP1aP2aT1yT2yT3yT 12
f2AoD1yT22:T2y T3y T 12
AoP1aP2y T2 T2y T3y 1
Jz )\2p3yr2xr2yr3yr1x
A 2
2P1yP2yT1yT22" T3
2
fz/\2p2x7“1y7ﬂ2y T3z
by 2
2P12P3xT1yT2y T3z
2
fyMD32T1y 22732
A 2
1P12P2xT1y " T2y 732
fy)\Qplxrlyr21T2yr39v
A2pla:p?y"n1yTZ:l:7”2yr3az
[z AoD3yT1yT22T2y 32
2
fw>\2p2yr1yr21 T3y
2
folplxrly 2273y
by 2
1022 P31y 72273y

A2P12P32T1yT22 T2y T 3y
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A1P1yP2yT 1y 227321
fy)\lplmrlyTer3xrlm
fz/\1p2yrlyr2yr3xr1x
fx >\1p3yrly7"2y'r3x7'1x
fyAoDayTozT2y 3212
fy)\2p2yr2w2r3yrlr
A2P1yP3yT22 T3y 12
S Xopsatoy®r3yTie
fy)\1p2xrly7’2xr3yr1x
fy)\1p3xr1yr2xr3yrlx
)\1p2xp3yrly7'2xr3y7'1x
fm)\lp3xr1yr2yr3yr1$
fy)‘2p2x7a2:p7ﬂ2y7a3yr1m
fy)‘2p3xr2xr2yr3yrlx
)\2p1xp3yr2wr2yr3yrlx
JyXap3yriyroersa
A2P12P22T1yT2y° T35
fy)\lplxrly2r2xr3x
A1pZyp3ac r1y2T2mT3x
fw)\1p3xr1yzr2yr3m
A2D1yP22T1yT 2272y 3
JyA2D3aT1yT 2272y T35
)\2p2a:p3y7“1y7'2337a2y7'333
)\2p1yp3x7“1y7“2x27‘3y
fx)\1p2x'rly2r2:cr3y
fac)\QplwrlyTQxTer?)y

A2D22 P32 T 1y T 2272y T3y -



The polynomial g3 is

fy)‘2p2yr3yr212 - >\2p1yp2yr3yr2a:2
+ XapyPsyTayTas  + AAaDoyTiyTayTa
fyAep1yToyT3ar2e  —  fyleP2yToyTr3zroe
A2D2yP3yT2yT 32120 — A1A2P2yT1yT2y 732722
—  fyMip2yTiaTyrer  + AP1yDP2T 123y 2
—  ANDP1yP3yT12T3yT2z  +  faA1P2yT1yT3yTroz
—  faMp3yT1yT3yToe F AP12DP3yT1y T3y 20
- fy)‘2p2xr2yr3y'r2$ + )‘2p1yp2xr2yr3yr2x
+ fy )‘2p3xT2yT3yr2x - )\2p2yp3xr2yr3y7'2x
—  AoD1aP3yT2yT3yT2e  —  A1A2D22T1yT2yT3yT 20
- fy)\2p11r2y27“3w + fy>\2p2xr2y27°31
- >\2p2xp3yT2y2T3:IJ + )\1)‘2p2xrlyr2y2r3x
—  fyMP1yTizT2yr3e  + fyMD2yT12T2y T3
- )\1p2yp3y7'1x7"2y7'3m + fy)\lplxrlyr2y7"3w
- fy)‘lp?)xrly'rQyTSm + )‘1p2yp3xrlyr2yr3x
- AlplxpSyrlyTQyTSx + fa:)\ZplzT2y2r3y
—  [adepsarayirsy A+ AoDowPsaTay Ty
- >\1p1yp2xrlwr2yr3y - fx)\1p3yrlxr2yr3y
- f:c)\lplxrlyTQyT?)y + )‘lplxp2leyr2yr3y
= A1P2xP3aT1yT2yT3y-
The polynomial gy is
JyAirie AMP1yTie  + AAergyriz  —
— fyleror + Aapiyror — Atderiyra. +
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feAir1y

fx>\2r2y -

2
fy >\2p3yr3yr2x
2
A1 >\2p3yrlyr3yr2x

)\2p1yp3yr2y7'3xTQm

A1A2D3yT1y T2y 32T 22

fyMD3yT12T3yT 22
AMP12P2yT1y T3y 22
fzAap1yToyT3yT20
A2D12P2y T2y T3y T2

fz >\2p3yr2yr3yr2x

M A2D3:T1yT2y T3y T2z

NoP1aD3yT 2y T30
A1 )\2p3xT1yT2y2r3x
AlplypSyrleQyTBx
JeA1P2yT1yT2yT 32
fm)\1p3yrlyr2yr3x

NoP1aP2sT2y T3y
f /\lplyrlzTQyTBy
)\1p2wp3yrleQyTSy

fx>\lp3xrlyr2yr3y

+  Aprariy

A2D12T2y.



The polynomial g5 is

fy)‘lplyrlxrih
)\1p2yp3y7'1x7'3a:
fy)\1p3xrlyr3m
A1P12P3yT 1y T30
A2P1yP3yT 227 3z
A A2D3yT1yT22 732
A2P12P3yT2y T3z
A1A2D32T1yT2y T3
fx>\1p3yr1xr3y
)\1]911172:57“1347"3;/
Jx )\2p1yr2xr3y
fz >\2p2yr2xr3y
A1 A2P2y T 1272273y
AMA2D3:T1yT 2273y

Jx )\2p3xr2yr3y

The polynomial gg is

SyAp1yToyT3eT 10>
)\1p2yp3y742yr3a:701332
fy>\1p3yr2xr3yr1x2
MP1yP2aT2yT3yT 12"
FyAsD1yT2y 732 T 10
N3D2yD3yT2yT 321z
fy )\3p3xr21r3y2rlx
A3pl:r:p2ac"”21;"”31/27‘1%

fyAMP1yT1yT227 32T 10

+

+  fyMp2yTiaT3e
+  fyMD12T1yT 3
+  AMp2yP3zT1yT3z
+  fylep1yroaTis
+

A2D2y D3y 22732

JyA2p12T2y T30
—  A2P2:P3yT2yT3x
fz)\lplyrlxr?)y
A1P2:P3yT1273y

+ f$A1p3$r1y7n3y

fy )\2p2xr2$T3y

+ fy>\2p3xr2xr3y

- A1 >\2p3yrlxr2xr3y
+ fx)\2p1m7”2y7"3y

+  A2p2:P3aT2yT3y-

fyMipayroyraaris®
fyMpayrazrayric?
MP1yP3yT2aT 3y 1"
fx)\1p3yr2y7'3y'r1x2
fyA3payrayTasris
fy A?)172277'2557”3‘1;274117
)\3p1yp317'21T3y2T1:p

2
Jz )\3p3xr2yr3y Tz

AMP1yP2yT1y 227327 12
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AD1yP3yT 12732
fx)\1p2yrlyr3x
fa:)\lp3y7'1y7'3x
fy)\2p2yr2xr3x
A1A2P2y T 1y 22732
JyAoD2zToy T3
A1A2P2:T 1y T2y T 32
A1P1yP22T 1273y
fx)\lplccrlyr?)y
A1p217p3:v711y713y
A2D1yP2:T22T3y
A2D2y P32 72273y
A A2D2:T1y 2273y

A2P12P22T2y T3y

2
AlplypSyTQyTSlex
by 2

1P1yP2y 2273y T 12

2
fz)\lplyr2y7‘3y7‘lx
by 2

1P22P3yT2yT3yT 12
2
A3P1yP3yT2yT 32 e
2
A3plyp2x7n2a:7‘3y Ma
2
fx>\3plx7"2yr3y "z
2
A3p2rp$acTQy"”Sy T1z

fyMDP3yT1yT227 32T 12



)\1p2yp3yrlyr2xr3xrla:
)\lplyp2rrlyr2yT3zrlz
/\1p2yp31rlyr2yr3xrlx
fx)\lplyrlyr2xr3yrlx
A1P12P2yT1yT 223y 1
A1P12P3yT1yT 223y T 1z
A1D12P22T 1y T2y T3y 12
fyA3p2yT2xT3xr3yT1x
A3P1yP3yT227 323y 12
fy)\3p2xr2yr3xr3yrlw
>\3p2yp3xr2yr3xr3yrlr
fyAap1yriyraerse’
)\3p2yp3yr1yr2zr3m2
fx)\3p3yrlyr2yr3x2
FeA3P22T1yT227 3y
JyMP1271y° 20730
>\1p2yp3xrlyzr21r3x
f:c)\lp?;a:leQTQyTSx
fx)\1p2xrly2r2xr3y
JyA3P1271y 72273273y
fx)\3p2yrlyr2xr3xr3y
/\3p1xp3yrlyr2acr3acr3y

A3P12P22T1y T2y 3273y

+ 4+ 4+ o+ o+ o+ o+ 4

fyAlplxrlyTQyTerlm
JeA1P2yT1yT2y 327 10
fx>\1p3yrlyr2yr3xrlx
fyAIPZIleTZIT?)yrl:U
fyAlp?)acrlyTQacr?)yTlx
A1D2:D3yT1yT 223y T 1z
fx>\1p31T1yT2yT3yr1:c
>\3p1yp2yr2mr3xr3yrlx
JyA3D12T2y 73273y T 12
)\3plxp2yr2yr31r3yrlz
fx)\3p3yr2yr3xr3yrlx
>\3plyp2yrlyr2mr3m2
fx)\3p2yr1yr2yr3m2
A3D12D3yT1yT2y T 32"
)\3p1xp3mrlyr2xr3y2
M P1eP2y 1y T 22T 30
fz/\1p2xrly2r2yr3x
)\lplzp3xrly2r2y7"3z
)\lplwp3xrlyzr2xT3y
f2A3D1yT1y 72273273y
fy)\3p3$rlyr2:vr3$r3y
A3D22P3yT 1y 2273273y

J2A3P32T1y T2y 73273y
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fy)\1p2x7'1yr2yr3xr1x
AMP1yP32T1yT2yT 327 12
y yT2y
AMP12DP3yT1yT2yT 3212
yT1yT2y
fx>\lp2yrlyr2zr3y7'1x
)\lplypfﬂxrly'r?xrfﬂyrlx
fm)\lplxrly7“2y7a3yr1m
A 1D22D32T1yT2y T3y 1
yT2yT3y
fy )‘3p3yr2xr3xr3yr1x
f )‘3p1y742y7’3a3743y711a:
A3D1yP32T2yT 3273y 1
y y Yy
X X X
A3D22D3yT2yT 3273y 71
2
FyA3P3yT1yT22732
2
)\3p1:pp2y741y7“2y7“3:p
2
fx>\3plmT1yTQmT3y
2
>\3p2mp3xrlyr2xr3y
2
fyMP32T1y 22732
A 2
1P12P2xT1y" T2y 732
2
fx)\lplely 2273y
by 2
1p2acp3:v7'1y r2mr3y
A3P1yP22T 1y 72273273y
X X X
A3D2yP32T1yT 227323y
FfeA3D2:T1y T2y 3273y

A3P12P32T1y T2y 3273y -



The polynomial g7 is

fz,/)‘Sply7‘2y""3962

A3P2y D3y T2y T3>
JyMP1yriaroyrse
>\1p2yp3y7‘1x7‘2y7"3x
Alplyp3xrly7'2yr3x

)\3p1yp2yr2:vr3yr3a:

ALA3P1yT1yT22 T3y T30

f )\3p1y7‘2yr3y7'3m
A3D1yP32T2yT3yT 3z
)\3p2xp3yr2yr3yr3w
fy )\3}7217"217"33,2
A3P1yP35T 22T 3y
feAsprzrayrsy”
A3D22 D312y T3y”
fy)‘1p3yrlmr2xr3y
fa;)\lplyleTQxT?)y
fyAMP32T1y 72273y
AP1yP22T 1272473y

f:c)\lplxrlyTQyT?)y

A1P22P32T1yT2yT3y-

The polynomial gg is

fy)\lrla:
fyA3rse

+ o+ o+ +

A1P3yT 1z

+  A3p3yT3e
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fy)‘3p2yr2yr312 - )‘3p1yp3yr2yr312

MASDI 1y 2322 —  A1ASD2yT1yT2yT 30
fyMD2yT12T2yT3c  +  AMP1yP3yT12T2y 732
JeMP1yT1yT2yT3e —  faA1D2yT1yT2y7T 30
Alp?yp3xrly7"2yr3x fy)‘3p2yT2xT3yr3x
fyA3p3yT22T3yT32  +  A3P1yP3yT2073y 30
AMA3P2yT1yT22 3y 32 —  fyA3D12T2yT3yT 30
fy)‘3p2xr2yr3y'r3x + >‘3plmp2yr2yr3y'r3m
A3D2yP32T2yT3yT3c  +  feA3P3yT2yT3yT32
AMASD12T1yT2yT3yT3:  +  A1AIP22T1yT2y T3y 32
A3p1yP2sT2:T3y?  + fyA3Dsarozrsy”

MASDLLT 1y 227352 —  AM1A3D2xT1yT2273y>
AsD1zP2sT2yTay?  — feXsp3zrayrsy”

fy)\1p2yr1m 2273y + Alplyp2yrlxr2xr3y
AP1yP3yT 1272273y JyAP12T1yT2273y
feMP2yT1yT22T3y  —  AiP1aD2yT1yT2273y
MP1yP3eT1yT22T3y  +  faA1D1yT1272473y
fx)\lp3yr1xr2yr3y >\1p21p3y7‘1x7ﬂ2y7‘3y
Alplpr;trlyTQyT?)y f:r:)\lp3xrly7'2yr3y
+ MAsT3yri: — fadiryy 0 Aipseriy

- >\1>\3r1yr3x + fx>\3r3y - )\3p3xr3y-



The polynomial gg is

- fyMD2yT1eT2e  + AP1yP2yTiaTe: + fyAip3yTiares

—  AP1yP3yT1eT2 JyMP1aT1yT2e —  faMiDP1yriyTos

+  faliDwriyrer —  MDizP2yTiyT2e  —  fyAP3aTiyTos

+  AMP1yP3zTiyres JyAapayTazror  —  A3PiyP2yT32T24

—  fyA3p3yT3eTos A3D1yD3yT3e T2 — AMA3P1yT1yT 32722

+ AA3poyT1yT3T2e —  fyA3D2sT3yT2r  + A3P1yP2:T3yT2:

+  fyA3D3aT3yTor —  A3D1yP32T3yT2r + A1A3P1LT1yT3y 2

— AMA3D2T1y 3y e T faMP1yT1eT2y —  A1D1yP2:T12T2y

—  faMp3yrizrey + AD2aD3yT12T2y —  faAiD1aT1yT2y

+  AP1eP2sT1yT2y + faAiD3aT1yT2y —  A1P2sP3:T1yT2y

—  fyA3praToyT3e + fyA3D2:T2yT32 JxA3p2yToy T3

+  A3D1aD2yT2yT3e T faA3D3yT2yT3:  —  A3P2:P3yT2y73z

+ AMA3p1yT1aT2y 3 —  A1A3D2yT 1272y 30 A1A3D12T1yT2yT 3

+ AMA3poariyToyTae  + faA3D1eT2yT3y —  A3P1aP2sT2yT3y

—  faA3P3aT2yT3y + A3p2sP3aT2yT3y-

The polynomial gy is
fyAaraz AoDayToz  +  A2A37r3yTas JzAaray 4+ Aopagray
— fyAarsz + A3poyTss AoA3ToyT3e  +  fzA3rzy  —  A3p2sT3y-
The polynomial g1; is

- fyMpryy  + fedpry 0 fyMipery — AiP1yP3eTiy
= faMp3yriy  F AMPaP3yTly At AepayTeLriy A A2D3yT22T1y
— AdopogToyTy  + A1Aep3eToyT1y  + AASDIyT3LTly  —  A1A3P2yT3aT1y
— AMA3PLeT3yTly t AASD2:T3yTy + fydepayTee —  AepiyDayTox
—  fyXopsyTor  + AopiybsyTer  + fylepiaToy  —  fadepiyray
—  fyXopoarey  + AopiyDosrey  + faAepsyToy  —  AopiaP3yTay
—  fyA3ap2yT3x A+ A3p1yP2yT3e + fyA3P3yT3e  —  A3D1yP3yT3a
— AoA3p1yToyT3e  + A2A3P3yToyT3e  + fyA3p2:T3y —  A3DiyPoaT3y
—  fyA3p3ar3y  + A3pP1yP3.T3y  + A2A3D1aT2yT3y A2 A3P3:T2y T3y -



The polynomial g2 is

JzA1p1yT12 AMDP1yP2eTe —  JaAp3yTie  + A1P2:P3yTie
+ A Aap2yrorTis MA2P3yT2: 1+ AAIP1YT 3271 — M A3D2T 371z
—  faMDPiary F AD1aP2aTly + faAiD3aTiy —  AiP2eD3aTiy
—  fadepiyroe —  fyXoDoaTor + AopiyPoaTor  + faAapayTos
+  fyAop3aTor  —  AaD2yP3eTor — A1AaD2:TiyTer  + A1AaD3zTiyT2n
+  fadoDiaray  —  XoDiaPoaToy —  fadeDsaToy 4+ AapogDaaTay
+  fyA3p2ar3e —  [aA3poyTse —  fyA3D32T3z + A3p2yD32T3a
+ faA3p3yT3z —  A3D2aP3yT3r — A1A3DP1T1yT3e + A1A3P2:T1yT3e
— Ao A3P1yT2eT3r  + A2A3P3yToaT3r A2 A3PiaToyTie  —  A2A3D3zT2yT3e-
The polynomial g;3 is
- Mpyriefis + MP3yTiz fo’ + Nop1yToz fu?
- Xopyrosfss  + AspayTse fu — Asp3yTae fu’
- MPpyriife + M2ps3yT1a? fu +  fyMpiamiefe
+  Mpwp2riafs  —  fyMpsarizfe + MPybsaTiafe
—  APuPsyTizfe  —  MPwbsyTiefs  + MPPTieriyfs
— APPsariaTiyfs  —  fyhepeTeefs  + fylopoatosfe
—  Xopiypearezfr  + AeprePoyTocfe —  AeP1yP3aTocfe
XoD2yP3zT2efe  +  AMAaDiyTiaToafe  — 2XM1Aop2yTizrocfz
MAop3yrizToefe —  AMAoprariyTocfe +  AAop2ariyrosfe
= JyAsp2arsefr —  AspabyTsefr  + JyA3p3aT3a fx
—  A3p2yP3aT3afe  + A3D1aP3yT3efr  + A3D22P3yT3cfz
— APy fr T+ 2M1A3P2yT 12730 fa A A3P3yT12732 fo
— AMA3p2eT1yT3efe 0 AAP3eT1yT3e e+ A2 A3pryToeTse fa
— NeNspayratsefr + 0 ACPPaTin’ — A D2uPayTia
= fyMpupaTiz + fyMPaPsaTia —  AMP1yPaP3iTia
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_l’_

Alplpra:pZ%yrl:c
2 2
A1“AopoyTiz“Tox
fy>\2p2xp3xTQz
fy)‘lA2p2:L‘T1:r:r2:c
fyAMA2D3T14722
A1 A2P12P32T 1y T2

PYED)

1 A2P32T12T1yT 22
fy A3P12P227 32
)\3p1a:p2zp3yr3:c
A1A3P12D2y T 12T 3
)\1)\3p2xp3yrlxr3x

A2
1 A3P1zT12T1yT 3z
JyA2A3p32T227 30

A1A2A3P1yT 12722730

AMA2A3P32T 1y 22T 30 -

The polynomial g4 is

- fy,USTS:c

+  faparsy

The polynomial g15 is

2
H3DP2yT 2273z f y
2
H3P32T2yT 3z b y
2
H3P3y " T22T32 f y
H13P2yP3yT 2273z fy
fxﬂ3p2y7°2y7“3x fy
H3P12P3yT2y T3z fy
A U3P2y T 1272y T3z fy

)\1M3p2mrlyr2yr3x fy

_l’_

_|_

_l’_

M2P1aP2sT 1271y
M2 Aopsy T2 ros
AoD1y P22 D327 22
A1 )\2p1yp2xrlxr2:c
)\1 )\2p2yp3zr1xr2ac
A1A2D22P32T 1y T 22
M2 A3p1yT10 2730
fy)‘SpleSxTSa:
JyMA3D12T 12732
A1 A3P1y P32 12T 3
A1 )\3p1xp2xrlyr3:c
M2 A3P2uT 1271y 30
A2 A3D1yP32T 22T 32

A1A2A3P3yT 12722730

+  U3P3yT3x

—  M3P32T3y

2
H3P3yT 2273z fy
2
H3P227227T 3yf y
U3P1yD2y 22732 fy
AP2yT1yT22732
YTy y
H3P12P2yT2yT 3z fy
2043D22P3y T2y T3z [y
A U3P3yT 1272y T3z fy

)\1p3a:7"1y7'2y7"3x fy
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_l’_

_l’_

_l’_

M 2P2zP3aT 171y
fy A2P12D3 T2
A2D12P2y D32 T2
A1 A2D12P2yT12T 20
A1 >\2p1xp3yr1:vr2z
A A2P2sT 10T 1y T2z
M2 A\3p2yT1s T30
A3D12D2y P32 73
JyA1A3P2:T12732
A1 A3P2y P32 T 127 32
A )\3p1xp3xrly7"3z
JyA2A3D12722732
A2 A3P12P3yT 22T 3

A1A2A3D12T1yT22 T3

AlrlyTSx

_l’_

+

_l’_

_|_
+

_l’_

+ A17'1$7a3y-

2
H3P2xT2yT 32 fy
2
H3P32T22T 3yf y
3P 1y D3y 22732 fy
A1D3yT1yT227 32 fy
fxﬂ3p3y7ﬂ2y7‘3x fy
201332 P3y T2y 732 [y

ADP2:T1yT2y 732 fy

A H3P32T1yT2yT 32 fy



o+ o+ + + 4+ o+

+ o+ 4+

U3P1yD22T227 3y fy
M3psmp3yT2z7“3yfy
A1P3yT 1272273y fy
Alp?x'rly"?x'r?)yfy
2oy T3y f
H3P3x"T2yT3y Jy
Mapzxp:ammy?“syfy
2
H3P1yP3y " T2x73x
AlplypSyrlyTZ:cT?)cc
2
H3P2xP3y " T2yT 32
2 2
A1P32T1y T2y T30
A 2y ToyT
1M3P3y T1xT2yT 3z
AMP12P2y "1y T2y T3
A1D22D3yT1yT2yT 3¢
A1U3P32D3yT 1y T2y 30
2 2
A1 P1aT1y 2273y
H3P1yP3xP3yT2xT 3y
)\lplyp3y7"lz7"2$7‘3y
A1D1yP22T1yT22T3y
A U3P12P2y T 1y 2273y
1U3P22:P3yT1yT 2273
A1 3P22P3y T 1y 2273y
2 2
A1 P1yT1a T2y T3y
H3P1xP22P3y T2y 7 3y
fz)\lplyrlmTeriiy
A1U3P1yP32T 1272y T3y
A1D22D3yT 1272y T3y
)\1M3p3xp3yrlxr2yr3y
ALU3P12P32T1yT2yT 3y

2
A1 P32T12T1yT2yT3y-

_l’_

3P 1yD32T2273y fy
A1D2yT 1272273y fy
A1[3D3yT 1272273y fy
A1M3p2xrlyr2xr3yfy
M3p1zp2a;7“2y7°3yfy
AMP12T1272y73y fy
H3P1yP2yP3yT 227 3
2
fzl3D3y T2yT32
2
H3P3xP3y " T2yT 32
fx,u3p2yp3y T2yT3x
>\1M3p2yp3yrlxr2yr3:r}
JfeAMD3yT1yT2y T30
ALH3P22P3yT 1y T2y T 3
A 2
1 P2yT12T1yT2y 732
2 2
A1 D221y 2273y
A1P1yP2yT12T2273y
/\1M3p1yp3y7“11721r3y
f:r:)\lp2y7"1yr2x7'3y
ALU3D2yP32T 1y 2273y
)\ 2
1 PlyT12T1yT2273y
2 2
A1°P3yT 12 T2y T3y
H3P12P3xP3yT2yT 3y
AMP1yP22T12T2y T3y
fx)\lp3yr1xr2yr3y
A1U3P22P3y T 1272y T3y
A 2y TouT
1M3P32" T1yT2y T3y

ALH3P22P32T1yT2yT 3y

91

+ o+ o+ o+ o+ o+

_l’_

_l’_

_|_

_l’_

_l’_

U3P22:D3yT 2273y fy
A U3P2y T 1272273y [y
AMP12T1yT2273y fy
A U3P32T1yT 2273y fy
M3p1xp3x7“2y7“3yfy
AP32T1272y T3y fy
AP1yDP2yT1yT227 32

2
:U'3p1xp3y 7¢2y7’390
2 2

A1 D221y T2y 32
H3P12P2yP3y T2y T 3z
fx>\1p2yrlyr2yr3x
)\lplzp3yrlyr2yr3w
A1P32P3yT1yT2yT 3z
A 2

1 P3yT12T1yT2yT 32
M3p1yp2mp3yr2xr3y
A113D1yD2yT 1272273y
fz)\lplyrlyTZ:vr?;y
)\lplxp2yrlyr2xr3y
A1,u?)pla;p?)y7“1y7ﬁ2307’3y
A2 D2y 10T 10 22T

1 P2yT12T1y"2273y

2

H3P3x" P3yT2yT 3y
M3P2xP3xP3y T2y T3y
A113D1y D22 T 1272y T3y
AlplxpSyrleQyT?)y
)\1p3xp3yrlxr2yr3y
A U3D12P22T 1y T2y T3y

2
AL P12T12T1yT2y T3y



The polynomial g4 is

_l’_

_l’_

_l’_

_|_

[13P2y T2y [
[3P1yP2yT 22 fo
A1P1yT1yT22 fo
W3P12D2yT2y f
W3D12P3y T2y fo
A1P2yT 1272y fo

A U3DP22T1yT2y fo
M2 paariy®roe
F 2 13p3eros
U3P1yP2yP32T 22
fyA1psp2yriaros
A1U3P1yP3yT 12T 22
JyA1H3P2:T1y 20
A1 43P12P2y T 1y T2
A1 U3P12D3y T 1y 22
AMZPayT 11y T2z
f yM3P1z P2 T2y
H3P1zP2xP3y T2y
A1P1yP22T12T2y
A1 U3P1y P32 T 12T 2y
A1 [3P12P22 T 1y T2y

2
A1 P2sT12T1y T2y

The polynomial g7 is

_|_

fymap2e  +
Aopi3roypos  +
folt3psy — —
Aop1yroe  —
Aop1aTey

U3P3yP2x
fa:,USPQy +
AP1yT1e  +

AopoyTor  +

[13P3yT2y o
fyﬂ3p3y7'2:c fz
A1D2yT1yT 20 fa
fyh3p3aray fz
U3D2:D3yT2y fo
A1 143D2y 1272y fo
A U3P32T1yT2y fo
fo* 13paaton
Jyl3P1yP32T22
Jyl3p22P3yT 2z
A1 U3P1yP2yT 12T 20
JyA1P12T1yT 20
A1P1yP22T1yT 22
JyMU3P32T1y 20
A1 H3D22P3y T 1y T2
AM2P1yTia2rey
Jyl3P12P32T2y
fy>\1P1xT1x7’2y
A1U3P1yP2:T 1272y
A1U3P2y P32 T 1272y

A1 3P12P32T 1y T2y

A2 43P32T2y.
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+ + o+ o+ o+ o+ o+ o+

AT 1yP2s
fyﬂ3p3x
A1P2yT1e

A2 fi3D2y T 20

fyh3p2yTos fr
H3P1yP3yT 2z fa
Jyt3p2zroy fo
H3D2yP3aT2y fu

AMP1yT12T2y fa

>

1M3p3y7"1x7“2yfx
M 2p1ar1y 220
fyﬂSplyp2zT2x
JyM3p2yP3aT2z
H3P1yP2:P3y T2z
fy)‘lMBPSyrleQx
fy)\1p2mrlyr2x
A1P12P2yT1yT 22
AL 3D2y P32 1y T2
M 2P1yr1aT 1y
)\12p2yr1x2r2y
U3P12P2yP327T2y
fy)‘1p2lexT2y
A1D12DP2yT12T2y
ALU3P22P3yT 1272y

2
A1 P1aT1aT1y T2y

+  Aoroypas
—  H3P2yP3x
+  Ap1eTiy

—  A2u3P3yTor



The polynomial gig is

Jyktz — p3ypi3 + A3raypiz + X171y — A373y.

The polynomial g9 is

fzlt3 — P3ait3 + A3r3z 43 + AMT12 — A3734-

The polynomial gy is

— fyharas + H2p2yTos — A373yT2e + fepiaroy — HoposToy + A3T2yT3e.

The polynomial g9 is

- fy;UQplz +
— A3rgyple +
- fxﬂ2p2y -

+ /\1p3yrlz +

— A3p3yT3. +

The polynomial goo is

Jytt2 — paypiz + Aaraypia — Aaray + A3r3y.

The polynomial g3 is

falha — Dagpio + AoTogfl2 — Aaraz + A3r3g.

H2P2yP1x

Jz2p1y

AMP1yT 1z
A1p2P22T1y

A3D32T3y-

_l’_

+
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A1T1yP1e
fy,u2p2x
A1p2D1yT 1z

A1P32T1y

_l’_

A1H2T1y D1z
H2P1y P2
A1p2D2yT 1z

A3P1yT 32



The polynomial go4 is

[2p1yT1y fo
fyb2p2ymia fo
Jyt2p1aT1y [z
H2P12D2yT1y S
A3P1yT1yT 32 fa
A3D3yT1yT 32 f1

A3[12P 1211y T3y fo
A32D3yT1yT 30>
foP papiaria
fytoprzpayris
H2P1yP2:P3yT 1z
Jyl2P2:P3271y
JyA312P1y 12732
A32P2yP3yT 1273z
A3[2P12P2y T 1y 3
A3P12P3yT1yT 3z
fyA3D1271273y
A3[2D1y P22 12T 3y
A3D1yP32T 1273y
A3D12D3yT 1273y
A32P1yT1aT3T3y

2
A3 DP3xT1yT32T3y-

+

+

+

2p2y Ty fo
W2P1yP3yT 1z fo
fyt2poaT1y fo
H2P1yP3zT 1y fa
A32P1yT1y 732 [
A3P1yT1273y fu
A3 2221y T3y fo
A3 p1aT 1273y
fy2 Hop2sT s
Jyl2p12P3yT1z
U2P12P2yP3yT 1
HU2P1yP22P32T 1y
JyA3t2p2yT 12732
JyA3P12T1y 732
fy>\3P3xT1yT3x
A32P12P3yT 1y T3
JyA312P12T1273y
A32P12P2y T 12T 3y
A32P1yP3eT 1273y
A312D12P32T1y T3y

2
A3 D3yT12T3273y
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fy”Zplyrlex
/~L2p2yp3yT1zfx
M2p1yp217“1yfx

M2p2yp3w7“1yfw

>

3N2p2yrly7"3xfa:
A3P3yT 1273y fo
)\32p1yrlyr3r2
A32P3aT 1273y
fy/~L2p1yp2zT1x
fylul2p233p3yrlz
fy#2p1xp3:r7“1y
H2P12P2yP3xT 1y
A32P1yP3yT 1273
)‘3M2p1yp23:741y743x
A3D1yP32T1yT 3
)\3N2p2zp3yrly7'3x
fyA3h2p2:T1273y
JyA3P32T1273y
)\3N2p2yp3xrlxr3y
A312D22 P32 T 1y T3y

2
A3 P1aT1yT 3273y



The polynomial g5 is

_l’_

H2pP1a f, y2
Jat2p2y fy
A1P12T1y fy

A32D1yT 3z fy
A312P2:273y fy
Jal2P1yD3y
JfeAp1yT1y
A1U2P1yP32T 1y
A1H2D12P3yT1y
A1A3D1yT1yT 32
fzA3P1y73y
A3142D1y D3T3y
A1A3D12T1yT3y

2
A3“P1yT32T3y

.
+
+
.

The polynomial gog is

>

A3T273y°
+ H3P3yT22T3y
+ >\1N2rlzr2y73y
+  Ho3D3yToyT3x

The polynomial go7 is

H2p2z f y2
H2P1zP2y [y
A1p2P12T1y fy
A3 2Py T3z fy
A3D3273y fy
H2P1yP22P3y
fzA1p2p1yT1y
A1H2P2yP32T1y
A1H2D2:P3yT 1y
1A3U2P1yT1yT 3

A312D1y D223y

A3142D2y D3T3y

ALA3 2P 12T 1yT 3y

2
A3 P3yT32T3y-

fy,UfSTZJ:r?)y
A1T1yT22T3y
A3T2y 13273y

H3P3yT2yT 3z

_l’_

+

+

+

+

+

+ o+ o+ o+

Jat2piy fy
pap1aP3y fy
A1p2p2:T1y [y
A3D1273y fy
A32p1ars,?
Jul2P2yP3y
fzA1p2p2yT1y
JzA1P3yT1y

A312D1yD3yT 3

A1LA3[2P2yT1yT 3

A3 2P 12P24 T3y

JzA3p3y73y

A1LA3[2P22 T 1yT 3y

fyM2M37’2x7’3y
M2 3P22T2yT 3y
fyh3rayrsse

AlrlyTZyT?)x

+ H2P1yP2a: I y
+  pop2apsyfy
+  AipsaTiyfy
+  Aspapiarayfy
N T
+  H2p1zP2yD3y
—  AP1yP3aT1y
+  A1P1ap3yTiy
—  A3l2P2yD3yT 3z
—  AMA3P3yT1y T3
+  A3p1yP3aT3y
—  A3D1aP3yT3y
+  A1A3P3LT1yT3y
H2[3P2yT2:7 3y
H23P32T2yT 3y
Jyb2p3roy T3,
A 12T 1yT2yT 3 -

fyb1T1e — p1P1yT1z + AoT2yT1e — fell1T1y + pH1P12T1y — A2T1yT22-

The polynomial gsog is

Jytt1 — Prypin + Airiypn — A1y + Aaray.

The polynomial gog is

Jzlt1 — Praptn + MTizft1 — AMT1e + Ao,
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The polynomial g3 is

+ o+ o+ o+ + o+ 4

+

_'_

The polynomial g3 is

mpyrayfa® + psyrsyfat +
piP1yP2y T3 fe —  fytapsyTiafe  +
AopoyroyTsafe  —  Xep3yroyrsefe  +
P1P1yP2aT3yfe  —  fytiPsaTsyfe  +
P1P12P3yT3yfe  —  H1P2:D3yT3yfr —
XopoyT2seT3yfe  +  Aap3yroarsyfr  +

Aopl1P1aT2yT3yfe  —  AopapseToyrsyfe —
No?psaroyra.  — F2ip1aTse +

f yzﬂlp&c T3z - I yH1P1yP32T 32 -

H1P1yDP2yP32T3c  +  fyliD12P3yT3e  —
JyAot1P1yToaT3e  —  AopiPiyP2yT2aT30 —
Aofl1P2yP3yT2e T3 —  fyA2H1P1aT2yT3c —
Ao fl1P1yD2aT2yT3e  +  fylaP3aToyTse  +
Aofl1D1yP3eT2y T3 —  A2D2yP3eT2yT3e  +
A2D2eD3yT2yT3:  —  A2fl1P2:P3yT2yT3z  +
N®payrosToyrse  —  Ao’DoyTaiirsy  +
Jyl1P12P2273y Jyl1P2eP32T3y  —
U1P12D22P3yT 3y fyAapazrozrsy — +
fyAaD3aT2:73y Aopl1P1yP3eT22 T3y T
A2fl1P2yP32T22 T3y  —  A2[1P1zP3yT22T3y —
Aofl1P12P22 T2y T3y  +  Aof1D2:P32T2yT3y T
Ao D3aT2uToy T3y

Jyb1ple —  paP3yPle T A3UIT3yP1e
fyltipse  +  pDbiyP3e  +  frpapsy
A2p3yT2s AoP2asToy  —  A2P3aT2y
A3P2yT3c  —  A3P3yT3x T A3M1D3yT3a
A3P3:T3y  —  A3M1P327T3y-
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fytt1P1y73a fo
H1D2yP3y T3z fa
Jyt1p1273y fo
H1P1yP3273y fo
X241 P1yT2273y fo
A2 f11D3y T2 T3y fo
X2 P27y T30
Jyl1P12P2y 732
Jyl1P2yP32T 32
H1P1zP2yP3y T3z
JyA2l1D3y 722730
JyA2p22T2y T30
JyA211P3272y T3
A2 {11 P12P3y T2y 3z
Ao Doy TouT2yT5s
Ao p3yroz Ty
H1P1yP22 P37 3y
A2 i1 P1aD2y T 22T 3y
A2D2y P32 72273y
A2D22:D3yT22T3y

2
A2 P2y T2y T3y

fa:,ulply
—  AopoyTon
—  A3M1P1yT3z

)\3p2xr3y



The final polynomial gss is

H12D1yT1y 223 —  MH1H2P2yT1yT22T3z  +  H1M243D2yT1yT227 32
—  H2U3P2yT1yT2zT3z  — MU1M2U3P3yT1yT22T3x  + U2U3D3yT1yT22T3x
+  HIM3P1yT1zT2yT3s  —  M1M2U3D1yT1aT2yT3xc T H2U3D2yT 1272y T3
—  MIM3D3yT1zT2yT3ec +  HIM2U3D3yT1zT2yT3e —  H2U3D3yT12T2yT3x
- M1M2P1xT1yT2yT3x  — H1U3P12T 1y T2y T 32 +  H1p2U3P12T1yT2yT 32
+  H1peD2xT1yToyT3e  —  H1M2U3P2:T1yT2yT3x  + H1M3D32T1yT2yT 3z
—  H1M2DP1yT12T22T3y  —  MIM3P1yT12T22T3y  + H1H2U3P1yT 1272273y

H1H2P2yT12T22T3y  —  MIHU2U3P2yT12T22T3y T+ H13P3yT 1212273y

H1U3D1zT1yT2a T3y —  H1M2U3D1zT1yT227T3y + M2 13P22T1yT 22T 3y
—  M1M3D3zT1yT2zT3y +  HIH2M3D3zT1yT22T3y  — H213P32T 1y T 2273y
T H1IpeP1xT12T2yT3y  —  H1MeP2xT1xT2yT3y T+ H1p2f3P22T 1272y 3y
—  U2U3P2zT1aT2yT3y — MUIH2U3P32T12T2yT3y T H2U3D32T12T2yT3y-

Now returning to the quadratic polynomial g;, we observe that since there is no constant
term, A1 = 0 is necessarily one of the solutions. This solution is not feasible to our problem

unless

f=p1=p2=p3.
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The other solution is factored out to be ny/d; where n; is

+ o+ o+ o+ o+

2
DP2yT1yT2yT3x fx
2
p2y7ﬂly7a2x7a3yfx
fyplyrlyTQxT3xfx
p2yp3yr1y7'2zr3xfm
plyp3y7'lz7'2yT31fm
x xJz
P1aP2yT1yT2y 732 f:
zP3yT1yT2yT 32 Sz
P1aP3yT1yT2yT 32 ],
plypZyrlmT%cr?)yfac
fyplmrlyr2xr3yfm
plpryrlyr2xT3yfx
fyplazrla:TZyrSyfa:
plyp3rrlmr2yr3yfz
f2
yP1zT1yT227 32
fyplyp3xrlyr2xr3x
JyP1aD3yT1y 22732
f2
y P2z 12T2yT 32
fyplxpSyrleer?)x
P1aP2yP3yT 1272y T3z
P1aP2yP3xT1yT2y T3z
fyplyp2mrlzr21r3y
fyp2yp3xrlxr2xT3y
P1yP2xP3yT 1272273y
P1yP22P32T1yT227 3y

fyprpSlemTQyTSy

P3yT1yT2y 733 f. f
ply"“lx"“Qy7“33/fx2
P1yP2yT1yT2273x fz
fyplyrlccTZyrih:f:c
p2yp3yr1$r2yr3mf:r
fymerlyTer?):rfw
p2xp3yT1yT2yr3xfx
fyp3yrlmr2mr3yfm
fyp2z7"1y7”2m7”3yfz
plyp?)xrly'r?xr?)yfx
plyp?xrleerSyfx
plmp3yr13:7"2yr3yfm
fyplszyrly""QwT&c
fyp2yp3xrlyr2xT3x
P1aP2yP3yT1yT227 32
fyplyp2mr1mr2yr3m
fyp21p3yrlmr2y'r3m
fypleerlyTQyTSx
P1aP22P3yT1y"2yT 3z
f5p3xrlwr2xr3y
P1yP2yP32T12T2273y
fyplacp?)zrlyrlvr?)y
P1xP2yP3xT1yT2xT3y

P1yP22P32T12T2yT 3y

98

2
plyrlyr2xr3yfx
2
P3yT1aT2y73y [
fyp3y7"1y7'217'3mfx
fyp2yr1xr2yr3xfx
fyp293741y7’2y7’3:rf93
p2yp3x7“1y7‘2y7‘3xfx
fyp?y’rleQxT?)yfx
plyp?)yrlx'r?xr?)yfx
plyp2w7“1y7ﬂ2:p7ﬂ3yf:p
p2yp3xrlyr2xr3yfx
fyp3xrlx7'2yr3yfx
p2$p3yrlmr2yr3yfm
2
fyp3xr1yr2xr3x
P1yP2yP32T1yT227 32
2
fyplmrlacTQyTSx
fyplxp2y7“1x7“2y7ﬂ3:p
P1yP2xP3yT1272yT 32
fypleerlyTZnyﬂz
2
fyp2z7'1;r7'2:cr3y
fyplyp3x7“1x7“2m7ﬂ3y
fyp?xp3yrlxr2xr3y
fyp2xp3:c7'1y7'2xr3y
fyplxp2x7dlm742y7“3y

P1aP22P3yT12T2yT 3y



and dj is

2 2 2
fyplyTQyTerlg; fypZyTQyTerlx - P1yP3yT2yT 3271,
+ ToyT35TF + Fup2yToarsyrs — TogT3y Tt
D2y P3yT2yT32T 1 yDP2yT22T3yT 1, P1yP2yT2xT3yT 1y
— fup3yrosrsyrs + ToeT3yTs — FeP1yToyr3yrs
yDP3yT2:73y T, P1yP3yT2:73yT 1, xP1yT2yT3yT1
+ ToyT3yT> + f ToyT3yT> — ToyT3yT>
P1yP2xT2yT3yT 1, xP3yT2yT3yT 1, DP2xP3yT2yT3yT 14
fyP1yT1yT22732T 1+ PlyP2yT1yT2e73271e  +  fyDP3yT1yT22732712
—  DP2yP3yT1yT22732T12 — fyplacrlyTer?)a:Tla: + fpracrlyTQyT&rrla:
— P1yP2aT1yT2y"32"1z T fmp2yr1y7”2y7”3m7”1r +  DiyD32T1yT2yT 32 12
=  P2yP3zxT1yT2yT3zT1z — fmp3yT1yT2yT3xrlm +  P1aP3yT1yT2yT32 12
+ faDiyTiyT2eT3y e —  fyP2uT1yT22T3yT1e —  faD2yT1yT24T3y 1
D1aP2yT1yT 2273y 12 fyP3aT1yT22T3yT1e  —  PlyP3zT1yT2273yT 1z
—  PlaP3yT1yT2aT3y 1z T D2eP3yT1yT22T3y 1+  feP1al1yT2yT3yT 12
—  P1zP2zT1yT2yT3yT1z  — fxp3xT1yT2yT3yrlx +  D22P32T1yT2yT 3y 12
2 . 2 N 2
+  fyP1aTi,ToxTse P1aP2y Ty 227 32 fyPsariyr2aTss
2 2 2
+ P2yP3aT1y 22732 - fxp?rrlyTQyT&c + P1aP2sT1yT2y7 32
+ f 2 2 f 2
xP3xT1yT2yT 32 - P1aP3aT1yT2yT 32 - zP1aT1y 2273y
2 2 B 2
+ fxp?a:rlyTQxTBy + D1aP3zT1y 2273y D24P32T1y 2273y

At this point, the natural next step is to use the second polynomial go from the Grébner
basis that we computed. Having already computed A, observe that the only unknown in
polynomial go is A2. (We may also use polynomials g3, g4, or g5 instead of g2). In addition,
because of the nature of our problem, we can also compute A2 by solving the following 2 x 2

system of equations

(fo + M1z —P1z)pi = AMT1g — A2res

(fy FAiry —piy)pn = ATy — Aaray

for the unknowns A9 and p;. Geometrically, this would correspond to starting from the

point v; and then in a straight line, passing through the point p; until we hit the ray

{$€R2:l’:f—|-)\21"2f01“)\2>0}.
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If we solve for Ay by either method, then we get Ao = ny/dy where ng is

P2y7“1y7'2y7”3zfa:2
p2yrlyr21r3yf12
fyplyrlyr2xr3xfx
p2yp3yr1y7'2zr3xfm
plyp3y7'lz7'2yT31fm
plpryrlyTQyT?):rfz
plxpSyrlyTZyr3rf:c
plypZyrlmT2xr3yfac
fyplmrlyr2xr3yfm
plpryrlyr2xT3yfx
fyplazrla:rZyTSyfa:
plyp3rrlmr2yr3yfz
fy2plm7"1y7"217"3m
fyplyp3xrlyr2xr3x
JyP12D3yT 1y 22732
fy2p2a:r1xr2y7"3a:
fyplxpSyrleQyTSx
P1aP2yP3yT 1272y T3z
P1xP2yP3xT1yT2yT 3z
fyplyp2xrlzr21r3y
fyp2yp3xrlxr2xT3y
P1yP2xP3yT 1272273y
P1yP2xP3xT1yT227 3y

fyp2a:p31'rlmr2y'r3y

p3yr1yr2yr3xf$2
plyrleQyT3yfx2
plyp2yT1yT2xT31fm
fyplyrlccTZyrih:f:c
p2yp3yr1$r2yr3mf:r
fymerlyTer?):rfw
p2xp3yT1yT2yr3xfx
fyp3yrlmr2mr3yfm
fyp2z7"1y7”2m7”3yfz
plyp?)xrly'r?xr?)yfx
plprxrleerSyfx
plmp3yrla:7"2yr3yfm
fyplszyrly""QmT?)m
fyp2yp3xrlyr2xT3x
P1aP2yP3yT1yT227 32
fyplyp2mr1xr2yr3m
fyp2xp3yrlmr2y'r336
fypleerlyTQyTSx
P1aP22P3yT1y"2yT 3z
fy2p3x7‘1x742:p7“3y
P1yP2yP32T12T2273y
fyplacp?):vrlyrlvr?)y
P1xP2yP3xT1yT2xT3y

P1yP22P32T12T2yT 3y
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2
plyrlyTQ:vr?)yfx
T12T2y T3y [
P3yT12T2yT3y Jx
fyp3y7"1y7'217'3mfx
fyp2yr1xr2yr3xfx
fyp2xrlyr2yr3xfx
p2yp3x7“1y7‘2y7‘3xfx
fyp2yrlx7'2x7'3yfx
plyp?)yrlx'err?)yfx
plyp2w7“1y7ﬂ2:p7ﬂ3yf:p
p2yp3xrly7‘2xr3yfx
fyp3xrlx7'2yr3yfx
p2$p3yrlzr2yr3yfm
2
fy DP3xT1yT227 32
P1yP2yP3xT1yT22732
2
fy P1zT12T2yT 3z
fyplxp2y7“1x7“2y7ﬂ3:p
P1yP2xP3yT12T2yT 3z
fyplxp3xr1y7'2y7'3z
2
fy DP22T1272273y
fyplyp3xrlxr2xr3y
fyp?xp3yrlxr2xr3y
fyp%:pf%:crlyr?xrfﬂy
fyplxp2xrlmTQyT3y

P12P22P3yT 1272y T3y



and dy is

2 2 2
fyplyrly'r'SzTQm +  PryPoyT1yT32 2z + fyp3yT1yT31T21
_ 2 2 _ 2
P2yP3yT1yT32T22~  +  fyD2yT1aT3yT20 D1yP2yT12T3yT 2
_ 2 2 2
fyp3yr1xr3yr2x +  DiyD3yT12"3yT 2z + fa:plyrlyr3yr2a:
_ 2 2 2
2 P2yT1y"3yT 22 P1yP3zT1y"3yT 22 +  DayD32T1yT3yT 2
+  fyP1yTiaToyT32T2:  —  fyDP2yT1aT2yT32T2e  —  PlyP3yT1eT2yT32T2x
+  DPoyP3yT1xT2yT3zT2z  + fypl:crlyTeriia:TQa: —  DPiyP22T1yT2yT32T22
+ fmpZyrlyTZyriimer —  PixP2yT1yT2yT3z722 — fyp3rr1yr2yr3mr2m
+  P1yP3aT1yT2yT 3222 fmp3yT1yT2yT31T21 +  P2aP3yT1yT2yT 322
- fa:plyrleQyTSyTQQ: fyp?xrleQyTSyTZCz: +  PryP2zT12T2yT3yT 2z
+  DiaD2yT1aT2y 3y T2+ [yP3eT12T2yT 3y 20 P2yP32T 1272y T3y 22
+ fzp3yrlxr2yr3yr21 —  P1aP3yT1zT2yT3yT22 — fmplxrlyr2yr3yr2z
+ fprxrlyTQyTSyT2x +  D12P32T1yT2yT 3y 22 DP22P3xT1yT2yT3y 22
B 2 2 2
fyplxrlacr2y T3z + fyp2xrlxr2y T3z + P1xP3yT12T2y T3z
. 2 2 2
P22P3yT12T2y T3 prerlyTQy T3z +  DP1zP2xT1yT2y T3z
v 2 _ 2 2
xP3xT1yT2y T3z D1zD3zT1yT2y T3z  + fxpl:vrleQy T3y
B 2 2 2
P1aP22T1272y T3y fzp?)xrlcchy T3y +  P2xP3:T1xT2y T3y

Having determined A; and A2, we may now solve for A3 using any of the polynomials
96, 97, 98, 99, 910, 911 Or gi2. We may also solve for A3 by solving the following 2 x 2 system

of equations

(fo + Xarog — Pog)pbe = AoTog — A3rsa

(fy + Aoray —pay)pa = Aaray — A3rsy
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for the unknowns A3 and pe. All of these methods will give us

2
p2yrlyr2yr3zfx
TyT 2273y [
DP2yT1yT22T3y Jx

fyplyrlyTQxT3xfx
p2yp3yr1y7'2zr3xfm
plyp3y7'lz7'2yT31fm
plpryrlyTQyT?):rfz
plxpSyrlyTZyr3rf:c
plypZyrlmT%cr?)yfac

fyplmrlyr2mr3yfz
plpryrlyr2xT3yfx

fyplazrla:TZyrSyfa:
plyp3rrlmr2y7'3yfz

2

fy P1zT1yT22732
fyplyp3xrlyr2xr3x
JyP1aD3yT1y 22732

2

fy D22T12T2yT32
fyplxpSyrleer?)x
P1aP2yP3yT 1272y T3z
P12P2yP3xT1yT2yT 3z
fyplyp2mrlzr21r3y
fyp2yp3xrlxr2xT3y
P1yP2xP3yT 1272273y
P1yP22P32T1yT227 3y

fypZa:pSlemTQyTSy

p3yr1yr2yr3xf$2
plyrleQyT3yfx2
P1yP2yT1yT2273x fz
fyplyrlccTZyrih:fa:
p2yp3yr1$r2yr3mf:r
fymerlyTer?):rfw
p2xp3yT1yT2yr3xfx
fyp3yrlmr2mr3yfm
fyp2z7"1y7”2m7”3yfz
plyp?)xrly'r?xr?)yfx
plprxrleerSyfx
plmp3yr13:7'2yr3yfm
fyplszyrly""QmT?)m
fyp2yp3xrlyr2xT3x
P1aP2yP3yT1yT 22732
fyplyp2mr1mr2yr3m
fyp21p3yrlmr2y'r3m
fypleerlyTQyTSx
P1aP22P3yT1yT2yT 3z
fy2p3xr1xr2xr3y
P1yP2yP32T12T2273y
fyplacp?)zrlyrlvr?)y
P1xP2yP3xT1yT2xT3y

P1yP22P32T12T2yT 3y
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2
plyrlyTQ:vr?)yfx
T12T2yT3y fo
P3yT12T2yT3y Jx
fyp3y7"1y7'217'3mfx
fyp2yr1xr2yr3xfx
fyp293741y7’2y7’3:rfa3
p2yp3x7“1y7‘2y7‘3xfx
fyp2yT1xT2xT3yfx
plyp?)yrlx'r?xr?)yfx
plyp2w7“1y7ﬂ2:p7ﬂ3yf:p
p2yp3xrlyr2xr3yfx
fyp3xrlx7'2yr3yfx
p2$p3yrlzr2yr3yfm
2
fy DP3xT1yT227 32
P1yP2yP3xT1yT22732
2
fy P1zT12T2yT 3z
fyplxp2y7“1x7“2y7ﬂ3:p
P1yP22P3yT12T2yT 3z
fyplxp3xr1y7'2y7'3z
2
I y P2xT12T2273y
fyplyp3x7“1x7“2x7ﬂ3y
fyp?xp3yrlxr2xr3y
fyPQxPS:L’TIyTQxTSy
fyplxp2x7dlm742y7“3y

P12P2zP3yT 1272y T3y

)\3 = n3/d3 where ns is



and d3 is

+ o+

2

fyplyrlyTQQcT?)z
2

P2yP3yT1yT 2273z
2

P1yP3yT1272yT 32
T1yT247T 2

P1aP2yT1yT2yT 3z
fyP2yT1272273y 732
P1yP3yT1x72273yT3x
DP1yP22T1y"2273y T3z
DP2yP32T1yT22T3y T3z
fyplxrleQyTSyr?)a:
P1aP2yT1272y T3y T3z
fzp3yrlxr2yr3yr31
P1aP2zT1yT2yT3yT3x
2

fyp2xrlxr2mr3y
T12T22T 2

P1yP32T1272273y
T1yT2T, 2

P12P32T1yT2273y

2
P1aP22T12T2y T3y

+

2
P1yP2yT1yT227 32
2
fyplyrleryTSx
2
D2yP3yT1272yT 32
2
pr3yr1yr2yr31
P1yP2yT12722 73y T3z
fyplac T1yT2x7T3yT 3z
fmp2yr1yr2m T3yT3x
P12P3yT1yT2273y T3z
fa:plyrleQyTSyr?)cc
P1yP32T12T2yT3yT 3z
DP22P3yT12T2yT 3y T3z
fxp3zT1yT2yT3yr3x
T12T22T 2
P1yP2xT12T2273y
2
fxplmrlyTeriiy
T1yT2T, 2
DP2xP32T1yT227 3y

2
fzp3xrlxr2yr3y

+

.
+
+
.

2
fyp3y7"1y7"217"31
2
fyp2yrlx T2yT3x
2
JaD2yT1yT2yT30
T1yT247T 2
P12P3yT1y"2yT 32
JyP3yT1272273y 732
facplyrlyTeri%yr?)a:
fyp3r TyT2273yT 32
P22P3yT1yT2273yT 3z
fyp2xrlxr2yr3yr3a:
DP2yP32T12T2yT3yT 3z
fzp2x7‘1y7"2y""3yr3z
P1xP3zT1yT2yT3y T3z
2
fyp3zr1:tr2xr3y
2
prerlyTQI'rf&y
2
fxplxrleQyTSy

2
P2xP3xT12T2yT 3y

As a sanity check, we also compute a Grobner basis using the software package Maple

from Maplesoft. We ran the following command

with(Groebner) ;

gbasis([rix*m1*11 + fx*ml - plx*ml - rix*x11 + r2xx*12,
rily*ml*11 + fy*ml - ply*ml - rilyxl1l + 1r2y*12,
r2x*m2*12 + fx*m2 - p2x*m2 - r2x*12 + 1r3x*13,
r2y*m2*12 + fy*m2 - p2y*m2 - 1r2y*12 + 1r3y*13,
r3x*m3*13 + fx*m3 - p3x*m3 - r3x*13 + rix*xll,
r3y*m3%13 + fy*m3 - p3y*m3 - r3y*13 + rilyxli],

plex(ml,m2,m3,13,12,11));
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using Maple 12 on a Linux machine. The first polynomial in the returned Grébner basis is

(r3yp3yrla:p1x7'2yp2x
7“2y7“3xp1y7“1xfmfy
ToyT3aT 1yp1xp3xfy

r 3 [T
1yP3yT3zJx T2y
7"2xp1yfmrly7"31fy
7‘2xrlyp3yr3xfyfx
2
r3yp3yr1xf:c T2y
2
rlyrfﬂzp?yfm T2y

T2273yP32T1yP1yP22
Ta far 2yP3yT 3z D2y
7’?)yplyTlxp?)l‘fcz:7’2y
T3yp3y7"1xfm742yp2z
7‘2x7‘3yp2yp1yrlez
plyTleSyr?)xfxTQy
T2xr3yp3y7alzp1yfx
7“2:p7ﬂ3y7“1yp2xfmfy
fyp2yr3x7"1xfx7"2y

P3yT12P12T2yD2yT 32
T2xp317"1yp1yfy7'3r

2

TlmTQyPfoy T3x
72271y P1zP3y T3z [y
T2yp2zp1yrleyr3x
T3yfyr1xp3xr2yp2m
T3yP1xT2yP22T 1xfy
(rnyxrlypleSyrlw

2

T2yP22T1y PlaT 3z

T2yP22xP1yT 1271y T3

T1yT3z fyTpr?)yrlr

_l’_

T3yP1yT12P32T2yP2x
T2yT32T1y JaP3az fy
72273y P3yT12P2z fy
T2$p1yfmrlyr3xp2y
T2y fmp2xr1yr3m fy
T2273yP1yT12P3x fy
T22T3yP1yT12P3yP2x
T2yT32T1y f$p3acp2y
T22T3yP1yT12 P32 P2y
T3yP3yT1xplzT2yf x
T3yP1yP2xT 1z fery
T2xr3yp31r1yp1yfm
T2xT3yP3yT 1z fy fa
7'21*T3yp3xrlyp2yfoc
T2xT3yP2y fyrl;c f;r
P1zT2yP2yT32T 12 fy

2
7‘2:c7“3y7’1yf:c Py
2
T22T3yT 1y fa: D2y
2
2271y 3z fy D3z
7”2:;:7“1y]91xfy7°3xp2y
T1yP12P3yT3zT2yP2x
P1aT2yP22T1yT 32 f y
P1yT12P3yT32T2yP22
2
72273y 12 P32 [y
2
T2y fa:plyrlx T3y
T2yP22T1yP1273y T 1z
2
T2yD2xP1yT12" T3y

2
Ty T3z fyr2:cp3x

104

+ o+ o+ o+ o+

+

pl:cTnyyzr?)xrlz
SyT1psyT3er2yP2e
T22T3yT1y fyp3xp2x
T2xr3yrlyfxp1yp2x
22T 1yP3y T3z P2y fz

T2273yT12P2yP3z fy

T2273yP3zT1yP12P2y

leplmp?)yr?)acfa:TQy
2
7"3y"”2yfm P1yT1z
r3yrlexT2yp3xfy
r3yp1:cr2yfxr1xfy
T2zr3yrlyp1mfmfy
72273y T1yP1a faD2y

T1yP22P3y T3z fxT2y

T2xP32xT1yP1yP2yT 3z
DP2yP12T2yT1yT 32 fz

p3y7“1xp1x7“2yfy7"3x

2
T22T1yPlx fy T3z

2
2273y fy T12zP2x

T22T1yP1xP3y T3z P2y

T22T1yT3x fyprpr
T22T3yP1yP2xT 12 fy

T22T3yP3xT1yPlx fy

T2y 7327 1yP12P3eD2y ) M

2
T2yP2xT1y faT3e
T2yD2z fyrlrrlyriix
2
T2yT3271y PlzP3x

T2yr3xrlyfxp3yrlx



2 2
+ T2yT3xT1y JzP3z - r3yr2xfyr1x D3y + T3yr2wfyrlxp3xr1y

2
+ T3yT2eP1yT12 Pyt T3yT2uP1yT1T1yfe  —  T3yT2eP1yT12P3aT1y
2
—  TiyT3zP2yT22P3yT1e  +  Tiy T3zD2yT22P3z rlyr2wp217"3yfyrlz
2 2

+ T1yT2:xP22xT3yP3yT 1z + T1y T?pra:T3yfac - T1y " T22P22T3yP3x

—  ToyT1e Py T3 f +  ToyTie Pyt + ToyT 30Ty f
2yT1z"P2yT3x Sy 2yT1x” P2yT32P3y 29T 12P2yT32T1y Jx

2
—  ToyT1zP2yT3zP3eTly +  T3yTlax faTouP3y  — T3yT1z feT2yP32T1y
2 2
—  T3yT1z ToyP2.P3y T+ fyT2x7“1y P12T3z - fyrza:plyﬁﬂly?“gx
2
- p2y7’2x7‘1yfx7‘3y7’1x —  DoyTroxTiy PizT3z T P2yT2:T1yP12T3yT 12
2 2
P2yT2r fyT12°T3y  +  D2yr2zPlyT1aT1yT3z — D2yT22P1yT 12 3y
2 2
T2yT32P1y" 1z fy —  TyT3zP1yT1zP3y  + ToyT3xP1yT12P32 "1y
2 2
= T3yT22T1yPlzP3yT1z — T3yT2zT1y Plzfz + T3yT2xT1y PlzP3x

—  ToyT3eT1yPlafyTle + ToT32T1yP1zDP3yTiz  + 7“3y7"1x7“2yp2xp3x7“1y)>\12
which coincides with the polynomial g; computed by Mathematica. This gives us confidence
in the correctness of these results. We omit the remaining polynomials in the Grobner basis
produced by Maple.

For our purposes, we are not concerned with the values of the y;, but if needed, they can
be calculated. ps can be determined from any of g14, g15, - - - , 919, pt2 can be determined from
any of gag, 921, - - -, g26, and py can be determined from any of go7, gos, - . . , gs2. Observe the
sequence of the determination of the indeterminates and our chosen lexicographic ordering.
As expected, they coincide.

We have proven the following theorem.

Theorem 5.2.1 For f,r1,72,73, p1,p2, p3 € R2, the unique triangle if it exists with vertices
v; = f+N\iri where edge [v1,ve] contains point p1, edge [va, v3] contains point pa, edge [vs, v1]

contains point p3, is given by N\; = n;/d;.
5.2.1 Numerical example

Let
18/100 0 57/80 —1/2

29/100 3/4 —57/80 0
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-1.0 -05

ol
Figure 24: Triangle example

and let

1 0 0
p1 = , P2 = , and p3 =
0 0 1

Substituting these values into the formulas that we have derived for \;, we get

3013 6026 3013

A = - ddg= 222
L7 9175772 7 25657 M98 T 9650

The input and the solution are shown in Figure 24. In the figure, the length of the

vectors r; have been increased for visual purposes.
5.3 Solution of a quadrilateral problem

The quadrilateral problem we wish to solve is similar to our triangle problem. We simply

have one more vector r4. Again, we have the point

P I
fy

and let

ry = ,To = T3 = 4=
Ty T2y T3y T4y

be four vectors in R? whose non-negative cone is all of R2. We are interested in determining

a quadrilateral with vertices

{Uh V2, U3, U4}
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such that vertex v; lies on the open ray
{z €R?: 2z = f+ Ny for \; > 0}

and the line segments
[v1, V2], [va, v3], [vs, va] and [vs, v1]

contain the points

Plx P2z D3z Pix
p1= » b2 = , b3 = , and pg =
Py b2y D3y Pay

respectively. To this end, we again let

Jz Tiz
v = + A
fy Tiy
and similar to the triangle case, we obtain the following non-linear system of eight equations

in eight unknowns.

(f+Mri—ppr = Air1— Aar
(f +Xarg —p2)pz = Aorg — A3r3
(f+A3rs —p3)us = A3rz — \gry

(f+Xara —papa = Aara —im
We compute a Grébner basis in Mathematica using the command

G = GroebnerBasis[{

(fx + lixrix - plx)*mul == llxrlx - 12*r2x,
(fy + lixrly - ply)*mul == 1llxrly - 12*r2y,
(fx + 12*r2x - p2x)*mu2 == 12%r2x - 13*r3x,
(fy + 12*%r2y - p2y)*mu2 == 12*xr2y - 13%r3y,
(fx + 13*%r3x - p3x)*muld == 13*r3x - 14*r4x,
(fy + 13*r3y - p3y)*muld == 13*r3y - ldx*rdy,
(fx + l4xrdx - péx)*mud == ld*rdx - llxrix,
(fy + l4xrdy - pdy)*mud == ld*xrdy - llx*rily},

{mul,mu2,mu3,mu4,14,13,12,11}]
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fy P22T12T1yT2yT 32T 4
fyp2a:p3y7"1x7"1y7"2y7'3x7'4m
fyp2yp4xrlxrlyr2yr3z7"4x
JyP1ePayT 1271y T2y T30 T 42
f 2
yP1lyP2yT12" 72273y T 4x
f 2
yP2yPayT1z"T22T3yT 42
2
P1yP3yP4yT 1z 72273y T4z
2
JyP2uPaxT1y 2273y T4z
2
DP22P3yPaxT1y 72273y T4z
2
fy P3xT12T1yT22T3yT 42
P1yP2yP3xT12T1yT 2273y T 4
fyp2yp4337'1937“1y7’293743y7143:
P1yP3yPaxT12T1yT22T3yT 42
P1aP3yPayT 12T 1yT2273yT 4
f 2
yP2xP3yT 12" T2yT3yT 4z
2
P12P22P32T1y " T2yT3y T4z
fprxp3xT1xT1yT2yr3yr4x
P22P3yPaxT12T1yT2yT3yT 42
f 2
yP1yP3yT1x " T227 32T 4y
2 2
fy PayT12" 2273274y
2
P1yP2yPayT 1z 72273274y
2
fyp3$p4acrly 72273274y
fyp2yp3x7alx7aly7a2x7a3x7ﬂ4y

2
fy PaxT12T1yT22732T 4y



- fyplyp4xrlxr1yr2xr3xr4y +  PlyP2yPazT12T1y7 227327 4y

- fyplzp4yr1xr1yr2:cr3xr4y + fyp3mp4yrlxrlyr2mr31T4y

2
—  DP2yP32PayT12xT1yT22T32T4y — fyp2yp3xrlw T2yT32T4y
2 2
+ fyp2xp3yT1x T2yT3xT4y - fyp2xp4yrla: T2yT3xT4y
2 2
+  DiyD2xPayT1z T2yT3zTdy +  P2yP3aPAyT1x T2y 3274y
2
+  D1zD22PaaT1y T2y 32T 4y - fypla:p3x7“1x741y7ﬂ2y7a3:p7ﬂ4y
+  P1aP2aP3yT1aT1yT2yT32Tdy — PlyP2aPaaT1zT1yT2y 32Ty
+  P1yP32P4xT12T1yT2yT 3274y — PlaP2zPayT1xT1yT 2y 3274y
2
+  D12P32PayT12T1yT2yT32T4y —  PlyP2yP3aT1z 72273y 4y
2 2
- fyp31p4yr1x T2x73yT4y +  D1aP32P4aT1y 72273y 4y
2
= D2xP3xPaxT1y T22xT3yT4y +  D12P2yP32T12T1yT227 3y 4y
+ fyp3xp4xr1zrlyr2xr3yr4y —  DP1aP3xPayT12T1yT2273y T4y
2
+  D2aP32PAyT12T1yT22T3yTdy  —  P2aP3aPayT1a T2yT3yT 4y

—  P1zP2z2P32T12T1yT2yT3y T4y
Having computed A1, we can now use the polynomial g to determine \y. If we do this,
then we get an expression for A with more than 96,000 terms. If we use the polynomial g5,
then we get an expression with more than 70,000 terms. If we solve the following system of

equations

(fe + M7z —piz)itn = Mriz — Aarag

(fy F ATy —pry)pr = ATy — Aaray

then the expression we get for Ay has more than 92,000 terms. Due to space constraints, it
has become infeasible for us to give a closed-form expression for a solution of this problem.

However, given an instance of this problem, we can solve it in practice by computing A
by using the above system of equations with the specific numerical values of the instance.

Then we can compute A3 by solving

(fo + Xarog — Pog)ple = AaTog — Asrss

(fy + Xaroy — pay)pe = Aaray — A3rsy
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and then determine \4 by solving

(fo +A3r3e —P3z)ti3 = A3T3p — MTun

(fy + )\37”3y - p3y)M3 = )\37”3y - >\47‘4y-

We have proven the following theorem.

Theorem 5.3.1 For f,ry,72,73,74, D1, P2, D3, P4 € R2, there is an algorithm that will com-
pute the unique quadrilateral, if it exists, with vertices v; = f+ A\;jr; where the edges [v1, va],

[v2,vs], [vs,v4], and [vyg,v1] contains the points p1, p2, ps, and py respectively.
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CHAPTER VI

COMPUTATIONAL RESULTS ON 2-ROW CUTS

6.1 Closures

Suppose A is an m X n integral matrix and b € Z™. If
P={x>0: Az < b},

then it is well-known that

Pr =conv(PNZ")
is polyhedral. Recall that the Chvatal-Gomory procedure takes a vector u € R™ with u > 0
and produces the inequality

lulAlz < |uTb] (8)

which is valid for Pr. Inequality (8) is said to have a Chvatal-Gomory rank of 1. The higher
rank inequalities are derived recursively in that an inequality with rank & > 2 is derived
using the Chvétal-Gomory procedure on a system containing all inequalities with rank less
than k. If we add to P all possible Chvatal-Gomory inequalities that are obtained directly

from the formulation (i.e. all the rank 1 inequalities), then the resulting set
Pr={x>0:Az <b, [uTAlz < |uTb] for all u > 0}

is called the first Chvdtal closure and was shown to be a polyhedral set by Chvatal [18].

The closure is also sometimes termed elementary. Observe that
PpC P CP.

In the case of the matching polytope, it is known by a famous result of Edmonds that
Pr=Py.
In general, we have that P, C P and so Fischetti and Lodi [31] considered minimizing

cx over P; in order to get a tighter bound on the optimal objective value of the integer
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program

min cx

st. Arx <b
x>0
T integer.

Essentially, they were interested in how practical it is to approximate P; by Pj.

Recall the equivalence between separation and optimization for polyhedra using the
ellipsoid method by Grétschel, Lovasz, and Schrijver [40]. The separation problem here is
difficult. Given an arbitrary = (which we may assume is in P), Eisenbrand [29] showed in

1999 that it is NP-hard to either find a © > 0 with v € R™ such that
\luTAlz > |uTb|

or determine that no such u exists. In 2003, Caprara and Letchford [16] strengthened
Eisenbrand’s result and in addition, showed the strong NP-completeness of separating split
cuts [19], MIR-inequalities [46] and other inequalities.

Fischetti and Lodi deal with this difficulty by formulating the rank 1 Chvatal-Gomory
separation problem as a mixed-integer program and solving this MIP at each iteration using

a solver. Given an x* that needs to be separated, they solve

max olz* — ag

st. aj<ulAjforj=1,...,n
ag>ulb—1+¢
u>0

a; integer for j =0,...,n.

where A; is the j-th column of A and € > 0 is a small fudge factor that prevents o = u7b—1
when u”'b is integral. The objective function is chosen so that the resulting cut is maximally
violated by x*.

In their computational experiment, Fischetti and Lodi found that points can be sep-
arated from the Chvatal closure in practice. For many of the pure-integer instances in

MIPLIB 3.0 and MIPLIB 2003 that they considered, a decent percentage of the integrality
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gap was closed. In addition, Fischetti and Lodi were able to solve the difficult nsrand-ipx
instance by cut preprocessing and may have found a new class of facets of the Asymmetric
Traveling Salesman Problem by applying their separation procedure to a particular TSPLIB
instance and analysis and clique lifting of one of the resulting Chvatal-Gomory cuts.

Fischetti and Lodi originally presented their approach at the 2005 IPCO conference and
following this, a number of other researchers considered other closures for MIP problems.
Bonami, Cornuéjols, Dash, Fischetti and Lodi[12] were subsequently interested in whether
a similar result could be found for the mixed integer case.

The intersection of all Gomory mixed integer cuts with the non-negative orthant is
known as the Gomory mized integer closure. It was shown by Nemhauser and Wolsey [46]
in 1990 that this closure is identical to the split closure. However, Fischetti and Lodi’s
approach cannot be directly applied. The separation problem is NP-hard and does not have
a known MIP formulation. Its solution involves solving a non-linear MIP or a parametric
mixed integer linear program. So instead, Bonami et al. take the LP relaxation of the
problem they want to solve, project it onto the integer variables and then determine Chvatal-
Gomory cuts for the resulting system.

Suppose that the MIP that is desired to be solved is

min cx + fy

st. Az +Cy<b
x>0
T integer
y=>0

where A € Q"™ C e Q™*", ceQ™, f € Q", and b € Q™. Then the LP relaxation is
P(z,y) ={(z,y) e R" xR": Az + Cy < b,z,y >0}
and the integer hull is
Pr(z,y) = conv{(z,y) € P(z,y) : x € Z",z > 0}.
If the extreme rays of the cone

{u e R™ :uC > 0,u >0}
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are ui,...,ux, then the projection of P(x,y) onto the integer variables is

P(z) = {xeR}:Ax+ Cy <bfor some y € R",y > 0}
= {xeRi:ukAxgukbfork:L...,K}

= {zeR}:Ax <b}.

Now a projected Chvdtal-Gomory cut is simply just a Chvatal-Gomory cut obtained from
Azr < 5, x> 0.

Equivalently, a projected Chvatal-Gomory cut can be found by taking
luTAlz < |uTb|

for u > 0 satisfying u” C' > 0. In this case, then the separation problem can be handled by

solving the MIP that Fischetti and Lodi solved with the additional constraint
uTCj Z 0

for all j =1,...,r where Cj is the j-th column of C.

For their computational experiment, Bonami et al. considered the mixed-integer in-
stances from MIPLIB 3.0 and instances of the asymmetric traveling salesman problem with
time windows (TW-ATSP). They argue that projected Chvatal-Gomory cuts would perform
well on mixed-integer problems where the continuous variables have zero coefficient in the
objective function, which accounts for their interest in TW-ATSP. For 41 mixed instances
in MIPLIB 3.0 where dsbmip and noswot are excluded, the average gap closed was around
29%. On some instances, no projected Chvatal-Gomory cut could be found and on oth-
ers, a large percentage of the gap was closed. On the TW-ATSP problems, a substantial
percentage of the integrality gap was closed.

In 2008, Balas and Saxena [7] considered optimizing over the elementary split closure.

Suppose the MIP in question is

min cx
st. Ax >0

x; integer for j € Ny
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where A € Q"> be Q™ and Ny C N = {1,...,n}. The constraints Az > b are assumed

to contain any non-negativity constraints and upper-bound constraints. Then, if
P={xeR": Az > b},

the LP relaxation is

min cx

st. zeP

and the integer hull is

Pr=conv({z:xz; € Z,j € Ni}NP).

Now if 7 € Z™ and 7y € Z where 7; = 0 for j € N\ Ny, then the disjunction
mx <mg V wmx>mo+1

is satisfied by any feasible z. This is known as the split disjunction. If

I, = Pn{zx:mz<m}
I, = Pn{x:mx>my+1}
then
P; C 11 UIls.

An inequality valid for IT; U Tl for some (m,m) € Z™ x Z is called a split cut. Here, a split

cut will arise from the disjunction

Ax

A\

b Ax

V

—Tr > -7 mx > mo+1

v

b

Split cuts that are directly obtainable from the above disjunction are rank 1 or ele-
mentary split cuts. The intersection of all split cuts is a polyhedron called the elementary
split closure, or simply the split closure. When P is a rational polyhedron, Cook, Kannan
and Schrijver [19] showed that its split closure is rational. Recently, Dash, Giinliikk and
Lodi [24] and Vielma [48] have given alternative proofs of this fact. Recall that Caprara

and Letchford [16] have shown the strong NP-completeness of separation for split cuts.
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Many well-known inequalities can be viewed as split cuts. The lift-and-project inequal-
ities [5] by Balas, Ceria and Cornuéjols are split cuts since the “lift-and-project” procedure

applied to a 0 — 1 variable x; can also be derived from the disjunction
xj < 0V Tj = 1.

GMI inequalities, K-cuts, and MIR inequalities and others can also be viewed as split cuts.

If ax > [ is a split cut, then there exist u, ug, v, vg > 0 such that

a = uA-—ugm
= vA+ v
ﬁ = ub-— uemOo

= vb+vo(mo+1)

If at some point in the cutting plane algorithm we have a fractional point Z, then the

separation problem to be solved is

min aZ —

st. uld—uym =«
VA +vom = «
ub — ugmy = 0
vb+vo(mo+1) =
ug +vg =1
mj =0 for j € N\
(m,mp) €Z" X Z
u, ug, v, vg > 0.

The constraint

ug+vg =1

serves as a normalization constraint. If the optimal solution has a non-negative objective,
then we have proven than Z is in the elementary split closure. Otherwise, we have found a

split cut that is violated by Z.
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Observe however that this problem contains products of continuous and integer variables.
By setting the two expressions for a equal to each other, and doing the same for 3, rewriting

the objective function, and using the normalization constraint, the problem can be rewritten

min (vl — upm)z — (ub — ugmo)
st. uA—vA—m=0
—ub+vb+ 1y =ug — 1
mj =0 for j € N\N;
(m,m0) €Z" X Z
u,v >0

0<uy <1

The problem is now a mixed integer linear program with the single parameter ug which
occurs in the right hand side and in the objective function. Caprara and Letchford [16]
also formulated an optimization problem for finding a violated split cut, but the form of
their split cut, the disjunction used and the normalization constraint was slightly different.
However, Dash, Giinliik and Lodi [24] have shown that the set of optimal solutions are
identical.

By defining § to be the surplus in the constraint Az > b from &, and using an algebraic

trick reminiscent of Gaussian elimination, the objective function can be rewritten
(vou + upv)§ — upvo

without 7 and my. If ug is renamed 6, then vg = 1 — 0 and the separation problem can be

rewritten

min  z(0) = (1 — O)us + 6vs —0(1 —0)
st. uA—vA—-m=0
—ub+vb+mpg=uy—1
m; =0 for j € N\,
(m,m0) €Z" X Z
u,v >0

0<6<L1.
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By non-negativity, it follows that z(f) > —6(1 — 0) for all 0 < § < 1. In addition, if
(u,v,m,my) is a solution for the parameter @, then (v, u,—m, —mp — 1) is a solution for the

parameter 1 — @, and so it follows that

min z(#) = min z(1 — 6)

for all 0 < 0 < 1. This symmetry in the problem allows Balas and Saxena to only consider
6 in the interval (0,1/2].

In their computational experiment, Balas and Saxena initially consider

6 € {0,0.05,0.1,0.2,0.3,0.4,0.5}

and as needed, introduce new values by taking the midpoint of two adjacent values. The
parametric mixed integer program constituting the separating problem is not solved to full
optimality. However, any feasible point of the separation problem with negative objective
value yields a violated rank 1 split cut. Balas and Saxena don’t directly take the cut ax > 3
from the solution of the separation problem, and instead use the disjunction and derive a
lift-and-project cut with a different normalization constraint. In addition, they also tighten
the separation problem by adding an integer “rounding” constraint and also impose another
condition derived from a set-covering problem based on the disjunctions found so far.

On the instances in MIPLIB 3.0, strong bounds were obtained in their computational
results. Balas and Saxena closed on average more than 72% of the duality gap on the 41
mixed integer instances in MIPLIB 3.0 with 15 instances having more than 98% of the gap
closed. They also closed about 72% of the gap on average on the 24 pure integer instances.
They also obtained results on a number of network, location and lot-sizing problems.

In 2010, Dash, Giinliikk and Lodi [24] considered the mixed-integer rounding closure of
polyhedral sets. The MIR inequality was first introduced by Nemhauser and Wolsey [45, 46]
in 1988 via the mixed-integer rounding procedure. Wolsey [49] subsequently defined the MIR
inequality differently in his 1998 textbook on integer programming (See also Marchand and
Wolsey [43]). It has been observed by Dash, Giinliikk and Lodi [24] and also by Bonami and

Cornuéjols [11] that the closures from the two different definitions are not identical.
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Dash et al. used the earlier definition in their work. In the earlier definition, the closure is
identical to the Gomory mixed-integer closure and the split closure, and hence the difficulty
of the separation problem follows from Caprara and Letchford [16]. In the later definition,
the closure is in general larger. Dash et al. were motived by the results of Fischetti and
Lodi [31] and the containment of the MIR closure in the first Chvétal closure.

If the mixed integer set is
P={(v,z) e RV x Z1: Cv + Az > b, v,2 > 0},

then from the typical technique of combining variables to get the form of the basic mixed-
integer set, applying the basic mixed-integer inequality and taking the strongest inequality,

and then aggregating constraints using A € R for A > 0, one obtains the MIR inequality
AC) v+ (=A)T(Cv+ Az — b) + min{\A — | NA], 71}z + 7| NA]x > r[\b]
where (-)* = max{0,-} and r = \b — [ A\b]. If P is in equality form, then for
C = (C,—I)and & = (v,Cv+ Az — b),
the MIR inequality becomes

(AC)To + min{ A — | MA|, 71}z + 7| AA]z > r[Ab].

Dash et al. define the notion of a relazed MIR inequality. It is a somewhat technical
definition that we have not seen elsewhere. If A € R™, ¢t € RL, & € R*, a € Z7, ﬁ € R, and

B € 7 satisty

> A (9)
a+a > M (10)
B+3 < N (11)

ct >0 (12)
&p € [0,1] (13)

then

vV
=
+
@
-
Nt

cto+ (& +a)r

132



is valid for the LP relaxation of P as it is a relaxation of the aggregation
ACv + NAz = \b.
Now from (14), the inequality
v+ az + fax > B(B+1)

can be derived and is known as the relaxed MIR inequality using the base inequality (14).
Dash et al. show that a point in the LP relaxation satisfies all MIR inequalities if and
only if all relaxed MIR inequalities are satisfied. If II denotes the set of all (A, c™, &, @, 8, B)
which satisfy the constraints (9)-(13), then let IT be the projection of IT onto the c*, &, &, B, Jé]
variables. The MIR closure of P can then be described as exactly those points (v, z) in the
LP relaxation of P which satisfy the inequality (14) for all
(c*,a,a,p8,p) € 1L

Now it is possible to test whether a point (v*,z*) is in the MIR closure by solving

max —(ctv* + az* + faz*) + BB+ 1)

st. (At a,a, 6,8 ell
which is a non-linear mixed integer program. When the optimal value is positive, the solu-
tion yields a maximally-violated MIR inequality. When the optimal value is non-positive,
the point (v*,z*) is contained in the MIR closure.

In their computational experiment, Dash et al. linearize the objective of the separation
problem using binary variables and solve it approximately at each iteration to approxi-
mately optimize over the MIR closure. They employ some heuristics to help find MIR cuts
separation problem, such as using the RINS heuristic [22] after every 100 nodes. Their re-
sults were more or less comparable to that of Balas and Saxena [7] and used less computing
time.

For 0-1 mixed integer programs, Bonami and Minoux [13] have studied optimizing over
the rank 1 lift-and-project closure. On the 0-1 problems in MIPLIB 3.0 and some multi-
dimensional 0-1 knapsack problems, they found that rank 1 lift-and-project closure was

“computationally promising” compared with mixed-integer Gomory cuts and MIR cuts.
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6.2 Balas-Jeroslow Lifting

One of the problems with the current 2-row theory is the presence of non-basic integer
variables. Hence, it is of interest to strengthen their coefficients as much as possible. In
1980, Balas and Jeroslow [6] gave a method for strengthening the coefficients of integer
variables in pure and mixed-integer programs. The coefficients of the continuous variables
are not changed by the method.
Suppose that y € RY satisfies
yeTandy:ao+Zajtj (15)
JjEJ
where T'C RY,ap € R%,a; € R? and t; > 0 for j € J = {1,...,n}. The conditions (15) are
said to imply

> milag)t; > mo
JjeJ
if this inequality holds for all ¢ € R™ satisfying (15).
Recall from geometry that the Minkowski sum A + B of two non-empty sets A and B

in Euclidean space is defined to be
A+B={a+b:ac Abec B}.

From algebra, a set with an associative, closed operation and an identity element with
respect to the operation is called a monoid. If M is a set of vectors and forms a monoid,
then 0 € M and for any u,v € M, we have u +v € M. In addition, we have that
M+ M=M.
Suppose J is the disjoint union of J; and Jo = J\J; where ¢; is integer constrained for

j € Ji1 C J. In addition, suppose that for some monoid M, T'+ M can replace T in (15).
Under these conditions, the inequality can be strengthened. Suppose m; € M for j € Ji.
Since t; is a non-negative integer for j € Ji, then

Z mjit; € M

Jjen

and so

y+ > myt;€ (T+M)+M=T+M.
jeN

134



Now

Y+ Z mjt; = ag + Z(Qj +mj)t; + Z a;t;

JENI JjeN J€J2

and so

Z 7rj(aj + m]-)tj + Z wj(aj)tj > 7.

Jj€J1 JEJ2

Since the m; € M for j € J; were arbitrary, this is the straightforward proof of the

following theorem.

Theorem 6.2.1 (Balas and Jeroslow, 1979) If y € T and y = ag + >_;cya5t; for T C
R% a9 € RY,a; € R? and t; > 0 for j € J = {1,...,n} imply >, ;m;(a;)t; > mo, then
adding the condition that t; is integral for j € J1 C J implies

jgj:l {nig]fw mj(a; + m)} tj +j;]2 mj(aj)t; > mo.

By letting ¢ = 1 and T and M be the set of integers in the theorem, Gomory’s mixed-

integer cut can be derived although we do not get into the derivation here. Now consider

the following disjunctive program

A't ab

v

V

o) t > 0

where A® has dimension 7; X n and a) € R™. The jth column of A is denoted by a;'-.
Without loss of generality, suppose that for each ¢ € @), there exists some ¢t > 0 such

that At > a}. In general, the convex hull of the union of polyhedra need not be closed, and

hence is not necessarily a polyhedral set. The valid inequalities for disjunctions of polyhedra

are easily characterized. The following theorem was shown by Balas in 1975 [4].

Theorem 6.2.2 If {z € R": A't > a}),t > 0} # 0 for all i € Q, then

Z ajtj > (7))

JjeJ

is valid for the convexr hull of

U {z e R™: A’ > af,t > 0}
ieQ
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if and only if there exists ° > 0 for i € Q such that

Q;j > sup Hiaé- for 3 € J and ap < inf Giaf).
i€Q 1€Q

6.3 Prior experiments

In 2008, Espinoza performed a computational study of multi-row cuts that appeared in the
IPCO conference [30]. Because a characterization of maximal lattice-free convex bodies
is known only in two dimensions, Espinoza considered three families in his computational

experiments. The first family 7'1,, is simply a non-unit simplex
Tln:{xER”:xZO,Zwign}.

In R?, Ty is the familiar Type 1 triangle with vertices (0,0),(2,0),(0,2) and with the
points (0,1),(1,0),(1,1) being in the relative interior of the edges. This is a facet as
long as f is in the interior. In R3, T3 is a sort of “Type 1 tetrahedron” with vertices
(0,0,0),(3,0,0),(0,3,0), and (0,0, 3).

The second family G, is the translated hypercube
Gn=(1/2,1/2,...,1/2) + {z : 672 <n/2 for § € {—1,1}"}.
In R?, G5 is the square with vertices
x1 = (1/2,3/2), 29 = (3/2,1/2), 23 = (1/2,—-1/2),24 = (—1/2,1/2)

and the points
Yy = (17 1)7y2 = (170)7?43 = (070)7214 = (07 1)

in the relative interior of the edges. Now observe that we have

lyi — il t fori=1,3

llyi —zimll 1/t fori=24

for t = 1, and hence the ratio condition fails to be satisfied. Despite this quadrilateral
failing to be a facet, a slight perturbation of it, say by tilting one edge around its integral

point, results in a facet. In R3, G3 is a regular octahedron.
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The third and final family considered is

n j—1
T2, = {meZ SQ”—LJZ:ZEZ' <z forjzl,...,n}
i=1 i=1
which has as its vertices {v;,}}Z] Where
0 ifi <k
(Ukn)i =1q 2F1 -2 ifi=k
271 —27) ifi>k
On the instances from MIPLIB 3.0, MIPLIB 2003 and the literature that Espinoza
considered, the improvements in the LP bound at the root node were not dramatic when
found. Another computational result using multi-row cuts is the 2010 TPCO paper by
Dey, Lodi, Tramontani and Wolsey [25]. They gave a heuristic for generating lattice-free
Type 2 triangles and ran it on random multi-dimensional knapsack instances generated
using software from A. Atamturk.
Given three vectors 71,772 ri3 whose positive cone is R?, the idea of their heuristic is
to first construct a facet
Qi Yj + QY5 > 1

of the convex hull of the set
{(z,y) € Z* x R : z = r/hy;, +r'2y;,}

where 791,792 € Q2. The line segment between the points f + 791 /ay, and f + 772 /a, is
checked to see that it contains at least two integer points by solving some subproblems
and using an iterative process. Then the third continuous variable is lifted to obtain the
inequality
G Yjr + Qg Ys + QGaYs > 1

where either the line segment between f +77! /a;, and f +773 /aj, or the other line segment
between f + 172/, and f + 773/, contains an integral point. Observe that the resulting
inequality does not need to be a facet since there is no way to ensure that both line segments
contain an integral point. (The triangle heuristic that we derived earlier in Chapter 4 using

Harvey’s algorithm also suffers from this exact same difficulty.)

137



Although Dey, Lodi, Tramontani and Wolsey only considered this particular class of
two-row cut, they performed a very detailed and in-depth study of its performance. In lieu
of the standard MIPLIB benchmarks, they constructed sets of random multi-dimensional
knapsack instances designed to elicit answers to questions about the effectiveness of this
class of cut. In one set called the A set, all of the basic variables are free and there is a
small number of non-basic variables which are non-negative and continuous. In another set
called the B set, the setup is the same as in A except that there are additional non-basic
variables which are non-negative and integer constrained. The final set called the C' set is
the same as the B set except that the objective coefficients of the continuous variables are
divided by 100 in order to increase the significance of the integer variables.

Because the two-row model assumes that the two integer basic variables are free and
the non-basic variables are non-negative, Dey, Lodi, Tramontani and Wolsey also added
bounds to some of the instances in the sets B and C' to try to discover limitations of the
model. They compared the integrality gap closed by one round of GMICs and one round of
their heuristic triangles and considered a number of interesting questions about their cuts.
They observed that important non-basic integer variables result in poorer performance, but
otherwise they essentially found that there is still a lot of work to do.

The final computational result using multi-row cuts that we are aware of is by Basu,
Bonami, Cornuéjols and Margot [8] which is to appear in INFORMS Journal on Computing.
In their experiment, they considered two rows from the tableau where one of the basic integer
variables is integral and the other is fractional and then derived Type 1 and Type 2 triangle
cuts. Using the non-negativity of the basic variable that is integer-valued and the integrality
of some of the non-basic variables, they also derived expressions to strengthen their cuts.
Their computational results showed that their two-row cuts closed less of the gap than GMI

cuts.
6.4 Facets of the polyhedron R¢(ry,...,ry)

Suppose that By is a maximal lattice-free triangle or a maximal lattice-free quadrilateral

and that its vertices are x1,...,x,. We have h = 3 in the triangle case and h = 4 in
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the quadrilateral case. Suppose further that the vertices are ordered, say clockwise on
the boundary of B,. The corner rays of By, are defined to be the rays r; = z; — f for
j=1,...,h. Observe that f +r; is on 0By and so ¢(r;) =1 for j =1,..., h.

Suppose that y; is an integral point that is on the interior of the edge between x; and
Ziy1, where xp, 11 is considered to be z1. So we have a1+ (1—a)xs = y; for some 0 < o < 1.
Similarly, for some 3, with 0 < 3, < 1, we can obtain ys and y3 as a convex combination
of the appropriate x;, and in the quadrilateral case, we can obtain y4 for some 0 < § < 1.

Now let X be the 2 x h matrix where the i-th column is the vector x;, and let Y be the
2 x h matrix where the i-th column is the vector y;. If S is the h x h matrix where the i-th
column gives the convex combination yielding y; from z; and x;41, then we have Y = XS

where

in the triangle case and

in the quadrilateral case. Now let X and Y denote the matrices X and Y respectively with
a row of 1s added to the bottom. These matrices satisfy Y = X - S. If N(A) denotes the
nullspace of a matrix A and C(A) denotes the column space of A, then if A is an m x n
matrix and B is an n X p matrix, recall from linear algebra that the rank of their product

can be determined and is
rank(AB) = rank(B) — dim(N(A4) N C(B)).

In addition, if the first matrix has full column rank, then its nullspace has zero dimension
and rank(AB) = rank(B). For a triangle B, the matrices X,Y have rank 3 and since
Y = XS, S has rank 3 and the columns of S must be affinely independent. The columns

of S satisfy > 1)(r;)s; > 1 with equality and so we have a facet of R¢(ry,r2,r3).
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The quadrilateral case is slightly more complicated than the triangle case. In this case,
both the matrices X and Y have rank 3. Since X has 4 columns, N(X) has dimension 1

and is a line through the origin. We have
rank(Y) = rank(XS) = rank(S) — dim(N(X) N C(S))

and we want dim(N(X) N C(S)) = 1 and this happens if and only if N(X) C C(S)). By a
theorem of Lovész, y1,y2,ys and y4 are the vertices of a parallelogram (having area 1) and

so there exists ¢, dy,ds € R? such that

(y1,Y2,Y3,94) = (c+ dy,c+ do,c — dy,c — da).

Hence, if u = (1,—1,1,—1), then Yu = 0 and we have that XSu = 0. If we solve this
system, we get that « = v, =1—~, and § = 1 — v. In Mathematica, this can be done

using

S = {{alpha, 0, 0, 1 - delta}, {1 - alpha, beta, 0, 0},
{0, 1 - beta, gamma, 0}, {0, 0, 1 - gamma, deltal}};

Solve[Thread[S.{1, -1, 1, -1} == {0, 0, 0, 0}]]

The solution of the linear system is precisely the quadrilateral ratio condition.

In the other case where Su # 0, we have that N(X) is the line through the origin
with direction Su. Now Su is necessarily in C(S) and so N(X) C C(S) and we have
rank(S) = 4. The columns of S are affinely independent points that satisfy »_ 1(r;)s; = 1
and hence )1 (r;)s; > 1 is a facet of Ry(r1,72,73,74).

Now that we have covered the “base case” to sort of speak, we can discuss a certain
dimension reduction technique. If f,r1,7o,...,r; € Q% and By, is either a split, a maximal
lattice-free triangle or maximal lattice-free quadrilateral, Cornuéjols and Margot [21] have
a characterization of the facets of R¢(r1,...,7) that can algorithmically determine if By,
is a facet or not. Their algorithm is called the Reduction Algorithm. The first step in their

algorithm is to start from the point f and shoot rays in the direction of ri,79,..., 7, and

find where they strike the boundary of B,.
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Let p; be the intersection of the ray {f 4+ Ar; : A > 0} with 0By. pj; is called the
boundary point for r; and the set P = {p1,...,p;} are the boundary points. A boundary
point p; € P is said to be active if there exists \; > 0 for i = 1,...,k where Y \; =1
and A; > 0 such that ) A;p; is an integral point on dB,. An active point p is said to be
uniquely active if there is only one convex combination of points in P with p having positive

coefficient yielding an integral point.

Algorithm 4 The Reduction Algorithm
1: Find the boundary points P = {p1,...,pi} for ri,re, ... rg.
2: while P contains an active point p that can be expressed as a convex combination of
the points in P\{p} do
Delete p from P.
end while
Remove the uniquely active points from P.
if there are exactly two active points in P then
Remove both of them from P.
end if

The reduction algorithm is shown in Algorithm 4. The algorithm starts with a 1 and
a set of vectors {r1,...,r;} and steadily removes points r; to reduce the dimension of the
problem. When applied to a triangle or quadrilateral, no edge will have more than two
active points on it at the end of the algorithm. In addition, every active point at the end
of the algorithm will need to be present in two or more convex combinations since uniquely
active points are removed. The last step ensures that if there are active points left at the
end of the algorithm, there are more than 2 of them.

When the reduction algorithm is applied to some triangle or quadrilateral and P is the
empty set at the end of the algorithm, it is said that the ray condition holds for the triangle
or quadrilateral. In the case of splits, the ray condition is said to hold if P is the empty
set at the end of the algorithm or consists of points {p1, q1,p2, g2} such that p; and ¢ lie
on one of the boundary lines of the split and p2, g2 lie on the other boundary line such that
there are at least two integer points on the boundary lines between both pair of points.

The steps of the reduction algorithm may not at first glance seem to make much sense,
but in fact, they actually do make sense. We now briefly describe the reasoning behind the

steps of the algorithm. Suppose that {si,s2,...,s:} is a set of affinely independent points
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satisfying both Y 4(rj)s; > 1 with equality and x = f + Y 7;s; € Z?. In addition, assume
further that the choice is such that ¢ is as large as possible.

Let S be the matrix [s; s2 --- s;] with dimension k x ¢, let R be the matrix [rq 7o -+ 7]
with dimension 2xk, and let D be the diagonal matrix with ¢(r1), ..., 1(rg) on the diagonal.
Suppose that S is defined to be D - S and R is defined to be R- D~!. The affine dimension
of the column space of S is the same as that of the column space of S. Now, if 5 is a column
vector of S, we have 5 > 0 and

5= ¥(rj)s; = 1.

k
=1 j=1

J
If 7 is a column vector of R, then observe by the scaling that ¢(7) = 1 and so f + 7 is
on 0By. This means that the boundary point for r is exactly f + 7. Summing over the
columns, we have
k k k k k

Yopisi=Y (F+T)s = F D5 | D misi=F+ D ris

j=1 j=1 j=1 j=1 j=1
which is integral and necessarily an integral point on the boundary of By,. Hence, 5 yields a
convex combination of the boundary points resulting in an integral point on the boundary
of By.

Suppose that the reduction algorithm removes from P an active point which can be
labeled pp without any loss of generality. Then, it is immediate that ¢ is a facet of
R¢(r1,...,r;) if & = 1 and Cornuéjols and Margot show when k > 1, ¢ is a face of
R¢(r1,...,r,) with dimension w if and only if ¢ is a face of R¢(r1,...,74—1) with dimen-
sion w — 1. In the £ > 1 case, the argument can actually be viewed in terms of elementary
column operations on the matrix S. The boundary point being active corresponds to being
able to find a non-zero entry in the corresponding row of S.

Cornuéjols and Margot then similarly justify the removal of uniquely active points in
the algorithm. That is, if p; is a uniquely active point removed by the algorithm, then
for k = 1, v is a facet of Ry(ry,...,r;) and when k > 1, ¢ is a face of Ry(r1,...,7%)

with dimension w if and only if ¢ is a face of R¢(r1,...,r,—1) with dimension w — 1. In

addition, the final step of the Reduction Algorithm is justified since if p; and ps are active
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points removed at the end, ¢ is a facet of Ry(r1,72). By a straightforward contradiction
argument, Cornuéjols and Margot have shown that when the reduction algorithm is applied
to a polytope By, the active points in P at the end of the algorithm must be either the
vertices of By, or the empty set.

Given some 1, the idea of the reduction algorithm is to just recursively keep reducing
the dimension knowing that the facetness of ¢ cannot be lost if points r; are removed
appropriately. When points are removed by the algorithm, the dimension of the problem
and the affine dimension of the column space of the modified matrix S are reduced equally.
If at the end of the algorithm there is an inactive boundary point, then we know that
is not a facet of R¢(ry,...,r;). This corresponds to an all-zero row of the matrix that is
obtained from S. Suppose that P’ = {p;,, ..., i, } is the set of boundary points remaining
at the end of the reduction algorithm. In the case of triangles or quadrilaterals, we have
that ¢ is a facet of Ry(r1,...,7t) if and only if P/ = () or all the points in P’ are active and
1 is a facet of Ry¢(ry,,...,7i,,). In the latter case where all the points in P’ are active, they
must be the vertices of By, and we are then reduced to the earlier “base case.”

We can now state the following theorem of Cornuéjols and Margot [21] which describes
the facets of R¢(r1,...,7). This description is more precise than what was described by

Andersen, Louveaux, Weismantel and Wolsey [1].

Theorem 6.4.1 The facets of Ry(r1,...,7%) consist of

e split inequalities parallel to the line L = {f+ Ar; : A € R} for some j =1,...,k where

LNZ?=0; or where By, satisfies the ray condition for split inequalities

e triangle inequalities such that the vertices of the triangle By, lie on the rays {f + Arj, :

A > 0} for some ji, jo, j3; or where By, satisfies the ray condition

o quadrilateral inequalities such that the vertices of the quadrilateral By, lie on the rays

{f+Arj, : X > 0} for some j1,j2,j3, ja and satisfies the quadrilateral ratio condition

When the point f lies on the boundary of clBy,, By is considered to be degenerate. The

point f may be on the interior of one of the edges of clBy, or f may be a vertex of clBy.
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For splits, degeneracy cannot occur at a vertex, but for triangles and quadrilaterals, we
can have both vertex and edge degeneracy. In an implementation, degenerate cases are not
desirable since the corresponding 1) is then not finite everywhere. When it comes to facets
of R¢(r1,...,r;) however, the degenerate cases are not needed as proved by Cornuéjols
and Margot [21]. In the case of two dimensions, the proof is relatively straightforward
and given a degenerate minimal function (which necessarily falls into one of five possible
cases), they find a nondegenerate minimal valid function that is equivalent in the direc-
tions ry,...,r,. Zambelli [50] has shown that it is also true that for the general case that
degenerate inequalities are not needed to define the facets of R¢(r1,...,7x).

For Ry, which is the Gomory and Johnson relaxation of R¢(r1, ..., 7) yielding a problem
with two integer variables and two constraints having infinite dimension, Cornuéjols and
Margot [21] have shown that some degeneracy is required. All degenerate split inequalities
and some degenerate triangle inequalities are facets. Since we concentrate on R¢(r1,...,7%),

we won'’t discuss Ry any further.
6.5 Our experiments

For a cutting plane algorithm using a class of inequalities, an important question is the
ease of generating the inequalities. As Caprara and Letchford showed for many classes
of inequalities, given a fractional solution of the LP relaxation, it can be very difficult to
compute a violated inequality.

Despite the theoretical difficulties, Fischetti and Lodi showed that the separation prob-
lem for the first Chvatal closure could be solved in practice. Their results then led to a
number of subsequent results by a number of researchers. Motivated by the wealth of results
on various closures, our desire was to optimize over the triangle and quadrilateral closures.
However, for triangle and quadrilateral cuts, the complexity of separation is not known and
there are no published results. Unfortunately, we were unable to formulate an optimization
problem to model either triangle or quadrilateral separation. This is in sharp contrast to

the relative ease of formulating a model for separating split cuts.
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In fact, given a polyhedron, it is not even known whether the triangle closure or quadri-
lateral closure is even polyhedral. Recall that Basu et al. [9] avoided this issue in their
study of how well the split, triangle and quadrilateral cuts approximate the integer hull
by generalizing Goemans’ theorem so that the relaxation of the integer hull that is being
considered need not be polyhedral.

Hence, our approach is somewhat ad-hoc and we are not able to perform a true sepa-
ration. It would not even be appropriate to call our method a separation heuristic. Using
the formulas that we derived in Chapter 5, we performed a computational experiment to
study the effectiveness of two row cuts derived from lattice-free triangles and quadrilaterals
whose vertices lie on non-basic rays emanating from the fractional point. We also considered
triangles computed by the heuristic that we derived in Chapter 4. Recall that the heuristic
finds triangles that are “close” to being Type 2 and we explained in that chapter why the
theory suggests that Type 2 triangles are of interest.

The code was implemented in C and C++ and we used IBM ILOG CPLEX 12.0 as our
solver. We ran our code on Linux 2.6.18 machines with 2.4 GHz Intel Core 2 Quad Q6600
CPUs with 8 GB of RAM. Given the complexity of the formulas derived in Chapter 5,
the computations were performed in exact arithmetic using the GNU Multiple Precision
arithmetic library whenever possible.

For an instance, let 2{;; denote the value of the optimal solution. If the optimal solution
is unknown, we let it denote the value of the best known solution. Let 2], denote the value
of the LP relaxation and let 27 p, . ;, denote the value of the LP relaxation with the cuts
added. Then the integrality gap closed is defined to be

100 - ZLPteuts ~ LP
2UB ~ ALP
and is the primary measure of performance for our experiments.

In the exact triangle and exact quadrilateral cuts that we derive for the computational
experiment, we consider integer points whose L; distance from f is at most § = 10 and
0 = 100. Without some constraint on the considered integer points, the number of generated

triangles on some instances can be truly out of control.
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Algorithm 5 Computational Experiment for Exact Cuts

1: Solve the LP relaxation of the input mixed-integer program.
2: while the 4-hour time limit hasn’t been reached do

3 Generate a round of MIR inequalities.

4:  Generate a round of two-row inequalities.

5. Add cuts and re-optimize.

6: end while

The setup for our experiment with exact triangle and exact quadrilateral cuts is shown
in Algorithm 5. We setup the experiment in this way because it would seem reasonable for
somebody solving a problem in practice to consider the marginal benefit of two-row cuts for
their problem. We performed our experiment with the heuristic triangles differently so that
our experimental setup was more similar to that of Dey, Lodi, Tramontani and Wolsey [25].
For these cuts, we considered the gap closed by one round of heuristic triangles with the
gap closed by one round of MIRs. We performed the computations with MIRs first and
with the number of MIRs generated limited to approximately 500. We then considered the
heuristic triangles with the number of triangles approximately limited by the number of
MIRs generated for the instance.

The non-basic integer variables are lifted using approximate Balas-Jeroslow lifting with
a boxsize of 5. In the experiments, we don’t report the separation time simply because
it is significantly more expensive to compute these two-row cuts than Gomory cuts. The
heuristic triangles, the exact triangles and exact quadrilaterals are all relatively expensive
to compute. However, our goal in the first place was not to consider running time but rather
the strength of the cuts.

The performance of the exact triangle cuts is shown in Tables 2 and 5. The performance
of the exact quadrilateral cuts is shown in Tables 3 and 6. The performance of the heuristic
triangle cuts is shown in Tables 4 and 7. The computational results were less than what we
had hoped for given the expense and effort expended to compute the cuts. The performance
of the quadrilateral cuts was especially poor. We separated out the pure-integer instances
of the MIPLIB 3.0 library from the mixed-integer instances so that the poorer performance
on the pure-integer instances is more apparent.

For exact triangles and quadrilaterals, the situation is complicated due to our model.
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Table 2: Performance of exact triangle cuts on mixed integer instances.

6=10 6 =100
Instance Rows | Cols | Int| 0/1| Cuts Rnds Gap | Cuts Rnds Gap
10teams 230 2025 | 1800 | ALL 0 0 0 0 0 0
arkiO01 1048 1388 | 538 | 415 22 0 0 31 0 0
bell3a 123 133 71 39 183 2 48.7 182 1 45.59
bellb 91 104 58 30 300 5 2211 321 3 23.86
blend2 274 353 264 231 | 1335 3 11.76 | 1417 3 16.18
dano3mip 3202 | 13873 | 552 | ALL 0 0 0 0 0 0
danoint 664 521 56 | ALL 0 0 0 0 0 0
demulti 290 548 75 | ALL 505 1 34.64 502 1 34.76
dsbmip 1182 1886 192 160 | 1484 3 — 504 1 —
egout 98 141 55 | ALL 945 7 72.01 936 5 7251
fiber 363 1298 | 1254 | ALL 596 1 53.7 503 1 52.29
fixnet6 478 878 | 378 | ALL 486 1 7.88 494 1 7.88
flugpl 18 18 11 0 12 1 9.61 16 1 10.88
gen 780 870 150 144 598 1 42.39 658 1 42.34
gesa2 1392 1224 408 240 238 1 13.77 439 2 1717
gesa2_o 1248 1224 720 384 868 1 27.77 | 1018 2 3205
gesa3 1368 1152 384 216 | 1113 2 14.57 | 1008 2 15.25
gesa3_o 1224 1152 672 336 601 1 20.26 724 1 17.81
khb05250 101 1350 24 | ALL 172 1 77.86 172 1 77.86
marksharel 6 62 50 | ALL 0 0 0 0 0 0
markshare2 7 74 60 | ALL 0 0 0 0 0 0
mas74 13 151 150 | ALL 0 0 0 0 0 0
mas76 12 151 150 | ALL 0 0 0 0 0 0
misc03 96 160 159 | ALL 718 2 10.69 703 1 4.31
misc06 820 1808 112 | ALL 683 4 63.14 | 1110 5 64.01
misc07 212 260 | 259 | ALL 778 1 0.72 774 1 0.72
mkc 3411 5325 | 5323 | ALL 915 1 0.07 939 1 0.07
mod011 4480 | 10958 96 | ALL 140 1 17.41 143 1 17.43
modglob 291 422 98 | ALL 324 1 17.65 297 1 17.89
noswot 182 128 100 75 | 1107 128 — 809 33 —
pkl 45 86 55 | ALL 0 0 0 0 0 0
pp08a 136 240 64 | ALL 343 1 53.07 366 1 53.07
pp08aCUTS 246 240 64 | ALL 124 0 0 121 0 0
qiu 1192 840 48 | ALL 5 0 0 7 0 0
qnetl 503 1541 | 1417 | 1288 516 1 8.31 501 1 14.09
qnetl_o 456 1541 | 1417 | 1288 536 1 18.96 508 1 18.7
rentacar 6803 | 9557 55 | ALL 117 1 2.96 130 1 296
rgn 24 180 100 | ALL 140 1 0 140 1 0
rout 291 556 | 315 | 300 71 0 0 76 0 0
set1lch 492 712 240 | ALL | 1143 2 61.95 | 1054 2 60.85
swath 884 | 6805 | 6724 | ALL 176 0 0 176 0 0
vpml 234 378 168 | ALL 359 6 9.61 489 7 10.04
vpm2 234 378 168 | ALL 275 2 16.06 317 2 16.06
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Table 3: Performance of exact quadrilateral cuts on mixed integer instances.

=10 6 =100
Instance Rows | Cols Int | 0/1| Cuts Rnds Gap | Cuts Rnds Gap
10teams 230 | 2025 | 1800 | ALL | 218 0 00| 124 0 0.0
arki001 1048 | 1383 | 538 | 415 0 0 0.0 0 0 0.0
bell3a 123 133 71 39 7 0 0.0 16 0 0.0
bells 91 104 58 30 7 0 0.0 13 0 0.0
blend2 274 353 | 264 | 231 0 0 0.0 0 0 0.0
dano3mip 3202 | 13873 | 552 | ALL 0 0 0.0 0 0 0.0
danoint 664 521 56 | ALL | 139 0 0.0 78 0 0.0
demulti 290 548 75 | ALL 25 0 0.0 21 0 0.0
dsbmip 1182 | 1886 | 192 | 160 0 0 — 1 0 —
egout 98 141 55 | ALL 4 1 559 7 1 559
fiber 363 | 1298 | 1254 | ALL 0 0 0.0 0 0 0.0
fixnet6 478 878 | 378 | ALL 0 0 0.0 0 0 0.0
flugpl 18 18 11 0| 285 7 194 52 1 126
gen 780 870 | 150 | 144 21 0 0.0 18 0 0.0
gesa2 1392 | 1224 | 408 | 240 31 0 0.0 27 0 0.0
gesa2_0 1248 | 1224 | 720 | 384 30 0 0.0 13 0 0.0
gesa3 1368 | 1152 | 384 | 216 3 0 0.0 3 0 0.0
gesa3_o 1224 | 1152 | 672 | 336 2 0 0.0 2 0 0.0
khb05250 101 | 1350 24 | ALL 0 0 0.0 0 0 0.0
marksharel 6 62 50 | ALL | 1738 87 0.0| 573 20 0.0
markshare2 7 74 60 | ALL | 1608 56 0.0 | 515 13 0.0
mas74 13 151 | 150 | ALL 68 1 74 33 0 0.0
mas76 12 151 | 150 | ALL | 178 1 72 25 0 0.0
misc03 96 160 | 159 | ALL | 294 0 00| 294 0 0.0
misc06 820 | 1808 | 112 | ALL 6 0 0.0 6 0 0.0
misc07 212 260 | 259 | ALL 0 0 0.0 0 0 0.0
mkc 3411 | 5325 | 5323 | ALL 0 0 0.0 0 0 0.0
mod011 4480 | 10958 96 | ALL 0 0 0.0 0 0 0.0
modglob 291 422 98 | ALL 20 0 00 26 0 0.0
noswot 182 128 | 100 75 | 142 0 — 140 0 —
pkl 45 86 55 | ALL | 753 6 00| 122 1 00
pp08a 136 240 64 | ALL 80 1 539 89 1 539
pp08aCUTS 246 240 64 | ALL 2 0 0.0 3 0 0.0
qiu 1192 840 48 | ALL | 970 0 0.0] 300 0 0.0
qnetl 503 | 1541 | 1417 | 1288 14 0 00 80 0 0.0
qnetl_o 456 | 1541 | 1417 | 1288 0 0 0.0 0 0 0.0
rentacar 6803 | 9557 55 | ALL 0 0 0.0 0 0 0.0
rgn 24 180 | 100 | ALL | 132 1 56| 139 1 56
rout 291 556 | 315 | 300 5 0 0.0 6 0 0.0
set1lch 492 712 | 240 | ALL 20 0 0.0 18 0 0.0
swath 884 | 6805 | 6724 | ALL 0 0 0.0 0 0 0.0
vpml 234 378 | 168 | ALL 36 4 11.6 34 4 11.6
vpm2 234 378 | 168 | ALL 12 0 0.0 13 0 0.0
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Table 4: Performance of heuristic triangle cuts on mixed integer instances.

Instance Rows | Cols Int | 0/1 | MIRs Gap | As Gap
10teams 230 | 2025 | 1800 | ALL 500 57.1 500 0.0
arki001 1048 1388 538 | 415 507 41.4 | 251 0.0
bell3a 123 133 71 39 178 604 4 1.1
bell5 91 104 58 30 131 145 29 2.5
blend2 274 353 264 231 49 164 | 49 5.3
dano3mip 3202 | 13873 | 552 | ALL 500 0.1 0 0.0
danoint 664 521 56 | ALL 506 1.7 102 0.0
demulti 290 548 75 | ALL 219 43.8 | 221 21.1
dsbmip 1182 1886 192 160 219 — 22 —
egout 98 141 55 | ALL 120 55.9 0 0.0
fiber 363 1298 | 1254 | ALL 410 67.2 | 410 329
fixnet6 478 878 | 378 | ALL 180 10.9 0 0.0
flugpl 18 18 11 0 34 11.7| 36 7.6
gen 780 870 150 144 389 62.6 | 390 26.4
gesa2 1392 | 1224 | 408 | 240 508 30.5| 111 9.8
gesa2_o 1248 1224 720 336 505 22.6 | 252 14.8
gesad 1368 1152 384 216 505 37.9 | 505 6.0
gesa3_o 1224 | 1152 | 672 | 336 502 33.4 (363 0.0
khb05250 101 | 1350 24 | ALL 57 74.9 0 0.0
misc03 96 160 159 | ALL 95 7.2 98 0.0
misc06 820 | 1808 | 112 | ALL 67 29.4 | 67 13.3
misc07 212 260 259 | ALL 217 0.7 | 218 0.7
mod011 4480 | 10958 96 | ALL 48 17.1 48 12.1
modglob 291 422 98 | ALL 152 15.9 | 105 13.3
noswot 182 128 100 75 249 — | 128 —
pkl 45 86 55 | ALL 150 0.0 | 153 0.0
pp08a 136 240 64 | ALL 263 529 | 105 13.7
pp08aCUTS 246 240 64 | ALL 152 30.4 | 265 8.7
qiu 1192 840 48 | ALL 108 2.0 | 110 0.8
qnetl 503 | 1541 | 1417 | 1288 482 15.8 | 49 0.0
qnetl_o 456 1541 | 1417 | 1288 96 30.8 96 15.4
rentacar 6803 | 9557 55 | ALL 51 26.9 3 0.0
rgn 24 180 100 | ALL 72 4.5 72 0.0
rout 291 556 | 315 | 300 252 031|252 0.2
setlch 492 712 240 | ALL 482 38.1 | 435 43.1
vpml 234 378 | 168 | ALL 38 95| 29 04
vpm?2 234 378 | 168 | ALL 89 126 | 89 6.7
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Table 5: Performance of exact triangle cuts on pure integer instances.

6=10 6 =100
Instance | Rows Cols Int | 0/1| Cuts Rnds Gap| Cuts Rnds Gap
air03 124 | 10757 | 10757 | ALL 0 0 0 0 0 0
air04 823 | 8904 | 8904 | ALL 430 0 0 430 0 0
air05 426 7195 7195 | ALL 212 0 0 221 0 0
cap6000 | 2176 | 6000 | 6000 | ALL 44 0 0 59 0 0
enigma 21 100 100 | ALL 635 8 — 411 5 —
fast0507 507 | 63009 | 63009 | ALL 32 0 0 28 0 0
gt2 29 188 188 24 92 1 32.23 103 1 35.46
harp2 112 | 2993 | 2993 | ALL 71 0 0 107 0 0
1152lav 97 | 1989 | 1989 | ALL 37 0 0 37 0 0
Iseu 28 89 89 | ALL 50 2 44.66 60 3 43.45
mitre 2054 | 10724 | 10724 | ALL 106 0 0 128 0 0
mod008 6 319 319 | ALL 0 0 0 1 0 0
mod010 146 | 2655 | 2655 | ALL 501 1 100 501 1 100
nw04 36 | 87482 | 87482 | ALL 12 0 0 12 0 0
p0033 16 33 33 | ALL 35 3 11.07 36 3 11.07
p0201 133 201 201 | ALL 227 1 21.02 227 1 21.02
p0282 241 282 282 | ALL 273 1 3.96 364 1 4.2
p0548 176 548 548 | ALL 127 1 0.82 168 1 097
p2756 755 2756 2756 | ALL 27 3 0.16 39 4 0.16
seymour | 4944 1372 1372 | ALL 220 0 0 221 0 0
stein27 118 27 27 | ALL | 27953 128 0| 16131 73 0
stein4h 331 45 45 | ALL | 45112 90 0| 23831 48 0

Table 6: Performance of exact quadrilateral cuts on pure integer instances.

6=10 6 =100
Instance | Rows Cols Int | 0/1 | Cuts Rnds Gap | Cuts Rnds Gap
air03 124 | 10757 | 10757 | ALL 0 0 0.0 0 0 0.0
air04 823 | 8904 | 8904 | ALL 1 0 0.0 2 0 0.0
air05 426 | 7195 | 7195 | ALL 15 0 0.0 12 0 0.0
cap6000 | 2176 | 6000 | 6000 | ALL 0 0 0.0 0 0 0.0
enigma 21 100 100 | ALL | 198 2 - 164 1 —
fast0507 507 | 63009 | 63009 | ALL 3 0 0.0 3 0 0.0
gt2 29 188 188 24 25 1 68.2 13 1 68.2
harp2 112 | 2993 | 2993 | ALL 0 0 0.0 1 0 0.0
1152lav 97 | 1989 | 1989 | ALL | 161 0 0.0 176 0 0.0
Iseu 28 89 89 | ALL 67 1 504 67 1 504
mitre 2054 | 10724 | 10724 | ALL 0 0 0.0 1 0 0.0
mod008 6 319 319 | ALL | 149 5 3338 31 1 209
mod010 146 | 2655 | 2655 | ALL 38 0 0.0 38 0 0.0
nw04 36 | 87482 | 87482 | ALL 1 0 0.0 1 0 0.0
p0033 16 33 33 | ALL | 346 7 741 99 3 682
p0201 133 201 201 | ALL 17 0 0.0 17 0 0.0
p0282 241 282 282 | ALL 54 0 0.0 68 0 0.0
p0548 176 548 548 | ALL 0 0 0.0 1 0 0.0
p2756 755 | 2756 | 2756 | ALL 1 0 0.0 1 0 0.0
seymour | 4944 | 1372 | 1372 | ALL 1 0 00 1 0 0.0
stein27 118 27 27 | ALL | 3058 13 0.0 | 2131 9 0.0
stein4b 331 45 45 | ALL | 7242 11 0.0 | 2116 3 00
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Table 7: Performance of heuristic triangle cuts on pure integer instances.

Instance | Rows | Cols Int | 0/1 | MIRs Gap | As Gap
air03 124 | 10757 | 10757 | ALL 275 100.0 0 0.0
air04 823 | 8904 | 8904 | ALL 500 6.5 | 59 0.0
air05 426 7195 7195 | ALL 500 4.9 3 0.0
cap6000 | 2176 | 6000 | 6000 | ALL 20 416 | 22 416
enigma 21 100 100 | ALL 60 — | 60 —
fast0507 507 | 63009 | 63009 | ALL 500 1.3 6 0.0
gt2 29 188 188 24 103  68.2 5 4.3
harp2 112 | 2993 | 2993 | ALL 300 23.7| 21 0.0
1152lav 97 1989 1989 | ALL 500 4.6 0 0.0
lseu 28 89 89 | ALL 120 50.4 67 17.1
mitre 2054 | 10724 | 10724 | ALL 501 0.0 92 0.0
mod008 6 319 319 | ALL 50 20.9 29 8.7
mod010 146 | 2655 | 2655 | ALL 225 100.0 | 225 100.0
nw04 36 | 87482 | 87482 | ALL 60 62.3| 20 0.0
p0033 16 33 33 | ALL 48 55.3 5 6.0
p0201 133 201 201 | ALL 96 18.2 | 179 15.4
p0282 241 282 282 | ALL 232 3.7 | 166 3.2
p0548 176 548 548 | ALL 470 39.5 9 0.0
p2756 755 | 2756 | 2756 | ALL 370 0.5 8 0.0
seymour | 4944 | 1372 | 1372 | ALL 500 0.5 | 500 0.5
stein27 118 27 27 | ALL 42 0.0 39 0.0
stein4b 331 45 45 | ALL 70 0.0 | 70 0.0

Given the non-basic columns corresponding to a fractional solution, it may not be possible
to find a violated triangle or quadrilateral inequality of the form that we desire. The non-
linear system of equations that we considered in Chapter 5 need not have a solution. It is
easy to construct an instance where this happens, say by putting one of the integer points
very far from f and the rest close to f.

However, it can also be the case that a facet may exist, but simply cannot be found due
to our model which requires vertices to lie on non-basic rays emanating from the fractional

point f. Consider the following instance
f=0,1/2),r1 = (1,-2),ry = (=3,—-1),7r3 = (=3,5),r4 = (1,1)

which is essentially from Cornuéjols and Margot [21]. The triangle that is shown on the
left in Figure 25 cannot be found in our model since only two of its vertices lie on rays
emanating from f, but the triangle is a facet of Ry(rq,...,7;) since the ray condition is
satisfied. Two of the boundary points are uniquely active and the other two boundary

points are both active and get removed at the last step of the Reduction Algorithm. In
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Figure 26: A non-convex quadrilateral.

Andersen, Louveaux, Weismantel and Wolsey [1)’s work, they are able to obtain this facet
by considering a lattice-free quadrilateral that is not maximal. This quadrilateral is shown
on the right in Figure 25 and defines the same facet as the triangle. However, we are not
able to obtain this quadrilateral using our quadrilateral formula and the reason for this is
that the right-most edge does not have an integral point in its relative interior.

Even when the derived formulas have a solution, we cannot immediately generate a cut
as the systems do not model the convexity of the resulting polygon. We have to check that

each computed polygon is in fact convex. For example, the instance

f=(-1/2,1/2),m = (-3,2),r2 = (=2,-1),r3 = (=1, -2), 74 = (4,1)

gives a quadrilateral that is not convex as shown in Figure 26. (In addition, the quadrilateral
is not lattice-free.) There are still a number of issues that are unresolved.

In the case of triangles, our computational experience with them has shown that they are
easier to find and in a sense, more plentiful. This is essentially reflective of the fact that it is

easier to force a polygon through three points than through four points. Since it is easier to
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find triangles, we can afford to be picky with them although it is not readily apparent which
triangles are the most desirable. Dey, Lodi, Tramontani and Wolsey [25] considered the
minimum angle of the triangles in their experiment which seems very reasonable. We believe
that more research has to be done to determine which triangles are useful in computations.
We rejected the triangles where f is on the boundary or too close to the boundary as we
had no interest in dealing with infinite values from degenerate triangles or high coefficients
from near-degenerate triangles.

In the case of quadrilaterals, the situation is different and in a sense, they appear to
be less plentiful. The quadrilaterals are more difficult to find and so we cannot insist for
example that the integer points in the relative interiors of the edges form a quadrilateral
of unit area. Quadrilaterals are hard enough to find that we did not even use the ratio
condition to disqualify the quadrilaterals that we did find. In our experiments, we still
rejected quadrilaterals where f was too close to the boundary however.

Generally speaking, given an (f, 1,72, r3) instance, we can very often find a large number
of exact triangles and approximate Type 2 triangles using our heuristic. However, given an
(f,r1,m2,73,74) instance, we have found that the discovery of more than one exact maximal
lattice-free quadrilateral is not common. An example of an instance where this does occur
is

f = (—-699/422,—811/753)
r1 = (—414/557,786/359)
ro = (—122/715,—103/331)
rg = (47/46,—653/157)

ry = (467/206,—113/166).

The instance along with the portion of the integer hull close to f is shown in Figure 27.
The two distinct quadrilaterals are shown separately in Figure 28 and are shown together

in Figure 29.
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Figure 27: Quadrilateral instance with subset of integer hulls shown.

6.6 Conclusion

In the two-row model, the two integer basic variables are assumed to be free and the non-
basic variables are non-negative. It is clear that problems encountered in the real world do
not conform to this model. The presence of non-basic integer variables presents problems
and until a complete description of the master polyhedron is discovered, such variables can
be dealt with by lifting.

We showed how to exactly calculate lattice-free triangles and quadrilaterals whose ver-
tices lie on non-basic rays emanating from the fractional point. We also gave a heuristic for
calculating triangle inequalities which are approximately of Type 2.

We performed an experiment with two-row cuts from these derivations on instances
from the MIPLIB 3.0 library. The performance of the triangle cuts on the mixed-integer
instances was not impressive and there was a noticeable degradation in performance on the
pure-integer instances. The performance of the quadrilateral cuts was fairly bad across the
board however.

Although the performance of the cuts was not impressive, we would not immediately
dismiss these cuts as not being useful. We had to limit the number of points considered
on the integer hulls to keep things manageable and we wish that we knew how to compute
non-exact triangles so that we could see how they perform. There are still many unsolved

problems and a lot of work left to do.
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Figure 28: Two maximal lattice-free quadrilaterals for the same instance.
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Figure 29: The two quadrilaterals shown together.
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