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SUMMARY 

 

 

 

Maintaining a stable disinfectant residual in drinking water distribution systems is a 

primary concern of the drinking water industry. To achieve this, treatment plants use 

secondary disinfectants, such as monochloramine. Although the kinetics and mechanism 

of decay of monochloramine in organic-free waters are relatively well understood, those 

in natural waters are not, due to exceedingly complex and poorly defined interactions of 

monochloramine with dissolved natural organic matter (NOM) and particulate matter. In 

addition, alteration of physical and chemical characteristics of NOM and particulate 

matter during treatment processes adds further complication. Ozonation followed by 

biologically activated carbon (BAC) filtration is a commonly practiced process option 

that affects the characteristics of both dissolved and particulate constituents in the water.  

The effect of these changes in water constituents on the stability of monochloramine is 

currently unknown. 

 

The kinetics of monochloramine decay were measured under varying conditions on water 

samples obtained before and after ozonation and BAC treatments. The tested waters 

include the natural water sampled from David L. Tippin Water Treatment Facility 

(DLTWTF), Tampa, FL, Tampa Bay Surface Water Treatment (TBSWT) Plant, Tampa, 

FL and laboratory synthetic water prepared with reference Suwannee River NOM. 
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The effect of ozonation on monochloramine stability was investigated using both the 

water samples from the full-scale plant and the synthetic water prepared with Suwannee 

River NOM. Ozonation of NOM resulted in changes in the stability of chloramine. 

Previous studies in this area have reported that ozonation lead to an increase in the 

chloramine demand. Experiments performed in this study show that ozonation does not 

always result in an increased chloramine demand. The effect of ozonation on chloramine 

demand was found to depend on many factors such as pH, Ozone/TOC ratio, properties 

of natural organic matter, etc.  

 

The stability of monochloramine in the biological activated carbon (BAC) filter effluent 

samples obtained at different times after backwashing was determined. It was found that 

in most cases monochloramine stability was greatly decreased after BAC filtration. 

Further filtering the BAC effluents with 1.2 µm polycarbonate membrane resulted in a 

substantial increase in monochloramine stability. A further increase was observed after 

filtering the samples using a 0.4 µm membrane. This finding suggested that particulate 

matter generated from the filters could be the major cause of monochloramine instability. 

The particulates from activated carbon, possible components of the particulate matter 

eluting from the BAC filters, were found to exert an insignificant monochloramine 

demand both in the presence and absence of NOM, which is contrary to previous 

speculation in the literature about their demand for monochloramine. Preliminary studies 

show monochloramine demand in the BAC filter effluent to be a function of the 

heterotrophic plate count (HPC) count. A longer filter backwash time and a shorter filter 



 xiv

run period resulted in the BAC filter effluent having almost the same chloramine demand 

as the BAC filter influent.    
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CHAPTER 1 

INTRODUCTION 

 

Maintaining a stable disinfectant residual in the drinking water distribution systems is a 

primary concern of the drinking water industry. To achieve this, treatment plants use 

secondary disinfectants, such as monochloramine which are more stable than primary 

disinfectants such as free chlorine. Monochloramine is produced by a reaction between 

free chlorine and ammonia in a process called chloramination. Strictly speaking, 

monochloramine consists of monochloramine (NH2Cl), dichloramine (NHCl2) and 

trichloramine (NCl3). However, monochloramine is the predominant chloramine species 

in the conditions typically found in water treatment facilities.  

 

Although the kinetics and mechanism of decay of monochloramine in organic-free waters 

are relatively well understood, those in natural waters are not, due to exceedingly 

complex and poorly defined interactions of monochloramine with dissolved natural 

organic matter (NOM) and particulate matter. In addition, alteration of physical and 

chemical characteristics of NOM and particulate matter during the treatment processes 

adds further complication. Ozonation followed by biologically activated carbon (BAC) 

filtration is a commonly practiced process option that affects the characteristics of both 

dissolved and particulate constituents in the water.  However, how these changes in water 

constituents affect stability of the residual disinfectant, or monochloramine in particular, 

are currently unknown. 

 



 2

The objective of this study was to elucidate the factors affecting monochloramine 

stability during ozonation and BAC filtration processes using both field waters samples 

and laboratory synthetic waters.  
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CHAPTER 2 

BACKGROUND 

 

2.1 David L. Tippin Water Treatment plant, Tampa, FL 

 

The process schematics of David L. Tippin (DLT) water treatment plant are 

flocculation/sedimentation, Actiflo, ozonation, BAC filter, and clear well (Fig. 1). To 

treat turbidity, both conventional coagulation and Actiflo system are used together. After 

this process, the coagulated and settled waters are then passed through the ozonation 

chambers. Ozonated water is mixed with chemicals such as NaOH, liquid polymer, and 

fluoride at the pre-filtration junction box and then passed through the BAC filter. The 

biologically treated water is mixed with chlorine and ammonia to create chloramines and 

then sent to the clear well in the final stage. 

 

Conventional Coagulation Process Almost 70% of influent water is treated by the 

conventional coagulation process (Fig. 2). This process has two trains. Each train has four 

coagulation basins and two sedimentation basins. Ferric sulfate is used as a primary 

coagulant and dry non-ionic polymer is injected as a coagulant at the 3rd tank of 

coagulation basin. The pH during the coagulation process is maintained at 4.5 by adding 

sulfuric acid. At this pH, Fe3+ is most soluble and has a strong colloidal destabilization 

potential. Flocs formed in the flocculation basin precipitate in the following 

sedimentation basin. The sludge deposited at the bottom of this basin is taken out of the 

basin by the pump installed at the traveling bridge. The operation period of this bridge is 
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once a day. At the end of the basin, powdered lime (Ca(OH)2) is added to the coagulated 

and settled waters to increase their pH to 6~7 before entering the ozone contactors. There 

is also a provision to add sodium hydroxide (NaOH) to raise the pH of the sample 

entering the ozone contactors. 

 

Ozonation Ozone contactors are composed of two trains of chambers and each train is 

composed of eight chambers (Fig. 3). Ozone is injected into 1st, 2nd, and 6th chambers 

with the highest amount of ozone injected at the 1st stage. Ozone is generated from pure 

oxygen and its weight-based content is 6.55%. Ozone concentration is measured in the 

2nd and the 4th chambers. On the day of this study, ozone concentration was found to be 

0.42 mg O3/L in the 2nd chamber and 0.16mgO3/L at in 4th chamber. Hydrogen peroxide 

can be added at the 5th chamber for enhanced oxidation.   

 

Biological Activated Carbon Filter The entire filtration setup consists of 30 filters, with 

each filter consisting of two cells (Fig. 4). The surface area of each cell is different, 

varying from 16x32 ft2 to 10x30 ft2. Filter media is sand and GAC. The sand/GAC ratio 

is 1:2 with the GAC on the higher layer and sand on the lower layer of the filter. The 

effective size of sand is 0.45 ~ 0.55 mm and that of GAC is 0.8 ~ 1.0 mm. The 

underdrain system is Wheeler type (Fig. 5). The design empty bed contact time (EBCT) 

is 4.5 minutes and design filtration rate is 3.11 gpm/ft2. Chemicals such as chlorine, 

sodium hydroxide, hydrogen peroxide, sodium bisulfite, potassium permanganate and 

liquid polymer can be used before filtration depending on the operating conditions. 

Prechlorination is used as a backup for ozone disinfection in case of problems with the 



 5

ozone generator. Hydrogen peroxide and sodium bisulfite are used to quench the 

remaining ozone before BAC filtration. Permanganate can be used to carry out additional 

oxidation of organic matter. Liquid polymer is used to control the turbidity of filters. 

Backwashing is done with air and water. Backwashing on each filter is carried out after 

50-60 hours of filter run time.  

 

2.2 Tampa Bay Surface Water Treatment (TBSWT) Plant, Tampa, FL 

 

Samples were taken from the TBSWT plant to compare the effect different BAC filter 

backwash procedure and filter run time had on the chloramine demand of the filter 

effluent at this plant.   

 

The characteristics of the raw water entering the TBSWT plant are slightly different from 

that entering the DLT plant. At the TBSWT plant, Actiflo was used to treat all the 

coagulated waters. Ozonation at Ozone/TOC ratio of 1 is carried out at the this plant 

following the Actiflo process. The ozonation pH is around 5.6. The ozonated samples 

were then passed through the BAC filters. There are 8 filters (Table 1) at this plant. The 

filters at this plant are larger in size compared to the BAC filters at the DLT plant. The 

filter run times at the TBSWT plant are approximately 24 hours. 
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CHAPTER 3 

LITERATURE REVIEW 

 

Chloramines are used to provide a disinfectant residual in distribution systems where free 

chlorine residuals are difficult to maintain or they lead to the formation of excessive 

trihalomethane (THM). Monochloramine has the same oxidizing capacity as free chlorine 

on a chlorine atom basis but is a weaker disinfectant (Wolfe et al, 1984). Chloramines are 

produced by a reaction between free chlorine and ammonia in a process called 

chloramination. Strictly speaking, chloramines consist of monochloramine (NH2Cl), 

dichloramine (NHCl2) and trichloramine (NCl3). However, monochloramine is the 

predominant chloramine species in the conditions typically found in water treatment 

facilities. Although chloramines are believed to be less reactive than free chlorine, they 

are inherently unstable even in the absence of organic matter decomposing by a complex 

set of reactions, ultimately resulting in the oxidation of ammonia and reduction of free 

chlorine (Valentine et al, 1998). The loss of chloramine residual by reaction with itself 

(autodecomposition) was termed decay while the all other reactions with chloramines 

(e.g., with natural organic matter (NOM), or reduced inorganic species etc) were termed 

demand. 

 

Chloramine autodecomposition Monochloramine undergoes autodecomposition which 

results in the oxidation of ammonia and reduction of active chlorine (Jafvert et al, 1992; 

Vikesland et al, 1998). A second order rate equation adequately described 

monochloramine autodecomposition in the absence of oxidisable substances other than 
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NH3 (Wilczak et al, 2003). During the course of the decomposition reactions, nitrogen in 

monochloramine present as N (-III) is preferentially oxidized to N2 with smaller 

quantities of NO3
-, and possibly one or more minor unidentified products (Vikesland et 

al, 1998). The net decay reaction is expected to increase the free ammonia concentration 

by an amount which depends on the specific products formed, as shown for the formation 

of nitrogen gas and nitrate: 

3NH2Cl → N2 + NH3 + 3Cl- + 3H+ 

4NH2Cl + 3H2O → 4Cl- + 3NH3 + NO3
- + 5H+ 

The rate of monochloramine loss by autodecomposition primarily depends on pH, 

increasing inorganic carbon, temperature, Cl/N ratio and initial NH2Cl concentration 

(Valentine et al, 1998). The rate of NH2Cl decay is expected to increase with decreasing 

pH due to increased rates of dichloramine formation. The subsequent decomposition of 

dichloramine results in loss of oxidant (Valentine et al, 1998). The difference in 

monochloramine decay rate between pH 9 and 8 was smaller than the observed difference 

between pH 8 and 7.5 (Bone et al, 1999). Carbonate content of water is an important 

variable in drinking water because it exists in natural water sources. An increase in the 

carbonate concentration results in an increase in the decay rate of monochloramine. 

NH2Cl is more stable at lower temperatures. Increasing the temperature from 4oC to 35oC 

increased the monochloramine decay rate 6.5-fold at pH 7.5. The rate of monochloramine 

decay was not a measurable function of ionic strength. The Cl/N ratio affects the free 

ammonia concentration initially introduced into the system. Decreasing the Cl/N ratio 

decreased the NH2Cl decay. Reducing the Cl/N ratio from 0.7 to 0.5 mol/ mol at a pH 6.6 

decreased the observed second order rate constant almost 50%. The effect of Cl/N ratio 



 8

becomes less severe at higher pH values. At high NH2Cl concentrations, the value of the 

decay constant was lower than in the case of lower NH2Cl concentrations (Valentine et 

al, 1998).  

 

Maintaining a stable disinfectant residual and minimizing DBP formation in the presence 

of NOM and other reactants are important goals in water treatment. Typically this is 

attempted by removing NOM or by treatment that renders it less active.  

 

Chloramine reactions with NOM Several studies have demonstrated that the presence of 

natural organic matter (NOM) in water accelerates the decay of monochloramine 

(Fleischaker et al, 1983; Isaac, 1983). NOM reacts directly with monochloramine via 

redox and substitution reactions and the role of NOM as a catalyst is negligible. The 

reactions between NOM and monochloramine result in decreased nitrogen gas formation 

but increased ammonia and increased nitrate (Vikesland et al, 1998). The increased rate 

of formation of ammonia is of concern because it has been associated with incidences of 

nitrification in drinking water systems (Vikesland et al, 1998). Higher aromaticity and 

UV/TOC ratio of NOM can result in a higher monochloramine demand when compared 

to monochloramine demand of NOM with lower aromaticity and UV/TOC ratio 

(Valentine et al, 1998). Humic and non-humic fractions are representative of all NOM in 

water (Yavich et al, 2001). Humic and fulvic acids may catalyze the autodecomposition 

of monochloramine (Vikesland et al, 1998). Aldrich humic acid has a larger effect on the 

second-order decay constant than Suwannee river fulvic acid (Valentine et al, 1998). 

Humic and fulvic acid should not be used as a model NOM because the method of their 
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isolation from NOM may cause significant changes in their properties (Perdue, M., 

Personal Communication).   

 

Ozonation followed by biologically activated carbon (BAC) filtration is a commonly 

practiced process option that affects the characteristics of both dissolved and particulate 

constituents in the water.  These processes result in an alteration of physical and chemical 

characteristics of NOM and particulate matter during treatment processes.  

 

Effect of ozonation on NOM and chloramine demand The nature and amount of NOM in 

the water can significantly affect the performance of the ozonation process. The chemical 

nature of NOM is often dependent on hydrologic and seasonally variable factors such as 

storm, algal activity etc (Westerhoff et al, 1999). Reacting as an electrophile, ozone 

preferentially oxidizes electron rich moieties such as aromatic carbon-carbon double 

bonds and aromatic alcohols (Hoigne and Bader 1979; 1983 a, b; Hoigne 1997). Ozone 

reacts preferentially with molecular structures that absorb UV light as opposed to 

completely oxidizing organic carbon to carbon dioxide and water (Amy et al, 1988). It 

was found that 60% of the ozone is consumed within the first minute of its reaction with 

NOM. It is possible that, during ozonation, the byproducts of oxidation reactions (e.g., 

ring cleavage) could lead to the formation of additional reactive sites over time during 

ozonation. These by products plus the slow- reacting NOM sites, are probably 

responsible for the ozone decomposition during the second phase (Westerhoff et al, 

1999). High ozone dose leads to fragmentation of larger molecules, producing smaller 

molecules as partial oxidation byproducts (Amy et al, 1988), but very small ozone doses 
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can promote oxidative coupling and polymerization of organic matter (Duguet et al, 

1983).  Ozone converts humic substances to non-humic substances and the removal of 

organic carbon occurs through the oxidation of non-humic substances. Both these 

reactions can proceed in parallel and the amount of ozone required for the oxidation of 

non-humic substances is two times greater than that required for the oxidation of humic 

substances (Yavich et al, 2001). The major simple by product of ozonation is oxalic acid 

(Edwards et al, 1992). Ozonation at approximately 1:1 O3/TOC ratio increased the 

monochloramine demand (Wilczak et al, 2003).  

 

Effect of BAC Filtration and Backwashing Filtration would be expected to be beneficial 

or neutral to monochloramine stability. Filtration of the ozonated water through 

biologically active GAC/Sand filter media substantially increased the chloramine demand 

despite lower TOC, lower biodegradable DOC and low densities of nitrifying bacteria 

residing in the filter media (Wilczak et al, 2003; Rajbhandari et al, 1999). This was 

attributed to an unknown agent produced during the GAC filtration (Tokuno et al, 1997), 

possibly GAC fines, biomass attached to the GAC particles, or metabolites from the bio 

filters (Tokuno et al, 1999). There is an increased passage of particles through granular 

filters immediately following backwashing, which is commonly known as the filter 

ripening period (Amburgey et al, 2003). Some studies have shown that more than 90% of 

the particles passing through a well operated filter do so during the ripening period 

(Amirtharajah et al, 1988).  Membrane filtration studies suggest that suspended materials 

shedding from the GAC/Sand biofilters are responsible for excessive chloramine demand 

in water (Wilczak et al, 2003). The amount of particles released appeared to be 
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independent of the condition of the GAC (new, old or reactivated) (Stringfellow et al, 

1993). Monochloramine reacts slowly with GAC by comparison at which free chlorine 

and dichloramine react (Kim et at, 1980). The following reactions are shown to take place 

between monochloramine and GAC: 

 

NH2Cl + H2O + C* → NH3 + H+ + Cl- + CO* 

2NH2Cl + CO* → N2 + H2O + 2H+ + 2Cl- +C* 

 

Smaller carbon size and longer contact times result in higher monochloramine 

consumption. Different types of carbon may exert different types of monochloramine 

demand (Komorita et al, 1985). Granular activated carbon (GAC) in filter adsorbers 

provides an excellent support surface for the proliferation of microorganisms. Bacteria 

proliferate on GAC even with prechlorination because GAC catalyzes the reduction of 

free chlorine (Camper et al, 1987). Some of the particles released from the GAC filters 

were populated with attached bacteria. Bacteria clumped together, but not attached to any 

particles were also found in the filter effluent. Bacteria attached to particles are found to 

be more resistant to disinfection than the unattached bacteria (Stringfellow et al, 1993). 

The level of inactivation of bacteria by chloramines was principally dependent upon the 

disinfectant application technique, solution pH, and the type of bacterial population 

present at the time of sampling. Bacterial genera surviving 60 min of exposure to pre 

reacted chloramines included Acinetobacter, Flavobacterium and Pseudomonas (Wolfe et 

al, 1985). The mode of action of monochloramine in inactivating microorganisms 
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probably involves an amino acid reaction; however, a nucleic acid reaction cannot be 

ruled out when the reactive amino acids are unessential or buried (Jacangelo et al, 1984).  

 

Effect of Nitrite Formation of nitrite in chloraminated water is a growing concern in the 

water industry because it can be produced under conditions that promote biological 

nitrification of excess added ammonia (Valentine et al, 1998).  Nitrite and 

monochloramine could react to form ammonia and nitrate. The reaction between 

chloramine and nitrite is relatively slow. Monochloramine does not have to hydrolyze to 

hypochlorous acid (HOCl) in order to react with nitrite but a direct catalyzed reaction can 

also take place. Both of these reactions could be a source of monochloramine demand 

(Margerum et al., 1994). Nitrite up to a concentration of 0.1 mg/l had little effect on 

monochloramine demand but 0.5 mg/l of nitrite accelerated the monochloramine loss 

(Valentine et al, 1998).  

 

Effect of Bromide Bromide ion is present in virtually all naturally occurring waters. Even 

though bromide ion (Br-) itself has not been regulated, its concentration in distribution 

system waters is an important concern because of the possible brominated by-products 

formed during water disinfection. Oxidation of bromide by monochloramine is fast under 

conditions of chloramination. A comparison of second- order rate constants for the decay 

of NH2Cl, in the presence and absence of 0.1 mg/l of bromide, shows that they are almost 

identical. On the other hand, increasing the bromide concentration to 0.5 mg/l doubles the 

second order rate constant at pH 7.55. Also, for bromide concentrations ≥0.5 mg/l, the 

decay of NH2Cl cannot be modeled as second-order decay (Valentine et al, 1998).  
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Although the kinetics and mechanism of monochloramine decay in organic-free waters 

are relatively well understood, those in natural waters are not, due to exceedingly 

complex and poorly defined interactions of monochloramine with natural organic matter 

(NOM). The focus of this research is on how ozonation followed by BAC filtration 

affects the chloramine demand of the treated waters. 
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CHAPTER 3 

MATERIALS AND METHODS 

 

Laboratory grade water used for the experiments and for cleaning glassware was 

produced using a Milli-Q (Millipore, Molsheim, France) system. All the chemicals used 

in these experiments were American Chemical Standard (ACS) grade or equivalent. The 

pH of all the solutions was measured with an Accumet AR50 (Fisher Scientific, 

Pittsburg, PA) after appropriate calibration. To eliminate any free/combined chlorine 

demand which might be exerted by the compounds adsorbed onto the glassware, all the 

glassware was cleaned by soaking it in a concentrated chlorine bath (~50 mg/l) for a 

period of at least 24 hours. After the glassware was cleaned, it was thoroughly rinsed 

with Milli-Q water and allowed to dry. A temperature of 25oC was maintained in all the 

monochloramine kinetic experiments using the Julabo Shaking Water Baths SW22 and 

SW23 (Allentown, PA). Polycarbonate Isopore Membrane Filters (0.4 µm and 1.2 µm, 

Millipore, Molsheim, France) were used for labscale filtration. 

 

The tested waters include the natural water sampled from David L. Tippin Water 

Treatment Facility (DLTWTF), Tampa, FL and Tampa Bay Surface Water Treatment 

(TBSWT) Plant, and laboratory synthetic water prepared with reference Suwannee River 

NOM (IHSS, St. Paul, MN). The natural water samples that were collected from 

DLTWTF and TBSWT plants were transported and stored at a temperature of 4oC. The 

samples were not exposed to sunlight.  
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All the monochloramine kinetic experiments were conducted by diluting a concentrated 

monochloramine stock solution to a desired concentration. This stock solution was 

prepared by adding a predetermined amount of sodium bicarbonate (NaHCO3) to Milli-Q 

water. The solution pH was adjusted to 9-9.5 by dropwise addition of 0.5M sodium 

hydroxide (NaOH). Once the pH stabilized, enough NH4Cl was added to produce an 

ammonia solution of desired concentration. The solution was mixed using a magnetic 

stirrer before free chlorine was added. After the designated amount of free chlorine was 

added, the solution was aged for 60 minutes to complete the free chlorine-ammonia 

reactions. The final Cl/N molar ratio of the monochloramine stock solution was always 

0.7. The solution was stored in the dark. The DPD FAS method was employed for 

measuring the monochloramine residuals (Standard Methods, 1998).  

 

Stock ozone solution (Kim et al, 2004) was injected into solution aliquots placed in 125 

ml amber colored septum capped vials by an airtight syringe (Hammilton, Reno, 

Nevada). Filtrasorb 300 (Calgon Carbon Corp., Pittsburg, PA) was used as the model 

GAC fines generated from the filter. The stock solution was prepared by cleaning GAC 

with synthetic water, making small fragments with mortar and mixing them in synthetic 

water, then filtering with polycarbonate iso-pore filters having pore sizes 0.8 µm and 5.0 

µm. The GAC fines were then quantified after drying the filter at 105oC for 1hr. WPL 

carbons (Calgon Corp., Pittsburg, PA) were also used as a model carbon generated from 

the filters.  The total organic carbon in the solutions was measured using the Shimadzu 

TOC-VWS Total Organic Carbon Analyzer (Tokyo, Japan.). Aqueous ozone 

concentration was measured using the Indigo method (Standard methods, 1998).  
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To quantify the amount of activated carbon fines from the BAC effluent, a Thermal 

Optical Transmittance (TOT) instrument (SUNSET Laboratory, Inc.) was used. This 

instrument measures the contents of organic carbon and elemental carbon by the thermal 

optical method. Fig.6 shows the schematic diagram of the TOT instrument. The sample is 

screened by a quartz fiber filter with pore size of 0.3 micron. The sample chamber is 

heated stepwise to 820oC in an oxygen-free helium condition, thus volatilizing organic 

carbon.  This organic carbon is then catalytically oxidized at 900oC to carbon dioxide.  

This carbon dioxide is reduced to methane in the Ni/firebrick methanator oven. The 

methane is quantified by Flame Ionization Detectors (FID).  After the organic carbon is 

quantified, the sample chamber is switched from oxygen-free helium to oxygen-helium 

mixture condition. The chamber is heated to 860oC stepwise. Under this condition, 

elemental carbon is oxidized to carbon dioxide which is further reduced to methane and 

measured by the FID. Figure 7 shows a sample thermogram obtained from TOT machine. 

Organic carbon (OC) is detected at the first stage before OC-EC split. Carbonate carbon 

(CC) is also detected at 1st stage but the amount is negligible except that metal ion is 

binding carbonate. The effect of pyrolysed carbon (PC), which is a remnant of OC 

pyrolysis, is adjusted by the laser transmittance.  After PC is removed by heat, EC is 

measured.  

 

Total coliforms were measured in accordance with the procedures described in the 

Standard Methods, 1998, using the spread plate method on a R2A Agar medium. Nitrite 
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and bromide were measured using Ion Chromatography Dionex DX-600 (Sunnyvale, 

California).   
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Effect of Ozonation 

 

Labscale Ozonation of Suwannee River NOM To study the effect of ozonation on 

chloramine demand of NOM, labscale ozonation of Suwannee River NOM was carried 

out. These experiments were performed at various pH and Ozone/TOC ratios. In all the 

ozonation experiments carried out using Suwannee river NOM, a change in the 

chloramine demand was observed following ozonation. At pH 6.5 (Fig. 8), the initial 

Ozone/TOC ratio determined if the chloramine demand of the ozonated Suwannee river 

NOM was higher or lower than the non-ozonated sample. At Ozone/TOC ratio of 0.25, 

chloramine demand of the ozonated sample was higher than that of the non-ozonated 

sample. Ozonation at Ozone/TOC ratios of 0.5, 1 and 2 resulted in a decrease in the 

chloramine demand of the ozonated sample when compared to that of the non-ozonated 

sample. There was no difference in the chloramine demand exerted by the samples 

ozonated at Ozone/TOC ratios of 0.5, 1 and 2. At Ozone/TOC ratio of 0.25, the 

byproducts of oxidation reactions (e.g., ring cleavage) could lead to the formation of 

additional reactive sites over time during ozonation. The formation of additional reactive 

sites on the NOM as a result of ozonation could be responsible for the increased 

chloramine demand. However, at Ozone/TOC ratios of 0.5, 1 and 2, the ozonation 

byproducts along with the slow reacting NOM sites could be responsible for the 

decomposition of ozone. This would lead to a net reduction in the number of reactive 
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sites present on the NOM. This explains the reduced chloramine demand at Ozone/TOC 

ratios 0.5, 1 and 2 at pH 6.5. At pH 7.5 and 8.5, ozonation resulted in an increased 

chloramine demand at all Ozone/TOC ratios compared to the chloramine demand of the 

non ozonated sample (Fig. 9, 10). The highest chloramine demand was once again 

exerted by the samples that were ozonated at Ozone/TOC ratio of 0.25. However at pH 

7.5 and 8.5, ozonation at different Ozone/TOC ratios did not cause a large variation in the 

chloramine demand of the ozonated samples. Also, the chloramine demand exerted by the 

samples ozonated at pH 7.5 and 8.5 was found to be similar. These results indicate that at 

pH 7.5 and 8.5, the additional reactive sites created on the NOM as a result of ozonation 

were almost the same irrespective of the Ozone/TOC ratio or the initial pH of the 

solution.  

 

In all the labscale ozonation experiments, the only change due to ozonation was in the 

initial chloramine demand exerted by the NOM. After the initial chloramine demand, 

chloramine autodecomposition took place. At the same pH, the chloramine 

autodecomposition rate did not change with a change in the Ozone/TOC ratio. The results 

of labscale ozonation suggest that chloramine demand exerted by the ozonated Suwannee 

river NOM is a function of the Ozone/TOC ratio especially at a pH 6.5. The pH may 

determine the oxidizing power and contact time of ozone with the NOM and this could 

affect the chloramine demand of the ozonated NOM. The role of pH during ozonation 

needs further investigation.   
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Effect of plant scale ozonation Ozonated samples of coagulated and settled natural waters 

that were obtained from the DLT plant during the dry season (May 11th, 2004) and the 

wet season (September 25th, 2004) exerted varying chloramine demands (Fig. 11). 

Ozonation of coagulated and settled waters resulted in a decrease in the TOC and an 

increase in the pH of the post ozonated samples. Similar chloramine demand was 

exhibited by the pre ozonated samples taken from the DLT plant in the dry and wet 

season inspite of the fact that they had varying TOC and pH values. For the samples 

collected in the dry season, ozonation resulted in a clear increase in the chloramine 

demand. A very small amount of chloramine was lost due to autodecomposition. In the 

wet season, however, most of the chloramine consumed in both the pre-ozonated and 

post-ozonated sample was largely due to autodecomposition. At a plant scale, the effect 

of ozonation on chloramine demand will depend on factors such as nature and amount of 

NOM, which could vary seasonally, and also the residual metal concentrations. 

Ozonation might induce increases in residual metal (Fe) concentrations either as soluble 

metal-organic complexes or as particulates (Jekel, 1989). The effect each of these factors 

on the chloramine demand of the ozonated samples requires further investigation.  

 

4.2 Effect of BAC Filtration on Monochloramine stability 

 

Filtration of the ozonated water through biologically active GAC/sand media at the DLT 

plant substantially increased the chloramine demand in spite of lower TOC, lower 

turbidity and higher pH of the BAC filter effluent (Fig. 12). The chloramine demand of 

the effluent waters was especially high in the samples collected immediately after 
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backwashing. The least chloramine demand was exhibited by samples collected between 

1 and 3 hrs after backwashing. Researchers have attributed the increased chloramine after 

BAC filtration to a number of factors such as GAC fines (Skadsen et al., 1993), nitrite, 

bromide, microorganisms, metabolites etc.   

 

Effect of nitrite and bromide Both nitrite and bromide concentrations of the effluent 

waters were found to be below 0.1 mg/l. At these concentrations; they are not expected to 

exert a significant chloramine demand.  

 

Effect of microorganisms BAC filtration resulted in an increase in the HPC of the filter 

effluent. The HPC of the BAC filter influent was zero. Previous research has shown that 

granular activated carbon (GAC) in filter adsorbers provide an excellent support surface 

for the proliferation of microorganisms and that the filter effluent can contain bacteria 

attached to the particles as well as in clumps unattached to any particles. There appears to 

be a strong correlation between the HPC and chloramine demand of the filtered effluent 

(Fig. 13). An increase in the HPC of the filter effluent resulted in a corresponding 

increase in the amount of chloramine consumed and vice versa. However, the amount of 

chloramine consumed by the microorganisms might depend not only on the HPC, but 

also on the type of microorganisms present, whether they are attached to particulate 

matter or not, etc. Determining the effect of these factors on chloramine demand could 

result in a more comprehensive understanding of the role played by microorganisms in 

the increased chloramine demand of the filter BAC filter effluent.  
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Effect of granular activated carbon (GAC) fines Some researchers have attributed the 

increased chloramine demand of the BAC filter effluent to GAC fines which could be 

released into the finished waters from the BAC filters. Chloramine demand of the GAC 

fines was determined by diluting a concentrated stock solution of the GAC fines to the 

desired concentration in Milli-Q water. This test was carried out at pH 8, because that is 

the pH of the BAC filter effluent. Contrary to what was previously reported in literature, 

GAC fines did not exert any chloramine demand (Fig. 14). Only autodecomposition of 

chloramine takes place. There has also been speculation about the possibility of GAC 

fines catalyzing the NOM oxidation by chloramine. To find out if this was the case, GAC 

fines were added to the post ozonated natural water samples obtained from the DLT 

plant. Addition of GAC fines to the post ozonated water resulted in a decrease in the 

chloramine demand (Fig. 15). This was contrary to previous speculation. Preferential 

adsorption of NOM by the GAC fines could be responsible for this. Due to adsorption of 

the NOM by the GAC fines, the amount of NOM exerting a demand for chloramine 

reduces and hence there would be an increase in the chloramine demand.   

 

Effect of powdered activated carbon (PAC) There is a possibility that the GAC fines used 

in these experiments may not accurately represent the GAC fines generated from the 

BAC filters at the DLT plant because of the method of their isolation for these 

experiments.  To better understand the role of activated carbon on chloramine demand, 

WPL carbons (Calgon Corp., Pittsburg, PA) were used as model activated carbon. This is 

also the same carbon that is used as the GAC media in the BAC filters at the DLT plant. 

Solutions of desired powdered activated carbon (PAC) concentration were prepared in 
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Mili-Q water. The chloramine demand exhibited by these samples was negligible up to a 

PAC concentration of 1mg/l with most of the chloramine being consumed due to 

autodecomposition (Fig.16). At a 10mg/l PAC concentration, there is a clear chloramine 

demand exerted by the PAC. However, it is highly unlikely that such high concentrations 

of PAC could be found in the BAC filter effluent. Thus, it can be concluded that, for the 

concentration range of PAC that could be found in the BAC filter effluent, it is not 

responsible for the increased chloramine demand of the BAC filter effluent. To 

investigate the role of PAC catalyzing the NOM-chloramine reaction, PAC was added to 

the post-ozonated sample obtained from the DLT plant. Addition of PAC to the post 

ozonated waters resulted in a decrease in the chloramine demand (Fig. 17). Adsorption of 

NOM by the PAC is the likely cause for this result. These results suggest that the 

activated carbon particles being generated from the BAC filters are not responsible for 

the high chloramine demand of the BAC filter effluent.  

 

Membrane filtration Particles generated from the BAC filter are suspected to be 

responsible for the excessive chloramine demand. To find out if this was indeed the case 

and if so, to examine the size range of the particles being generated from the filter that 

were responsible for the excessive chloramine demand, BAC filter effluent samples were 

passed through 1.2µm and a 0.4µm polycarbonate filters (PCF) and chloraminated (Fig. 

18, 19, 20, 21). In all cases, 1.2µm PCF filtration of the BAC filter effluent resulted in a 

large decrease in the chloramine demand. A further decrease in the chloramine demand 

was observed on filtering the sample using a 0.4µm filter. For the 0.4µm PCF filtered 

BAC filter effluent, most of the chloramine was consumed by autodecomposition. This 
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result suggests that most of the chloramine demand is caused by particles that are greater 

than 1.2µm in size. To find out if the particles generated from the BAC filter were 

responsible for the chloramine demand, both the BAC filter influent and effluents were 

passed through 1.2µm and 0.4µm PCF (Fig. 22, 23). The chloramine demand of the 

0.4µm PCF permeate was low, regardless of whether ozonated or filtered water was 

processed. However, the chloramine stability was dramatically improved in the 1.2µm 

permeate of the BAC filtered samples. A comparison of the chloramine demand of the 

1.2µm and 0.4µm permeates of BAC filter influent and effluents shows that most of the 

chloramine demand is exerted by particles greater than 1.2µm in size being generated 

from the filters. These results show that particulate matter generated from the BAC filters 

at the DLT plant is responsible for the increased chloramine demand.  

 

Filter backwashing It was determined that particles being generated from the BAC filters 

are responsible for the increased chloramine demand of the BAC filter effluent. The 

number of particles that are generated from the BAC filter depends to a large extent on 

the filter backwashing procedure employed. To examine the role of filter backwashing 

procedure and filter run time on the chloramine demand, chloramine demand of the 

TBSWBT plant BAC filter influent and effluent samples was determined. Even though 

the characteristics of the influent entering the filter at the TBSWBT plant are different 

from that of the DLT plant, the BAC filter influents at both the plants exerted similar 

chloramine demands. However, BAC filtration at the TBSWT plant did not result in an 

increased chloramine demand. In fact, the chloramine demand of the BAC filter effluent 

at the TBSWBT plant was slightly lower than that of the influent (Fig. 24). Most of the 
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chloramine consumed by the BAC filter influent and effluent was by autodecomposition. 

Also, unlike the DLT plant, the chloramine demand of the BAC filter effluents at the 

TBSWT plant did not vary with time. These results imply that the number of particles 

being generated from the BAC filters at the TBSWT plant is negligible. Higher amount 

of time spent at the TBSWT plant for filter backwashing and the shorter filter run periods 

between backwashes (Table 2) could be responsible for the negligible particle generation. 

The filter run time at the TBSWT plant was about half that of the DLT plant. These 

results show that the filter backwashing mechanism and filter run period between 

backwashes can have a significant impact on chloramine stability of the filter effluent.  
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CHAPTER 6 

CONCLUSIONS 

 

Labscale ozonation of Suwannee River NOM as well as plant scale ozonation of natural 

water at the DLT plant resulted in a change in the chloramine demand. A change in the 

number of reactive sites on the NOM as a result of ozonation is thought to be responsible 

for the change in the chloramine demand. In labscale ozonation, the increase or decrease 

in the number of reactive sites following ozonation was found to be dependent on both 

the Ozone/TOC ratio as well as the initial pH at which ozonation was carried out. At the 

plant scale, the effect of ozonation on the chloramine demand may depend on nature and 

amount of NOM which might vary seasonally, residual metal concentration in the pre-

ozonated sample. Further research is required to determine the effect these factors have 

on the chloramine demand of the ozonated samples. Research will also be needed to 

determine the role of pH on the reactions of ozone and NOM. This will help better 

understand the effect of ozonation on chloramine demand.   

 

Chloramine demand of the BAC filter effluent samples obtained at different times after 

backwashing was determined. It was found that, in most cases, chloramine demand 

greatly increased after BAC filtration. Particulate matter generated from the BAC filters 

was found to be the major cause of chloramine instability. The fines from the activated 

carbon, possible components of the particulate matter eluting from the BAC filters, were 

found to exert an insignificant chloramine demand both in the presence and absence of 

NOM, which is contrary to previous speculation in the literature about their demand for 
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monochloramine. Initial studies show the chloramine demand of the BAC filter effluent 

to be a function of the HPC count. However, the effect of different types of 

microorganisms and their byproducts on chloramine demand needs to be investigated to 

better understand the role of microorganisms in the increased chloramine demand of the 

BAC filter effluent.  Filter backwashing procedure and filter run times were found to be 

of critical importance to the chloramine demand exerted by the filter effluents. Effect of 

varying the BAC filter backwashing procedure and filter run period on chloramine 

demand needs to be studied at a pilot scale followed as well as full scale.  

 

The outcome of this study will help drinking water utilities better assess and determine 

the factors affecting stability of monochloramine residual under various operating 

conditions.  
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Table 1. Design criteria of the Tampa Bay Surface Treatment (TBSWT) Plant biological 
activated carbon (BAC) filter 
 
 
Total number of filter 8 
Length of filter cell 66’ 0” 
Width of filter cell 22’ 6” 
Nominal filtration rate 3.86 gpm/ft2 
Max. filtration rate 3.98 gpm/ft2 
Design water depth over media 9’ 7” 
Filter type Dual media 
Sand layer thickness 6” 
GAC layer thickness  48” 
GAC size (effective size) 8x20 (1.2 mm) 
GAC manufacturer Westates (US filters)  

 
 
Table 2. Comparison of the filter backwashing process at the David L. Tippin (DLT) 
plant and Tampa bay surface water treatment (TBSWT) plant 
 DLT plant TBSWT plant 
1st low rate backwashing 0 min 1 min (10 KGPM) 
High rate backwashing  3 min (3.70 KGPM) 11 min (3.0 KGPM) 
2nd low rate backwashing 0 min 1 min (KGPM) 
Flow ramp time 0 min 0 min 
Flow hold time (filter to waste) 3 min 1 min 
Extended backwash time 0 min 1 min 
Air scour time 0.5 min 8 min 
Air and water wash time 0 min 4 min  
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Figure 1. Process schematics of the DLT plant.  
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Figure 2. Coagulation and sedimentation basin schematic at the DLT plant 
 
 

 
 
 
Figure 3. Schematic of the Ozone contactor at the DLT plant  
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Figure 4. Cross sectional schematic of a biological activated carbon filter at the DLT 
plant. 
 
 

a)      b)  
 
 
 
Figure 5. Wheeler type underdrain system used at the DLT Plant. a) Upper view of 
underdrain system, b) Side view of the underdrain system. 
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Figure 6.  Process Schematic of the Thermal Optical Transmittance (TOT) instrument. 
 
 

 
 
 
 
Figure 7. Sample Thermogram created by the Thermal Optical Transmitter. 
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Figure 8. Effect of Labscale Ozonation at pH 6.5 on chloramine demand of Suwannee 
River natural organic matter (NOM). Ozonation carried out at varying Ozone/TOC ratios. 
Initial total organic carbon (TOC) concentration in all cases is 1.95mg/l. In all cases, 
initial [NH2Cl] = 10mg/l as Cl2, Cl/N 0.7 (mol/mol), CT,CO3 = 5mM, pH = 6.5,  T = 25oC.   
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Figure 9. Effect of Labscale Ozonation at pH 7.5 on chloramine demand of Suwannee 
River natural organic matter (NOM). Ozonation carried out at varying Ozone/TOC ratios. 
Initial total organic carbon (TOC) concentration in all cases is 1.95mg/l. In all cases, 
initial [NH2Cl] = 10mg/l as Cl2, Cl/N 0.7 (mol/mol), CT,CO3 = 5mM, pH = 7.5,  T = 25oC.   
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Figure 10. Effect of Labscale Ozonation at pH 8.5 on chloramine demand of Suwannee 
River natural organic matter (NOM). Ozonation carried out at varying Ozone/TOC ratios. 
Initial total organic carbon (TOC) concentration in all cases is 1.95mg/l. In all cases, 
initial [NH2Cl] = 10mg/l as Cl2, Cl/N 0.7 (mol/mol), CT,CO3 = 5mM, pH = 8.5,  T = 25oC.   
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Figure 11. Effect of ozonation on the chloramine demand of the coagulated and settled 
waters at the DLT plant. For samples collected on May 11th, 2004, Ozone/TOC ratio ≈ 1 
and for the samples collected on September 25th, 2004, Ozone/TOC ratio ≈ 0.5. In all 
cases,    initial [NH2Cl] = 10mg/l as Cl2, Cl/N 0.7 (mol/mol), no buffer added, T = 25oC.  
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Figure 12. Chloramine demand exerted by the DLT plant BAC filter effluent samples 
(September 25th, 2004). In all cases, initial [NH2Cl] = 10mg/l as Cl2, Cl/N 0.7 (mol/mol), 
no buffer added, T = 25oC.  
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Figure 13. Effect of Heterotrophic plate count (HPC) on the amount of chloramine 
consumed in ≈ 97 hr by the BAC filter effluent (September 25th, 2004), obtained from the 
DLT plant. In all cases, initial [NH2Cl] = 10mg/l as Cl2, Cl/N 0.7 (mol/mol), no buffer 
added, T = 25oC.  
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Figure 14. Chloramine demand exerted by buffered Milli-Q water containing Calgon 
Corp. Filtrasorb 300 granular activated carbon fines (GAC). In all cases, initial [NH2Cl] = 
10mg/l as Cl2, Cl/N 0.7 (mol/mol), CT,CO3 = 5mM, T = 25oC.   
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Figure 15. Chloramine demand exerted by post ozonated sample (May 11th, 2004) 
obtained from the DLT plant, containing Calgon Corp. Filtrasorb 300 granular activated 
carbon (GAC) fines. In all cases, initial [NH2Cl] = 10mg/l as Cl2, Cl/N 0.7 (mol/mol), no 
buffer added, pH = 7.47, TOC = 2.11mg/l, T = 25oC.  
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Figure 16. Chloramine demand exerted by buffered Milli-Q water containing Calgon 
Corp. WPL type powdered activated carbon (PAC). In all cases, initial [NH2Cl] = 10mg/l 
as Cl2, Cl/N 0.7 (mol/mol), CT,CO3 = 5mM, pH = 8,  T = 25oC.   
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Figure 17. Chloramine demand exerted by post ozonated sample (May 11th, 2004) 
obtained from the DLT plant, containing Calgon Corp. WPL type powdered activated 
carbon (PAC). In all cases, initial [NH2Cl] = 10mg/l as Cl2, Cl/N 0.7 (mol/mol), no buffer 
added, pH = 7.47 , TOC = 2.11mg/l , T = 25oC.  
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Figure 18. Comparison of the chloramine demand of the DLT plant BAC filter effluent 
(May 11th, 2004) obtained 5 min after backwashing with the chloramine demand of the 
same sample further filtered using a 0.4µm and 1.2µm polycarbonate membrane filter 
(PCF). In all cases, initial [NH2Cl] = 10mg/l as Cl2, Cl/N 0.7 (mol/mol), no buffer added, 
T = 25oC.  
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Figure 19. Comparison of the chloramine demand of the DLT plant BAC filter effluent 
(May 11th, 2004) obtained 10 min after backwashing with the chloramine demand of the 
same sample further filtered using a 0.4µm and 1.2µm polycarbonate membrane filter. In 
all cases, initial [NH2Cl] = 10mg/l as Cl2, Cl/N 0.7 (mol/mol), no buffer added, T = 25oC.  
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Figure 20. Comparison of the chloramine demand of the DLT plant BAC filter effluent 
(May 11th, 2004) obtained 15 min after backwashing with the chloramine demand of the 
same sample further filtered using a 0.4µm and 1.2µm polycarbonate membrane filter. In 
all cases, initial [NH2Cl] = 10mg/l as Cl2, Cl/N 0.7 (mol/mol), no buffer added, T = 25oC.  
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Figure 21. Comparison of the chloramine demand of the DLT plant BAC filter effluent 
(May 11th, 2004) obtained 30 min after backwashing with the chloramine demand of the 
same sample further filtered using a 0.4µm and 1.2µm polycarbonate membrane filter. In 
all cases, initial [NH2Cl] = 10mg/l as Cl2, Cl/N 0.7 (mol/mol), no buffer added, T = 25oC.  
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Figure 22. Comparison of the chloramine demand of the 0.4µm polycarbonate membrane 
filtered DLT Plant BAC filter influent (May 11th, 2004) and effluent. In all cases, initial 
[NH2Cl] = 10mg/l as Cl2, Cl/N 0.7 (mol/mol), no buffer added, T = 25oC. 
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Figure 23. Comparison of the chloramine demand of the 1.2µm polycarbonate membrane 
filtered DLT Plant BAC filter influent (May 11th, 2004) and effluent. In all cases, initial 
[NH2Cl] = 10mg/l as Cl2, Cl/N 0.7 (mol/mol), no buffer added, T = 25oC. 
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Figure 24. Chloramine demand exerted by BAC filter influent and effluent samples 
(September 28th, 2004), Tampa Bay Surface Water Treatment (TBSWT) Plant, collected 
after filter backwashing.  Initial [NH2Cl] = 10mg/l as Cl2, Cl/N 0.7 (mol/mol), no buffer 
added, T = 25oC.  
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