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SUMMARY 
 

This thesis focuses on the study of the size effect in the elastic-viscoplastic 

response of pure face centered cubic polycrystalline materials.  

First, the effect of vacancy diffusion is studied via the use of a two-phase self-

consistent scheme in which the inclusion phase represents grain interiors and the matrix 

phase represents grain boundaries. The behavior of the inclusion phase is driven by the 

activity of dislocations, described with typical strain hardening laws, and by the activity 

of Coble creep. The behavior of the matrix phase is modeled as elastic-perfect plastic. 

This model is then extended to account for the possible activity of Lifschitz sliding. 

Second, grain boundary assisted deformation is studied. Detailed atomic motions 

within pure tilt bicrystal interfaces are predicted via molecular simulations. It is revealed 

that grain boundaries containing C structural units exhibit particular atomic motions in 

the elastic regime characterized by “bifurcation” events. 

 The active role of grain boundaries to the viscoplastic deformation is studied with 

the introduction of a novel method allowing the scale transition from the atomistic scale 

to the macroscopic scale. A model describing the mechanism of grain boundary 

dislocation emission and penetration is informed with molecular simulations and finite 

element simulations. The macroscopic response of the material is then predicted with use 

of several self-consistent schemes, among which two novel three-phases schemes are 

introduced. The most refined micromechanical scheme proposed is based on a two-phase 

representation of the material and is valid in the elastic-viscoplastic regime and accounts 

for the effect of slightly weakened interfaces. 
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CHAPTER 1 

INTRODUCTION 

 

Over the past two decades, nanoscience in general and nanotechnologies (NT) in 

particular, have been source of strong interest in the scientific community as well as in 

the industry. Indeed, nanotechnologies can be implemented in areas as diverse as 

transportation, construction, electronic packaging, bio-engineering etc., and could result 

in substantial improvement of complex systems in terms of dimensions, mass and 

consequently in terms of energy consumption. This is obviously of great economical 

impact. Therefore, NT are already considered by many as possible precursors to a new 

technological revolution. 

 

 Let us note that NT have yet led to relatively few applications. However, 

numerous encouraging advances have already been developed. For example, atomistic 

scale studies on bio-nanomotors, corresponding to proteins or protein complexes ensuring 

vital functions in living cells such as reproduction, have lead to a better understanding of 

their detailed functioning. A schematic of three types of nanomotors is presented in 

Figure 1.1.(a) in which one can observe, from top to bottom, a kinesin, a dinein and a 

myosin V nanomotor, respectively (Vogel 2005). In a different domain, King et al. 

(2002) developed a thermal writing process on a polymer substrate based on the use of a 

heated atomic force microscope cantilever. An image of the surface of the polymer 

substrate during cyclic write/ erase steps is shown in Figure 1.1.b. Among others, it is 

shown that this thermal writing process combined with nanoimaging could be used to 



  2  

fabricate data storage devices with data density as high as 400 Gb/in2 which is four times 

larger than the maximum achievable data density in magnetic data storage devices (King 

et al., 2001). Finally, carbon nanotubes, owing to their exceptional mechanical and 

electronic properties, have been one of the most studied novel nanomaterials. Indeed, 

reported values of the critical stress at which multiwalled carbon nanotubes collapse in 

compression range from ~115GPa. to ~ 150 GPa (Lu and Zhang, 2006). Also, while first 

fabricated carbon nanotubes rarely exhibited lengths longer than a few micrometers (Li et 

al. 2005), novel methods were recently introduced allowing the fabrication of up to 

~20cm-long-single-walled carbon nanotubes (Gu et al., 2006). With this non exhaustive 

list of examples, one can easily comprehend the rational behind the excitement NT have 

been source of. 

 

    

(a)       (b) 

Figure 1.1: (a) Bio-nanomotors,   (b) Nanoindentation on a polymer substrat. 

 

Although, the word “nanotechnology” has already become a common term in our 

language, let us clearly define its significance. All systems (e.g., device, cell, material) 
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with characteristic length scale in the order of a few nanometers (e.g. 1E-9m) can be 

referred to as belonging to the generic term nanotechnology. While NT are recent, the 

concept and premises of NT were introduced more than 40 years ago. Indeed, Dr.Richard 

Feynman already discussed, in his now famous talk “There is plenty of room at the 

bottom” (1959), of the feasibility of printing and reading the 24 volumes of the 

Encyclopedia Britannica on the head of a pin. In recent article, Uyeda (1991) described 

the nanoparticule synthesis processes developed and used in Japan during World War II. 

Surprisingly, 3nm-size metal particle could already be fabricated in the early 1950s 

(Uyeda, 1991).  

 

The emergence of NT, which concept relies on the reduction of the critical length 

of a device or material, has shed light on numerous issues both fundamental and 

technological. This is the case of the experimentally measured “abnormal grain growth” 

occurring in polycrystalline metals with nano-sized grains (Moelle et al. 1995).  

 

The present research is dedicated to the study of the size effect in the quasi-static 

response of pure polycrystalline materials with a face centered cubic structure (F.C.C.). 

Indeed, as will be discussed in more details in next chapter, these materials exhibit 

unexpected responses characterized, among others, by the breakdown of the hall Petch 

law and the abnormal strain rate sensitivity. The models to be presented, aim at 

describing the response of both conventional materials and nanocrystalline (NC) 

materials. Let us recall that as discussed in Gleiter’s pioneering work (2000), 

nanostructured materials can be sorted in twelve different categories depending on their 
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chemical composition and crystal shapes. The term nanocrystalline material refers to pure 

materials with equiaxed grains. Let us note that, as discussed in recent review by Koch 

(2007) these materials could have applications in several domains. For example, 

electrodeposited NC materials can be used in the cutting tools industry. Also, Palumbo et 

al. (1997) suggested the use of electrodeposited Ni microalloys to conduct the repair of 

nuclear steam generators tubing. Finally, in the military field, the possibility of 

fabricating NC kinetic penetrators was investigated (Wei et al. 2004). 

 

Although, the structure of NC materials will be presented in details in next 

chapter, let us briefly introduce the microstructural features of NC materials. Three 

constituents compose NC materials: (1) grain interiors which exhibit a crystalline 

structure, (2) grain boundaries which correspond to the interphase between two adjacent 

grains and (3) triple junctions corresponding to regions of the material where three grains 

meet. The structure of grain boundaries and triple junctions is still subject to debate for 

there is currently no general agreement on the degree of atomic order exhibited by these 

constituents. Let us now enunciate the motivations and resulting challenges of this 

research. 

Motivations 

As mentioned in the above, abnormal size effects have been revealed in NC 

materials. The most striking example is that of the breakdown of the Hall-Petch law 

presented here below. The yield strength of conventional polycrystalline materials (with 

grain size larger than a micrometer) is known to be grain-size-dependent and is given by 

the phenomenological Hall-Petch law (Hall, 1951; Petch, 1953): 
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0

HP
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K

d
= +σ σ          (1.1) 

 

Here yσ , 0σ , d,
HPK represent the yield stress, the friction stress, the grain size and the 

Hall Petch slope, respectively. The Hall-Petch slope depends on the sessile dislocation 

interaction. As exhibited by equation (1.1), a decrease in the grain size leads to an 

increase in the yield stress proportional to the inverse of the square root of the grain size. 

From this simple empirical law it is shown that material enhancement can be successfully 

performed via structural refinement. The other improvement method generally consists of 

adding extraneous constituents to the material. Let us consider the case of pure copper which 

typically exhibits a Hall-Petch slope of0.11MPa m⋅ . Starting from a 1 micron grain size 

material with 180 MPa. yield stress, and decreasing the grain size to 50 nm, according to the Hall-

Petch law the yield stress of the fine grained copper sample will be 561MPa. In other words, the 

yield strength is multiplied by a factor 3. 

 

Four types of models were developed to describe the Hall-Petch law. All of these 

account for the interactions between sessile dislocations and grain boundaries. The first 

approach was introduced by Petch and is based on the propagation of  stresses localized 

near boundaries (which do not actively contribute to the plastic deformation) and due to 

dislocation pile-ups (Petch, 1953). However, this first model avers inappropriate since 

body centered cubic materials, in which dislocation pile-up does not occur, also exhibit a 

grain size dependent yield stress given by the Hall-Petch law.  
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In 1963, J.C.M. Li developed a model based on dislocation emission by grain 

boundary ledges (which will be discussed in Chapter 2). Grain boundary ledges can be 

assimilated as extraneous atomic layers located at the grain boundary grain core interface. 

This model is based on the stress fields localized near grain boundaries and engendered by 

the presence of Taylor-types dislocation forests near the boundaries. The dislocations 

forests are assumed to result from dislocations emitted by grain boundary ledges (Li 

1963). In this model the initial ledge density is assumed to be size independent and is 

related to the grain boundary misorientation angle. Then, the misorientation angle is 

related to the density of dislocations stored in the Taylor type forests. Murr and Venkatesh 

investigated the validity of Li’s model (Murr and Venkatesh, 1978). The yield strength 

was revealed to be strongly dependent on the initial ledge density (measured via TEM 

observations) (Venkatesh and Murr, 1978). However, contrary to Li’s hypothesis, the 

ledge density exhibited size dependence. Let us note that Murr and Venkatesh’s work has 

also shown that as predicted by Li, grain boundary ledges can emit dislocations (Murr, 

1981).  

 

The Hall Petch law can also be derived from Ashby’s reasoning (1970) in which 

the yield stress is directly dependent on the dislocation density through Taylor’s model 

(1934). The dislocation density is related to the grain size with use of the principle of 

similitude introduced by Kuhlman-Wisdorf (1962). Let us recall that the principle of 

similitude gives proportionality relations between several characteristic lengths of the 

material, such as the dislocation mean free path and the cell wall thickness for example. 
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Finally, the most up-to-date models are based on strain gradients engendered by 

the presence of geometrically necessary dislocations within the grain boundaries. 

Geometrically necessary dislocations, as opposed to statistically stored dislocations, are 

present in regions of the materials presenting curvature in their lattice. For example, this is 

the case of grain boundaries. Nye (1953) introduced a dislocation tensor relating the 

density of geometrically necessary dislocations. Several models based on strain gradient 

plasticity were successful in modeling the size dependent yield strength in conventional 

materials (Gao et al. 1999; Huang et al. 2000). For example, Cheong et al. (2005) 

modeled the size effect in F.C.C. polycrystals with a non-local strain gradient model 

implemented in finite element simulations. While the model was successful in predicting 

the size effect in conventional materials (with grain size ranging form 150 microns to 7.5 

microns), the authors reported convergence problems when the grain size was reduced.  

 

While substantial effort was being dedicated to the understanding of the 

fundamentals resulting in the observed size-dependent response of metals, novel 

techniques motivated by the appeal of the Hall-Petch law were developed allowing the 

fabrication of sub-micron size polycrystalline materials. Inert gas condensation and 

crystallization from an amorphous glass were the first two techniques introduced 

(Birringer et al. 1984; Gleiter et al. 1984).   

 

Early experiments on nanocrystalline materials exhibited interesting phenomena 

and microstructures. First, X-ray diffraction and Mossbauer microscopy suggested that 

grain boundaries exhibit neither short range nor long distance atomic order (Schumacher 
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et al. 1989). Also, the self-diffusion coefficients of the NC samples were reported to be as 

high as four times that of grain boundaries (Birringer 1988). Let us note that these 

measures were obtained on NC materials with grain size smaller than~10nm. More recent 

experiments on high purity Cu samples report limited hardening of the material (Youssef 

et al., 2004; Cheng et al., 2005). The response of NC materials will be presented in details 

in next Chapter. 

 

In the case of the size-dependent yield strength, it was shown that the Hall Petch 

law is not valid when the grain size is smaller than a critical grain size in the 

neighborhood of ~20-30nm (Gleiter 1991; Weertman 1993; Conrad et al. 2000). Indeed, it 

was observed that below this critical grain size, the Hall-Petch slope decreases and could 

take negative values (Schuh et al. 2002). This phenomenon is referred to as the 

“breakdown” of the Hall-Petch law and is presented schematically in Figure1.2. Since the 

yield strength is not an intrinsic material property, it depends for example of the loading 

history of the material, the breakdown of the Hall Petch law naturally leads to the 

following two hypothesis: (1) a change in the nature of the deformation mechanism 

governing the materials response occurs in NC materials and, (2) there is a size effect in 

the microstructure of NC materials. 
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Figure 1.2: Schematic of the evolution of yield stress with grain size 

 

Let us first discuss one of the early hypotheses suggesting that the size effect is 

due to the structure of grain boundaries which would differ in conventional 

polycrystalline materials and in NC materials. Since grain boundary thickness is not 

affected by grain size and typically ranges in the neighborhood of ~1nm (Kim et al. 2000), 

a decrease in the grain size leads to an increase in the relative volume fraction of 

interphase (e.g., grain boundaries and triple junctions). Birringer et al. in their early work 

reported grain boundary volume fraction as high as 50% (1984). Therefore, the role of 

grain boundaries shall be increasing with decreasing grain sizes. It was suggested that 

grain boundaries exhibited an amorphous structure which resulted in the softening in the 

response of NC materials (Birringer 1988). However, recent observations and molecular 

simulations (in dynamics and in statics) reported higher degrees of atomic order in grain 

1/ d  d~25 nm 

yσ Hall-Petch 
breakdown 

Hall-Petch 
regime 

d<100 nm 
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boundaries and triple junctions (Van Swygenhoven et al. 2001; Kumar et al. 2003). 

Indeed, it was shown that while triple junctions did not exhibit any particular atomic 

order, grain boundaries cannot be considered amorphous for some grain boundary regions 

may exhibit well organized structure (e.g., structural units) and some other regions may 

not show any particular organization. Hence, the size effects in polycrystalline materials 

may not be entirely attributed to the structure of grain boundaries. 

 

 This leads us to the problematic of the present research which aims at identifying 

and modeling the deformation mechanisms which may be active in NC materials in order 

to predict the size effects in pure F.C.C. polycrystalline materials. The major difficulty 

stands in the fact that the study of NC materials is relatively new. Consequently, there is a 

relatively large number of issues which are still subject to debate. Scientifically the major 

challenge is to extract data at the atomistic level, from molecular dynamics simulations or 

transmission electron microscopies, and use this knowledge to predict the macroscopic 

response of the material. In other words, this corresponds to the scale transition from the 

atomistic to the macroscopic scales.  In order to perform this scale transition, one must be 

familiar with the limitations and outcomes of the different techniques used to study NC 

materials. 

Studying tools 

 First, let us note that the investigation tools will be discussed in details later 

throughout this dissertation. The objective here is solely to concisely describe the 

advantages, limitations and domain of applications of the most commonly used 

techniques.   
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Three complimentary approaches are necessary to investigate the size effect in 

NC materials: (1) experimental studies, (2) numerical simulations, especially molecular 

dynamics and statics which are of primary use due to localized nature of the observed 

phenomena and, (3) analytical models. 

 

Obviously, numerical and analytical models will be based on, or suggested by, 

experiments. However, it is important to be aware of the several difficulties in fabricating 

and testing NC samples.  

In the case of the synthesis of samples, the five most often used processes 

generally lead to materials with defects (which type and amount is dependent on the 

fabrication process). These artifacts clearly affect the quality of the experimental 

measures and will penalize the reproducibility of the results. For example, two samples 

with similar grain sizes and chemical composition but synthesized via two different 

routes can exhibit a 200% difference in their yield strength. Hence, models cannot 

currently be confronted with rigorous statistical analysis.  

Moreover, as-produced samples typically exhibit small dimensions. For example 

Khan et al. (2000) produced cylindrical samples with height 10 mm and diameter 15 mm 

which requires the fabrication of adapted experimental apparatus.  

Finally, microstructural observation, performed mostly via transmission electron 

microscopy (TEM), has limitation inherent to the microscope itself. Indeed, the principle 

of the TEM relies on the diffraction of electrons bombarded on the sample. This leads to 

a diffraction figure corresponding to the Fourier transform of the interactions between 
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atoms given by an assumed potential. Hence, the high resolution image is obtained via an 

inverse Fourier transform of the diffraction figure. Although, TEM is an extremely useful 

apparatus since it allows material observation at the atomistic scale, it also suffers from 

several limitations. Indeed, as mentioned in the above, the high resolution image is 

conditional on the fact that a diffraction figure can be obtained. Hence, the sample 

thickness is limited by the energy required by the electrons to go through the sample. 

Typically samples have a thickness inferior to ~30nm which can potentially lead to 

relaxation phenomena (e.g., decrease in the dislocation density due to the free surface). 

Therefore, considering the few arguments presented in the above, a great care 

must be taken when analyzing experimental data. 

 

In the case of numerical simulations, with the increase in the frequency of the 

processors and in the data storage capability, it is now possible to simulate the response 

of a large number of atoms via molecular dynamics (MD) and statics (MS). Hence, 

atomic motion within a crystal can now be modeled dynamically which allows for 

example the observation of dislocation slip. MD and MS are ineluctably limited by their 

large consumption of computer resources. Among others, MD and MS simulations rarely 

allow the simulation of more than ~600000 atoms. Let us note that periodicity conditions 

can be applied to the system studied. Hence, it is capital to acknowledge the fact that so 

far molecular simulations are not representative of the geometry of the material.  

Also, in the case of MD simulations, unrealistic boundary conditions, such as 

strain rates in the order of 1.E7/s, or stresses in the order of several GPa, must be applied 

in order to simulate plastic deformation and the simulations can generally not exceed 
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several hundred picoseconds of real time. These limitations result from the fact that the 

time step used in calculations must be inferior to the period of vibration of atoms (in the 

order of the femtosecond) in order not to introduce atomic collision.  

The evaluation of the stress field via Virial’s theorem is a fundamental issue being 

debated. Indeed, Zhou (2002, 2003) discussed of the validity of the use of Virial’s stress 

to represent Cauchy stress. The author shows that while Virial’s stress accounts for both a 

kinetic and an interatomic force term, solely the second term shall be used in order to 

respect the momentum balance equation. 

Finally, owing to the complex microstructure of NC materials (e.g., grain shape, 

grain size distribution, grain boundary misorientation, triple lines...), numerical modeling 

of realistic structures avers to be very challenging.  

Hence, while MD and MS are necessary and powerful tools to model NC 

materials, one must keep their limitations in mind for they could predict the activity of 

mechanism that are not representative of the material’s response in the quasi-static 

regime. 

 

 

Extracted from(McDowell 2000) 

Figure1.3: Schematic of the different scales of resolution of plasticity. 
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 Experiments and numerical simulations provide information at the atomistic scale. 

However, as recalled by MC Dowell (2000), another difficulty resides in the scale 

transition that is to be performed to allow the quantification, at the macroscopic scale, of 

the effects of mechanisms exhibited by studies at the atomistic scale. The different scales 

of resolution of dislocation plasticity are presented in Figure 1.3. The scale transition 

from the microscopic scale to the macroscopic scale can so far be performed via two 

different routes; (1) analytical models such as continuum micromechanics and, (2) finite 

elements simulations. These two techniques have their limitations which are well known 

and will be discussed in following chapters. However, there is currently no consistent 

method to perform the transition from the atomistic scale to the microscopic scale.  

 

Goals and Strategy 

 

The size effect in the elastic-viscoplastic response of pure F.C.C. polycrystalline 

materials is investigated in this dissertation. The present research is limited to the 

quasistatic regime; the effect of temperature will be briefly studied as well as the creep 

response. 

 

The presented study has two main objectives and has applications both in the 

short term and in the long term. The first objective is to identify and model the different 

mechanisms that may contribute to the so-called abnormal behavior of NC materials. The 

identification of these mechanisms will be entirely based on an extensive literature 
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review with focuses on experiments and numerical simulations. From the literature 

review, a first map of deformation, similar in essence to Ashby’s map, will be 

established.  

The second objective is to introduce novel modeling techniques allowing the 

bridging of different scales. Moreover,  these techniques shall be highly adaptable to 

future research in the field and in other fields involving multi-physics. 

 

Considering the fact that most phenomena in the field of NC materials are still 

subject to debate, we propose a careful approach consisting of studying independently the 

effect of each mechanism and of gradually increasing the complexity of the models. This 

dissertation is organized as follows: 

 

The state of the art presented in Chapter 2, is primarily dedicated to the detailed 

presentation of the mechanical response, properties, fabrication process and models 

related to NC materials. Also, this chapter will briefly present some active deformation 

mechanisms of interest occurring in conventional F.C.C. materials. This chapter will be 

concluded with a discussion on the potentially active plastic deformation mechanisms 

(e.g., Coble creep, Nabarro Herring creep, grain boundary sliding, grain boundary 

dislocation emission…) 

 

The following chapter is dedicated to continuum micromechanics. The aim of this 

chapter is to briefly recall the fundamentals of continuum micromechanics, which is 

traditionally used to perform the micro-macro-scale transition. Moreover two novel self-
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consistent micromechanical schemes will be presented. The first scheme is a three-phase 

model where the material is equivalently represented by a coated inclusion embedded in 

an infinite matrix. The inclusion phase represents grain cores, the coating represents both 

grain boundaries and triple junctions, and the matrix phase represents the effective 

material. Interfaces are assumed perfect (no relative motion of grain is permitted). 

Inclusions are also assumed spherical. The second micromechanical scheme is based on 

on the consecutive use of two biphased topologies. This scheme is valid in the case of 

elastic-viscoplastic behaviors and allows the description of slightly weakened interfaces. 

Therefore, this scheme is particularly suited to quantify the effects of relative motions of 

grains (e.g., grain boundary sliding, grain rotation). 

 

Chapter 4 is dedicated to the study of the effect of diffusion mechanism on the 

macroscopic response of NC materials. In a first part solely the mechanism of Coble 

creep is accounted for. Let us recall that Coble creep (1963) describes the steady state 

vacancy diffusion along grain boundaries. This study was motivated by the fact that early 

experiments reported that NC materials could creep at room temperature. In this first 

attempt, the material is represented as a two-phase composite and the scale transition 

from the microscopic scale to the macroscopic scale is performed via the use of an 

extension to Eshelby’s solution to the case of elasto-viscoplasticity (Cherkaoui et al. 

2000). The inclusion phase represents grain cores while the matrix phase represents grain 

boundaries.  The viscoplastic response of the inclusion phase is governed by the activity 

of dislocations and described with the formalism developed by Kim et al. (2000), and by 

the mechanism of Coble creep. The response of grain boundaries is approximated as 
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elastic perfect- plastic. This hypothesis is based on the limited data available at the time 

regarding the response of grain boundaries.  

The model is later extended to account for the diffusion assisted grain boundary 

sliding, also referred to as Lifschitz sliding .Indeed, as in the case of vacancy diffusion, 

grain boundary sliding has been subject to in depth investigations and to debate regarding 

its possible accommodation by vacancy diffusion. 

 

The effect of grain boundary assisted deformation is presented in Chapter 5.  This 

chapter is subdivided into two sections. The first section treats of the elastic behavior of 

grain boundaries which is investigated via molecular dynamics simulations (performed 

by Dr. Spearot) and aims at revealing the peculiarities of atomic motion in interfaces in 

the elastic regime. The second section of this chapter is dedicated to the modeling of the 

grain boundary dislocation emission mechanism. Although this mechanism was first 

discussed some 40 years ago, there is no model allowing the quantitative prediction of its 

effect on the macroscopic response. The proposed model results from in depth discussion 

on the activity of intra-granular dislocation sources in NC materials and is based on a 

statistical description of the grain boundary dislocation emission mechanism. As will be 

discussed, with this description a scale transition from the atomistic scale to the 

mesoscopic scale can be performed. The parameters constants are obtained via molecular 

dynamics simulations on bicrystal interfaces. These simulations reveal the importance of 

grain boundary ledges to the emission process. Among other, it is shown that contrary to 

Li’s hypothesis, grain boundary ledges can act as dislocation sources and not solely as 

dislocation donors. The effect of grain boundary dislocation emission is estimated via the 
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use of three different micromechanical schemes (2 phase elasto-viscoplastic, 3-phase 

viscoplastic) informed by a set of finite element simulations evaluating stress 

heterogeneities that cannot be accounted for with traditional Eshelbian schemes. The 

behavior of grain interiors is driven via dislocation motion and the typical formalism 

describing strain hardening (Kocks et al. 1975; Kocks et al. 2003) is enhanced to account 

for the long distance stress engendered by the presence of grain boundaries and triple 

junctions. The effect of temperature, strain rate and the creep response of the material is 

then simulated. It is shown , among other, that grain boundary dislocation emission can 

contribute to the softening in the plastic response of NC materials.  

 

 Chapter 6 introduces a numerical scheme based on a modified strain gradient 

crystal plasticity theory to be implemented into a non-conventional finite element 

scheme. This Chapter presents a possible route allowing the quantification of the activity 

of dislocations (e.g., creation and emission from grain boundaries, transport through 

grains and absorption into grain boundaries). In order to account for dislocation emission, 

a finite element method accounting for dislocations as degrees of freedom (as opposed to 

internal state variables) is introduced. The numerical scheme composed of a global and of 

a local integration procedure at the element level and at the material level, respectively, is 

described in details. 

  

Future work is presented in Chapter 7. A procedure discussing the several steps 

envisaged to numerically model volume elements representative of real samples is 

introduced. 
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CHAPTER 2 

STATE OF THE ART 

 

 This literature review chapter is divided in two sections. The first part of this 

chapter is dedicated to conventional materials. The fundamentals of thermal activation, 

dislocation storage and annihilation will be recalled. The second part of this chapter is 

dedicated to NC materials. First, a description of the fabrication processes and resulting 

materials will be presented (e.g., inert gas condensation, ball milling, severe plastic 

deformation and electrodeposition). Second, the microstructure of NC materials 

composed of grain interiors, grain boundaries and triple junctions will be discussed. 

Third, the mechanical response and properties of NC materials will be presented from an 

experimental standpoint. Considering the importance of grain boundaries, a subsection 

will be dedicated to the presentation of existing grain boundary models based on 

dislocation and disclination unit models. This subsection is followed by a detailed 

presentation of the several mechanisms, such as (e.g., Nabarro Herrin creep, grain 

boundary dislocation emission and so forth) that have been suggested to actively 

contribute to the viscoplastic deformation of NC. This chapter is concluded with a 

discussion resulting in a proposed deformation mechanisms map. 

Conventional materials 

The elasto-viscoplastic response of conventional materials has been subject to in 

depth investigations since the early 1900s (W. 1898; Loss 1901; Nishikawa et al. 1920). 

Substantial advances were made in the field, (e.g., dislocation dynamics and phase field 
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theories) and contemporaneous models can now predict texture evolution and local 

dislocation activity on active slip systems.  

Therefore, this section does not intend to establish a detailed review on 

conventional materials, but solely to briefly recall the plastic deformation mechanisms 

active at room temperature and in the quasistatic regime. 

 

During elastic deformation, conventional materials do not sustain any irreversible 

motion of atoms. This results from the fact that inter-atomic bonds are not broken in the 

elastic regime. Hence, the system (e.g., sample) can be restored to its initially stable 

configuration.  On the contrary, plastic deformation engenders irreversible 

microstructural changes within the material. These irreversibilities are engendered by the 

simultaneous contribution of several mechanisms which contributions can depend on 

temperature, strain rate etc. Typically the plastic regime is graphically represented as the 

succession of four stages. While stage I is typically observed in single crystals, stage II 

and III are associated with athermal hardening and dynamic recovery, respectively. Stage 

IV is typically observed after large strains are imposed to the material. As discussed in 

review by Kocks and Mecking (2003), the activity of each mechanism dominating work 

hardening evolves during deformation. 

 

Locally, in the quasi-static regime and at room temperature, plastic deformation 

results from the motion of dislocations on active slip systems. The interaction between 

mobile dislocations and other mobile and sessile dislocations drives the local state of 

stress and influences the resulting microstructure. For example, in F.C.C. materials, 



  25  

mobile dislocations are typically stopped at grain boundaries which are regions of high 

density of geometrically necessary dislocations (Zhonghao et al. 1995). This leads to a 

pile-up of dislocations leading to an increase in the stress required to activate the glide of 

dislocations. Prior to presenting the mechanisms involved in work hardening theories, let 

us discuss the fundamentals of the modeling of thermally activated mechanisms such as 

dislocation glide. 

Thermal activation 

 Mathematically, thermally activated mechanisms are described as the product of a 

fluctuation term and of a term describing the average effect of the mechanism studied at 

the microscopic scale (Kocks et al. 1975). Hence, one can write:  

 

0 tPγ γ=ɺ            (2.1) 

 

Here γɺ , 0γ and tP represent the strain rate engendered by the event considered (dislocation 

glide for example), the average strain engendered by the event and its activation rate, 

respectively. Let us note that the inverse event (dislocation motion in the opposite 

direction in this case) is not taken into account in equation (2.1). 

 

The activation ratetP  depends on the frequency of thermal fluctuation. In the case 

of dislocation glide, it can be considered as the product of the frequency at which a 

dislocation attempts to go through obstacles (here lattice atoms) by the probability that a 

fluctuation in the dislocation energy is greater than a critical value for a glide event to be 

successful.  
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Two different approaches can be used to evaluate the frequency factor: (1) the 

kinematic approach and, (2) the statistical approach (Kocks et al. 1975). In the kinematic 

approach the reaction paths, that is the different positions of a dislocation during its 

motion, is supposed known and the frequency in the direction of the reaction coordinate 

is evaluated, while in the statistical approach all reactions paths are considered.  

 

The probability of success, p, is given by a Boltzmann distribution. 

Fundamentally, it represents the probability that the energy fluctuation in the system 

considered (e.g. the dislocation) is superior to a given value G∆ , representing the 

activation enthalpy.  Hence, one obtains the following Arrhenius law: 

 

exp
G

p
kT

∆ = −             (2.2) 

 

‘ p ’, ‘ G∆ ’, ‘ k ’‘ T ’ represent the probability of success of the event, the activation 

enthalpy, Boltzmann’s constant and the temperature, respectively. It can be noted that at a 

given value of the activation enthalpy an increase in the temperature leads to an increase 

in the probability of success.  

 

Let us take the example of a dislocation glide event. A schematic of a dislocation 

glide resistance diagram is presented in Figure 2.1. It presents the product of the shear 

stress by the Burger’s vector as a function of the distance traveled by a dislocation. In 

other words Figure 2.1 represents the evolution of the state of stress perceived by the 

dislocation during its motion. The state of stress is due, among other, to the Nabarro 
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Peierls forces imposed by the atoms surrounding the dislocation. Dislocation glide is 

successful if a dislocation moves from a stable configuration, denoted ‘a’, to an unstable 

configuration with positive driving force. This configuration is noted ‘b’ in Figure 2.1. 

When configuration ‘b’ is reached, the dislocation can continue its motion without 

external energy input. Finally let us note that Figure 2.1, represents a one-dimensional 

dislocation glide resistance diagram with know reaction coordinate. 

 

 Let us now discuss the signification of the free enthalpy of activation. A work 

input, denoted W∆ , is required to move a dislocation from state ‘a’ to state ‘b’. If the 

stress applied on the dislocation is smaller than the maximum stress on the dislocation 

glide resistance diagram, dislocation glide cannot occur without additional energy input. 

This required energy input, defining the activation enthalpy, is engendered by thermal 

fluctuation. As recalled by Kocks and Ashby (1975), the definition of the activation 

enthalpy in mechanics is equivalent to the one in thermodynamics solely when no other 

work terms are present. 

  

 

Figure 2.1: Schematic of a dislocation glide resistance diagram. 
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Since the evaluation of the activation enthalpy is rather complex, empirical laws of the 

following form are typically used: 

 

0 1
ˆ

lr

G F
σ
σ

  ∆ ≈ −               (2.3) 

 

Here 0F represents Helmholtz free energy. Consequently, it represents the energy 

necessary for a dislocation to glide at zero Kelvin. In the case of dislocation glide, 

σ̂ corresponds to the maximum stress reached in the dislocation glide resistance diagram 

and the parameters r an l describe its shapes. Also, these two parameters are bounded as 

follows: 

  

0<r<1  and  1<l<2         (2.4) 

 

In the case of dislocation glide, a power law form is often preferred to the exponential 

expression of the probability of successful glide (Kocks 1976; Estrin et al. 1984; Estrin 

1998; Kocks et al. 2003). σ̂  depends on the store dislocation density. This stress 

corresponds to the yield stress at zero Kelvin and is typically given by Taylor’s relation 

(1934) and written as follows: 

 

ˆ bMGσ α ρ=           (2.5) 
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Here b, M, G, α andρ  represent Burger’s vector, the Taylor’s factor, the shear modulus, 

a numerical constant and the stored (immobile) dislocation density. Let us note that 

equation (2.5) holds in the case where only dislocations-dislocations interactions are 

considered.  

 

 More refined models make the distinction between geometrically necessary 

dislocations and statistically stored dislocations (Ashby 1970) and their edge and screw 

components (Cheong et al. 2004; Cermelli and Gurtin 2002). However, independently of 

the approach selected (e.g., crystal plasticity, work hardening models, strain gradient 

plasticity), the stress-strain relation depends on the evolution of the dislocation density. A 

modeling approach based on strain gradient crystal plasticity will be presented in Chapter 

6. 

The evolution of the dislocation density with strain results from the evolution of 

the contribution of two antagonists phenomena: (1) dislocation storage and (2) 

dislocation annihilation. These two mechanisms are briefly presented in the next two 

subsections. 

Dislocation storage 

Dislocation storage is described in a strictly statistical manner. Also, experiments 

have shown that except for the temperature dependence of the elastic constants, 

dislocation storage is an athermal process. This was extensively discussed in review by 

Nes (1997).  
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The increase in the material’s strength with increasing strain is thus explained by 

the fact that dislocation storage results in a decrease in the mean free path of dislocations. 

Precisely, mobile dislocation can become sessile when they meet obstacles such as other 

stored dislocations and grain boundaries, which in the case of conventional materials 

have a passive role of barrier to the dislocation motion. Considering equation (2.1.5), one 

can conclude that an increase in the stored dislocation density leads to an increase in the 

stress required to engender plastic flow. The link between the dislocation density and 

their mean free path is obtained via the use of the principle of similitude introduced by 

Kuhlman-Wilsdorf (Kuhlman-Wilsdorf 1962).  

 

Let us note that the less refined approach, in terms of description of the type of 1- 

dimensional defects, do not make the distinction between the type of dislocations (e.g., 

statistically stored dislocations, geometrically necessary dislocations…). This is the case 

of the first approach developed by Kocks and Mecking (Kocks 1976; Mecking et al. 

1981) and their subsequent evolutions (Estrin et al. 1984; Estrin 1998; Kim et al. 2001; 

Kocks et al. 2003). Moreover, these approaches cannot successfully predict the Hall 

Petch law while models based on strain gradient can. Finally, the predicted mean free 

path is usually 10 to 30 times larger than that experimentally measured.  

Dislocation annihilation 

Although the mechanism of dislocation annihilation was discovered some 50 

years ago with the work of Stokes and Cottrel (Stokes et al. 1954), a consensus has not 

yet been reached regarding its expression (Nes 1997; Kocks and Mecking 2003; Cheong  

et al. 2004). The annihilation of stored dislocations is a thermally activated mechanism 
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occurring at recovery sites when edge or screw dislocations of opposite signs meet. A 

schematic presenting the process of annihilation of edge and screw dislocations is 

presented in Figure 2.2 (a) and (b), respectively (Nes 1997). In Figure 2.2 (a) dislocation 

annihilations occurs when two edge dislocations, denoted 1E and 2E , of opposite signs 

meet. The average distance between these dislocations is proportional to the inverse of 

the square root of the dislocation density, denotedρ . Figure 2.2 (b) shows the 

annihilation of screw dislocations via cross slip.  Note here that the recovery mechanisms 

discussed in the above represent the simplest “picture” of dynamic recovery. 

 

 

Extracted from Nes (1997) 

Figure 2.2: Schematic of the dislocation annihilation mechanism (a) glide and slip of an 

edge dislocation and (b) cross-slip of a screw dislocation. 
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Several different models describing dynamic recovery were proposed.  The type 

of mechanism controlling the annihilation process (e.g. slip, cross slip, double cross slip) 

is still subject to debate. For example, Nes (1997) describes dislocation annihilation via 

the thermally activated jump of screw dislocations while Kock and Mecking (2003) 

proposed a model based on the rearrangement of mobile dislocations. Let us note that the 

previously mentioned authors have proposed several other models for dynamic recovery 

in the past (Kocks 1976). 

Nanocrystalline materials 

In what follows the nomenclature developed by Kumar et al. (2003) will be used. 

Hence, polycrystalline materials with an average grain size ranging from 1 micron down 

to 100 nm will be referred to as ultrafine (UF) grained materials while the terminology 

NC materials will apply to polycrystalline materials with grain size smaller than ~100nm. 

 

As will be shown later throughout this chapter, in both the UF and NC regime, a 

decrease in the grain size leads to substantial increase in the volume fraction of grain 

boundaries and triple junctions. Recall that, as mentioned in Chapter 1, the abnormal 

response of NC materials (e.g., Hall-Petch breakdown, strain rate sensitivity, plastic 

response) cannot be considered to result entirely from a change in the microstructure of 

grain boundaries. Hence, it is reasonable to suppose that in the NC regime, the relative 

contribution of dislocation glide, which dominates the response of conventional 

materials, will decrease to the benefit of one, or more, other mechanisms.  
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Several mechanisms have been suggested to actively contribute to the viscoplastic 

deformation of NC materials. First, the activity of diffusion based mechanisms, typically 

active at high temperatures in the case of conventional materials, was suggested. Second, 

solid motion of grains via rotation and sliding (accommodated or not by vacancy 

diffusion) has also been investigated. Third, it was also suggested that a change in the 

role of grain boundaries, which play a passive role of barrier to dislocation motion in the 

case of conventional materials, could occur in the NC range. Indeed in the UF and NC 

regime, grain boundaries may act as dislocation sources and sinks. 

  

This section focuses on the different fabrication processes and resulting 

microstructures of UF and NC materials. A subsection will be dedicated to grain 

boundary modeling. Then, this chapter will be ended with a literature review on 

experimental studies, numerical and theoretical models and on the different mechanisms 

sited in the above. 

Fabrication processes 

 One of the main difficulties in confronting model predictions to experimental 

data stands from the lack of reproducibility of experiments which prevents the validation 

of models via rigorous statistical analysis (e.g., goodness of fit, hypothesis testing etc.). 

This limitation results partially from the complexity of the fabrications processes 

available to synthesize bulk NC samples. Moreover, the microstructure of the as-

processed material (e.g., grain size distribution, texture, average grain boundary 

misorientation, amount of vacancies, voids, cracks, twins and so forth) is highly 

dependent on the fabrication process and on the experimental set-up. For example, 



  34  

studies by Ebrahimi et al. (2006) on NC Ni fabricated via electrodeposition revealed that 

the grain size distribution of electrodeposited samples is generally wider than that of 

samples prepared via inert gas condensation.   

 

Obviously the difference in microstructures, resulting from the use of a particular 

fabrication process, will result in differences in the mechanical response of the samples. 

In the case of NC materials, these differences can be very large. Also, so far samples are 

mostly fabricated in academic laboratories which all have their own “recipe”. 

Consequently, two samples fabricated with the same procedure but in different 

laboratories can have different microstructures and inevitably different responses. Let us 

provide a couple examples to demonstrate the large variations in the responses of samples 

that can result from the use of different processes. Sanders et al. (1997a) report a yield 

stress of 365 MPa. and a 3% maximum elongation on Cu samples produced by inert gas 

condensation with nominal grain size of 26 nm while tests on 30 nm grained Cu samples 

produced by surface mechanical attrition treatment (similar to the ball milling process) 

exhibit the same limited ductility but a yield stress in the order of 760MPa (Wang et al. 

2003). Moreover, samples with similar grain size but produced by cryomilling (ball 

milling in a liquid nitrogen environment) exhibit a high yield stress of 688 MPa. and a 

much higher maximum elongation in the order of 12% (Cheng et al. 2005).  

From the large differences in the experimentally measured responses, the reader 

can assess of the difficulty in validating theoretical models. Let us note that over the past 

decade substantial progress was made in the fabrication of NC materials. This will be 

discussed later throughout this chapter. The quality of samples has greatly improved and 
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the variation in measured data has significantly decreased (for a similar fabrication 

process). With the above discussion, it appears critical to have a solid understanding of 

the various fabrication processes and of the resulting microstructures.  

 

In general, the processing routes for NC materials, presented in Figure 2.3, can be 

sorted in two categories (Koch 2007; Meyers et al. 2006): (1) one-step approaches and, 

(2) two-steps approaches. One-step approach directly lead to a NC sample and does not 

require any compaction step while the two-step approach consists first of synthesizing 

nanoparticules and then compacting the resulting powder in order to obtain a bulk NC 

sample. The most frequently used one-step processes are severe plastic deformation, 

which encompasses a large family of processes, and electrodeposition. Within the family 

of severe plastic, the most often used techniques are equal channel angular pressing 

(ECAP) and high pressure torsion (HPT). As mentioned in the above, the first step 

composing 2-steps processing routes is the synthesis of nanoparticules which can be 

achieved via solid, vapor, liquid or mixed routes. Several different techniques, presented 

in Figure 2.3 can be used for each synthesis route. The most used techniques, to be 

presented in this chapter are ball milling, which is a solid processing route and physical 

vapor deposition. 

 

Let us first present Physical vapor deposition and mechanical alloying (two-step 

processes). Nanoparticules synthesis will be presented first. Then a general presentation 

on compaction will be given.  
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Figure 2.3: NC materials processing routes. 
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Physical vapor deposition 

Inert gas condensation (IGC) is the most widely used physical vapor deposition 

process. It was one of the first methods which were developed, or more precisely adapted 

to the fabrication of bulk NC samples, in pioneering work by Gleiter. Indeed as discussed 

in extensive review by Uyeda (1991), the evaporation of a metallic source was already 

mastered in the early 1960s. For example, Morimoto and Sakata (1962) synthesized 

F.C.C. metals nanoparticules (~3 nm in diameter) via evaporation on a carbon thin film. 

IGC, which is a bottom up approach (the sample is created from the assembly of 

particles), is a rather complex process which fundamentals are recalled in what follows. 

A schematic of an IGC apparatus is presented in Figure 2.4, extracted from Morris 

(1998). The process of condensation of vaporized metals in contact with an inert gas can 

be divided in three steps. First, a metallic gas is formed in a vacuum chamber via the 

evaporation of a metallic source. Second, the metallic gas particles will condense in 

contact with a cold inert gas, such as Ar or He, and form atom clusters. These clusters are 

then transported on a cold finger via convection. Third, the clusters will grow on the cold 

finger and will then be collected simply by scrapping the cold finger. The following step, 

discussed later in this section, is obviously the compaction step. 
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Figure 2.4: Schematic of an IGC device. 

 

 

Let us now discuss the three steps involved in IGC (e.g. 1: Evaporation of the 

metal source, 2: condensation and, 3: growth and collection). The evaporation of a 

metallic source can be understood with simple thermodynamics. Indeed, increasing the 

temperature of a metal at a given pressure will result in the evaporation of the source.  

Several techniques can be used to perform this operation (e.g., resistive heating, ion 

sputtering, plasma/laser heating, radio-frequency heating, and ion beam heating). The 

simplest technique is resistive heating; an electrical current is used to heat a resistive coil 

in which the source is placed (see Figure 2.5, extracted from Uyeda 1991). Resistive 
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heating is usually limited by the number of evaporation cycle which can be performed (5 

to 10 cycles at most). This operation is performed in an inert gas atmosphere and pressure 

and temperature control the particle size. 

 

 

 

Figure 2.5: Resistive heating evaporation source. 

 

 Evaporation can also be performed via the method of Grandvquist and Buhram 

(1976) which original apparatus is shown in Figure 2.6. This method was used to 

synthesize Fe, Al, Cr, Co, Zn, Ga, Mg and Sn particles. As can be observed in Figure 2.6, 

the apparatus contains a crucible, in which the metallic source is placed. The crucible is 

placed near a graphite element which is heated with optical pyrometer. The system is 

placed in a glass cylinder fitted with water tubes used to cool a Cu plate (used for particle 

collection). The process is performed at low pressure in the order of 50 Pa, usually in an 

Ar atmosphere and the resulting particle size distribution is log-normal. 
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Figure 2.6: Schematic of the apparatus used for evaporation from a crucible.  

 

 Second, the vaporized metal will condense in contact with an inert gas. 

Condensation occurs near the metallic source and results in a supersaturated vapor 

refered to as “smoke”. Each smoke particle usually contains a single crystal.  

The shape of the smoke depends on several parameters such as pressure, 

temperature and gas density. A schematic of a typical smoke is presented in Figure 2.7. 

The observed smoke is usually composed of four zones (except for the case of 

vaporization from a crucible). The first zone, referred to as inner zone is composed of 

particles smaller than that present in the intermediate zone (zone 2). The third zone, 

referred to as outer zone results. In most cases, the metal smoke can be divided in four 

zones: (1) the inner zone, (2) the intermediate zone, (3) the outer zone and (4) the vapor 

zone. However, let us note that in the case of vaporization from a crucible only a single 

region can be observed.  Experimentally (Ohno et al. 1976), it was shown that particles in 
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the inner zone are smaller than that of the intermediate zone (located between the inner 

front and the outer zone). This is presumably due to the fact that the particle growth 

mechanism is assisted by the diffusion from the vapor zone below the inner zone. The 

outer zone is composed of the vapor formed below the inner zone and then convected 

upwards.  

 

 

Figure 2.7: Schematic of a typical smoke.  

 

Third, the condensed particles will grow and be transported onto a cold finger (or 

plate) prior to be collected. Particles can grow via tow different mechanisms 

corresponding to: (1) the absorption of other particles within the vapor zone and, (2) the 

coalescence of particles. The latter occurs mainly in the case of small particles. The 

powder is usually collected by scrapping it from its fixation surface. Let us note that the 

microstructure of the sample can be affected by the collection step. As shown in Figure 

2.8, spiral shapes can result from the collection of the particles with the scrapper. The 

spirals are composed of nanograins with poor interface bonding (Agnew et al. 2000). 
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Figure 2.8: Spiral morphology revealed by chemical etching of compacted 

nanocrystalline Cu.   

Mechanical alloying 

Mechanical alloying (MA) is a fairly simple process. It is a “top-down” approach 

which underlying concept is that an initially coarse microstructure in a powder form 

(with grain size in the range of several microns) can be refined via cyclic welding and 

fracture of the powder particles. A variety of mills are currently commercialized such as 

standard mills, shaker mills, planetary mills and ball mills. These are usually preferred to 

the other ones. A schematic of a ball mill is presented in Figure 2.9 (for the sake of 

simplicity, the metallic powder is not represented). The apparatus is composed of a sealed 

vial containing the powder to be refined. Steel balls are introduced into the vial and the 

rotating rod is activated at relatively high frequency (e.g. several hundreds of rpm). 

Energy is provided to the powder particles via contact with the milling balls. This leads to 

the continuous welding and fracture of the powder particle. 
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Figure 2.9: Schematic of a ball mill. 

 

 Each powder particle can contain several grains. Usually, in the case of 

cryomilling (milling in a liquid nitrogen environment), the first hours of milling are 

dominated by the welding of particles while the latest stages are dominated by the 

fracture of the powder. Hence, during the first hours of milling, the powder particles 

grow (but the grain size decreases continuously) while in the last hours of milling the 

particle size decreases. In order to avoid the coalescence of the powder, small quantities 

of control agents such as stearic acid or methanol are typically added into the vial (Khan, 

2000). 

 

The minimum grain size that can be achieved is dependent on several parameters 

such as the milling time, the type of powder, the ball size, the ball to powder ratio (in the 
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order of ~ 10 to 1). A plot of the evolution of grain size of a Fe powder with milling time 

is presented in Figure 2.10 (extracted from Khan et al. 2000). It can observed that the 

grain size significantly decreases prior to reaching a plateau (usually in the range of ~15-

20nm). This minimum grain size is referred to the steady state grain size. Interestingly, it 

only shows a weak dependence on the milling temperature.   

 

 

Figure 2.10: Experimental grain size versus milling time measurements for iron 

powders. 

 

The refinement in the grains composing the powder particles results from the 

large strains applied to the particles when an entrapment event occurs. This leads to 

severe plastic deformation within each particle. It was shown via X-ray analysis that 

grain refinement occurs via the succession of three distinct stages (Fecht, 1992). First, the 

initial powder containing micron-sized deforms plastically via dislocation activity (e.g. 

storage, annihilation) localized in shear bands. A TEM bright field image of AIRu  

powder after 10 minutes of milling is presented in Figure 2.11. One can observe the 

presence of shear bands denoted with black arrows (Fecht, 2006). Second, low angle 
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grain boundaries are generated from the recombination of dislocation arrangements. In 

other words an initial grain becomes subdivided in subgrains. The grain boundaries are 

low misorientation angles type boundaries. Let us note that mechanical twins are usually 

created in this second stage (Huang et al. 1995). Finally, the third stage corresponds to 

the reorientation of the subgrains into large angle grain boundaries which leads to a 

refined microstructure. The stress imposed by the milling balls controls the resulting 

grain size. The generated grain boundaries are typically well ordered and present some 

noticeable curvature and strain. Let us note that this does not preclude the presence of 

less ordered regions within the cluster of grains composing the powder. 

 

 

Figure 2.11: TEM bright field image of AIRu powder after 10 minutes of milling. 

The shear bands are shown with arrows. 

 

In recent study aiming at establishing a clear link between the parameters used 

during the milling procedure (e.g., milling frequency) and the resulting microstructure, it 

was shown that the obtained microstructure is highly dependent on the shock energy 
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during an entrapment event (Boystov et al. 2007). Indeed, XRD measurements on NC Cu 

prepared with a planetary mill revealed that the dislocation density (in the order of 

16 210 m− ), the ratio of edge to screw dislocations and twin density are non monotonically 

dependent on the shock energy. For example, the dislocation density increases linearly 

with shock energy until a critical value is reached at which the dislocation density 

decreases with an increase in the shock energy. 

 

 In order to reduce the contamination of the powder by the milling balls and to 

increase the rate of refinement, ball milling can be performed in a liquid hydrogen 

environment at temperatures in the neighborhood of ~70K. This process is referred to as 

cryomilling and has proved to lead to extremely high quality samples. Indeed considering 

the high surface to volume ration of nanoparticules, contamination of the powder is a 

critical issue. Precisely, the control agents and balls can introduce non negligible amount 

of impurities within the powder. For example, ball milling (with Cr balls) of TiAl powder 

at room temperature lead to the presence of O (0.77 wt. %), N (0.27 wt.%) and Cr 

(0.0021 wt. %)  after 25 hours of milling (Bhattacharya et al. 2004).  

 

 As will be discussed in a subsection dedicated to the mechanical response of NC 

materials, one of the main difficulties consists of fabricating a material that reaches an 

acceptable strength/ductility compromise. Recently, it was shown that the cyclic 

combination of room temperature milling and cryomilling can lead to materials with low 

defect content, high strength, ductility larger than 10% and a narrow grain size 

distribution (Youssef et al. 2004).  The resulting grain size distribution is presented in 
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Figure 2.12. 

 

Figure 2.12: grain size distribution obtained after mixed cryomilling and room 

temperature milling of Cu on a count of 270 grains. 

Powder consolidation 

Let us now briefly present the different consolidation techniques used to compact 

powder nanoparticules. Several compaction routes can be used, such as cold compaction, 

warm compaction, hot isostatic pressing (also referred to as HIPing) and sintering. The 

objective is obviously to obtain a sample with maximum density and optimal particle 

bonding that retains all of its nanofeatures. Let us note that the theoretical density cannot 

be achieved since the density of grain boundaries is smaller than that of grain cores. 

Indeed, grain boundaries typically exhibit excess volume (in the form of vacancies or 

vacancy clusters), or as more appropriately termed by J.C.M. Li porosity (2007), which 

prevent the consolidation of NC materials to the theoretical density of a crystal lattice. 

The porosity of grain boundaries was suggested in transmission electron microscopy on 

NC 33 67Ni Zr  produced by crystallization (Liu et al 1997). Also, Li et al. (1993) observed 
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the presence of nanovoids in grain boundaries on a NC Pd sample produced by IGC.  The 

consolidation of NC powders has greatly improved in the past decades and densities as 

high as 99% can now be obtained (Jia et al. 2003). Moreover, it is desired to obtain a 

good control on the grain size distribution. Indeed, it was shown in recent model by Zhu 

et al. (2006) that the variance of the grain size distribution can affect the ultimate stress. 

Precisely, supposing a log-normal distribution of the grain size, it was shown that the 

ultimate stress of Ni could decrease by up to 25% when the variance is increased from 50 

to 200. 

 

 Let us now briefly discuss three possible compaction procedures: (1) cold 

compaction, (2) sintering and (3) hot isostatic pressing. Cold compaction simply consists 

of submitting a powder placed in a die to high pressures (in the order of ~3GPa) at room 

temperature or slightly above room temperature (T~300 C). The compact obtained is 

usually refered to as Green compact and its properties depend on the initial powder 

density, the die’s geometry, and the pressure (Gutmanas 1990). The consolidation of the 

powder results from the activity of viscoplastic deformation mechanisms such as grain 

boundary sliding and vacancy diffusion (Gutmanas et al. 1994). Hence an increase in the 

temperature facilitates the activity of these mechanisms resulting in higher densities. 

However, since nanoparticules exhibit low thermal stability, increasing the temperature 

may lead to a loss of the nanofeatures. Indeed, as discussed by Song et al. (2006), while 

in the case of conventional materials grain growth is typically modeled with a constant 

grain growth exponent (~ 2), NC materials exhibit time dependent grain growth exponent 

ranging from to 2-4 which is representative or rapid grain growth above a critical 
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temperature. 

 

Second, sintering corresponds to the application of high temperatures (below the 

melting point) to the powder without pressure. Sintering is usually preceded by a cold 

compaction step at low pressure leading to a Green compact with density in the 

neighborhood of 60-80% of the theoretical density (Gutmanas 1990). Typically sintering 

leads to a relative loss of the nanofeatures which results from the low temperature 

stability of nanoparticules. Hence, this compaction route is less often used than cold 

compaction or HIPing.  

 

Hot isostatic pressing (HIPing) can be regarded as a compromise between cold 

compaction and sintering since it consists of applying moderate temperatures and 

isostatic pressure simultaneously to the compact. The applied temperatures are typically 

lower than that in sintering. Hence, grain growth is less prominent during the 

consolidation process. However, large grains in NC samples consolidated by HIPing are 

often observed (Tang et al. 2005). For example, Hayes et al. (2004) report a bimodal 

distribution on NC Al produced by cryomilling followed by HIPing. 

 

Let us now present two one-step processes. First, severe plastic deformation will 

be exposed. Precisely, HPT and ECAP will be presented. Then, NC materials synthesis 

via electrodeposition will briefly be presented. 

Severe plastic deformation 

Severe plastic deformation procedures are top-down approaches that simply 
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consist of applying large strains to a bulk sample with conventional grain size in order to 

refine its microstructure. These approaches present the noticeable advantage of leading to 

specimens of relatively large dimensions with perfect density and negligible impurity 

content. Also, since a consolidation step is not necessary, severe plastic deformation is 

more time efficient. However, the major limitation of this approach is the minimum 

achievable grain size which typically lies at the border between the UF range and the NC 

range (d~80-100nm). There are numerous severe plastic deformation based procedures, 

HPT and ECAP being the most frequently used, that all rely on the core idea that the 

application of large strains to a sample will create a large number of dislocation which 

will refine the microstructure after rearrangement into high angle grain boundaries. 

ECAP 

A schematic of an equal channel angular pressing (ECAP) apparatus is presented 

in 2.13. ECAP consists of repeatedly extruding a sample bar (circular or squared) into a 

die containing two channels.  Typically, the bar has relatively large dimensions (superior 

to a cm on each side). The channels form an inner angle φ  and have an outer angle of 

curvature denoted by ψ (Langdon and Valiev 2006). While a single pass will lead to a 

highly inhomogeneous state of deformation within the bar, the application of several 

passes will homogenize the strain field and will consequently lead to a more 

homogeneous structure. This was observed in hardness measurements on ECAP 

processed Al which revealed increasing homogeneity of the Vickers’s hardness with 

increasing number of passes (Xu et al. 2006) 

 

The bar can be rotated in between passes. Each type of rotation defines one of the 
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four existing routes; (A) the sample is not rotated between passes, (BA) the sample is 

alternately alternatively rotated by a +/-90 degree angle about its longitudinal axis 

(denoted by the green arrow in figure 2b), (BC) the sample is rotated by a 90 degree 

rotation angle between passes and the rotation direction is kept constant and (C) the 

sample is rotated by 180 degree between passes. 

 

The obtained microstructure will clearly depend on the selected processing route. 

For example, route A and C lead to elongated grains while route Bc leads to more 

equiaxed grains (Xu et al. 2006). However, as discussed in review by Langdon and 

Valiev (2006) the billet velocity has negligible influence on the resulting microstructure. 
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Figure 2.13:  (a) Schematic of the ECAP process for a rod (b) cut of the die showing the 

channels geometry. 

 

The strain imposed following each pass is clearly dependent on the number of 

passes and on the geometry of the die defined by its inner and outer angles. Using 

Iwashi.’s model (1996) one can observe a plot of the evolution of the net strain with 

respect to the inner and outer angle of the die with a number of passes equal to 1 (see 

Figure 2.14). Among others, one can see that the die angle φ  has a very large influence 

on the net strain applied. Typically the die angle is slightly larger than 90 degrees for it 

has proved to lead to more equiaxed microstructures. Note here that while inner angles 

smaller than 90 degrees lead to larger strains, these geometries cannot be used since it 

leads, in most cases, to cracks in the billet (Langdon and Valiev  2006). 
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Figure 2.14: Evolution of the equivalent strain after 1 pass as a function of φ and ψ . 

 

The details of the grain refinement process are still subject to debate. Though, it is 

suspected to result from the rearrangement of dislocations. Indeed, in the early stage of 

deformation, dislocations may create dislocation walls leading to the presence of 

elongated cells. Additional dislocations are then blocked on the subgrains walls. These 

cell walls will then break up and form high angle grain boundaries. This hypothesis 

emerges from the observation of the evolution of the grain boundary misorientation 

angles on Cu samples after 0, 2, 4 and 8 passes presented in Figure 2.15 (Mishra et al. 

2007). While the initial microstructure is mainly composed of high angle grain 

boundaries, the low-angle-grain-boundary content increases sharply after 2 passes. 

Subsequent passes lead to an increase in the high-angle-grain-boundary content which 

suggests that grain refinement occurred respecting the aforementioned hypothesis. Hence, 
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grain refinement in ECAP processed materials would occur in a manner similar to that 

during ball milling. 

 

 

Figure 2.15: Evolution of the grain boundary misorientations angle in ECAP processed 

Cu sample (a) initial configuration, (b) after 2 passes, (c) after 4 passes and (d) after 8 

passes.  

HPT 

The simultaneous application of high pressure and torsion to a bulk sample also 

results in the refinement of the initial microstructure. The apparatus, schematically 

presented in Figure 2.16, is simply composed of a die and of a plunger. 

 

Samples are usually smaller than that processed via ECAP with diameter in the 
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range of ~2 cm and relatively small thickness in the order of ~0.2-10mm (Lowe and 

Valiev 2000). Large strains are imposed to the sample via the application of pressure, in 

the order of several GPa, and the application of large twists angles (up to ~5 turns).  

 

Considering the geometry of the apparatus, one would expect to observe highly 

inhomogeneous state of strain within the sample. 

 

 

 

 

 

Figure 2.16: Schematic of the cut of an HPT apparatus  

 

P 
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Grain refinement during HPT is similar to that occurring in ECAP. Precisely, 

microstructural evolution is dislocation driven and occurs via the formation of subgrains 

which will split to form high angle grain boundaries under the application of large strains 

(Fecht 1992). However due to the geometry of the apparatus, it is obvious that the center 

of the sample will sustain less deformation (in shear) compared to the extremities of the 

disk. As reported in HRTEM investigation by Liao et al. (2004), this results in a non 

homogeneous structure.  

 

As reported by Jiang et al. (2000) the resulting microstructure presents a relatively 

strong texture. This is clearly suggested by the evolution of XRD patterns with increasing 

number of turns presented in Figure 2.17. The Cu sample was submitted to a high 

pressure of 5GPa. and XRD patterns were measured after 0, 1/2, 1 3 and 5 turns. While a 

randomly oriented sample typically exhibits a {111} to (200) peak high ratio of 2.17, it 

can be observed that this peak ratio increases with increasing number of turns. This 

shows that the resulting microstructure exhibits a well pronounced texture. Although 

dislocations are reported to be hard to find in the samples, some regions present high 

defect densities presumably due to dislocation debris. Zhu (2006) observed the presence 

of twins within HPT processed Cu samples. The mechanical twins found in the samples 

were reported to be formed of partial dislocation emitted by grain boundaries. Similar 

observations were reported by Liao et al. (2004a). 
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Figure 2.17: XRD diffraction patterns of Cu sample submitted to different turns. 

Electrodeposition 

Electrodeposition is a well known technique, used in many different fields, such as 

the automotive industry where thin layers of chromium are deposited in metallic parts in 

order to improve their resistance to corrosion. This process consists of introducing an 

anode (composed of the metal to be deposited) and a cathode in an electrolytic bath. The 

bath contains the metallic ions to be deposited. The anode and cathode are then submitted 

to a current. Deposition of the atoms composing the anode onto the cathode (substrate) 

occurs via oxidation of the anode. The novelty stands in the fact this process also allows 

the fabrication of NC materials with very small grain size, usually smaller than ~20nm, at 

a relatively high deposition rate (Cheung et al. 1995). 

 

The grain size can be controlled by appropriately adjusting the bath composition, 

the pH, temperature and current intensity in order to promote grain creation rather than 

grain growth (Erb 1995).  For example, in work by Ebrahimi et al. (1999) on the effect of 
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pH on the grain size of NC Ni, it was shown that the grain size decreases with an increase 

in the pH. Also, the substrate can influence the grain size. Indeed, a Ni sample deposited 

on a cold laminated Cu substrate will exhibit larger grain size than an Ni sample deposited 

on a heat treated Cu sample (Ebrahimi et al. 2003). 

 

Typically, the obtained grain size distribution is relatively sharp and the sample 

will exhibit strong texture ( (100) in the case of Ni) (Cheung et al. 1995). The texture 

tends to decrease with decreasing grain size (Ebrahimi et al. 1999). Also, grain boundaries 

do not exhibit major difference with respect to that found in conventional materials. 

Electrodeposited samples typically have a lower purity than materials processed by other 

approaches. Indeed the presence of oxygen atoms and sulfur atoms can usually be 

detected. This will clearly affect the ductility of the sample. 

 

Finally, the resulting samples exhibit large difference with that obtained by two –

step methods (Erb et al. 1997). For example, electrodeposited samples usually have a 

Young’s modulus similar to that of conventional materials while in the case of two step 

methods difference up to 80% have been reported. However, let us note that hardness 

measurements dot not exhibit a large dependence on the fabrication process (Erb et al. 

1997). 

Structure and observations 

NC materials are composed of grain cores, also refered to as grain interiors, grain 

boundaries and higher order junctions (triple junctions, quadruple junctions). Grain 

boundaries and junctions form an interphase region as opposed to an interface region 



  59  

with no attached thickness. A particular feature of NC materials stands in the high 

interphase/core volume fraction ratio. Indeed, a decrease in the grain size ineluctably 

results in an increase in the volume fraction of the interphase region.  Supposing a 

tetracaidecahedral grain shape, which appears to be realistic, the volume fraction of 

interphase, grain boundaries and triple junctions can be estimated as follows (Sun et al. 

2000): 
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Here the subscripts in, gb and tj refer to the interphase, the grain boundaries and 

the triple junctions, respectively. Figure 2.18 presents a plot of the set of equations given 

in the above. It can be observed that the volume fraction of interphase (grain boundaries 

+ triple junctions) becomes non negligible when the grain size is smaller than ~60 nm 

and clearly dominates that of the grain core when the grain size is smaller than ~12nm. 

Also, the volume fraction of triple junctions becomes non negligible solely when the 

grain size is smaller than ~10nm. Let us note that this simple model lies well with 

experiments. Indeed X-ray measurements on a sample with mean grain size 10 nm reveal 

a ~30% volume fraction of interphase (Birringer et al. 1989). Obviously, the high volume 

fraction of interphase region is of great importance and a section of this chapter will be 

entirely dedicated to grain boundary modeling. Let us now present the features of each 

constituent of NC materials. 
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Figure 2.18: Evolution of volume fractions of interface, grain boundaries, triple 

junctions and grain cores with the grain size in nm. 

 

Crystallites 

Crystallites (grain cores) exhibit a well defined crystalline structure independently 

of the fabrication process. The crystallinity is maintained up to the grain boundaries. 

However, X-ray diffraction measurements on ECAP produced Cu samples have revealed 

a 0.04% decrease in the lattice parameter compared to that of conventional materials 

(Zhang et al. 1997). Hence, the lattice presents some strain which was suggested to result 

from the compressive stresses engendered by the presence of non-equilibrium grain 

boundaries Zhang et al. (1997). Although let us note that grain boundary dislocations 

were also suggested to be a plausible source of lattice strain (Ungar et al. 1998b). 

However, as will be discussed in next paragraph, grain interiors in NC materials do not 

exhibit a high density of dislocations. As discussed by Qin and Szpunar (2005) the 

noticeable lattice strain in crystallites, which presence is independent of the fabrication 

process, is localized near grain boundaries and may lead to internal stress fields within 
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the grain cores. Similar microstrains ranging from 0.21% to 0.04% were observed on and 

on NC Ni produced by IGC (Schaeffer et al. 1995) and on amorphous Fe33Zr67 alloy (Sun 

et al. 1996). 

 

Also, crystallites present some peculiarities in terms of dislocation densities, twin 

probability and stacking faults.  First, the measure of dislocation density within NC 

materials has been a major source of debates for years. Indeed, reported values ranged 

from 15 210 m−  to zero. This issue will be clarified at the end of this discussion. In Figure 

2.19, one can observe a high resolution TEM image of an electrodeposited Ni sample 

with mean grain size ~30 nm deformation (Kumar et al. 2003). One can observe in the 

bright and dark field images (2.19.a and 2.19.b) that the crystalline structure of the grain 

core does not present any dislocations. In figure 2.19.c one can observe the presence of a 

dislocation loop and the presence of a twin. Similarly, samples with small grain sizes 

(d~20nm) processed by IGC exhibit a limited initial dislocation density (Straub et al. 

1995). Recently, total dislocation density measurements (over the entire sample), on IGC 

NC sample with grain size ~15nm reported densities in the order of 15 25.10 m− with a 

dislocation spacing in the order of the grain size (Ungar et al. 1998a). This signifies that 

each grain initially contains zero to 1 dislocation. Finally, Langlois et al. (2005) reported 

a severely reduced presence of dislocations within grain interiors of NC Cu samples 

produced by consolidated nanopowders (via cold compaction, sintering and extrusion). 

However, let us note that due to relaxation phenomena occurring at the free surfaces of 

TEM samples, the observation of dislocations may be compromised. Nonetheless, it can 
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be concluded that the dislocation density within each grain is severely reduced in the as 

processed state. 

 

However, this conclusion does not apply to samples produced via severe plastic 

deformation (e.g. ECAP, HPT). Indeed, dislocation densities in the range of ~ 15 22.10 m−   

were reported for 150nm grain ECAP processed Cu (Torre et al. 2005; Zhang et al. 

1997). Qualitatively, the same conclusion was reached for NC Ni processed by HPT. Let 

us note though that these high dislocations densities are to be expected in the case of 

samples produced via severe plastic deformation. First, the grain sizes obtained usually 

lie in the UF regime were the dislocation loop length is still much lower than the grain 

size. Also, grain refinement results from dislocation activity, and as discussed in the 

above, dislocations remain present in some regions of the sample. 
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Figure 2.19: HRTEM image of a grain core with 20 nm diameter. 

 

The above mentioned dislocation density measurements clearly suggest that the 

dislocation density and the resulting dislocation activity is severely reduced in NC 

materials. Hence, a change from dislocation glide dominated deformation to another type 

of mechanism is to be expected in the NC range. 

 

Second, the presence of twins is seldom observed in NC materials. This can be 

observed in Figure 2.20, presenting a Cu grain core with a “giant step”, the step is 

delimited by the arrowheads on the HRTEM image (Huang et al. 2003). This is a 

peculiarity of NC materials. Indeed, mechanical twins were observed in NC produced by 
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IGC, Cryomilling (Zhu 2006), and by severe plastic deformation (Liao et al. 2004 a and 

b). Ungar et al. (1998b) suggested the presence of mechanical twins (1 in every fifth 

grain) in electrodeposited Ni. Finally, Wu et al. (2007) reported HRTEM images of 

mechanical twins within grain cores of electrodeposited NC Ni post deformation. 

 

On the contrary, the presence of twins in conventional F.C.C. materials, such as 

Cu or Al, is usually not expected since these materials present enough slip systems (12) 

for dislocation glide to be active. Moreover, Aluminum presents a high stacking fault 

energy which is not favorable to the presence of twins. 

 

 

 

Figure 2.20: Cu cryomilled grain core containing a stepped twin. 

 

Finally, the presence of stacking faults is rarely “observed” (via TEM experiments 

and XRD diffraction followed by calculation of the warrenα  probability of faults). Indeed, 

the stacking fault probability was reported to be almost null in Cu and Pd samples with 

grain sizes smaller than ~25nm (Mingwei et al. 2003; Sanders et al. 1995).  
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Surprisingly, the stacking fault parameter increases with plastic deformation. A 

plot of the evolution of the stacking fault parameter with strain is presented in Figure 2.21 

for and UF Pd sample and a 33nm grain NC IGC process Pd sample (Markmann et al. 

2003). It can clearly be seen that in the stacking fault parameter of the NC sample is 

consistently higher than that of its UF equivalent and that it rises sharply at low strains 

prior to exhibiting a limited increase. These measurements are consequential since the 

increase in the presence stacking faults may suggest the activity of partial dislocations. 

 

 

Figure 2.21: Evolution of the stacking fault parameter with strain for UFG PD (in 

bold) and nanocrystalline IGC Pd. 

Grain boundaries and triple junctions 

The microstructure of grain boundaries remains a major subject of debate in the 

community. Yet, it is commonly agreed that the thickness of grain boundaries, which 

ranges from 0.6nm to 1nm (i.e. ~3 to 4 lattice spacing’s), is not dependent on the grain 
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size. Also, grain boundaries typically exhibit a lower density than that of the perfect 

lattice. As extensively discussed by Qin et al. (1999 a and b), the lower density of grain 

boundaries results from their particular microstructure (to be presented in this section) 

and from the presence of vacancies and vacancy clusters.  This is clearly dependent on 

the fabrication process. Considering the volume fraction of grain boundaries and the 

relative density of NC samples, an estimate of the grain boundary density can be obtained 

via the use of a simple rule of mixture leading to densities ranging from ~65  to 95 

percent of the theoretical density. 

 

For the sake of comprehension, let us briefly discuss the most typical 

representation of grain boundaries (this will be further detailed in upcoming subsection). 

As mentioned in the first part of this chapter, dedicated to conventional materials, 

dislocation can either be considered as statistical or geometrically necessary. The 

presence of geometrically necessary dislocations is required to describe any remnant 

lattice strain within a material. Since a grain boundary corresponds to the junction 

between two grains with different misorientations, lattice strains are also localized at 

grain boundaries which are typically regarded as regions of high density of geometrically 

necessary dislocations.  

 

However, in the case of NC materials, this general representation of grain 

boundaries is not yet accepted by the community. Indeed two schools of thoughts are 

opposed. In the first one, which the author does not belong to, grain boundaries are 

thought to exhibit a high atomic disorder and to have a “structure” that could be qualified 
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as amorphous. In the second one, the structure of grain boundaries is similar to that of 

conventional materials. Hence, grain boundaries are considered to be the lieu of 

geometrically necessary dislocations and structural unit models (presented later in this 

chapter) are supposed to be applicable. 

 

Let us discuss the implication of these schools of thoughts via the consideration of 

two limit cases; (1) a NC materials with grain size smaller than ~2nm and, (2) a bicrystal 

interfaces. In the first case, one would expect grain boundaries to exhibit a largely 

disordered structure since the position of each atom would be influenced by the 

neighboring atoms present in the grains. In the second case, it is well known that bicrystal 

interfaces often exhibit a well defined structure usually described with dislocation or 

disclination structural units (in the limit of the structural unit model). Indeed, the atoms 

present within the interface are influenced solely by two grains. In light of this short 

discussion, one would expect the microstructure of grain boundaries to vary from an 

ordered structure to a less ordered structure depending on the arrangement of the grains. 

Experimentally, this can be observed. A TEM image of a NC Pd sample with small grain 

size (~d=10nm) is presented in Figure 2.22 (Ranganathan et al. 2000). A well ordered 

grain boundary can be observed in region A-B. On the contrary region D-E does not 

present ant particular order. Also, interestingly, it can be seen that region B-C exhibits a 

grain boundary with a changing character.  
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Figure 2.22: HRTEM image of a nanocrystalline Pd sample. 

 

Let us recall that the description of the grain boundary microstructure is a 

complex exercise for it may depend largely on the fabrication process. Nonetheless, 

recent observations have revealed important features of grain boundaries in NC materials 

processed via HPT, ECAP and ball milling (Huang et al. 2003). Indeed, it was shown that 

most grain boundaries are high energy stepped or curved grain boundaries. This can be 

observed in Figure 2.23 (a) and (b) which presents a low angle grain boundary (2 degree 

misorientation angle). The presence of slightly disassociated dislocations can be observed 

in Figure 2.23a. These disassociated dislocations engender the presence of thin twins 

(stacking faults) within the adjacent grain cores. This emphasizes the effect of the grain 

boundary structure on the microstructure of grain cores. 

Note that most NC samples have low angle grain boundary content much smaller 

than that of large angle grain boundaries. This was confirmed in recent work by Langlois 

et al. (2005) on bulk NC Cu prepared by a combination of IGC, sintering and extrusion. 

Also, let us recall that low angle grain boundaries are known to be possible dislocation 
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sources acting similar to a typical Frank and Read source. 

 

 

Figure 2.23: small angle grain boundary with steps and stacking faults (a) and zoom on 

the selected region revealing the presence of extrinsic stacking faults (b). 

 

Facets and steps can also be observed in large angle grain boundaries. Figure 2.24 

presents a TEM image of large angle grain boundary of a NC Cu prepared by cryomilling 

(Huang et al., 2005). Numerous steps, of height varying from 4 to 5 atomic layers, lying 

on the (111) plane can be observed. Let us note that these large steps can be assimilated 

as ledges which, as discussed in pioneering work by J.C.M Li, could act as dislocation 

sources. 

 

Although not shown in previous TEM images, most defects such as pores and 

flaws are localized in the grain boundary regions. This was also observed in 

electrodeposited Ni samples (Dalla Torre et al. 2002). Observed flaws can seldom reach 

the micron size. For example, gas can remained trapped within NC samples during their 
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processing via physical vapor deposition. These defects are obviously expected to be of 

great influence on the response of NC materials 

 

 

Figure 2.24: HRTEM image of a High angle stepped grain boundary in cryomilled Cu. 

 

Finally, triple junctions which correspond to the regions of the sample where three 

grains intersect, commonly exhibit a disordered structure. This can be clearly observed in 

region d of Figure 2.22. This relatively high disorder is expected since atoms present in 

triple junctions are influenced by atoms belonging to three grains with different 

orientations. The open structure exhibited by triple junctions may also represent an 

appropriate “shortcut” for vacancies when diffusion mechanisms are activated. Similarly 

to grain boundaries, triple junctions are more prone to contain impurities than grain 

interiors.  

Mechanical properties 

The considerable research effort invested in NC was initially driven by the desire to 

fabricate novel materials with extremely high strength and improved ductility. This 

compromise is typically never reachable in conventional materials. While the objectives 

were reached in terms of strength, it will be shown here that so far the ductility of NC 
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materials is still limited. Although, let us note that recent cyclic cryomilling and room 

temperature milling procedures have contributed to greatly improve the ductility of the 

samples (Youssef et al. 2004). Similarly Wang et al. produced high tensile ductility 

nanostructured materials by developing a bimodal grain size distribution (Wang et al. 

2002)  

 

Interestingly, the refinement of conventional materials towards NC materials has also 

revealed interesting size effects. This is the case of the size dependence of elastic 

properties and more surprisingly of the strain rate sensitivity. All of these effects are 

discussed in following subsections.  

 

Prior to presenting the size effects in the mechanical response of NC materials, it is 

important to re-emphasize the limitations, or more precisely the possible artifacts in 

experimental measures. 

 First, measurements are rarely reproducible. This is due to the fact that sample 

fabrication remains a delicate exercise that is performed mostly in academic laboratories. 

Hence, large variances in results emerge from the microstructural features of the samples. 

This precludes the use of any statistical analysis to estimate the properties and response 

of NC materials.  

Second, some experimental procedures aver to be complex and the precision of the 

measures can be altered due to the use of particular techniques. To illustrate this 

discussion, let us focus on the stringent example of the measure of strength. Due to the 

small dimensions of samples, the measure of strength via tensile tests is not always 
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possible. Hence, an estimate of the material’s strength is commonly obtained via hardness 

measurements with the generally accepted approximation that the yield strength is equal 

to a third of the hardness. This approximation consistently leads to measures of strength 

higher than that obtained via tensile tests (at a given grain size). Simultaneously, the 

quality of the sample, in terms of porosity, has a great influence on the measure of 

strength. This can be observed in Figure 2.25 presenting the evolution of hardness 

measurements with respect to the density of samples with same grain size (Sun et al. 

2000). Clearly it can be seen that a change from a 99 percent density to a 99.5 percent 

density results in a two fold increase in the measure of hardness. 

 

 

Figure 2.25: Hardness versus density of a powder compact. 

Elastic properties 

 A size effect in the elastic response is expected to occur in NC materials. Indeed, 

with decreasing grain size, the volume fraction of grain boundaries and triple junctions 

increases. Since the structure of grain boundaries and triple junctions largely differ from 
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that of grain interiors, the elastic response of NC materials shall be affected by the size 

effect. The size dependence of Young’s modulus is presented in Figure 2.26. The 

experimental points are extracted from several sources (Robinson et al. 1990; Nieman et 

al. 1991; Sanders et al. 1997b; Wu et al. 1999; Ganapathi et al. 1991; Shen et al. 1995; 

Kaye et al. 1978; Cheng et al. 2005). It can be observed that down to ~80nm grain size, 

the Young modulus is not affected by the grain size. On the contrary, when the grain size 

is smaller than ~40nm, a decrease in Young’s modulus ranging from 10 to 50% can be 

observed. Let us notice that some measures may present a bias due to poor consolidation. 

Also, more data are required to confirm this trend. Therefore it is currently accepted that 

a decrease in the grain size only leads to minor decrease in the elastic properties of NC 

materials compared to that of conventional materials.  

 

Figure 2.26: Experimental measurements of Young’s modulus as a function of 

grain size. 
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Yield stress 

 As mentioned in Chapter 1, the yield stress of conventional materials is known to 

obey the Hall Petch law. A particular size effect occurs when the grain size is decreased 

below a critical grain size, in the neighborhood of ~25nm. Precisely, a breakdown of the 

Hall Petch law, characterized by a reduced and possibly negative Hall Petch slope, can be 

observed. Experimental data are presented in Figure 2.27. The dashed line represents the 

Hall-Petch law while points represents the experimental data extracted from several 

sources (Sanders et al. 1997a, Nieman et al. 1991, Conrad and Yang 2002, Hommel and 

Kraft 2001, Embury 1993, Fougere et al. 1992, Nieman et al. 1992, Cai et al. 2000, 

Chokshi et al. 1989, Merz and Dahlgren 1975, Chen et al. 2006, Youssef et al. 2004, 

Champion et al. 2003). Owing to the difficulty related to the fabrication processes and to 

the differences in methods used to measure the yield strength (e.g. compression tension, 

hardness), a noticeable scatter in the data can be observed. This has been source of debate 

in the community. However, in recent review by Meyers et al. (2006) it was clearly 

shown that the breakdown of the Hall Petch law is not an artifact. Indeed, a clear 

departure from the Hall Petch law can be observed when the grain size is in the 

neighborhood of ~25nm.   



  75  

 

 

Figure 2.27: Experimental data presenting yield stress as the function of the inverse of the 

square root of the grain size. 

 

Let us note that in work by Kumar et al. (2003), it was hypothesized that the yield 

strength vs. grain size plot can be divided in three regimes. The first regime, in which the 

Hall Petch law prevails, describes the size dependence of the yield strength of materials 

ranging from the conventional materials down to materials with grain size in the 

neighborhood of ~100nm. In the second regime, ranging from 100nm down to ~10nm 
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grained materials, a decrease in the Hall Petch slope occurs. Finally, in the third regime 

(d<~10nm) a decrease in the grain size leads to a decrease in the yield strength. This 

idealized vision of the size dependence of the yield strength is also suggested in models 

by Jiang and Weng (2004), Warner et al. (2006) and Benkassem, Capolungo et al. (2007). 

 

 

 

Figure 2.28: Plot of the expected grain size dependence of yield stress for ideal 

samples. 

Inelastic response 

 Early tensile tests on NC materials revealed either limited ductility, in the order of 

~3 percent, and a relatively high yield strength, or a higher ductility (yet smaller than that 

of conventional materials) and lower than expected yield strength. This is presented in 

Figure 2.29 extracted from Cheng et al. (2005). Red diamonds, pink stars, the blue 

1/ d  
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d~100nm 

d~10nm 



  77  

triangle, the grey cross and green squares are extracted from Nieman et al. (1992), 

Sanders et al. (1997a), Legros et al. (2000), Wang et al. (2003) and Cheng et al. (2005) 

respectively.  

 

Consequently the capability of NC materials to achieve plastic deformation was 

subject to discussion. However, owing to the progress in consolidation techniques and to 

the amelioration of fabrication processes, a step forward towards a high ductility/ high 

strength compromise was made. Indeed, as can be observed in Figure 2.29, Cheng et al.’ 

samples, produced via mixed cryomilling and room temperature milling, exhibit high 

strength (540-780MPa) and acceptable maximum elongation ranging from 6 to 12 

percent. Similarly, Karaman et al. (2007) were successful in producing NC Cu samples 

(via equal channel angular extrusion) with ~100nm grain size and exhibiting high yield 

strength (~650 MPa.) and acceptable ductility in the neighborhood of 6 percent.  
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Figure 2.29: Experimental data presenting the yield strength vs. elongation plot.  

 

Interestingly, the viscoplastic response of NC materials is different from that of 

conventional materials.  Let us recall that within NC materials the dislocation density is 

severely reduced compared to that of conventional materials. Therefore, this suggests that 

NC deformation is dominated by a mechanism different from dislocation glide. Hence, a 

difference in the response of NC materials is expected. Figure 2.30 presents a comparison 

between the tensile response of a conventional Cu sample and of a NC Cu sample with 

50nm grain size (Champion et al. 2003). While the coarse grain Cu exhibits typical strain 

hardening, this is not the case for the NC sample. Three regions can be distinguished in 

the response of the NC sample. Region 1 corresponds to a work hardening domain with 

decreasing strain exponent. Region 2 is a plastic yielding domain with constant flow 



  79  

stress and region 3 is a plastic yielding domain with linear softening. The pseudo elastic-

perfect plastic response of NC materials was also revealed by several other research 

groups in the case of samples prepared by equal channel angular pressing and by ball 

milling (Karaman et al. 2007, Cheng et al. 2005). 

 

 

Figure 2.30: Experimental true stress true strain curve of nanocrystalline Cu with 

50 nm grain size and coarse grain Cu. 

 

The strain rate sensitivity of NC was reported to differ from that of conventional 

materials. The strain rate sensitivity can be related to the activation volume via the following 

expression (Asaro and Suresh 2005): 

 

ln 3
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Here k ,T ν and σ refer to the Boltzmann constant, the absolute temperature, the 

activation volume and the uniaxial tensile stress, respectively. Typically, the strain rate 

sensitivity can be used to identify the deformation mechanism. For example, a value of m 

equal to 1 suggests the activity of Coble creep 

Although the strain rate sensitivity exponent exhibits a dependence on the stress 

(it consequently evolves during deformation), it is usually considered constant during 

deformation. In the case of conventional Cu, m is usually equal to ~0,006. However, in 

NC materials the reported values of the strain rate exponent are much higher. For 

example, Cheng et al. (2005) obtained a value of 0,027 on a 62nm cryomilled Cu sample. 

Chen et al. (2006) report a strain rate sensitivity exponent equal to 0.06 on 10nm grained 

Cu prepared by magnetron sputtering. Similarly ECAP produced 300nm grain Cu 

exhibits a strain rate sensitivity coefficient equal to 0.025 with a -76.10 /s imposed strain 

rate (Wang and Ma 2004). . Hence, the change in the magnitude of the strain rate 

sensitivity of NC materials clearly suggests the activity of a novel plastic deformation 

mechanism. 

A plot of the size dependence of the strain rate sensitivity with grain size is 

presented in Figure 2.31 (Asaro and Suresh, 2005). Red and blue marks correspond to 

literature data. Note here that in the case of the blue marks, the grain size is replaced by 

the twin width. One can notice that as the grain size decreases, the strain rate sensitivity 

increases. Also, from equation (2.7), the size dependence of the strain rate sensitivity 

suggests a decrease in the activation volume with increasing grain size. For example 

Armstrong and Rodriguez (2006) have shown a Hall-Petch type dependence of the 

activation volume.  
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Figure 2.31: Strain rate sensitivity parameter as a function of grain size. 

Discussion 

 Let us briefly summarize the subsections related to the fabrication and response of 

NC materials, respectively.  Two approaches can be used to fabricate NC materials. The 

first approach consists of synthesizing nanoparticules which are then compacted to form a 

sample. Inert gas condensation and ball milling fall in that category. The second approach 

consists of directly fabricating a bulk sample. ECAP, HPT and electrodeposition belong to 

this approach. The first approach typically leads to samples with smaller densities than the 

first approach due to the consolidation step.  
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 In terms of defects, the dislocation density is severely reduced in NC materials. 

This constitutes a major difference with conventional materials. Also, depending on the 

fabrication process, twins are found in grain cores. The presence of these twins can, in 

some cases, be due to the geometry of the grain boundaries. Most of the impurities, such 

as oxygen and sulfur atoms in the case of electrodeposition, are located in triple junctions 

and grain boundaries. The former exhibits a structure with relatively high disorder while 

the later has a structure which can vary from well organized (e.g. structural units) to less 

ordered. Also, in the case of materials processed via HPT, ECAP and ball milling, grain 

boundaries typically exhibit large steps which can be assimilated as ledges of height 4 to 5 

atomic layers. Most fabrication processes lead to high large angle grain boundary content. 

The resulting samples can be highly textured (depending on the fabrication process); this 

is particularly the case for samples produced by electrodeposition, HPT and ECAP. 

Although, the microstructure of NC samples is dependent on the fabrication process, some 

common features can be found in the mechanical response of all samples: (1) 

Independently of the fabrication process, the breakdown of the Hall-Petch law can always 

be observed. The critical grain size lies in the neighborhood of ~25 nm, (2) the strain rate 

sensitivity is dependent on grain size. Precisely a decrease in the grain size leads to an 

increase in strain rate sensitivity. This was observed on samples prepared by 

electrodeposition  (Dalla Torre et al. 2002) and by ball milling (Cheng et al. 2005), (3) 

Dislocation activity decreases in the NC regime and may even become null when the grain 

size is smaller than ~10nm (Ke et al. 1995), (4) in grain boundaries, solely the inter-

atomic distances depend on the grain size (Kumar et al. 2003). Triple junctions are always 

regions of high atomic disorder (Ranganathan et al. 2000). 
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Grain boundary modeling 

Experimental results presented in the above clearly indicate that grain boundaries 

could have a great influence on the behavior of UF and NC materials. Here, the different 

models accounting for the grain boundary geometry and surface energy are briefly 

presented. This short review will be useful in upcoming chapter in which MD simulations 

are used to model the grain boundary dislocation emission mechanism. 

  

A bicrystal interface, which corresponds to the simplest representation of a grain 

boundary, can be uniquely defined with 5 degrees of freedom. 3 degrees of freedom are 

necessary to describe the relative orientation of the two crystals and, two degrees of 

freedom are necessary to describe the relative orientation of the surface with respect to 

the grains. As shown in Figure 2.32 (Spearot et al. 2005), presenting MD predictions of 

the influence of the misorientation angle on the interface energy in the case of a pure tilt 

grain boundary, the relative misorientation of the two grains greatly influences the energy 

of the interface. Considering the large increase in the interface surface in NC materials, 

the initial state of NC materials is obviously at a higher energy state than that of 

conventional materials. It also clearly depends on the misorientations of the grains 

forming the grain boundaries. From a thermodynamic standpoint, this shall influence the 

capability of NC materials to store energy imposed by external conditions. Therefore, the 

response of NC materials is expected to be dependent on the grain boundary 

misorientations.  
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Figure 2.32: Evolution of the interface energy with respect to the misorientation angle. 

 

In general, a grain boundary can be described geometrically with the use of one 

dimensional defect (e.g., dislocations, disclinations). In the particular case of tilt grain 

boundaries three families of models were developed to describe their surface energy; (1) 

dislocation based models, (2) structural unit’s models and, (3) disclination based models. 

These models are presented briefly in what follows. 

Dislocation models 

In 1950, Read and Shockley introduced a two-dimensional model for the energy 

of an interface. Note that this model could very well be extended to a three-dimensional 

case.  

The authors decomposed the grain boundary energy in two terms; a first term 

corresponding to the grain boundary core energy, and a second term resulting from elastic 

deformation in the surrounding of the grain boundary. The core of the grain boundary is 

defined as the thin zone of intersection of the grains. As mentioned by the authors, in the 
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case of large angle grain boundaries, the calculation of the grain boundary core energy 

must be performed at the atomistic level. However, in the case of low angle grain 

boundaries, closed formed solution can be obtained analytically.  

 

First, the authors define a longitudinal axis (x-axis for example) and a vertical 

axis (y-axis) associated with the grain boundary. Then, the dislocation densities on both 

directions are calculated with the assumption that the lattice planes are equivalent to 

dislocation flux lines. Recall here that grain boundaries can also be regarded as particular 

arrangements of geometrically necessary dislocations. Considering first a single “y” 

dislocation, the corresponding work term can be calculated by considering the effect of 

all other “x” and “y” dislocations on its slip system. The work terms are equal to half the 

lattice constant multiplied by the integral of the shear stress on the slip system. The 

energy engendered by the “x” dislocations on the “y” dislocation, is supposed not to 

depend on the position of the “y” dislocation and on the set of”x” considered. The same 

procedure is performed for an “x” dislocation. Hence, the interface energy per unit length 

is the sum, on the two types of slip systems, of the energy of a slip system multiplied by 

the number of slip systems. Although each term is diverging, the sum of the two terms 

converges. Finally, the following expression is obtained: 

.  

( )0 lnélE E Aθ θ= −          (2.8) 

 

θ is the misorientation between the two bicrystals. 0E andA are given by : 
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( ) ( )0 cos sin
4 1

Ga
E ϕ ϕ

π ν
= −

−
        (2.9) 

( ) ( )
0

sin ln sin cos ln cossin 2

2 sin sin
A A

ϕ ϕ ϕ ϕϕ
ϕ ϕ

⋅ + ⋅
= − −

+
      (2.10) 

 

andG,φ,a  vrepresent the shear modulus, the orientation of the grain boundary, the 

inverse of the plane flux density and Poisson’s coefficient, respectively. 0A  is given by : 

 

0
0

1ln
2

a
A

rπ
 

=              (2.11) 

 

0r is the lower bound used for the integration of the shear stress. For the sake of rigor, this 

bound should be equal to the smallest distance at which the material is elastically 

deformed. The energy, at distances smaller than this bound (e.g., core energy), should be 

calculated at the atomistic level. However, in the case of low angle grain boundaries, the 

two energies (at distance lower and higher than the bound) have the same expression. 

 

Although Read and Shockley’s model is well suited for the calculation of the 

interface energy of low angles grain boundaries, the model is not adequate for large angle 

grain boundaries. This is due to the fact that in that case, the core energy (energy at 

distances smaller than lower integration bound for the shear stress) cannot be calculated 

with the set of equations in the above. For more details on the subject, the reader is 

referred to the work of Gleiter (1982). In order to overcome this limitation, structural 

units’ models were developed. 
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Structural units models 

 In 1986, Wang et al. proposed a model for the evaluation of the interface energy 

of large angle grain boundaries. This model is an extension of Read Shockley’s model 

based on the concept of structural units and on Baluffi’s early model (1984).  

 

Let us first define the concept of structural units which was first introduced by 

Sutton and Vitek (Sutton et al. 1980; Sutton et al. 1980; Sutton et al. 1981; Sutton et al. 

1982). The structural unit model is based on molecular statics simulations and is limited 

to tilt grain boundaries. Let us note that this model cannot precisely describe all tilt 

boundaries.  

Within a grain boundary misorientation range all grain boundaries with same 

medium plane (defining the grain boundary) are composed of a sequence of two 

structural elements (Sutton et al. 1980). Each structural element corresponds to a 

particular arrangement of a group of atoms. For example, in Figure 2.33, one can observe 

a tilt grain boundary composed of a sequence of C and D structural units (Spearot et al. 

2005). At the bounds of the misorientation range, the grain boundaries are composed of 

only one repeated structural unit. For example, using the coincident site lattice (CSL) 

notation a 11Σ (310) grain boundary is composed solely of A structural units, a 

27Σ (115) grain boundary is composed solely of B structural units and 89Σ (229) grain 

boundary is composed of the sequence BBBA (Sutton et al. 1981). 
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Figure 2.33: Grain boundary composed of a sequence of C and D structural units. 

 

Following the work of Sutton and Vitek, Baluffi et al. (1984) developed a simple 

method for the calculation of particular properties of grain boundaries such as their 

energy and diffusivity. It is shown that the property of all grain boundaries (still in the tilt 

case) can be obtained from a finite number of simulations at the molecular level on 

structural units. Using this concept, Wang et al. (1986) developed a model of the energy 

of both low and large angle grain boundaries. Let E denote the total grain boundary 

energy. It can then be decomposed as the sum of the core energy, CE , and the elastic 

deformation energy elE  (given by Read and Shockley’s model): 

 

el CE = E + E           (2.12) 

 

The grain boundary core energy is obtained via Baluffi and Brokman’s model. 

Precisely, Let us suppose that the grain boundary is composed of m structural units of 

type α  and of n structural units of type β  with m>n. The grain boundary core energy can 

be written as follows (note the interaction between the two types of structural units is 

accounted for): 
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( )C C C CE E d E E lα αβ α
αβ= + −         (2.13) 

 

Here dαβ , l , CEα , CEαβ  represent the length of an αβ sequence, the average distance 

between two dislocations within a grain boundary (given by Frank’s formula), the energy 

of an αα sequence and the energy of an αβ sequence, respectively. Introducing Frank’s 

formula in the above set of equation one obtains the following expression of the total 

grain boundary energy: 

 

( )él C C CE E E d E E
b

α αβ α
αβ

θ∆= + + −         (2.14) 

 

Let us note here that this expression depends on the grain boundary core radius. This 

limitation is ineluctably inherited from Read and Shockley’s model.  Model predictions 

are compared to numerical simulations in Figure 2.34a (the triangles corresponds to 

points used to calculate the core radius) and to experimental measurements in Figure 

2.34b. One can Notice that Wang et al.’s (1986) model is in almost perfect agreement 

with numerical simulations. Indeed, the model can even predict the cusps in the evolution 

of the interface energy. These cusps corresponds to case where the inter dislocation 

distance is not a multiple of the inter-atomic distance. Finally the model predicts ratio of 

the elastic energy of interfaces with (100) misorientation axis on that of interfaces with 

(310) misorientations axis very close to experimental measures (Figure 2.34.b) 
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   (a)        (b) 

Figure 2.34: (a) Prediction of the evolution of the interface energy (b) ratio of the (100) to 

(310) misorientation energies. 

  

Structural unit model are clearly more suited to describe the energy of grain 

boundaries since it applies to both low angle and large angle grain boundaries. However, 

these models cannot be extended to account for the effect of particular mechanisms, such 

as the emission or the penetration of a dislocation by/into a grain boundary. On the 

contrary disclination models have the capability to account for such effects (Hurtado et 

al. 1995). 

Disclination models 

Since the concept of disclination is not yet as widely known as that of dislocations, let us 

briefly recall the fundamentals of disclinations. 

Disclinations  
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 Disclination are one dimensional rotational defect bounding the surface of a cut to 

a continuous medium (Volterra 1907). Precisely, supposing a cylindrical medium, the 

undeformed faces of the volume are assumed to move by a distance u due to a rotation of 

angle w about a fixed axis. For ease of comprehension, one can consider that a 

disclination corresponds to the addition or to the subtraction of matter at the surface of a 

cut (see figure 2.35 extracted from Romanov 2003). A disclination is said to be positive if 

matter is subtracted to the medium and negative otherwise. Similarly to dislocations, 

disclinations engender long distance stress fields. While the strength of a dislocation is 

quantified by its Burger’s vector, the strength of a disclination is described with its Frank 

vector (denoted w). The displacement of the undeformed surfaces is given by (De Wit 

1973): 

 

( )wu w r r= × −           (2.15) 

 

Here,r  and wr denote the core radius and the distance between the rotation axis and the 

longitudinal axis of the cylinder. As in the case of dislocations which can have screw or 

edge character (Figure 2.35.a and b), disclinations can have a wedge or a twist character 

(Figure 2.35.c and d respectively). 
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Figure 2.35: (a) Schematic of a cylindrical medium, (b) a screw dislocation, (c) an edge 

dislocation, (c) a wedge disclination and (d) a twist disclination. 

 

All disclinations are geometrically equivalent to a particular arrangement of 

dislocations. For example, a negative wedge disclination can represent a dislocation wall. 

However, disclination models are equivalent to dislocations arrangements solely in terms 

of stress field or strain field (but not both). A discussed by Li, a disclination wall cannot 

have a unique strain field for an equivalent dislocation wall with same stress field. (Li 

1972). For the sake of illustration, let us present the stress fields associated with a wedge 

disclination. These are given by (Huang et al. 1995): 

 

( )
2

2 2

1 1
ln 1

2 2 (1 ) 2xx yy
Gw R

x y
σ σ

π ν
 

+ = −  − +         (2.16) 

 

( )
2 2

2 2

1 1
ln

2 2 (1 ) 2xx yy
Gw x y

x y
σ σ

π ν
 −− =   − +         (2.17) 

 

2 22 (1 )xy
Gw xy

x y
σ

π ν
=

− +
          (2.18) 
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G , w , R , x andy   denote the shear modulus, the disclination strength, the cylinder radius 

and the coordinates (centered with the cylinder longitudinal axis), respectively jσ , 

(j=xx,yy,xy) are the stress components.  The magnitude of the stress field is given by:  

( )4 1

Gwσ
π ν

=
−

 

 

As predicted by the above equations, disclination create large internal stress fields 

and have internal energies largely superior to that of a perfect crystal. However, the 

energy of particular disclination sequences, such as disclination dipoles, is much smaller 

(Romanov 2003).  

Grain boundary energy models 

The dislocation and structural unit models presented in the above rely on the 

calculation of the grain boundary core energy which should be calculated at the atomistic 

level via molecular statics simulations. In the case of the elastic deformation energy, the 

difficulty stands in the fact that the grain boundary core radius must be estimated. 

Disclination models are advantageous since they do not require the introduction of a 

grain boundary core radius. For example Li and Shih obtained the following expression 

of the elastic deformation energy of tilt grain boundaries (Li 1972; Shih et al. 1975).  

 

( ) ( )
2

332 1él

Gw h
E f λ

π ν
=

−
         (2.19) 
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G , w , ν  and h  denote the shear modulus the disclination strength, Poisson’s coefficient 

and the periodicity of the disclination wall.. BL

h

πλ =  where BL  is the length of the segment 

composed of the most frequent structural units. The function f is given by 

 

( ) ( )
0

16 ln 2sinf d
λ

λ λ υ υ υ= − −∫         (2.20) 

 

As discussed by Nazarov et al. (2000) disclination models will always predict a 

physically acceptable value of the grain boundary energy, even in the case of so-called 

special grain boundaries (e.g. not appropriately described by the structural unit model). 

Indeed, dislocation structural units models can predict negative grain boundary energies 

which does not have any physical significance. Shih et al.’s model can be extended to 

account for additional effects. For example, Mikaekyan et al. (2000) extended this model 

to grain boundaries of finite length, Hurtado et al.(1995) introduced the effect of grain 

boundary dislocation emission on the grain boundary energy. 

Deformation mechanisms 

This section is dedicated to a presentation of all deformation mechanisms that 

have been suggested to contribute to the plastic deformation of UF and NC materials. 

Precisely, the mechanisms of Coble creep, Nabarro Herring creep, grain boundary sliding 

and grain boundary dislocation emission will be discussed as well as the size effect in the 

dislocation activity within grain interiors. 

Relation to superplasticity 
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As mentioned in the section dedicated to the response of UF and NC materials, 

early experimental work suggested that mechanisms which are typically active in the case 

of creep responses, such as grain boundary sliding, could be active in NC materials and 

may lead to the softening of their response. For example, Yin et al. (2001) reported creep 

rates in the order of 11E-10/s at temperatures ranging from 290K to 373K.  Similarly, 

Wang et al. (1997) reported creep rates suggesting the activity of grain boundary sliding 

at room temperature on NC Ni prepared by electrodeposition. This suggests that there 

could be an interesting relation between mechanisms that typically lead to superplastic 

response and the response of UF and NC materials.   

 

In the case of creep tests, the deformation mechanisms based on vacancy diffusion 

or solid grain motion are activated at temperatures and imposed strains or stress largely 

different from which NC materials are subjected to. In the case of conventional materials, 

the domain of activity of these mechanisms can be plotted on a deformation map such as 

that proposed by Luthy (1979) (see Figure 2.36). For example, at low normalized 

temperature and low normalized shear stress, Coble creep dominates the creep response 

of a conventional material. At the same temperature, when the normalized shear stress is 

increased to 1.E-3, grain boundary sliding becomes active. Hence, with regards to Yin et 

al.’s experiments one would also expect grain boundary sliding as a possible plastic 

deformation mode. 
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Figure 2.36: Luthy’s deformation map.  

 

Creep mechanisms are usually described with a phenomenological law accounting 

for some microstructural features of the material, such as grain size, and for the effect of 

temperature and stress. Typical creep laws are given by a relation of the form: 

 

p n
A D G b b

kT d G

σε ⋅ ⋅ ⋅    =       ɺ         (2.21) 

 

Here A, D, G, b, k, T and d denote a numerical constant, the diffusion coefficient, the 

shear modulus, the magnitude of Burger’s vector, Boltzmann’s constant, the temperature 

and the grain size, respectively. σ denotes the applied stress, p and n are the size and 

stress exponents, respectively. The nature of the creep mechanism can usually be 

identified from the size and stress exponents. For example, if the stress exponent equals 1 
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and the size exponent is equal to 2 then the creep response is described by Nabarro 

herring creep. 

 

Nabarro Herring creep (1948-1950) and Coble creep (1963) relate the effect of 

steady state vacancy diffusion along preferential paths. In the case of Nabarro Herring 

creep, vacancies diffuse through the grain interiors and engender plastic deformation 

within the grain at the macroscopic scale while in the case of Coble creep, vacancies 

diffuse along the grain boundary grain core interface (see Figure 2.37 extracted from 

Shah et al. 1998). Let us now describe the fundamentals of Coble creep and Nabarro 

Herring creep.  

 

 

 

Figure 2.37: Vacancy diffusion paths during Coble creep and Nabarro Herring creep.  

Nabarro Herring creep 
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Herring’s model (1950) was first introduced to explain the quasi-viscous behavior of 

metallic wires in traction under small load and high temperatures. It models the transport 

of matter by diffusion within the grain interior. The author considers that the flux of 

matter results from a gradient of chemical potential which itself depends on the gradient 

of vacancies. Accordingly, the flux, denoted j, is written as: 

  

( )L
h

n D
j

kT
µ µ = − ∇ −            (2.22) 

 

Here ( ), , , ,  et L hn D k T µ µ∇ − denote the number of sites per unit volume, the self diffusion 

coefficient, Boltzmann constant, the temperature and the work per atom necessary to the 

input of a small amount of matter into the crystal. Supposing steady state diffusion, the 

gradient of the flux j must be equal to zero. Hence, the problem is equivalent to finding 

the appropriate boundary conditions on( )hµ µ− . A solution is obtained via the 

minimization of the crystal’s free energy with respect to the transfer of atoms between the 

crystal and the adjacent surface. With the above condition one obtains: 

 

0 0h zzpµ µ µ− = − Ω          (2.23) 

 

Here 0 0,  et zzpµ Ω denote the chemical potential of the source of atoms, the normal of the 

traction vector and the atomic volume. Finally, in the case of spherical grains, the normal 

component of the traction vector is proportional to the inverse of the square of the grain 

size.  
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  Herring treated two different cases where the relaxation of the shear stress has not 

yet occurred and where it has occurred. One obtains for these cases, respectively: 

 

0
0 2

,
h ij i j

i j

x x
d

µ µ µ σΩ
− = − ∑         (2.24) 

 

( )2 20
0 2

5

2
h xx x y

d
µ µ µ σΩ

− = − −         (2.25) 

 

where rx  r=i,j are the coordinates and d is the grain size. Finally, the creep law is 

obtained with the relation between the rate of displacement, the strain rate and the normal 

flux which is given by: 

 

0
,

1
ij i j n

i j

dr
x x j

dt d
ε= = Ω∑ ɺ          (2.26) 

 

Nabarro Herring’s creep law reads: 

 

2
NH L

NH
A D Gb b

kT d G

σε    =       ɺ         (2.27) 

 

σ is the stress ,d the grain size, G  the shear modulus, b  the magnitude of Burger’s 

vector, LD is the crystals diffusion coefficient, k  denotes Boltzmann’s constant, T is the 

temperature, NHA is a numerical constant. 
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Coble creep 

The fundamentals of Coble creep (1963) are similar to that of Nabarro Herring 

creep with the difference that in this case vacancy diffusion operates at the interface 

between grain interiors and grain boundaries. From Herring’s reasoning it can be inferred 

that the deformation of the material results from the stress and temperature dependence of 

the vacancy concentration. Coble defines the gradient of the vacancy concentration as 

follows: 

 

0C
C

kT

σ⋅ ⋅Ω
∆ =           (2.28) 

 

Here 0, , ,  et C k Tσ Ω denote the initial equilibrium vacancy concentration, the stress normal 

to the grain boundary, the atomic volume, Boltzmann’s constant and the temperature, 

respectively.  

 

The boundary orientation is assumed constant during deformation. In doing so, both the 

volume conservation in the interface region and the discontinuity of stresses at the 

intersection of the crystals’ facets are ensured. This condition holds when the creation of 

vacancies is uniform on each facet. In the case of spherical crystals, the creation and 

annihilation rate of vacancies are thus equal. This condition is met at 60 degrees on a 

hemisphere (e.g., both the top and bottom regions have the same area). Hence, the 

concentration gradient must be calculated at this angle. In the steady state regime and 

with Fick’s law, the flux is given by: 
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2
sin 60v

C
J D Nw d

dπ
∆=          (2.29) 

 

wand vD  denote the average grain boundary thickness and the coefficient of diffusion of 

grain boundaries. Finally, the expression of Coble creep is obtained via the relation 

between the volume change and the flux, one obtains: 

 

3 2 3
0 07.4 v

dd
Ja d D w Ca

dt
π= = ∆         (2.30)  

 

3
0

3

7.4 bD wa

kTd

σε
π

=ɺ           (2.31) 

Discussion  

First, let us recall that the activity of diffusion mechanisms is still subject to 

ongoing debate. On the one hand, Recent experiments (Li et al. 2004) have shown that 

early creep experiments may be flawed by poor crystal bonding and that NC materials 

shall not creep at room temperature. Similarly Yagi et al.’ experiments (2006) on NC Au 

and Cu revealed that the creep response of cannot result from the activity of a vacancy 

diffusion mechanism. On the other hand, several models, motivated by early 

measurements revealing the activity of creep at room temperature, have shown that the 

activity of creep mechanisms could indeed lead to the softening in the plastic response of 

NC materials (Kim et al, 2000, 2001, Capolungo et al. 2005). Moreover MD simulations 

have also suggested the activity of Coble creep (Yamakov et al. 2002).  
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Also, triple junctions, owing to their particular atomic disorder, may constitute a 

shortcut for vacancy diffusion. Wang et al. (1995) introduced a creep law to describe 

triple junction creep. The fundamentals are similar to that explained in the above and the 

derivation of their model will not be recalled. The authors obtain the following 

expression of triple junction creep: 

 

2

4
tl

tl

D w
K

kT d

σε ⋅ Ω ⋅=ɺ          (2.32) 

 

Here tlK , tlD ,Ω , w , k  , σ  and T  denote a numerical constant, the coefficient of 

diffusion of triple junctions, the atomic volume, the average grain boundary thickness, 

Boltzmann’s constant, the stress and the temperature in Kelvin, respectively. 

 The expression of Nabarro Herring creep, Coble creep and triple junction creep 

suggest that if diffusion phenomena are activated in NC materials, these three 

mechanisms should be dominant in different size regimes. For example, one would 

expect triple junction creep to become non negligible at small grain sizes (d~10nm). 

Grain boundary sliding accommodated by diffusion 

Similarly to diffusion mechanisms of vacancy diffusion, grain boundary sliding 

may be active in NC materials. Nowadays, the major part of the community agrees on the 

fact that grain boundary sliding is activated in NC materials (although it is yet to be 

observed unequivocally experimentally). For example Cai et al.’s (2001) creep test on 

electrodeposited Cu samples with ~30nm grain size and Kumar et al. (2003) tensile test 

suggest the activity of grain boundary sliding. The three open questions related to grain 
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boundary sliding are its possible accommodation by vacancy diffusion, its contribution to 

plastic deformation and its range of activity.  

 

 Typically, in conventional materials, the mechanism of grain boundary sliding 

accommodated by vacancy diffusion is referred to as Lifschitz sliding. Depending on 

whether the diffusion occurs within the grain cores or within the grain boundary/grain 

interior interface, the expression of Lifschitz sliding is given by 

 

- In the case of diffusion at the grain boundary/grain interior interface : 

 

 
3 2

2. 5jg jg
Gb b

E D
kT d G

σε    ≈ ⋅       ɺ         (2.33) 

 

- In the case of diffusion  through the grain interiors: 

 

2 2

8. 6c c
Gb b

E D
kT d G

σε    ≈ ⋅       ɺ         (2.34) 

 

Here rεɺ , rD r=jg, c  denote the average viscoplastic strain rate and the diffusion 

coefficients of grain boundaries and grain cores, respectively. b, k, T, d, G and σ denote 

the magnitude of Burger’s vector, Boltzmann constant, the temperature, the grain size, 

the shear modulus and the stress, respectively. Let us note the similarities between the 

two expressions in the above and the expressions of Coble creep and Nabarro Herrring 

creep, respectively. 
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Grain boundary dislocation emission 

Recent MD simulations on both two-dimensional columnar (Yamakov et al. 2001) 

and fully three-dimensional structures (Derlet et al. 2002 ) have revealed that grain 

boundaries could actively contribute to the viscoplastic deformation of NC materials via 

the emission of dislocations . Although, MD simulations are not representative of the 

quasi-static response of NC materials (due to the large difference in boundary 

conditions), the grain boundary dislocation emission mechanisms is still suspected to 

contribute in the quasi static regime for experiments, such as that of Kumar et al. (2003) 

on NC Ni fabricated via electrodeposition and the of Markmann et al.(2003), also suggest 

the activity of grain boundary dislocation emission.  

 

Grain boundary dislocation emission mechanism was first introduced in early 

work by Li (1963). Unfortunately, until these novel MD simulations appeared, relatively 

little work was dedicated to this phenomenon. Hence, so far there is no model allowing 

the quantification of grain boundary dislocation emission on the macroscopic response of 

materials. A novel constitutive law describing the emission and penetration mechanism 

will be introduced in Chapter 5. However, let us note that Asaro and Suresh (2005) 

introduced a model at the continuum level allowing the description of the stability of an 

emitted dislocation. The proposed model is based on energetic considerations and 

accounts for the effect of the stacking faults resulting from the emission of partial 

dislocations. In particular, it is shown that the resolved shear stress necessary for an 

emitted dislocation to be “stable” increases with decreasing grain size. While the model is 

well suited to describe the effect of grain boundary dislocation emission within grain 
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interiors, it does not rigorously describe the dislocation emission mechanism in the region 

of emission. Moreover, several questions still require further investigation. Notably, those 

related to the nature of the primary grain boundary sources. 

 

There are three possible types of grain boundary dislocation sources : (1) 

disclinations (Hurtado et al. 1995), (2) low angle grain boundaries which act in a manner 

similar to Frank and Read sources (Hirth et al. 1982), and (3) grain boundary ledges 

which can be represented as extraneous atomic layers located at the grain boundaries 

(steps). Since most grain boundaries are of large angle type, the contribution of low angle 

grain boundaries is typically not considered to be of primary importance.  

 

As mentioned in the above, in work by Li (1963) it was already suggested that 

grain boundary ledges could emit dislocations. Murr and Venkatesh dedicated consequent 

effort to the experimental observation of grain boundary ledges (Venkatesh et al. 1976; 

Murr et al. 1978; Venkatesh et al. 1978; Murr 1981). Among other, it was reported that in 

high purity conventional materials, the activity of ledges (as dislocation donors) is 

dependent on the initial dislocation density within the grain cores. Indeed, stored 

dislocations within the grain cores engender stress fields at the grain boundaries which 

can prevent the emission of dislocations by grain boundaries. 

 

Finally, as predicted in grain boundary models based on disclination structural 

units, a large angle grain boundary could also emit dislocations. For example, it was 

shown that the motion of a disclination dipole may result in the emission of dislocations 
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from the grain boundary considered. In model by Gutkin et al.(2003) based on the energy 

difference of a system composed of bicrystal prior and after dislocation emission, it is 

shown that, in several configurations (depending on the geometry of the grain boundary) , 

grain boundary dislocation emission can be energetically favorable. Let us note though 

that this model, and subsequent evolution (Gutkin et al. 2005), does not account for the 

fact that dislocations are emitted only on favorable slip systems. This was revealed in all 

MD and MS simulations. A model for the effect of grain boundary dislocation emission 

on the grain boundary microstructure was developed by Hurtado et al. (1995). The 

authors formulate two hypotheses as to the resulting grain boundary microstructure post 

emission: (1) dislocation emission leads to the creation of a negative disclination and (2) 

dislocation emission results in the generation of a negative dislocation within the source. 

Since the first hypothesis lead to unstable grain boundaries, the second approach was 

selected. 

 

Numerous MD and MS studies were dedicated to grain boundary dislocations. 

Following first MD studies on two dimensional columnar NC materials with grain size 

ranging from 20 to 70 nm (Yamakov et al. 2001), grain boundary partial dislocation 

emission was brought to light. Precisely MD simulations performed by the team of 

Gleiter and Wolf showed that the dislocation emission process is decomposed into the 

emission of a leading Shockley partial dislocation, followed, or not, by the emission of 

the trailing partial dislocation, The authors suggested that the emission of the trailing 

partial dislocation depends on the whether or not the grain size is larger than the splitting 

distance between the two partial dislocations. This distance depends on the stacking fault 
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energy (Hirth et al. 1982). This suggests that when the grain size is small, solely the 

leading partial dislocation can be emitted which results in the creation of a stacking fault 

following its motion. Consequently, one would expect that a single leading partial 

dislocation could not be emitted in the case of high stacking fault energy materials such 

as aluminum. Fully three dimensional simulations on Cu and Ni NC materials with grain 

size ranging from 5 to 12 nm also reveal grain boundary partial dislocation emission 

(Derlet et al. 2002). However, it was suggested that the non emission of the trailing 

partial dislocation may result from a relaxation process within the grain boundary via 

atomic shuffling. In more recent work by the team of Van Swygenhoven (2004), a 

criterion based on the ratio of the stable to the unstable stacking fault energy is 

introduced to predict the emission of the trailing partial dislocation. 

  

In order to investigate more closely the grain boundary dislocation emission 

mechanism, recent MD and quasicontinuum studies (e.g., finite elements couples with 

MS) focused on bicrystal interfaces. Spearot et al.’s simulations of a bicrystal interface 

under traction show that the emission of a dislocation loop from the interface can result in 

the creation of a ledge localized near the source (Spearot et al. 2005). In Figure 2.38 

(Spearot et al. 2005), one can observe the emission of a trailing partial dislocation from a 

bicrystal interface. Atoms are colored with the central symmetry convention (e.g. solely 

atoms which do not belong to a particular lattice structure appear).  These simulations 

confirm that dislocations are emitted solely on favorable slip systems. Also, the quasi-

continuum mode developed by Sansoz and Molinari reveal that in some cases, atomic 

shuffling can precede the emission of a partial dislocation. This is especially the case 
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when the grain boundary contains E-structural units and is submitted to a pure shear 

constraint (Sansoz et al. 2005). 

 

 

(Spearot et al. 2005) 

Figure 2.38: Grain boundary dislocation emission simulated via MD. 

 

Unaccomodated grain boundary sliding 

As mentioned in the above, grain boundary sliding may be active in NC materials. 

This could be rationalized by the fact that dislocation activity is severely decreased in NC 

materials with small grain size. Hence, plastic deformation must occur via another 

mechanism. Also, dislocation emission by grain boundary may or not be active in NC 

materials. Supposing that this mechanism is indeed activated, its effect may not be 

sufficient to accommodate the imposed strain. Hence, grain boundary sliding appears as a 
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possible mechanism that could be activated in NC materials. As mentioned in the 

subsection dedicated to “superplastic” mechanisms. The possible accommodation of 

grain boundary sliding by diffusion mechanisms has been subject to debate. In the case 

where grain boundary sliding is not accommodated via vacancy diffusion, one would 

obviously expect to observe the debonding of the grain interiors. Indeed, Kumar et al. 

(2003) observed the creation and propagation of cracks during in situ tensile test on 

electrodeposited Ni sample. Although let us recall that samples produced via 

electrodeposition are more prone to have impurities within their grain boundaries which 

could promote the debonding of the grains. Modeling of the grain boundary sliding 

mechanism is rather complex and leads to controversial results. For example, Wei and 

Anand (2004) model the mechanism in a simple manner based on the hypothesis the 

grain boundary sliding is stress driven. Precisely, if the measure of the equivalent stress at 

the interface between grains is larger than a critical value, grain boundary sliding occurs. 

This model was implemented in a finite element simulation. The authors concluded that 

grain boundary sliding is the mechanism responsible for the softening in the plastic 

response of NC materials. However, Warner and Molinari (2006) revealed from 

quasicontinuum simulations that grain boundary sliding is similar to a stick slip 

mechanism. From these simulations the authors derive a simple expression of the stick 

skip sliding of grains which is implemented in a finite element simulation and concluded 

that grain boundary sliding alone is not responsible for the anomalous response of NC 

materials. 

Discussion 
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From the above presentation of the microstructure and possible viscoplastic 

deformation mechanisms active in NC materials, it is clear that there is currently no 

rigorous understanding on the mechanisms engendering the particular response of NC 

materials. Consequently several questions are still subject to debate. The following 

discussion aims at rationalizing the change in the role of grain boundaries when the grain 

size of an F.C.C. metal is decreased to the NC regime. Also, a deformation map will be 

established to allow a better comprehension of the range of activity of the different 

mechanisms presented in the above. 

 

Let us first discuss dislocation activity within the grain interiors. As previously 

mentioned, in the NC regime dislocation activity decreases with decreasing grain size. 

When the grain size is smaller than ~10nm, dislocation activity may even become null.  

In the case of conventional materials, strain hardening is a direct consequence of the 

activity of dislocations which density evolves during the deformation owing to the 

storage and annihilation of dislocations. When only dislocation-dislocation interactions 

are accounted for, the yield stress at zero Kelvin is typically written with Taylor’s (1934) 

formula given by: 

  

ˆ bMGσ α ρ=
          (2.35)

 

 

Here σ̂ , α , b, M, G and ρ denote the yield stress at zero Kelvin, a numerical 

constant which depends on the dislocation interaction, the magnitude of Burger’s vector, 

Taylor’s coefficient and the dislocation density, respectively. With the above formula, an 
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increase in the dislocation density leads to an increase in the yield stress which in turns 

leads to strain hardening. Let us recall that this formula accounts solely for stored 

dislocations and the generation of dislocations from the different possible sources are not 

accounted for. 

 Looking more precisely at the activity of dislocation sources, such as the well 

known Frank and Read sources, one can notice the emergence of size effects. Let us 

recall that in a simple manner a Frank and Read source can be represented by a 

dislocation line pinned at two end points. These sources are activated when the shear 

stress applied on the dislocation line is larger than a critical value given by: 

 

c

b

L

µτ ⋅=
          (2.36)

 

 

Here µ , b, L and cτ represent the shear modulus, the magnitude of Burger’s vector, the 

length of the dislocation line and the critical shear stress. Decreasing the grain size 

directly leads to a confinement of the Frank and Read sources. Precisely, the length of the 

source must at all times remain smaller than the grain size. Hence, the critical stress 

required to activate a Frank and Read source will increase with decreasing grain size. At 

a given grain size, a decrease in the dislocation activity is thus expected. 

 

Also, the regions of stability of dislocations within NC materials may decrease 

with decreasing grain size. Qin et al (1999) proposed a model for dislocation stability 

based on the stress fields localized at grain boundaries due to the excess volume of grain 

boundaries. This excess volume was measured experimentally on materials synthesized 



  112  

with different processes (Van Petegem et al. 2003). At equilibrium, the stress applied by 

grain boundaries on a dislocation is equal to the Peierl stress. It is then shown (see Figure 

2.39) that the ratio of dislocation equilibrium surface on the total surface decreases with 

grain size (Qin et al. 2002).  

 

In Qin et al.’s (1999) conceptualization, the elastic modulus of grain boundaries, 

which is dependent on the excess volume, decrease with grain size. In conventional 

materials, grain boundaries have a role of barrier to dislocation motion and the number of 

dislocations that can pile up at the grain boundary is dependent on the grain boundary 

strength. The grain boundary strength decreases in the NC regime due to the increase in 

the excess volume. Thus grain boundaries are less efficient as barriers to dislocation 

motion and could even act as dislocation sinks. 

 

Figure 2.39: Ratio of the dislocation length stability over the grain size as a function of 

grain size.  
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Let us now discuss the size effect in the activity of grain boundary dislocation 

sources. In conventional F.C.C. materials the pile up of dislocations onto grain 

boundaries imposes stresses which prevent dislocations to be emitted from the grain 

boundaries. As mentioned in the above, the dislocation density is severely reduced in the 

UF and NC regime which will favorize the grain boundary dislocation emission. 

Moreover, since the stability of dislocations is also reduced in the NC regime, one would 

expect an emitted dislocation to end its trajectory in the grain boundary opposite to the 

source.  

Deformation map 

Let us present the range of activity of the mechanisms presented in previous 

sections (see Figure 2.40). In the case of conventional materials, plastic deformation is 

driven by dislocation glide and grain boundaries act solely as barriers to dislocations. 

When the grain size is decreased to the UF and NC regime, the role of grain boundaries 

and triple junctions changes for they can act as dislocation sources. Three types of grain 

boundary dislocation sources have been identified; (1) low angles grain boundaries, (2) 

large angle grain boundaries which are typically modeled with disclination structural 

units’ models and (3) grain boundary ledges. From experimental measures of grain 

boundary misorientation distribution (Kumar et al. 2003; Iwasaki et al. 2004), it can be 

concluded that the role of low angle grain boundaries can be disregarded.  

  

The effect and the presence of twins within the grain interiors are subject to studies and 

debate. For example, MD simulations on NC Al with 45 nm grain size reveal the activity 

of twinning. However, although the presence of twins can be observed in NC samples 
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(depending on the fabrication process) which tends to concur with MD simulations, the 

numerical results must be considered carefully. First, twinning is usually observed in 

materials subjected to dynamic loading and its activity is limited in high stacking fault 

energy materials such as Al. (Karaman., 2000). Consequently, MD results may not be 

representative of the quasi-static deformation of NC materials. Second, while two-

dimensional simulations predict the presence and activity of twins, three-dimensional 

simulations predict the activity of twinning solely when twins are initially introduced in 

the model’s geometry (Froseth et al. 2004). 

The activity of vacancy diffusion mechanisms is also subject to debate. While 

many experiments reported creep rates in accordance with the Coble creep law, recent 

studies suggest that these measures are flawed by materials’ artifacts. Also, let us note 

that as predicted by Kim et al. (2000) if vacancy diffusion is active in NC materials, 

Coble creep would dominate Nabarro Herring creep. This result is not surprising 

considering the size exponents in both constitutive laws. 

Grain boundary sliding accommodated or not by vacancy diffusion could also be 

active in NC materials. This mechanism is suggested to be active in small grained NC 

materials (d<~20nm).  
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Figure 2.40: Deformation map 

 

Let us note that question of the mechanism dominating NC deformation has been 

an open debate for more than a decade. In consequence to the advances in material 

synthesis, observations and modeling, the thoughts on the matter have evolved greatly. 

For example in 2003 (when this research project began), vacancy diffusion was largely 

thought to be dominant and discussion on grain boundary dislocation emission was 

beginning. Nowadays, diffusion mechanisms are not expected to play a major role in NC 

deformation and the most cited mechanisms are that of grain boundary sliding and grain 

boundary dislocation emission. 

 

Size effect modeling 

Let us discuss the fundamentals of the modeling of the size effect in the response 

of polycrystalline materials. Considering the many models available in the literature, this 
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section does not intend to be an extensive listing of all models but simply to present the 

type of modeling approaches used as well as their limitations. 

 

Most models are based on two-phase composite approaches where the inclusion 

phase represents grain interiors and the matrix phase represents grain boundaries and 

triple junctions. In most cases the macroscopic response of the material is homogenized 

via a simple rule of mixture (Kim et al. 2000; Carsley et al. 1995; Konstantinidis et al. 

1998). These approaches have the great advantage of being easy to implement 

numerically. However, their predictive capability is penalized by the simplicity of the 

homogenization procedure.  

 

Due to the limited knowledge on the grain boundary structure, most models are 

based on the assumption that grain boundaries are amorphous and do not account for 

plastic deformation within the grain boundaries (Kim et al. 2001; Kim et al. 2001; Jiang et al. 

2004; Capolungo et al. 2005). Let us note that 3-phase models, based on Christensen and Lo 

(1979) and Luo and Weng’s (1987) early work, have also been introduced. Although this 

micromechanical scheme is more refined than traditional two-phase approaches, the 

predictions are limited by the description of the plastic deformation mechanisms. 

 

In general the most complex issues related to the modeling of NC materials are; 

(1) the description at the microscopic levels of the deformation mechanisms and (2) the 

prediction of the macroscopic response of the material from the constitutive laws at the 

microscopic level. Indeed, since the mechanisms occurring in NC materials occur at the 
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atomistic level, where MD and MS aver of great use, an interpretation of the atomistic 

motions must be performed to develop a constitutive law at the microscopic level. Also, 

since the constitutive laws are valid at the microscopic scale, a scale transition from the 

micro to macro must be performed. This scale transition can be performed either via 

finite elements (Warner and Molinari 2006) or via micromechanics. However, both scale 

transition approaches are limited. For example in the case of finite element simulations, 

the first step usually consists of meshing a representative model of the microstructure. 

Owing to the existence of interface elements in most commercially available codes, the 

mechanism of grain boundary sliding can be modeled relatively simply. However, the 

mechanism of dislocation emission cannot (so far) be modeled for dislocation densities 

shall be nodal unknown. Hence, a complex finite element framework with additional 

degrees of freedom would be necessary (Chapter 6 will present such a framework).  In 

the case of micromechanics, while the emission of dislocations could be accounted for, 

the unaccomodated sliding of grains cannot be accounted for. This is due to the fact that 

elasto-viscoplastic models with imperfect interfaces have not yet been developed (a novel 

model will be presented in the following chapter). Also, traditional Eshelbian 

micromechanical schemes can rarely account for non ellipsoidal grain shapes. 
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CHAPTER 3 

SCALE TRANSITION 

 

The fundamentals of continuum micromechanics are recalled in this chapter. As 

previously mentioned, micromechanics is a technique allowing the scale transition from 

the microscopic scale, at which the local constitutive laws are written, to the macroscopic 

scale which we are interested into. Generally, it can be regarded as a particular averaging 

method relying on fundamental physics. Let us note here that micromechanic is a very 

vast field. Therefore, this review clearly does not intend to be exhaustive. For complete 

review on the subject the reader is referred to books by Qu and Cherkaoui (2006), Mura 

(1987) and Suquet (2003).  

 

 In a first section, the fundamentals of Eshelby’s solution to the so-called 

inclusion problem will be briefly exposed. This substantial advance in the field of 

micromechanics has lead to subsequent evolutions aiming at treating complex cases such 

as that of elastic-viscoplastic composite media. Then, two secant-self-consistent 

micromechanical schemes, used in next chapter, will be derived (Cherkaoui et al. 2000, 

Berbenni et al. 2004).  

 

Finally, two novel micromechanical schemes are presented. First, a three-phase-

scheme valid solely in the viscoplastic regime and accounting for jump conditions at 

interfaces is introduced (Benkassem, Capolungo et al. 2007). This scheme clearly allows 

a more precise description of the effect of interphases on NC materials. 
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Second, a two-phase homogenization scheme based on the field fluctuation 

method and on the field translation method is developed (Capolungo et al. 2007). This 

scheme is valid in the elastic-viscoplastic regime and accounts for the effect of slightly 

weakened interfaces which will allow the treatment of unaccomodated grain boundary 

sliding. 

Throughout this chapter, bold Latin letters will refer to fourth order tensors, bold 

Greek letters will refer to second order tensors unless otherwise specified. Capital letters 

will denote macroscopic quantities and small letters will refer to local quantities. The 

subscripts i,j,k,l  (with i,j,k,l=1,2,3) will refer to the components of the tensor considered. 

For example, the tensors ,ε σ will denote local strains and stress, respectively and 

,Ε Σwill denote their macroscopic equivalents. ijε denotes the ij component of the local 

strain tensor noted ε .  The superscripts e,vp, eff and * will refer to the elastic, 

viscoplastic, effective and eigenstrain part of a tensor. The superscripts I, M and C will 

refer to the inclusion phase, the matrix phase and the coating phase, respectively. Also, 

the superscript i  and bar will refer to time derivatives and spatial averages, respectively.  

 

Principle of micromechanics 

 

The objective of continuum micromechanics is to predict the macroscopic response of 

a material from the local constitutive laws of each constituent of the material. The general 

procedure micromechanics rely on is presented in Figure 3.1. The change of scales is 

typically performed in three steps: (1) choice of a representative volume element (RVE), 
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(2) finding a relation between the local fields to the global fields and, (3) 

homogenization. The RVE must be large enough such that its overall properties are 

representative of the composite material.  

 

Depending on whether strain or stress is imposed on the RVE the second step is 

referred to as the localization or as the concentration step, respectively. Homogenization 

can be assimilated as the use of local constitutive laws followed with an averaging 

technique (Bornert 1996). Precisely, the volume average of the local stress and strain 

fields must be equal to their macroscopic equivalent. This condition is referred to as the 

macrohomogeneity condition. It is a direct consequence of the choice of the RVE and is 

written formally as follows: 

 

( )1
V

Σ σ r dr
V

= ∫  and ( )1
V

E ε r dr
V

= ∫       (3.1) 

 

 

Figure 3.1: Methodology of the scale transition. 
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All micromechanical schemes presented in this chapter rely on pioneering work by 

Eshelby (1957) who developed a solution to the ‘inclusion problem’ in which an elastic 

ellipsoidal inclusion is embedded in an infinitely-large elastic matrix. Both matrix and 

inclusion phase have the same elastic constants but the inclusion phase sustains a stress 

free strain (Eigenstrain). Eshelby’s solution which will be presented in the following 

section relates the eigenstrain to the local strain in the inclusion. This allows the 

prediction of the overall elastic response of the biphased material.  

 

While Eshelby’s solution to the inclusion problem leads to exact solutions in the case 

of time independent behaviors, exact solutions cannot be found in the case of time-

dependent responses (e.g., viscoelastic behaviors, viscoplastic behaviors, time dependent 

elastic-plastic). Consequently, approximations to the real response of the material are to 

be obtained in these cases. As discussed by Molinari et al. (1997), two types of 

methodology were developed: (1) field fluctuation approaches and (2) incremental 

approaches. The first method is traditionally referred to as the secant approach while the 

second method is referred to as the tangent approach. 

 

The first approach relies on Kroner, Budiansky and Wu’s (KBW) work which is 

based on the local fluctuation of the plastic strain in the neighborhood of the spatially-

independent strain rate in the homogeneous equivalent medium (Kroner 1961; Budiansky 

et al. 1962).  The solution proposed by KBW relates the global plastic strain to the local 

ones via an elastic term. This ineluctably leads to overestimated predictions of the overall 

response. The incremental approach was developed by Hill (1965) who related the strain 
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and stress rates via an elastic-plastic modulus tensor. Essentially, this corresponds to a 

linearization of the constitutive laws followed by the use of Eshelby’s solution. As 

detailed in work by Tome (1999), tangent approaches generally lead to softer predictions 

of the overall response of the material. 

 

Since these two approaches rely on approximations they are both subject to debate. 

First, the field fluctuation approach implicitly considers plastic strains as eigenstrains, 

which is not entirely true (Masson and Zaoui 1999). Hence, the use of Eshelby’s solution 

is often debated. Second, the incremental approach is based on the linearization of the 

constitutive laws which could penalize the accuracy of the predictions. 

 

 Numerous extensions of the field fluctuation and of the incremental approaches 

have been proposed over the past decades. Kroner’s approaches are typically preferred to 

Hill’s approaches for the linearization of elastic-viscoplastic constitutive laws avers to be 

complex. Weng (1981) proposed an extension of the KBW approach to treat the case of 

the creep response of materials. The author justified the use of Eshelby’s solution on the 

basis that creep strain is independent on the stress rate and can thus be assimilated as an 

eigenstrain. An elastic-viscoplastic micromechanical schemes was also developed by 

Cherkaoui et al. (2000) in which both the fluctuations in the elastic and viscoplastic 

responses are taken into account. This scheme will be derived in upcoming section for it 

is used in Chapter 4 dedicated to the prediction of the effect of diffusion mechanisms. 

Recently, a softer elastic-viscoplastic self-consistent scheme based on the field 

fluctuation approach was developed by Berbenni et al. (2004). Note that the field 
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translation method was previously introduced in work by Sabar et al. (2002). This 

scheme is used in Chapter 5, dedicated to grain boundary assisted deformation, and will 

be presented in upcoming section. 

 

Also, in contribution by Masson and Zaoui (1999), a Hill’s inspired scheme was 

developed in which the elastic-viscoplastic problem is transformed into a 

thermoviscoelastic problem. Although this scheme leads to softer predictions than that of 

Berbenni et al.’s scheme, its implementation is far more complex. Also this model does 

not allow the treatment of the case of anisotropic materials. This affine procedure was 

later used and extended in work by Lebensohn et al. (2004) in order to treat the problem 

of anisotropic polycrystals with voids.  

The inclusion problem 

A solution to the inclusion problem was introduced in Eshelby’s pioneering work 

(Eshelby 1957) who  found the overall elastic response of a homogeneous material, with 

elastic tensor C composed of  an inclusion embedded in a matrix of infinite dimensions 

(see Figure 3.2). Additionally to the elastic strain, the inclusion phase sustains an 

eigenstrain. The terminology eigenstrain refers to a stress-free strain such as a thermal 

strain, a phase transformation strain etc.  

 

In this section, a solution to the problem of an elastic homogeneous media 

composed of an inclusion sustaining an eigenstrain embedded in a matrix of infinitely 

large dimensions is presented. Second, this solution to the inclusion problem is used to 

solve the problem of a linear elastic composite material. 
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Figure 3.2: Representative volume element of the inclusion problem. 

 

The eigenstrain problem 

The objective here is to relate the local strain within the inclusion phase to the 

eigenstrain. Let us consider the inclusion phase. Hence, the superscript I will be omitted 

for simplicity of the notations. First, let us decompose the strain field in the inclusion 

phase as the sum of the elastic strain and of the eigenstrain which is supposed 

homogeneous within the inclusion: 

 

*e
ij ij ijε ε ε= +           (3.2) 

 

C 

C, ε*  
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The deformation in the inclusion phase must respect the compatibility condition. Hence, 

if udenotes the displacement vector, the compatibility condition reads, in the case of 

small deformation: 

 

( ), ,

1

2ij i j j iu uε = +          (3.3) 

 

Using the local linear elastic constitutive law (e.g. Hooke’s law) where cdenotes the 

local elastic tensor modulus, equation (3.2) becomes: 

 

( )*e
ij ijkl kl ijkl kl klc c= = −σ ε ε ε         (3.4) 

 

Using the compatibility condition and the symmetry of the elastic tensor (e.g., 

ijkl klij ijlkc c c= = ) one obtains the following equation: 

 

( )*
,ij ijkl k l klc u= −σ ε          (3.5) 

 

Neglecting any dynamic effect and body forces, the equilibrium condition reads: 

 

, 0ij jσ =           (3.6) 

 

Finally, Navier’s equation is established by introducing the equilibrium condition into 

equation (3.5): 
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*
, , 0ijkl k lj ijkl kl jc u c− =ε          (3.7) 

 

The solution to the above equation is obtained via the use of Green’s function which is 

solution to: 

 

, ( ') ( ') 0ijkl km lj imc G x x x x− + − =δ δ        (3.8) 

 

Here ( ')x xδ − is the Dirac function which takes the value 1 when x=x’ and the value 0 

everywhere else.kmG , with G denoting Green’s operator, is the displacement produced in 

the direction k when a force of value unity is applied in the ith direction. Note that the 

proof of (3.8) is based on the use of Fourier equation and can be found elsewhere (Mura, 

1987, Qu and Cherkaoui 2006). Multiplying (3.8) by the ith component of the 

displacement and integrating the resulting equation on the volume of the RVE leads to 

the following relation of the eigenstrain problem: 

 

( ) *E
ij ijkl klε r S ε=           (3.9) 

 

Here ES denotes Eshelby’s tensor which is given by: 

 

ES P : C=           (3.10) 

 



  139  

Here P a fourth order modified green operator related to Greens functions as follows: 

 

( )Ω ' 'r r drP = −∫ Γ          (3.11) 

 

Here Ω denotes the volume of the inclusion. Indeed since the matrix does not sustain any 

eigenstrain the volume integral performed on (3.8) becomes an integral on the inclusion’s 

volume. Also the fourth order tensor ( )'r r−Γ is given by: 

 

( ) ( ) ( ) ( ) ( )ijkl ki, jl kj,il li, jk lj,ik

1Γ
2

G G G Gr r' r r' r r' r r' r r' − = − + − + − + −    (3.12) 

 

The details of the derivation of the solution to Navier’s equation are presented in 

Appendix A. The solution to the inclusion problem can be used to solve the case of 2-

phase inhomogeneous elastic materials. Traditionally the equivalent inclusion method is 

used. A solution to such a problem is exposed in the following section. However, the 

solution procedure is based on the fluctuation method. This method will be used in 

subsequent schemes to solve elastic-viscoplastic problems both in the case of a 2-phase 

and a 3-phase material’s topology. 

Linear elastic bi-phased composite material 

Consider the problem of a linear elastic material containing a non-homogeneous 

inclusion. The material is composed of two different phases (e.g., a matrix phase and an 

inclusion phase) with different elastic tensors. Let us transform this problem into an 

equivalent problem (see Figure 3.3). The equivalent problem is the following; at any 
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point within the RVE, the elastic tensor fluctuates in the neighborhood of a value C (it 

can be considered as an average value of the elastic tensor over the entire volume) that 

will be evaluated from the self-consistent scheme. The deviation is denoted with δC.  

 

 

 

Figure 3.3: Schematic of the linear elastic non homogenous inclusion problem. 

 

Let us derive Navier’s equation in the case of the equivalent problem. Recall that 

the deformation fields and the stress fields must be compatible and at equilibrium at all 

times. These conditions are written as follows: 

 

0div =σσσσ           (3.13) 

 

and 

cm 

ci 

E 

E 

E 

E 

C 

C+δC 
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s= ∇ uεεεε           (3.14) 

 

here s∇ denote the gradient operator. At any point within the material, the local 

constitutive law is written as follows: 

 

( ) ( ) : ( )r r r= cσ εσ εσ εσ ε          (3.15) 

 

Here r denotes the position of the point. Local fields must respect the macrohomogeneity 

conditions given by: 

 

( ')
r

r dr = =∫σ σσ σσ σσ σ ΣΣΣΣ          (3.16) 

 

And 

 

( ')
r

r dr = =∫σ σσ σσ σσ σ ΣΣΣΣ          (3.17) 

 

The decomposition of the elastic tensor into the sum of a tensor C and a fluctuation term 

is written as follows: 

 

( ) ( )r r= +c C δCδCδCδC          (3.18) 
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Similarly, the compliance tensor, denoted( )rs , is decomposed into a constant compliance 

tensor S  and a fluctuation term ( )rδSδSδSδS : 

 

( ) ( )r r= +s S δSδSδSδS          (3.19) 

 

Using the constitutive law and both the compatibility and equilibrium conditions one 

obtains Navier’s equation written as follows: 

 

( ), , ,
0ijkl k lj ijkl k l j

C u C u+ =δ         (3.20) 

 

The solution to the equation in the above is found via the use of Green’s operator 

in a manner similar to that exposed in Appendix A. After some algebra, one obtains: 

 

( ) ( ') ( ') ( ')ij ij ijkl klmn mn

V

r E r r C r r dV= − Γ −∫ε δ ε      (3.21) 

 

Here, ΓΓΓΓ  denotes Green’s modified operator given in equation (3.12). In equation (3.21), 

one can recognize the expression of convolution products, denoted with ⊗ . Hence, the 

previous equation can be written in the following form: 

 

( ) :r E= − ⊗ΓΓΓΓε εε εε εε εδCδCδCδC         (3.22) 
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Navier’s equation can also be written in terms of Kunin’s projection operators which are 

written as follows (Kunin, 1981): 

 

:C C=Π ΓΠ ΓΠ ΓΠ Γ           (3.23) 

 

Here, CΠΠΠΠ denotes Kunin’s operator which has the following properties corresponding to 

the equilibrium and compatibility conditions, respectively: 

 

( ) 0 : 0Cdiv S= ⇔ ⊗ =σ σσ σσ σσ σΠΠΠΠ         (3.24) 

 

And 

 

s Cu E= ∇ ⇔ ⊗ = −ε ε εε ε εε ε εε ε εΠΠΠΠ         (3.25) 

 

Finally the solution to Navier’s equation also referred to as the integral equation, reads: 

 

: :C= + ⊗E cε εε εε εε εδSδSδSδSΠΠΠΠ         (3.26) 

 

A complete derivation of the integral equation using Kunin’s operator is presented in 

Appendix B. The above relation links the macroscopic strain to the local strain at any 

point. In terms, this leads to the localization relation.  

 However, this relation must be averaged in a self-consistent manner to uniquely 

define the elastic compliance tensorS . First, let us decompose the above equation into 
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the sum of a local term, denoted with subscript L, and of a non-local term, denoted with 

subscript NL: 

 

: : : :C C
L NL= + ⊗ + ⊗E c cε ε εε ε εε ε εε ε εδS δSδS δSδS δSδS δSΠ ΠΠ ΠΠ ΠΠ Π       (3.27) 

 

Recalling the following property of the convolution product; ( ')f r r fδ⊗ − = , the local 

term in (3.27) can be written as a simple double dot product instead of a convolution 

product. The evaluation of the non-local term is of great complexity. It can be avoided if 

S is chosen such that the volume average of : :c εεεεδSδSδSδS  is equal to zero. This particular 

choice is the core basis of the self-consistent approximation. Expanding the volume 

average of this term and using the macrohomogeneity condition, one obtains: 

 

( ) : : : : : 0− = − = − =s S c S c E Sε ε εε ε εε ε εε ε ε ΣΣΣΣ       (3.28) 

 

Hence the elastic compliance is equal to the material’s effective elastic 

compliance e=S S . Consequently the self-consistent approximation consists of 

transforming the original problem into an equivalent problem in which the inclusion has 

an elastic compliance that fluctuates in the neighborhood of the material’s effective 

compliance and the matrix’s compliance is equal to the material’s effective compliance. 

The localization relation is obtained by neglecting the non local-terms of equation (3.27) 

and introducing the value of the non local elastic compliance. Note here that the non local 

terms are neglected since the expression presented here below is to be averaged on the 
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volume of the RVE which will directly set the non local term to zero. After some algebra 

one obtains the localization relation: 

 

( ) :eI c C E + − = Γ :Γ :Γ :Γ : εεεε         (3.29) 

 

The localization relation is typically written as follows: 

 

:ce= A Eεεεε           (3.30) 

 

Owing to the macrohomogeneity condition, this relation applies to both the inclusion and 

the matrix phase. Moreover, the average of the localization tensors (e.g., of both the 

inclusion and the matrix phase) must be equal to the fourth order identity tensor. ceA is 

the fourth order localization tensor given by: 

 

( ) ( ) ( ) 1
' ( )ce er r rA I c r C

− = + − − Γ :Γ :Γ :Γ :       (3.31) 

 

Let us note that since inclusions are supposed ellipsoidal, the localization tensor is equal 

to its average on the inclusion’s volume and does not depend on the position. Also, 

analytical expressions of the localization tensors can easily be found in the case of 

isotropic materials. The derivation of the closed forms of the localization tensors in the 

case of elasticity and viscoplasticity are presented in Appendix C. Hence, the average of 

the localization relation on the inclusion and matrix volume are given by: 
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, :ce rr A E=εεεε    with r= I, M      (3.32) 

 

Here the localization tensor averaged on the inclusion or on the matrix volume is given 

by: 

 

( )
1

, ( )ce r E e eS rA I C c C
− = + −  −1−1−1−1

: :: :: :: :   with r= I, M    (3.33) 

 

The value of the effective elastic tensor (and its inverse), can now be found via the use of 

the local constitutive laws and the macrohomogeneity conditions. The effective 

material’s response is simply given by: 

 

:e= C EΣΣΣΣ           (3.34) 

 

Recall that the volume average of the local stress is equal to the macroscopic stress, using 

the constitutive laws one obtains: 

 

: : :ce= =c c Aσ ε εσ ε εσ ε εσ ε ε          (3.35) 

 

This step corresponds to the homogenization step. The effective elastic tensor is thus 

found by identification. One obtains: 

 

e ce=C c : A           (3.36) 
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For the sake of completeness, let us expand expression (3.36). 

 

e I I ceI M M ceMf c f cC A A= +         (3.37) 

 

Note here that both localization tensors are explicitly dependent on the effective elastic 

modulus tensor. Hence, equation (3.37) needs to be solved numerically. The derivation of 

the closed form of equation (3.37) is presented in appendix C. 

Time dependent responses 

The fundamentals of micromechanics derived in the previous section can be 

extended to the case of time dependent response. In the present section, two 

micromechanical schemes used in Chapter 4 will be recalled.  

The first scheme developed by Cherkaoui et al. (2000) is a two- phase elastic-

viscoplastic self-consistent scheme corresponding to an extension to the KBW model to 

the case of materials with inhomogeneous elastic response. Throughout this thesis this 

scheme will be referred to as 2PEVP.  

The second scheme to be exposed was introduced by Berbenni et al. (2004). It is 

an extension of the 2PEVP scheme based on translated fields, and will be referred to as 

the 2PEVPT scheme. While the 2PEVP model accounts for the heterogeneity in the 

plastic responses with elastic terms, the 2PEVPT scheme allows softer predictions owing 

to its accommodation of the plastic heterogeneities. 
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2PEVP 

 Consider a RVE similar to that shown in Figure 3.3 where both constituents are 

capable of plastic deformation. Locally, the strain rate can be decomposed into the sum of 

the elastic strain rate and the viscoplastic strain rate: 

 

e vp= +ɺ ɺ ɺε ε εε ε εε ε εε ε ε           (3.38) 

 

The local constitutive law reads: 

 

eσ c : ε= ɺɺ           (3.39) 

 

Using the decomposition of the elastic tensor modulus (and its inverse) presented in 

previous section, the double dot product of the local stress rate with the spatially constant 

compliance tensor is written as:  

 

: : : ( ) : : : :e e vp= = − = − −ɺ ɺ ɺ ɺ ɺɺS S c s c cσ ε ε ε ε εσ ε ε ε ε εσ ε ε ε ε εσ ε ε ε ε εδS δSδS δSδS δSδS δS     (3.40) 

 

Using the properties of Kunin’s projection operator one obtains the following:  

 

: : : 0C C vp C e⊗ = − − ⊗ − ⊗ =ɺɺ ɺ ɺɺS E cσ ε ε εσ ε ε εσ ε ε εσ ε ε εδSδSδSδSΠ Π ΠΠ Π ΠΠ Π ΠΠ Π Π      (3.41) 

 

The equation in the above relates the local strain rate to the macroscopic strain rate and to 

the local elastic and viscoplastic strain rates. Let us now decompose the viscoplastic 
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strain rate into the sum of two contributions: (1) a contribution which is independent of 

the position (but not independent on time t), this contribution can be seen as a spatial  

average of the viscoplastic strain rate, and (2) a fluctuation dependent on the position in 

the neighborhood of the first contribution. With this hypothesis one can write the local 

viscoplastic strain rate as follows: 

 

( ) ( )vp vp vpr r= +ɺɺ ɺEε δεε δεε δεε δε         (3.42) 

 

Notice the presence of the projection of (3.42) in (3.41). Introducing the above equation 

in (3.41), and using the compatibility conditions, one obtains the following integral 

equation: 

 

: :C e vpE S c = + ⊗ + ɺɺ ɺ ɺδ δε ε εε ε εε ε εε ε εΠΠΠΠ        (3.43) 

 

Let us note that two terms are to be evaluated in this expression: (1) the constant 

compliance tensor and, (2) the spatially invariant viscoplastic strain rate. These two terms 

are obtained via the self-consistent approximation. Indeed, the above equation can be 

decomposed into the sum of a local term and of a non-local term which spatial average is 

set to zero. 

 

: : 0e vp+ =ɺ ɺc ε δεε δεε δεε δεδSδSδSδS          (3.44) 
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After some algebra involving the use of the macrohomogeneity condition, one obtains the 

self-consistent estimate of the two unknown tensors, namely: 

 

e=S S           (3.45) 

 

And 

 

vp vpe=ɺ ɺE E           (3.46) 

 

Finally, with the above estimates, the localization relation is written as follows: 

 

( ) ( ) ( ) ( ) ( ) ( ): : ' : : :ce ce ce vp e vper r r r rA E A c r C E = + − − ɺ ɺɺ ɺΓΓΓΓε ρ εε ρ εε ρ εε ρ ε     (3.47) 

 

The values of the effective compliance tensors and strain rate tensor are obtained 

simply with use of the macrohomogeneity conditions which consists of averaging the 

local constitutive laws over the RVE volume. Precisely, recalling that in the case of an 

ellipsoidal inclusion the localization tensors are constant in each phase the average of 

(3.47) on the inclusion’s volume leads to:  

 

1 1 1
( ) : : : : :ce ce vp e vper dr dr drA E A c C E

Ω Ω Ω
 = = + − Ω Ω Ω∫ ∫ ∫ɺ ɺɺ ɺ ɺΓΓΓΓΙΙΙΙε ε εε ε εε ε εε ε ε   (3.48) 
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In the above equation one can notice the presence of the fourth order tensor P which is 

related to Eshelby’s tensor. Hence, one obtains, after some algebra: 

 

( ) 1
: : : : : :ceI ceI E e vpI e vpeIA E + A S C c C E

−  = − ɺ ɺɺ ɺΙΙΙΙε εε εε εε ε     (3.49) 

 

 Let us note that the second term on the right hand side accounts for the 

inhomogeneity in the viscoplastic response which is weighted solely with elastic terms. 

This leads to slightly overestimated viscoplastic responses. Equation (3.49) is typically 

written in as follows 

 

:ceI IA E + a= ɺɺ ΙΙΙΙεεεε           (3.50) 

 

Where the second order tensor Ia is given by: 

 

( ) 1
: : : : :I ceI E e vpI e vpeIa A S C c C E

−  = − ɺɺεεεε       (3.51) 

 

As can be observed in the above equation, Kroner’s scheme (1961) can be obtained 

simply by considering the case of a 2-phase material with homogeneous elastic response. 

Finally, the effective viscoplastic strain rate and elastic modulus tensor are obtained with 

use of the macrohomogeneity condition giving: 

 

e I I ceI M M ceMf c f cC A A= +         (3.52) 
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And 

 

( ) ( ) ( )1 1
: : : : 1 : : : :vpe I ceI E e vpI I ceM E e vpMf fI ME A S C c A S C c

− −
= + −ɺ ɺ ɺε εε εε εε ε   (3.53) 

 

2PEVPT 

 Let us now briefly expose the derivations of the 2PEVPT model introduced by 

Berbenni et al. (2004). In order to derive this scheme, one must proceed in two steps: (1) 

consider a purely viscous case and, (2) using the translated field method in the case of an 

elastic-viscoplastic material.  

Viscoplastic self-consistent scheme 

Consider the case of a two-phase viscoplastic material. The local constitutive laws are 

then written as follows: 

 

:vp =ɺ mε σε σε σε σ           (3.54) 

 

Here m denotes the fourth order viscosity tensor with inverseb . Similarly the 

macroscopic response is written as follows:  

 

:vpe e=ɺE M ΣΣΣΣ           (3.55) 

 

Here eM denotes the fourth order macroscopic viscosity tensor with inverse denoted with  
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eB . Note here that in order to distinguish the elastic case from the viscoplastic case, the 

superscript B will be used to denote the viscoplastic case. Let us recall the expression of 

Kunin’s projection operators, denoted ΒΠΠΠΠ  in the case of viscoplasticity: 

 

:B B= BΠ ΓΠ ΓΠ ΓΠ Γ           (3.56) 

 

Here B is a spatially invariant inverse of the viscosity tensor. BΓΓΓΓ  is Green’s operator in 

the viscoplastic case. The equilibrium and compatibility conditions are written as follows, 

respectively: 

 

( ) 0 : 0Bdiv = ⇔ ⊗ =Mσ σσ σσ σσ σΠΠΠΠ        (3.57) 

 

And 

 

s C vp vp vp= ∇ ⇔ ⊗ = − ɺɺ ɺu Eε ε εε ε εε ε εε ε εΠΠΠΠ        (3.58) 

 

Here the tensor M is given by the decomposition of the local viscosity tensors (the same 

relation is also valid for the inverse of the viscosity tensors):  

 

( ) ( )r rm M δm= +          (3.59) 

 

Here, M and ( )rδmδmδmδm denote the spatially invariant viscosity tensors and its fluctuation, 

respectively. Using the equilibrium and compatibility conditions the integral equation can 
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be obtained in a manner similar to that presented in the case of a composite elastic 

material: 

 

: :vp vp B vp= + ⊗ɺɺ ɺE bε εε εε εε εΠΠΠΠ δmδmδmδm         (3.60) 

 

Using the decomposition of the integral equation into a local and a non-local part and the 

self-consistent approximation, one obtains the localization relation given by: 

 

:vp Be vpe= ɺɺ A Eεεεε          (3.61) 

 

with 

 

e=M M           (3.62) 

 

And 

 

( )
11

: : ( )Be E e eA I S B b B
−− = + −          (3.63) 

 

Similarly to the elastic composite material’s case, the effective viscosity tensors are 

obtained via use of the macrohomogeneity condition. Therefore it will not be recalled 

here. 

Field translation 
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A solution to the elastic-viscoplastic case can be obtained with use of the 

previously developed scheme. Let us now consider a two-phase elastic-viscoplastic 

material. Suppose the decomposition of the local strain rate tensor (which is dependent on 

both time, t, and position, r) into the sum of a first term independent on time, but 

dependent on position, which can be seen as a local value averaged on time in the 

neighborhood of which a second term, corresponding to local fluctuations, and thus 

depending on both time and position, will evolve:  

 

( , ) ( ) ( , )vp vp vpr t r r t= +ɺɺ ɶ ɺε ε δεε ε δεε ε δεε ε δε         (3.64) 

 

Here vpɺɶεεεε and vpɺδεδεδεδε denote the time invariant term and the fluctuation term, respectively. 

From the decomposition of the strain rate into the sum of the elastic strain rate and the 

viscoplastic strain rate, the macroscopic constitutive law can be written: 

 

: vp= + ɺɺ ɶɺE S EΣΣΣΣ          (3.65) 

 

Here the tensor vpɺɶE is the translated viscoplastic tensor solution of the fictitious 

viscoplastic problem which is related to the time invariant local viscoplastic strain rate 

field via the previously derived viscoplastic localization relation (Sabar et al. 2002): 

 

:vp Be vpeA E= ɺɺ ɶɶεεεε          (3.66) 
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This field can be projected with use of Kunin’s operator. Also, using the decomposition 

of the elactic tensor and the solution to the elastic problem, one obtains the expression of 

the integral equation given by: 

 

: : :Be vp vp C e vpE A E E c = + − + ⊗ + ɺ ɺɺ ɶ ɶɺ ɺ ɺΠΠΠΠε ε δεε ε δεε ε δεε ε δεδSδSδSδS      (3.67) 

 

Finally, the unknown tensors are estimated via the self-consistent approximation: 

 

e=S S           (3.68) 

 

And 

 

vp vpe=ɺɶ ɺE E           (3.69) 

 

Introducing, the above results the localization relation reads 

 

: ( ) : : : : ( : : )Ce vpe Ce Be vpe Ce E e vp e Be vpe= − + + −ɺ ɺ ɺ ɺɺ ɺA E E A A E A S S c C A Eε εε εε εε ε   (3.70) 

 

It can be noticed that the above localization relation accommodates the inhomogeneity in 

the viscoplastic response not only in terms of elastic constants but also with the 

viscoplastic localization tensors, BeA , obtained in the case of a viscoplastic biphased 

composite material. Consequently this scheme leads to softer response than that obtained 

with use of the 2PEVP scheme. 
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Novel models 

Let us now introduce two novel micromechanical schemes based on the three-

phase approach initially introduced by Christensen and Lo (1979) and on the two-phase 

model for slightly weakened interfaces introduced by Qu (1993). These two schemes will 

be used in Chapter 5.   

 

A first model, developed in cooperation with Saad Benkassem (Benkassem 

Capolungo et al. 2007) and corresponding to an extension of work by Cherkaoui (2000) 

on micromechanics of mobile interfaces is presented. As discussed by Cherkaoui (1996), 

three-phases models are more suited to precisely describe the effect of interfaces 

(typically modeled as thin layers of interphase) on the response of polycrystalline 

aggregates. This scheme will be referred to as 3PVP (3 Phase Visco Plastic). While it 

allows interface motion, which is appropriate to treat mass transfer and diffusion 

problems, it does not account for the relative sliding 

 

The second model, which will be referred to as 2PEVPWI (2 Phase Elastic Visco 

Plastic with Weakened interface), is valid in the case of elastic-viscoplastic materials. It 

is based on the translated field approach (Sabar et al. 2002) and inspired by Qu’s early 

work on slightly weakened interface (1993). Therefore, the case of imperfect interface 

bonding can be treated. An application will be shown in Chapter 5 where the effect of 

unaccomodated grain boundary sliding will be briefly treated. 
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 The topology of the three-phase model, introduced by Christensen and Lo (1979), 

relies on the assumption that the real material can be represented by a volume element 

including a single coated inclusion embedded in a homogeneous equivalent medium. This 

is clearly an extension of the composite sphere model. In the case of NC materials, the 

inclusion phase represents grain cores while the coating phase represents both grain 

boundaries and triple junctions. 

 

 

 

 

 

 

Figure 3.4: Schematic of topology of the three phase problem. 

3PVP model 

Localization relations 

  The macroscopic behaviour of the material is purely viscoplastic and can be 

written as follows: 

 

:e= ΣɺΕ M    (3.71) 

 

Similarly, within the inclusion and coating phase the local constitutive laws are written as 

follows: 

Coating 

Inclusion

 Effective medium 
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:r r r=ɺε m σ  with r=I,C   (3.72) 

 

The local strain rates will be related to the macroscopic strain rate via the localization 

relations: 

 

:r r= ɺɺε A E  with r=I,C   (3.73) 

 

Here, rA  represents the fourth order concentration tensor which expression will be 

derived in the following. Using the macrohomogeneity condition, the effective inverse of 

the viscosity tensor, eB , can be expressed in function of its local equivalent and of the 

average localization tensor in the inclusion phase: 

 

( ) :e C I I C If= + −B b b b A    (3.74) 

 

Here If  denotes the volume fraction of the inclusion phase which is given by: 

 I I IIC I cV f fV f f= =
+

  (3.75) 

  

Here IV and ICV denote the volume of the inclusion and of the coated inclusion, 

respectively. Similarly one can define the volume fraction of the coating phase as 

follows: 



  160  

 C c cIC I cV f fV f f= =
+  

(3.76) 

 

Here CV  denotes the volume of the coating phase. Let us now derive the expression of 

the localization tensors. At any point within the material the viscosity tensor can be 

decomposed into the sum of a spatially constant term, which is equal to the effective 

viscosity via the use of the self-consistent approximation, and of a fluctuation term 

engendered by the viscoplastic heterogeneity introduced by the inclusion and its coating: 

 

( ) ( )er r= +b B δb    (3.77) 

 

The concentration tensors are then determined via the simultaneous use of the integral 

equation (Dederich et al., 1973; Eshelby, 1961; Hill, 1983 ) and of interfacial operators 

(Walpole 1978, Hill 1983). With the above decomposition of the viscosity tensor, the 

integral equation is given by: 

 

( ) ( ) ( )' : ' : ' '
V

r r r r dr= − −∫E δbɺɺ ɺΓΓΓΓε εε εε εε ε   (3.78) 

 

Where r is an arbitrary point, ( )'r r−ΓΓΓΓ denotes Green’s modified operator. Heavyside 

step functions are introduced to describe the fluctuating part of the inverse of the 

viscosity tensors: 
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( ) 1

0
θ

 ∈= 
∉ II Iif r Vr if r V    and   ( ) 1

0
θ

 ∈ = += 
∉ IC I CIC ICif r V V Vr if r V   (3.79) 

 

Accordingly, the volume of the coating is described by the following Heavyside function: 

 

( ) ( ) ( )θ θ θ= −C IC Ir r r
  (3.80) 

 

Hence, the fluctuating term ( )rδb in equation can be written as: 

 

( ) ( ) ( )I I C Cr r r= ∆ + ∆δ θ θb b b
   (3.81) 

 

Where ∆ I I e= −b b B and ∆ C C e= −b b B . Introducing the above decomposition into the 

integral equation one obtains 

 

( ) ( ) ( ) ( ) ( ) ( )' : ' : ' ' ' : ' : ' '
I C

I C

V V
r r r r dr r r r r dr= − − ∆ − − ∆∫ ∫ɺɺ ɺ ɺΓ ΓΓ ΓΓ ΓΓ ΓE b bε ε εε ε εε ε εε ε ε

 

   (3.82)
 

Let us introduce the interaction tensor defined as the integral of Green’s modified 

operator in the coated inclusion volume. It is written as follows: 

 

( ) ( )' '
IC

e

V
r r dr= −∫ ΓΓΓΓT B

  

(3.83) 
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Introducing (3.83) into (3.82) and taking the average of the resulting equation on the 

coated inclusion’s volume one obtains the localization relation: 

 

( ){ } ( ){ }: : : :
I C

eff I I eff C C
IC IC

V V
E b E b E

V V
= + ∆ + + ∆ɺ ɺ ɺI T b I T b

  
(3.84) 

 

For (3.84) to be complete, a relationship between the local averaged strain rates in the 

inclusion and in the effective medium must be introduced via the use of interfacial 

operators which are presented below. 

Interfacial operators 

 In this section, interface relations between 2 phases are presented in a general case. The 

superscript 1 and 2 refer to phase 1 and phase 2, respectively. A schematic of such an 

interface is given in Figure 3.5.  

 

Figure 3.5: schematic of an interface. 

 

 The relatively small thickness of the coating (~1nm) justifies the use of the thin layer 

assumption. Moreover, perfect bonding is assumed between the inclusion and its coating. 
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Accordingly, the displacement across an interface must be continuous and must respect 

the following equation.  

 

2 10     , 0   i i iu u u  = − =  with i=1,3
   (3.85)

 

 

Where [ ]⋅  denotes a jump across the inclusion/coating interface and u denotes the 

displacement vector. From the continuity of the traction vector one obtains: 

 

( )1 2 0σ σ σ  = − = ij j ij ij jn n
  

(3.86)
 

  

Where in is the outward unit normal on the interface. Hadamard’s compatibility 

conditions (1903) for a moving interface Σ  are given by: 

 

[ ] ,i i j j α αν u n w n = −     (3.87) 

  

where iν  is the velocity of particles at S ,αw  denotes the propagation velocity of the 

interface Σ , αn is the normal on the surface Σ , ,i ju is the displacement gradient and jn the normal to the element of surface dS . Moreover, since the interface is stationary 

one obtains 0αw =  and [ ] 0iν = .  At an arbitrary point ( )ir x  of the interface, the 

compatibility condition ,i i j jdu u dx=  added to the continuity of displacement along the 
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boundary imposes the following condition on the jump of the gradient of the 

displacement: 

 

( )1 2 0i j j i j i j ju dx u u dx  = − = , , , ;   or  1 2, , ,i j i j i j i ju u u n  = − =  λ   (3.88) 

 

From the symmetry of the strain tensor, the jump in the strain rate ij  ɺε across the 

interface is given by: 

 

[ ] ( )1 2 1

2 i j j in n= − = +λ λɺ ɺ ɺε ε εε ε εε ε εε ε ε    (3.89) 

 

Here iλ  is a proportionality factor corresponding to the magnitude of the jump. From the 

equilibrium condition and with the use of the local constitutive laws one obtains: 

 

1 1 2 2: : :j jn n=ɺ ɺb bε εε εε εε ε      (3.90) 

 

Introducing (3.89) into (3.90) leads to: 

 

1 2 1 2: :j l j kn n n − =   λɺb b bεεεε    (3.91) 

 

The strain rate jump across the interface is obtained from (3.91) and given by: 
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1 1 2 1:i ik lK nλ ε−  = −  ɺb b    (3.92) 

 

Here Christofells’s matrix is denoted by 2ik ijkl l jK n n= b . Introducing (3.92) into (3.89) one 

obtains the expression of strain rate jump across the interface: 

 

2 1 2 1 2 1: : − = − ɺ ɺ ɺP b bε ε εε ε εε ε εε ε ε    (3.93) 

 

where rP
 
with r=1, 2, denotes the interfacial operator, introduced by Hill (1983) and 

dependent of the unit normaln
�

.  

Localization tensors 

  In what follows the interface relations developed in the previous section are applied to 

the topology of the three-phase model which will lead to the expressions of the 

localizations tensors. Applying (3.93) to the case of the coated inclusion problem leads 

to: 

 

( ) ( ) ( ): : 'C I C IC Ir r' r= ∆ɺ ɺ ɺ+ P bε ε εε ε εε ε εε ε ε   (3.94)  

 

Where C  Vr ∈ and I'   Vr ∈ ; Ic I c∆ = −b b b . Let us suppose the local strain rate in the 

inclusion to be homogeneous and evaluate the average strain rate within the coating, one 

obtains: 
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( ) : :C I C C IC IE E T b b E= + ∆ɺ ɺ ɺ
  (3.95) 

 

Where the interaction tensor is written as follows: 

 

( ) 1
C

C C C
C V

dr
V

= ∫T b P
  

(3.96)
 

  

Finally, the localisation tensors in each phase are simply obtained by introducing (3.95) 

into(3.84); one obtains: 

 

( )( )
( )( ) ( ) ( )( )

1

1

: : : :I eff II c eff c c c ICf bf b b −

−

 + ∆ + =  + + ∆ + ∆  I T bA I T b I T b
  (3.97)

 

 

and 

 

( ) : :c c c Ic Ib = + ∆ A I T b A        (3.98) 

 

The algebra leading to the above equations is similar to that developed by Cherkaoui et 

al. (1995). In conclusion, the complete localization relations are obtained by introducing 

the above localization tensors in the localization relations (3.61). Also, the effective 

viscosity tensor is obtained with use of the expression of the localization tensor of the 

inclusion phase. As can be seen this scheme shall lead to softer prediction of the 
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viscoplastic response than that of the two phase viscoplastic model presented previously. 

This is due to the fact that the heterogeneity of the viscoplastic strain rates is 

accommodated with the use of interaction tensors. 

2PEVPWI model 

 

The problem of elastic-viscoplastic coated inclusions with imperfect interfaces ( 

which could potentially lead to material failure via grain boundary sliding in the case of 

NC Materials) requires the solution of two complex sub-problems: (1) the development 

of an appropriate self-consistent scheme valid in the case of coated inclusions with 

elastic-viscoplastic behaviors and, (2) the development of relations accounting for the 

effect of imperfect interfaces on the relative state of deformation in the different 

constituents. 

In the case of problem (1), generalized self-consistent schemes, also referred to as 

three phase models, were developed in the particular case of purely elastic or purely 

viscoplastic behaviors (e.g. 3PVP) and solutions can be obtained in the case of perfect 

interfaces. Accordingly, the existing solutions need to be extended to the case of elastic-

viscoplastic behaviors.  

 

The proposed procedure for the solution of problem (1) and (2) is presented in 

Figure 3.6 (Capolungo et al. 2007). As detailed in the introduction to this chapter, the 

effective response of the material can be related to the local response of the constituents 

via the localization relation which is to be obtained via the consecutive use of two 

schemes for the following problems: (1) two-phase composite composed of inclusions 
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and coating with imperfect interface, where Qu’s development (1993) can be easily 

extended and, (2) two-phase composite composed of homogenized coated inclusions and 

the homogenous material solution of the three-phase viscoplastic problem. In other 

words, the interface relations in a three phase problem are obtained by the consecutive 

solutions of two approximated bi-phase problems. 

The solution obtained in the pure viscoplastic case will then be translated, in the 

same sense as defined by Sabar et al. (2002), to solve the elastic-viscoplastic solution. 
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Figure 3.6: Schematic of the scale transition procedure. 
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Prior to solving the problem of coated inclusions with imperfect interfaces in the case of 

elastic-viscoplastic behaviors, let us treat the case of pure viscoplastic behaviors.  

Interface relations 

 Considering the complexity of the approach, the interface relation will be 

approximated in two steps (see Figure 3.7). First, the discontinuity between the inclusion 

and the coating will be treated. This interface is not perfect and allows relative sliding of 

the inclusions with respect to the coating is allowed. The behavior of the homogenized 

coated inclusion will be extracted from the application of a Mori Tanaka scheme. Second, 

the homogeneous medium/homogeneous coated inclusion discontinuity is treated. In this 

case the interface is perfect. Linking the solutions of step 1 and step 2 will lead to the 

desired expression of the localization relation. However, let us note here that the 

inclusion/coating relation is clearly approximated in this approach. 
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Figure 3.7: Schematic of the two steps used to solve the 3-phase viscoplastic problem. 

Coating/inclusion interface 

For the sake of clarity let us recall that the problem to be solved in this section 

corresponds to the case of a two-phase material composed of an inclusion phase 

embedded in a matrix phase. Also, in this case the inclusion coating interface is not 

perfect. Across the coating/inclusion interface the traction vector remains continuous, 

hence: 

 

[ ( ) ( )] 0ij j ij ij jn S S nσ σ σ+ −∆ ≡ − =   ,   (3.99) 
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Here the superscripts + and – denotes the respective positive and negative sides of the 

interface. n denotes the vector normal to the interface. The jump condition across the 

interface is given here in a manner similar to that proposed by Qu (1993) and relates the 

jump in the displacement to the stress at the interface with a tensor ijη : 

 

( ) ( )i i i ij jk ku u S u S nη σ+ −∆ ≡ − =   ,   (3.100) 

 

Here, ijη  represents the compliance of the interface and is given by: 

 

( )ij ij i jn nη αδ β α= + −      (3.101) 

 

For the sake of illustration a sliding law is proposed. This law will be discussed in details 

in Chapter 5. Note that in the case where0β = , the relative motion of the coating with 

respect to the inclusion will not lead to void creation. α  could be given by a formula of 

the following form: 

 

[ ]
1

c

i
i

c
c

u

δα

σ
δ

=   −   ∑      (3.102) 

 

Here cδ  and cσ denote a critical distance and a critical stress, respectively. This 

expression simply corresponds to the converse of that proposed by Warner and Molinari 
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(2006) for the description of the stick-slip mechanism. The proposed scheme could be 

easily adapted to other types of sliding conditions. From the equilibrium condition and 

the viscoplastic constitutive laws, the following equation can be established at any point r 

within the RVE:  

 

2 ( , ')
( ') 0C km

ijlk im
l j

G r r
b r r

x x
δ δ

∞∂ + − =
∂ ∂

   (3.103) 

 

Here, *b is a viscosity tensor to be determined with the use of self consistent scheme. It 

corresponds to the viscosity tensor of the homogenized coated inclusion. Let us note that 

this equation corresponds to Navier’s equation in the viscoplastic case which is to be 

solved via the use of Green’s functions. Hence the derivation of this equation is 

essentially the same as that of (3.20) 

 

 Let us use Green’s equivalent function,∞G , in the case of pure viscoplastic behaviors, 

defined as follows: 

 

2
( ') '

( , ')
( ) ( )

0 '

m
C km

i ijkl
l j

u r r
G r r

u r b d r
x x

r

∞

Ω

− ∈Ω
∂ Ω = ∂ ∂  ∉Ω∫ ɺɺ  (3.104) 

 

Where δ( )x  is the three-dimensional Dirac delta function. Also, let us integrate the 

following equation on a volume, denoted with Ω , and multiply it by the displacement 

rate vector, one obtains: 
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2
*

( ') '
( , ')

( ) ( )

0 '

m

km
i ijkl

l j

u r r
G r r

u r b d r
x x

r

∞

Ω

− ∈Ω
∂ Ω = ∂ ∂  ∉Ω∫ ɺɺ    . (3.105) 

 

Using the divergence theorem, one can rewrite the volume integral in (3.105) as: 

 

2

,

( , ')
( ) ( )

( , ') ( , ')
( ) ( ) ( ) ( )

C km
i ijkl

l j

C Ckm km
i ijkl j i j ijklS V

l l

G r r
u r b d r

x x

G r r G r r
u r b n dS r u r b d r

x x

Ω

∂ Ω
∂ ∂

∂ ∂= − Ω
∂ ∂

∫ ∫ ∫ɺ ɺ ɺ  , (3.106) 

 

Where S is the surface ofΩ , and in  is the unit outward normal of S. Next, multiplying 

(3.103) by ( , ')imG r r  and integrating the result over the volume Ω  leads to: 

 

( ), ,( , ') ( ) ( ) ( , ') ( ) ( ) 0C C I
im ijkl k lj im ijkl ijkl kl jG r r b u r d r G r r b b r d rε∞ ∞

Ω Ω
Ω − − Ω =∫ ∫ ɺɺ  (3.107) 

 

Using the divergence theorem, the first term of the above equation can be written as 

follows: 

 

,

, ,

( , ') ( ) ( )

( , ')
( , ') ( ) ( ) ( ) ( )

C
im ijkl k lj

C Cim
im ijkl k l j ijkl k lS

j

G r r b u r d r

G r r
G r r b u r n dS r b u r d r

x

∞

Ω

∞
∞

Ω

Ω

∂= − Ω
∂

∫ ∫ ∫ɺ ɺ ɺ  . (3.108) 
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Subtracting (3.105) from (3.108), one obtains: 

 

( )
,

,

( , )
( , ) ( ) ( ) ( )

( , ) ( ) ( )

( )

0

C C km
im ijkl k l i ijkl jS

l

C
im ijkl ijkl kl j

m

G
G b u u b n dS

x

G b b d

u

ε

∞

∞

Ω

 ∂− ∂ 
− − Ω

∈Ω=  ∉Ω
∫ ∫ x y

x y x x x

x y x x

y y

y

ɺ ɺɺɺ  (3.109) 

 

Using the divergence theorem, the above equation becomes:  

 

( )( )( )
( )

1

,
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( , ) ( ) ( ) ( ) ( )
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0

C C km
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Cim
ijkl ijkl kl
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b b d
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u

ε

ε

−∞

∞
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∂
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∫ ∫ x y
x y x x x x

x y
x x

y y

y

ɺɺ ɺɺɺ  

 

        (3.110) 

When r’ belongs to the inclusion, the constitutive relation can be identified, within the 

above expression. Hence, equation (3.110) can be written as follows: 
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( ') ( , ') ( ) ( )

( , ')
( ) ( )

I

C km
m im kl ijkl i jS
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Cim
ijkl ijkl kl I
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x

G r r
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x

σ

ε

−

∞

∞

Ω

 ∂= − ∂ 
∂+ − Ω

∂

∫∫ɺ ɺɺ  (3.111) 

If Ω  is exterior to IΩ , then one obtains the following relation:  

 

( , ')
0 ( , ') ( ) ( )C km

im kl ijkl i jS
l

G r r
G r r b u r n dS r

x
σ

+

∞ ∂= − ∂ ∫ ɺ
 (3.112) 

Subtracting (3.111) to equation (3.112) one obtains: 

 

( )

( , ')
( ) ( ') ( ')

( , ')
( ') ( ')

C km
m ijkl i jS

l

Cim
ijkl ijkl klV

l

G r r
u r b u r n dS r

y

G r r
b b r dV r

y
ε

∞

 ∂= ∆ ∂ 
∂+ −

∂

∫∫ɺ ɺ ɺ   (3.113) 

Hence one introduces the expression of the jump of the displacement rate. Differentiating 

the above expression and supposing the homogeneity of the strain rate tensor within the 

inclusion, one obtains:  

 

( ),

( , ) ( , )
( ) ( ) ( ) ( ) ( )C Ckm im

m n ijkl i j ijkl ijkl klS V
l n l n

G G
u b u n dS b b dV

y x y x
ε

∞ ∂ ∂= ∆ + − ∂ ∂ ∂ ∂ ∫ ∫x y x y
x y y y yɺɺ ɺ

 

        (3.114) 

 

Hence, the strain rate in the inclusion is given by: 
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( ) ( )( ) ( ) ( , ) ( )C I I C
ij ijmn mnkl mnkl kl mnkl k ijmn lS

T B b b b u n dSε ε ∞= − + ∆ Γ∫x y y x yɺ ɺ ɺ , (3.115) 

 

Introducing interfacial conditions, one obtains: 

 

( ) ( )( ) ( , ) ( )C C I I C
ij mnpq pqkl pqkl kl mnkl kp pq q ijmn lS

T b b b b n n dSε ε η σ ∞= − + Γ∫x y x yɺ ɺ ɺ   . (3.116) 

 

In (3.116), the derivative of the stress tensor is supposed negligible considering that it is 

in the order of the second time derivative of the strain tensor while the derivative of the 

interface coefficient is in the same order as that of the strain rate. In order to pursue the 

analytical developments, the stress state along the interface is supposed constant and 

equal to the stress state in the inclusion. Hence, introducing the constitutive law in the 

inclusion into (3.116), one obtains: 

 

( )( ) ( , ) ( )C C C I I
ij ijpq pqkl pqkl kl mnkl pqab ab kp q ijmn lS

T b b b b b n n dSε ε ε η ∞= − + Γ∫ y x yɺ ɺ ɺ ɺ   (3.117) 

 

Averaging (3.117) on the inclusion’s volume and accounting for the boundary conditions 

via superposition, one obtains: 

 

( )( ) ( ) ( )I C C I I I I C C C
ij ijpq pqkl pqkl kl ab pqab mnkl ijmn kp q l ijS

T b b b b b T b n n dSε ε ε η ε= − + +∫ yɺ ɺ ɺ ɺ ɺ  

 (3.118) 

 



  178  

Similarly to early work by Qu, let us approximate the above integral by its average value. 

Hence, one obtains: 

 

( ) ( )( )I C C I C I I C
ij ijpq pqkl pqkl pqab abmn mnkl kl ijT b b b b R bε ε ε= − + +ɺ ɺ ɺ           (3.119) 

 

Note here that the macroscopic strain rate is not written in the above expression. Also R 

is given by: 

 

( )1
( )

4mnpq mp q n mq p n np q m nq p mS
R n n n n n n n n dSη η η η= + + +

Ω ∫ yɺ ɺ ɺ ɺ  (3.120) 

 

Expressions of R are given in Qu and Cherkaoui (2006). From (3.119), one obtains the 

following averaged localization tensor: 

 

( ) ( )( ) 1
Ivp C C I C I
ijlk ijkl ijpq pqkl pqkl pqab abmn mnklA I T b b b b R b

− = − − +    (3.121) 

 

The effective viscosity tensor of the composite material is obtained simply by use of the 

macrohomogeneity conditions. Namely, one obtains; 

 

( )1 :IC C I Ivpf f= − +b b b A         (3.122) 

Homogenized coated inclusion/Homogeneous medium interface 
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Following the same reasoning as in the above and recalling that in this case the 

homogenized coated inclusion /homogeneous the interface is perfect, one obtains the 

following expression of the strain rate on the S+ interface: 

 

( )( )IC e e IC IC
kl ijpq pqkl pqkl klT b b b Eε ε= − + ɺɺ ɺ        (3.123) 

 

e
pqklb  is determined such that the average of the localization tensors is equal to the identity 

tensor. Let us recall the expression of the localization tensor in this case: 

 

( )( )( ) 1
vpIC e e IC
ijkl ijkl ijpq pqkl pqklA I T b b b

−
= − −       (3.124) 

 

Strain rate jump 

 

From (3.119) and (3.123) the local strain rates in the inclusion and in the coating can be 

related. Indeed, the spatial average of the strain rate tensors within the inclusion and 

coating (in the two phase model) must be equal to the strain rate within the homogenized 

coated inclusion: 
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( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1

(1 )

Hence,

(1 )

Using the result from Mori Tanaka' scheme, one obtains

(1 )

I C IC
ij ij ij

vpIC IC vpIC I vpIC C
ijkl kl ij ijkl kl ijkl kl

vpIC Ivp I vpIC I
ij ijkl klmn mn ijkl kl

f f

A E f A f A

E f A A f A

ε ε ε

ε ε ε

ε ε

− − −

− − −

+ − =

= = + −

= − +

ɺ ɺ ɺɺɺ ɺ ɺ
ɺ ɺ ɺ

( ) ( ) ( )
11 1 1

One obtains the following relation

(1 ) :I vpIC Ivp vpICf f
−− − − = − +   ɺɺ A A A : Eεεεε

    (3.125) 

 

Here f is the volume fraction of inclusion used in the first self consistent scheme. 

From the equation in the above one obtains the expression of the localization relation. 

 

( ) ( ) ( ) ( )1 1 1 1

:

with

(1 ) :

I I

I vpIC Ivp vpICf f
− − − −

=

= − +

ɺɺ B E

B A A A

εεεε

 

(3.126) 

 

From the localization relation in the above, the viscoplastic problem can be completely 

solved. 

Elasto-viscoplastic solution 
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Let us now treat the elastic-viscoplastic case via the use of translated fields in a 

manner similar to that proposed by Sabar et al.(2002). As seen in the case of the 2PEVPT 

model, the integral equation is written as follows: 

 

( ): :C e vp= + ⊗ +ɺɺ ɺ ɺΠΠΠΠE δs cε ε εε ε εε ε εε ε ε        (3.127) 

 

Let us decompose the local viscoplastic strainvpεɺ as the sum of an invariant term, denoted 

vpɺe  and solution of the viscoplastic problem and a fluctuation term vpɺδεδεδεδε : 

 

vp vp vp= +ɺ ɺ ɺeε δεε δεε δεε δε          (3.128) 

 

As mentioned in the above the invariant term is assumed to be the translated solution 

field respecting: 

 

:vp = ɺɺe B X           (3.129) 

 

The field ɺX is to be found via the self consistent scheme. Also, the translated field must 

respect the compatibility condition given by: 

 

C vp vp⊗ = − ɺɺ ɺΠΠΠΠ e e X          (3.130) 

 

Where Kunin’s projection operators are given by: 
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:C C=Π ΓΠ ΓΠ ΓΠ Γ C           (3.131) 

 

Introducing the above relations into the integral equation, one obtains: 

 

( ): :C e vp= + ⊗ + + −ɺ ɺ ɺɺ ɺ ɺΠΠΠΠE δs c BX Xε ε δεε ε δεε ε δεε ε δε       (3.132) 

 

Using the self-consistent approximation, the unknown field can be identified: 

 

vp=ɺ ɺX E            (3.133) 

 

Hence, the integral equation becomes:  

 

( ) ( )
( )

: : :

:

C e C vp vp

vp

= + ⊗ + ⊗ −

+ −

ɺ ɺɺ ɺ ɺɺΠ ΠΠ ΠΠ ΠΠ ΠE δs c B E

B I E

ε ε εε ε εε ε εε ε ε
     (3.134) 

 

Averaging the above equation on the coated inclusion volume and with the self-consistent 

approximation, one obtains: 

 

: ( ) : : : : ( : : )CeE vpe CeE vpe CeE E e vp e vpeA E E A B E A S S c C B E= − + + −ɺ ɺ ɺ ɺɺ ɺε εε εε εε ε  

        (3.135) 

 

 For the sake of simplicity, let us assume that the averaged local viscoplastic strain 

rate can still be related with (3.125). Similarly, the averaged local elastic strain rates can 
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be related via the equivalent to (3.125) in the case of pure elastic behavior. Hence,CeEA  is 

the elastic equivalent of the localization tensor B .  Hence, a complete solution can be 

found in the case of elasto-viscoplasticity. 
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CHAPTER 4 

DIFFUSION BASED MECHANISMS 

 

 This chapter focuses on the modeling of the effect of diffusion mechanisms on the 

size effect of polycrystalline materials with a F.C.C. structure. First, the effect of Coble 

creep, corresponding to the steady state diffusion of vacancies along the grain boundary/ 

grain core interface, will be studied via the use of the 2PVP model. Second, the 

simultaneous effect of Lifshitz sliding and Coble creep will be investigated. 

Coble creep 

 This section is dedicated to the effect of Coble creep on the response of UF and 

NC materials (Capolungo et al. 2004; Capolungo et al. 2005). The first problem to be 

considered is that of the material’s topology. Considering the fact that grain boundaries 

and grain cores have a distinct structure from that of the grain interior and the fact that 

the volume fraction of triple junctions is negligeable for grain size larger than ~10nm, the 

material is represented as a two-phase composite. The inclusion phase represents grain 

cores and the matrix phase represents both grain boundaries and triple junctions (see 

Figure 4.1). 

 

 The response of grain interiors is dominated by two deformation mechanisms: (1) 

dislocation glide and (2) Coble creep. The effect of Nabarro Herring creep is not 

accounted for since it was shown in work by Kim et al. (2001) that its contribution is 

negligeable compared to that of Coble creep. As a first approach, the behavior of the 
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matrix phase is assumed elastic- prefect plastic. Note here that a constitutive law for the 

grain boundaries will be introduced in Chapter 5.   

 This model is limited to the case of spherical inclusions and the bonding between 

inclusions and matrix is assumed perfect (e.g. unaccomodated grain boundary sliding is 

not considered). Finally, the material is assumed isotropic and not compressible. The 

scale transition is performed via the use of the 2PEVP model presented in Chapter 3. The 

model is applied to the case of pure Cu for which numerous experimental data is 

available. Finally, model predictions in the quasi-static regime and at ambient 

temperature are compared to experimental data available in the literature. 

 

  

 

Figure 4.1: Schematic of the equivalent material. 

 

In this chapter, the superscripts I and M will refer to the inclusion and matrix 

phase, respectively. Also, ε , σ and ɺε , ɺσ will refer to the strain and stress tensors and their 

rates, respectively. Σ and E  denote the macroscopic stress and strain tensors respectively. 

Triple 
junction 

Grain 
core 

Grain 
boundary 
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Although this first model was implemented solely in the one dimensional case, the mathematical 

developments will be presented in the general three-dimensional case. 

Constitutive law of the inclusion phase 

Plastic deformation within the inclusion phase is driven by the glide of 

dislocations and by the Coble creep mechanism (hence the inclusion phase is composed 

of the crystals and of the grain boundary/grain core interface). Let us note here that the 

size effect in the dislocation activity is not considered in this first model. In consequence, 

the model will lead to overestimated predictions of the hardening response of the 

inclusion phase in the NC regime. The constitutive law of the inclusion phase is elastic-

viscoplastic and given by: 

 

( ),:I I I I vp= −ɺ ɺɺ Cσ ε εσ ε εσ ε εσ ε ε          (4.1) 

 

Here, ,I vpɺεεεε and IC  represent the second order viscoplastic strain rate tensor and the fourth 

order elastic moduli tensor, respectively. Plastic flow is assumed isotropic and described 

by the Prandtl Reuss flow rule given by: 

 

,
, 3

2

I vp
eqI vp I

ijI
eq

εσ=
ɺɺ sεεεε          (4.2) 

 

Here ,I vp
eqεɺ , I

eqσ and I
ijs denote the equivalent strain rate, Von Mises equivalent stress 

( 3/ 2I I I
eq ij ijσ = s s ) and the deviatoric part of the stress tensor. The equivalent viscoplastic 
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strain rate which accounts for both the effect of dislocation glide, denoted with 

superscript dis, and the effect of Coble creep, denoted with superscript co, and is written 

as the sum of the contribution of both mechanisms: 

 

vpI dis co
eqε ε ε= +ɺ ɺ ɺ           (4.3) 

 

The formalism developed by Kim et al. is used to describe the effect of the 

dislocation glide mechanism given by a power law (Estrin 1998; Kim et al. 2000; Kim et 

al. 2001): 

 

* / 2

0

mI
eqdis mσε ε ρσ − 

=    ɺ ɺ          (4.4) 

 

Here, *εɺ , 0σ , m andρ denote a numerical constant, a stress term relating of the effect of 

the microstructure on the glide of dislocations and the hardening exponent and the 

dislocation density normalized with respect to the initial dislocation density, respectively. 

Let us note that for the sake of simplicity no distinction is made between statistically 

stored dislocations and geometrically necessary dislocations (hence the effect of strain 

gradients is not considered). The evolution of the density of stored dislocations with 

deformation is given by: 

 

1 2dis

d
C C C

d

ρ ρ ρ
ε

= + −          (4.5) 
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Let us note that the above expression is based on work by Estrin et al. (1984) and 

accounts for the effects of both stored dislocations and grain boundaries on the 

dislocation storage mechanism. Dynamic recovery is described with the third term on the 

right hand side of equation (4.5). Hence, 1C is a numerical constant and C is given by:  

 

2

0

b M G
C M

d

α
σ

 ⋅ ⋅= ⋅             (4.6)  

 

Here, M, b, G denote Taylor’s factor, the magnitude of Burger’s vector and the shear 

modulus, respectively. α is a numerical constant accounting for the dislocation-

dislocation interactions. The thermally activated dislocation annihilation mechanism is 

given by the following power law: 

 

1/

2 20
0

ndis

C C
ε
ε

− 
=    ɺɺ          (4.7) 

 

In equation (4.7), 20C and 0εɺ  are numerical constants. As will be shown in Chapter 5, the 

ratio of 20C  and 1C defines, at a given grain size, the value of the saturation stress. The 

exponent m and n account for the thermally activated nature of the dislocation glide 

mechanism and of the recovery mechanisms, respectively. Hence these two parameters 

are inversely proportional to the temperature. Let us note that an exponential expression 

of the thermally activated mechanisms would be more accurate. 
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Finally, the expression of the effect of vacancy diffusion is given by the equation of 

Coble creep (1963) and written as follows: 

 

3

14
co

sd I
c bd eq

k T d

w Dπ
ε

σ⋅ ⋅ Ω
=

⋅ ⋅

⋅ ⋅ ⋅ɺ           (4.8) 

 

Here T, k, d, Ωc and bd
sdD  denote the temperature, Boltzmann’s constant, the grain size, 

the atomic volume and the grain boundary self-diffusion coefficient, respectively. 

Constitutive law of the matrix phase 

 Let us now describe the constitutive law of the matrix phase and let us recall that 

this model is a first attempt to estimate both the predictive power of the micromechanical 

scheme and the effect of diffusion mechanisms. Hence, although grain boundaries cannot 

be considered to have a gas like structure, with no particular organization of the atoms, 

the response of grain boundaries will be supposed as that of an amorphous material. 

Typically, the flow stress in amorphous materials ranges between 50 to 70% of Young’s 

modulus. Experimental data report values ranging between 60 to 70% of Young’s 

modulus of the perfect crystal. Here the flow stress will be estimated equal to 800 MPa.. 

When Von Mises stress is smaller than the previously mentioned critical value, the 

response of the matrix phase is thus given by a simple linear elastic law: 

 

:M M M= ɺɺσ C ε           (4.9)  

 

Here, MC is the fourth order elastic tensor modulus of the matrix phase. 
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Effective material 

The macroscopic response of the material is obtained via the use of the 2PEVP model 

(Cherkaoui et al. 2000) presented in Chapter 3. Since the derivations of the self-

consistent scheme were developed in the previous chapter, solely the critical equations 

are recalled and adapted for the problem studied. Let us recall that the approximation 

consisting of including both grain boundaries and triple junctions into the same matrix 

phase shall not penalize the accuracy of the model for the contribution of triple junctions 

becomes relevant solely when the grain size is smaller than ~10nm. The macroscopic 

response of the material is elastic-viscoplastic and given by: 

 

( ):eff vp= −Σɺ ɺ ɺC E E
  

       (4.10) 

 

Here effC denotes the fourth order effective elastic moduli tensor. The components of 

these tensors are given by the self-consistent approximation. The localization relations 

are given by: 

 

r r= +ɺɺε A : E a  with r=I,M        (4.11) 

 

In equation (4.11) the fourth order concentration tensors denoted with rA , account for 

the effect of the heterogeneity in the elastic responses. The second order tensors denoted 

with ra account for the heterogeneity in the anelastic responses of the matrix and 

inclusion phase. With use of the homogenization scheme, the following expressions of 

the localization tensors are obtained 
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( ) ( )
11r E eff r effA I S : C : C C

−− = + −    with r=I,M    (4.12) 

 

( ) ( )1
: : : : :I I E eff eff vpI eff vpa A S C C ε C E

−
= − ɺɺ      (4.13) 

 

: :M M E vpa A S E= − ɺ          (4.14) 

 

In the above equations, ES denotes Eshelby’s tensor. Finally, the effective viscoplastic 

strain rate tensor is given by: 

 

( ) 1
: : :vp eff I I vpIfE C A C ε−

= ⋅ɺ ɺ        (4.15) 

 

Here f denotes the inclusion phase’s volume fraction which is given by: 

 

( )3

3

d - w
f =

d
          (4.16) 

 

The above equation results directly from the spherical inclusion assumption. 

Results 

The model presented in previous section is applied to the case of pure copper in uni-axial 

traction and in the quasi-static regime. Since both phases are supposed isotropic the set of 

equation (4.11) to (4.16) can be further developed analytically. This leads to relatively 
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simple formulae. Also the numerical solution is obtained in a fairly simple manner via an 

explicit scheme. The self-consistent approximation is solved with the bisection method. 

The grain sizes simulated range from several microns to 10 nm. The effect of the applied 

strain rate is studied. Precisely, tensile test are simulated with the following strain rates; 

1.E-5/s, 1.E-4/s, and1.E-3/s.  

Constant evaluation 

The following numerical constants were used: 

20 18.5, 42100 MPa., IC µ= = 025260 MPa., =160 MPa.Mµ σ= , 291.18 , 230, 12.25c E m n−Ω = = =  

23, .246 nm, 1.38  b k E−= = 3.06, .33, 300 , 42100MPa M T K Gα= = = = . 

 

 The shear modulus in the inclusion phase is set equal to that of conventional 

copper. Indeed, in the case of an infinite grain size, the volume fraction of the matrix 

phase tends to zero and the response of the material is entirely driven by the response of 

the inclusion phase. The shear modulus of the matrix phase is equal to 60% of the shear 

modulus of the inclusion phase. The parameters 0σ  and n are obtained by curve fitting of 

available data. Let us note that 0σ  depends on the initial dislocation density, which is not 

known a priori, and influences the value of plastic flow. All other numerical data sited in 

the above are extracted from Kim et al. (2000 and 2001). 

Response of the inclusion phase 

This section is dedicated to the response of the inclusion phase. The effects of the 

evolution of the relative contribution of Coble creep and dislocation glide, of the grain 

size and of the strain rate are studied. 
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Figure 4.2 (a) and (b), presents the equivalent viscoplastic strain rate of both 

Coble creep and dislocation glide as a function of grain size. In case (a) the applied strain 

rate is 1.E-5/s while in case (b) the applied strain rate is 1.E-3/s. One can observe that in 

the first case, dislocation glide drives the deformation until a grain size d~300nm is 

reached at which the effect of Coble creep becomes non negligeable. Indeed, the 

contribution of the Coble creep mechanism increases with decreasing grain size and 

dominates that of dislocation glide when the grain size is smaller than ~85nm. Also, it 

can be noticed that the contribution of the inclusion phase (e.g. Coble creep+dislocation 

glide) decreases in the NC regime. This result is expected since the volume fraction of 

grain boundaries increases in the NC regime. 
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Figure 4.2 Evolution of the contributions of equivalent viscoplastic strain rate of the 

dislocation glide and Coble creep mechanisms as a function of grain size for two applied 

strain rates: (a) 1E-5s and (b) 1.E-3/s. 
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The evolution of the response of the inclusion phase with strain rate is presented 

in Figure 4.3. The grain size used in these simulations is 1000 nm. It can be observed that 

an increase in the macroscopic strain rate, leads to a more pronounced strain hardening 

within the inclusion phase. As mentioned in previous discussion, when the grain size is 

equal to 1000 nm the contribution of Coble creep is negligeable. Hence, plastic 

deformation is driven by dislocation glide which is dependent on the dislocation density 

and increases with increasing strain rates. 

 

 

Figure 4.3:  Stress-strain curves of the inclusion phase with 1.E-5/s, 1.E-4/s and 1.E-3/s 

imposedd strain rate and d=1000 nm grain size. 

 

Finally, the size effect on the response of the inclusion phase is presented in 

Figure 4.4. The imposed strain rate is set equal to 1.E-3/s. When the grain size is equal to 
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1000 nm and 100nm the inclusion phase presents a typical strain hardening response. The 

increased hardening of the 100nm grain inclusions is due to the decrease in the mean free 

path of dislocation which is engendered by the decrease in the grain size. When the grain 

size is equal to 10nm, one can notice that the inclusion phase presents a softened behavior 

compared to that of 100 nm grain inclusion. This is due to the fact that Coble creep 

dominates the deformation of 10nm grain inclusions. 

 

 

Figure 4.4 Stress-strain curve of the inclusion phase for different grain sizes; 1000, 100 

and 10 nm. 

Response of the matrix phase 

 

Let us now briefly present the response of the matrix phase. Since the response of the 

matrix phase is elastic-perfect plastic, it does not present any dependence on strain rate or 
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grain size. This can be clearly observed in Figure 4.5 which presents stress-strain curves 

of the matrix phase with the three different strain rates. 

 

 

Figure 4.5: Stress strain curve of the matrix phase. 

 

Effective response of the material 

 The tensile response of the material is presented for different grain sizes (e.g. 1000, 1000 

and 10 nm) in Figure 4.6. The macroscopically imposed strain rate is 1.E-3/s. One can 

notice that in the case of large grain sizes (1000nm and 100nm); the hardening of the 

material is more pronounced with decreasing grain size. Indeed, for these grain sizes, the 

contribution of the matrix phase to the deformation is negligeable. Hence, the 

macroscopic response of the material is expected to be similar to that of the inclusion 

phase. When the grain size is equal to 10nm, both the inclusion and the matrix phase have 
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a non negligeable role. The plastic response of the inclusion phase is dominated by the 

Coble creep mechanism and the matrix phase has an elastic-perfect plastic response. 

 

 The effect of strain rate on the macroscopic response of the material is presented 

in Figure 4.7. The grain size is set to 1000nm. Hence the response is largely dominated 

by the response of the inclusion phase which is dominated by dislocation activity. 

 

The model is compared to experimental data (Sanders et al. 1996; Youngdahl et 

al. 1997)  in Figure 4.8. The strain rate imposed in the simulations is 1.E-3/s. One can 

observe that the elastic response and the beginning of the plastic response of UF and NC 

materials are predicted with acceptable accuracy. However, it can be observed that when 

that when the deformation exceeds 1%, the model overestimates of the plastic response of 

the material. This will be discussed in the conclusion of this chapter. 

 

Finally, Figure 4.9 presents the evolution of the flow stress at 0.5 percent 

deformation with respect to the inverse of the square root of the grain size. The model 

leads to a good prediction of the evolution of flow stress with grain size. One can notice 

that down to ~100nm the flow stress increases with decreasing grain size. The Hall-Petch 

breakdown is also successfully predicted when the grain size is smaller than ~100nm. 

Also, the critical grain size at which the breakdown of the Hall-Petch law occurs 

decreases with increasing strain rate. 
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Figure 4.6: Stress strain curves of the material with three different grain sizes (1000, 100 

and 10 nm). 

 

 

Figure 4.7: Macroscopic stress strain curves for three different strain rates. 
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Figure 4.8: Comparison of model predictions with experimental data. 
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Figure 4.9: Evolution of the yield stress with the inverse of the square root of the grain 

size. Experimental data are extracted from (Nieman et al. 1991; Sanders et al. 1996; 

Surayanarayana et al. 1996; Sanders et al. 1997). 

 

Coble creep and Lifschitz sliding 

This section is dedicated to the modeling of the simultaneous effect of Coble 

creep and vacancy diffusion accommodated grain boundary sliding (e.g. Lifschitz 

sliding). Similarly to the previous section, the material is represented as a two-phase 

composite material. The same assumptions as in the case of the study of the effect of 

Coble creep alone are made; inclusions are supposed spherical and debonding between 

the two phases is not allowed. The inclusion phase represents grain interiors while the 

matrix phase encompasses grain boundaries, triple junctions and the grain boundary grain 

core interface (with zero thickness). The behavior of the inclusion phase is driven by the 
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mechanism of dislocation glide while the matrix phase deforms via the simultaneous 

effect of Lifschitz sliding and Coble creep. 

Constitutive law of the inclusion phase 

The inclusion phase has an elastic-viscoplastic behavior given by: 

 

( ),:I I I I vp= −ɺ ɺɺ Cσ ε εσ ε εσ ε εσ ε ε                 (4.17) 

 

Supposing an isotropic response of the inclusion phase, the viscoplastic strain rate tensor 

is related to the equivalent viscoplastic strain rate via the Prandtl Reuss flow rule. The 

local viscoplastic strain rate accounts solely for the effect of dislocation glide and is 

written as: 

 

vpI dis
eqε ε=ɺ ɺ           (4.18) 

 

Here disεɺ is given by (4.4) and the evolution of the dislocation density is given by (4.5). 

Constitutive law of the matrix phase 

The mechanisms of Coble creep and of Lifschitz sliding are taken into account in 

the description of the behavior of the matrix phase which has an elastoplastic constitutive 

law written as follows: 

 

( ),:M M M M vpC= −ɺ ɺɺσ ε εσ ε εσ ε εσ ε ε               (4.19) 
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Here MC is the elastic tensor of the matrix phase and ,M vpɺεεεε  is the viscoplastic part of the 

strain rate tensor of the matrix phase. It is related to its equivalent quantity via the 

modified Prandtl Reuss flow rule and takes into account the contribution of both grain 

boundary sliding and Coble creep. 

 

,M VP co gbs
eq = +ɺ ɺ ɺε ε ε              (4.20) 

 

Here the superscripts ‘co’ and ‘gbs’ respectively refer to Coble and grain boundary 

sliding, respectively. The contribution of Coble creep is given by equation (4.8) while the 

contribution of grain boundary sliding accommodated by vacancy diffusion along the 

grain boundary grain core interface is given by (Luthy et al. 1979): 

 

2

8
310

I
gb eq

gbs

D
b

d E

σ
ε

 
≈    ɺ              (4.21) 

 

Here E is Young’s modulus of the inclusion phase, d is the grain size, 
gbD is the diffusion 

coefficient of the grain boundaries. 

Constitutive law of the matrix phase 

The model presented in the above was applied to pure copper. The numerical data used in 

the simulations are the following; 21.45 .I GPaµ = , m=230, n=8.25, 
0, 220 .I MPaσ = , 

0.005/I sε ∗ =ɺ , M=3.06, 0.33α = , G=42.1GPa., 1 52.86C = , 
20 18.5C = ,

0 1/sε =ɺ , 

1.18 29c eΩ = − , 2.6 20bdD e= − , T=300K, E=130GPa., w=1.5nm. 
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In figure 4.10, one can see a comparison between the predictions of the model, 

represented by lines, and various experimental studies (Sanders et al. 1996; Youngdahl et 

al. 1997), represented by dots. Stress strain curves were plotted for various grain sizes. A 

decrease in the grain size engenders an increase in the strain hardening. However when 

the grain size reaches 20 nm, strain hardening is less pronounced than when d=26 nm. 

This results from a change in the mechanism dominating the deformation. When 

d>20nm., the glide of dislocation dominates the deformation while when d<20nm 

diffusion mechanisms take over the dislocation glide which engenders a decrease in the 

strain hardening. The model is in agreement with experimental results in the first stage of 

deformation. When the strain is larger than a few percent, the model underestimates the 

global stresses.  

 

In figure 4.11, one can see the evolution of yield stress with grain size. The predictions of 

the current model are represented by lines while experimental results are represented by 

dots. The yield stress increases linearly down to a critical grain size which is 

approximately equal to 40 nm. Once this critical threshold is reached, the breakdown of 

the Hall Petch law occurs. The model predicts values of the yield stress lower than the 

one given by experimental data. Recall that this model takes into account both Coble 

creep and grain boundary sliding accommodated by vacancy diffusion along the grain 

interior/ grain boundary interface. Hence, at very small grain sizes a redundancy in the 

diffusion phenomenon might occur. Also, the equations used to describe the two 
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phenomena are based on a steady state creep rate which clearly overestimates the effect 

of diffusion. Hence, the model is expected to underestimates the stress fields.  

 

Figure 4.10 Stress Strain curves for different grain sizes. 
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Figure 4.11: Evolution of the yield stress with grain size. 

 

Summary and discussion 

In this chapter, two models were introduced to describe the possible effects of 

diffusion based phenomena (Coble creep and Lifschitz sliding). It can be clearly 

concluded that the simultaneous effect of Coble creep and Lifshitz sliding leads to an 

overestimated softening of the plastic response of NC materials 

.  

However, the first model accounting for the sole effect of vacancy diffusion along 

the grain interior/grain boundaries interface reveals that, on the condition that vacancy 

diffusion mechanisms are indeed activated in NC materials, the mechanism of Coble 
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creep could lead to the experimentally observed softening of the plastic response of NC 

materials. Moreover, the model also sheds light on a critical limitation; plastic 

deformation is clearly overestimated when the deformation is larger than 1%. Although 

this issue does not affect the predicted Hall Petch slope, it suggests that the 2PEVP 

scheme used to perform the scale transition may not adequate for use in the present 

problem. Also, as discussed in Chapter 1, the description of plastic deformation in grain 

interiors, based on the formalism developed in early work of Kocks, Mecking and Estrin, 

leads to underestimated Hall Petch slopes in the conventional regime. Hence, the 

description of plastic deformation within the grain interiors needs further refinement to 

precisely describe the Hall Petch law. This limitation will be investigated in following 

chapter 
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CHAPTER 5 

GRAIN BOUNDARY ASSISTED DEFORMATION 

 

 This chapter is dedicated to grain boundary assisted deformation which, as 

mentioned in Chapter 1, plays a major role in the response of NC materials. The first part 

of this chapter aims at revealing some interesting aspects of the elastic deformation of 

bicrystal interfaces. This work results from collaboration with Dr. Spearot who kindly 

performed all molecular dynamics simulations used in this chapter. 

 

  The second part of this chapter aims at investigating the viscoplastic response of 

NC materials. In particular, a novel constitutive law is introduced to describe the 

mechanism of grain boundary dislocation emission and penetration. Also, a hierarchal 

scale transition technique is developed to link molecular simulations on bicrystal 

interfaces to the previously mentioned constitutive law. These molecular dynamics 

simulations are also used to investigate the activity of grain boundary ledges. Finite 

elements simulations are performed to estimate stress heterogeneities which cannot be 

predicted with Eshelbian micromechanics. Finally, an unaccomodated grain boundary 

sliding model is developed to estimate its effect on NC deformation.  

Elastic deformation mechanisms 

The objective of this section is to study the discrete atomic motion of bicrystal 

interfaces and the evolution of their excess energy when submitted to a uniaxial tensile 
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deformation (Spearot, Capolungo et al. 2007). This study is limited to the elastic regime. 

The plastic regime will be subject investigated in following section. Let us note that this 

work has for long term objective to study the relationship between interface stress and 

interface free energy in the case where the well known Shuttlewoth equation does not 

apply.  

 

Let us recall that the Shuttleworth equation, which is based on the Gibbs Duhem 

equation, holds in the case where no load is applied perpendicular to the interface plane. 

For solid-solid interfaces, the derivation of the Shuttleworth equation (1950) requires the 

assumption of coherency and mechanical equilibrium at the interface (Muller et al. 2004). 

Precisely, the Shuttleworth equation is first based on the thermodynamic equilibrium of 

an interface which excess energy, excdW , is typically given by (Muller and Saul 2004): 

 

exc
ij ij ij ij ABdW s e Sδε σ δ⊥ = + �        (5.1) 

 

Here ABS denotes the area of the interface.ij
�δε  and ij

⊥σ  denotes the infinitesimal 

change in strain parallel to the  interface and the stress perpendicular to the interface. 

ijs and ijeδ denote the interfacial excess stress (parallel to the interface) and the 

infinitesimal change in the interfacial excess strain (perpendicular to the interface). The 

effect of perpendicular components is then neglected and this leads to a relation between 

the interface stress (which components are all parallel to the interface), the interface 

energy and its derivative with respect to the interface strain (which components are all 

parallel to the interface). Clearly, the Shuttleworth equation does not allow to treat the 
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case where the interface is stretched normally to its plane. Such a study would aver useful 

in order to introduce a precise description of the effect of interfaces (grain boundaries for 

example) in a generalized self-consistent scheme. 

 

In order to study a wide range of grain boundary interfaces, six interfaces, with low 

order coincident site lattice content, are constructed about the [100] misorientation axis: , 

Σ5 (210) 53.1o, Σ5 (310) 36.9o, Σ13 (320) 67.4o, Σ13 (510) 22.6o,Σ17 (410) 28.1o and Σ17 

(530) 61.9o.   

Model geometry and simulation methodology 

 The geometric model is presented in Figure 5.1.(a) and the interface dimensions are 

presented in table 5.1 The MD simulations are performed on copper symmetric tilt 

boundaries about the [100] crystallographic axis. Mishin et al. (2001) embedded atom 

potential is used to describe the inter-atomic bonds between atoms. Periodic boundary 

conditions are enforced in all directions. Note that the periodic boundary conditions lead 

to the presence of two half interfaces, with structure similar to the central one, on the 

periodic border.  The model dimensions are specified in order not to influence the 

predictions by the image forces resulting from the presence of the upper and lower 

interfaces. 
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Figure 5.1: Schematic illustration of (a) the bicrystal interface model used in this 

work and (b) the concept of excess energy at the interface between two crystalline 

regions. 

  

First, the initial interface configuration is obtained via molecular statics calculations 

using a non linear conjugate gradient method. The resulting interface structures are 

compared to high resolution transmission electron microscopy images. The initial 

configuration is then equilibrated using MD in the isobaric-isothermal ensemble at a 

pressure of 0 bar and a temperature of 10 K. For further details on the above described 

procedure, the reader is referred to Spearot (2005) who performed all molecular 

simulations presented in this chapter. Therefore, all figures presented in this section are 

extracted from (Spearot, Capolungo et al. 2007). Second, stresses of 1, 2, 3, 4 and 5GPa, 

are applied to the normal of the boundary plane (Y-direction). Note here that in order to 

remain in the elastic regime; the applied stresses are lower than the stress required for 
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dislocation emission to be activated. Throughout the simulations, the X and Z direction 

boundaries are stress-free. The thermodynamic equilibrium is held for 100 ps in order to 

minimize the fluctuations in the excess quantitities.  

 

Table 5.1.  Bicrystal interface misorientations and model dimensions. 

Interface Angle Width, 

W (nm) 

Height, H 

(nm) 

Depth, D 

(nm) 

Interface 

Structure 

Number 

of atoms 

Σ13 (510) 22.6o 18.43 22.12 14.46 |CDD| 494,400 

Σ17 (410) 28.1o 17.88 23.85 14.46 |CD.CD| 518,400 

Σ5 (310)  36.9o 17.15 22.86 14.46 |C| 477,600 

Σ29 (730) 46.4o 19.27 22.03 14.46 |B’B’C| 516,320 

Σ5 (210)  53.1o 17.78 22.63 14.46 |B’.B’| 489,280 

Σ5 (210)  53.1o 17.78 45.27 14.46 |B’.B’| 982,080 

Σ5 (210)  53.1o 17.78 67.90 14.46 |B’.B’| 1,474,88

0 

Σ17 (530) 61.9o 18.97 21.08 14.46 |AsB’| 485,280 

Σ13 (320) 67.4o 18.25 23.46 14.46 |AB’.AB’| 519,680 

 

Interface excess energy 

 The interface energy, denoted intE , is defined as the energy within the boundary of 

the two crystalline regions, in excess of the intrinsic energy of the bulk lattices. A 
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schematic of the principle is given in Figure 5.1.(b). The excess interface energy is given 

by: 

 

( ) ( ) ( )00
int YyeyYedyyeE BBAA

y

y

B

A

−−−−= ∫    . (5.2) 

 

Here ( )ye , Ae and Be  denote the energy profile normal to the interface, the bulk 

energy in region A (lower crystalline region) and the bulk energy in region B (upper 

crystalline region), respectively.  The vertical locations 0Y , Ay  and By  are defined 

schematically in Fig. 5.1.b. Equation (5.2) is adapted to the case of a discrete system by 

replacing the integral terms by sums on all atoms of the region considered. 
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     (5.3) 

 

Here, AN  and BN  are the number of atoms in regions A and B, respectively.  The 

bulk energies, Ae  and Be , are determined by averaging the ie  of a group of atoms 

positioned sufficient far away from the interface such that the presence of the boundary is 

not detected.  Using Ae  and Be , an excess energy is computed for every atom within the 

interface model; the sum of these excess energies is defined as the total interface energy.   

Bicrystal interface evolution 

Let us now discuss the atomistic rearrangement of the six different simulated 

structures. The energy profile, after energy minimization and isobaric-isothermal 
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equilibration, of the Σ5 (210) 53.1o boundary is presented in figure 5.2 (a) for which only 

the first two atomic layers are used on the Z-direction. Recall that periodic boundary 

conditions are used in all directions. In Figure 5.2. (b) one can observe an image of the 

simulated structure where the atoms are colored by their excess energy bulki ee − . It can 

be observed that the interface can be described as a sequence of B’.B’ structural units. 

Interestingly, the structure presents a slight asymmetry. This can be observed in Figure 

5.2.(a) where the atoms in the layer above the interface (denoted by +1) have a higher 

energy than that of the atoms in the layer below the interface (denoted by -1). Also, from 

the plots of the energy profile after energy minimization and after thermodynamic 

equilibration (Figure 5.2.a), it can be concluded that the observed asymmetry does not 

result from the thermal equilibration. 
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Figure 5.2: (a) Interface energy profile for a Σ5 (210) interface in copper after energy 

minimization and isobaric-isothermal equilibration.  (b) Structure of the Σ5 (210) 

interface after NPT equilibration showing the slight asymmetry of the boundary.  Atoms 

are colored by excess energy. 

 

 The energy profiles of the Σ5 (210) interface at 1.0, 3.0 and 5.0 GPa applied stresses 

are presented in Figure 5.3.(a). While most layers see their energy increase, this is 

especially the case of layer (0), several layers decrease in energy upon increasing the 

applied stress. This can be observed in layers (+1) and (-1). In terms of atomistic motion, 

one can observe that the initial asymmetry is removed upon loading the bicrystal. Indeed, 
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when the applied stress is equal to 5 GPa. atoms in the (+1) and (-1) layers are aligned 

(see Figure 5.3(b)). 

 

 

 

 

Figure 5.3:(a) Energetic evolution of the atomic layers in the vicinity of the Σ5 (210) 

interface showing that atomic layers may increase or decrease in energy during 

deformation.  (b) Structure of the Σ5 (210) interface at a tensile stress of 5.0 GPa 

demonstrating that the interface asymmetry has been removed by the tensile deformation. 
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The energy profile of the Σ5 (310) 36.9o boundary after both energy minimization en 

isobaric-isothermal equilibration is presented in Figure 5.4.(a). As in the previous case, 

solely the first two atomic layers are used. Contrary to that of the Σ5 (210) boundary, the 

Σ5 (310) interface has a perfectly symmetric structure even though the {001} and {002} 

layers have different structural configurations.  From Figure 5.4.(b) it can be concluded 

that, as expected, the Σ5 (310) 36.9o boundary is composed uniquely of C structural units. 

Also, it can be observed that atoms composing the (0) plane can have two possible energy 

states; (1) a low energy state corresponding to atoms positioned in the {001} layer and 

(2) a higher energy state corresponding to atoms in the {002} layer. Let us note that 

atoms in the lower energy state serve as intersections between C structural units. The 

high and low energy layers are denoted (0)A and (0)B, respectively. Finally, as presented 

in Figure 5.5(a) thermal vibration does not lead to major changes in the energy profiles. 
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Figure 5.4: (a) Interface energy profile for a Σ5 (310) interface in copper after energy 

minimization and isobaric-isothermal equilibration.  (b) Structure of the Σ5 (310) 

interface after equilibration showing the interface structural units.  Atoms are colored by 

excess energy. 

 

The evolution of the interface energy profile after loading at 1.0, 3.0 and 5.0 GPa is 

presented in Figure 5.5 (a). While most atomic layers have an increasing energy with 

increasing loading, the three layers with the largest initial energy, (0)B, (+1) and (-1), 

decrease in energy. Interestingly, the simulations reveal a unique behavior of the Σ5 (310) 

interface. Precisely, when the applied load reaches a critical threshold stress between 3.25 

Energy (eV)

-3.60 -3.55 -3.50 -3.45 -3.40 -3.35 -3.30 -3.25 -3.20

Y
-P

os
iti

on
 (

Å
)

106

108

110

112

114

116

118

120

122

At 0 bar / 10 K Equilibrium
After Energy Minimization

(a) 

(-1) 
(0)A (0)B 

0 
+1 

-1 

(b) 
excess 
energy 
(eV) 

Σ5 (310) 

(+1) 



  222  

and 3.5 GPa, atoms within the (0)A layer bifurcate in the Y-direction. An image of the 

bifurcation event is presented in Figure 5.5.(b) in which the tensile stress is equal to 

5.GPa. We speculate that this bifurcation event, which can also be observed in layers (+4) 

and (-4) with same critical threshold stress, may trigger the anelastic deformation of the 

interface and may be facilitated by the expansion of the structural unit during elastic 

deformation. Indeed, it was shown via MD simulations that in the case of C structural 

units composed interfaces, a shift normal to the boundary plane occurs during the 

dislocation nucleation event. Similarly to the previously studied interface, the interface 

scale effect was studied and did not reveal any artifacts in the simulations.  
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Figure 5.5: (a) Energetic evolution of the atomic layers in the vicinity of the Σ5 (310) 

interface.  Bifurcation of the (0)A, (+4) and (-4) layers is identified as an evolution 

mechanism.  (b) Structure of the Σ5 (310) interface at a tensile stress of 5.0 GPa showing 

the discrete changes in interface structure during the deformation process. 

 

In the same manner the energy profiles of the copper Σ13 (320) 67.4o , Σ13 (510) 

22.6o , Σ17 (410) 28.1o and Σ17 (530) 61.9o  boundaries subjected to 1.0, 3.0 and 5.0 

Energy (eV)

-3.60 -3.55 -3.50 -3.45 -3.40 -3.35 -3.30 -3.25 -3.20

Y
-P

os
iti

on
 (

Å
)

106

108

110

112

114

116

118

120

122

1 GPa Tensile Stress
3 GPa Tensile Stress
5 GPa Tensile Stress

(a) 

(+4) 

(-4) 

(0)A (0)B 

Σ5 (310) 

(+1) 

(-1) 

excess 
energy 
(eV) 

(b) 

0 

+4 

-4 

Energy bifurcation 
Y-position bifurcation 



  224  

GPa. where investigated. Although not shown here, the MD simulations revealed that the 

Σ13 (320), Σ17 (530) are composed of |AB’.AB’| and  B’ structural units displaced by 

one atomic layer in the Y-direction, respectively. In the case of the Σ17 (530) the 

particular structure composed of displaced B’ structural units clearly shows the limits of 

the structural unit model. Moreover the simulations also revealed that the “bifurcation 

event does not occur for these interfaces. On the contrary, the Σ13 (510) and Σ17 (410) 

which are composed of |CDD| and |CD.CD| structures exhibit the occurrence of the 

bifurcation phenomenon at threshold stresses 1.75 GPa and ~2.25GPa. Therefore it can 

be concluded that the presence of C structural units affects the occurrence of the 

bifurcation event which is to be discussed in following section. 

Evolution of the Excess Interface Energy 

Let us now rationalize the occurrence of the bifurcation events via energetic 

considerations. First, the bulk energy of the opposing lattice regions is calculated by 

averaging the energy of atoms sufficiently far away from the boundary (see Figure 

5.6.(a)). As expected the energy input to the bicrystal results in an increase in the bulk 

energy.  

Second, the excess interface energy , normalized with respect to the interface energy 

obtained after isobaric-isothermal equilibration, is calculated for each load and each 

boundary presented in this work (See Figure 5.6.(b)). The data are also divided by the 

surface of the model in order to obtain excess energy per area. It can be noticed that both 

Σ5 boundaries exhibit a decreasing excess energy with increasing load. Let us recall that 

a decrease in the interface energy does not imply that the total energy of the system 

decreases but that the energy of the bulk lattice region increases more rapidly than that of 
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the interface. Hence, energy storage within these grain boundaries is less efficient that of 

the perfect lattice. This may results from the special geometric constraints imposed on 

atoms that compose the Σ5 (210) and Σ5 (310) interfaces. Indeed, the crystallographic 

constraint of the B’ and C structural units limits the lateral contraction during uniaxial 

tension as compared with the Σ13 and Σ17 boundaries examined in this work, which 

contain regions of ‘perfect’ lattice (A or D structural units) between the B’ and C 

structural features. Interestingly, in Figure 5.6.(b) it can be noticed that the occurrence of 

the bifurcation event leads to an increase in the interface excess energy. Hence, the elastic 

bifurcation event can be considered as an energy storage enhancement mechanism.  Since 

the energy stored in grain boundaries directly affects the grain boundary dislocation 

mechanism, which is thermally activated, the discrete atomic bifurcation event may be of 

great importance on the elastic and viscoplastic deformation of NC materials. Also, the 

“bifurcation” event which physically corresponds to a redistribution of the energy of the 

interface with its surrounding, shall lead to a softening in the elastic response of the 

interface. This shall be the case if the interfaces were constrained in terms of 

displacement rather than stress. Interestingly the structure observed during the energy 

redistribution may correspond to metastable configurations which could result in a 

pseudo elastic response of the interface. This will be subject to future studies. 

 

To verify the conclusion that the geometric constraints imposed by the B’ and C 

structural units affect the efficiency of energy storage during elastic deformation, 

additional MD simulations are performed on a Σ29 (730) 46.4o interface, which energy 

minimization predicts has a |B’B’C| structure.  The evolution of the excess interface 
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energy for the Σ29 interface is shown in Figure5.9 (b) in comparison with the other 

boundaries considered in this work.  Clearly, the excess interface energy of the Σ29 (730) 

boundary decreases during uniaxial tensile deformation.  Furthermore, the effect of 

elastic bifurcation on the excess interface energy can be identified in Fig. 5.9.(b) as a 

brief increase in the excess interface energy between 2 and 3 GPa.  Visual inspection of 

the interface structure during deformation confirms that the elastic bifurcation event does 

initiate between 2 and 3 GPa; however, the magnitude of the local variation in the Y-

position (for example) is not as significant as that in the Σ5 (310) interface shown in Fig. 

6(a).  
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Figure 5.6: (a) Bulk energy as a function of applied tensile stress; (b) normalized excess 

interface energy as a function of applied tensile stress.  Boundaries which contain B’ and 

C structural units show a decrease in excess interface energy, while Σ13 and Σ17 

boundaries show an increase in excess energy.
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Viscoplastic deformation 

This section is dedicated to the study and modeling of the viscoplastic 

deformation of NC materials. As mentioned in Chapter 1, grain boundary assisted 

deformation, via the emission and penetration of dislocations by/within grain boundaries 

and the relative sliding of grains, may be of primary importance. Therefore, this section is 

composed of two subsections; a first section in which the activity of grain boundary 

dislocation emission and penetration is studied, and a second section in which the activity  

of grain boundary sliding is considered. The modeling of the effect of grain boundary 

dislocation emission and penetration is based on a hierarchal scale transition technique to 

be presented in what follows. 

 

Also, both two-phase and three-phase representations of the material will be used. 

In all cases, the inclusion phase will represent grain interiors. In the case of two-Phase 

models, the matrix phase will represent grain boundaries and triple junctions while in the 

case of 3-phase models, the matrix phase will represent the effective medium and grain 

boundaries and triple junctions will be encompassed in the coating phase. 

Grain boundary dislocation emission and penetration 

The methodology used to model the effect of grain boundary dislocation emission and 

penetration is presented in Figure 5.7 (Capolungo et al. 2005, 2007a, 2007b). The 

methodology relies on the solution of three distinct steps: (1) equivalent representation of 

the material, (2) atomistic simulations and (3) homogenization. In the first step an 

equivalent representation of the material is chosen. For example, the material can be 
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represented as a two-phase composite or as a three-phase composite as discussed in 

Chapter 3. From the representation of the material, constitutive laws for each phase must 

be developed which leads to step 2 consisting of informing the continuum based 

constitutive laws with use of molecular dynamics simulations. As will be shown, in the 

case of constitutive laws based on statistical mechanics the bridging between the 

atomistic scale and the scale of the continuum may be performed. Finally, as discussed in 

Chapter 3, the local constitutive laws are used to predict the macroscopic response of the 

material.  

 Let us now present the constitutive laws of the grain interiors and grain 

boundaries for which solely the effect of grain boundary dislocation emission and 

penetration are accounted for. 

.  
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Figure 5.7: Schematic of the methodology. 

Continuum modeling 

grain interiors 

This model aims at capturing the size effect in the elastic-viscoplastic deformation 

of pure F.C.C. polycrystalline materials with grain sizes ranging from several microns 

down to a few nanometers. Therefore, the behavior of grain interiors results from the 

activity of dislocations. Precisely, it is assumed here that dislocation glide is the only 
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mechanism active in grain interiors. Let us note though, that as discussed in Chapter 1, 

dislocation activity in NC materials is severely reduced. Hence, the proposed model will 

clearly lead to overestimated response of nanosized grain interiors. This issue will be 

discussed in Chapter 6. Considering the time and temperature dependence of dislocation 

glide, the constitutive law of the grain interiors is elastic-viscoplastic and written as 

follows: 

 

( ),:I I I I vp= −ɺ ɺɺ Cσ ε εσ ε εσ ε εσ ε ε          (5.4) 

 

Here, IC ,I vpɺεεεε  and Iɺεεεε are the fourth order elastic modulus tensor of the crystallites, the 

second order viscoplastic strain rate tensor and the second order deformation tensor 

respectively. Supposing isotropic hardening, the equivalent viscoplastic strain rate 

,I VP
eqεɺ can be related to the viscoplastic strain rate via Prandtl Reuss flow rule: 

  

,
, 3

2

I vp
eqI vp I

devI
eq

ε
σ

 
=    ɺɺε σε σε σε σ          (5.5) 

 

Here, I
devσσσσ and I

eqσ   denote the deviatoric part of the stress tensor and the equivalent stress 

defined by ( )3 2 :I I I
eq dev devσ = σ σσ σσ σσ σ , respectively. Using a power law for the description of 

the thermally activated dislocation glide mechanism, one can write the equivalent 

viscoplastic strain rate as follows: 
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,
0

mI
eqI VP

eq
f

σ
ε ε

σ
 

=    ɺ ɺ          (5.6) 

 

Recall that m, the strain rate sensitivity coefficient, represents both shape and area of the 

dislocation glide resistance diagram. From experimental data, sited in Chapter 1, the 

hardening coefficient m is size dependent.  Cheng et al. (2005) proposed the following 

model in which the size effect arises from both the size dependence in the activation 

volume and in the flow stress: 

 

f

b

b
m

k T

σ ξ× Λ × ×
=          (5.7) 

 

where bk , T , b , ξ , *l  and fσ ’ are the Boltzmann’s constant, the temperature, Burger’s 

vector, the distance swept by a dislocation during an activation event, the obstacle spacing 

and the flow stress at zero K, respectively. Let us recall that in conventional materials m 

traditionally ranges in the neighborhood of ~150 while in the case of NC materials 

reported values range in the neighborhood of ~30 (Cheng et al., 2005). Also, equation 

(5.7) is weighted with a proportionality factor included inξ  in order to account for the fact 

that the statistical treatment of dislocations naturally leads to overestimated values of the 

dislocation mean free path. This was clearly discussed in review by Kocks and Mecking 

(2003) 
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While in models presented in Chapter 4 the flow stress at zero Kelvin accounted solely for 

the effect of stored dislocations, in the present model the stress field engendered by the 

lattice distortion present at grain boundaries is taken into account. Hence, the expression 

of the flow stress at zero Kelvin shall be written as the sum of three terms (Wei et al., 

2004):  

 

0f dis GBσ σ σ σ= + +          (5.8) 

 

where dis GMbσ α ρ=  and GB dσ β=  and represent the stress engendered by stored 

dislocations and grain boundaries, respectively.   Here α ,G , M and ρ denote a numerical 

constant, the shear modulus, the Taylor factor and the dislocation density, respectively. 

Note here that no distinction between statistically stored dislocation and geometrically 

necessary dislocation is made. Also, 0σ denotes a lattice friction term which is typically 

neglected. Let us note that equation (5.8) introduces a size effect through the term GBσ . 

The size dependence of GBσ arises from the fact that F.C.C. metals abide the Hall-Petch at 

zero Kelvin.  

 

 The evolution of the dislocation density is driven by the simultaneous effect of: (1) 

athermal storage and, (2) dislocation annihilation. Let us recall that several models for the 

dislocation storage have been proposed. For example, Kocks and Mecking (2003) 

introduced a percolation model while Nes (1997) suggested that dislocation storage occurs 

via the absorption of dislocations into subgrain walls leading to a change in the 
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dislocation density within these walls. The present approach is based on a statistical 

description of the phenomenon. Therefore the storage of dislocations is written as follows: 

 

,I vp
eq

d M

d b

ρ
ε

+

=
Λ

  (5.9) 

 

where M is the Taylor factor, Λ  and ρ + represent the mean free path of mobile 

dislocations and stored dislocation density, respectively. ,I vpε is the equivalent plastic 

strain in the grain interiors. The dislocation mean free path is typically written as the 

harmonic average of two terms; a first term *Λ   representing the effect of stored 

dislocations, and a second term **Λ  representing the effect of grain boundaries as barrier 

to dislocation motion leading to ** dΛ = . Hence, equation (5.9) can be written as follows: 

 

, *

1 1
I vp
eq

d
M

d bd b

ρ
ε

+  = + Λ          (5.10) 

 

Equation (5.10) defines stage II of strain hardening. Using the concept of material scaling 

which relates the dislocation density to the geometry of substructures present within the 

grains, the previous equation can be written in the following form:  

 

,

1
I vp
eq

d
M

d bd b

ψ ρρ
ε

+  
= +            (5.11) 
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Here ψ  is a proportionality factor.  

  

 The thermally activated dynamic recovery mechanism, which leads to a softening 

in the plastic response of the crystallites, is given the following empirical law introduced 

by Estrin and Mecking (1984): 

 

1/ 2,

20,
*

I vp
eq

I vp
eq

d
k

d

ερ ρ
ε ε

−
−  

= − ⋅   ɺ ɺ          (5.12) 

 

where n is inversely proportional to the temperature, with a reported value of 21.25 at 300 

K (Estrin and Mecking, 1984), *20k is a numerical constant, ρ − denotes the annihilated 

dislocation density and*εɺ  denotes a normalization strain rate. Grouping the effects of 

dislocation storage and dislocation annihilation together, one obtains the following 

expression of the evolution of dislocation density with the local equivalent viscoplastic 

strain: 

 

1/,

20,
*

1
nI vp

eq

I vp
eq

d
M k

d bd b

εψ ρρ ρ
ε ε

−  
= + −         ɺ ɺ       (5.13) 

 

To be consistent with the notations used in most strain hardening models (Kocks, 1976; 

Estrin and Mecking, 1984), equation (5.13) will be written as follows: 
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1 2p
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M k k
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ρ ρ ρ
ε
∂  = + − ∂           (5.14) 

where  

1
k

b
=  , 1k

b

ψ= ,

1/,

2 20
*

nI vp
eqk k

ε
ε

− 
=    ɺ ɺ        (5.15) 

Hardening rate 

Let us discuss the effect of the term GBσ introduced in the expression of the flow 

stress at zero Kelvin given by equation (5.8). Also, let us recall that the models presented 

in previous chapter could not successfully lead to an acceptable Hall Petch slope in the 

conventional regime. Hence, let us compare the hardening rates obtained with the present 

model, the Kocks and Mecking (K-M) model and the Estrin and Kock (E-K) ‘hybrid’ 

model. The derivation of the hardening rates obtained in the case of the K-M and E-K 

model are presented in detail in article by Estrin and Mecking (1984). Also, let us recall 

that in the upcoming derivations, the strain rate sensitivity parameter m is supposed 

constant. Moreover, in both the K-M and E-K model the flow stress at zero Kelvin is 

given by ρασ MGbf = . The K-M model does not account for the size effect in the 

storage of dislocation and is given by:
 

( )ρρ
ε
ρ

21 kkM
d

d
p

−= .  Kocks and Mecking report 

the following expression of the hardening rate 
pd

d

ε
σθ = : 

  −=
s

II σ
σθθ 1          (5.16) 

 



 
 

237 

where IIθ , sσ  andσ correspond to the stage II strain hardening rate, the saturation stress, 

and the stress in the tensile direction respectively, and are given by:  

 

1/

2
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0
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mp

II M Gbk
εθ α
ε

 
=   ɺɺ          (5.17) 
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m np p

s

k
MGb

k
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=      ɺ ɺɺ ɺ        (5.18) 

 

Recall that no size effect was taken into account in the early development of Kocks and 

Mecking (K-M). Therefore, Estrin and Kocks introduced a size effect in the evolution of 

the dislocation density given by:
 

1 2p

d k
M k k

dd

ρ ρ ρ
ε

 = + −   . This Hybrid model leads to the 

following expression of the hardening rate: 
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σ σ σ

   = − + −              (5.19) 

 

where the saturation stress h
sσ  and κ  are defined as follows 

 

1

1

02

1 −= κ
ε
εασ

mp
h
s k

k
MGb ɺɺ   ,  

11

2
2
2
1

4
2 1 1

kk

dk
κ

−   
= + +            (5.20) 

 



 
 

238 

Let us now present the resulting Haasen plot. Figure 5.8 presents a Haasen plot 

extracted from two tensile tests on a 20 micron and 110 nm CU samples (Sanders et al. 

1997). It can be noticed that a decrease in the grain size leads to a shift in the maximum 

value of on the plot, and in the saturation stress. Also let us recall that as argued by Kocks 

and Mecking the hybrid model cannot predict accurate values of the hall Petch slopes. 

This was clearly exhibited in models presented in Chapter 4. 

 

Figure 5.8: Experimental Haasen plot. 

 

Figure 5.9 presents Haasen plots predicted by hybrid model introduced by Estrin and 

Kocks. The same two grain sizes considered in previous plot are used in the simulations 

and the constants used in the model where chosen to obtain a best fit of the experimental 

stress strain curves.  The limitations of the Hybrid model can be clearly seen for the two 

curves do not have same starting point as their experimental equivalents and the shifts in 

the maximum values cannot be predicted. 
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Figure 5.9: Haasen plot from Estrin et al.'s hybrid model. 

 

We now consider the size dependence of the hardening coefficient, which has a major 

influence on creep behavior.  The present model incorporates the effect of long range 

obstacles on the flow stress at zero Kelvin. After some algebra (the details of the 

derivation are presented in Appendix C), the model yields the following set of equations 

for the hardening behavior at constant plastic stain rate: 
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Or equivalently, 
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Here the saturation stress is given by: 
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It can be readily seen that the present model reduces to the E-K model if the contribution 

of long range obstacles is neglected, i.e.,0=β . Introducing the effect of grain boundaries 

on the flow stress at zero Kelvin will lead to a shift in the maximum of the Haasen plot. 

Moreover, as described in equation (5.23), the saturation stress, which defines the 

maximum stress achievable, will be more likely to increase with a decrease in the grain 

size. 

grain boundaries 

In order to quantify the sole contribution of grain boundary dislocation emission, the 

contribution of grain boundary sliding is neglected and plastic deformation, in the matrix 
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phase (in the case of 2-phase models) or in the coating (in the case of 3 phase models), is 

assumed to be driven by the emission of dislocations by grain boundaries and triple 

junctions, which shall be activated at small grain sizes (d<100 nm). The simultaneous 

contribution of grain boundary sliding and grain boundary dislocation emission will be 

discussed in future section. Dislocation emission is thermally activated as shown by MD 

simulations. Since the presence of dislocation forests is less energetically favorable at 

small grain sizes, an emitted dislocation is expected to travel through the crystallite and to 

end its trajectory in the opposite grain boundary, causing mass transfer within the grain 

boundary (see Figure 5.10). Recent MD simulations have shown that following the 

emission of a dislocation, a grain boundary ledge is created at the nucleation site (Spearot 

et al. 2005). No long distance mass transfer was observed near the dislocation source. 

Hence, in the present conceptualization, the effect of dislocation emission on plastic 

deformation is assumed negligible compared to that of penetration of dislocation into a 

grain boundary. Let us note that mass transfer does occur both in the neighborhood of the 

dislocation source and in the region of penetration of the emitted dislocation. As stated 

above, the mass transfer following the emission process is local and its contribution on the 

macroscopic response is neglected. Hence, the current model will not insure time 

reversibility. Specifically, it is supposed that a nucleated dislocation will have two local 

effects: (1) creation of a dislocation source (ledge) at the nucleation site, which is 

neglected in the present approach and, (2) creation of mass diffusion within the opposite 

grain boundary. The latter is responsible for the plastic deformation of grain boundaries. 

Grain boundary ledges are considered to be the primary dislocation source. This 
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hypothesis will be investigated in upcoming section dedicated to MD simulations on 

bicrystal interfaces. 

 

Figure 5.10: Schematic of the mechanisms of emission of dislocation by grain boundaries. 

 

 Assuming that every emitted dislocation penetrates the opposite grain boundary, 

the equivalent viscoplastic strain in the phase including grain boundaries and triple 

junctions, eq
Mεɺ , can then be written as the product of the activation rate for the penetration 

of a dislocation and the probability of success of emission of dislocations. Experimentally, 

little dislocation debris is found in samples, indicating that when dislocation emission 

occurs, full dislocation loops are emitted. Since the trailing partial dislocation is expected 

to follow the emission of the leading partial it is considered that the critical event is the 

emission of the leading partial dislocation. Therefore one can write: 
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where, 0
Mεɺ  and sN  are the average strain rate caused by the penetration of a dislocation 

and the number of nucleation sites, respectively. The parameters k, T , M
eqσ , and c

Mσ  

represent Boltzmann’s constant, the temperature in Kelvin, the equivalent stress in the 

matrix phase defined by ( )3/ 2 :M M M
eq dev devσ σ σ= where M

devσ denotes the deviatoric stress 

tensor, and the critical-emission stress, respectively. The non-dimensional parameters p 

and q describe the evolution of the enthalpy of activation with the local stress.   

 

The probability of successful emission is described with a Boltzmann distribution. 

Therefore, 0G∆  denotes the free enthalpy of activation, corresponding to the energy that 

must be provided at zero Kelvin to a dislocation for it to move from a stable configuration 

in the grain boundary to an unstable configuration with positive driving force outside the 

grain boundary. The unstable configuration is reached once the dislocation has been 

emitted and has traveled a minimum distance such that upon suppressing the load, it would 

not return to its emission site.  Since dislocation emission is a local process, the free 

enthalpy of activation and the critical emission stress at zero Kelvin are both dependent on 

the geometry of the grain boundary. For simplicity, the geometry is described by a tilt 

boundary with tilt angle misθ (see equation (5.25) and Figure 5.11).  A more refined 

description of the geometry would take into account the five degrees of freedom in grain 

boundaries.  
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The average strain rate engendered by a single penetration event, denoted by 0
Mεɺ , 

can be evaluated by approximating the interaction between the emitted dislocation and the 

interfaces as a soft collision. Let dism be the effective mass of a dislocation, GBm  the total 

mass of matter in the interface affected by the collision characterized by the length 

parameter L (see Figure 5.11), disv
�

 the velocity vector of the penetrating dislocation and 

GBv
�

 the average velocity vector of mass diffusion in the grain boundary area characterized 

by L.  One can then obtain from the conservation of momentum: 

 

( )dis dis dis GB Gbm v m m v= +� �
        (5.26) 

 

Let θ  be the angle between the slip plane and the longitudinal axis of the grain boundary, 

referred to as the x-axis (see figure 5.11). The mass transferred into the interfaces via 

penetration of a dislocation will have two effects, whose relative contributions will 

depend onθ : (1) mass transfer along the longitudinal axis of the grain boundary and, (2) 

mass transfer along the transversal axis of the grain boundary. The latter could possibly 

lead to the creation of a grain boundary ledge. Since most grain boundaries are large angle 

boundaries in NC materials, the transversal component of the velocity will be neglected. 
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Figure 5.11: Schematic of the penetration of a dislocation. 

 

Projecting equation (5.26) onto the longitudinal axis and dividing the average velocity by 

the length of the grain boundary region affected by the mass transfer,L , to obtain a strain 

rate, one obtains: 

 

0 sindis dis
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dis GB

m v

m m L

θε =
+

ɺ         (5.27) 

 

where L  is proportional to the grain boundary length.  The proportionality factor is 

denoted byκ  . Hence, L is written as follows:L dκ= . This choice is motivated by the fact 

that triple junctions are expected to act as barrier to the mass motion. It is known that the 

dislocation velocity disv  is given by: 
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where 0v  is a proportionality factor. The number of nucleation sites per unit GB area is 

supposed not to be size dependent.  However, the total number of the nucleation sites of 

the representative volume element increases with decreasing grain size, because of the 

increasing total surface area. Therefore, the number of nucleation sites will be written as 

follows: 

 

2 2
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s
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d d
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π

∝ =          (5.29) 

 

where δ  is a proportionality factor. Combining the above equation one obtains the 

following expression of the expression of the equivalent viscoplastic strain rate: 
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Using Prandtl-Reuss‘s flow rule, the viscoplastic strain rate tensor can be related to the 

equivalent plastic strain rate defined in (5.31). One obtains: 
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Finally, the constitutive behavior of the matrix phase is given by: 

 

( ),:M M M M vp= −ɺ ɺɺ Cσ ε εσ ε εσ ε εσ ε ε          (5.33) 

 

where MC is the fourth order elastic tensor of the matrix phase.  

 

Although the proposed approach will enable the evaluation of the contribution of 

grain boundary dislocation emission, the overall response of the material is expected to be 

overestimated due to several limitations. Indeed, the contribution of sliding mechanisms, 

which engender a softening in the behavior of the material, is neglected. Moreover, a 

criterion describing the decrease in dislocation activity, which could emerge from the 

lower initial dislocation density within the crystallites of NC materials, needs to be 

developed.  Considering the fact that dislocation activity ceases when the grain size is 

smaller than approximately 10 nm, the model will clearly not be valid when d<10nm. 

Finally, the constitutive law describing the dislocation emission process is limited to an 

average misfit angle between adjacent grains. The use of a statistical distribution could 

improve the model predictions. 
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As mentioned in the introduction to this chapter, the scale transition from 

microscopic scale, at which the constitutive laws were developed, to the macroscopic 

scale is to the macroscopic scale is to be performed via the use of Eshelbian 

micromechanical schemes (e.g., 2PEVPT, 3PVP etc.) which, as mentioned in Chapter 3, 

cannot predict stress heterogeneities within a phase. This is due to the fact that in all the 

models developed, the grain interiors are assumed spherical. Therefore, equation (5.30) is 

modified to account for these stress heterogeneities: 
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     ⋅∆  = − −              ɺ     (5.34) 

 

Here the parameter K accounts for the stress heterogeneities within the inclusion phase. 

Specifically, it can be seen from the above equation that an increase in the stress within 

the grain boundaries will lead to an increase in the activity of grain boundary dislocation 

emission.  

 

In order to assess of the stress heterogeneities within the grain boundaries, a 

simple 2-phase model is created via the finite element method (Abaqus). Hence, in this 

simulation, grain cores are described with the constitutive law presented in equations (5.4) 

to (5.14) and the grain boundaries and triple junctions are described with the set of 

equations presented in the above (with a stress heterogeneity factor set to 1). Also in 

equation (5.34), the ratio ( )/
mI

eq fσ σ in equation (40) is assumed constant and equal to 0.8. 

Hence, the behaviour of grain boundaries in the finite element simulation is softer than 
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that described in the micromechanical based model. As presented in Figure 5.12, the 

simulation reveals high stress heterogeneities at triple junctions; a maximum factor of 3 is 

predicted (corresponding to the ratio of the maximum value of the Von Mises stress over 

its minimum value within the same boundary). These simulations are in agreement with 

work by Meyers et al. (1982). However, let us note that these 2-D simulations will clearly 

lead to overestimation of the stress concentrations.  

 

 

 

Figure 5.12: Finite element simulations of a NC Cu sample; contour plot of the 

Von Mises equivalent stress. 
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While most parameters in equation (5.34) can be estimated via theoretical reasoning’s (to 

be presented in the following section), the free enthalpy of activation and the critical 

emission stress at zero Kelvin need particular attention for these two parameters control 

the rate of emissions of dislocations. Let us recall that both the free enthalpy of activation 

and the critical emission stress are dependent on the geometry of the grain boundary (e.g., 

misfit angles between the two grains composing the grain boundary). A scale transition 

from the atomistic scale to the microscopic scale can be performed via the evaluation of 

these parameters with molecular dynamics simulations. Therefore, MD simulations are 

performed on a Σ5 {210} boundary. This will lead to estimates of the free enthalpy of 

activation and critical emission stress. These simulations clearly need to be extended to 

more grain boundary structures in order to draw general conclusions on the activity of 

grain boundary dislocation emission. Recall that grain boundary dislocation emission is a 

thermally activated mechanism which is described here with a methodology similar to that 

presented in Chapter 1.  

 

Although further details will be given on the calculation of the two parameters 

describing the grain boundary dislocation emission mechanism, let us present the 

fundamentals of the estimation procedure. First, in the case of the critical emission stress, 

MD simulations are performed on a bicrystal interface subjected to a tensile stress. In 

order to decrease the effect of thermal fluctuations, the simulations are performed at 10K. 

The critical emission stress is then equal to the stress, resolved on the slip system on 

which dislocation emission occurs, at which the nucleation of a leading partial dislocation 

can be observed. Second, the free enthalpy of activation corresponds to the energy that 
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must be brought to the system (e.g, grain boundary), without additional input from 

thermal fluctuation, for a dislocation to be nucleated and to move at a sufficient distance 

for it to reach and unstable configuration with positive driving force. The following 

subsection will describe the details of the MD simulations which were all performed by 

Dr. D. Spearot. In order to investigate the effect of ledges, which were considered to be 

the primary grain boundary dislocation sources, two  Σ5 {210} boundary are considered. 

The first boundary is a perfect planar while the second grain boundary contains a ledge.  

Atomistic modeling 

Model geometry and resulting structures 

A schematic illustration of the ‘planar’ and ‘stepped’ interface models is presented in 

Figure 5.13. Recall that as in the case of the study of the details of the atomic motion 

during elastic stretch of an interface, the Σ5 {210} 53.1o results from a symmetric tilt 

rotation Φ of opposing lattices around the [001] crystallographic axis. In the case of the 

stepped geometry, two pure ledges of heights Hℓ  equal to two times the repeating length 

of the supperlattice site for this misorientation are created along the interface plane.  

 

The dimensions of the interface models are prescribed as necessary to enforce periodic 

boundary conditions in all directions (X, Y and Z) and are presented in Table 5.2.  The 

effect of the model dimensions will be discussed later in this section 
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Figure 5.13: Schematic of the grain boundary interface models (a) perfect planar 

boundary and (b) boundary with ledge of height Hℓ . 

 

The bicrystal models are constructed similarly to those constructed in the first part of 

this chapter (dedicated to elasticity). Specifically, the initial configuration is obtained via 

MS calculations followed by isobaric-isothermal equilibration at 0 Bar and 10 Kelvin. 

The dynamic of the system is driven by the Melchionna et al. (1993) equations of motion 

for the NPT ensemble. The bicrystal is subjected to tensile stresses in the Y-direction and 

the motions of the boundaries are calculated from the prescribed system stresses. As in 

the case of elasticity, the boundaries perpendicular to the interface are stress-free. Finally 

Mishin et al. (2001) embedded atom potential is used.  
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Table 5.2.  Interface model dimensions considered in the current work. 

Interface Type Width, 

W (nm) 

Height, 

H (nm) 

Depth, 

D (nm) 

Ledge Height 

(nm) 

Ledge 

Spacing 

(nm) 

Number of 

atoms 

Planar (Σ5) 19.4 22.6 16.2 n/a n/a 533,760 

Stepped (Σ5) 19.4 22.6 16.2 0.79 9.7 533,760 

Stepped 2X (Σ5) 38.8 22.6 16.2 0.79 19.4 1,067,520 

 

Detailed views of the planar and stepped Σ5 {210} interfaces are presented in Figure 

5.14 (a) and (b), respectively. The viewing direction is along the [001] crystallographic 

axis (Z-direction) and atom positions are projected into the X-Y plane for clarity.  

Snapshots of the atomic configurations at the interface are taken after the isobaric-

isothermal equilibration procedure at 0 bar and 10 K.  The structure of each interface can 

be readily identified by shading atoms according to their respective {001} atomic plane, 

as indicated in the legend of Figure 5.14. 
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Figure 5.14: (a) view of the planar interface and (b) view of the stepped interface. 

 

Similarly to work by Bachurin et al. (2003), the planar interface is composed of B’ 

structural units. From Figure 5.14 (b) it can be noticed that the ledge is formed at a 45o 

angle relative to the positive X-direction which results from the symmetry of the lattice 

misorientations between the two crystals. The ledge height is equal to ~7.9 Å. 

interestingly; one can also notice the presence of C structural units along the step.  

Dislocation nucleation 

Let us now present the methodology used to estimate the free enthalpy of activation 

and the critical emission stress. The latter is obtained via the application of a sequence of 

{001} 
{002} 

(a) 

B’     B’       B’        B’ 

(b) 

B’     B’          C   C   B’       B’ 
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increasing tensile stresses (normal to the interface) starting at a minimum applied stress 

of 5GPa.. The simulations were run for 100 ps and the stress was increased by 0.1 to 0.2 

GPa if dislocation nucleation did not occur with the initially applied stress. 

 

Figure 5.15 (a, b and c) present snapshots of the nucleation process from a planar 

interface at different increasing simulations times. The centrosymmetry parameter is used 

to color atoms (Kelchner et al., 1998). One can notice that the simulations reveal that, as 

expected, the leading partial dislocation is emitted on one of the primary {111}/<112> 

slip systems. Also, the MD simulations can successfully capture realistic dislocation 

loops with both edge and screw characters. Note here that the core of the dislocation (in 

blue) remains connected to the interface by an intrinsic stacking fault (appearing in 

green).  As discussed in Chapter 1 the simulation does not allow the prediction of the 

trailing partial dislocation. Finally, the calculation of the resolved shear stress necessary 

for dislocation emission is equal to 2.58 GPa. 
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Figure 5.15: Snapshots of the nucleation of a dislocation from a planar interface at an 

applied stress of 6.1GPa. 

 

Figure 5.16 (a, b and c) presents snapshots of the dislocation nucleation from the 

stepped interface. Interestingly, one can notice that dislocation nucleation occurs at the 

interface ledge. Similarly to the case of the planar interface, the nucleation event is 

localized on one of the primary {111}<112> slip systems and the leading partial 

dislocation is connected to the interface by an intrinsic stacking fault. Also, one can 

notice that once emitted, the dislocation expands onto regions away from the ledge. The 

resolved shear stress necessary for the activation of dislocation nucleation from the 

stepped interface is equal to 2.45 GPa. This value is smaller than that reported in the case 

of the planar interface. However, this information alone is not sufficient to assess of the 

nature of the primary dislocation sources (e.g., stepped or planar interface). Therefore, 

(a
) (b

) 
(c
) 

Leading partial Partial dislocation 
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the calculation of the free enthalpy of activation is necessary and detailed in what 

follows.  

 

 

Figure 5.16: Snapshots of the nucleation of a dislocation from a stepped interface. 

 

The free enthalpy of activation corresponds to the change in energy of the interface from 

the initial configuration to the configuration in which the emitted dislocation becomes 

unstable with positive driving force. Physically, this signifies that upon releasing the 

stress, an emitted dislocation in the unstable configuration with positive driving force will 

not come back into its source. However, since the interface and lattice stretch contribute 

to the change in total energy, the free enthalpy of activation cannot be obtained directly. 

Hence, in order to eliminate these artifacts, the excess energy is used to reach an estimate 

of the free enthalpy of activation. Precisely, the free enthalpy of activation corresponds to 

the change in excess energy of the interface from the initial configuration to the 

configuration in which the dislocation is emitted. The excess energy at each time step is 

(a) 
(b) (c) 

Dislocation 
nucleates from 
ledge 

Partial dislocation 
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calculated with equation (5.3). A plot of the evolution of the bulk energy of both the 

planar and stepped interfaces is presented in Figure 5.17.(a). Prior to the occurrence of 

the dislocation emission event, the bulk energy increases with time which is expected 

since energy is brought to the system via the external boundary conditions. However, one 

can observe a decrease in the bulk energy which occurs when the emission event is 

activated. This is to be expected since dislocation emission is a plastic process. 

 

The evolution of the interface energy, defined as the sum of the excess energies over 

all the atoms within the bicrystal, is presented in Figure 5.17.(b). It can be seen that the 

interface energy decreases with increase time. However, a slight increase in the interface 

energy can be observed prior to the emission event. Also, a sharp decrease in the 

interface energy occurs after the emission of the leading partial dislocation. Recall that in 

previous section, in which solely the elastic response of interfaces was studied, the 

bifurcation event was brought to light. Therefore, these increases in the interface excess 

energy may be associated with particular atomic motion. Recall that atomic shuffling was 

exhibit in quasicontinuum simulations of bicrystal interfaces composed of E structural 

units. Also, let us recall that the decrease in interface energy does not signify that the total 

energy of the interface decreases. As argued by Muller and Saul (2004), a negative 

change in the interface energy is engendered by a change from an initial state where 

stresses are applied to a final state which corresponds to the relaxed state. Considering 

the fact the energy change obtained via MD represents the energy barrier for dislocation 

emission to occur, the negative of the change in the interface energy is taken as the 

approximate of the free enthalpy of activation. Recall that as discussed in review by 

Kocks, Argon and Ahsby (1975), the rigorous value of free enthalpy of activation shall be 
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calculated from the energy of the emitted dislocation only. Finally, the following values 

of the free enthalpy of activation for the planar and stepped interfaces are obtained: 173.2 

mJ/m2 and 103.8 mJ/m2.  

 

 

Figure 5.17: (a) evolution of the bulk energy with time and (b) evolution of the interface 

energy with time. 

 

In summary, the free enthalpy of activation and the critical emission stress were 

estimated in the case of a planar and stepped copper Σ5 {210} 53.1o planar. The MD 
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simulations reveal that both the free enthalpy of activation and the critical emission 

stresses are lower in the case of the stepped interface. Let us now recall that these two 

parameters are used in the continuum model, presented in the previous section (see 

equation (5.34)), in order to describe the probability of successful dislocation emission. 

Since the model is based on a Boltzman distribution of the emission process, the 

probability of successful emission, P, is given by the exponential term of equation (5.34): 
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qpM
eqmis
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B c mis

KG
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k T

   ⋅∆  = − −         σθ
σ θ

      (5.35) 

 

This equation accounts for the stress and temperature dependence of the probability of 

successful emission. The parameters p and q, describing the shape and area of dislocation 

emission resistance diagram, are chosen in order to obtain a sharp profile of the diagram. 

Hence p=1 and q=1.5.  A plot of the probability of successful emission with respect to the 

equivalent stress in the grain boundaries in the case of the planar and stepped interfaces 

for two grain sizes (100nm and 10nm) is presented in Figure 5.18. Recall that the free 

enthalpy of activation obtained via MD is given per unit area. It must be multiplied by the 

grain boundary area. It can be observed that the stepped interface is more prone to emit 

dislocations than the planar interface. This element suggests that the assumption that 

grain boundary ledges are the primary dislocation sources may be correct. Let us note 

that only one misorientation was considered. Hence, the MD simulations should be 

extended to more misorientation angles in order to rigorously confirm that grain 

boundary ledges are the primary dislocation sources in NC materials. Also, as exhibited 
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in HRTEM  images NC materials fabricated via severe plastic deformation (e.g. HPT, 

ECAP) and ball milling present stepped grain boundaries. However, it can also be noticed 

that high stresses are necessary for dislocation emission to be activated.  

 

Figure 5.18: Probability of successful dislocation emission versus stress for a perfect 

planar interface and a stepped interface at 100 nm and 10 nm grain sizes. 

 

Figure 5.19 presents the effect of the stress heterogeneity factor on the probability of 

dislocation emission from a stepped grain boundary. As expected, an increase in the 

stress heterogeneity factor leads to the activation of grain boundary dislocation emission 

at lower stresses.  
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Figure 5.19: Effect of stress heterogeneities on the probability of successful emission 

from a stepped interface. 

Effect of grain boundary dislocation emission  

 

The macroscopic response of polycrystalline materials with grain sizes ranging 

from the conventional regime to the NC regime can be predicted from the constitutive 

law of grain interiors and of grain boundaries (accounting for grain boundary dislocation 

emission). Here the 2PEVPT model presented in Chapter 3 is used to perform the scale 

transition from the microscopic scale to the macroscopic scale. For the sake of brevity the 

localization relations will not be recalled. Inclusions are assumed spherical with volume 

fraction f: 
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3
(d - w)

f =
d

              (5.36) 

 

Here d is the grain size and w is the grain boundary thickness. 

 

The model was applied to pure copper for which a relatively large number of experimental 

data is available. The following parameters, describing the behavior of the inclusion 

phase, were mostly from Estrin et al.’s work (Estrin and Mecking, 1984): 33.=α , Taylor’s 

factor 06.3=M , Burger’s vector 9256. −= Eb m, 38400 .I MPaµ =  (Sanders et al., 1997), 

0 0.005 /sε =ɺ and 25.21=n at room temperature and is inversely proportional to the 

temperature. 

 

3.507 4Eξ = −  was determined such that the hardening coefficient, m, reaches a 

value of 230 when the grain size is in the order of several microns, consistent with the 

work of Estrin and Mecking (Estrin and Mecking 1984).  

 

The term, accounting for the effect of long range obstacles on the flow stress at 

zero Kelvin introduced in equation (5.8), was chosen to be consistent with the Hall-Petch 

coefficient, e.g., 1/ 20.11 MPa mβ −= ⋅ .  

 

The parameters defining the evolution of the dislocation density were fitted, using 

equations (5.22) and (5.23), to appropriately describe experimental data provided by 
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Sanders et al. on 20 micron grain size polycrystalline Cu (Sanders et al., 1997), leading to 

the following results; -1
0

1
3.5 9 mk E

b
= = , -1

1 1. 10 mk E= and 20 330. k =  

 

Let us suppose the ratio of the mass densities of grain boundaries over that of a 

perfect crystal to be equal to .85, typical values range from .75 to .89 (Fitzsimmons et al., 

1995). The mass density is 8.96 g/cm3 for the perfect crystal of Cu. The grain boundary 

volume is size dependent and is approximated as a hollow sphere of thickness w 

surrounding an inclusion. We approximated the effective dislocation mass as the rest mass 

of a screw dislocation osm as given by (Bitzek and Grumbsch, 2005): 

 

2
ln24 0

mos
b R

mdis rCt

µ

π
≈ =

             (5.37) 

 

where 0r and R  are the lower and upper integration limit and the transverse wave speed is 

given by.  

 

I

tC
µ
ρ

=           (5.38) 

Hence, one obtains 
2

2
3.15 /

o
pN ps Amdis = ⋅ (Bitzek and Grumbsch, 2005). Since the 

dislocation velocity cannot exceed / 3tC  (without quantum effects) and the ratio of the 

equivalent stress in the inclusion phase over the flow stress at zero K is at most equal to 

.99, one can estimate 0 0.03ν = such that the maximum dislocation velocity is equal to / 3tC . 
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As the grain size decreases, the dislocation mass becomes closer to the grain boundary 

mass, which will increase the effect of the incoming dislocation. 

 

Finally, a 45 degree penetration angle is assumed, and the proportionality factor 

ς is set to 1/ 2ς = .  The parameter δ  is set to 40. Note here that these parameters can be 

adjusted since the penetration angle depends on the relative position of the active slip 

system with respect to the longitudinal axis of the grain boundary.  

 

Using the reasoning developed by Wang et al. (2003), the shear modulus of the 

matrix phase can be evaluated. The elastic moduli of the matrix region are estimated from 

an atomic potential method. Using the Lennard Jones potential and supposing the ratio of 

the density of the matrix phase over that of a perfect crystal to be .85, one 

obtains 11140 .M MPaµ =  Finally, the grain boundary thickness ,w , is estimated as 1 nm 

(Kim et al., 2000). 

 

The effect of grain size, strain rate and temperature are predicted and compared to 

experiments when relevant data are available in pure tension. Note that the stress 

heterogeneity factor is set to 1 unless otherwise mentioned. 

Effect of grain size 

The predicted macroscopic stress-strain curves under uniaxial tension at 1.E-3/s 

strain rate are presented in Figure 5.20. Four grain sizes were simulated: 1 micron, 100 

nm, 20 nm and 10 nm. In agreement with Sanders et al.(1997) experimental study on the 

elastic behavior of nanocrystalline materials, in which a decrease of Young’s modulus, 
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ranging from 13 to 16 % was exhibited upon decreasing the grain size from 20 microns to 

26 nm, the present model predicts a decrease in the macroscopic Young's modulus of 19 

% when the grain size is decreased from 1 micron to 20 nm.    

 

 

Figure 5.20: Stress-strain curves at different grain sizes and 10E-3/s strain rate. 

 

The softening in the plastic response with decreasing grain sizes can be explained 

by observing the responses of the constituents presented in Figure 5-21 and Figure 5-22. 

Since the volume fraction of the matrix phase becomes non negligible when the grain size 

is in the range of ~20nm, it is noticed that down to 20 nm grain size, the macroscopic 

response is very similar to that of the inclusion phase. In Figure 5-21, it is also noticed 

that at small grain sizes (d<100nm), substantial increase in the yield strength of the 

inclusion phase is seen which is a consequence of the long range stresses due to the 

presence of grain boundaries.  
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Moreover, a comparison of figure 5-21 and figure 5-22 reveals that for grain size 

in the order of 100 nm and below, the matrix phase is relatively harder than the inclusion 

phase. Therefore, when the grain size is decreased the maximum deformation of the 

matrix phase increases. Since the critical emission stress depends on the geometry of the 

grain boundary region, some grain boundaries could have a harder character while others 

could have a softer character leading to easier emission of dislocations. Grain boundaries 

with a harder character might be more likely to initiate cracks. Also, let us note that the 

response of the phase accounting for grain boundaries is similar to an elastic-prefect 

plastic response. Recall that NC materials with a small grain size exhibit the same type of 

response. Hence, on the condition that grain boundary dislocation emission is activated, 

the grain boundary phase could contribute to the observed elastic-perfect plastic response 

of NC materials. 

 

Figure 5.21: Stress-strain curves of the inclusion phase at different grain sizes and 

10E-3/s strain rate. 
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Figure 5.22: Stress-strain curves of the matrix phase at different grain sizes and 10E-3/s 

strain rate. 

 

Shown in Figure 5.23 is the comparison between the model predictions and the 

relevant experimental data from (Sanders et al., 1997; Cheng et al., 2005).  When 

compared to Sanders et al.'s experimental results on 110 nm grained Cu, the model 

predicts much larger values for the yield stress and consequently for the remaining part of 

the stress-strain curve. However, as mentioned Chapter 2, large discrepancies are often 

found in experimental results. 

 

The present model is in very good agreement with the experimental data from 

Cheng et al. (2005) on high purity 62 nm grain copper, although some minor 

discrepancies are seen near the initial plastic regime. The substantial increase in the yield 

stress predicted in the present model is mostly due to the fact that the long range stress 

caused by the presence of grain boundaries are accounted for through the ‘Hall-Petch’ 

dependence of the flow stress at zero Kelvin (see equation (5.8)).   
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The size dependence of the hardening coefficient cannot be appropriately 

described with the Cheng’s modified model described by the evolution of the mean free 

path of dislocations (equation (5.9)).  

 

Figure 5.23: Comparison with experimental work at different grain sizes 

Effect of strain rate and temperature 

The effects of strain rate and temperature on the response of NC materials are presented in 

Figure 5.24 and Figure 5.25. Similarly to the case of coarse grained materials, an increase 

in the strain rate leads to a harder response of the material. At low temperatures, since less 

energy is brought to the material by thermal fluctuation, the probability of successful glide 

is smaller than in a material subjected to the same loading but at higher temperature. This 

engenders a harder response of the material. 
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Figure 5.24: Stress strain curves at different strain rates, 

with d=100 nm. 

 

 

 

Figure 5.25: Stress-strain curves at different temperatures, with d=62 nm. 

Creep behavior 

In what follows, the effects of grain size, stress and temperature on the creep behavior of 

the material are simulated. The material is loaded at constant strain rate ( 1. 3/E E s= −ɺ ) until 

the desired creep stress is reached. In Figure 5.26 and Figure 5.27, one can observe the 

response of the material, with a critical stress set to 400 MPa, at different grain sizes: 100 

nm, 60 nm and 20 nm and the evolution of the macroscopic strain rate with respect to time, 
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respectively. One can observe that the strain rate decreases rapidly once the desired 

macroscopic stress is reached leading to creep rates in the order of 10E-10/s. In the case of 

very small grain sizes (d=20 nm), the material does not deform under constant stress. This 

is due to the fact that the material is still in its elastic regime. Hence, the material cannot 

sustain any deformation due to viscous effects. 

 

 

Figure 5.26: Stress strain curves at different grain sizes with critical stress=400 MPa. 

 

 

Figure 5.27: Strain rate Vs. time at different grain sizes with imposed stress=400 MPa. 
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The effects of temperature and stress on the creep behavior of NC materials are 

shown in Figure 5.28 and Figure 5.29, respectively. In the case of the temperature 

dependence of the creep rate, three temperatures were simulated: 300K, 400K and 500K. 

The grain size is equal to 100 nm. An increase in the temperature leads to an increase in 

creep rate. However, the order of magnitude of the creep rate remains relatively small, in 

the order of 10E-10/s. The same conclusion can be drawn with respect to the effect of the 

applied stress on the creep rate, which was simulated with d=100 nm and T=300K (see 

Figure 5.29). 

 

 

Figure 5.28: Strain rate vs. time at different temperatures, d=100 nm,  

stress= 400 MPa. 
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Figure 5.29: Strain rate vs. time at different stresses, d=100 nm T=300K 

 

From these results it can be concluded that the creep behavior of NC materials is 

similar to that of coarse grained materials. Therefore, even though grain boundaries and 

triple junctions are favorable paths for vacancy diffusion, the reported steady state creep 

rates are attributed to dislocation activities. The model is in agreement with several 

experimental data reporting steady state creep rates which are several order of magnitude 

lower than predicted by the equation of Coble creep (Sanders et al., 1997; Yin et al., 

2001). Even though Cai et al. reported creep rates in the same order of Coble creep (Cai et 

al., 2000) and grain boundary sliding creep (Cai et al., 2001) on 30 nm grained NC 

copper, the relevance of these results was strongly argued in Li et al.’s work (Li et al., 

2004). Li et al. performed the same tests as Cai et al. on the same material, and reported 

extremely small steady state creep rates compared to those reported by Cai et al., 

explaining the discrepancy as a result of material damage in the test samples.  

Size effect in the yield stress 
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Let us now discuss the size effect in the yield stress. From the simulations performed via 

MD on bicrystal interfaces, it is clear that high stresses are required in grain boundaries 

for the dislocation emission mechanism to be activated. Also, recall that the activation of 

grain boundary dislocation emission leads to the penetration of dislocations within the 

grain boundary opposite to the source which itself engenders a softening in the response 

of the material. Figure 5.30, presents the evolution of the yield stress, estimated via the 

0.5% offset method, with the inverse of the square root of the grain size (e.g., Hall Petch 

plot). It can clearly be noticed that in the case where stress heterogeneities are not taken 

into account (K=1) the yield stress increases at all times with a decrease in the grain size. 

The predicted slope (e.g. Hall-Petch slope) is in very good agreement with experimental 

measures. However, the breakdown of the Hall Petch law cannot be predicted which 

results from the fact that grain boundary dislocation emission is not activated in the 

material.  

  

When stress heterogeneities are accounted for, by setting K equal to 2 for example, 

one can notice that the model predicts both the increase in the yield stress with a decrease 

in the grain size, and the breakdown of the Hall Petch law. The critical stress at which the 

breakdown is predicted is ~25nm. The predicted breakdown of the Hall Petch law results 

from the activation of the grain boundary dislocation emission and penetration 

mechanism. 
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Figure 5.30: Yield stress as a function of the inverse of the square root of the grain size. 

 

 In chapter 3, several micromechanical schemes were introduced to perform the 

scale transition from the microscopic scale to the atomistic scale. It was stated that the 

3PVP model shall lead to softer predictions of the macroscopic response of NC materials. 

Indeed, using the 3PVP model, developed in cooperation with S. Benkassem, with same 

parameters and keeping the stress heterogeneity factor equal to 1 leads to the grain size 

yield strength plot presented in Figure 5.31. One can observe that this model predicts an 

increase in the yield stress with a decrease in the grain size down to a critical grain size in 

the neighborhood of 25 nm. A decrease in the Hall-Petch slope, in the range of ~20 

percent is predicted below the critical grain size. First, let us recall that the 3PVP scheme 

does not account for elasticity. Hence, the predicted values of the yield stress are much 

smaller than that presented in Figure 5.30. This shall not penalize the value of the Hall-
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Petch slope. Also, let us note that the predicted decrease in the Hall-Petch slope remains 

less pronounce than in the case where stress heterogeneities are accounted for.  

  

 In conclusion, both 2-phase and 3-phase models suggest that grain boundary 

dislocation emission may indeed be a source of the abnormal size effects observe in NC 

materials. However, a more local approach, allowing the precise quantification of the 

effect of stress heterogeneities on the emission of dislocation by grain boundaries is 

necessary. 

 

Figure 5.31: Yield stress as a function of the inverse of the square root of the grain size 

with use of the 3PVP model. 

 

Summary and discussion 
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In summary, the influence of grain boundary dislocation emission and penetration 

on the response of polycrystalline materials was investigated via the use of molecular 

dynamics simulations which were used to inform a novel constitutive law accounting for 

grain boundary dislocation emission and penetration. The behavior of grain cores was 

modeled with a modification of typical strain hardening laws and the scale transition was 

performed via the use of secant-self-consistent micromechanical schemes. 

 

MD simulations at 10 K on a planar and stepped Σ5 (210) 53.1o boundary interface  

allowed the estimation of the critical emission stress and free enthalpy of activation used 

to described, via statistical mechanics, the probability of emission of a dislocations. These 

simulations revealed that high stresses, in the order of 2 GPa, must be present in grain 

boundaries for the emission of dislocation to be activated. Also, it was shown that in the 

particular case of the Σ5 (210) 53.1o boundary interface, grain boundary ledges are more 

prone to emit dislocation than the planar interface with same misorientation of the two 

crystalline lattices.  

 

At the continuum level, the emission of dislocation was considered as the 

triggering mechanism to grain boundary penetration which was modeled as a soft 

collision resulting in a softening of the plastic response of grain boundaries.  

 

The 2PEVPT self-consistent micromechanical scheme was used to predict the 

macroscopic response of polycrystalline materials with grain sizes ranging from several 

microns down to ~10nm. Recall that this scale transition scheme is based on the 
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assumption that the bonding between inclusions and the matrix is perfect. Hence, grain 

boundary sliding was neglected. Also, inclusions were taken as spherical which imposes 

on all fields (e.g. stress and strain field) to be homogeneous within each phase. However, 

simple finite element simulations revealed that the stress heterogeneity within the matrix 

phase can be relatively large. These stress heterogeneities were accounted for in the 

constitutive law of the matrix phase representing grain boundaries and triple junctions. 

 

The model was applied to copper and lead to excellent predictions of the 

macroscopic response of polycrystalline materials with grain size ranging from several 

microns down to ~50nm (see Figure 5.23). Also, it was shown that when stress 

concentrations are accounted for, grain boundary dislocation emission and penetration can 

lead to a decrease in the Hall Petch slope. Moreover, using the 3PVP scheme confirms 

that the grain boundary dislocation emission mechanism may contribute to the decrease in 

the Hall-Petch slope. 

 

However, this model presents some limitations: (1) the MD simulations were 

performed solely for one particular bicrystal geometry, (2) grain boundary sliding is not 

accounted for, (3) the constitutive law of grain interiors is still based on typical strain 

hardening theories which leads to over predictions of the local stresses in the inclusion 

phase when the grain size is smaller than ~50nm, and (4) the local nature of the stress 

heterogeneities is lost when it is introduced in the constitutive law of the matrix phase.  

 



 
 

279 

These four limitations have motivated the study presented the following section 

and in Chapter 6.  Indeed, MD simulations (performed by Dr.D.Spearot) are currently 

being extended to more grain boundary geometries. A novel micromechanical scheme 

(e.g. 2PEVPWI), presented in Chapter 3, was introduced to predict the effect of grain 

boundary sliding. The sliding mechanism is described in following section.  Finally, a 

refined numerical model (currently under implementation) will be presented which will 

allow the precise estimation of stress heterogeneities within all phases (Chapter 6). 

Grain boundary sliding 

 In this last section of Chapter 5, the 2PEVPWI micromechanical scheme will be 

used to model the joint effect of grain boundary sliding (for which a new stick-slip 

inspired law is introduced) and of grain boundary dislocation emission on the response of 

pure F.C.C polycrystalline materials. These two mechanisms are obviously expected to 

play a dominant role in the NC regime. This scheme was implemented solely in the 

viscoplastic case. Hence, elasticity is neglected. While the present author developed the 

3PEVPT micromechanical scheme, S. Benkassem implemented the model in the 

viscoplastic case. The code is based on the 3PVP code developed by the author. Hence, 

the numerical details of this scheme are presented in S. Benkassem Ph.D. thesis. 

Methodology 

 Although the details of the 2PEVPWI scheme were presented Chapter 3, let us 

briefly recall its principle. First, the real material, composed of grain interiors, grain 

boundaries and triple junctions is represented in an equivalent manner as a coated 

inclusion embedded in a matrix phase. The coating phase represents grain boundaries and 
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triple junctions, the matrix phase represents the effective materials (which properties and 

response is to be found), and the inclusion phase represents grain interiors.  

 Then, in order to perform the scale transition this equivalent problem is solved in 

two steps. In the first step the problem of an inclusion embedded in a matrix is treated. 

The matrix has the properties of the coating in the original 3-phase topology  (e.g., grain 

boundaries and triple junctions). In this problem the two phases have imperfect bonding. 

The solution of this first subproblem leads to an estimation of the behavior of the coated 

inclusion. The second step of the scale transition procedure consists of inserting the 

homogenized coated inclusion into a matrix phase representative of the effective medium. 

The bonding between the homogenized coated inclusion and the effective medium is 

taken as perfect. 

 

 In the initial 2-Phase problem, the constitutive law of the inclusion phase is given 

by the formalism used for the description of grain interiors in previous section (see 

equation (5.4) to(5.24)). Hence, this formalism is well suited to describe the response of 

inclusion with sizes ranging from several microns down to approximately ~40-50nm. 

Indeed, below this grain size the initial dislocation density within the grain interiors is 

severely reduced and dislocation storage and dislocation annihilation shall not be active. 

This is one of the limitations of the previously exposed models. In order to assess of the 

effect of this approximation, dislocation activity can be deactivated in simulations. This 

will also improve the accuracy of the predictions of the response of the grain interiors in 

the NC regime. The response of the coating phase is driven by the mechanism of 
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dislocation emission and dislocation penetration which are described with equations 

(5.25) to(5.34).  

 

 The third mechanism which is taken into account is that of unaccomodated grain 

boundary sliding. Let us emphasize the fact that this mechanism is taken into account, in 

the micromechanical scheme, in the solution of the first subproblem; namely the 

imperfectly bonded inclusion embedded into a matrix representing grain boundaries and 

triple junctions. Let us now develop the equation describing the unaccomodated grain 

boundary sliding. 

Formalism of the stick-slip mechanism 

 A model for the unaccomodated grain boundary sliding mechanism, which leads 

to the relative solid motion of grains, was developed by Wei and Anand (2004). This 

model is based on the first two laws of thermodynamics and relies on the assumption that 

the sliding can be considered isotropic in its tangential direction. The interface model 

developed was introduced in a finite element code and lead to excellent predictions of the 

effect of grain boundary sliding on the response of NC materials. Indeed, the proposed 

model is based on a crystal plasticity approach and the geometric modeling is realistic in 

terms of grain orientation distributions and grain shape. However, the details of the 

motions of atoms are not described since the model was developed at the continuum scale. 

  

 On the contrary, Warner et al. (2006) performed shear test on 11 bicrystal 

interfaces with large angle grain boundaries. Let us note here that contrary to Spearot et 

al. (2005), the interfaces are constructed directly from the CSL notation. The evolution of 
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the shear force vs. shear strain on the bicrystal interfaces are presented in Figure 5.32 

(Warner et al. 2006). One can observe a linear increase of the shear stress with respect to 

the shear strain up to a critical value at which the shear stress drastically decreases. 

Further deformation leads to an almost linear increase in the shear stress prior to a sharp 

decrease at a given stress value lower than that of the first decrease in the shear stress. The 

authors introduced a constitutive law for the interfaces between two grains, based on work 

by Nguyen et al. (2002) and describing the sliding mechanisms as a stick-slip mechanism.  

 

  

Figure 5.32: Shear stress vs. Shear strain for symmetric tilt grain boundaries simulated by 

the quasicontinuum method. 
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 Here, we propose to use the aforementioned stick-slip law, adapted to the two-

phase scale-transition model, in order to account for the relative sliding of grains. Recall 

that in the formalism of the  2PEVPWI  model, the jump in the displacement is given by: 

 

( ) ( )i i i ij jk ku u S u S nη σ+ −∆ ≡ − =   ,   (5.39) 

 

Where, ijη  represents the compliance of the interface. Hence, from the present law, the 

jump in the displacement is proportional to the traction vector at the interface. Let us now 

neglect the effect of void creation which would clearly lead us out of the range of 

application of the model for slightly weakened interface developed by Qu (1993) and on 

which the 2PEVPT scheme relies on. Hence, one obtains the following expression of the 

compliance of the interface: 

 

( )ij ij i jn n= −η α δ          (5.40) 

 

The sliding coefficient α is then given by the following law which corresponds to the 

converse of the law proposed by Warner et al. (2006): 
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In equation (5.41), cδ  denotes a critical sliding distance which is approximated as 1nm. 

cσ denotes the critical sliding stress. Recall that the coating phase represents both grain 

boundaries and triple junctions. In order to account for the effect of both the triple 

junctions and the grain boundaries, a simple rule of mixture is used to estimate the critical 

stress at which sliding occurs. Hence one obtains: 

 

800
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f f
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σ σ σ

σ
      (5.42) 

 

Here gbf  and tjf denote the volume fraction of grain boundaries and triple junctions, 

respectively. The expressions of the respective volume fractions are given by (2.6). Note 

that 2.45gb Gpa=σ  is chosen based on simulation by Warner et al. (2006) who reported 

values ranging from 1.61 GPa. to ~3GPa. for symmetric tilt grain boundaries. Since triple 

junctions exhibit a structure devoid of atomic order the critical stress of triple junctions is 

chosen as the yield stress of amorphous Cu. 

  

 Considering the fact that inclusions are supposed spherical, the sum of the jump in 

the displacements in all directions in equation (5.41) can be replaced by the sum of the 

average displacements in all directions. Numerically, the average is obtained simply via 

use of Gauss integration. The numerical scheme employed is given in S.Benkassem Ph.D. 

thesis. 
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 The model was applied to the case of pure Cu. The parameters used in this 

simulation are the same as used in previous section. Figure 5.33, presents the microscopic 

response of 30 nm grained Cu with 3 different values of the critical distance cδ .The effect 

of stress heterogeneities is not accounted for. It can be seen that a change in cδ from 1nm 

to 3 nm does not influence the predicted macroscopic response. Also the simulations 

reveal that grain boundary sliding is already activated. Its effect can be observed in the 

zoom of the beginning of the plastic response presented in Figure 5.33. Indeed one can see 

that the activity of the sliding mechanism results in sharp jumps, in the range of 1MPa., in 

the stress values. These jumps cannot be observed in the case of 1 micron grained Cu.  
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Figure 5.33: Macroscopic stress-strain curves of 30 nm Cu. 

 

 In order to predict the combined effect of grain boundary sliding and of the grain 

boundary dislocation emission and penetration mechanism the model was used with 

different values of the stress heterogeneity factor. In figure 5.34 one can observe the 

predicted Hall-Petch plot for three different values of the stress heterogeneity factor K: 1, 

1.5 and 2. It can be observed that compared to the 3PVP model (see Figure 5.31), the 

effect of grain boundary sliding leads to a more pronounced decrease in the Hall-Petch 

slope. Indeed at a grain size of ~25 nm the deviation from the Hall-Petch law is much 

larger when grain boundary sliding is accounted for. Let us recall that the localization of 
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the activity of grain boundary sliding cannot be predicted in this model due to the 

spherical inclusion assumption and due to limitations inherent from the use of Eshelbian 

micromechanics. Also, an increase in the stress heterogeneity factor, which physically 

corresponds to an increase in the activity of the grain boundary dislocation emission and 

penetration, leads to a more pronounced softening in the Hall-Petch plot. Note that in the 

limit case where the stress heterogeneity factor is set to 2, a slightly negative Hall-Petch 

slope is predicted.  
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Figure 5.34: Hall-Petch plot for different values of the stress heterogeneities factor. 

 

As mentioned in the discussion of the previous section, dislocation activity is known to 

be severely reduced in NC materials. However, this effect was not accounted for in 

previous models. Hence, in Figure 5.35 one can observe two Hall-Petch plots. The pink 

case corresponds to the black curve in Figure 5.34 (e.g., dislocation activity, dislocation 
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emission and grain boundary sliding can be active). The blue curve corresponds to the 

case where dislocation activity (e.g., storage and annihilation) is stopped for grain size 

smaller than 30 nm. One can observe that stopping the dislocation activity results in a 

sharp decrease in the Hall-Petch slope. This decrease can be considered as an artifact of 

the simulation. Indeed, when the dislocation activity is first stopped (d=30nm), plastic 

deformation in the inclusions (grain interiors) remains non negligeable and the inclusion 

phase cannot harden. Since, the yield stress is obtained via the 0.2 percent offset rule; it is 

expected to observe this decrease in the Hall-Petch plot upon stopping the dislocation 

activity. However, interestingly, one can observe that independently on the dislocation 

activity, both curves present similar slopes. This let us conclude that while previous 

model could not predict in a quantitative manner the size effect of the yield stress in NC 

materials, the results remain valid qualitatively.  
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Figure 5.35: Effect of the activity of dislocations on the yield strength of NC Cu. The 

pink curve corresponds to the case where both dislocation activity, grain boundary sliding 

and grain boundary dislocation emission are accounted for. The blue curve corresponds 

to the case where dislocation activity is deactivated when the grain size is smaller than 

~30nm. 

Discussion 

 In sections in the above, the effects of grain boundary dislocation emission and 

penetration and of grain boundary sliding on the response of NC materials were 

investigated.  

 

 First, a hierarchal scale transition based on the input of parameters obtained via 

MD simulations into a secant-self-consistent scheme was used to simulate the sole effect 
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of grain boundary dislocation emission. In order to account for stress heterogeneities in 

the grain boundaries, a parameter, estimated via finite element simulations, was 

introduced into the constitutive law of the grain boundaries. It was concluded that high 

stress, in the order of a few GPa., are necessary for dislocations to be emitted from the 

grain boundaries. Also, MD simulations indicated that grain boundary ledges are source 

of dislocations. In the case of a Σ5 {210} grain boundaries containing ledges are more 

prone to emit dislocation than perfect planar grain boundaries. It was shown that typical 

work hardening laws describing the behavior of grain interiors were not suited to describe 

the size effect within crystallites. Therefore, these laws were modified to account for the 

effect of grain boundaries on the flow stress of crystallites at zero Kelvin. Finally, it was 

shown that the activity of grain boundary dislocation emission and penetration can result 

in the so called breakdown of the Hall-Petch law. However, this model can only lead to 

approximate predictions of the behavior of NC materials. Indeed, the parameters 

extracted from molecular dynamics simulations and describing the response of grain 

boundaries were calculated for one particular misorientation angle. Also, the effect of 

stress heterogeneities, which is obviously a local phenomenon, is not precisely accounted 

for in the present model. This results from the fact that the present micromechanical 

scheme can solely predict homogeneous state of stress and strain within each phase. 

However let us note that Lebensohn et al. (2007) recently solved such problems in the 

case of non spherical inclusions via the use of fast Fourier transforms. Finally, the 

decrease in the dislocation activity within the grain cores was not accounted for. This 

approximation naturally leads to overpredicted responses of the inclusion phase. 

 



 
 

291 

 Second, the effect of grain boundary sliding was studied. The sliding process was 

modeled as a stick-slip mechanism. Void creation was not accounted for. It was shown 

that grain boundary sliding does not require such high stresses as grain boundary 

dislocation emission in order to be activated. Also, it does results in the observed 

breakdown of the Hall-Petch law. Moreover, it was shown that the simultaneous activity 

of grain boundary sliding and grain boundary dislocation emission results in a more 

pronounced breakdown of the hall-Petch law.  

 

 As clearly mentioned in this discussion the proposed models have the merit to 

allow a qualitative prediction of the effects of grain boundary sliding and grain boundary 

dislocation emission on the response of NC materials. However, a rigorous quantitative 

analysis is not permitted with the present approach. Hence, in the following chapter a 

complementary approach based on a non-conventional finite element method is presented 

that would allow a local prediction of stress states within all constituents. 
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CHAPTER 6 

TOWARDS A NUMERICAL MODEL FOR NC MATERIALS 

 

 In this chapter, a novel approach is introduced to model the grain boundary 

dislocation emission and penetration mechanism.  Indeed, as shown in previous chapter, a 

precise quantification of the effect and activity of grain boundaries as dislocation sources 

and sinks cannot be achieved with the aforementioned hierarchal scale transition. 

Recalling the discussion dedicated to the limitations and strengths of existing modeling 

techniques (presented in Chapter 1), the finite element method appears well suited to 

predict such effects. In particular, the finite element method allows a precise description 

of the material’s geometry which as shown in previous chapters is a key feature in NC 

materials. 

 

 This chapter shall be considered as a work in progress for the long term objective 

is to simulate the behavior of NC materials in a realistic fashion. Precisely, the tool to be 

developed shall allow a realistic microstructural description of the materials (e.g., grain 

shape, grain size distribution, grain boundary misorientations, initial dislocation densities, 

slip systems, etc…) and shall also account for all mechanisms studied in previous 

chapters (e.g., grain boundary dislocation emission, penetration and unaccomodated grain 

boundary sliding).  The description of the microstructure via the finite element method 

has already been treated elsewhere and does not represent the primary challenge of this 

analysis. For example, Warner et al. (2006), simulated the response of a microstructure 
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composed of 200 grains with a log-normal distribution of the grain size via the use of 

Voronoi tessellation and the use of Monte Carlo’s procedure. Similarly, owing to the 

recent development of interface element, grain boundary sliding has already been dealt 

with. For example, the reader can refer to the work of Wei and Anand (2004), and 

Warner and Molinari (2006).  

 Consequently, the major challenge is to develop a finite element method capable 

of rigorously describing the mechanisms of dislocation emission and dislocation 

penetration from/ into grain boundaries. Such an approach can be developed solely if the 

size of elements is smaller than that of the grains and of the characteristic length of grain 

boundaries. At this scale, all dislocations shall be considered geometrically necessary. 

Typically finite element approaches accounting for the effect of geometrically dislocation 

rely on a crystal plasticity formulation and on the use of Nye’s (1953) dislocation tensor 

(Arsenlis et al 1999, Huang et al. 2004; Cheong at al. 2005). These approaches are 

successful in modeling size effects in the response of materials. In general, the flux of 

geometrically necessary dislocations is not accounted for. However, Arsenlis et al.(2004) 

introduced a framework, which necessitates higher order boundary conditions, in order to 

allow the transfer of dislocations between elements. While this method appears suited to 

treat the problem of grain boundary dislocation emission and penetration, the authors 

argued that GND cannot be created within an element. Also, the model was simplified to 

a two-dimensional single crystal with only one active slip system. Hence, the approach is 

not suited to describe the activity of grain boundary dislocation emission and penetration. 

Here, a novel model is introduced to treat such phenomena.    
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 Let us consider the case of a bicrystal interface which geometry is presented in 

Figure 6.1. In the proposed model, the bicrystal interface is composed of two grains (in 

blue and yellow) and two half grain boundaries (in green and purple). Both blue and 

green grain interiors and grain boundaries have similar crystallographic orientation. 

Similarly, the yellow grain interior and the purple half-grain boundary have the same 

orientation. Clearly with this approach, it will be ensured that grain boundary dislocation 

emission occurs on the primary slip systems. However, the response of grain boundaries 

will require further development in order to account for the possible constraints within 

the available slip systems. 

 

 

Figure 6.1: Schematic of a bicrystal interface. 

 Crystal plasticity 

 As revealed by MD simulations presented in Chapter 5, grain boundaries emit 

dislocation on the primary slip system. In order to obtain a precise description of the 
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dislocation activity a crystal plasticity approach shall be used. Indeed, with this approach 

inhomogeneities in the plastic deformation within grain interiors and grain boundaries 

could be predicted. Let us briefly recall the formalism of crystal plasticity. First, the 

deformation gradient can be decomposed as the product of an elastic deformation 

gradient and a plastic deformation gradient: 

 

x

X

∂=
∂

e PF = F F          (6.1) 

 

Here eF and 
PF denote the elastic deformation gradient and the plastic deformation 

gradient. xandX denote the position vector in the current deformed configuration and in 

the initial undeformed configuration. Typically the plastic deformation gradient rate is 

related to the shear strain rate as follows: 

 

{ }P Pα α α

α
γ= Σ ⊗ɺ ɺF m n F         (6.2) 

 

Here α denotes the slip system. αγɺ  , αm and αn  denote the shear strain rate, the slip 

direction and the normal to the slip plane, respectively. As described in equation (6.2), we 

suppose here that plastic deformation occurs on active slip systems. Recall that the effect 

of grain boundary sliding is to be neglected. Also, this approach is clearly well suited in 

the case of grain interiors. However, it will clearly require further extension in the case of 

grain boundaries. For example, constraints between slip systems shall be added. A 
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formulation could be obtained simple shear tests on bicrystal interfaces performed via 

MD.  The constitutive law is written as follows 

 

eL= iT E           (6.3) 

 

Where T is the second Piola-Kirchhoff tensor. The Green Lagrange deformation tensor is 

given by: 

 

{ }1

2
e eT e= −1E F F          (6.4) 

 

Here the superscript T denotes the transpose of a tensor. The Cauchy stress tensor is 

related to the second Piola-Kirchhoff tensor as follows: 

 

( ){ }1

det
Te e e− −

=T F F Fσσσσ         (6.5) 

With the framework presented in the above, the effect of dislocation activity (e.g., 

transport, nucleation and absorption) is described in the shear strain rate for which two 

equations dependent on the dislocation density are presented in subsequent sections. 

Inelastic deformation of grain cores 

 

 

Recall that as exhibited by TEM observations, grain cores in NC materials are 

initially devoid of dislocations. As a first approach the occasional presence of twin 
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boundaries, which is dependent on the fabrication process, will be neglected. Hence, in 

this model the inelastic slip rate cannot be described via traditional phenomenological 

models based on the evolution of statistical dislocations via growth and annihilation. 

Indeed those mechanisms shall not be prominent in NC materials with small grain size 

which we are interested into in this chapter. Therefore, it can be concluded that the 

viscoplastic deformation of grain cores results solely from the glide of dislocations on a 

given slip system.  The anelastic strain rate is proportional to the number of dislocations. 

Hence, Orowan’s equation best describes the inelastic strain rate which is written as 

follows: 

 

M b vα α αγ ρ=ɺ          (6.6) 

 

Here Mρ describes the mobile dislocation density. Recall that considering the reduced 

size of the representative element used in these derivations, all dislocations shall be 

considered as geometrically necessary. Let us note that the mobile dislocation density can 

be decomposed as the sum of the contribution of edge and screw components. In this case 

(6.6) takes the form: 

 

ed sc
M ed M scb v b vα α α α αγ ρ ρ= +ɺ         (6.7) 

 

In equations (6.6) and (6.7), vα denotes the average velocity of dislocations 

traveling on slip system α . Typically, the effect of the presence of immobile dislocations 

is accounted for either under the form of a slip resistance term or of a “yield strength” 
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term. In the present case, dislocation is not affected by immobile dislocations and the 

dislocation velocity can be taken as a constant. The superscripts and subscripts “ed” and 

“sc” refer to the edge an screw segments of dislocations, respectively. 

 

The unit cell representing the material has sub-granular dimensions. Moreover, 

dislocations sources are not present within the crystals. Therefore, dislocations are simply 

transmitted from a unit cell, smaller than a grain, to a neighboring unit cell and the 

evolution of the mobile geometrically necessary dislocation density arises from the flux 

of dislocations which description will be presented later in this chapter. 

Inelastic deformation of grain boundaries 

Away from triple junctions grain boundaries exhibit a well defined structure 

typically described with disclinations structural unit models and dislocation unit models 

(in the limit of the structural units model) . Recall that MD simulations have shown that 

the emission of a partial Shockley dislocation from grain boundaries can lead to local 

atomic rearrangement. In the case of grain boundaries containing E structural units, 

atomic shuffling is known to occur prior to dislocation emission. Also, dislocations 

(partial and full) emitted from grain boundary were shown to glide on the primary slip 

systems of the adjacent crystal (Sansoz et al. 2005). Hence, as a first approach, grain 

boundaries can be considered as composed of two half unit cells which orientations 

coincide with that of the adjacent grains (see Figure 6.2). 
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Figure 6.2: Grain boundary representation. 

 

With this description of grain boundaries, the imposed geometric orientation will ensure 

on dislocations to be emitted on the primary slip systems. The inelastic shear strain rate 

can be written as: 

 

ed sc
M ed M scb v b vα α α α αγ ρ ρ= +ɺ        (6.8) 

 

As mentioned in the above, the emission process leads to local atomic rearrangement. 

Conversely, the penetration of an emitted dislocation shall also have similar effects. As a 

first approach, the microstructural change engendered by dislocation emission and 

penetration will be neglected. However, imposing constraints on the slip systems will 

allow the description of the effect of dislocation emission and penetration on grain 

boundaries. These constraints will be based on molecular dynamics simulations on 

bicrystal interfaces (tensile and shear tests). 

Grain 
boundary 1 

Orientation 1 

Grain 
boundary 2 

Orientation 2 
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The dimensions of the representative element must be smaller than that of grain 

boundaries. In this case, the evolution of the dislocation density is driven by two 

processes: (1) the nucleation of a dislocation and, (2) the inward and outward dislocation 

flux corresponding to the dislocation penetration process and to the dislocation emission 

process, respectively.  

Dislocation density evolution 

From the discussions on the evolution of the dislocation density presented in the 

previous two sections it can be readily concluded that formalism to be presented here in 

the case of grain boundaries, where dislocations can be nucleated and transmitted, is a 

general case compared to that of the grain cores. Hence, in what follows the 

developments to be presented will treat solely of grain boundaries. In order to retrieve the 

representation of the dislocation density evolution within grain interiors, all terms related 

to dislocation nucleation shall be disregarded. 

 

Let us now consider a unit cell representing a portion of a grain boundary depicted in 

Figure 6.3.  On a given slip system dislocations evolve via flux of dislocations which 

ensure the transmission of dislocations, resulting from the grain boundary dislocation 

emission and penetration mechanism, and the continuity of the lattice curvature as 

discussed in work by Arsenlis and Parks (2004). These dislocations have both edge and 

screw components. 
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Figure 6.3: schematic of the dislocation evolution process. 

 

Hence in a general case the rate of evolution of the dislocation density is written as 

follows: 

 

M nucl flux
α α αρ ρ ρ= +ɺ ɺ ɺ          (6.9) 

 

Here the subscripts flux and nucl refer to the dislocation evolution due to flux and to 

nucleation. Let us now present the modeling of both the dislocation flux and the 

dislocation nucleation mechanism. Consider a cylinder with outward unit normal n  (see 

Figure 6.5). The flux of dislocations on slip system α  is given by: 

 

, ,flux flux ed flux sc
α α αρ ρ ρ= +ɺ ɺ ɺ          (6.10) 

 

Dislocation flux 

Dislocation 
nucleation 

Screw component 

Edge component 
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Let us first consider the case of a edge dislocations which velocity vector is given by 

v α⋅ m . Here mα is the direction of the slip direction vector. The dislocation flux is the 

integral over the surface area to be crossed by the moving dislocation of the product of 

the dislocation velocity vector and of the edge dislocation density: 

 

,flux ed eddS
v dSα α αρ ρ= ∫ɺ im n         (6.11) 

 

Recalling the multiplicative decomposition of the deformation gradient, it is important to 

note that the integral in equation (6.11) refers to the intermediate configuration (see 

Figure 6.6 extracted from Meissonier et al. 2000). Using the divergence theorem in the 

reference configuration one obtains: 

 

1

,
ped

flux ed v
α

α αρρ
−∂= − ⋅

∂
ɺ F m

X
        (6.12) 

 

Similarly in the case of screw dislocations one obtains: 

 

1

,
psc

flux sc v
α

α αρρ
−∂= − ⋅

∂
F t

X
ɺ         (6.13) 

 

Note that in the case of the screw component of the flux term, the dislocation velocity lies 

on the tα direction corresponding to the vector normal to the slip direction and to the 

normal to the slip plane. 
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Figure 6.4: Schematic of the description of the dislocation flux. 

 

 

Also, let us note here that equations (6.12) and (6.13) can be obtained simply by 

simplifying the expression of the evolution of geometrically necessary dislocation 

developed by Arsenlis and Parks (2004), via a reasoning based on the strain gradients 

within the lattice. Indeed, the previously mentioned authors obtain a final expression of 

the dislocation flux containing a flux term, similar to the present study, and a jog and 

kink creation term which are not relevant in the study.   

 

n 
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Figure 6.5: Multiplicative decomposition of the deformation gradient.  

 

 

Dislocation nucleation is thermally activated and occurs solely within the grain 

boundary phase. As revealed by bicrystal simulation of perfect planar interfaces and 

stepped interfaces, emitted dislocations have both edge and screw characters: 

 

 , ,nucl nucl ed nucl sc
α α αρ ρ ρ= +ɺ ɺ ɺ         (6.14) 

 

Supposing Boltzmann distribution for the probability of successful emission, as in 

previous chapter, the nucleation of both edge and screw dislocations is written as follows: 
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0
, exp 1

qp

nucl ed e
crit

G
l

kT

α
α τρ ϖ

τ

   −∆  = −        ɺ       (6.15) 

 

and 

0
, exp 1

qp

nucl sc sc
crit

G
l

kT

α
α τρ ϖ

τ

   −∆  = −        ɺ       (6.16) 

Here ϖ , scl , el
ατ , critτ , 0G∆ ,k ,T , p and q denote the frequency of attempts of 

nucleation of a dislocation, the length of the screw and edge segments necessary for the 

nucleation to be successful, , the resolve shear stress on slip system α , the critical shear 

stress for dislocation nucleation, the free enthalpy of activation, Boltzmann’s constant, 

the temperature and two parameters describing the shape of the dislocation nucleation 

resistance diagram, respectively. All parameters in the exponential term of equation 

(6.16) can be obtained via the same procedure presented in Chapter 5. Also, the critical 

length at which a dislocation nucleation event is a success can be obtained via MD 

simulations. The frequency of attempt shall be smaller than the atomic frequency (in the 

order of 1310 /s) and smaller the dislocation ground frequency (in the order of 1210 /s) 

(Kocks and Ashby, 1975). 

Application via the finite element method 

 The model presented in the above can be implemented with use of the finite 

element method on the condition that the dislocation rate balance can be formulation 

within a framework similar to that of the finite element method (e.g., weak formulation of 

a principle of virtual power). As discussed in work by Arsenlis and Parks (2004), in order 
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to ensure the continuity of the lattice curvature and the transfer of emitted dislocations, 

higher order boundary conditions must be imposed on each element.  

 

 Let us present the weak formulation of the problem in the case of edge 

dislocations and grain boundaries. The case of grain cores is obtained simply by 

disregarding the dislocation nucleation terms. Combining all terms (e.g., flux and 

nucleation) describing the rate of change of the dislocation density, the dislocation rate 

balance is written as: 

  

 

1 00 exp 1

qp

ped
ed e

crit

G
v l

kT

α α
α αρ τρ ϖ

τ
−

   ∂ −∆  = + ⋅ − −    ∂     ɺ F m
X

    (6.17) 

 

Let us multiply the previous dislocation balance equation by a virtual dislocation density, ɶρ , which must respect the real boundary conditions. Hence, one obtains after integration 

over the volume element: 

 

1 00 exp 1

qp

ped
ed eV V V

crit

G
dV v dV l dV

kT

α α
α αρ τρρ ρ ρϖ

τ
−

   ∂ −∆  = + ⋅ − −    ∂     ∫ ∫ ∫ɶ ɺ ɶ ɶF m
X

  (6.18) 

 

As usual when using the finite element method, let us take the weak formulation of 

equation (6.18): 
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1 1 00 exp 1

qp

p p
ed ed ed eV V S V

crit

G
dV v dV v l dV

kT

α
α α α α αρ τρρ ρ ρρ ρϖ

τ
− −

   −∆∂   = − ⋅ + ⋅ − −    ∂     ∫ ∫ ∫ ∫ɶɶ ɺ ɶ ɶF m F m dS
X

           (6.19) 

 

 

In equation (6.19) the surface integral term is equivalent to the product of the virtual 

dislocation density by the dislocation flux term given in (6.11). Let us define the 

dislocation flux term as follows: 

 

1p
edv nα αρ

−

= ⋅ ⋅F mΨΨΨΨ          (6.20) 

 

Consequently equation (6.19) can be rewritten in the following form: 

 

1 00 exp 1

qp

p
ed ed eV V S V

crit

G
dV v dV dS l dV

kT

α
α α αρ τρρ ρ ρϖ

τ
−

   −∆∂   = − ⋅ + − −    ∂     ∫ ∫ ∫ ∫ɶɶ ɺ ɶF m
X

ΨΨΨΨ  

(6.21) 

 

 

The above expression can now be implemented via the use of the finite element method 

which details are provided in the following section. Also, recall that equation (6.21) and 

its equivalent in terms of screw dislocations must be valid on all slip systems. Hence, the 

system of non linear equations to be solved consists of 24 equations corresponding to 

both the edge and the screw components on the 12 active slip systems. 
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 Let us recall here the general methodology used in finite elements. The numerical 

implementation of the weak formulation of the dislocation evolution equation, given in 

(6.21), is decomposed into three steps: (1) discretization of the dislocation density, (2) 

global linearization procedure occurring at the element level within a user element 

subroutine (in Abaqus) and (3) time discretization procedure at the material’s level within  

a user material subroutine in Abaqus. Let us note here that the set of differential 

equations presented here must be solved simultaneously with the set of equations 

resulting from the weak formulation of the principal of virtual power which details are 

presented in work by Meissonnier et al. (2000). Hence, for clarity of the model, solely the 

framework of the implementation of the effect of dislocation densities on NC materials 

will be presented 

Discretization 

Let us consider the case of a 20-nodes cubic element. The dislocation density, 

may it be virtual or real, can be interpolated from the 20 nodal values. The discretization 

can be written as follows:  

 

20

1

i
i i

i

Nρ ρ ρ
=

=
= =∑ N         (6.22) 

 

Where iN are the second order interpolation functions given by: 
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( ) ( )( )( ) ( )1
, , 1 1 1 2

8
i i i i i i iN ξ η ζ ξ ξ η η ζ ζ ξ ξ η η ζ ζ= + + + + + −  for i=1,…,8,  

( ) ( )( )( )21
, , 1 1 1

4
i i iN ξ η ζ ξ η η ζ ζ= − + +     for i=9,11,17,,19 

( ) ( )( ) ( )21
, , 1 1 1

4
i i iN ξ η ζ ξ ξ η ζ ζ= − − +     for i=10,12,18,20 

( ) ( )( )( )21
, , 1 1 1

4
i i iN ξ η ζ ξ ξ η η ζ= − − −     for i=13,14,15,16 

 

(6.23) 

Also in equation (6.22), the interpolation matrix has dimensions [ ]N = 24* 480 and has 

interpolation matrix has the following shape: 

 

1 2

1 2

1 20

19 20

0 0 ... ... ... ... ... 0

0 0 ... ... ... ... ... 0

... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ...

0 ... ... ... ... ... 0 0

0 ... ... ... ... 0 ... 0

N N

N N

N

N N

N N

    
=             (6.24) 

 

 

The discretized dislocation vector is given by: 

 



  312  

1,1

1,1

1,2

1,2

1,20

1,20

2,1

2,1

12,20

12,20

e

s

e

s

e

s

e

s

e

s

ρ
ρ
ρ
ρ

ρ
ρ

ρ
ρ
ρ

ρ
ρ

         =           
⋮ɶ
⋮

          (6.25) 

 

 

Here the first superscript defines the slip system number while the second superscript 

defines the node number. In equation (6.19) the virtual dislocation density gradient needs 

to be evaluated, leading to: 

 

( ) ( )

( ) ( )

20

, , , ,
1

1
20

, , , ,
1

with

j j

j

j j

j

X N

X N

N N Gρ
X

G N det

=

−

=

 ∂ = ∇ = ∇ ⊗ ∇ = ∂    
= ∇ ⋅ ⊗ ∇     

∑∑
ɶ

ξ η ζ ξ η ζ

ξ η ζ ξ η ζ

ρ ρ ρρ ρρ ρρ ρ

     (6.26) 

 

Here G is a [72*480] matrix.  Inserting (6.22) and (6.26) into (6.19) and considering all 

slip systems and both edge and screw components of the dislocation density, one obtains 

: 
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( ) 0in bdR F Fρ = − =          (6.27) 

 

With  

 

in T T

V
F v dV = − ⋅ − ∫ ɺ TN G NΗ ΦΗ ΦΗ ΦΗ Φρ ρρ ρρ ρρ ρ        (6.28) 

 

And  

 

bd T

S
F dS= −∫ N ΨΨΨΨ          (6.29) 

 

Here the superscripts “in”  and “bd”, denote the evolution of the dislocation density 

within the element and due to transport through the boundaries, respectively. In equation 

(6.28), H is a [72*24] matrix which is given by: 

 

 

1

2

24

0 0 ... 0 0

0 0 ... 0 0

.

.

.

0 0 0 ... 0

    
=       

H

H

H

H

       (6.30) 

 

 

In equation (6.30) iH , i=1,24 is a [3*1] matrix which components are given by: 
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1

1

 if i is odd

 if i is even

p

p

−

−

 i

i i/2

F m
H =

F t
        (6.31) 

 

Also, in equation (6.28) the term ΦΦΦΦ  is a [24*1] matrix which components are given by: 

 

0

/ 2
0

exp 1  if i is odd

exp 1  if i is even

qpi

e
crit

qpi

s
crit

G
l

kT

G
l

kT

τϖ
τ

τϖ
τ

    −∆   −          Φ      −∆   −         ιιιι ====      (6.32) 

 

Finally, one can discretize the dislocation density and the dislocation flux vector ΨΨΨΨ  

similarly to equation (6.22). Hence, one obtains: 

 

( ) T T T

V S
V V

R dV v dV dV dSρ = − − +∫ ∫ ∫ ∫ɺ TN N G N NΗΝ Φ ΨΗΝ Φ ΨΗΝ Φ ΨΗΝ Φ Ψρ ρρ ρρ ρρ ρ     (6.33) 

 

Equation (6.33) can be written as follows: 

 

( ) I II III IVR F F F Fρ = − − +ɺρ ρρ ρρ ρρ ρ         (6.34) 

 

With: 
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T
I V

II

V

T

V

T
IV S

F dV

F v dV

F dV

F dS

=

=

=

=

∫∫∫∫
T

N N

G

N

N

ΗΝΗΝΗΝΗΝ

ΦΦΦΦ

ΨΨΨΨ

ΙΙΙΙΙΙΙΙΙΙΙΙ

         (6.35) 

 

Supposing instantaneous motion of dislocations through crystals (grain cores as well as 

grain boundaries), overall in a unit cell the time rate of dislocation density is constant. 

Indeed, in the case of grain core, a dislocation entering the representative element is 

instantaneously transmitted to the adjacent element. Also, in the case of grain boundaries, 

a nucleated dislocation is instantaneously transmitted to the adjacent element. Hence, 

equation (6.34) can be simplified into: 

 

( ) II III IVR F F Fρ = − − +ρρρρ         (6.36) 

 

This algebraic equation is clearly non linear for the matrices IIF , IIIF  and IVF are 

dependent on the dislocation  density. The solution procedure is detailed in following 

section. 

Global linearization  

 During each time step within the calculation, the finite element code must find the 

zero of the vectorial function R. The Newton Raphson algorithm is used to solve the 

system of non linear equations. Hence at a given time step, the solution finalρ is obtained 

as follows: 
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( ) ( ) ( ) ( )2
r

r r r r r
r

R
R R

ρ
ρ δρ ρ δρ δρ

ρ
∂

+ = + + Ο
∂

     (6.37) 

 

The previous equation can be written as follows: 

 

 

( ) ( )
1

1

r

r r r
r

R
R

ρ
ρ ρ ρ

ρ

−

+
 ∂ = −

∂          (6.38) 

 

From (6.36) the tangent stiffness matrix 
( )r

r

R ρ
ρ

∂

∂
 is readily approximated and given by:  

( )r

IIr

R
F

ρ
ρ

∂
=

∂
          (6.39) 

 

The terms IIF , IIIF and IVF must be calculated in order to define the tangent stiffness matrix 

and the residual vector ( )rR ρ . These terms are calculated at the material level through 

the user material subroutine in Abaqus. 

 

Time integration procedure. 

The system in the above corresponds to 24 algebraic equations which are all given by 

integral of tensor products depending on the plastic deformation gradient. In order to 

calculate these integrals, the well known Gauss integration procedure will be used. This 
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obviously require the knowledge of the deformation gradient and second Piola kirchoff 

stress at each time involved in the Newton Raphson procedure presented in the above 

(denoted with r in (6.38)). As extensively discussed in work by Meissonier et al. (2000)., 

the plastic strain gradient at subincrement n+1 can be written as function of the its 

equivalent at sub increment n as follows: 

 

1

1

1
n

P P
n

α
α α

α
γ

−

=

 
= − ∆  ∑F P F         (6.40) 

 

Here the subscript n denotes the value of the tensor considered at subincrement n. For 

simplicity of the notations, the values of the tensors at subincrement n+1 will not have 

any subscript (unless necessary for comprehension). Let us note here that the goal of the 

time integration procedure is to calculate the term on the right hand side of equation 

(6.38). Therefore the subincrements in the time integration procedure shall not be 

confused with that of the global linearization. The inverse of the plastic deformation 

gradient at subincrement n+1 is given by: 

 

1 1

1

1
n

P P
n

α
α α

α
γ

− −

=

 
= − ∆  ∑F F P         (6.41) 

 

In equations (6.40) and (6.41), the plastic shear strain rate increment, ∆ αγ , is given by: 

 

( )1 n tα α αγ θ γ θγ ∆ = − + ∆ ɺ ɺ         (6.42) 
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Where 1θ =  since we chose to perform an implicit scheme. In this particular case the 

increment in dislocation densities is provided at the element level since dislocation 

densities are nodal quantities. Equation (6.42) can be written in the following form: 

 

( )ed sc
M ed M scb v b v tα α α α αγ ρ ρ∆ = ∆ + ∆ ∆  

 

Let us now recall the expression of the Green Lagrange strain tensor: 

 

( ) ( )1 11

2

T
e P P− − = −  E FF FF I

       (6.43) 

 

Introducing (6.40) and (6.41) in the above equation one obtains: 

 

1 1

1 1

1
1 1

2

T
n n

e P P
n n

α α
α α α α

α α
γ γ

− −

= =

        = − ∆ − ∆ −                 ∑ ∑E FF P FF P I
   (6.44) 

 

The above equation can be written as follows: 

 

( )
1

1

2

T
n

e
α

α α α

α
γ

=

 
= − ∆  ∑E A I - P A+ AP

      (6.45) 

 

Where A  is given by: 
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-T -1P T P
n nA = F F FF          (6.46) 

 

Using the constitutive law one obtains an estimate of the second Piola Kirchhof stress 

tensors at time n+1: 

 

*

1

n
tr

α
α α

α
γ

=

= − ∆∑T T C
         (6.47) 

 

Where 

 

( )1
:

2
tr =T l A - I

         (6.48) 

 

And 

 

( )1
:

2

Tα α α=C l AP + P A
        (6.49) 

 

Hence the set of equations to be solved is the following: 

 

*

1

0
n

tr
α

α α

α
γ

=

 
− ∆ =  ∑T = T - T C

       (6.50) 
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Obviously the set of equation (6.50) is implicit and can be solved with the use of the 

Newton Raphson procedure which is briefly recalled here. Let us define the following 

system: 

 

( ) 0R v =
          (6.51) 

 

A solution for the system can be found by iteratively computing the following: 

 

( ) ( )
1

1

r

r r r
R v

v v R v
v

−

+
 ∂ = −

∂           (6.52) 

 

Applying (6.52) to the system (6.50) one obtains: 

 

1* * 1r r rrT T G T
+ −     = −     

        (6.53) 

 

Let us note here that r denote the iteration step and not the time step. The Jacobian matrix 

is given by: 

 

[ ]G I=
          (6.54) 
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Hence, while the proposed finite element method largely increases the size of the system 

to be solved at the element level, the Newton Raphson procedure at the material’s level is 

also largely reduced. This is due to the fact that the dislocation densities are nodal 

quantities. Hence the increment in the dislocation densities is known at each 

subincrement. 

Summary and discussion 

In this chapter, a novel non-conventional finite element method was introduced in order 

to model the activity and effect of grain boundary dislocation emission and penetration. 

The present conceptualization is based on a dislocation rate balance governed by the 

nucleation and transport of dislocations in the case of grain boundaries. Nucleation is 

precluded in grain interiors. The dislocation rate balance is solved via the finite element 

method by introducing a virtual dislocation density and by taking the weak formulation 

of the resulting equation. It was shown that this method is equivalent to taking strain 

gradient approach. Owing to the new set of equations to be solved in terms of dislocation 

densities and flux, higher order boundary conditions (e.g., dislocation densities and flux) 

must be introduced. The numerical scheme to be used is summarized in Figure 6.6. 
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Figure 6.6: Numerical scheme of the finite element implementation. 

 

The framework presented in this chapter is currently being implemented in order to study 

the response of bicrystal interfaces. The code is programmed in Fortran and is based on 

Dr. Esteban Busso’s work on strain gradient crystal plasticity. 

 

 The long term objective is to use the presented framework in order to reproduce 

realistic microstructures (e.g. grain boundary distribution, grain size distribution, grain 

shapes) in which all known plastic deformation mechanisms are accounted for in the 

most adapter fashion. These microstructures will then be subjected to various type of 
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constraints. Finally, through a parametric study, the model will allow the fabrication of 

material by design. Hence, the presented framework may be of use to the industry. 
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CHAPTER 7 

CONCLUSION 

 

 The presented research work aimed at investigating the size effect in the elastic-

response of pure F.C.C. polycrystalline materials. The domain of grain size covered 

ranged from several microns down to ~10 nm. The principal objectives of this work were 

to identify and model the active deformation mechanisms in nanocrystalline materials 

and to develop new tools allowing rigorous modeling of size effects. 

 

 First, the effect of diffusion mechanisms was studied via the used of a secant-self 

consistent scheme based on a two-phase representation of the material. Precisely, the 

material was represented by an inclusion phase, representing grain cores, and by a matrix 

phase, representing grain boundaries and triple junctions. Plastic deformation within the 

grain cores was driven by dislocation activity (e.g. dislocation storage and annihilation) 

and by steady state vacancy diffusion along the grain interior grain boundary interface 

(e.g. Coble creep). As a first approach the elasto-plastic response of grain boundaries was 

modeled as elastic-perfect-plastic. The model was applied to pure copper. It was shown 

that, on the condition that vacancy diffusion is indeed active in NC materials, the 

abnormal response of NC materials, characterized by the breakdown of the Hall Petch 

law, could result from the activity of Coble creep. While the model lead to acceptable 

predictions of the yield strength/ grain size relation, the plastic response of 

polycrystalline aggregates with small grain size (e.g. inferior to ~60nm) was clearly 

overestimated.  



  325  

  

 Second, a similar approach was used to estimate the combined effect of vacancy 

diffusion and unaccomodated grain boundary sliding (e.g. Lifschitz sliding). It was 

clearly shown that the activity of Lifschitz sliding leads to an overestimated softening in 

the response of NC materials. Therefore, the simultaneous activity of Coble creep and 

Lifschitz sliding is not relevant to the case of NC materials. 

 

 Third, grain boundary assisted deformation was studied via the use of molecular 

dynamics and continuum micromechanics. In the case of the sole elastic response of 

nanocrystalline materials, tensile tests on several symmetric bicrystal interfaces were 

performed via molecular dynamics simulations at 10K. These simulations revealed the 

activity of a particular mechanism, corresponding to an energy redistribution from the 

interface to its surrounding, which enhanced the energy storage capacity of a bicrystal 

interface. This novel mechanism occurs solely in the case where the bicrystal interface 

contains C structural units. 

 

 In the case of elasto-plasticity, a model was introduced to describe the activity and 

effect of grain boundary dislocation emission and penetration.  

Existing molecular dynamics simulations had revealed the thermally activated nature of 

the mechanism which was consequently modeled as such. Precisely, the model relies on 

the assumption that while the triggering mechanism to grain boundary deformation is the 

nucleation of dislocation, the mechanism engendering plastic deformation is the 

penetration of dislocations within grain boundaries. A hierarchal scale transition 
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technique was introduced to model the aforementioned mechanisms. The mechanism of 

dislocation nucleation was modeled as a thermally activated mechanism. The parameters 

required in the model were obtained by molecular dynamics simulations at 10K. The 

penetration of dislocations within grain boundaries was modeled as a soft collision. Also, 

molecular simulation on a perfect planar interface and on an interface with same 

misorientation but containing a step revealed that, for this particular geometry, grain 

boundary ledges may be the primary interphase dislocation sources. 

  

 The limitations of typical work hardening laws to describe the size effect within 

inclusions ranging from conventional sizes down to the ultra-fine regime were shown. 

Therefore, the effect of grain boundaries on the flow stress of grain interiors at zero 

Kelvin was accounted for via the introduction of a Hall-Petch term. 

  

 Two-dimensional finite element simulations were performed on a representative 

element in order to estimate the stress heterogeneities within grain boundaries. The 

simulations revealed a stress heterogeneity factor in the order of 3. Therefore a stress 

heterogeneity factor was introduced in the constitutive law of grain boundaries 

 

 The transition from the microscopic to the macroscopic scale was performed with 

use of a two-phase secant–self-consistent scheme and of a novel three-phase 

micromechanical scheme. The latter is valid in the case of viscoplasticity alone and 

allows a precise description of the effect of the grain boundary/grain core interface. These 

models were applied to the case of pure copper in tension and in the quasistatic regime. 
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The model allowed close to perfect prediction of the response of polycrystalline materials 

with grain sizes ranging from several microns down to ~ 40nm. Note that the size effect 

in the strain rate sensitivity could not successfully be reproduced. The model showed that 

relatively high stresses are necessary within grain boundaries for dislocation emission 

and penetration to be active. However, when the stress heterogeneities are accounted for, 

the grain boundary dislocation emission and penetration mechanism leads to appropriate 

predictions of the softening in the plastic response of nanocrystalline materials.  Also, 

creep test simulation shown that in agreement with recent experiments, nanocrystalline 

materials shall not exhibit creep rates different from that of conventional materials. 

 

 The effect of unaccomodated grain boundary sliding was modeled with use of a 

novel three-phase micromechanical scheme valid in the case of elastoplasticity. The 

proposed scheme accounts for the effect of slightly weakened interfaces and uses the 

field translation method. Base on existing quasicontinuum simulations, a viscous sliding 

law (e.g. stick-slip) was introduced to describe the grain boundary/grain core interface. 

The mode was applied to the case of pure copper. It was shown that grain boundary 

sliding does not necessitate high stress level within the grain boundaries to be activated. 

Hence, this mechanism, may dominate that of grain boundary dislocation emission and 

penetration. Clearly, this is dependent on the materials microstructure.   

 

 The presented research will be used in future research in order to pursue the 

investigations on NC materials. The desired objective is to allow the fabrication of 
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nanocrystalline materials by design. Prior to reaching this objective, several studies will 

be conducted. 

 

 First, the implementation of the non-conventional finite element method presented 

in Chapter 6 will be finalized. This will allow a precise prediction of stress and strain 

distributions within the microstructure. As mentioned throughout this dissertation, the 

model requires the estimations of several parameters such as the free enthalpy of 

activation of the dislocation emission mechanism. Therefore, the collaboration with Dr. 

Spearot, who performed all molecular simulation used in this research, will be pursued in 

order provide sufficient data in order to allow the modeling of the geometric dependence 

of the parameters. Such a study could be performed via the use neural networks. 

 

 Second, the two-phase micromechanical scheme accounting for the relative 

sliding of grains will be implemented in the case of elasto-viscoplasticity. The model will 

account for grain size distribution, grain boundary misorientation distributions and the 

constitutive law of grain cores will be modified to account for the reduced dislocation 

density within grain interiors. 
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APPENDIX A 

SOLUTION TO NAVIER’S EQUATION 

 

 

In this appendix, the solution to Navier’s equation will be derived via the use of Fourier’s 

functions. The same notation defined in Chapter 3 will be used in this appendix. Navier’s 

equation is given by: 

 

*
, , 0ijkl k lj ijkl kl jc u c− =ε          (A.1) 

 

For the sake of simplicity the solution of Navier equation will be brought in two steps. In 

a first step, the eigenstrain will be supposed to be a known periodical function and, in a 

second step the same reasoning as presented in step 1 will be applied in the case where 

the eigenstrain is a random function that will be decomposed in an infinite sum of 

periodical functions. If the eigenstrain is a periodical function, it can then be written as 

follows: 

 

** ( )exp( )ijij i xε ε ξ ξ= ⋅          (A.2) 

 

Here ξ  defines the period of the function. The solution of eq (A.1) will be periodical as 

well with the same period. Hence, the displacement field can be written as follows: 
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( )exp( )ijiju u i xξ ξ= ⋅          (A.3) 

Introducing equations (A.2) and (A.3) into equation (A.1), one obtains the following 

equation: 

 

*( )ijkl k l j ijkl kl jC u iCξ ξ ξ ε ξ= −         (A.4) 

 

Let us define K as the second order matrix which components are defined as follows: 

 

ik ijkl l jK C ξ ξ=           (A.5) 

 

Similarly, one can define the vector αααα which components are: 

 

*
i ijkl kl jiCα ε ξ= −          (A.6) 

 

Thus finding a solution to equation (A.4) is equivalent to finding a solution to the 

following system: 

 

ij j iK u α=           (A.7) 

 

In the case where K  can be inverted, u is given by: 

 

( )

( )
ij

i j

N
u

D

ξ
α

ξ
=           (A.8) 
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The invert of K is given by: 

1 ( )

( )
ij

ij

N
K

D

ξ
ξ

− =           (A.9) 

Here N and D are the cofactors and determinant of K, respectively. Also one has:  

 

1 2 3( ) mnl m n lD e K K Kξ =          (A.10) 

And  

ln

1
( )

2ij ikl imn kmN e e K Kξ =         (A.11) 

 

Here e is the third order permutation tensor. A solution to Navier’s equation can be 

obtained by introducing equation (A.8) into equation (A.2). However, the accuracy of the 

solution will be very limited since the eigenstrain was initially approximated by a 

periodical function. Hence, let us proceed to the second step of this development. In order 

to obtain a precise solution of Navier equation, one must take into account all the 

frequencies and related terms of Fourier extension of the eigenstrain. If the eigenstrain is 

developed in its Fourier’s sum, it can then be written as follows: 

 

* * ( )exp( )ij ij i x dε ε ξ ξ ξ
∞

−∞
= ⋅∫         (A.12) 

 

The Fourier coefficients are given by: 

 

* 3( ) (2 ) ( )exp( )ij ij x i x dxε ξ π ε ξ
∞−

−∞
= − ⋅∫       (A.13) 
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Thus, using the first step of this proof, the solution to the integral equation can be written 

in a general manner in the following form: 

 

* 1( ) ( ) ( ) ( )exp( )i jlmn mn l iju x i C N D i x dε ξ ξ ξ ξ ξ ξ
∞ −

−∞
= − ⋅∫     (A.14) 

 

From the compatibility equation, one obtains: 

 

( )* 11
( ) ( ) ( ) ( ) ( )exp( )

2ij klmn mn l l ik i jkx C N N D i x dε ε ξ ξ ξ ξ ξ ξ ξ ξ ξ
∞ −

−∞
= + ⋅∫   (A.15) 

 

Hooke’s law also provides a solution for the local stress: 

 

* 1 *( ) ( ) ( ) ( )exp( ) ( )ij ijkl pqmn mn q l kl klx C C N D i x d xσ ε ξ ξ ξ ξ ξ ξ ξ ε
∞ −

−∞
= ⋅ −∫    (A.16) 

 

Introducing equation (A.13) in the above set of equations, one obtains the solution to 

Navier’s equation: 

 

* 1
3

( ) ( ') ( ) ( )exp( ( '))
(2 )i jlmn mn l ij

i
u x C x N D i x x d dxε ξ ξ ξ ξ ξ

π
∞ ∞ −

−∞ −∞

−= ⋅ −∫ ∫  

( )3 * 11
( ) (2 ) ( ') ( ) ( ) ( )exp( ( '))

2ij klmn mn l l ik i jkx C x N N D i x x d dxε π ε ξ ξ ξ ξ ξ ξ ξ ξ
∞ ∞− −

−∞ −∞
= + ⋅ −∫ ∫  

3 * 1 *( ) (2 ) ( ') ( ) ( )exp( ( ')) ' ( )ij ijkl pqmn mn q l kl klx C C x N D i x x d dx xσ π ε ξ ξ ξ ξ ξ ξ ε
∞ ∞− −

−∞ −∞
= ⋅ − −∫ ∫  

           (A.17) 
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Finally, all equations in the above can be written in a simpler form by introducing 

Green’s operator defined as follows: 

 

3 1( ') (2 ) ( ) ( )exp( ( '))ij ijG x x N D i x x dπ ξ ξ ξ
∞− −

−∞
− = −∫      (A.18) 

 

Proceeding by identification one obtains: 

 

*
,( ) ( ') ( ') 'i jlmn mn ij lu x C x G x x dxε

∞

−∞
= − −∫  

*
,

1
( ) ( ') ( ') '

2ij klmn mn kp qlx C x G x x dxε ε
∞

−∞
= − −∫  

*
,( ) ( ') ' ( )ij ijkl pqmn kp ql klx C C G x x dx xσ ε

∞

−∞
= − − +∫  

           (A.19) 
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APPENDIX B  

DERIVATION OF NAVIER’S EQUATION FOR A TW O PHASE 

ELASTIC MATERIAL 

 

 

In this appendix the integral equation, is derived via the use of Kunin’s projection 

operator presented in Chapter 3. The same convention as defined in Chapter will be used. 

Recall that Navier’s equation is written as follows: 

 

( ) :Cr = − ⊗Eε εε εε εε εδCδCδCδCΓΓΓΓ         (B.1) 

 

Where the projection operator is defined as follows: 

 C CC CC CC CΠ =Γ :CΠ = Γ :CΠ = Γ :CΠ = Γ :C           (B.2) 

 

Here C is the spatial average of the elastic tensor which was results from the 

decomposition of the local elastic tensor as the sum of a spatially invariant term and a 

fluctuation term. CCCCΓΓΓΓ denotes Green’s modified operator. The equivalent properties 

proposed by Kunin are the following: 

 

( ) 0 0Cdiv = ⇔ ⊗ =S:S:S:S: σσσσΠΠΠΠσσσσ         (B.3) 

s Cu= ∇ ⇔ ⊗ = ε-Eε-Eε-Eε-EΠΠΠΠε εε εε εε ε         (B.4) 
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Let us now establish equation (B.1) with the use of the projection operators. The 

decomposition of the compliance tensor in the sum of an average value over the space 

and of the elastic fluctuation in the neighborhood of S gives the following result:  

 

S :σ = S : c : ε = (s -δS) : c : ε = ε - δS : c : ε      (B.5) 

 

Introducing equation (B.5) into equation (B.3) one obtains: 

 

0C C CS :σ δS : c : ε⊗ = ⊗ − ⊗ =Π Π ΠΠ Π ΠΠ Π ΠΠ Π Πεεεε  

 

Using equation (B.4), one obtains: 

( ) :Cr = − ⊗Eε εε εε εε εδCδCδCδCΓΓΓΓ         (B.6) 
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APPENDIX C 

DERIVATION OF THE LOCALIZATION TENSORS AND 

EFFECTIVE PROPERTIES 

 

 

In this appendix the localization tensors in the cases of purely elastic and purely 

viscoplastic two-phase composite isotropic materials are derived. First let us provide 

some mathematical background. Let I  denote the identity tensor, and K and J  be two 

fourth order tensors extracting the deviatoric and spherical part of a two order tensors. 

These tensors can be written as functions of the Kronecker’s symbol ιjδ  as follows 

: 

( )1

2ijkl ik jl il jkII = = +δ δ δ δ         (C.1) 

1

3ijmn ij mnJJ = = δ δ          (C.2) 

K I J= −           (C.3) 

 

 

These tensors are typically used to expand fourth order isotropic tensors as the sum of a 

spherical and deviatoric term. Also, the product the combinations of the products of the 

above mentioned tensors give the following: 

 

1 1

9 3ijkl klmn ij kl kl mn ij mn ijmnJ J Jδ δ δ δ δ δ= = =         (C.4) 
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( ) ( )

( )

( )

1 1

2 3
1

6
1

6

ijkl klmn ik jl il jk kl mn

ik jl kl mn il jk kl mn

ij mn ij mn

ijmn

I J

J

δ δ δ δ δ δ

δ δ δ δ δ δ δ δ

δ δ δ δ

= +

= +

= +

=

       (C.5) 

 

( )

( )

1 1
( ) ( )

2 2
1

4
1

2 2
4

ijkl klmn ik jl il jk km ln kn lm

ik jl km ln ik jl km ln il jk km ln kn lm

im jn in jm

ijmn

I I

I

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ

= + ⋅ +

= + + +

= +

=

     (C.6) 

 

And 

 

( ) 0ijkl klmn ijkl ijkl klmn ijmn ijmnK J I J J J J= − = − =       (C.7) 

 

With the above relations, the expressions of the localization tensors in the case of a 

simply viscoplastic and a simply linear elastic response can be found. Recall that the 

localization tensors in the case of elasticity and viscoplasticity are given by, respectively: 

 

-1Ce E e eA = I + S : C : (c - C )          (C.8) 

-1Be E e eA = I + S : B : (b - B )           (C.9) 
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Since the study is limited to the case of isotropic response the localization tensors within 

each phase (denoted with superscript *=I,M) can be decomposed with use of the fourth 

order tensors K and J: 

 

* * *Ce C C
ijkl ijkl ijklA N K M J= +         (C.10) 

And 

* * *Be B B
ijkl ijkl ijklA N K M J= +         (C.11) 

 

The following proofs will be derived solely for the case of elasticity. The solution in the 

case of viscoplasticity can be found by identification. In the case of linear elastic 

inclusions spherical inclusions with isotropic response, Eshelby’s tensor is constant and 

can be written as follows: 

 

E
ijkl ijkl ijklS J K= +α β  with 

1 1

3 1

να
ν

+=
−

 and 
2 4 5

15 1

νβ
ν

−=
−

    (C.12) 

 

Then, the inverse of the localization tensors can be calculated relatively simply as 

follows:  

Ce -1 E e -1 e e
e e

1 1
(A ) = I + S : (C ) : (c - C ) = K + J + (αJ + βK) : ( K + ) : (c - C )

2µ 3k
 

           (C.13) 

Using the expression of the elastic tensor moduli (both local and global), the equation in 

the above can be written as follows: 
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1 ( ) ( )
( )

e e e e
Ce

e e

k k k

k
A K J− − + − += +µ µ β µ α

µ
     (C.14) 

Here µ  and k define the shear and bulk moduli, respectively. The decomposition of the 

inverse of the localization tensor as a sum of two products of a scalar by one of the two 

basic fourth order tensor K and J , allows us to determine the concentration tensors by 

simply inverting the two scalars. The effective properties of the materials can be obtained 

with use of the closed forms of the localization tensors. Since the material (globally as 

well as locally) behaves isotropically, the effective elastic tensor can be written as 

follows: 

 

3 2e e eC k J Kµ= +          (C.15) 

 

Let us recall that the effective elastic tensor is also defined as follows: 

 

f 1- fe Ce I CeI M CeMC = cA = c A + ( )c A       (C.16) 

 

Since, 1 (1 )Ce CeI CeMA f fA A= = + − , the effective elastic tensor can be written as 

follows: 

 

f f fe M I M CeI M M CI I M CI I MC = c + (c - c )A = 3k J +µ K + 2 N (µ - µ )K + 3 M (k - k )J)  

 

Finally, the effective properties are found by identification, leading to the following: 
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( )
( )

e
e M I M

e I e
f

µµ µ µ µ
µ β µ µ

= + −
+ −

      (C.17) 

And 

( )
( )

e
e M I M

e I e

k
k k f k k

k k kα
= + −

+ −
      (C.18) 
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APPENDIX D 

DERIVATION OF THE HARDENING RATE 

 

 

 

In this appendix, the hardening rate, 
,I vp

eq

d

d

σθ
ε

= , is derived in the particular case of a 

constant strain rate. The flow stress at zero Kelvin accounts for the effect of the presence of 

stored dislocations and the long range effect of grain boundaries: 

 

f MGb
d

βσ α ρ= +
        (D.1)  

     

The evolution of the dislocation density is given by: 

 

1 2,I vp
eq

d k
M k k

d d

ρ ρ ρ
ε

 = + −          (D.2) 

 

The viscoplastic strain rate is related to the equivalent stress by the following power law relation: 

 

,
0

mI
eqI vp

eq
f

σ
ε ε

σ
 

=    ɺ ɺ          (D.3)
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In the simple one dimensional case, the differential of equation (C.3) leads to: 

 

,
,

ln
ln

I vp
eq fI vp

eq f

d d d
σ σσ ε σ
ε σ

∂ ∂= +
∂ ∂

ɺɺ         (D.4) 

Using the constant strain rate hypothesis, the hardening rate is given by:    

  

, ,

f

I vp I vp
eq f eq

dd

d d

σσ σθ
ε σ ε

∂= =
∂

        (D.5)
 

 

Using equation (D.2) and (D.3), equation (D.5) becomes: 

 

1/, 2

1 2
0 2

mI vp
eq M Gb k

k k
d

ε αθ ρ ρ
ε ρ

   = ⋅ + −       ɺɺ       (D.6)
 

 

From equation (D.1) and (D.3) the square root of the dislocation density is given by:  

 

1/,

0

1
mI vp

eq

MGb d

ε βρ σ
α ε

−   = −     ɺɺ   (D.7) 

Introducing (D.7) into (D.6) and grouping the terms leads to:  
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( )

( )

( )

1/, 2 3 2 2

1/,
0

0

2
1 2

2

1/ 1/, ,

1 2
2

0 0

2/,2
2

2
0

2

2

mI vp
eq

mI vp
eq

m mI vp I vp
eq eq

mI vp
eq

M G b

d

k kk

d MGb d d MGb

k k

MGb d MGb

k

MGb

ε αθ
ε ε βσ

ε

β β
α α

ε εβσ
α ε εα

εσ
εα

−

− −

−

 
= ⋅        −     

− − +
⋅     +       ⋅     

−    

ɺɺ ɺɺ
ɺ ɺɺ ɺɺɺ

           
  (D.8) 

 

Introducing 
2

1

2 k
Z

MGk b d

β
α

=
into equation (D.8) leads to: 

( )
( )

( ) ( )

1/,

2
1/,

0

0

2/ 1/2 2 , ,2
211 1

2
2 2 0 2 02

2

2

1
2 4

mI vp
eq

mI vp
eq

m mI vp I vp
eq eq

Mk

d

Z kk kk Z
MGb MGb Z

k d k kk

ε
θ

εε βσ
ε

ε ε
α σ α

ε ε

σ

−

−

 
= ⋅       −              − − + ⋅ +                  − 

ɺɺɺɺ ɺ ɺɺ ɺ  

  (D.9) 

Let us now write equation (D.9) as follows: 

 

( ) 1/ 22 ,
2

1/,
0

0

1 2 1

2

mI vp
eqs

mI vp
s s

eq

Mk
L

d

εσ σ σθ
ε σ σε βσ

ε

−

−

        = ⋅ − − −                      −      ɺɺɺɺ   (D.10) 

 

Identifying the terms of equation (D.10) with those of equation (D.9) leads to: 
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( )

1/21/,

1 2
2

2 0 1

4
1 1

2

mI vp
eq

s

MGbk kk
Z

k d k

εασ
ε

     = ⋅ + + +          ɺɺ   (D.11) 

And 

 

( )
1/,

1

2 0

1
2

mI vp
eq

s

MGbk
L Z

k

εα
σ ε

 
= ⋅ +    ɺɺ   (D.12) 

 

 

With equation (D.11) and (D.12), equation (D.9) can be written as follows: 

 

( )

( )
( )

1/2 ,
2

1/,
0

0

11/ 22

2
2

1

2

4
1 2 1 1 1 1

mI vp
eqs

mI vp
eq

s s

Mk

d

kk
Z Z

d k

−

−

−

 
= ⋅ ⋅       −              − − − + + + +                  

ɺɺɺɺ εσ
θ

εε βσ
ε

σ σ
σ σ

   (D.13)
 

 

 


