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SUMMARY

In this thesis the entanglement properties of atom-atom, atom-photon, and photon-

photon are investigated. The recent developments of quantum computation as well as

quantum information and communication have attracted much interest in the generation

of these entanglements in the laboratory. Entanglement is now believed to be an essential

resource for realizing some non-classical tasks, such as teleportation.

We first study a model system in the cavity QED setup. Cavity QED has proved to be

excellent in the coherent manipulation of atoms and cavity photons. By using a four-level

atom and two resonant cavity modes, we can generate atom-photon entanglement almost

deterministically. The generated photon can be distributed which is ideal for quantum

communication.

An extension of the above model to a six-level atom and again two resonant cavity

modes can generate entangled photon pairs by appropriately adjusting system parameters.

The overall process can be divided into two steps. In each step, a cavity photon will be

generated and leak out of the cavity. The final state of the atom becomes disentangled with

both photons. Thus, the whole process generates an almost maximally entangled photon

pair with very high probability.

We then investigate the atom-atom entanglement in a 1D harmonic trap. At low tem-

perature, the atom-atom interaction is dominated by the s-wave/p-wave scattering, further

simplified as a contact interaction. We show the dependence of the pair entanglement

on the scattering length and temperature, as well as the particle symmetry requirement

(bosons or fermions). Among many peculiar properties in 1D systems, we briefly discuss

the “Fermi-Bose duality” in this simple 1D system.

While the entanglement properties of a single-channel model has recently been obtained

for 1D and 3D systems, we study the entanglement of a multi-channel process in a cylindrical

harmonic trap. We adopt a model system consisting of two fermionic atoms with opposite

xiii



spins. The open-channel atomic pair can be converted to a closed-channel bosonic molecule,

or vice versa, leading to orbital deformation and entanglement. We carry out calculations

in the so-called “broad resonance” regime and discuss the dependence of entanglement on

the trap geometry.

Finally we present detailed studies of the spin mixing between two 87Rb atoms in a

single lattice site. Staring from the spin-1 manifold, we discuss various motional state

approximations which turn out to cause observable errors. Then, we include the dipolar

interaction for a complete study. We find that while the dipolar effect can be negligible in

a spherical harmonic trap, the dipolar interaction can lead to an experimentally observable

frequency shift in a cylindrical harmonic trap with very large aspect ratio. We also consider

the spin-2 manifold and discuss the corresponding spin mixing.
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CHAPTER I

INTRODUCTION

Quantum mechanics has been a very successful theory in dealing with microscopic phenom-

ena. It is more fundamental and accurate than classical mechanics and has shown many

amazing properties that cannot be described by classical mechanics. One of its counter-

intuitive properties is quantum entanglement. Quantum entanglement is a basic concept in

quantum mechanics. It describes the quantum correlations of two or more objects whose

quantum states have to be described with reference to each other, even though the indi-

vidual objects may be spatially separated. It is responsible for the test of the validity and

interpretation of standard quantum mechanics [1, 2]. Quantum entanglement has been a

topic of extensive study in recent years, motivated in large part by the development in

quantum information and computing science. It has been viewed as an essential resource

for performing non-classical tasks [3, 4], such as quantum cryptography [5, 6, 7], telepor-

tation [8, 9, 10, 11, 12], as well as the exponential speed-up promised by Shor’s factoring

algorithm [13].

For any physical system, a natural question arises: Is quantum entanglement a phys-

ical property? If so, what does it describe? Quantum entanglement is not a traditional

physical quantity, as there does not seem to exist a corresponding Hermitian operator. It

describes the quantum correlations among different degrees of freedom, in contrast to the

more standard correlation functions. It is now understood that only quantum correlations,

not classical correlations, contribute to quantum entanglement [14]. Different from applica-

tions of entanglement in quantum information science, non-locality of a composite system is

generally not believed to be a necessary element for the description of quantum correlations

in the system.

In order to quantify quantum entanglement, many definitions have been proposed for

1



both pure states and mixed states. Until recently, very little has been known about gen-

uine multi-body entanglement. On the contrary, two-body entanglement has been studied

extensively with fruitful results obtained. This paves the way for our study on two-body

entanglement. A qualified two-body entanglement measure must satisfy the following three

basic requirements [15, 16]:

(1) It gives zero for separable states. Separable states are those states that can be written

in the following form [17]

ρ(12) =
∑

i

piρ
(1)
i ⊗ ρ

(2)
i . (1.1)

Here pi ≥ 0 and
∑

i pi = 1. ρ
(1)
i and ρ

(2)
i are the density matrices of the respective subsys-

tem. States that cannot be written in this form are called inseparable, or entangled.

(2) It should be invariant under local unitary transformations, which is an intuitive require-

ment that entanglement should be basis independent.

(3) It should not increase under local operation and classical communication (LOCC). Such

a requirement guarantees that all classical operations will not contribute to quantum en-

tanglement, i.e., quantum entanglement cannot be prepared by purely classical operations.

We point out that there are also some other restrictions, e.g., additivity and convexity

[16]. Here we do not impose those restrictions, as the above three criteria have already

defined an entanglement monotone.

For any two-body pure states, von Neumann entropy is a widely used entanglement

measure [18, 19]. It originates from analogy with thermodynamics and relies on the Schmidt

decomposition. Any state |Ψ12〉 =
∑

nν Cnν |n〉1|ν〉2 can be written in the following Schmidt

form

|Ψ12〉 =
∑

s

√
λs|Fs〉1|Gs〉2, (1.2)

where λs are the eigenvalues of the reduced density matrix CC† (or C†C), with C being

the coefficient matrix of the wave function. The reduced density matrix can be obtained by

tracing out either subsystem. Then von Neumann entropy is defined as

E = −
∑

s

λsln(λs), (1.3)
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with λs ≥ 0 and
∑

s λs = 1.

For mixed states, von Neumann entropy is generally not a valid entanglement mea-

sure. In fact, determining whether or not a mixed state is entangled is considered difficult.

Formally, it has been shown to be NP-hard (Non-deterministic Polynomial-time hard) [20].

Entanglement measures based on operational considerations, such as entanglement of forma-

tion [21], entanglement cost, relative entropy of entanglement and distillable entanglement

[16] have been proposed. The calculations of these quantities rely on maximization or mini-

mization of certain functions, and in general require demanding computational capabilities.

Thus, we refer to negativity, a quantity without a corresponding physical operation but

much easier to calculate, as our mixed state entanglement measure.

Negativity was first suggested by R. F. Werner [22], and was based on the Peres-

Horodecki criterion [23, 24] of the positivity for the partially transposed density matrix.

The eigenvalues of a density matrix are always non-negative. However, this is not the case

for the partially transposed density matrix, as partial transposition is not a completely

positive map. Negativity is defined as the absolute sum of all of the negative eigenvalues,

or equivalently

N =
∑

i |λi| − 1
2

, (1.4)

where λi are the eigenvalues of the partially transposed density matrix satisfying
∑

i λi = 1.

Here the partial transposition can be done with respect to either subsystem. If negativity

gives a non-zero value, the corresponding state must be entangled.

Many studies have been devoted to entanglement measures, yet a realistic question of

both theoretical and experimental importance is how to generate a desired entangled state.

Many theoretical models have been proposed and some of them have been implemented

experimentally in atomic-molecular-optical (AMO) systems. All of the entangling schemes

rely on direct or indirect interactions between subsystems. Such interactions are almost

ubiquitous in real atomic systems. Atoms not only interact with the near resonant electro-

magnetic field, but also with other surrounding atoms. These types of interactions will be
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utilized to generate the desired entanglement. For our purpose, we want to realize atom-

photon, photon-photon, and atom-atom entanglement, which are believed to be the building

blocks of quantum information and communication physics.

Perhaps the simplest realization of an atom-photon entangled state is by cavity QED.

In a typical cavity QED system, an atom with internal structure is localized inside a cavity

and coherently interacts with the quantized cavity mode. We denote |e〉 and |g〉 as two

energy levels of the atom and |n〉 as the number state of the cavity field mode that is

nearly resonant to the atomic transition frequency. Starting from |Ψap〉(t = 0) = |e〉|0〉,
there will be coherent Rabi oscillations between |e〉|0〉 and |g〉|1〉. At certain times, the

combined system will evolve to |Ψap〉 = (|e〉|0〉 ± i|g〉|1〉)/√2 (up to a global phase factor),

an atom-photon entangled state. However, it does not have a well-defined photon number,

thus limiting its potential usage in a quantum network, where we want photons to carry

information to remote nodes with unit probability (in an ideal case). A feasible model is

to use two orthogonal polarizations as the natural basis of the photonic qubit. The desired

state should take the similar form |Ψ′
ap〉 = (|e〉|L〉 + |g〉|R〉)/√2, where L(R) denotes the

photon polarization. This remedies the above problem and may be realized with state-of-

the-art cavity QED technology.

Another demanding task is to realize a photon-photon entangled state. Until very

recently, most experimental realizations of photonic entangled states came exclusively from

parametric down conversion (PDC) using nonlinear crystals where a single pump photon

spontaneously converts itself into two correlated photons satisfying energy and momentum

conservation [25, 26, 27, 28, 29, 30, 31]. The shortcoming is that this is a stochastic process,

and the probability of conversion is very low due to the small nonlinearity in normal crystals.

Cavity QED system provides an alternative method for generating photon-photon entangled

states. The atom in the cavity can be viewed as a strong nonlinear medium, thus inducing an

effective interaction between two cavity photons. Our proposed scheme has the advantage

that the photon-photon entangled state can be controlled and generated on demand. Again,

such entangled state can be generated in a cavity QED by appropriately adjusting system

parameters.
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In contrast to photons, where the mutual interaction is very weak, atoms can interact

with surrounding atoms with relatively strong strength. However, the creation of long-

lived entangled pairs with material particles (atoms and ions) is a relatively recent pursuit

[32, 33, 34, 35], spurred on in large part by developments in quantum logic and computing.

These experimental efforts have been very successful [36, 37, 38] and are highlighted by

the demonstration of a 6-ion GHZ state [39], using a proposal with trapped ions due to

Mølmer et al. [40]. On the theoretical side, the study of the entanglement between two

trapped atoms (ions) will be helpful to elucidate the entanglement dependence on system

parameters, e.g., trap frequency, interaction strength, and temperature, thus controlling the

generation of the desired entangled states. For two neutral atoms at very low temperature,

the system dynamics are usually described by a single parameter, the s-wave scattering

length as. The corresponding spectrum has been obtained analytically [41, 42], and the

entanglement properties can then be straightforwardly calculated. In addition, we study

the dependence of entanglement on particle symmetry, i.e., how the symmetry requirements

affect the pair entanglement.

In recent years, optical lattice has been a powerful tool for studying quantum degenerate

gases. An optical lattice consists of arrays of microscopic potentials induced by the ac Stark

effect of interfering laser beams [43, 44, 45, 46, 47, 48, 49, 50, 51]. Optical lattice provides

a more flexible system for studying cold atom gases. Many new phenomena arise in optical

lattices, such as Superfluid-Mott Insulator (SF-MI) phase transition [52, 53, 54, 55] and BCS

(Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein Condensation) crossover using Feshbach

resonance [56, 57]. In the MI phase where the tunnelling is negligible, each lattice site can

be viewed as an independent trap. With only a few atoms confined in the same lattice

site, the dynamics in each lattice well may be solved exactly. The experiments at ETH

[56, 57] have investigated lattice fermions in the MI phase, where two fermionic atoms with

different internal states are in the same lattice site. As the system is swept adiabatically

across Feshbach resonance, two open-channel fermions can be converted to a closed-channel

molecular boson, or vice versa. At the same time, a band insulator evolves continuously

into states occupying many bands, thus acquiring orbital deformation and entanglement
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[58]. It is then interesting to study how the pair entanglement changes during this process.

In the single-channel model, the entanglement of two bosonic atoms in a spherical harmonic

trap has been investigated in Ref. [59]. To extend the earlier results to a multi-channel

problem with cylindrical symmetry, we adopt the model proposed by R. B. Diener and

Tin-Lun Ho [58]. Different from the single-channel problem as studied in Refs. [41, 42], the

system dynamics are now determined by two parameters, the s-wave scattering length as

and the effective range r0. The experiments are carried out in the so-called “broad resonance

regime”, i.e., |r0| much less than the trap widths, where the molecular component turns out

to be always negligible, thus allowing for a clear calculation of pair entanglement without

the knowledge of the molecular wave function. Not surprisingly, this model reduces to the

original single-channel problem for vanishing r0.

Another interesting phenomenon is coherent spin mixing, first realized in the limit of

a condensate with large number of atoms in a single trap [60, 61]. Recent experiments

have been focusing on the opposite limit of many identical trapping sites, each containing

two atoms as in an optical lattice [62, 63, 64]. Binary collisions conserve the magnetic

quantum number of the total spin, thus limiting the accessible channels in the spin mixing.

For example, preparing two f = 1 87Rb atoms in the spin state |mf = 0,m′
f = 0〉, the

spin mixing will happen between |mf = 0,m′
f = 0〉 and |mf = 1,m′

f = −1〉. In this

case, the scattering potential can be split into two parts with scattering strengths c0 being

spin independent and c2 spin dependent, where the Rabi oscillation for the spin mixing

is crucially determined by the latter. From the oscillation frequency, we can extract the

scattering length difference, from which the magnetic ground state can then be identified.

In the original papers [62, 63, 64], the theoretical estimates use the ground state of the trap

as the motional state, inevitably causing some errors. Detailed studies on the motional state

will thus give better results for such precision measurement and unambiguously determine

the magnetic ground state.

To fully explore the above problem, we also need to calibrate the spin dipolar effect. The

origin of the spin dipolar interaction comes from the intrinsic magnetic dipole moment of the

atom, which is related to its total angular momentum. The dipolar effect in condensates has
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attracted much interest in recent years, and many methods have been proposed to observe

such effect [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]. To date, the dipolar interaction

has been observed experimentally only for 52Cr (f = 3) which has a dipole moment of 6µB

[77]. For the few-body counterpart, we find that the dipolar interaction may manifest itself

in the spin mixing process. The spin dipolar effect is estimated by the relative strength

between the dipolar coefficient cd and the spin dependent coefficient c2. A larger value of

|cd/c2| indicates an enhanced spin dipolar effect. For a typical system, the dipolar effect

is negligibly small in a spherical harmonic trap. However, it may become detectable in

cylindrical harmonic traps with very large or small aspect ratios. Detailed calculations

should decide what kind of shape, pancake shape or cigar shape, can best reveal the dipolar

effect, so that it can provide an alternative method for observing such interesting effect in

a few-body system. This will further deepen our understanding of the dipolar effect in spin

mixing dynamics.

This thesis is organized as follows. Chapter 1 is an introduction, where we give a brief

review of entanglement and other relevant topics. In the second chapter, we will study

atom-photon entanglement generation and distribution in a cavity QED system. We also

review some aspects of the cavity system and discuss in detail the parameter range for

generating optimized results.

In chapter 3, we will discuss the generation of photon-photon entangled states, again

based on a cavity QED system. We propose an efficient method for generating maxi-

mally entangled photon pairs, which are urgently needed by experimentalists. Combined

with atom-photon entanglement generation, these proposals may be useful for a distributed

quantum network in which matter qubits serve as storing units while photonic qubits serve

as information carriers.

In chapter 4, we will investigate the entanglement of two identical atoms in a one-

dimensional harmonic trap. We adopt the well-known pseudopotential to model the atom-

atom interaction. According to different symmetry requirements, we discuss the entangle-

ment between two bosonic (fermionic) atoms under s-wave (p-wave) scattering, respectively.

We give detailed results based on our models and discuss the dependence of entanglement
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on the scattering length and temperature.

In chapter 5, we will calculate the entanglement of two fermionic atoms with different

internal states during the BCS-BEC crossover in a cylindrical harmonic trap. We discuss

the entanglement in a nearly spherical harmonic trap, as well as in traps with very large or

small aspect ratios. We find that the entanglement tendency during the BCS-BEC crossover

remains essentially the same as in a spherical harmonic trap. In this multi-channel problem,

it turns out that the results coincide with that of single-channel problem in the broad

Feshbach resonance regime.

In chapter 6, we study the spin mixing of two 87Rb atoms in a single optical lattice

site. We approximate each lattice site as a harmonic trap in the limit of negligibly small

tunnelling. We give detailed studies on the spin mixing frequency for various approximations

of the two-atom motional state. We give numerical results to interpret the difference between

the experimentally measured and the theoretically calculated values. We also include the

dipolar effect and discuss its dependence on the trap geometry.
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CHAPTER II

ATOM-PHOTON ENTANGLEMENT GENERATION IN A

CAVITY QED SYSTEM

2.1 Introduction

In this chapter, we are going to discuss how to generate atom-photon entangled states in

a cavity QED system. For a large class of quantum communication protocols (including

cryptography protocols, teleportation, entanglement purification, etc.), one always begins

with the following statement: “Imagine that Alice has an entangled pair of particles, and

she sends one particle to Bob...”. So creating entanglement is believed to be a pressing

need for quantum information and communication. As our first step towards this direction,

we want to realize atom-photon entanglement, wherein the atom provides reliable quantum

information storage with local entanglement capabilities and the photon provides quantum

communication capabilities over a long distance. In particular, it will be important to be

able to reliably convert and transfer quantum information between material and photonic

qubits.

Cavity QED proves to be an ideal system for generating atom-photon entanglement.

For a simple illustration of an optical cavity QED, we consider a motionless two-level atom,

labelled by |e〉 and |g〉, with energy difference ω0 ≡ ωe−ωg > 0. The atom with the electric

dipole matrix element ~d will interact with a cavity field mode (with angular frequency ωc)

which is nearly resonant with the atomic transition, i.e., |ω0−ωc| ¿ ω0, ωc. The electric field

in this mode can be expressed in a second quantized form E(~r) = E0(a~f∗(~r)+a† ~f(~r)), where

a (a†) is the operator of annihilating (creating) a cavity mode photon. ~f(~r) is a dimensionless

complex vector function, characteristic of the mode, that satisfies the boundary conditions

on the cavity walls. The modulus of ~f(~r) is normalized to unity at the field maximum. The

quantity E0, called the field per photon is E0 =
√
~ωc/(2ε0V ). The effective mode volume is,
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by definition, V =
∫

d~r|~f(~r)|2. The combined system made of a single atom and a resonant

mode of a high Q cavity reveals dynamical behavior very different from that of the free

atom or field subsystem, with striking manifestations of the coherent and nonlinear effects

of the vacuum field on the atomic system [78].

After the rotating wave approximation, which excludes the counter rotating terms from

the equations of motion, the Hamiltonian describing atom-photon interaction is

Hap = ~(g0a
†|g〉〈e|+ g∗0a|e〉〈g|), (2.1)

where g0 is called vacuum Rabi frequency, defined as g0 = E0
~d · ~f(~r)/~. This is the famous

Jaynes-Cummings model [79], describing the coherent evolution between the atom and the

cavity field. The atom in the ground state |g〉 absorbs a cavity photon and jumps to the

excited state |e〉 or vice versa. Exact diagonalization of the Hamiltonian Hap leads to the

so-called dressed states, which are in general a superposition of the unperturbed states |e, n〉
and |g, n + 1〉 [80], where n denotes the number of photons in the cavity mode.

We can also use an external laser to control the atom or the cavity field. The external

laser can be viewed as a photon reservoir. We treat it classically since losing or gaining

several photons is unimportant to the laser. There are two types of interaction for the

external laser: “side excitation” and “end excitation”. In the former case, the laser couples

directly to the atom. The interaction Hamiltonian is

Haf = ~(Ωaf |e〉〈g|+ Ω∗af |g〉〈e|), (2.2)

with Ωaf the coupling strength between the laser field and the atom [81]. In the latter case,

the laser couples to the cavity field through the side mirror(s). The interaction Hamiltonian

is

Hpf = ~(Ωpfa† + Ω∗pfa), (2.3)

with Ωpf the coupling strength between the laser field and the cavity field [81].

In real cavity systems, we need to take dissipations into consideration. Generally speak-

ing, two types of dissipations are important: cavity decay rate κ and atomic spontaneous

rate γ. κ represents the rate of a cavity photon leaking out of the cavity, and γ represents
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the rate at which the atom loses its coherence. For typical optical cavities, g, κ and γ are all

on the order of MHz, and it is the relative strength that determines the system dynamics.

Cavity QED is analogous to a quantum harmonic oscillator in certain aspects, with g being

responsible for oscillations and κ, γ being responsible for dissipations. Thus, if g À (κ, γ),

the so-called strong coupling regime, the system behaves like a damped oscillator, so many

Rabi oscillations are expected. If g ¿ (κ, γ), the so-called weak coupling regime, it behaves

like a over-damped oscillator, so no oscillation will happen. In the literature, these dissi-

pations are usually included in the system dynamics via two types of approaches. One is

the density matrix approach in the form of a master equation, and the other is the non-

Hermitian Hamiltonian approach. Both approaches are quite accurate in describing the

system dynamics with only very tiny differences, as we will demonstrate later.

Based on the above considerations, we propose a system composed of a single trapped

atom inside a high Q optical cavity for the deterministic generation of atom-photon en-

tanglement and its distribution via a well directed photon from a high Q optical cavity.

Our model is a direct extension of the earlier proposal by C. K. Law et al. [82, 83] for a

deterministic single photon (or “Fock states”) source [84, 85, 86], which is an indispensable

device for some quantum cryptographic applications [6, 7]. In the original model of Law

and coworker, a single atom is placed inside a high Q optical cavity. A pictorial illustration

of the required energy level structure is presented in the left panel of Fig. 2.1, where a

three-level Λ−type atom with one excited state (|e〉) and two long lived ground states (|g1〉
and |g2〉) couple respectively to a classical pump field (in solid line) and the cavity field

(in dashed line). Working in the strong coupling limit, the dominant absorption-emission

process will then consist of an atom starting in |g1〉, pumped into the excited state |e〉,
which then decays via the cavity into |g2〉 [82, 83, 87, 88]. Following emission, an addi-

tional external laser field driving the transition |g2〉 → |e〉 will reset the atom to state |g1〉,
preparing it for the next photon emission. Such a single photon “gun” can expect to reach

a repetition rate on the order of κ, which is typically several MHz. An alternative approach

based on adiabatic passage for a deterministic or “push button” single photon source was

considered in Refs. [87, 88].
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Figure 2.1: Atom-photon entanglement illustrations.

2.2 A model system

The model system proposed for this study consists of a direct extension of the famous Law-

Kimble model to a four-level atom as illustrated in the right panel of Fig. 2.1, with |e〉 now

resonantly coupled to both states |g+〉 and |g−〉 through the right and left circular polarized

cavity photon field. Following Law et al. [82], the coherent part of our model Hamiltonian

can be expressed as

H0 = ~g(aLσe,g− + a†Lσg−,e + aRσe,g+ + a†Rσg+,e) + ~r(t)(σg1,e + σe,g1), (2.4)

where σµ,ν(t = 0) = |µ〉〈ν| (µ, ν = g1, e, g−, g+) are atomic projection operators. aξ and

a†ξ (ξ = L,R) are annihilation and creation operators for the quantized cavity fields. r(t)

denotes the coupling between the atom and the external classical field. The master equation

of the system is

d

dt
ρ = − i

~
[H0, ρ] + κ

∑

ξ=L,R

(2aξρa†ξ − a†ξaξρ− ρa†ξaξ)

+
∑

µ=g1,g−,g+

γβµ

2
(2σµ,eρσe,µ − σe,eρ− ρσe,e), (2.5)

where βµ denotes the branch ratio of the atomic decay to levels |µ〉 and βg1 + βg− + βg+=1.

Similar to Law’s protocol, the system is prepared in the state |g1〉 with no photon in the

cavity. After turning on the classical field r(t) for a period T0, one photon (either left polar-

ization or right polarization) will be generated in the cavity, which immediately transmits
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outside the cavity in the bad cavity limit

κ À g2/κ À γ. (2.6)

The probability of detecting a left polarized or right polarized photon is given by

Pξ(t) = 2κ
∫ t

0
〈a†ξ(t′)aξ(t′)〉dt′. (2.7)

To gain more physical insight, we describe the dynamic evolution of the system using

the non-Hermitian effective Hamiltonian [89]

Heff = H0 − i~κa†LaL − i~κa†RaR − i~
γ

2
σe,e. (2.8)

Using a cavity photon number limited basis of |µ, nL, nR〉 (µ = g1, e, g−, g+) and nL/R =

a†ξaξ(= 0, 1), the pure state wave function can be written as

|ψ(t)〉 = ag1 |g1, 0, 0〉+ ae|e, 0, 0〉+ ag− |g−, 1, 0〉+ ag+ |g+, 0, 1〉. (2.9)

Its conditional dynamics are then described by i~|ψ̇〉 = Heff |ψ〉, which yields

i ˙ag1(t) = r(t)ae,

iȧe(t) = r(t)ag1 + gag− + gag+ − i
γ

2
ae,

i ˙ag−(t) = gae − iκag− ,

i ˙ag+(t) = gae − iκag+ . (2.10)

For classical field r(t) ¿ g2/κ, the approximated solution becomes

ag1(t) ≈ exp
[
− 2

4g2/κ + γ

∫ t

0
r2(t′)dt′

]
,

ae(t) ≈ −i
2r(t)

4g2/κ + γ
ag1(t),

ag∓(t) ≈ −i
g

κ
ae(t). (2.11)

Assuming the given initial condition ag1(0) = 1 and ae/g−/g+
(0) = 0, the left and right

polarized modes are equally populated if their couplings to the cavity mode are identical.

The conditional state of the system then becomes [90, 91, 92]

1√
2

(|g−〉|nL = 1, 0〉+ |g+〉|0, nR = 1〉) , (2.12)

an atom-photon entangled state.
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2.3 Numerical results

We have performed numerical calculations for a classical driving field

r(t) = r0 sin2

(
πt

T0

)
, 0 ≤ t ≤ T0, (2.13)

with (g, κ, γ, r0) = (2π)(45, 45, 4.5, 22.5) MHz and T0 = 6/γ=210 ns. Selected results are

presented in Figs. 2.2 and 2.3. The conditional probability for a left or right polarized

photon rapidly increases to 49%. For comparison, we have solved both the conditional wave

function dynamics as well as the complete master equation dynamics. The non-Hermitian

Hamiltonian approach gives a slightly lower value for final photon emission probability

because it excludes repeated spontaneous decay. In the event that |e〉 decays to |g1〉, it may

be re-excited by the classical field before emitting the photon.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

γ t 

P(t) 

Figure 2.2: The conditional probability for the emission of a cavity photon. The solid line
is master equation approach, and the dotted line is non-Hermitian Hamiltonian approach.

We note that the bad cavity limit, or the operating condition as specified by the Eq.

(2.6), in fact corresponds to the cavity QED system not in the strong coupling limit. Thus,

the cavity photon decays immediately once created, and this allows for an adiabatic de-

scription by eliminating the atomic dynamics in the cavity. The condition of g2 À κγ is

in fact the same requirement of a large cooperativity parameter (C ∝ g2/(κγ)) or a small

critical atom number (nc ∝ κγ/g2) as in the strong coupling limit [78]. It turns out that this
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Figure 2.3: Cavity emission rate.

parameter is an important characterization for the fidelity of several important quantum

computing protocols of atomic qubits inside high Q cavities [93]. We now further illuminate

this in terms of the basic element of quantum information exchange between an atomic

qubit and a cavity.

We consider a three-level Λ-type coupling scheme as in the left panel of Fig. 2.1. When

the classical field Ω(t) is Raman resonant with respect to the cavity photon (assuming a

perfect compensation for ac Stark shifts [94]), while strongly off-resonant with respect to

the atomic transition |e〉 ↔ |g2〉, the two states |g1, 0〉 and |g2, 1〉 are effectively coupled

directly through a Rabi frequency Ωeff and an effective atomic decay rate γeff given by

Ωeff =
1
2

Ωg

∆
,

γeff =
1
4

Ω2

∆2
γ, (2.14)

where ∆ = ωL − (ωe − ω1) is the pump field detuning.

To expect coherent dynamics for state mapping [95] according to

(α|g1〉+ β|g2〉)⊗ |0〉 → |g〉 ⊗ (α|0〉+ β|1〉), (2.15)

one requires Ωeff À γeff and Ωeff À κ, which reduces to

κ

g
¿ Ω

∆
¿ g

γ
. (2.16)
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Figure 2.4: The success rate of mapping the atomic state α|g1〉+β|g2〉 into the cavity state
α|1〉C + β|0〉C . The worst case scenario of α = 1 and β = 0 is considered here. States with
non-zero βs generally lead to proportionally larger success rates. We have used γ = (2π)20
(MHz) and ∆ = 50γ.

Thus g2 À κγ. This requirement can also be understood with the order of magnitude

estimates suggested by C. Monroe (see also [96]). The fidelity of state mapping is ap-

proximately given by F = 1 − patom − pcavity, where patom and pcavity are respectively

the rate for atomic spontaneous emission or cavity decay given by γeff/Ωeff ∼ Ωγ/(∆g)

and κ/Ωeff ∼ ∆κ/(Ωg). The maximum for the fidelity therefore is approximately given

by F ≤ 1 − 2√patompcavity = 1 − 2
√

κγ/g2, and occurs roughly when patom ∼ pcavity, or

γeff ∼ κ, not within the bad cavity limit.

We have performed extensive numerical simulations to check this understanding. First

for the Raman scheme and a constant Ω, we define success rate (Fig. 2.4) [82] as the

conditional probability for the atom to end up in state |g2〉 staring from state |g1〉, i.e.,

conditional to the system experiencing no spontaneous emission from either the atom or

the cavity. The numerical results are given in Fig. 2.4, which shows a weak dependence

on the classical field detuning ∆. Typically, we find the optimal condition corresponds to

Ω/∆ ∼ 0.2− 0.75.

The second figure of merit applies to the operation of the atom + cavity system as a

photon gun, the aim of our proposed model. In this case, the probability of emission, or
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Figure 2.5: The optimal photon-gun-quality for γ = (2π)20 (MHz) and ∆ = 50γ.

the emission rate, into the cavity mode is used. In a sense, the emission rate measures the

photon-gun-quality. The results from our numerical survey are illustrated in Fig. 2.5. It

is interesting to note that the results do depend on the detuning, essentially reflecting an

unbalanced choice of κ with γeff . We also note that together with the probability of the

atomic spontaneous emissions, the two add to unity in the long time limit.

Building on several current experiments, it seems possible to achieve g2/(κγ) = 30

[97, 98, 99, 100, 101, 102, 103], a condition for very efficient photon gun according to our

calculations. In the strong coupling limit, this also becomes a promising parameter regime

for converting an atomic qubit into a flying qubit (of 0 and 1 photon).

We have also compared the state mapping Eq. (2.15) with the counter-intuitive pulse

sequence for adiabatic passage [95, 104, 105, 106]. The best numerical results are shown in

Figs. 2.6 and 2.7, respectively. We note that in this case, the numerical survey is rather

cumbersome as we are looking at a three dimensional (Ω, ∆, and γ) optimization search for

each data point. The Raman differential detuning is defined as δ = (ωL − ωc)− (ω2 − ω1).

All of the above discussions assume that the atom is motionless in the cavity. Here we

briefly discuss the effect of atomic motion on the protocol for atom-photon entanglement.

In all current optical cavity QED systems, the coupling strength g(~r) between the quantum

cavity field and the atom is position dependent, with ~r being the atomic center of mass
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coordinate. The variation of g(~r) due to the standing wave cavity mode along the cavity

axis leads to entanglement between the atomic motion and its internal state, which in the

extreme case can cause a complete loss of coherence/entanglement between the atom and

the emitted photon, if the atomic center of mass wave packet is delocalized to a size δr

comparable to or larger than the cavity mode wavelength λc. Typically, one requires the

so-called Lamb-Dicke limit [107, 108], or δr ¿ λc, to enforce an approximately constant

g(~r) over the whole atom. A small size wave packet can be prepared by cooling the atomic

motion to the ground state of an external harmonic trap as for trapped ions. In this limit,

effects of atomic recoil become negligible, as the recoil energy is much less than the trap

excitation quanta. The dependence of the fidelity for the state transfer protocol Eq. (2.15)

on the Lamb-Dicke parameter ηc = 2πδr/λc has already been extensively investigated before

with numerical simulations [109]. For the application of the recently suggested motional

insensitive dark state protocol [110, 111] to state transfer Eq. (2.15), non-adiabatic motional

effects have also been studied in great detail [112].

2.4 Conclusion

In conclusion, we have proposed a simple but efficient model for a deterministic generation

of atom-photon entanglement. Our scheme is based on an optical cavity QED and can

be realized with state-of-the-art technology. The generated atom-photon entangled state

can be utilized in quantum information and communication where the photon acts as the

information carrier and the atom stores the information. We also discuss the condition for

a high fidelity quantum computing protocols in terms of quantum information exchange

between an atomic qubit and a cavity. With the controllability of entanglement distributed

to a distant party, it is of potential interest to build a quantum network. Successfully

generating controlled interactions between a single trapped atom and a cavity photon will

represent an important milestone in quantum information physics.
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CHAPTER III

PHOTON-PHOTON ENTANGLEMENT GENERATION

IN A CAVITY QED SYSTEM

3.1 Introduction

In this chapter, we are going to discuss how to generate photon-photon entanglement.

Entangled photon pairs are viewed as essential resources in linear optics quantum compu-

tation, as well as in quantum information and communication. Until very recently, most

experimental realization of photonic entangled states came exclusively from parametric

down conversion (PDC) using nonlinear crystals, where a single pump photon sponta-

neously converts into two correlated photons satisfying energy and momentum conservation

[25, 26, 27, 28, 29, 30, 31]. The stochastic nature and the very low probability of this pro-

cess due to the very small nonlinearity make it less suitable for quantum information and

communication. PDC becomes especially ineffective when adopted for the linear optical ap-

proach to quantum computation [113, 114, 115]. Thus, generating deterministic entangled

photon pairs has become a pressing need.

The topic of this chapter is devoted to the generation of photon-photon entangled states

again in a cavity QED system. The basic ingredient is the atom-photon interaction as

shown in the previous chapter. By appropriately adjusting the system parameters, the final

state of the atom becomes disentangled with the generated photons, thus creating an almost

maximally entangled photon pair.

3.2 A model system

Our model system is sketched in Fig. 3.1. We utilize an atom with level structure of an

F = 1 → F ′ = 1 structure as shown in Fig. 3.2. Each Zeeman sublevel is denoted as

|FmF 〉(|F ′m′
F 〉), further simplified as |gmF 〉 = |FmF 〉 and |em′

F
〉 = |F ′m′

F 〉. The transition

frequency between F = 1 and F ′ = 1 is labelled as ωA. As the atom falls through an
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optical cavity, it interacts first with the cavity mode field (with frequency ωC), then with

a classical pump field π-polarized with respect to the cavity axis and propagating along

a perpendicular direction. We utilize two orthogonal polarizations of the same resonant

cavity mode. Similar model systems were invoked previously in Ref. [105], where Lange et

al. proposed a scheme for generating Greenberger-Horne-Zeilinger (GHZ) photon multiplets

by an adiabatic passage protocol and in Refs. [116, 117, 118], where the entanglement of

two modes in one or two cavities was investigated.

p Laser

k

Atom

Cavity

Figure 3.1: The illustration of the proposed cavity QED setup.
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Figure 3.2: The proposed coupling scheme: the vertical dashed-dot lines denote the π-
polarized pump field, while the tilted lines denote the left (dotted lines for σ−) and right
(dashed lines for σ+) polarized cavity fields. The various Clebsch-Gordon coefficients are
also indicated.

We assume an initially empty cavity and prepare the atom in the excite state |e0〉 before

it enters the cavity mode [119]. Based on the interaction sequence, the atom’s passage

through the cavity can now be divided into two parts. In the first part, the atom only

interacts with the cavity mode, and does not enter the area of the π-polarized pump field.
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Thus, the excited atom first emits a photon, entangled with the atom in ground states

as discussed in the previous chapter [120]. In the second part, the atom is subsequently

excited by the pump, emits a second photon, and swaps its entanglement with the first

photon (already outside the cavity) to the second photon. The whole process now generates

an entangled photon pair. We will analyze this protocol including both atomic and cavity

decays. In the interaction picture to the Hamiltonian

H0 = ~ωC

∑
mF ′

|emF ′ 〉〈emF ′ |+ ~ωC(a†LaL + a†RaR) (3.1)

of the atom plus the cavity, our system dynamics are governed by H = H1 + H2, with

H1 = −~∆
∑
mF ′

|emF ′ 〉〈emF ′ |+
1
2
~[Ω(t)A†10 + H.c.] (3.2)

and

H2 =
1
2
~g(t)(A†11aR + A†1−1aL + H.c.). (3.3)

Hereafter, H.c. denotes Hermitian conjugate. The second term of H1 is from the interaction

of the atom with the pump field and H2 denotes the interaction of the atom with the left

and right circularly polarized cavity modes. ∆ = ωC−ωA is the detuning, and for simplicity

the pump field is assumed to be resonant with the cavity mode. The atom field coupling

coefficients are

g(t) = −E(~R)〈F ′||d1||F 〉, (3.4)

Ω(t) = −E(~R)〈F ′||d1||F 〉, (3.5)

where 〈F ′||d1||F 〉 is the reduced dipole matrix element according to Wigner-Eckart theorem,

and E(~R) and E(~R) are respectively the spatial profiles of the cavity mode and the pump

field. The atomic raising operators are defined as

A†1q =
∑

mF ,mF ′

〈F ′mF ′ |FmF 1q〉|F ′mF ′〉〈FmF |. (3.6)

According to the previous prescription, the interaction parameters take the following

time dependence

g(t) = gh(t)h(T − t), (3.7)

Ω(t) = Ωh(t− t1)h(t2 − t), (3.8)
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with the heaviside step function h(t) = 0 for t < 0 and h(t) = 1 for t ≥ 0. The different

times have the following meanings: the atom enters the cavity at time 0, arrives at the

pump laser at time t1, leaves the pump at time t2, and finally exits the cavity at time T .

Dissipations are essential to our protocol as they allow the excited atom to decay and

the cavity photons to be emitted. Their effects on the dynamics can be included straight-

forwardly using a master equation

ρ̇ = −i[H, ρ] + Dρ + Cρ, (3.9)

where the dissipative terms of the cavity and atom are

Dρ = κ
∑

ξ=R,L

(2aξρa†ξ − a†ξaξρ− ρa†ξaξ), (3.10)

Cρ =
γ

2

∑
q

(2A1qρA†1q −A†1qA1qρ− ρA†1qA1q). (3.11)

2κ is the one side decay rate of the cavity, while the other side of the cavity is assumed

perfectly reflecting. γ is the decay rate for the atomic excited state |emF ′ 〉.
The initial state of our system is now |ψ(0)〉 = |e0, 0L, 0R〉, and the rate of cavity photon

emission with polarization ξ at time t is pξ(t) = 2κ〈a†ξ(t)aξ(t)〉. The probability of cavity

photon emission is then Pξ(t) = 2κ
∫ t
0 dt′ 〈a†ξ(t′)aξ(t′)〉. We require that the cavity photon

be emitted as soon as it is generated, thus the preferred operating condition is close to the

bad cavity limit (γ ¿ g2/κ ¿ κ) as for a single photon source [82, 120, 121]. In fact, as we

experienced in the previous chapter, we find that it is desirable to operate with κ ∼ g À γ,

a compromise between the bad cavity and the strong coupling limit, due to the necessity of

coherently pumping the atom to the excited state for a second photon.

To gain more insight, we describe the dynamic evolution using the non-Hermitian effec-

tive Hamiltonian

Heff = H − iκ(a†LaL + a†RaR)− i
γ

2

∑
q

|eq〉〈eq|. (3.12)

Such an approach is appropriate, as re-excitations of the decayed atom due to emitted

photons are negligible, and re-absorptions of the cavity photons can be neglected due to

their fast decays to the outside of the cavity. For t ∈ [0, t1], the system state is approximately

|ψ(t)〉 = d0(t)|e0, 0L, 0R〉+ c−1(t)|g−1, 0L, 1R〉+ c1(t)|g1, 1L, 0R〉. (3.13)
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The effective Schrödinger equation becomes

i
d

dt




d0(t)

c−1(t)

c1(t)




=




−∆− iγ
2 − g√

2

g√
2

− g√
2

−iκ 0

g√
2

0 −iκ







d0(t)

c−1(t)

c1(t)




,

which is solved to give

c1(t) = − ig√
2

es1t − es2t

s1 − s2
, (3.14)

on making use of the property c1(t) = −c−1(t). s1 and s2 are the roots of equation

2s2 + (2κ + γ − i2∆) s + γκ + 2g2 − i2κ∆ = 0. (3.15)

Identical coupling is assumed for both polarization modes, and thus pR(t) = pL(t) =

2κ|c1(t)|2. When the time before the pump excitation is so long that the excited atom

(in |e0〉) completely decays into ground states and the cavity photon completely leaks out,

the final state of the atom plus the cavity modes becomes a mixed state

ρ(t1) =
1
2
|g−1, 0L, 0R〉〈g−1, 0L, 0R|+ 1

2
|g1, 0L, 0R〉〈g1, 0L, 0R|, (3.16)

as the first photon is traced out after being emitted into modes outside the cavity.

For t ∈ (t1, t2], the initial state (3.16) is now completely mixed, so we can evolve its

different decompositions respectively. In the first case for |ψ(t1)〉 = |g1, 0L, 0R〉, the state

can be approximately expanded as

|ψ(t)〉 = d1(t)|e1, 0L, 0R〉+ c0(t)|g0, 0L, 1R〉+ c1(t)|g1, 0L, 0R〉, (3.17)

and governed by an effective Schrödinger equation

i
d

dt




d1(t)

c0(t)

c1(t)




=




−∆− iγ
2 − g√

2
Ω√
2

− g√
2

−iκ 0

Ω√
2

0 0







d1(t)

c0(t)

c1(t)




.

The solutions for d1(t) and c0(t) are again analytic and expressed in terms of the roots s1,

s2, and s3 of equation

2s3 + (2κ + γ − i2∆)s2 + (Ω2 + κγ + g2 − i2∆κ)s + Ω2κ = 0. (3.18)
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Finally after the atom passes through the π-polarized pump field, we find

c0(t) = c0 (t2)
(

s1 − s3

s1 − s2
es1(t−t2) +

s2 − s3

s2 − s1
es2(t−t2)

)
,

where s1 and s2 are the roots of equation

2s2 + (2κ + γ − i2∆) s + g2 + κγ − i2κ∆ = 0, (3.19)

and s3 = −γ/2 + i∆ − ig
√

2d1(t2)/[2c0(t2)]. The emission rate of a second photon with

right circular polarization during [t1, T ] is therefore pR(t) = κ|c0(t)|2.
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Figure 3.3: The emission rate of a cavity photon with left circular polarization at time t
based on solving the master equation (3.9).

3.3 Numerical results

We now compare the above analytical analysis with numerical solutions from the master

equation (3.9) and the effective non-Hermitian Hamiltonian (3.12). For the parameter

ranges considered, the two numerical approaches give the same results as the analytical

one. We find a high fidelity EPR entangled photon pair of the form (↑→ 1L and ↓→ 1R) is
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Figure 3.4: The same as Fig. 3.3 but based on the analytic solution to the non-Hermitian
Hamiltonian (3.12).

generated with a high efficiency. Like non-classical photon pairs from an atomic ensemble

[122], these two photons are distinguishable from their temporal order [123], and can be

individually addressed to confirm their EPR correlation.

We have used dimensionless parameters ∆ = 0, g = 1.0, γ = 0.01, κ = 1.2, Ω = 1.2,

t1 = 14, t2 = 16, and T = 25 in the numerical results shown below. Such a set of parameters

can be realized with corresponding physical parameters of γ = (2π) 0.2 MHz, g = (2π) 20

MHz, κ = (2π) 24 MHz, and T = 200 ns [120]. In Figs. 3.3 and 3.4, two single-photon pulses

are seen to be emitted sequentially from the cavity. The results from the two numerical

approaches agree well with each other. In Fig. 3.5, the probability of generating two single

photons are displayed. We see that they are better than 98%. In Fig. 3.6, the occupations

of different atomic states are shown. Exactly as expected, the first photon is generated from

the decay of the atom in state |e0〉 to |g1〉 or |g−1〉, and the second photon is generated from

each of these two states when pumped by the π-polarized laser.

Based on our extensive simulation with other parameters, we hope to emphasize three
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Figure 3.5: The emission probability of the first and second photon of opposite polarization
P1(t) and P2(t).

points [124]. First, there exists an optimal κ which leads to the fastest photon emission.

When κ ¿ g, oscillations emerge, a signature of strong coupling. When κ À g, the proba-

bility of emission actually decays linearly and the emission time becomes longer because of

the increased bandwidth of the cavity, thus corresponding to reduced strength of emission

of the atom into the cavity. Second, there is also an optimal time for the atom to pass the

pump laser. When that time is too short, the atom cannot be completely emptied from

states |g1〉 and |g−1〉. However, if it is too long, oscillations between states |e±1〉 and |g±1〉
arise. More conveniently, it will be desirable to use a trapped atom inside the cavity [125],

and replace the transit time over the pump region with a temporal pump pulse. Third,

the probability of generating the first photon depends on the atomic decay rate γ. One

solution to overcome such a dependence is to use an auxiliary starting state and an ad-

ditional laser coupled to state |e0〉 as in the single photon source protocol [82, 120, 121].

The π-polarization laser then is applied to swap this entanglement from the atom to the

second cavity photon. The entanglement of the emitted photon pairs can be easily detected
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Figure 3.6: The time dependent atomic state populations.

from polarization correlations between the first and second photons using a time resolved

detection scheme [123].

Finally, we want to emphasize that dissipations are crucial in our protocol, not only

because they lead to the output of cavity photons. Without dissipations, the atom cannot

enter the state |g0〉, because the quantum amplitudes for the two paths (|e0〉 → |g−1〉 →
|e−1〉 → |g0〉 and |e0〉 → |g1〉 → |e1〉 → |g0〉) interfere destructively. This balance is broken

due to dissipations. We have verified this conclusion numerically. In Fig. 3.7, we show

the evolution of atomic state probability for κ = 0 and γ = 0. We see the totally different

evolution pattern of atomic state probability from the results of Fig. 3.6. First, there are

perfect Rabi oscillations between |e0〉 and |g1〉 when the pump field is absent. Second, the

probability of |e1〉 starts to change at the pump region, and stays constant after that. Third

and the most important, the probability for the atom to return to state |g0〉 is indeed 0. In

addition, we show the time dependent intracavity photon field in Fig. 3.8. We can see that

only a single photon is generated in the whole process. Thus, we conclude that dissipations
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are essential to our scheme.
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Figure 3.7: The atomic state probability for different energy levels as function of time. The
parameters are the same as before except κ = γ = 0. The dotted line is for |e0〉, the dashed
line is for |g1〉, and the solid line is for |e1〉. The probability for |g0〉 is always 0.

3.4 Modelling the field outside a cavity

A more rigorous formulation is to include the field outside the cavity in the total system

dynamics. Different from previous formulations where the environment has been traced out

from the system dynamics, here we model the field outside the cavity in terms of continuous

one-dimensional plane wave modes [81, 121]. With a high Q cavity in optical frequency

region, the outside modes are coupled to the two cavity modes with approximately constant

coupling strength [126]. To construct the physical basis for a clear picture of the electric

field profiles of the emitted photons, we still use the non-Hermitian effective Hamiltonian

to describe the decay of the excited atomic states due to spontaneous emissions. In a

more rigorous treatment, we can reproduce the stochastic wave function approach for the

conditional dynamics based on continuous photon detections [127]. The system Hamiltonian

then becomes

H = H1 + H2 − i~
γ

2

∑
q

|eq〉〈eq|+ Ho + Hc, (3.20)
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Figure 3.8: Intracavity photon field as function time. The parameters are the same as
before except κ = γ = 0.

where H1 and H2 are defined in Eqs. (3.2) and (3.3). The free Hamiltonian of the output

cavity field is

Ho =
∫ ωb

−ωb

dωω[b†R(ω)bR(ω) + b†L(ω)bL(ω)], (3.21)

and the coupling term between the input and the output cavity field is

Hc = i

√
κ

2π

∫ ωb

−ωb

dω[a†RbR(ω)− aRb†R(ω) + a†LbL(ω)− aLb†L(ω)]. (3.22)

Here bξ(ω) annihilates an outside mode photon with polarization ξ(= L,R) and frequency

ω. The commutation relation is [bξ(ω), b†ξ′(ω
′)] = δξ,ξ′δ(ω − ω′). We have transformed the

frequency ω−ωC → ω, so the range of the integration of ω is from −ωC to +∞. In reality,

since only near resonant frequency modes contribute significantly to the system’s dynamical

evolution, we only need to consider the modes in a finite frequency band [ωC −ωb, ωC +ωb].

Within this bandwidth, the coupling between the cavity mode aξ and the outside mode bξ

is approximated as a constant, denoted by
√

κ/(2π). Quantitatively, the bandwidth ωb is

much larger than the cavity photon decay rate κ and much less than ωA or ωC .

For numerical simulations, we model the outside modes with a set of discrete ones. To

assure the validity of our numerical simulation, we choose the frequency interval δω ¿ 1/T ,
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where T is the interaction time between the atom and cavity. Then the total mode number

for the output field of the cavity is N = 2ωb/δω, and the frequency of the j-th mode is

ωj = (j −N/2)δω.

The initial state of our system is |e0; 0L, 0R; vac〉, where the field outside the cavity is

assumed to be vacuum. According to the Hamiltonian (3.20), the dynamics of our system

are restricted to a finite dimensional subspace of up to two excitations due to the rotating

wave approximation. The basis states are therefore

|Ξ1〉 ≡ |e0; 0L, 0R; vac〉, |Ξ2〉 ≡ |g1; 1L, 0R; vac〉, |Ξ3〉 ≡ |g−1; 0L, 1R; vac〉,

|Ξ4〉 ≡ |e1; 1L, 0R; vac〉, |Ξ5〉 ≡ |e−1; 0L, 1R; vac〉, |Ξ6〉 ≡ |g0; 1L, 1R; vac〉,

|Ξ7〉 ≡ |g1; 0L, 0R; 1L(ω)〉, |Ξ8〉 ≡ |g−1; 0L, 0R; 1R(ω)〉,

|Ξ9〉 ≡ |e1; 0L, 0R; 1L(ω)〉, |Ξ10〉 ≡ |e−1; 0L, 0R; 1R(ω)〉,

|Ξ11〉 ≡ |g0; 1L, 0R; 1R(ω)〉, |Ξ12〉 ≡ |g0; 0L, 1R; 1L(ω)〉,

|Ξ13〉 ≡ |g0; 0L, 0R; 1L(ω), 1R(ω′)〉. (3.23)

Here the notation 1ξ(ω) means one outside photon with mode frequency ω and polarization

ξ. We thus expand the wave function of the whole system using these basis states with time

dependent coefficients

|ψ(t)〉 =
6∑

k=1

ck(t)|Ξk〉+
12∑

k=7

∫
dωck(ω, t)|Ξk〉+

∫ ∫
dωdω′u(ω, ω′, t)|Ξ13〉. (3.24)

The corresponding Schrödinger equation gives coupled equations of these coefficients, which

can be solved by numerical evolution.

First, let us define the outside mode annihilation operators in the time and frequency

domain, respectively,

bξ(t) =
1√
2π

∫ ∞

−∞
bξ(ω)e−iωtdω,

bξ(ω) =
1√
2π

∫ ∞

−∞
bξ(t)eiωtdt (3.25)

for polarization ξ = L,R. b(t) = bL(t) + bR(t). For comparison with the previous results,

we numerically evaluate the same quantities with the present method. For example, the
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probability for detecting the first photon is approximately given by

P1(t) =




〈ψ(t)|b†(0)b(0)|ψ(t)〉, for t ∈ [0, t1],

P1(t1), for t ∈ [t1, T ],
(3.26)

in analogy with the simple approach as used previously. Similarly the probability for de-

tecting the second photon becomes

P2(t) =





0, for t ∈ [0, t1],

〈ψ(t)|b†(0)b(0)|ψ(t)〉 − P1(t1), for t ∈ [t1, T ].
(3.27)

The emission rate of the left circularly polarized photon is
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Figure 3.9: The probability of the first and second photon emission P1(t) and P2(t). Pa-
rameters are the same as before.

pL(t) =
d

dt
〈ψ(t)|b†L(0)bL(0)|ψ(t)〉. (3.28)

The obvious advantage of the present method is that we can obtain the outside field

directly from numerical simulations. The two-photon state is obtained by projecting the

final state |ψ(t)〉 onto the Hilbert space with two outside photons. It is given by

|φ(t)〉 =
∫ ∫ ∞

−∞
dωdω′u(ω, ω′, t)|g0; 0L, 0R; 1L(ω), 1R(ω′)〉, (3.29)
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Figure 3.10: The emission rate of a cavity photon with left circular polarization at time t.
Parameters are the same as before.

and the probability for outputting two photons from the cavity at time t is

PLR(t) =
∫ ∫ ∞

−∞
dωdω′

∣∣u(ω, ω′, t)
∣∣2 . (3.30)

The numerical result of PLR(t) is shown in Fig. 3.11.

The amplitude of the two-photon wave function at time T is given by

〈g0; 0L, 0R; vac|b(t)b(t′)|φ(T )〉

= 〈g0; 0L, 0R; vac|[bL(t) + bR(t)][bL(t′) + bR(t′)]|φ(T )〉

= 〈g0; 0L, 0R; vac|bL(t)bR(t′)|φ(T )〉+ 〈g0; 0L, 0R; vac|bL(t′)bR(t)]|φ(T )〉

= ũ(t, t′, T ) + ũ(t′, t, T ), (3.31)

where

ũ(t, t′, T ) = 〈g0; 0L, 0R; vac|bL(t)bR(t′)|φ(T )〉

=
∫ ∫ ∞

−∞
dωdω′u(ω, ω′, T )e−iωt−iω′t′ . (3.32)

The numerical results for the amplitude of the two-photon wave function are illustrated in

Fig. 3.12.
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We can now discuss under what conditions the time bin entangled EPR photon pairs

can be defined explicitly. An obvious requirement is when

u(ω, ω′, T ) = α(ω)β(ω′) + β(ω)α(ω′), (3.33)

Then

ũ(t, t′, T ) = α̃(t)β̃(t′) + β̃(t)α̃(t′). (3.34)

α̃(β̃) are the Fourier transformation of α(β) respectively.

Let A be the anti-symmetrization operation on the amplitude matrix ũ, i.e.,

A[ũ](t, t′, T ) = α̃(t)β̃(t′)− β̃(t)α̃(t′), (3.35)

then

1
2

(ũ +A[ũ]) = α̃(t)β̃(t′),

1
2

(ũ−A[ũ]) = β̃(t)α̃(t′). (3.36)

Thus, α̃(t′) and β̃(t) can be determined from
∫

dt′
1
2

(ũ +A[ũ]) α̃(t′) = 0,
∫

dt
1
2

(ũ +A[ũ]) β̃(t) = 0, (3.37)
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Figure 3.12: The amplitude of the two-photon wave function at time T . Parameters are
the same as before.

assuming ˜α(t) and ˜β(t) do not overlap. This means ˜α(t) and ˜β(t) are the left and right

eigenvector of (ũ +A[ũ]) /2, respectively.

The final state becomes

|φ(T )〉 =
∫ ∫ ∞

−∞
dtdt′[α̃(t)β̃(t′) + β̃(t)α̃(t′)]b†L(t)b†R(t′)|g0; 0L, 0R; vac〉

=
∫ ∫ ∞

−∞
dtdt′α̃(t)β̃(t′)[b†L(t)b†R(t′) + b†R(t)b†L(t′)]|g0; 0L, 0R; vac〉. (3.38)

Since the time bin distribution functions ˜α(t) and ˜β(t) do not overlap, the time bin en-

tanglement of the EPR photon pair is defined explicitly. We have numerically verified the

above assumption, and obtained the two time bin distribution functions as in Fig. 3.13,

which agree with the earlier results based on simpler approaches, i.e., the non-Hermitian

Hamiltonian and density matrix approaches.

From the numerical results, we can see that all three approaches give almost the same

results. This in turn proves the accuracy of the density matrix approach and the non-

Hermitian Hamiltonian approach. The reason lies in the fact that the intracavity field

couples to the outside field with a large number of modes. In the long time limit (T À 1/κ),
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Figure 3.13: The two time bin distribution functions at time T . Parameters are the same
as before. α(t)/β(t) are the same as α̃(t)/β̃(t), respectively.

the photon field will distribute over many modes, both inside and outside the cavity. Thus,

the intracavity field becomes negligible, and this irreversible process can be well described

by a constant κ.

To further explain why the output two-photon state is almost in a maximally entangled

state, we follow the method given in Ref. [128] to calculate the entanglement between the

two photons. To do so, we project the final state onto the subspace of two outside photons.

Such a state is defined in the frequency domain by

|Ψ〉 =
∫ ∫

dω1dω2A(ω1, ω2)b
†
L(ω1)b

†
R(ω2)|vac〉, (3.39)

with all of the information contained in the amplitude matrix, A(ω1, ω2), whose Schmidt

decomposition form is then given by

A(ω1, ω2) =
∑
n

√
λnφn(ω1)ψn(ω2). (3.40)
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Here λn, φn(ω1) and ψn(ω2) are determined by the following relations,

∫
K1(ω, ω′)φn(ω′)dω′ = λnφn(ω),

∫
K2(ω, ω′)ψn(ω′)dω′ = λnψn(ω),

K1(ω, ω′) =
∫

A(ω, ω2)A∗(ω′, ω2)dω2,

K2(ω, ω′) =
∫

A(ω1, ω)A∗(ω1, ω
′)dω1. (3.41)

Ki is nothing but the reduced density matrix for photon i. The natural orbitals φn and

eigenvalues λn are obtained by the diagonalization of K1 or K2. The natural orbitals of φn

for n = 1 and n = 2 are shown in Fig. 3.14, corresponding to the two dominant eigenvalues.

We find that at final time t = T , λ1 = λ2 ≈ 0.4986, so the fidelity of being in the desired

photonic Bell state is around 99.72%. From this result, we conclude that the final state is

almost a maximally entangled state.
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Figure 3.14: Natural orbitals |φn| for n = 1 and n = 2 respectively. ψn is the same as φn.

3.5 Conclusion

In conclusion, we have proposed a simple but efficient scheme to deterministically generate

EPR entangled photon pairs from an atom coupled to a high Q optical cavity. We have

performed detailed analysis based on the standard non-Hermitian Hamiltonian and master
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equation approaches. By choosing appropriate parameters, our numerical results show a

high efficiency for generating a maximally entangled photon pair. In addition, we have also

carried out calculations by explicitly including the outside cavity modes in the total system

dynamics. This approach allows us to obtain the details of the two-photon state directly.

We find good agreement with all three approaches. For the last approach, we have defined a

general criterion for a more rigorous characterization of the two-photon pair entanglement.

We find that the final state is almost in a maximally entangled state. Compared to the

traditional PDC method with very low efficiency, our scheme has the potential for realizing

a deterministic source of entangled photon pairs. We hope our study will be helpful in

linear optics quantum computation and quantum information science.

This chapter is based on the paper in collaboration with Dr. D. L. Zhou [129].
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CHAPTER IV

ENTANGLEMENT BETWEEN TWO ATOMS IN A

ONE-DIMENSIONAL HARMONIC TRAP

4.1 Introduction

Experimental development in cold atomic physics has now made it possible to trap atoms

in an optical lattice with each lattice site containing several atoms. With the increase of the

trap depth, a condensate loaded into a lattice experiences a quantum phase transition, the

so-called SF-MI transition [52, 53, 54, 55]. In the MI regime where the tunnelling between

neighboring sites is negligible, each lattice site can be viewed as an independent system

and the trap potential can sometimes be approximated as harmonic, allowing for an exact

analytic treatment. In this chapter, we will therefore limit our study to the simple case of

two interacting atoms inside a harmonic trap, focusing on the pair entanglement.

The true interaction potential Vint(~r) between two atoms is generally complicated. For

theoretical purposes, Vint(~r) is usually approximated by more amenable forms, which involve

a short range strong chemical bonding and a long range van der Waals potential

Vint(~r) → −C6

r6
, (4.1)

leading to the van der Waals length scale

x0 =
1
2

(
2µC6

~2

)1/4

. (4.2)

For r ¿ x0, the scattering wave function oscillates rather rapidly due to the strong attractive

interaction potential. In the low energy regime, where two atoms cannot approach each

other very closely, there is another length scale a0(À x0) that comes into play. In this

regime, the s-wave scattering dominates, and we can use one single parameter, the s-wave

scattering length a0, to describe this interatomic potential [130]. Further simplification to

a contact potential (∝ a0δ(~r)) leads to the famous pseudopotential approximation, which

has proven very successful in describing dilute atomic systems [131].
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We will concentrate on studying the entanglement of two identical atoms in a one-

dimensional (1D) harmonic trap. The pair entanglement for two atoms in a three-dimensional

(3D) spherical harmonic trap has been investigated in Ref. [59], although only for pure

states. The method of Ref. [59] is effective only when the center of mass (CM) motion is

in the ground state of the trap. Their extension to a general mixed state with temperature

dependence seems difficult due to the very large Hilbert space involved. To uncover the

dependence of the pair entanglement on temperature, we instead consider a 1D system to

avoid such numerical difficulty. We will explore the dependence of entanglement on the

scattering strength and on the temperature. In addition, we also intend to extend the re-

sults in Ref. [59] to a general cylindrical harmonic trap, which will be addressed in the next

chapter.

4.2 A model system

Our model system consists of two cold atoms interacting via the contact potential in a

harmonic trap. First we make clear what a 1D harmonic trap means here. The real

experiments involve, of course, 3D traps. A 1D system is achieved by imposing very tight

constraints on the transverse directions. The existence of tight transversal confinement

will only allow virtual transitions along the transverse directions, leading to a renormalized

effective 1D scattering length from the 3D scattering length [132]. The system considered

can then be viewed as a quasi one-dimensional system, hereafter referred to as 1D. Such a

1D system possesses some peculiar features, such as “Fermi-Bose duality”, only possible in

a 1D system.

At very low temperatures, the s-wave scattering is the dominant interaction channel

for two identical bosonic atoms. For two identical fermionic atoms, on the other hand, the

dominant interaction is p-wave scattering because of the Pauli exclusion principle. Within

the pseudopotential approximation, these scattering processes are characterized by the s-

wave scattering length as and the p-wave scattering volume Vp respectively, which are
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defined as

as = − lim
k→0

tan δs(k)
k

, (4.3)

Vp = − lim
k→0

tan δp(k)
k3

, (4.4)

where δs,p(k) is the s/p-wave scattering phase shift. k is the asymptotic scattering momen-

tum.

The above definitions of the scattering length/volume are only valid in the Wigner

regime, i.e., kas ¿ 1 or k3Vp ¿ 1. Inside an external trap, this requires that the scattering

length be much smaller than the trap width. Otherwise, it should be replaced by an energy

dependent scattering length [133, 134]. In this case, the spectrum of the energy dependent

Hamiltonian can be solved self-consistently [134]. However, in this chapter, we treat the

scattering length/volume as an independent parameter.

For two spinless/polarized bosonic atoms, the effective interaction is found to be [41]

V B
int(x12) = − 2~2

mae
1D

δ(x12), (4.5)

where x12 = x1 − x2 and ae
1D = −a2

⊥(1 − c as/a⊥)/2as with a constant c ' 1.4603, is the

effective 1D scattering length for s-wave scattering [132]. δ(x) is the Dirac δ function. For

two spin polarized fermionic atoms, the effective interaction is [135]

V F
int(x12) =

2~2ao
1D

m

←−
d

d(x12)
δ(x12)

−→
d

d(x12)
, (4.6)

where ao
1D = 6(Vp/a2

⊥)(1 + c′Vp/a3
⊥)−1 with a constant c′ ' 2.4948, is the effective 1D

scattering length for p-wave scattering [136, 137]. The arrows indicate the directions of

derivative operation. In the following, we will discuss the entanglement properties for these

two types of interaction potentials separately.

4.3 Two identical bosonic atoms in a 1D harmonic trap

First we consider the bosonic case. The Hamiltonian is

H =
2∑

i=1

(
− ~

2

2m

d2

dx2
i

+
1
2
mω2x2

i

)
+ V B

int(x12). (4.7)

41



Here ω is the external 1D trap frequency. The interaction is given by

V B
int(x12) = − 2~2

mae
1D

δ(x1 − x2). (4.8)

The interaction strength is gB
1D = −2~2/(mae

1D). Unlike the 3D case, the pseudopotential

in 1D does not need regularization [138].

Following the method of Refs. [41, 135], we separate the motion of two bosonic atoms

into the center of mass (CM) and the relative (rel) motion, i.e., H = HCM + Hrel, with

HCM = − ~
2

2m

d2

dX2
+

1
2
mω2X2,

Hrel = − ~
2

2m

d2

dx2
+

1
2
mω2x2 + V B

int(
√

2x). (4.9)

The coordinate transformation is

X =
x1 + x2√

2
,

x =
x1 − x2√

2
. (4.10)

The above Hamiltonian (4.9) commutes with the parity operators of both the CM coordinate

P (X → −X) and the relative coordinate P (x → −x), which also commutes with each other

in harmonic traps. Thus the parities P (X → −X) and P (x → −x) of the eigenfunctions

are definite, i.e., either odd or even. In this chapter, we will use
√
~/(mω) and ~ω as our

length scale and energy scale, respectively. The CM motion is a harmonic oscillator whose

dimensionless form is

(
−1

2
d2

X2
+

1
2
X2

)
ψ(X) = Eψ(X). (4.11)

The solutions are well known, given by

φn(X) =

√
1

2nn!
√

π
e−X2/2Hn(X), (4.12)

where n labels the discrete energy levels and Hn(X) is the n-th order Hermite polynomial.

The corresponding eigenenergy is En = n + 1/2. The parities of these eigenfunctions are

(−1)n under the CM coordinate parity exchange P (X → −X), and are invariant under

particle exchange, i.e., the relative coordinate parity exchange P (x → −x).

42



We concentrate on the non-trivial relative motion. The equation is
(
−1

2
d2

dx2
+

1
2
x2 −

√
2

ae
1D

δ(x)

)
ψ(x) = Eψ(x). (4.13)

The parity of this Hamiltonian is even under coordinate parity exchange P (x → −x), so

the eigenfunctions should have fixed parities. The odd parity eigenfunctions vanishing at

x = 0 are unperturbed by the pseudopotential. So φ2n+1(x)(n = 0, 1, 2...) are the obvious

solutions of the above equation. Those even parity eigenfunctions are obtained by expanding

the wave function ψ(x) in the complete basis of the harmonic oscillator [41, 135]. The even

parity eigenfunctions are found to be

ψνe(x) =
Aνe√

π
e−

x2

2 Γ (−νe) U

(
−νe,

1
2
; x2

)
, (4.14)

with the relative energy Eνe = 2νe + 1/2. Γ(x) is the gamma function and U(a, c; x) is the

confluent hypergeometric function of the second kind [139]. Eνe and the effective scattering

length 1/ae
1D are constrained by the following quantization condition

Γ(−Eνe
2 + 3

4)

Γ(−Eνe
2 + 1

4)
=

1√
2ae

1D

. (4.15)

The normalization constant Aνe is given by

Aνe =

(
Γ(−νe + 1

2)
Γ(−νe)

1
F(−νe + 1

2)−F(−νe)

) 1
2

, (4.16)

where F is the digamma function [139]. In particular, when the effective scattering length

1/ae
1D = 0, all the νe’s reduce to non-negative integers, and the corresponding eigenfunctions

are simply the even parity orbitals of the harmonic oscillator, i.e., ψνe(x) = φ2νe(x).

In Fig. 4.1, we show the spectrum for the relative Hamiltonian. The solid curves are

for the eigenenergies corresponding to even parity, and the horizontal dotted lines are for

unperturbed eigenenergies with odd parity. We can see that the energy is a decreasing

function of 1/ae
1D. Also, we note that there are no level crossing unless 1/ae

1D → ±∞,

where the energy coincides with the odd parity one. An interesting feature is the existence

of a single bound state for 1/ae
1D > 0, which corresponds to the right part of the lowest

branch in Fig. 4.1.
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Figure 4.1: Even parity eigenenergies Eνe (solid) are plotted as function of 1/ae
1D, and odd

parity eigenenergies (dotted) are not affected by 1/ae
1D.

The monotonicity of the energy versus 1/ae
1D can be proved directly from the quanti-

zation condition Eq. (4.15). It can also be explained in a simpler way using the Hellman-

Feynman theorem [140] as follows:

∂Eνe

∂ 1
ae
1D

=

〈
∂H

∂ 1
ae
1D

〉

→ 2
∂νe

∂ 1
ae
1D

=
〈
−
√

2δ(x)
〉

→ ∂νe

∂ 1
ae
1D

= −|ψνe(0)|2√
2

. (4.17)

From the energy quantization Eq. (4.15), we can see that for |1/ae
1D| ¿ 1, the energy

shift to the unperturbed trap ground state, the so-called quantum defect, is computed to

be µ = 2νe = −
√

2/π/ae
1D, which is the same as the result 〈0| − √2/ae

1Dδ(x)|0〉 using the

perturbation calculations.

The eigenfunctions of the two lowest eigenstates with even parity are shown in Figs. 4.2

and 4.3 for 1/ae
1D = 1 and 1/ae

1D = −1, respectively. We note that all of the wave functions

have discontinuous derivatives at x = 0, which is due to the scattering term.

By combining the CM and relative motion, the eigenstate of the total Hamiltonian can
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Figure 4.2: Wave functions of the two lowest even-parity eigenstates for 1/ae
1D = 1. The

solid line is for ground state, and the dashed line is for the first excited state with even
parity.

be written as

Ψnνe(x1, x2) = φn(X)ψνe(x)

= φn

(
x1 + x2√

2

)
ψνe

(
x1 − x2√

2

)
, (4.18)

with total eigenenergy Enνe = n + 2νe + 1. Here νe includes eigenvalues of both parities.

4.3.1 Entanglement in the ground state

At T = 0, the system is in the ground state, which is given by

Ψ0ν0
e
(x1, x2) = φ0(X)ψν0

e
(x), (4.19)

where ν0
e is the minimal value that satisfies the quantization condition (4.15). We can

transform the above wave function into the following expression in the single particle basis

φ0(X)ψν0
e
(x) =

∑
pq

αpqφp(x1)φq(x2), (4.20)

with

αpq =
−2
π3/4

(
Γ(−ν0

e + 1
2)

Γ(−ν0
e )

1
F(−ν0

e + 1
2)−F(−ν0

e )

) 1
2 1 + (−1)p+q

2
(−1)

p−q
2 Γ(p+q+1

2 )
(2ν0

e − p− q)
√

p!q!
. (4.21)
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Figure 4.3: Same as Fig. 4.2 except 1/ae
1D = −1.

The detailed proof can be found in appendix A. For two identical bosonic atoms, we can

also write the wave function in the following symmetric form

|φ0ψν0
e
〉 =

1√
2

∑
pq

αpq|pq〉, (4.22)

here |pq〉 = (|p1q2〉+ |p2q1〉)/
√

2 and 〈x|n〉 = φn(x). |pi〉 means atom i in the p-th orbital of

the harmonic oscillator. The two-atom density matrix is ρB = |φ0ψν0
e
〉〈φ0ψν0

e
|. Because the

two bosonic atoms are identical particles, there is only one single-particle density matrix ρb,

normalized to one, which is computed to be ρb = (α†α)T [19]. Here T is the transposition

operation on the matrix.

We use von Neumann entropy as a pure state entanglement measure. The Schmidt

decomposition of the wave function gives

|φ0ψν0
e
〉 =

1√
2

∑

i

√
λi|ii〉, (4.23)

where λi’s are the eigenvalues of the reduced density matrix and
∑

i λi = 1. Then the

entropy of entanglement is

E = −
∑

i

λiln(λi). (4.24)

In Fig. 4.4, we show the numerical results for the ground state entanglement for different

effective scattering lengths up to ±10 in arbitrary dimensionless units. As we can see, the
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entropy of entanglement increases as |1/ae
1D| increases, irrespective of the signs of their

interaction. There are also some limiting cases which are very interesting and will be

discussed later.
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Figure 4.4: Entropy of entanglement versus effective scattering length 1/ae
1D at T = 0. As

1/ae
1D approaches −∞, entanglement saturates to about 0.683. When 1/ae

1D approaches
+∞, entanglement increases without limit.

For comparison, we use another more intuitive pure state entanglement measure which is

based on geometric considerations. This quantity turns out to be calculable in our case. For

any pure state |ψ〉, we can use a separable pure state |φ〉 and define its entanglement via the

distance d = min|φ〉|||φ〉 − |ψ〉||. Equivalently, define Λmax = max|φ〉||〈φ|ψ〉|| under the con-

straint 〈φ|φ〉 = 1. We adopt Esin2 = 1−Λ2
max as our entanglement measure [141]. In our case,

we assume |φ〉 =
⊗2

i=1

∑
p ηp|pi〉 with

∑
p |ηp|2 = 1. The reason we use the same coefficients

ηp for different atoms is that |ψ〉 is symmetric under atom interchange. So we expect that the

state maximizing the above expression should also be symmetric. This reduces the necessary

number of variables in the maximization. We also note that the maximization shall occur

for real optimization parameters. Now Λmax = max|φ〉||〈φ|ψ〉|| = maxηp |
∑

pq ηpηqαpq|. α

is a real symmetric matrix, which results in αpq =
∑

k UpkAkU
T
kq, with U being an orthog-

onal matrix. So Λmax = maxηp |
∑

k Ak
∑

p Upkηp
∑

q UT
kqηq| = maxξk |

∑
k Akξ

2
k| under the

constraint
∑

k |ξk|2 = 1. It’s obvious Λmax 6 (max|Ak|)
∑

k |ξk|2 = max|Ak|. In Fig. 4.5,
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we show the dependence of Esin2 on the effective scattering length. Not surprisingly, we

find that the curve has the same behavior as entropy because the geometric one is also an

entanglement measure.
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Figure 4.5: Esin2 as function of the effective scattering length.

4.3.2 Entanglement at finite temperatures

When T > 0, the system is in thermal equilibrium. In general, it is a mixed state described

by the density matrix

ρe(T ) =
e−βH

Tr(e−βH)
, (4.25)

where β = 1/(kBT ).

Expanding the density matrix in the eigenstates of H and further transforming it into

the single particle basis, we obtain

ρe(T ) =
∑
nνe

Pnνe(T )|Ψnνe〉〈Ψnνe |

=
∑

pq;p′q′

(∑
nνe

Pnνe(T )α(nνe)
pq

(
α

(nνe)
p′q′

)∗)
|p1q2〉〈p′1q′2|

=
∑

pq;p′q′
ρpq;p′q′ |p1q2〉〈p′1q′2|, (4.26)
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with the thermal distribution Pnνe given by

Pnνe(T ) =
e−(n+νe)/T

∑
nνe

e−(n+νe)/T
. (4.27)

Here we have used the temperature scale ~ω/kB. The density matrix elements in the single

particle basis are given by

ρpq;p′q′ =
∑
nνe

Pnνe(T )α(nνe)
pq

(
α

(nνe)
p′q′

)∗
. (4.28)

To calculate the entanglement for a mixed state, we adopt negativity [22] as our entan-

glement measure, which makes use of partial transposition of the density matrix. In this

case, the partial transposition of the density matrix gives

ρT1
e =

∑

pqp′q′
ρp′q;pq′ |p1q2〉〈p′1q′2|. (4.29)

Here Ti means the transposition with respect to the i-th subsystem. After rearranging the

basis order, we have

ρT1
pq;p′q′ =

∑
nνe

Pnνeα
(nνe)
p′q

(
α

(nνe)
pq′

)∗
. (4.30)

We calculate the negativity of ρT1
e by direct diagonalization for various T and 1/ae

1D.

The numerical results are shown in Fig. 4.6. Here we emphasize two points. First, negativ-

ity at T = 0 resembles the von Neumann entropy. This means that negativity can also be

used as a pure state entanglement measure. Actually, for a pure state with Schmidt decom-

position |Ψ〉12 =
∑

k ck|φk〉1|ψk〉2, we have N = [(
∑

k ck)2 − 1]/2 [142]. Second, negativity

decreases as temperature increases, which is consistent with our intuitive understanding

that temperature acts as noise to deteriorate quantum correlation. This is in stark contrast

to von Neumann entropy, which increases with temperature and is shown in Fig. 4.7. It’s

not surprising that the entanglement does not show any “sudden death” [143, 144], since

we are dealing with two atoms, each containing infinite energy levels.

4.3.3 Some limiting cases of ground state entanglement

We discuss some limiting cases in this section: 1/ae
1D = 0, 1/ae

1D → −∞, and 1/ae
1D → +∞.
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Figure 4.6: Negativity N as function of T and 1/ae
1D for two bosonic atoms.

For 1/ae
1D = 0, the corresponding interaction strength ge

1D = 0. The entanglement

vanishes since there is no interaction between the two bosonic atoms. In this case, both

atoms are in the lowest harmonic orbital.

For 1/ae
1D → −∞, the corresponding interaction strength ge

1D approaches +∞. There

is very strong repulsion between the two bosonic atoms, the so-called impenetrable boson

model. The total wave function asymptotically simplifies to

Ψ0ν0
e

=

√
2
π

e−
1
2
X2− 1

2
x2 |x|, (4.31)

with the total energy E0ν0
e

= 2. The simplified wave function comes from the expansion

of the confluent hypergeometric function U(−ν0
e , 1/2;x2) at ν0

e = 1/2, which turns out to

be |x|. In this limit, the two bosonic atoms are in the so-called “Tonks-Girardeau” regime

[145, 146], where they behave similarly to two ideal (polarized) fermionic atoms. Their local

properties, such as energy and density, are the same, but their non-local properties, such

as momentum distribution and correlation, are generally quite different [132]. The “Tonks-

Girardeau” regime has been realized in an optical lattice and the results of momentum

distribution are in excellent agreement with a theory of fermionized trapped Bose gases

[147]. For comparison, we show the reduced density matrix of Tonks bosons ρB(x1, x
′
1)

and ideal fermions ρF (x1, x
′
1) in Figs. 4.8 and 4.9, respectively. We can see that the two

matrices share the same diagonal elements, which are related to the local properties, while
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Figure 4.7: von Neumann entropy as function of T and 1/ae
1D for two bosonic atoms.

the off-diagonal elements, which are related to correlation properties, are quite different.

The Schmidt coefficients of ρB are calculated to be {0.7744, 0.1767, 0.041, ... }, with an

entanglement of about 0.683, which is slightly smaller than ln2 (' 0.693), the entanglement

of two ideal fermionic atoms in the same trap.
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Figure 4.8: The reduced density matrix ρB(x1, x
′
1) of two bosonic atoms in the “Tonks-

Girardeau” regime.

For 1/ae
1D → +∞, the corresponding interaction strength ge

1D approaches −∞, and

there is very strong attraction between the two bosonic atoms. We identify this limit as the
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Figure 4.9: The reduced density matrix ρF (x1, x
′
1) for two ideal fermionic atoms.

bound state regime because the wave function takes the asymptotic form

Ψ0ν0
e
(X, x) =

(
2

π(ae
1D)2

)1/4

e−
X2

2 e
−
√

2|x|
ae
1D , (4.32)

with a total energy E0ν0
e
' −1/(ae

1D)2, which is the typical form for a bound state. ae
1D is

proportional to the size of the bound state. As 1/ae
1D increases, the entanglement increases

and asymptotically approaches ∝ ln(1/ae
1D).

One way to obtain the wave function is to use the expansion of the confluent hyperge-

ometric function for ν0
e → −∞. By matching the expansion coefficients, we can obtain the

asymptotic wave function. Another more instructive method is to solve the relative motion

directly

−1
2

d2

dx2
ψ +

1
2
x2ψ −

√
2

ae
1D

δ(x)ψ(x) = Eψ(x). (4.33)

For deep bound state solutions, the effect of the external trap can be ignored since the size

of the bounded pair approaches 0. We then use a trial wave function ψ =
√

κe−κ|x|, where κ

is determined from the appropriate boundary condition. We obtain E = −κ2/2 by inserting

the trial function into the above equation for both x < 0 and x > 0. Then imposing of
∫ 0+

0−

on both sides leads to κ =
√

2/ae
1D, the same form as in Eq. (4.32). Clearly, it is consistent
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with the boundary condition at x = 0 [135], i.e.,

(
1

ψ(x)
dψ(x)

dx

)

x→0+

= −
√

2
ae

1D

. (4.34)

4.4 Two identical fermionic atoms in a 1D harmonic trap

For two spin-polarized fermionic atoms, the Pauli principle excludes s-wave scattering. We

consider p-wave scattering, which turns out to be non-trivial in this case. The interaction

potential is given by [135]

V F
int(x12) =

2~2ao
1D

m

←−
d

dx12
δ(x12)

−→
d

dx12
. (4.35)

The interaction strength is go
1D = 2~2ao

1D/m. Here the first derivative acts to the left and

the second to the right, i.e.,

∫ +∞

−∞
φ∗(x)Vint(x)χ(x)dx =

2~2ao
1D

m

dφ(0)
dx

dχ(0)
dx

, (4.36)

with the short hand notation

dφ(0)
dx

=
[
dφ(x)

dx

]

x=0

. (4.37)

Using the same scaled unit, the dimensionless interaction potential is

V F
int =

ao
1D√
2

←−
d

dx
δ(x)

−→
d

dx
. (4.38)

The CM motion is still a harmonic oscillator. For the relative motion,

Hrel = −1
2

d2

dx2
+

1
2
x2 +

ao
1D√
2

←−
d

dx
δ(x)

−→
d

dx
, (4.39)

the eigenfunction is again solved in Ref. [135]

ψνo(x) =
Ao√

π
xe−

x2

2 Γ (−νo) U

(
−νo,

3
2
;x2

)
, (4.40)

with the relative energy Eo = 2νo + 3/2. Eo and the effective scattering length ao
1D are

constrained by the following quantization condition

Γ(−Eo
2 + 3

4)

Γ(−Eo
2 + 1

4)
=

1√
2ao

1D

, (4.41)
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the same form as in Eq. (4.15). The normalization constant Ao is given by

Ao =

(
Γ

(−νo − 1
2

)

Γ (−νo)
1

F(−νo)−F(−νo − 1
2)

) 1
2

. (4.42)

In Fig. 4.10, we show the relative energy spectrum of two spin-polarized fermionic atoms

under p-wave scattering. The overall shape of the spectrum is similar to that for a 3D s-

wave scattering [41], as both have the velocity dependent scattering potential associated

with d/dx or ∂/∂r. Different from a 1D s-wave scattering, we find that the eigenenergy is

an increasing function of ao
1D, which can be easily seen from the quantization condition Eq.

(4.41) (cf. Eq. (4.15)). We note that a single bound state exists for any scattering length,

irrespective of its sign. Here the threshold energy for the bound state is 3/2, which is the

lowest energy for two ideal fermionic atoms in the same trap. For ao
1D < 0, the appearance

of such a bound state is purely due to the confinement, since no bound state can be formed

in free space for ao
1D < 0.
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Figure 4.10: The spectrum as function of the effective scattering length ao
1D for two spin-

polarized fermionic atoms. The solid lines are for odd-parity modes, and the dotted lines
are for unperturbed even-parity modes.

The wave functions of the two lowest eigenstates for the relative motion are shown in

Figs. 4.11 and 4.12, for ao
1D = 1 and ao

1D = −1, respectively. We note that the discontinuity

in the wave function at x = 0 is due to the presence of the interaction term. However, the
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derivative is continuous in this case.
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Figure 4.11: Wave functions of the two lowest eigenstates for ao
1D = 1 with odd parity.

The solid line is for ground state, and the dashed line is for the first excited state with odd
parity.

The total eigenfunction including both the CM and relative motion is

Ψnνo = φn

(
x1 + x2√

2

)
ψνo

(
x1 − x2√

2

)
, (4.43)

with a total energy Enνo = n + 2νo + 2.

4.4.1 Entanglement in the ground state

At T = 0, the ground state wave function is

Ψ0ν0
o
(x1, x2) = φ0

(
x1 + x2√

2

)
ψν0

o

(
x1 − x2√

2

)
, (4.44)

where ν0
o is the minimal value that satisfies Eq. (4.41). In the single particle basis

Ψ0ν0
o
(x1, x2) =

∑
pq

βpqφp(x1)φq(x2), (4.45)

with βpq given by

βpq =
−2
π3/4

(
Γ(−ν0

o − 1
2)

Γ(−ν0
o )

1
F(−ν0

o )−F(−ν0
o − 1

2)

) 1
2 1− (−1)p+q

2
(−1)

p−q−1
2 Γ(p+q+2

2 )
(2ν0

o + 1− p− q)
√

p!q!
,(4.46)
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Figure 4.12: The same as in Fig. 4.11 except for ao
1D = −1.

which is similar to the expansion in the s-wave scattering. For identical fermions, we can

also write the wave function in the following form

|φ0ψν0
e
〉 =

1√
2

∑
pq

βpq|pq〉, (4.47)

here

|pq〉 =





(|p1q2〉 − |q1p2〉)/
√

2 (p 6= q),

0 (p = q).
(4.48)

The two-atom density matrix is ρF = |φ0ψν0
e
〉〈φ0ψν0

e
|. Because the two fermionic atoms are

identical particles, there is only one single-particle density matrix ρf , normalized to one,

which is computed to be ρf = (β†β)T [19].

We calculate the von Neumann entropy using the same technique as in the s-wave

scattering. The numerical results are shown in Fig. 4.13. We note that there are three

features different from the bosonic case. First, the von Neumann entropy is discontinuous

with respect to the coupling strength. Second, the entropy is always larger than ln(2) in the

whole range of the coupling strength. Third, the entropy does not monotonically increase

as |ao
1D| increases.
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Figure 4.13: Von Neumann entropy as function of the effective scattering length ao
1D for

two spin-polarized fermionic atoms. At ao
1D → ±∞, the entanglement saturates to about

1.520.

4.4.2 Entanglement at finite temperatures

In this case, the density matrix is

ρo(T ) =
∑
nνo

Pnνo(T )|Ψnνo〉〈Ψnνo |

=
∑

pq;p′q′

(∑
nνo

Pnνo(T )β(nνo)
pq

(
β

(nνo)
p′q′

)∗)
|p1q2〉〈p′1q′2|, (4.49)

here νo only includes odd parity. The thermal distribution Pnνo is given by

Pnνo(T ) =
e−(n+νo)/T

∑
nνo

e−(n+νo)/T
. (4.50)

Following the same technique as in the bosonic case, we calculate negativity of two spin-

polarized fermionic atoms. The numerical results are shown in Fig. 4.14. Clearly, negativity

is not continuous at vanishing coupling strength for any temperature we considered, and

there is no “sudden death” either [143, 144]. We also find that negativity decreases as the

temperature increases. This again agrees with our intuitive understanding.

4.4.3 Some limiting cases of ground state entanglement

We will discuss some limiting cases in this section: ao
1D → ±∞, ao

1D → 0+, and ao
1D → 0−.
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Figure 4.14: Negativity as function of T and the effective scattering length ao
1D for two

spin-polarized fermionic atoms.

For ao
1D → ±∞, the interaction strength gF

1D approaches ±∞. There is a very strong

interaction (repulsion or attraction) between the two fermionic atoms. The total wave

function in both cases simplifies to

Ψ0νo =
1√
π

e−
1
2
X2− 1

2
x2

sgn(x), (4.51)

with the eigenenergy E0νo = 1. Here sgn(x) = x/|x|. The wave function comes from the

expansion of xU(−νo, 3/2;x2) at νo = −1/2, which turns out to be sgn(x). Analogously,

the two fermionic atoms are in the so-called “fermionic Tonks-Girardeau” regime [148, 149],

where they behave similarly to two ideal bosonic atoms. Different from the bosonic case, the

two bosonic atoms are in a bound state when the interaction strength approaches −∞. We

find that the behavior of the two fermionic atoms does not fall into the bound state regime

for the same interaction strength. The entanglement of the two fermionic atoms saturates

to about 1.520, while there does not exist any entanglement for the ground state of two

ideal bosonic atoms in the same trap. This remarkable difference is due to the different

symmetry properties under permutation between bosonic and fermionic atoms.

For ao
1D → 0+, the interaction strength gF

1D approaches 0+. There is very weak repulsion

between the two fermionic atoms. We identify this limit as the bound state regime because
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the wave function takes the asymptotic form

Ψ0ν0
o
(X, x) =

(
2

π(ao
1D)2

)1/4

e−
X2

2 e
−√2|x|

ao
1D sgn(x). (4.52)

The corresponding energy takes the asymptotic value E0ν0
o
' −1/(ao

1D)2, which is the typical

binding energy for a bound state. As the size of the bound state (∝ ao
1D) becomes smaller,

the entanglement increases asymptotically approaches ∝ ln(1/ao
1D). The wave function

can be obtained by a similar method as in the bosonic case, with the trial wave function

ψ =
√

κsgn(x)e−κ|x|, reflecting the symmetry requirement. Starting from Eq. (4.39), we

multiply from the left by f(x) = 1 and then impose
∫ +∞
0 on both sides. Thus, we obtain

E = −1
2κ2. κ can be determined by noticing that ψ′(x) = −κsgn(x)ψ(x) + 2ψ(0+)δ(x) due

to the discontinuity in the wave function. A little algebra shows that κ =
√

2/ao
1D, which

is consistent with the boundary condition at x = 0, i.e.,
(

1
ψ(x)

dψ(x)
dx

)

x→0+

= −
√

2
ao

1D

. (4.53)

For ao
1D → 0−, the interaction strength gF

1D approaches 0−, which means that there is

very weak attraction between the two fermionic atoms. We identify this limit as the ideal

fermion regime because the wave function is

Ψ0ν0
o
(X,x) =

√
2
π

xe−
X2

2
−x2

2

=
1√
2
[φ1(x1)φ0(x2)− φ0(x1)φ1(x2)]. (4.54)

The Schmidt coefficients are λ0 = λ1 = 1/2, so the entropy is ln(2). This value is purely

due to the antisymmetry property, and it does not reflect any useful quantum correlations

between the two fermionic atoms [19].

The counterintuitive features of ao
1D → 0± originate from the d/dx differentiation, which

makes V F
int similar to a 3D regularized pseudopotential. For ao

1D > 0, V F
int behaves like an

attractive interaction as far as the bound-state properties are concerned, while it scatters

like a repulsive potential. For ao
1D < 0, matters are reversed—there is no bound state, but

V F
int scatters as if an attractive interaction were at work. The limit ao

1D → 0+ exhibits an

anomaly: the binding energy grows without bound and the scattering cross section vanishes

[41].
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4.5 A duality between bosons and fermions

The physics of 1D Bose systems differ from ordinary 3D quantum gases in many aspects.

For example, by decreasing the particle density n, a typical 3D quantum many-body sys-

tem becomes more ideal, whereas in a 1D Bose gas the role of interactions becomes more

important [147]. The reason is that in a 3D system, the kinetic energy per particle at

the mean interparticle separation is K3D ∼ n2/3 and the interaction energy per particle is

I3D ∼ n. The ratio of the interaction to kinetic energy, γ3D = I3D/K3D, characterizing the

different physical regimes of a 3D quantum gas, approaches 0 as n decreases to 0, i.e., an

ideal gas. On the other hand, for a 1D system, the kinetic energy per particle at the mean

interparticle separation is K1D ∼ n2 and the interaction energy per particle is still I1D ∼ n,

so γ1D = I1D/K1D approaches infinity as n decreases to 0. Here the dimensionality plays

an important role. For a large value of γ1D, the gas enters the “Tonks-Girardeau” (TG)

regime [146]. It was shown that the many-body problem of hard-sphere bosons in 1D can

be mapped exactly onto that of an ideal Fermi gas, so that many properties of such Bose

systems are Fermi-like [146]. This fact is now known as “Fermi-Bose duality”. It is not

restricted to the hard-sphere model, and relates strongly interacting bosons to weakly inter-

acting fermions and vice versa. The duality has been discussed in Ref. [135]. Their results

confirm the perfect mapping between bosons and fermions if the condition gB
1DgF

1D = −1

is satisfied (coupling strengths have been appropriately scaled). Here we can recover the

duality in this special two-atom case. Following the above mapping condition, it turns out

that the scattering lengths need to satisfy ae
1D = ao

1D. Under this condition, the energy

spectrums for the bosonic and fermionic cases are the same, which leads to νe − νo = 1/2

for each corresponding level. On the other hand, the eigenfunctions of two bosonic atoms

and two fermionic atoms are

ΨB(x1, x2) ∝ φn(X)e−
x2

2 U

(
−νe,

1
2
;x2

)
,

ΨF (x1, x2) ∝ φn(X)xe−
x2

2 U

(
−νo,

3
2
;x2

)
, (4.55)
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respectively. By using Kummer transformation U(a, c; x) = x1−cU(a− c + 1, 2− c; x) [139],

we can rewrite the latter as

ΨF (x1, x2) ∝ φn(X)sgn(x)e−
x2

2 U

(
−νo − 1

2
,
1
2
;x2

)
. (4.56)

If νe = νo + 1/2, we obtain

ΨF (x1, x2) = sgn(x1 − x2)ΨB(x1, x2). (4.57)

It means that the wave function of two fermionic (bosonic) atoms can be obtained by anti-

symmetrizing (symmetrizing) the corresponding wave function of two bosonic (fermionic)

atoms. The sign change in the wave function does not affect local properties. However, it

does affect non-local properties, such as correlation, which we have emphasized before.

4.6 A T-matrix approach for finding the spectrum

The spectrum can also be obtained with the help of a T-matrix approach, where the eigenen-

ergies are just the simple poles. The detailed discussion for the 3D case has been carried

out in Ref. [150]. The idea is to find the T-matrix for a reference Hamiltonian, which is

usually easier to solve, and then use the Lupu-Sax theorem to obtain the desired T-matrix

[151]. Here we follow the same procedure and limit our discussion to a 1D system.

First we set the background Hamiltonian which is free from the external trap potential,

H ′ = − ~
2

2m

d2

dx2
+ E. (4.58)

The energy independent Green function is

〈x|GH′ |x′〉 =
m

~2
|x− x′|, (4.59)

which can be easily verified from the definition (E−H ′)GH′ = I (I is the identity operator).

In the presence of a point scatter V (x) = gδ(x), g = −√2~2/(ma0). The T-matrix in the

long wave length limit is found to be

〈x|TH′,V |x′〉 = gδ(x)δ(x′). (4.60)

If we add a harmonic trap U(x) = 1
2mω2x2, the new Hamiltonian is

H = − ~
2

2m

d2

dx2
+

1
2
mω2x2. (4.61)
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In this case, the Green function is

〈x|GH(E)|x′〉 =
∞∑

n=0

φn(x)φ∗n(x′)
E − (n + 1

2)~ω
, (4.62)

where φn(x) are the eigenfunctions of H. We can use the Lupu-Sax theorem [151], which

relates the T-matrix of the scatter V in the background Hamiltonian H to the T-matrix

for the same scatter in a different background Hamiltonian H ′. To be explicit, we have the

following identity

TH,V (E) = [1− TH′,V (E)[GH(E)−GH′(E)]]−1TH′,V (E). (4.63)

With the help of the above identity, we obtain

TH,V =
g|0〉〈0|

1− g〈0|GH −GH′ |0〉 , (4.64)

with

〈0|GH −GH′ |0〉

=
∞∑

n=0

|φn(0)|2
E − (n + 1

2)~ω

= − 1
aho2~ω

Γ(− E
2~ω + 1

4)
Γ(− E

2~ω + 3
4)

, (4.65)

where aho =
√
~/(mω) is the trap width. This result is exactly the same as the energy

quantization condition in Eq. (4.15). However, for fermionic case, we met difficulties due

to the double derivatives.

4.7 Conclusion

In conclusion, we have systematically studied the quantum entanglement properties of two

interacting spin-polarized atoms in a 1D harmonic trap. At very low temperature, the

interaction potential is modelled by the well-known contact potential. We then discuss

the eigen-spectrum for bosonic and fermionic atom pair, respectively. The ground state

entanglement is measured by von Neumann entropy. The different amount of entangle-

ment between bosonic and fermionic pairs can be traced partially to different symmetries

of their wave functions. In most cases, the ground state entanglement of two atoms is
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found to increase with interaction strength. However for two fermionic atoms with repul-

sive interactions, the ground state entanglement decreases with the increase of interaction

strength. For the temperature dependence, we use negativity as the mixed state entan-

glement measure. We find that with increasing temperature, entanglement between two

atoms decreases, which means temperature acts as noise to deteriorate the entanglement.

As a general rule, we conclude that the nature of atom-atom interaction, being attractive

or repulsive, also influences the quantum entanglement properties. Furthermore, we briefly

discuss the “Fermi-Bose mapping” in a 1D system. We find that the results of the model

potential are consistent with this mapping condition. Finally, as an alternative method, we

show how to obtain the eigen-spectrum by using the T-matrix approach.
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CHAPTER V

ENTANGLEMENT BETWEEN TWO FERMIONIC

ATOMS INSIDE A CYLINDRICAL HARMONIC TRAP

5.1 Introduction

In this chapter, we will study the entanglement of two fermionic atoms in a cylindrical

harmonic trap across Feshbach resonance. This is motivated by the recent experiments at

ETH [56, 57]. The experiments began with two fermionic atoms in a single lattice site in the

MI phase due to the negligible tunnelling. The experiment showed that two initially non-

interacting fermionic atoms will acquire orbital deformation and entanglement during the

BCS-BEC crossover. During the whole process, the two fermionic atoms remain in different

internal states, so the two fermionic atoms actually interact via the s-wave scattering which

is different from that for two polarized fermionic atoms. Because of this, the results can

also be applied to two identical bosonic atoms in the same trap. The spectrum of s-wave

scattering has been studied in Ref. [41] for a spherical harmonic trap and in Ref. [42] for a

general cylindrical harmonic trap. The pair entanglement of two bosonic atoms in a spherical

harmonic trap has also been obtained in Ref. [59]. All of the above results are based on

the single channel scattering model. We want to extend the earlier results [59] to general

cylindrical symmetry and to also allow for the possibility that the two fermionic atoms may

form a molecular bound state, albeit in the broad resonance regime. The entanglement

dependence on the trap geometry and on the scattering strength in the complete range of

the effective BCS to BEC crossover will be explored.

5.2 A model system

We begin with the successful model as proposed in Ref. [58], where two fermionic atoms are

assumed to be located in the same lattice trap, which is approximated as a harmonic trap

for the purpose of this thesis. Each optical lattice site represents an independent system,
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since the quantum tunnelling, or hopping, is negligible for a deep optical lattice potential

of interest here. The Hamiltonian for the two fermionic atoms is given by

H =
∑
mσ

Ema†mσamσ + ν̄b†b +
∑
m,n

αm,n[a†m↑a
†
n↓b + H.c.], (5.1)

where Em =
∑

j=x,y,z ~ωj(mj +1/2) is the harmonic oscillator energy for the state labelled

by m = (mx,my, mz) with angular frequencies (ωx, ωy, ωz). a†mσ is the creation operator for

a fermionic atom in the open channel with energy Em and spin σ. b† is the creation operator

for a two-atom bound state, a bosonic molecule in the two fermionic closed channel with its

center of mass wave function fixed exactly at the ground state of the trap, a result of the

simple approximation that the optical lattice trap potential for the bound state molecule

is the sum of the trap potentials on the two atoms. ν̄ is the energy difference between the

closed-channel bosonic molecule and the two fermionic atoms in the open channel. αm,n is

the coherent coupling element converting two open channel fermionic atoms into a closed

channel bosonic molecule, which is defined to contain a common constant pre-factor α. The

relative motional part of the molecular ground state will be approximated as a contact δ(~r)

function, since it is typically of atomic size [58, 152], much less than other length scales in

the problem. Such a simplification contains an ultra-violet divergence that can be removed

by a suitable momentum cutoff with a renormalized detuning. An alternative formulation

involves the use of a regularized delta function [153]. The cylindrical harmonic trap is

characterized by the trap frequencies ωx = ωy = ω⊥ = ωz/λ with λ parameterizing the

trap aspect ratio. Within this model, the two fermionic atoms in the open channel (being

atoms) at a band m and n can be converted into a closed channel bosonic molecule, or vice

versa. The eigenstate is

|Ψ〉 = (βb† +
∑
m,n

ηm,na†m↑a
†
n↓)|vac〉. (5.2)
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These coefficients are determined by the following coupled equations

ηm,n = β
αm,n

E − Em,n
, (5.3)

E − ν =
∑
m,n

α2
m,n

E −Em,n
, (5.4)

β−2 = 1 +
∑
m,n

α2
m,n

(E − Em,n)2
. (5.5)

As in Ref. [58], ν̄ is to be renormalized to ν∗. The parameters ν∗ and α are matched to

the experimentally relevant parameters as and r0, where as is the s-wave scattering length

between fermionic atoms in different internal states, and r0 is the effective range. r0 is

defined in terms of the s-wave scattering phase shift δ by the equation

kcotδ = − 1
as

+
1
2
r0k

2 + O(k4), (5.6)

with k being the wave number for the relative motion. The so-called broad resonance

typically corresponds to the regime of |r0| ¿ d⊥ [≡
√
~/(mω⊥)]. A dimensionless parameter

x = E/(2~ω⊥)− 1− λ/2 is defined, with which the energy quantization condition becomes

√
2λ

[
d⊥
as

+
|r0|
d⊥

(
x + 1 +

λ

2

)]
= − λ√

π
F

(
−x

λ
,
1
λ

)
, (5.7)

where the function on the right hand side is defined in Ref. [42]

F (u, η) =
∫ ∞

0
dt

(
ηe−ut

√
1− e−t(1− e−ηt)

− 1
t3/2

)
. (5.8)

A spherical trap reduces to the well known result of F (−x, 1) = −2
√

π Γ(−x)/Γ(−x− 1/2)

[41]. Furthermore, if r0 ≡ 0, the energy spectrum and eigenfunctions coincide with the

results of two bosonic atoms in a harmonic trap as studied previously in Ref. [41, 42].

This is a straightforward conclusion, since for r0 = 0 the current model describes the same

physical process quantified by a single s-wave parameter as [41, 42]. A non-zero r0 as

incorporated in Ref. [58] allows for a more general model including both open channel

fermionic atoms and a closed channel molecule.

The spectrum versus inverse scattering length −d⊥/as is shown in Fig. 5.1. As in

previous studies [41, 42], the energy is still an increasing function of the inverse scattering
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length −d⊥/as. The state |e〉 corresponds to a deep bound state. The binding energy is

computed to be Eb = − ~2
ma2

s

(
1 + r0

as

)
from Eq. (5.7), which is the same result obtained

in Ref. [154]. We emphasize that the closed molecular channel is not the lowest two-atom

(bound) state as shown in Fig. 5.1.
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Figure 5.1: Energy spectrum of two fermionic atoms in a harmonic trap versus inverse
scattering length in the broad resonance regime. Here we choose λ = 5/6 and |r0|/d⊥ = 0.04.

The inclusion of the effective range allows us to introduce an effective scattering length

as defined below,

√
2λ

d⊥
aeff

=
√

2λ

[
d⊥
as

+
|r0|
d⊥

(
x0 + 1 +

λ

2

)]
,

√
2λ

d⊥
aeff

= − λ√
π

F

(
−x0

λ
,
1
λ

)
. (5.9)

Further simplification gives the following result [155]

aeff =
(

1
as
− Er0

2d2
⊥~ω⊥

)−1

, (5.10)

which is an energy-dependent scattering length.

In the following, we limit our discussion to the pair entanglement for the regime of broad

resonance. Also, we focus on two adiabatic eigenstates labelled |a-d-b〉 and |b-f-c〉 in Fig.

5.1.

First, we briefly review the result on the molecular component according to Ref. [58].
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Starting from a small positive scattering length, when adiabatically following the state |a-

d-b〉, the molecular component Pmol (≡ β2 ¿ 1) is small in the broad resonance regime

[58, 156]. More precisely, it can be shown that

β2 =
|r0|
d⊥

∂x

∂
(
−d⊥

as

) , (5.11)

i.e., the molecular component is always small because of the small pre-factor |r0|/d⊥. An

even smaller Pmol is expected along the state |b-f-c〉, which has a weaker dependence on the

x-axis as shown in Fig. 5.1. Numerically we find the molecule probability remains less than

1% for |r0|/d⊥ = 0.04.

5.3 Entanglement in the broad Feshbach resonance regime

In a spherical harmonic trap, the entanglement properties for r0 = 0 have already been

studied [59]. By making use of the model from Ref. [58], we can extend the earlier results

to a multi-channel scattering model and also to a cylindrical harmonic trap. To begin with,

we approximate the wave function of the two fermionic atoms (5.2) by neglecting the small

molecular component, obtaining

|Ψ〉 =
∑
m,n

ηm,na†m↑a
†
n↓|vac〉, (5.12)

with the normalization constraint
∑

m,n |ηm,n|2 = 1. ηm,n are assumed real and symmetric

with ηm,n = ηn,m. In the single particle basis, the above becomes

|Ψ〉 =
∑
m,n

ηm,n|m1n2〉 | ↑1↓2〉 − | ↓1↑2〉√
2

. (5.13)

Such a state has both spatial and spin degrees of freedom, but the two degrees of freedom

remain factorized. We therefore adopt the von Neumann entropy as our entanglement

measure for pure states. The factorized spin degree part simply contributes ln(2), and

the total entropy becomes E = Espatial + ln(2) [18]. While non-trivial, the spatial part of

entanglement Espatial can be computed from the Schmidt decomposition of the spatial wave

function, i.e., we need to find

∑
m,n

ηm,n|m〉1|n〉2 =
∑
m

κm|φm〉1|ψm〉2, (5.14)
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with the same φm ≡ ψm, because ηm,n is symmetric. From this, the von Neumann en-

tropy is found to be Espatial = −∑
m κ2

mln(κ2
m). Numerically finding the direct Schmidt

decomposition for the 3D wave function turns out to be quite demanding. Fortunately, we

can simplify this problem to an effectively 1D Schmidt decomposition, which is discussed

in appendix B.

For the two adiabatic states |a-d-b〉 and |b-f-c〉, we have numerically evaluated their pair

entanglement. First, we consider a nearly spherical trap of λ ∼ 1. We take λ = 5/6, 7/6

and 1 in our numerical work with the results shown in Figs. 5.2 and 5.3. For both states,

we find that pair entanglement first increases to some maximal value, then decreases and

saturates to certain finite value. The overall dependence on the atom interaction strength

remains essentially the same as before [59]. We can see that the maximal entanglement

does not occur precisely at resonance for |a-d-b〉 and |b-f-c〉. It’s the trap aspect ratio and

effective range that determine the position of the maximal entanglement.
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Figure 5.2: Pair entanglement versus the atomic interaction strength at different trap
aspect ratio λ for state |a-d-b〉. Here |r0|/d⊥ = 0.04 is assumed. The dependence on r0 is
very small within the broad resonance regime.

Next, we consider two extreme cases of λ ¿ 1 and λ À 1, corresponding to the quasi-

one- and quasi-two-dimensional limits, respectively [42]. The results of pair entanglement

are shown in Figs. 5.4 and 5.5 for λ = 1/20 and λ = 20 respectively. We find that the
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Figure 5.3: The same as in Fig. 5.2 except for state |b-f-c〉.

overall trend of the curves is still increasing at first and decreasing afterwards. The pair

entanglement saturates to a lower value in the quasi-one-dimensional limit at λ = 1/20,

again because of the reduced motional state degeneracy. The results can also be recovered

by using an appropriately renormalized 1D (2D) scattering length a1D (a2D).

5.4 Some limiting cases for λ ∼ 1

We now discuss some interesting cases for −d⊥/as → ±∞ in both processes |a-d-b〉 and |b-

f-c〉. We ignore the discussions on |d〉 and |f〉 corresponding to states at resonance, because

they are much more complicated and do not allow for a simple theoretical analysis here.

The adiabatic state |a-d-b〉 corresponds to −d⊥/as → −∞ or +∞ at |a〉 or |b〉, respec-

tively. For λ = 5/6, we find

|b〉 ∝

 ∑

n=1,2

(c†nz)
2 − 2c†1zc

†
2z


 |000〉1|000〉2, (5.15)

whose spatial pair entanglement is ln(2
√

2) ≈ 1.04. Here we again follow the notation of

Ref. [58] with c†nj the creation operator for a fermionic atom indexed by n in the j-th trap

direction. State |m1m2m3〉n therefore refers to atom n in the motional state mj along the
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Figure 5.4: Entropy as function of the inverse scattering length for processes |a-d-b〉 and
|b-f-c〉 at λ = 1/20. The solid line is for |a-d-b〉, and the dashed line is for |b-f-c〉.

j-th direction. For λ = 7/6, we find

|b〉 ∝

 ∑

n=1,2;j=x,y

(c†nj)
2 − 2

∑

j=x,y

c†1jc
†
2j


 |000〉1|000〉2 (5.16)

with a pair entanglement ln(4) ≈ 1.39. For λ = 1, we find

|b〉 ∝

 ∑

n=1,2;j=x,y,z

(c†nj)
2 − 2

∑

j=x,y,z

c†1jc
†
2j


 |000〉1|000〉2 (5.17)

with a pair entanglement ln(2
√

6) ≈ 1.59. We find that the pair entanglement is always

larger at the limit of a spherical trap with λ = 1.

For the adiabatic state |b-f-c〉, we find generally that the pair entanglement at λ = 1

is well separated from λ 6= 1 because of the increased motional state degeneracy. State |c〉
corresponds to the limit of −d⊥/as → +∞, which for λ = 7/6 becomes

|c〉 ∝

 ∑

n=1,2

(c†nz)
2 − 2c†1zc

†
2z


 |000〉1|000〉2, (5.18)

which is precisely the state |b〉 for λ = 5/6 in the adiabatic state |a-d-b〉, whose pair

entanglement therefore remains the same ln(2
√

2) ≈ 1.04. This correspondence persists

also for λ = 5/6, where the state |c〉 is the same as state |b〉 for λ = 7/6 in the adiabatic
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Figure 5.5: Entropy as function of inverse scattering length for processes |a-d-b〉 and |b-f-c〉
at λ = 20. The solid line is for |a-d-b〉, and the dashed line is for |b-f-c〉.

state |a-d-b〉. The state |c〉 at λ = 1 is expressible as a more complicated linear combination

of different single particle states as

|c〉 ∝

−

∑

n=1,2;j=x,y,z

(c†nj)
4 −

∑

n,m;j 6=k

(c†mj)
2(c†nk)

2 − 6
∑

j

(c†1j)
2(c†2j)

2

+4
∑

n 6=m;j

c†mj(c
†
nj)

3 + 4
∑

n;j 6=k

c†1jc
†
2j(c

†
nk)

2 − 8
∑

j 6=k

c†1jc
†
1kc

†
2jc

†
2k


 |000〉1|000〉2, (5.19)

whose pair entanglement is 55ln(2)/24 + 7ln(3)/8− ln(5)/24 ≈ 2.48.

The reason that states |b〉 for λ = 5/6 and |c〉 for λ = 7/6 are the same is purely due to

our choice of the trap aspect ratio λ ∼ 1, so this conclusion does not hold in general. In our

case, it can be easily understood as follows. As shown in the expression of αmn, the parity

of m− n for each direction is conserved in the whole process, as is m + n. Thus, starting

from (m,n) = (0,0), for both processes |a-d-b〉 and |b-f-c〉, m + n is always even in each

direction. So the excitation along any direction j must be a multiple of 2~ωj . This amount

of excitation will be distributed between the two atoms. If λ = 5/6, the excitation along

the z direction has lower energy, so the first excited state has the total excitation energy

2~ωz. The second excited state is along the transverse directions since 2~ω⊥ < 4~ωz. For

λ = 7/6, we see the reverse situation, where the first excited state has excitation 2~ω⊥
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along the transverse directions and the second excited state along the z direction. Clearly,

this symmetry in states |b〉 and |c〉 is unambiguously based on the trap aspect ratio.

5.5 Generalization to a narrow resonance

We point out here that our current study cannot be generalized to the case of a narrow

Feshbach resonance, where the bound-state molecular component in Eq. (5.2) cannot be

simply neglected. To calculate the entanglement of the molecular component, we must

know the details of its wave function. In our current study, the details of the molecular

wave function are not important since its population is negligibly small. Actually, we do

not even know the precise form of the molecular wave function in Ref. [58]. Recall that the

spatial wave function is first approximated as being proportional to φ0(R)δ(r). This wave

function cannot be normalized, and results in a divergence of the molecular energy. In Ref.

[58], this divergence is removed by appropriate renormalization, which leaves the molecular

wave function undetermined.

If we know the details of the molecular wave function, the pair entanglement inside

the molecular component can be included by performing an analogous symmetric Schmidt

decomposition Eq. (5.14) on Eq. (5.2). The total pair correlation can then be computed

analogously in terms of the entropy of the independent Schmidt orbital expansion. Such

calculations for a narrow resonance are subjected to future study.

5.6 Conclusion

In conclusion, we have studied the pair entanglement between two fermionic atoms inside

a single optical lattice site approximated by a cylindrical harmonic trap. We thoroughly

investigated the dependence of the pair entanglement on the atom-atom interaction strength

and trap geometry along the complete BCS-BEC crossover in the broad resonance regime.

We developed a formalism capable of studying the pair entanglement including the effect of

an effective range r0 at low energy. In the limit of a broad Feshbach resonance, where the

effect of r0 becomes negligibly small, our results reduce to the theory developed before for

evaluating pair entanglement in a single open channel of two atoms without the presence of
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a bound molecular state. We find that the pair entanglement changes significantly against

atomic pair interaction because of the induced motional orbital deformations. In general,

however, the exact value of the spatial pair entanglement is also governed by the motional

state degeneracies, or the aspect ratio of the single optical lattice trap. As a rule of thumb,

we find that spherically symmetric traps generally give rise to larger pair entanglement

because of the enhanced level degeneracy due to a higher symmetry of the trap. We hope

our study will provide new insights into the applications of quantum degenerate lattice

systems to quantum information science.
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CHAPTER VI

COHERENT SPIN MIXING OF TWO ATOMS IN A

SINGLE SITE OF AN OPTICAL LATTICE

6.1 Introduction

In the previous chapters, we have studied several archetypal examples of two-body entan-

glement involving atoms without significant internal degrees of freedom. This chapter will

instead concentrate on the properties of internal degrees of freedom. This is motivated by

recent successes of coherent spin mixing inside Bose condensed atoms both in the limit of

a condensate with large number of atoms [60, 61], and the limit of many identical trapping

sites, each containing two atoms [62, 63, 64]. These experiments have generated much in-

terest in the quantum dynamics of atomic internal degrees of freedom [157, 158, 159], and

raise significant hope for the long discussed applications of atomic quantum gases to the

emerging field of quantum information science. The long spin coherence time observed rivals

the best motional state coherence ever achieved in neutral atoms [160], and is ideally suited

for quantum state processing applications, particularly when arranged with the periodically

spaced identical copies as in an optical lattice [161].

In this chapter, we consider a system consisting of two 87Rb atoms inside a cylindrical

harmonic trap, which is an extension to the original experimental setup as in Ref. [62, 63].

We will focus on the development of a complete theory for two-atom spin mixing including

a quantum treatment for their motional states, as well as the dipolar interaction. We

first discuss several widely used approximation schemes for motional states in a spherical

harmonic trap. As the dipolar effect is known to be very small in spherical traps, this

case study turns out to be an excellent choice for calibrating the strength of the small spin

exchange interaction. We find that the discrepancies spread over different approximation

schemes by up to 10%, and the most accurate results constitute about a 20% error to the

75



experimental results. This surely calls for more precise theoretical estimates for the spin

mixing process. We then consider the spin dipolar effect in a cylindrical harmonic trap.

Our calculations show that for 87Rb atom as the experiments concerned, the dipolar effect

turns out to be very important in pancake traps with large λ(≡ ωz/ωρ). This provides a

feasible method for detecting such dipolar effects through coherent spin mixing dynamics

in an optical lattice [162].

6.2 A model system

We focus on the system where spin mixing of two 87Rb atoms was recently observed [62,

63]. A 87Rb condensate is first loaded into an optical lattice with each site containing

several atoms. The lattice potential is then increased to the Mott-insulator regime so that

the tunnelling between neighboring sites is negligible. Sites with a single atom will not

contribute to the spin mixing, and the sites with more than two atoms can be selectively

emptied. We therefore restrict our study to the spin mixing dynamics in the sites containing

only two atoms. Following the usual procedure of a harmonic approximation to the trap,

we extend the trap geometry to a general cylindrical symmetry. Being bosonic with internal

spin, the interactions between two 87Rb atoms at low energy are dominated by the s-wave

scattering and the spin dipolar interaction. For 87Rb atom, the electronic spin is s = 1/2

and the nuclear spin is i = 3/2, so the hyperfine spin f can be either 1 or 2. As we

know, for two colliding spin-f particles, the interaction strength is characterized by 2f

independent scattering lengths aF , where F is the total spin of the two particles. The

particle symmetry, i.e., bosons or fermions, further restricts F to take even or odd values

between 0 and 2f , respectively. In our case, F must take even values between 0 and 2f

since 87Rb is bosonic. We thus adopt the regularized pseudopotential as the scattering

interaction with aF characterizing the scattering in different channels. The dominant spin

dipolar interaction is due to the intrinsic magnetic dipole moment of the atom, which is

related to its total angular momentum by ~µf = −gfµB
~f , with µB being the Bohr magneton

and gf the Landé g-factor. For 87Rb atom, gf = [f(f + 1) + s(s + 1)− i(i + 1)]/[f(f + 1)].

Both interactions depend on the hyperfine spin f , so we discuss spin mixing for f = 1 and
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f = 2 separately.

Before we present the detailed analysis, we briefly comment on the two types of inter-

action. We model the s-wave scattering with a contact potential, which is short range and

isotropic. For dipolar interactions, it is long range and anisotropic. A crucial fact, as pointed

out by Yi and You [163, 164], shows that the scattering length can also depend on the dipolar

interaction. To properly account for the dipolar interaction, the “dipole-normalized” s-wave

scattering length should be used instead of the “bare” s-wave scattering length [165]. For

f = 2 87Rb atom, we estimate such correction is about 0.03% with respect to the bare

scattering length, and is even smaller for f = 1. Both corrections are much less than other

errors we will discuss. Thus, for our case, effects of the dipolar interaction on the scattering

length can be completely neglected.

6.3 The f = 1 Zeeman manifold

The total spin F is 0 or 2 in this case. The total Hamiltonian can be written as H =
∑2

i=1 H
(i)
0 + Hs + Hdd + HB, with each term given by

H
(i)
0 =

[
− ~

2

2m
∇2

i +
1
2
mω2

ρ(ρ
2
i + λ2z2

i )
]

,

Hs = (g0P0 + g2P2)δ(reg)(~r1 − ~r2),

Hdd =
cd

|~r1 − ~r2|3
[
~f1 · ~f2 − 3(~f1 · r̂) · (~f2 · r̂)

]
. (6.1)

Here H
(i)
0 describes the non-interacting motion of atom i in a trap with aspect ratio λ.

Hs is the elastic scattering interaction modelled by a contact potential. It has already

been expressed in the form of different total spin F channels. Hdd is for the spin dipolar

interaction. HB accounts for the single-atom Zeeman effect. r̂ ≡ (~r1 − ~r2)/|~r1 − ~r2| is the

unit vector along the two atoms. δ(reg)(~r) ≡ δ(~r)(∂/∂r)r is the regularized pseudopotential

[41]. P0(2) is the projector onto the total spin F = 0(2) channel, which takes the form of

P0 = 1/4− ~f1 · ~f2 and P2 = 3/4+ ~f1 · ~f2. gF = 4π~2aF /m is the s-wave scattering strength,

where a0(2) is the s-wave scattering length for the combined channel of total F = 0(2).

Both a0 and a2 are fixed as we are away from any Feshbach resonance. cd = µ0g2
1µ

2
B/(4π)

characterizes the strength of the dipolar interaction. The g-factor for f = 1 is calculated to
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be g1 = −1/2.

We note that the interactions only depend on the relative coordinate and that the trap

is harmonic, which again motivates us to work in the center of mass (CM) and the relative

(rel) frame. The system Hamiltonian then becomes H = HCM + Hrel with

HCM = − ~2

2M
∇2

~R
+

1
2
Mω2

ρ(%
2 + λ2Z2), (6.2)

Hrel = H0 + Hs + Hdd + HB, (6.3)

for the CM- and rel-motion, respectively, with coordinates ~R = (~r1 + ~r2)/2 and ~r = ~r1−~r2.

M = 2m is the total mass, while µ = m/2 is the reduced mass. ~% and Z (~ρ and z) are the

transversal and longitudinal component of ~R (~r) respectively. Hrel contains several parts as

outlined below,

H0 = − ~
2

2µ
∇2

~r +
1
2
µω2

ρ(ρ
2 + λ2z2),

Hs = (c0 + c2
~f1 · ~f2)δ(reg)(~r),

Hdd =
cd

r3

[
~f1 · ~f2 − 3(~f1 · r̂) · (~f2 · r̂)

]
, (6.4)

where H0 describes the relative motional of the trap. We split Hs into spin independent

and dependent parts, with the interaction coefficients listed below

c0 =
4π~2

m

a0 + 2a2

3
, (6.5)

c2 =
4π~2

m

a2 − a0

3
. (6.6)

Without considering the dipolar interaction and the Zeeman effect, the spin dependent

scattering potential determines the magnetic ground state of the system, e.g., c2 < 0(> 0)

for a ferromagnetic (antiferromagnetic) ground state.

Due to the spin interaction term (∝ ~f1 · ~f2) in Hs, there is spin mixing between the two

spin states |mf = 0,m′
f = 0〉 and |1,−1〉. Hereafter the spin states have been symmetrized

and we have omitted the common f = 1 in the notation. The same notation will apply for

f = 2. For 87Rb atom with f = 1, the accepted scattering lengths are a0 = 101.8aB and

a2 = 100.4aB [166, 167, 168], leading to |c2/c0| ' 0.00462657, and the spin mixing dynamics

become much more sensitive to c2 than c0. It’s easy to see that the total magnetization
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is conserved in the spin mixing process. However, this is not the case for the spin dipolar

interaction, as it drives the system to other spin states, i.e., |1, 1〉, |−1,−1〉, |0, 1〉 and |0,−1〉.
We further notice that |cd/c2| ' 0.0902, which means that the dipolar interaction can be

treated as a perturbation. Thus, we assume the total magnetization is conserved, which

limits our discussion to a two-level like system. The detailed analysis of this approximation,

the relaxation due to the dipolar interaction, will be investigated later in this chapter. Under

this circumstance, HB only includes the second order Zeeman effect since the first order

Zeeman effect cancels out due to the approximate conservation of system magnetization.

For 87Rb atom, δ(B) ' ±72(~f · ~B)2 Hz/Gauss2 defined relative to the mf = 0 state, with

“+” sign corresponding to f = 1 and “−” to f = 2, respectively.

With the above simplification, the relative Hamiltonian in the subspace spanned by spin

states |0, 0〉 and |1,−1〉 can be written as

Hrel =




H0 + c0δ
(reg)(~r)

√
2c2δ

(reg)(~r) +
√

2 cd
r3 P2(cosθ)

√
2c2δ

(reg)(~r) +
√

2 cd
r3 P2(cosθ) H0 + (c0 − c2)δ(reg)(~r) + 2 cd

r3 P2(cosθ) + HB


 .(6.7)

Assuming a two-state expansion for the two-atom wave function

ψ(t) = α0,0(t)|0, 0〉ψ0,0(~r1, ~r2) + α1,−1(t)|1,−1〉ψ1,−1(~r1, ~r2), (6.8)

the spin mixing element can be calculated as

~Ω
2

=
∫

d~r1

∫
d~r2ψ

∗
0,0(~r1, ~r2)〈0, 0|(Hs + Hdd)|1,−1〉ψ1,−1(~r1, ~r2). (6.9)

The effective spin mixing frequency is defined as feff ≡ Ωeff/(2π), where the effective angular

Rabi frequency Ωeff =
√

∆2 + Ω2 with ∆ = (E1,−1 − E0,0)/~.

To our knowledge, the diagonalization of the relative Hamiltonian is almost impossible

due to the entangling of the spin and spatial degrees of freedom even without the dipolar

term (cd = 0). Thus, we simply replace the true motional states of |mf , m′
f 〉 with the

ground state of 〈mf ,m′
f |Hrel|mf ,m′

f 〉, i.e., neglect the off-diagonal spin mixing interaction.

This approximation is valid as long as |c2/c0| ¿ 1, which is the case for 87Rb atom.
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6.4 Approximations for motional states

The observed quantity in spin mixing dynamics is the effective Rabi frequency, which can be

measured with relatively high precision (∼ 0.1 Hz). However, the experimental data deviate

from the simple theoretical estimate by up to 10% as shown in Refs. [62, 63]. One possible

source of error is from the approximation of the motional wave function. To investigate it in

detail, we study the spin mixing in various approximation schemes. We focus on a spherical

harmonic trap where the dipolar effect turns out to be negligible, as this allows for a clear

discussion of the motional state approximations. The harmonic trap is approximated from

a true lattice potential V (~r) = sErsin2(kr) with s = 40 and λL = 2π/k = 840nm as in Refs.

[62, 63], which we will consistently use in our numerical simulation. Here k is the wave vector

of the trap laser and Er = h2/(2mλ2
L) is the recoil energy. The trap frequency is calculated

to be ω = 2
√

sEr/~ ' (2π)41126.3 Hz, which leads to a trap width σ =
√
~/(µω) = 0.0752

µm. The dimensionless scattering lengths are a0/σ ' 0.0716559 and a2/σ ' 0.0706704.

The average density with a Gaussian mode function is estimated to be

〈n〉0 = 2
∫
|φ|4d~r

=
1√

2π3/2w3
. (6.10)

Thus for 87Rb atoms in the f = 1 manifold, c0〈n〉0/~ ' (2π)6589 Hz, c2〈n〉0/~ ' (2π)(−30)

Hz, and cd〈n〉0/~ ' (2π)2.71 Hz, all much less than the trap level spacing. The relative

strengths are c2/c0 ' −0.00462657 and cd/c2 ' −0.0902. The former ratio is the origin of

c2 sensitive spin mixing dynamics. The latter ratio allows for a perturbative treatment of

the dipolar interaction. In the following, we will discuss various approximation schemes for

the motional states, labelled as φ0, φ(v), φc, φ(e), and |ν〉, respectively.

6.4.1 φ0

This is the approximation used in Refs. [62, 63]. The motional states for spin states |0, 0〉
and |1,−1〉 are both assumed to be the ground state of H0, i.e.,

ψ0,0(~r) = ψ1,−1(~r) = φ0(~r) =
1

π3/4σ2/3
e−

r2

2σ2 (6.11)
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with σ =
√
~/(µω). This approximation is developed because the motional wave function

is insensitive to the relatively small scattering terms in both spin states. Since the contact

interaction is only important near r = 0, the dimensionless spin-independent term c̃0 =

c0/(π3/2~ωσ3) = 0.08 and the even smaller spin-dependent term |c2/c0| = 0.0046 only make

the true motional states deviate negligibly from φ0. Thus, this non-interacting basis is a

good approximation. The bare detuning can be calculated as ∆ = 〈φ0| − c2δ(~r)|φ0〉 =

−c2/(π3/2~σ3). The bare Rabi frequency is Ω = |2〈φ0|
√

2c2δ(~r)|φ0〉| = 2
√

2|∆|. So the

effective Rabi frequency feff =
√

∆2 + Ω2/(2π) = 3|c2|/(2π5/2~σ3). This linear relation

allows us to extract the absolute value of the scattering length difference directly from

the experimentally measured Rabi frequency. The sign of this difference can be further

determined by measuring the B-field dependence, which amounts to a positive shift in

E1,−1. If c2 < 0, the Rabi frequency increases monotonically with B, while for c2 > 0, the

effective Rabi frequency first decreases with B till some finite value Bc (determined by c2),

and increases afterwards. For f = 1 87Rb atom with a predicted c2 < 0, we expect that the

effective Rabi frequency increases monotonically with B, which indeed has been confirmed

in the experiments [63, 64].

6.4.2 φ(v)

To find a more accurate motional ground state, we use the Gaussian ansatz for each spin

state |mf ,m′
f 〉 with the widths as variational parameters

ψmf ,m′
f
(~r) =

1

π3/4w
3/2
mf ,m′

f

exp


− r2

2w2
mf ,m′

f


 . (6.12)

Such an approach has been used extensively in the past [163, 164]. The energy functional

is

Emf ,m′
f

~ω
=

3
4


 σ2

w2
mf ,m′

f

+
w2

mf ,m′
f

σ2


 +

cmf ,m′
f

π3/2~ωw3
mf ,m′

f

(6.13)

with c0,0 = c0 and c1,−1 = c0 − c2. The actual width wmf ,m′
f

is found by minimizing the

energy functional for each spin state separately. Using the same trap parameters, we find

w0,0/σ ' 1.036 and w1,−1/σ ' 1.037, respectively. The variational widths are larger than
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the trap width σ because the two atoms are repelling each other overall. The tiny deviation

of the ansatz wave functions from the harmonic ground state reinforces the validity of the

φ0 approximation. The bare Rabi frequency can be expressed as

Ω =
2
√

2|c2|
π3/2~(w0,0w1,−1)3/2

. (6.14)

Compared with the φ0 approximation, the calculated effective Rabi frequency is not strictly

linear with c2 because the motional wave functions also depend on c2. However, we find

that the nonlinearity is very weak based on numerical work, again due to the fact that

|c2/c0| ¿ 1.

6.4.3 φc

A mean field approach is sometimes used in the literature where the two-atom motional

state ψmf ,m′
f
(~r1, ~r2) is approximated by φ

mf ,m′
f

c (~r1)φ
mf ,m′

f
c (~r2) as for a two-atom condensate

with φ
mf ,m′

f
c (~r) obtained from the corresponding Gross-Pitaevskii equation

[
− ~

2

2m
∇2

~r +
1
2
mω2r2 + Vint[φc]

]
φc(~r) = µcφc, (6.15)

with Vint = c0|φc(~r)|2, or Vint = (c0 − c2)|φc(~r)|2 for state |0, 0〉 and |1,−1〉, respectively.

We still use a Gaussian ansatz for each spin state as in the φ(v) approximation. In this

single-atom picture, the calculated widths become w0,0(1,−1)/Σ = 1.01910(1.01918) with

Σ = σ/
√

2. This means that the effective repulsion between the two atoms is weaker

compared to the φ(v) approximation. Because we are dealing with two separate atoms, the

bare detuning is now twice that of the single atom detuning, i.e., ∆ = 2(ε1,−1 − ε0,0)/~.

The bare Rabi frequency is found to be

Ω =

∣∣∣∣∣−
2
√

2c2

~

∫
d~rφ(0,0)

c (r)φ(0,0)
c (r)φ(1,−1)

c (r)φ(1,−1)
c (r)

∣∣∣∣∣

=
2
√

2|c2|
π3/2~(w2

0,0 + w2
1,−1)3/2

. (6.16)

6.4.4 φ(e)

The spectrum of H0 +cmf ,m′
f
δ(reg)(~r) can be solved exactly [41]. This prompts us to use the

corresponding analytic ground state as the motional wave function. Using dimensionless
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length (σ ≡
√
~/(µω)) and energy (~ω) scales appropriate for the harmonic trap, the

solutions are given by (omitting the constant quadratic Zeeman shift)

Emf ,m′
f

= 2νmf ,m′
f

+
3
2
,

π

c̃mf ,m′
f

=
Γ(−νmf ,m′

f
)

Γ(−νmf ,m′
f
− 1

2)
,

ψmf ,m′
f
(~r) = Amf ,m′

f
e−

r2

2 U

(
−νmf ,m′

f
,
3
2
; r2

)
Y00(θ, φ), (6.17)

where c̃mf ,m′
f

= cmf ,m′
f
/(~ωσ3) and the normalization constant Amf ,m′

f
is given by

Amf ,m′
f

=

√
2
π

[
Γ(−νmf ,m′

f
)Γ(−νmf ,m′

f
− 1

2)

F(−νmf ,m′
f
)−F(−νmf ,m′

f
− 1

2)

]1/2

. (6.18)

We expand the above confluent hypergeometric function U around r → 0, finding that

U

(
−ν,

3
2
; r2

)
→

√
π

Γ(−ν)r
− 2

√
π

Γ(−ν − 1/2)

∝ 1− c̃

2πr

= 1− c

2π~ωσ3

σ

r

= 1− 4π~2a/m

2π~ωσ2

1
r

= 1− a

r
, (6.19)

consistent with the result in the homogeneous space as the trap effect is negligible for r → 0.

Thus, the bare Rabi frequency can be calculated as

Ω =

∣∣∣∣∣−
2
√

2c2

~
〈ψ0,0|δ(reg)|ψ1,−1〉

∣∣∣∣∣

=

∣∣∣∣∣
2
√

2c2A0,0A1,−1

~Γ(−ν0,0 − 1
2)Γ(−ν1,−1 − 1

2)

∣∣∣∣∣ . (6.20)

Here the regularization is necessary to remove the divergence. The analytic wave function

of ψ0,0 is compared to that using φ(v) approximation in Fig. 6.1.

6.4.5 |ν〉

All of the above approximations neglect the coupling terms in the estimation of the motional

ground state, so the motional state used is actually not the true motional state of each spin
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Figure 6.1: Comparison of the wave functions. The solid line is for the analytic result, and
the dash-dotted line is for the φ(v) approximation. All other gaussian ansatz wave functions
(except φc) are almost indistinguishable from that of the φ(v) approximation.

state. To treat this problem more accurately, we expand the motional state into the complete

basis of H0 + c0δ
(reg)(~r), labelled as |ν〉. The relative wave function is then written as

|Ψ(t)〉 =
∑

ν

(αν(t)|mf = 0,m′
f = 0〉|ν〉+ βν(t)|mf = 1,m′

f = −1〉|ν〉). (6.21)

In the interaction picture, the coupled equations become

i~α̇ν =
√

2c2

∑

ν′
Γν,ν′e

2iωt(ν−ν′)βν′ ,

i~β̇ν = −c2

∑

ν′
Γν,ν′e

2iωt(ν−ν′)βν′ +
√

2c2

∑

ν′
Γν,ν′e

2iωt(ν−ν′)αν′ + δ(B)βν . (6.22)

Here Γν,ν′ is proportional to the coupling matrix element

Γν,ν′ ≡ 〈ν|δ(reg)(~r)|ν ′〉

=
[(

∂

∂r
rΨν(~r)

)(
∂

∂r
rΨν′(~r)

)]

r→0

=
2~ω
c0

(
1

F(−ν)−F(−1/2− ν)

)1/2 (
1

F(−ν ′)−F(−1/2− ν ′)

)1/2

. (6.23)

We then evolve the system from the initial state |0, 0〉|0〉. The population of P0,0(t) ≡
∑

ν |αν(t)|2 in the spin state |0, 0〉 and P1,−1(t) ≡
∑

ν |βν(t)|2 = 1 − P0,0(t) in |1,−1〉, can

be independently obtained from a spin selective measurement. In Fig. 6.2, we show the
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time evolution for both P0,0 and P1,−1 at an external magnetic field of B = 0.4 Gauss. We

see that almost perfect oscillations exist in each spin state. This is true again due to the

fact |c2/c0| ¿ 1, which is the basis of all the above approximate treatment schemes.
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Figure 6.2: Population of different spin states in the spin mixing calculated by complete
basis expansion. The solid line is for P0,0, while the dashed line is for P1,−1. The magnetic
field is fixed at 0.4 Gauss.

6.4.6 Numerical results

We calculate spin mixing frequency under various approximations with the results shown

in Table 6.1. We have chosen the scattering lengths as the accepted ones, a0 = 101.8aB

and a2 = 100.4aB. The B-field is 0.4 Gauss. The experimental value of f
(exp)
eff is found

to be around 47 Hz in this case [63]. We take the result using a complete basis expansion

as the “true” value and compare other frequencies to it. From the results in Table 6.1,

we comment on three points. First, different theoretical estimates can constitute errors up

to about 10%. The approximation in Ref. [63] thus has a noticeable error. Second, the

experimental result is far away from the true value. Even after including the anharmonic

correction, this result still does not agree with the true value very well. Third, the spin

mixing frequencies with φ(e) and |ν〉 approximations are very close to each other, thus both

motional states are almost the ground state of the relative Hamiltonian.

To reveal the scattering length dependence on the spin mixing frequency for various
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approximation schemes, we present our numerical results of the effective Rabi frequency

versus c2 ∝ ∆a[≡ a2−a0] in Fig. 6.3. We fix c0 to the commonly accepted value, since spin

mixing dynamics are insensitive to c0. From Fig. 6.3, we can extract the scattering length

difference ∆a from the corresponding effective Rabi frequency measurement.

Table 6.1: Spin mixing frequency using various approximation schemes at B = 0.4 Gauss.
“EXP” stands for the experimental value. All of the errors are defined relative to that using
the |ν〉 approximation.

φ(e) |ν〉 φc φ0 φ(v) EXP
feff(Hz) 59.03 58.93 55.32 54.73 53.35 47
error 0.17% 0% 6.13% 7.13% 9.47% 20.24%

40 45 50 55 60 65 70
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∆ 
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B
)
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++ + +

Figure 6.3: Scattering length difference versus spin mixing frequency. From left to right,
solid lines represent φ(v), φc, and φ(e). The dash-dot line stands for φ0. Results for ap-
proximation |v〉 is almost indistinguishable from that of φ(e). The spin mixing frequencies
at predicted scattering length difference for different approximations are labelled with “+”.
The experimental value is located on the vertical solid line. The vertical dotted lines mark
the boundary of the estimated experimental error.

From Fig. 6.3, we can see that the scattering length difference is very sensitive to the

spin mixing frequency. A 3.2 Hz frequency error can cause a 0.1aB error in the scattering

length difference. This surely calls for a more precise measurement for the spin mixing

frequency. We also note that the theoretical values are almost all linear in ∆a, again due
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to the fact that |c2/c0| ¿ 1.

6.5 Cylindrical traps with dipolar interaction

While the dipolar effect is negligible in a spherical harmonic trap, it may be enhanced

in a cylindrical harmonic trap [69]. To calibrate the dipolar effect in such a trap with

λ = ωz/ωρ, we adopt the φ(v) approximation. We take a Gaussian ansatz with its widths

wρ1/z1 as variational parameters

φ1,−1(~r) =
1

π3/4(w2
ρ1wz1)1/2

exp

(
−x2 + y2

2w2
ρ1

− z2

2w2
z1

)
. (6.24)

The cylindrically symmetric z-axis is chosen as the quantization axis for spin dipoles. The

relative energy functional (omitting the constant quadratic Zeeman shift) for minimization

then becomes

E

~ωρ
=

1
4

(
2

a2
ρ

w2
ρ1

+
a2

ρ

w2
z1

)
+

1
4

(
2
w2

ρ1

a2
ρ

+ λ2 w2
z1

a2
ρ

)

+
c0 − c2

π3/2w2
ρ1wz1~ωρ

− 2
3
√

π

cd

w2
ρ1wz1~ωρ

χ(κ1), (6.25)

with

χ(κ) =
2κ2 + 1− 3κ2H(κ)

2(κ2 − 1)
+ (κ2 − 1)H(κ),

H(κ) =
tanh−1

√
1− κ2

√
1− κ2

. (6.26)

az =
√
~/(µωz) is the axial width of the trap, and κ1 = wρ1/wz1 is the aspect ratio of the

variational ground state, which is not spherical (or κ1 6= 1) even in a spherical harmonic trap

with λ = 1 because of the dipolar interaction [163, 164]. The functions χ(κ) and H(κ) are

plotted in Figs. 6.4 and 6.5, respectively. φ0,0(~r) is obtained from the result of φ1,−1(~r) by

excluding the dipolar interaction or taking cd = 0 and adjusting to its own s-wave scattering

strength by taking c2 = 0. The corresponding widths are denoted as wρ0/z0 and the ratio

as κ0 = wρ0/wz0.

We have used the anisotropic pseudopotential in the evaluation of the dipolar term in

Eq. (6.25). In momentum space, the pseudopotential is given by [169]

v(~k,~k′) = −
√

5~2asd

2π2m

[
P2(cosθk′) +

(
k

k′

)2

P2(cosθk)

]
, (6.27)
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Figure 6.4: The graph of H(κ).

with

asd =
√

2
12
√

5
mcd

~2
. (6.28)

Because the complete motional wave function is Gaussian shaped, we find that 〈φ1,−1|Hdd|φ0,0〉
can also be evaluated analytically. The bare Rabi frequency is calculated to be

~
Ω
2

=

∣∣∣∣∣
1
3

√
2
π

cd

(
1

wρ1w
1/2
z1 wρ0w

1/2
z0

2κ2
0 + 1− 3κ2

0H(κ0)
2(κ2

0 − 1)
+

wρ1wρ0

w
9/2
z1 w

1/2
z0

κ2
1 − 1
κ4

1

H(κ0)

)∣∣∣∣∣ .(6.29)

In Fig. 6.6, we show the dependence of feff on the trap aspect ratio λ at an exter-

nal magnetic field of B = 0.1 Gauss. To facilitate a fair comparison, we have fixed the

geometric average of the trap frequencies (ω2
ρωz)1/3 to the value for the spherical trap of

ωρ = ωz = (2π)41.1 kHz [63]. From Fig. 6.6, we can see that the dipolar induced shift

(frequency of solid line minus dotted line) based on various approximation schemes is much

larger. Furthermore, it remains rather stable. Thus we conclude that, although the different

approximations may not lead to very accurate motional states, the resulting Rabi frequency

is highly accurate. In fact, after careful comparison, we find that the dipolar induced shifts

from different approximation schemes differ by less than 1%, which is much less than the

estimated noise.

In Fig. 6.7, we show the B-field dependence of feff . Based on the current experimental
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Figure 6.5: The graph of χ(κ).

sensitivity, dipolar effects should be detectable for λ > 3 and can constitute a more than

10% increase in feff . They are minimized for a spherical trap as shown in Fig. 6.7 with an

actual shift of about 10−6 or less for the experiment of Ref. [63].

6.6 Spin relaxation processes

With the dipolar interaction, the conservation of the total magnetization is only approxi-

mately valid. To include spin relaxation in the spin mixing dynamics, we need to calculate

the full system dynamics in the spin space spanned by all the possible basis |e1〉 = |0, 0〉,
|e2〉 = |1,−1〉, |e3〉 = |1, 1〉, |e4〉 = | − 1,−1〉, |e5〉 = |0, 1〉, and |e6〉 = |0,−1〉. The spin

states with different magnetization can only be coupled by the dipolar interaction. The

relative Hamiltonian in the above spin basis has a 6×6 structure to the first approximation

when each element has only motional dependence. We list the non-trivial matrix elements
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Figure 6.6: The aspect ratio dependence of feff computed with the three approximation
schemes as labelled. The solid lines include the dipolar interaction, while the dashed-dot
lines are the corresponding ones without the dipolar interaction. The geometric average of
the trap frequency is fixed at (ω2

ρωz)1/3 = (2π)41.1 kHz.

in the following (〈ei|H|ej〉 = 〈ej |H|ei〉∗):

〈e1|H|e1〉 = H0 + c0δ
(reg)(~r),

〈e2|H|e1〉 =
√

2c2δ
(reg)(~r) +

√
2
cd

r3
P2(cosθ),

〈e3|H|e1〉 = −
√

24π

5
cd

r3
Y2,−2(θ, φ),

〈e4|H|e1〉 = −
√

24π

5
cd

r3
Y2,2(θ, φ),

〈e2|H|e2〉 = H0 + (c0 − c2)δ(reg)(~r) + 2
cd

r3
P2(cosθ),

〈e5|H|e2〉 = −
√

12π

5
cd

r3
Y2,−1(θ, φ),

〈e6|H|e2〉 = −
√

12π

5
cd

r3
Y2,1(θ, φ),

〈e3|H|e3〉 = H0 + (c0 + c2)δ(reg)(~r)− 2
cd

r3
P2(cosθ),

〈e5|H|e3〉 =

√
24π

5
cd

r3
Y2,1(θ, φ),

〈e4|H|e4〉 = H0 + (c0 + c2)δ(reg)(~r)− 2
cd

r3
P2(cosθ),

〈e6|H|e4〉 =

√
24π

5
cd

r3
Y2,−1(θ, φ),

〈e5|H|e5〉 = H0 + (c0 + c2)δ(reg)(~r) +
cd

r3
P2(cosθ),
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Figure 6.7: The B-field dependence of feff computed within the φ(v) approximation for
λ = 3. The solid line includes the dipolar interaction while the dashed-dot line does not.
Here, unlike in Fig. 6.6, we fix ωρ = (2π)41.1 kHz.

〈e6|H|e5〉 = −
√

24π
5

cd

r3
Y2,2(θ, φ),

〈e6|H|e6〉 = H0 + (c0 + c2)δ(reg)(~r) +
cd

r3
P2(cosθ).

Yl,m(θ, φ) are the usual spherical harmonics. In a spherical harmonic trap, we choose the

eigenstates of 〈e1|H|e1〉, labelled as |ν〉, as the complete motional basis. In the diagonaliza-

tion procedure, we have used the fact that Lz + Fz is a conserved quantity [76]. This can

be easily seen from the expression Hdd ∝
∑2

q=−2(−1)qY
(2)
−q [F1 ⊗ F2]

(2)
q [170]. We consider

the initial wave function as |e1〉|ν = 0〉. It implies Lz = 0 and Fz = 0, which rules out

the unmatched basis, i.e., those basis states with Lz + Fz 6= 0. Since the dipolar interac-

tion is weak, we first use perturbation methods to estimate the transition amplitude, e.g.,

|e2〉 = |1,−1〉 ↔ |e5〉 = |0, 1〉. The energy detuning is about ~ω, and the dipolar interaction

about cd/a3
ho. With the help of the first order perturbation approach, we estimate the tran-

sition amplitude as ∼ cd/(a3
ho~ω) ∼ 10−4. Thus, starting from spin states in the manifold

|e1〉 and |e2〉, the probability outside this manifold is on the order of 10−8.

To accurately calculate the relaxation rate, we need to study the full system dynamics.

We first carry out numerical simulation for a vanishing magnetic field. We evolve the system

from state |e1〉|ν = 0〉, and find the almost perfect Rabi oscillation within the manifold |e1〉
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and |e2〉. The wave function at any time t can be written as

Ψ(t) =
6∑

i=1

∑
p

αi,p|ei〉|p(i)〉. (6.30)

|p(i)〉 is the motional eigenstate for spin state |ei〉 which may have angular dependence. The

population outside this spin manifold is denoted as Pout ≡
∑6

i=3

∑
p |αi,p|2. The numerical

results are shown in Fig. 6.8. We can see that Pout is typically very small, with the maximal

probability less than 10−6 in the first oscillation period.
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Figure 6.8: The spin relaxation due to the dipolar interaction is shown for the first oscil-
lation period. The trap parameters are the same as before. The external B-field is 0.

At finite values of the B-field, except for accidental resonances when other spin states

in higher motional states are shifted into near resonance with the two-state doublet in the

ground motional state, the linear Zeeman effect generally leads to large detunings, further

validating the approximation. The pictorial illustration is shown in Figs. 6.9 and 6.10,

for the off-resonance case (B = 0) and the on-resonance case (B = Bc ' ~ω/(µBgfmF )),

respectively. Even at accidental resonances, the total population out of the two-state doublet

is found to be only less than 10−3 for a spherical trap, as shown in Fig. 6.11.

For a cylindrical trap, we use the same technique as mentioned above. We find that

the leakage is only several times enhanced and thus can be neglected. We conclude that

the spin relaxation is always negligible in the typical cases we consider. This conclusion is
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~hω/(2π) 

|0,1〉 φ
0;1;−1

|1,−1〉 ψ
0;0;0

|0,0〉 ψ
0;0;0

Figure 6.9: Illustration of some energy levels at B = 0. The detuning between the spin
state |0, 1〉 and the two-state doublet of |0, 0〉 and |1,−1〉 is about ~ω. ψ0;0;0 is the motional
ground state, and φ0;1;−1 is the first excited motional state. Both are expressed in the
spherical coordinate. The graph is not drawn to scale.

found to remain true for f = 2.

6.7 The f = 2 Zeeman manifold

We now consider two 87Rb atoms with f = 2. In this case, three s-wave scattering lengths

aF (F = 0, 2, 4) are required to describe the collisional process with each parameter corre-

sponding to the scattering in the total spin F channel. The phase diagram for the magnetic

ground state of a condensate has been investigated in Ref. [171]. In addition to the fer-

romagnetic and antiferromagnetic phase as in f = 1, the cyclic phase can also arise. The

extraction of the scattering length differences is more complicated as it requires frequency

measurements of spin mixing dynamics in two different spin channels [64]. The experi-

mental results in Ref. [64] favor the antiferromagnetic ground state, but the error bars

touch the phase boundary to the cyclic phase. Thus, the extraction of the scattering length

differences from frequency measurements should also consider the error due to motional

approximation. Similar analysis can be done as in the f = 1 case and the error due to the

motional approximation is found to be of the same order. So we put our emphasis on the

dipolar effect and omit the analysis on the motional state approximation here.

The total magnetization is still assumed to be conserved as the dipolar relaxation is
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0;1;−1
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|0,0〉 ψ
0;0;0

Figure 6.10: Illustration of some energy levels at B = Bc. The spin state |0, 1〉 is brought
into near resonance with the two-state doublet of |0, 0〉 and |1,−1〉.

negligible. Different from the f = 1 case, there are more possibilities in the spin mixing

dynamics for f = 2. For example, starting from |0,−2〉, the system evolves in the spin

space spanned by |0,−2〉 and |−1,−1〉, which resembles the two-level Rabi oscillation as in

f = 1. If it starts from |0, 0〉, the system evolves in the spin space spanned by |0, 0〉, |1,−1〉
and |2,−2〉, which has a three-level structure. In this case, there is an obvious deviation

from pure sinusoidal oscillation, as for a two-level system.

Analogous to the case of f = 1, we can separate the total Hamiltonian into the center

of mass (CM) and the relative (rel) motion H = HCM + Hrel. Different from that in f = 1,

the scattering interaction has three channels

Hs = (g0P0 + g2P2 + g4P4)δ(reg)(~r), (6.31)

with gF = 4π~2aF /m (F = 0, 2, 4). PF is the projector onto the total spin F channel. It

can also be written as Hs = c0 + c1
~f1 · ~f2 + c2S0, where S0 is the projector onto the singlet

subspace [171]. The respective parameters are listed below

c0 =
4π~2

m

4a2 + 3a4

7
,

c1 =
4π~2

m

a4 − a2

7
,

c2 =
4π~2

m

5(7a0 − 10a2 + 3a4)
7

. (6.32)
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Figure 6.11: The spin relaxation due to the dipolar interaction is shown for the first
oscillation period. The trap parameters are the same as before. The external B-field is
chosen to be at near resonance with the two-state doublet in the ground motional state.

Another useful representation is to express the singlet operator as [172]

S0 =
1
3

[
(~f1 · ~f2)2 − 1

]
. (6.33)

For f = 2 87Rb atom, the most recent scattering lengths are a0 = (87.93 ± 0.2)aB, a2 =

(91.28± 0.2)aB and a4 = (98.98± 0.2)aB [64], which are used in our numerical calculation.

The Landé g-factor is g2 = −g1 = 1/2, so cd is the same as in the f = 1 case.

6.7.1 | − 1,−1〉 and |0,−2〉

First we consider the spin mixing dynamics between states |−1,−1〉 and |0,−2〉, where the

procedure parallels that of f = 1 considered earlier. In the Hilbert space spanned by the

spin states | − 1,−1〉 and |0,−2〉, the scattering potential is given by



c0 + c1 2
√

3c1

2
√

3c1 c0


 δ(reg)(~r), (6.34)

and the dipolar interaction is

cd

r3
P2(cosθ)




−2 2
√

3

2
√

3 0


 . (6.35)
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Similar to the f = 1 case, we use a Gaussian ansatz to calculate the effective Rabi

frequency. The numerical results are shown in Figs. 6.12 and 6.13, respectively. We can see

that the dipolar effect is enhanced to the same order for both λ ¿ 1 and λ À 1, with the

latter of λ = 10 having an even stronger dipolar effect than the former of λ = 1/10. The

spin dipolar interaction induces a frequency shift of about 13 Hz for λ = 3 and λ = 1/4 at a

magnetic field B = 0.4 Gauss. However, the relative shift becomes small compared to that

in f = 1. The B-field dependence of feff shows different behavior from that of the f = 1

case: the dipolar interaction lowers (raises) the frequency for λ > 1 (λ < 1).
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B=0.4 (Gauss) 

Figure 6.12: The aspect ratio dependence of feff computed within the φ(v) approximation.
The solid line includes the dipolar interaction, while the dashed line does not. Here we fix
the geometric average of the trap frequency (ω2

ρωz)1/3 = (2π)41.1 (kHz).

6.7.2 |0, 0〉, |1,−1〉 and |2,−2〉

Different from the two-level system, we consider spin mixing in the three-state manifold

of |0, 0〉, |1,−1〉, and |2,−2〉. In the basis order of |0, 0〉, |1,−1〉 and |2,−2〉, the matrix
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Figure 6.13: The B-field dependence of feff computed within the φ(v) approximation. The
solid lines include the dipolar interaction, while the dashed lines do not. The solid and
dashed lines for λ = 1 are indistinguishable from the figure. Here we fix ωρ = (2π)41.1
(kHz).

elements of the scattering potential Hs are given by

Hs,11 =
1
35

(7g0 + 10g2 + 18g4)δ(reg)(~r),

Hs,22 =
1
35

(14g0 + 5g2 + 16g4)δ(reg)(~r),

Hs,33 =
1
35

(14g0 + 20g2 + g4)δ(reg)(~r),

Hs,12 = Hs,21 =
√

2
35

(−7g0 − 5g2 + 12g4)δ(reg)(~r),

Hs,13 = Hs,31 =
√

2
35

(7g0 − 10g2 + 3g4)δ(reg)(~r),

Hs,23 = Hs,32 =
1
35

(−14g0 + 10g2 + 4g4)δ(reg)(~r). (6.36)

The matrix form of the spin dipolar term is

cd

r3
P2(cosθ)




0 3
√

2 0

3
√

2 2 2

0 2 8




. (6.37)

To grasp the essential physics of the spin mixing dynamics in this three-level system, we

first use the simplest harmonic ground state as the motional state for each spin state, and

neglect the dipolar interaction in a spherical trap. Following the discussion of Ref. [64], the
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interaction Hamiltonian in the same basis order is

Hs =
~
2




0 Ω1 0

Ω1 2δ1 Ω2

0 Ω2 2δ2




, (6.38)

assuming the direct coupling between |0, 0〉 and |2,−2〉 can be ignored due to much larger

detuning. δi and Ωi are the detuning and coupling strength for each process respectively.

To obtain the Rabi frequency, we need the eigenvalues of Hs, which can be determined

straightforwardly from the equation

λ3 − (δ1 + δ2)λ2 +
(

δ1δ2 − Ω2
1

4
− Ω2

2

4

)
λ +

Ω2
1

4
δ2 = 0. (6.39)

The solutions are given by

λ0 =
1
3

(
δ1 + δ2 + Ω̃cos

ζ

3

)
,

λ+ =
1
3

(
δ1 + δ2 + Ω̃cos

2π − ζ

3

)
,

λ− =
1
3

(
δ1 + δ2 + Ω̃cos

2π + ζ

3

)
, (6.40)

where

Ω̃ =
√

3(Ω2
1 + Ω2

2) + 4(δ2
1 − δ1δ2 + δ2

2),

ζ = 2π − arccos
[

1
Ω̃3

[9(Ω2
1 + Ω2

2)− 4(2δ1 − δ2)(2δ2 − δ1)]− 27Ω2
1δ2

]
. (6.41)

Obviously, if the magnetic field is large enough ( δ2 À δ1 due to the stronger Zeeman effect

of |2,−2〉), the transitions from |0, 0〉 and |1,−1〉 to |2,−2〉 will be greatly suppressed. In

this case, the system dynamics behave like that of a two-level system, with the angular

frequency

lim
δ2Àδ1

(λ0 − λ+) =
√

Ω2
1 + δ2

1 . (6.42)

Numerically, we estimate the B-field above which the system reduces to a two-level one is

about 0.6 Gauss [62].

Including the dipolar interaction, we can address this problem more accurately by using

the Gaussian ansatz for each spin state. We consider a more general cylindrical harmonic
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trap. The corresponding eigenvalues are still denoted as λ̃i, i = 0,±. The spin mixing

frequency between spin states |0, 0〉 and |1,−1〉 is then feff = (λ̃0−λ̃+)/(2π). The numerical

results are shown in Fig. 6.14. We can see that the B-field dependence of feff obviously

deviates from that of two-level system considered earlier in Fig. 6.7. We find the dipolar

interaction becomes detectable in a pancake shape trap with λ > 1. For λ = 3, the dipolar

interaction constitutes a maximal frequency difference around 25 Hz.
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Figure 6.14: The spin mixing frequency between spin states |0, 0〉 and |1,−1〉 in a cylindrical
harmonic trap. We fix ωρ = (2π)41.1 (kHz). The solid lines include the dipolar interaction,
and the dashed lines do not.

We briefly summarize the effect of dipolar interaction in the f = 1 and f = 2 case.

The dipolar interaction is normally stronger by a factor of two in magnitude along the

direction of the dipoles (favored by the λ < 1 geometry) in comparison to the perpendicular

direction (favored when λ > 1). Our results on the spin mixing frequency, however, reveal

a completely opposite trend. We find relatively larger (smaller) dipolar effects for λ > 1

(< 1). This can be easily understood as follows. For the f = 1 case, the dipolar term

Hdd is positive (negative) for λ < 1 (> 1), thus destructively (constructively) adding to

the (negative) c2 term in Eq. (6.9). For the f = 2 case, the same reasoning applies

despite the opposite dipolar interaction in spin state | − 1,−1〉. The dipolar effect becomes

constructively enhanced for λ > 1 because the c1 (corresponding to c2 in f = 1) is positive

in f = 2.
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6.8 Conclusion

In conclusion, we have studied spin mixing between two 87Rb atoms trapped in a single

optical lattice site. The mixing dynamics of different spin states come from the s-wave in-

teraction between the two atoms. Thus, the spin mixing frequency depends on the motional

wave function of each spin state. We have shown the dependence of spin mixing frequency

on various approximations of the motional states. We find that in a spherical harmonic

trap, the motional state approximated as the trap ground state causes an error of about

7% of the most accurate theoretical estimate of the spin mixing frequency. The scattering

length difference, which is used to identify the magnetic ground state of the system, can be

extracted from the spin mixing frequency measurements. The experiments have confirmed

that f = 1 87Rb atom is ferromagnetic. The f = 2 87Rb atom favors antiferromagnetic

phase. However, the error bar touches the boundary between the antiferromagnetic and

cyclic phase, which calls for more precise measurements to unambiguously determine the

magnetic ground state of the f = 2 87Rb atomic system. For a more complete descrip-

tion, we have also included the spin dipolar interaction. While the effects of the dipolar

interaction is typically small, and can be ignored completely for spherical harmonic traps,

our calculations show that they become observable inside cylindrical harmonic traps, es-

pecially for oblate shaped traps in the limit of λ > 3. This is due to the fact that the

spin exchange interaction c2 is extremely small for 87Rb atom, thus making the spin dipole

induced dynamics relatively strong in comparison. Our theoretical studies suggest a new

way to observe the dipolar effect in atomic systems. We hope this study will stimulate

experimental efforts aimed at observing interesting dipolar effects in spin mixing.
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APPENDIX A

EXPANDING THE WAVE FUNCTION OF CM AND

RELATIVE MOTIONS TO SINGLE PARTICLE BASIS

STATES IN 1D AND 3D HARMONIC TRAPS

First we consider the two-boson solution inside a 1D harmonic trap, we note that

N
∑
pq

1 + (−1)p+q

2
(−1)(p−q)/2Γ(p+q+1

2 )
(2νe − p− q)

√
p!q!

φp(x1)φq(x2)

=
∑
pq

1 + (−1)p+q

2
(−1)(p−q)/2Γ(p+q+1

2 )
(2νe − p− q)

√
p!q!

e−x2
1/2

√
2pp!

√
π

Hp(x1)
e−x2

2/2

√
2qq!

√
π

Hq(x2)

=
N√
π

∑

Kq

(−1)K(−1)qΓ(K + 1
2)

(2νe − 2K)2K(2K − q)!q!
e−x2

1/2H2K−q(x1)e−x2
2/2Hq(x2)

= e−x2
1/2e−x2

2/2 N√
π

∑

K

(−1)KΓ(K + 1
2)

(2νe − 2K)2K(2K)!

∑
q

(−1)q(2K)!
(2K − q)!q!

H2K−q(x1)Hq(x2)

= e−X2/2e−x2/2 N√
π

∑

K

(−1)KΓ(K + 1
2)

(2νe − 2K)2K(2K)!
2KH2K

(
x1 − x2√

2

)

= e−X2/2e−x2/2 N√
π

∑

K

(−1)KΓ(K + 1
2)

(2νe − 2K)

√
π

22KΓ(K + 1
2)K!

(−1)K22KK!L(−1/2)
K (x2)

= −e−X2/2e−x2/2 N

2

∑

K

1
K − νe

L
(−1/2)
K (x2)

= −e−X2/2e−x2/2 N

2

∑

K

∫ +∞

0

dy

(1 + y)2

(
y

1 + y

)K−νe−1

L
(−1/2)
K (x2)

= −e−X2/2e−x2/2 N

2

∫ +∞

0

dy

(1 + y)2

(
y

1 + y

)−νe−1 ∑

K

L
(−1/2)
K (x2)

(
y

1 + y

)K

= −e−X2/2e−x2/2 N

2

∫ +∞

0

dy

(1 + y)2

(
y

1 + y

)−νe−1

e−x2y(1 + y)1/2

= −e−X2/2e−x2/2 N

2

∫ +∞

0
e−x2yy−νe−1(1 + y)νe−1/2dy

= −e−X2/2e−x2/2 N

2
Γ(−νe)U

(
−νe,

1
2
; x2

)

= −N

2
π1/4φ0(X)

√
π

Ae
ψνe(x). (A.1)
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Thus if we choose N = −2π−3/4Ae, we recover the decomposition

φ0(X)ψνe(x) = −2π−3/4

(
Γ(−νe + 1

2)
Γ(−νe)

1
F(−νe + 1

2)−F(−νe)

) 1
2

∑
pq

1 + (−1)p+q

2
(−1)(p−q)/2Γ(p+q+1

2 )
(2νe − p− q)

√
p!q!

φp(x1)φq(x2). (A.2)

Similarly, we have the decomposition for two fermions,

φ0(X)ψνo(x) = −2π−3/4

(
Γ(−νo − 1/2)

Γ(−νo)
1

F(−νo)−F(−νo − 1/2)

) 1
2

∑
pq

1− (−1)p+q

2
(−1)(p−q−1)/2Γ(p+q+2

2 )
(2νo + 1− p− q)

√
p!q!

φp(x1)φq(x2). (A.3)

Next we consider a 3D cylindrical harmonic trap with λ = ωz/ω⊥. The decomposition

can be realized using the same technique with the result given by

φ0(~R)ψν(~r) = N
∑
mn

1
2ν −∑

j=x,y(mj + nj)− λ(mz + nz)
 ∏

j=x,y,z

1 + (−1)mj+nj

2
(−1)

mj−nj
2√

mj !nj !
Γ

(
mj + nj + 1

2

)
φm(~r1)φn(~r2), (A.4)

where the total energy is E = 2ν + 2 + λ, including both the CM and relative motion. The

normalization constant N is given by

N =
2

π5/4

1√∑∞
p=0 ζ(2, λp− ν)Γ(p + 1/2)/p!

, (A.5)

here ζ(s, x) =
∑∞

k=0 1/(k + x)s. The length and energy scale are
√
~/(mω⊥) and ~ω⊥

respectively.
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APPENDIX B

EXPRESSING A 3D SCHMIDT DECOMPOSITION OF

TWO ATOMS INTO A 1D DECOMPOSITION

In the single particle basis, the motional wave function is given by

|Ψ〉 = N
∑
m,n

1
2x−∑

j=x,y(mj + nj)− λ(mz + nz)

∏

j=x,y,z

1 + (−1)mj+nj

2
(−1)

mj−nj
2√

mj !nj !
Γ

(
mj + nj + 1

2

)
|m〉1|n〉2, (B.1)

where N is the normalization constant as given before. Finding the Schmidt decomposition

for such 3D system generally requires large amount of memory. For example, at a cutoff

level of 30 in all three directions, we need to deal with a 27000 × 27000 matrix, which is

really a demanding computational task. So we try an alternative method as shown below.

We rewrite the wave function as

|Ψ〉 = −N
∑
m,n

∫ ∞

0

dy

(1 + y)2

(
y

1 + y

)−2x−1 (
y

1 + y

)∑
j=x,y(mj+nj)+λ(mz+nz)

∏

j=x,y,z

1 + (−1)mj+nj

2
(−1)

mj−nj
2√

mj !nj !
Γ

(
mj + nj + 1

2

)
|m〉1|n〉2

= −N

∫ ∞

0

dy

(1 + y)2

(
y

1 + y

)−2x−1 ∑
m,n

(
y

1 + y

)∑
j=x,y(mj+nj)+λ(mz+nz)

∏

j=x,y,z

1 + (−1)mj+nj

2
(−1)

mj−nj
2√

mj !nj !
Γ

(
mj + nj + 1

2

)
|m〉1|n〉2, (B.2)

which facilitates the Schmidt decomposition for j = x, y, respectively according to

∑
mj ,nj

(
y

1 + y

)mj+nj 1 + (−1)mj+nj

2
(−1)

mj−nj
2√

mj !nj !
Γ

(
mj + nj + 1

2

)
|mj〉1|nj〉2

=
∑
sj

µsj |φ̃sj 〉1|φ̃sj 〉2, (B.3)
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and similarly for j = z,

∑
mj ,nj

(
y

1 + y

)λ(mj+nj) 1 + (−1)mj+nj

2
(−1)

mj−nj
2√

mj !nj !
Γ

(
mj + nj + 1

2

)
|mj〉1|nj〉2

=
∑
sj

µ′sj
|φ̃′sj

〉1|φ̃′sj
〉2. (B.4)

We assume that both µsj and µ′sj
real. |φ̃sj 〉 and |φ̃′sj

〉 then correspond to the natural

orbitals of the Schmidt decomposition. Thus,

|Ψ〉 = −N

∫ ∞

0

dy

(1 + y)2

(
y

1 + y

)−2x−1 ∑
s

µs|φs〉1|φs〉2

=
∑
s

κs|φs〉1|φs〉2, (B.5)

here µs = µsxµsyµ
′
sz

and |φs〉j = |φ̃sx , φ̃sy , φ̃
′
sz
〉j . The Schmidt coefficients are given by

κs = −N

∫ ∞

0

dy

(1 + y)2

(
y

1 + y

)−2x−1

µs. (B.6)

The original 3D diagonalization is now reduced to three 1D diagonalizations, which are

much easier to deal with. The price we pay is an extra integration over variable y. This

can be done with high precision using the Simpson’s 3/8 Rule.
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[62] A. Widera, F. Gerbier, S. Fölling, T. Gericke, O. Mandel, and I. Bloch, Phys. Rev.

Lett. 95, 190405 (2005).
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