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ẼREM
tot,LLL(B) curves coincide; we have checked that these curves ap-

proach each other also at larger values of B, outside the plotted range.
Numbers near the bottom curves denote the value of magic angular mo-
menta [Lm, see Eq. (9)] of the ground state. Corresponding fractional
filling factors are specified by ν = N(N − 1)/(2Lm). Parameters used:
confinement ~ω0 = 3.60 meV, dielectric constant κ = 13.1, effective
mass m∗ = 0.067me. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Two-step method versus EXD calculations: Ground-state energies (per
particle, referenced to ~Ω) for N = 3 electrons. The electrons are ar-
ranged in a (0,3) structure in the intrinsic frame of reference. Thick
dashed line (red): broken-symmetry UHF (SEM). Thinner solid line
(green): EXD (from Ref. [21]). Thick solid line (blue): REM. Thin

dashed line (violet): the commonly used approximate energies ẼEXD
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CHAPTER I

INTRODUCTION

1.1 Quantum dots in a simplified independent-particle pic-

ture

In this section and the next one, we give a brief review about quantum dots, empha-

sizing the general physical picture. In doing so, we follow closely the introduction part

of the article Few-electron quantum dots by L.P. Kouwenhoven, D.G. Austing and S.

Tarucha [1]. Quantum dots are small man-made structures in a solid, typically with

sizes ranging from nanometers to a few microns. They consist of 103−109 atoms with

an equivalent number of electrons. In semiconductors all electrons are tightly bound

to the nuclei except for a small fraction of free electrons. This small number can be

anything from a single free electron, to a puddle of several thousands, in quantum

dots defined in a semiconductor. Current nanofabrication technology allows us to

precisely control the size and shape of these dots. The electronic properties of dots

show many parallels with those of atoms. Most notably, the confinement of the elec-

trons in all three spatial directions results in a quantized energy spectrum. Quantum

dots are therefore regarded as artificial atoms [2]. For quantum dots that are fabri-

cated between the source and drain electrical contacts, current-voltage measurements

are used to observe the atom-like properties of the quantum dot. In addition, it is

possible to vary the exact number of electrons on the dot by changing the voltage

applied to a nearby gate electrode. This control allows one to scan through the entire

periodic table of artificial elements by simply changing the voltage.

The symmetry of a quantum dot is the source of degeneracies in the energy spec-

trum. The three-dimensional spherically symmetric potential around atoms yields
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degeneracies known as the shells, 1s, 2s, 2p, 3s, 3p, . . . The electronic configuration is

particularly stable when these shells are completely filled with electrons, occurring

at the atomic numbers of 2, 10, 18, 36, . . .. These are the magic numbers of a three-

dimensional spherically symmetric potential. Up to atomic number 23 the atomic

shells are filled sequentially by electrons in a simple manner (mixing between levels

originating from different shells starts at atomic number 24). Within a shell, Hund’s

rule determines whether a spin-down or a spin-up electron is added [3].

The confinement potential of dots can, to some extend, be chosen at specific

requirement such as parabolic or elliptical potential. we will mainly consider the

parabolic potential, which has the highest degree of symmetry, and elliptical poten-

tial, which will confine electrons to lie on a line, particularly under specific magnetic

field. For parabolic confinement, the quantum dot is inside the pillar and has the

shape of a two-dimensional disc [4, 5]. The attractive confinement potential is rather

soft and can be approximated by a harmonic potential. (This r2-dependence, instead

of the 1/r attractive potential in atoms, has several consequences for the energy

spectrum and relaxation times [6].) The symmetry of such a two-dimensional cylin-

drically symmetric, harmonic potential leads to a two-dimensional shell structure

with the magic numbers 2, 6, 12, 20, . . .. Note that the lower degree of symmetry in

two-dimensional structures leads to a lower magic number sequence.

We first introduce the central ideas related to atomic-like properties and explain

how these are observed in single-electron transport. In this introductory chapter, we

discuss these issues in a qualitative and phenomenological manner. A quantitative

discussion is given in later chapters. Electron tunnelling from the source to the dot

and from the dot to the drain is dominated by an essentially classical effect that

arises from the discrete nature of charge. When relatively high potential barriers

separate the dot from the source and drain contacts, tunnelling to and from the dot

is weak and the number of electrons on the dot, N , will be a well defined integer. A
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current flowing via a sequence of tunneling events of single electrons through the dot

requires this number to fluctuate by one. The Coulomb repulsion between electrons

on the dot, however, results in a considerable energy cost for adding an extra electron

charge. Extra energy is therefore needed, and no current will flow until increasing

the voltage provides this energy. This phenomenon is known as Coulomb blockade

[7, 8]. In one scenario, the quantum dot is located in the center of the pillar and can

hold up to N = 100 electrons. The diameter of the dot is a few hundred nanometers

and its thickness is about 10 nm. The dot is sandwiched between two non-conducting

barrier layers, which separate it from conducting material above and below, i.e. the

source and drain contacts. A negative voltage applied to a metal gate around the

pillar squeezes the diameter of the dot’s lateral potential. This reduces the number

of electrons, one by one, until the dot is completely empty.

Due to the Coulomb blockade, the current can flow only when electrons in the

electrodes have sufficient energy to occupy the lowest possible energy state for N + 1

electrons on the dot. By changing the gate voltage, the ladder of the dot states is

shifted through the Fermi energies of the electrodes. This leads to a series of sharp

peaks in the measured current. At any given peak, the number of electrons alternates

between N and N + 1. Between the peaks, the Coulomb blockade keeps N fixed

and no current can flow. The distance between consecutive peaks is proportional

to the so-called addition energy, Eadd, which is the energy difference between the

transition points of (N to N + 1) and (N + 1 to N + 2) electrons. Compared to

atomic energy, the addition energy for a dot is equal to the difference between the

ionization energy and the electron affinity [9]. The simplest model for describing the

energetics is the constant-interaction (CI) model [7, 8], which crudely assumes that

the Coulomb interaction between the electrons is independent of N . In this model,

the addition energy is given by Eadd = e2/C+∆E, where ∆E is the energy difference

between consecutive quantum states. The Coulomb interactions are represented as a
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charging energy, e2/C, of a single electron charge, e, on a capacitor C.

Despite its simplicity, this model is remarkably successful in providing an elemen-

tary understanding. The first peak marks the energy at which the first electron enters

the dot, the second records the entry of the second electron and so on. The spacing

between peaks, measured in gate voltage, is directly proportional to the addition en-

ergy. Note that the spacing is not constant and significantly more energy is needed

to add an electron to a dot with 2, 6 and 12 electrons i.e. the first few magic numbers

for a two-dimensional circular harmonic potential.

The orbit with the smallest radius corresponds to the lowest energy state. This

state has zero angular momentum and, as the s-states in atoms, can hold up to two

electrons with opposite spin. The addition of the second electron thus only costs the

charging energy, e2/C. Extra energy, is needed to add the third electron since this

electron must go into the next energy state. Electrons in this orbit have an angular

momentum ±1 and two spin states so that this second shell can contain four electrons.

The sixth electron fills up this shell so that extra energy is again needed to add the

seventh electron.

In atomic physics, Hund’s rule states that a shell is first filled with electrons with

parallel spins until it is half full. After that, filling continues with anti-parallel spins.

In the case of two-dimensional artificial atoms, the second shell is half-filled when

N = 4. This maximum spin state is reflected by a somewhat enhanced peak spacing,

or addition energy. Half filling of the third and forth shells occur for N = 9 and

N = 16. These phenomena can be summarized in a periodic table for two-dimensional

elements.

Quantum dots have been shown to provide a two-dimensional analogy for real

atoms. Due to their larger dimensions, dots are suitable for experiments that cannot

be carried out in atomic physics. It is especially interesting to observe the effect of a

magnetic field, B, on the atom-like properties. A magnetic flux-quantum in an atom
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typically requires a B-field as high as 106 T, whereas for dots this is of order 1 T.

(A flux quantum is h/e = BA, where A is the area of the dot.) The scale of a flux-

quantum corresponds to a considerable change in the shape of the orbits. The change

in orbital energy is roughly ~eB/m∗ (the cyclotron frequency is ωc = eB/m∗), which

is as much as 1.76meV/T , in GaAs due to the small effective mass m∗ = 0.067me. A

magnetic field has, on the other hand, a negligible effect on the Zeeman spin splitting,

gµBB, which is only about 0.025meV/T in GaAs, since gGaAs = −0.44. A magnetic

field therefore is about 70 times more effective for changing the orbital energy than

for changing the Zeeman spin splitting in GaAs. Therefore, the Zeeman spin splitting

can be neglected in most calculations; the Zeeman splitting contribution can be added

at the end as a perturbative term. However, the spin may play an important role

via Hund’s rule. The associated energy is the exchange energy between electrons

with parallel spins. This model, which treats the quantum states, the direct Coulomb

interaction and the exchange interaction separately provides a good introduction to

the physics of interacting particles. However, it should be emphasized that this picture

is approximate and the true many-body nature requires a higher-level theory as the one

described in the following chapters of this thesis. When we understand the interactions

between a small number of electrons we can gradually increase N and see how many-

body effects develop .

1.2 Constant-interaction model

As aforementioned, the CI model provides an approximate description of the elec-

tronic states of quantum dots, and was used by experimentists as a guide to the

interpretation of early experiments. The CI model is based on two important as-

sumptions. First, the Coulomb interactions of an electron on the dot with all other

electrons, in and outside the dot, are parametrized by a constant capacitance C.

Second, the discrete, single-particle energy spectrum, calculated for non-interacting
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electrons, is unaffected by the interactions. The CI model approximates the total

ground state energy, U(N), of an N-electron dot by

U(N) = [e(N −No)− CgVg]
2/2C +

∑

N

En,l(B), (1)

where N = No for Vg = 0. The term CgVg is a continuous variable and represents

the charge induced on the dot by the gate voltage, Vg, through the gate capacitance,

Cg. The total capacitance between the dot and the source, the drain and the gate is

C = Cs + Cd + Cg. The last term in equation (1) is a sum over the occupied states,

En,l(B), which are the solutions to the single-particle Schrödinger equation described

in the next section. Note that only thes single-particle states depend on the magnetic

field.

The electrochemical potential of the dot is defined as µdot(N) = U(N)−U(N−1).

Electrons can flow from left to right when µdot is between the potentials, µleft and

µright, of leads (with eVsd = µleft − µright, µleft > µdot(N) > µright. For small volt

Vsd ≈ 0, the Nth Coulomb peak is a direct measure of the lowest possible energy

state of a N-electron dot. From equation (1), we obtain

µdot = (N −No − 1/2)Ec − e(Cg/C)Vg + EN . (2)

The addition energy is given by

∆µ(N) = µdot(N + 1)− µdot(N) = U(N + 1)− 2U(N) + U(N − 1) (3)

= Ec + EN+1 − EN = e2/C + ∆E. (4)

with EN being the topmost filled single-particle state for an N electrons dot. The

related atomic energies are defined A = U(N)−U(N +1) for the electron affinity and

I = U(N − 1) − U(N) for the ionization energy [9]. Their relation to the addition

energy is ∆µN = I − A.

The electrochemical potential is linearly proportional to the gate voltage with the

proportionality factor α = (Cg/C) (equation 2). The α-factor also relates the peak
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spacing in the gate voltage to the addition energy: ∆µN = eα(V N+1
g −V N

g ), where V N
g

and V N+1
g are the gate voltages of the Nth and N + 1 Coulomb peaks, respectively.

1.3 Circular quantum dots at high magnetic field: the many-

body problem

Due to the growing interest in solid-state nanostructures, driven by basic research

and potential technological considerations, two-dimensional N -electron semiconduc-

tor quantum dots (QDs) in field-free conditions and under applied magnetic fields (B)

have been extensively studied in the last few years, both experimentally [10, 11, 12]

and theoretically. [13, 14, 15, 16, 17, 18] Experimentally, the case of parabolic QDs

with a small number of electrons (N ≤ 30) has attracted particular attention, as a

result of precise control of the number of electrons in the dot that has been demon-

strated in several experimental investigations.

In previous sections, we reviewed a simplified theory of quantum dots, known as

the constant-interaction model. Naturally, QDs with a small number of electrons are

also most attractive for more sophisticated theoretical investigations, e.g, since their

ground-state properties and excitation spectra can be analyzed [13, 14, 15, 16, 17, 19,

20, 21] through exact-diagonalization (EXD) solutions of the many-body Schrödinger

equation, where the Coulomb interaction is explicitly included. The hamiltonian is

given as

H =
N∑

i=1

Hsp(i) +
N∑

i=1

N∑

j>i

e2

κrij

, (5)

with

Hsp(i) =
1

2m∗

(
pi −

e

c
Ai

)2

+
m∗

2
ω2

0r
2
i , (6)

being the single-particle part. The hamiltonian H describes N electrons (interact-

ing via a Coulomb repulsion) confined by a parabolic potential of frequency ω0 and

subjected to a perpendicular magnetic field B, whose vector potential is given in the

symmetric gauge by A(r) = 1
2
(−By,Bx, 0). m∗ is the effective electron mass, κ is the
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dielectric constant of the semiconductor material, and rij = |ri − rj|. For sufficiently

high magnetic fields, the electrons are fully spin-polarized and the Zeeman term [not

shown in Eq. (5)] does not need to be considered. [22] Thus the calculations in this

paper do not include the Zeeman contribution, which, however, can easily be added

(for a fully polarized dot, the Zeeman contribution to the total energy is Ng∗µBB/2,

with g∗ being the effective Landé factor and µB the Bohr magneton).

In particular, in combination with certain approximate methods, which are less

demanding computationally while providing highly accurate results and a transparent

physical picture (e.g., the method of successive hierarchical approximations, [16, 18]

see below), EXD calculations confirmed the spontaneous formation of finite rotating

electron molecules (REMs) and the description of the excited states with magic an-

gular momenta as yrast rotational bands of these REMs [16] (sometime the REMs

are referred to as “rotating Wigner molecules,” RWMs). However, the number of

Slater determinants in the EXD wave-function expansion increases exponentially as

a function of N , and as a result EXD calculations to date have been restricted to

rather low values of N , typically with N . 10; this has prohibited investigation of

REMs with multiple rings. A similar problem appears also with other wave functions

that are expressed as a discrete sum over Slater determinants, such as the analytic

REM wave functions (see Eq. (55, 57)), or the variational Monte Carlo approach of

Ref. [23].

Most EXD calculations (see, e.g., Refs. [13], [16](b), [19, 20, 24]) have been carried

out in the regime of very strong magnetic field (i.e., B → ∞), such that the Hilbert

space can be restricted to the lowest Landau level (LLL); in this regime, the confine-

ment does not have any influence on the composition of the microscopic many-body

wave function (see section 2.2.2). EXD calculations as a function of B that include

explicitly the full effect of the confinement, [14, 15, 17, 21] i.e., mixing with higher

Landau levels are more involved, and thus they are scarce and are usually restricted
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to very small sizes with N ≤ 4. An exception is presented by the method of hyper-

spherical harmonics, [14, 15] which, however, may not be reliable for all the sizes up

to N ∼ 10.

In this thesis, we focus on the EXD method and the REM variational method.

Of course, there are other many-body methods such as Variational Quantum Monte

Carlo (QMC), path integral QMC and Composite Fermion.

1.4 Three-electron anisotropic quantum dots at low mag-
netic field from a quantum information perspective

Three-electron quantum dots are expected to attract a lot of attention in the near

future due to several developments, both experimental and theoretical. First, it was

recently experimentally demonstrated[25, 26] that detailed excitation spectra of two-

electron quantum dots (in addition to earlier ground-state measurements[27, 28]) can

be measured as a function of the externally applied magnetic field. Thus, measuring

the excitation spectra of three-electron quantum dots appears to be a next step to

be taken. Second, three-qubit electron spin devices are expected to exhibit enhanced

efficiency[29, 30, 31] for quantum-computing purposes compared to single-qubit and

two-qubit ones.

In this part, we carry out exact diagonalization (EXD) studies for a three-electron

single quantum dot under low and moderate magnetic fields. Unlike previous EXD

studies[32, 33] that focused mainly on the ground states of circular quantum dots,

we investigate, in addition, the excitation spectra for three electrons in quantum dots

with a wide range of anisotropies. Furthermore, consideration of anisotropic quan-

tum dots allows us to investigate the structure of the many-body wave functions

with respect to electron localization and formation of Wigner molecules in a linear

geometry. In particular, we investigate the feasibility of generating model quantum

entangled states (i.e., the so called W states[31, 34, 35]), which are often employed
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in the mathematical treatment of quantum information and which have been exper-

imentally realized with atoms in linear ion traps.[36] We note that a main factor

motivating our investigations is the different nature of the entangling agent, namely,

the electromagnetic field in the case of heavy ions versus the two-body Coulomb

interaction in the case of electrons.

1.5 Scope of the thesis

In the first part of the thesis, we develop a variational method, the rotating electron

molecule (REM), for the investigations of the energetic, structural, and excitation

properties of circular quantum dots (QD) in strong magnetic fields with an arbitrary

number of electrons (2 ≤ N ≤ 30). We perform comparative calculations for quantum

dots with an increasing number of parabolically confined electrons (N = 3, 4, 6, 9, 11,

and 17). We find that the electrons form concentric rings for the ground state, with

each ring containing a certain number of electrons. Using the notation (n1, n2, n3, ...)

for the number of electrons located on each ring, the ground-state arrangements

are: (0,3) for N = 3, (0,4) for N = 4, (1,5) for N = 6, (2,7) for N = 9,(3,8) for

N = 11, and (1,6,10) for N = 17. Comparison of our results to those obtained by the

EXD method reveals that the REM method provides a highly accurate description of

parabolically confined electrons in quantum dots for a wide range of applied magnetic

fields, starting from the neighborhood of the maximum density droplet and extending

to the B →∞ limit. The ground-state energy of the electrons in a QD oscillates as a

function of the applied magnetic field, and the allowed values of the angular momenta

are limited to a set of magic angular momentum values, Lm, which requires that the

electrons are localized on concentric polygonal rings that rotate independently. The

general expression for Lm is given in Eq. (9).

In the second part of the thesis, we present extensive EXD calculations for elliptical

dots, double dots, and circular dots in the lowest Landau level. For three electrons
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in elliptical quantum dots, we analyze the excitation spectra both as a function of

the magnetic field and as a function of increasing anisotropy. A main finding is the

appearance of triple-crossing points in the ground-state energy curves for stronger

anisotropies. Through the spin-resolved conditional probability distributions (CPDs),

we reveal that the electrons localize to form Wigner molecules in different shapes. For

certain ranges of dot parameters (mainly at strong anisotropy), the Wigner molecules

acquire a linear geometry, and the associated wave functions with a spin projection

Sz = 1/2 are similar to the so called W -states that are a prototype of entangled

states. For other ranges of parameters (mainly at moderate anisotropy), the Wigner

molecules exhibit a more complex structure consisting of two mirror isosceles triangles.

This latter structures can be considered as an embryonic unit of a zig-zag Wigner

crystal in quantum wires. Also, we demonstrate that the degree of entanglement

in three-electron quantum dots can be quantified via the von Neumann entropy, in

analogy with studies on two-electron quantum dots.

We also examine the structures of two separated circular dots, at a distance of

70nm, that contain three electrons. Through the spin-resolved CPD, we find that the

electrons are localized in the centers of the dots. The first two electrons localize at

the centers of the dots, the third electron has a 50% probability to appear at each

center.

Finally, we compare the results of Laughlin’s method with EXD calculations for

circular dots that contains 9 electrons in the LLL. While Laughlin’s method states that

the electrons are in a liquid state, EXD calculations clearly show that the electrons

form Winger Molecules, which confirms our previous results by the REM method.
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CHAPTER II

VARIATIONAL METHOD FOR PARABOLIC QUANTUM

DOTS AT HIGH MAGNETIC FIELD

2.1 Introduction

2.1.1 Computational motivation

Systematic EXD calculations beyond the numerical barrier of N ∼ 10 electrons are

not expected to become feasible in the near future. In this paper, we show that a

microscopic numerical method, which was introduced by us recently and is based on

successive hierarchical approximations (with increasing accuracy after each step) is

able to go beyond this barrier. This approach (referred to, for brevity, as the “two-

step method”) can provide high-quality calculations describing properties of QDs as

a function of B in the whole size range 2 ≤ N ≤ 30, with (or without) consideration

of the effect of the confinement on the mixing with higher Landau levels. In this

paper, we will consider the case of fully polarized electrons, which in typical GaAs

experimental devices is appropriate for strong B such that the ground-state angular

momentum L ≥ L0 ≡ N(N − 1)/2.

The minimum value L0 specifies the so-called maximum density droplet (MDD);

its name results from the fact that it was originally defined [37] in the LLL where

it is a single Slater determinant built out of orbitals with successive single-particle

angular momenta 0,1,2, ..., N − 1. We will show, however, that mixing with higher

Landau levels is non-negligible for MDD ground states that are feasible in currently

available experimental quantum dots; in this case the electron density of the MDD is

not constant, but exhibits oscillations.
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2.1.2 Nonclassical (non-rigid) rotational inertia

The existence of an exotic supersolid crystalline phase with combined solid and su-

perfluid characteristics has been long conjectured [38, 39, 40] for solid 4He under

appropriate conditions. The recent experimental discovery [41] that solid 4He ex-

hibits a nonclassical (nonrigid) rotational inertia (NCRI [40]) has revived an intense

interest [42, 43, 44, 45, 46] in the existence and properties of the supersolid phase in

this system, as well as in the possible emergence of exotic phases in other systems.

As we show here, certain aspects of supersolid behavior (e.g., the simultaneous

occurrence of crystalline correlations and non-rigidity under rotations) may be found

for electrons in quantum dots. As aforementioned, under a high magnetic field, the

electrons confined in a QD localize at the vertices of concentric polygonal rings and

form a rotating electron molecule. [16] We show that the corresponding rotational

inertia strongly deviates from the rigid classical value, a fact that endows the REM

with supersolid-like characteristics (in the sense of the appearance of a non-classical

rotational inertia, but without implying the presence of a superfluid component).

Furthermore, the REM at high B can be naturally viewed as the precursor of a

quantum crystal that develops in the lowest Landau level (LLL) in the thermodynamic

limit. Due to the lack of rigidity, the LLL quantum crystal exhibits a “liquid”-

like behavior. These conclusions were enabled by the development of an analytic

expression for the excitation energies of the REM that permits calculations for an

arbitrary number of electrons, given the classical polygonal-ring structure in the QD.

[47]

This chapter is organized as follows. Section 2.2 is devoted to a description of

computational methods for the properties of electrons in QDs under high magnetic

fields, with explicit consideration of effects due to the external confinement. In section

2.3, we compare results from various computationals methods with those obtained via

exact diagonalization. Illustrative examples of the formation of crystalline rotating
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electron molecules with ground-state multiple concentric polygonal ring structures,

and their isomers, are given in section 2.4 for QDs with N = 6, 9, 11, 17. The yrast

band of rotational excitations (at a given B) is analyzed in section 2.5 along with

the derivation of an analytic formula that provides for stronger fields (and/or higher

angular momenta) accurate predictions of the energies of REMs with arbitrary num-

bers of electrons. In section 2.6, we discuss the non-rigid (liquid-like) characteristics

of electrons in quantum dots under high magnetic fields as portrayed by their non-

classical rotational inertia. We summarize our findings in section 2.7. For an earlier

shorter version of this paper, see Ref. [48].

2.2 Description of computational methods that consider the

external confinement

2.2.1 The REM microscopic method

In our method of successive hierarchical approximations, we begin with a static elec-

tron molecule (SEM), described by an unrestricted Hartree-Fock (UHF) determinant

that violates the circular symmetry. [18] Subsequently, the rotation of the electron

molecule is described by a post-Hartree-Fock step of restoration of the broken circular

symmetry via projection techniques. [16, 18] Since we focus here on the case of strong

B, we can approximate the UHF orbitals (first step of our procedure) by (parameter

free) displaced Gaussian functions; that is, for an electron localized at Rj (Zj), we

use the orbital

u(z, Zj) =
1√
πλ

exp

(
−|z − Zj|2

2λ2
− iϕ(z, Zj;B)

)
, (7)

with λ =
√

~/m∗Ω; Ω =
√
ω2

0 + ω2
c/4, where ωc = eB/(m∗c) is the cyclotron fre-

quency and ω0 specifies the external parabolic confinement. We have used complex

numbers to represent the position variables, so that z = x + iy, Zj = Xj + iYj.

The phase guarantees gauge invariance in the presence of a perpendicular magnetic

field and is given in the symmetric gauge by ϕ(z, Zj;B) = (xYj − yXj)/2l
2
B, with
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lB =
√

~c/eB.

For an extended 2D system, the Zj’s form a triangular lattice. [49] For finite

N , however, the Zj’s coincide [16, 18, 50] with the equilibrium positions [forming r

concentric regular polygons denoted as (n1, n2, ..., nr)] of N =
∑r

q=1 nq classical point

charges inside an external parabolic confinement. [47] In this notation, n1 corresponds

to the innermost ring with n1 > 0. For the case of a single polygonal ring, the notation

(0, N) is often used; then it is to be understood that n1 = N .

The wave function of the static electron molecule (SEM) is a single Slater determi-

nant |ΨSEM[z]〉 made out of the single-electron wave functions u(zi, Zi), i = 1, ..., N .

Correlated many-body states with good total angular momenta L can be extracted

[16] (second step) from the UHF determinant using projection operators. The pro-

jected REM state is given by

|ΦREM
L 〉 =

∫ 2π

0

...

∫ 2π

0

dγ1...dγr

×|ΨSEM(γ1, ..., γr)〉 exp

(
i

r∑

q=1

γqLq

)
. (8)

Here L =
∑r

q=1 Lq and |ΨSEM[γ]〉 is the original Slater determinant with all the single-

electron wave functions of the qth ring rotated (collectively, i.e., coherently) by the

same azimuthal angle γq. Note that Eq. (8) can be written as a product of projection

operators acting on the original Slater determinant [i.e., on |ΨSEM(γ1 = 0, ..., γr = 0)〉].

Setting λ = lB
√

2 restricts the single-electron wave function in Eq. (7) to be entirely

in the lowest Landau level [16] (see Appendix A). The continuous-configuration-

interaction form of the projected wave functions [i.e., the linear superposition of

determimants in Eq. (8)] implies a highly entangled state. We require here that B

is sufficiently strong so that all the electrons are spin-polarized [22] and that the

ground-state angular momentum L ≥ L0 ≡ N(N − 1)/2 (or equivalently that the

fractional filling factor ν ≡ L/L0 ≤ 1).

Due to the point-group symmetries of each polygonal ring of electrons in the
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SEM wave function, the total angular momenta L of the rotating crystalline electron

molecule are restricted to the so-called magic angular momenta, i.e.,

Lm = L0 +
r∑

q=1

kqnq, (9)

where the kq’s are non-negative integers[51] (when n1 = 1, k1 = 0).

The partial angular momenta associated with the qth ring, Lq [see Eq. (8)], are

given by

Lq = L0,q + kqnq, (10)

where L0,q =
∑iq+nq

i=iq+1(i− 1) with iq =
∑q−1

s=1 ns (i1 = 0), and L0 =
∑r

q=1 L0,q.

The energy of the REM state [Eq. (8)] is given[18, 50] by

EREM
L =

∫ 2π

0

h([γ])ei[γ]·[L]d[γ]

/∫ 2π

0

n([γ])ei[γ]·[L]d[γ], (11)

with the hamiltonian and overlap matrix elements h([γ]) = 〈ΨSEM([0])|H|ΨSEM([γ])〉

and n([γ]) = 〈ΨSEM([0])|ΨSEM([γ])〉, respectively, and [γ] · [L] =
∑r

q=1 γqLq. The SEM

energies are simply given by ESEM = h([0])/n([0]).

The many-body Hamiltonian is

H =

N∑

i=1

Hsp(i) +

N∑

i=1

N∑

j>i

e2

κrij
, (12)

with

Hsp(i) =
1

2m∗

(
pi −

e

c
Ai

)2

+
m∗

2
ω2

0r
2
i , (13)

being the single-particle part. The hamiltonian H describes N electrons (interact-

ing via a Coulomb repulsion) confined by a parabolic potential of frequency ω0 and

subjected to a perpendicular magnetic field B, whose vector potential is given in the

symmetric gauge by A(r) = 1
2
(−By,Bx, 0). m∗ is the effective electron mass, κ is the

dielectric constant of the semiconductor material, and rij = |ri − rj|. For sufficiently

high magnetic fields, the electrons are fully spin-polarized and the Zeeman term [not

shown in Eq. (12)] does not need to be considered. [22] Thus the calculations in this
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paper do not include the Zeeman contribution, which, however, can easily be added

(for a fully polarized dot, the Zeeman contribution to the total energy is Ng∗µBB/2,

with g∗ being the effective Landé factor and µB the Bohr magneton).

The crystalline polygonal-ring arrangement (n1, n2, ..., nr) of classical point charges

is portrayed directly in the electron density of the broken-symmetry SEM, since the

latter consists of humps centered at the localization sites Zj’s (one hump for each

electron). In contrast, the REM has good angular momentum and thus its electron

density is circularly uniform. To probe the crystalline character of the REM, we use

the conditional probability distribution (CPD) defined as

P (r, r0) = 〈Φ|
∑

i6=j

δ(ri − r)δ(rj − r0)|Φ〉/〈Φ|Φ〉, (14)

where Φ(r1, r2, ..., rN) denotes the many-body wave function under consideration.

P (r, r0) is proportional to the conditional probability of finding an electron at r,

given that another electron is assumed at r0. This procedure subtracts the collective

rotation of the electron molecule in the laboratory frame of referenece, and, as a

result, the CPDs reveal the structure of the many body state in the intrinsic (rotating)

reference frame.

2.2.2 Exact diagonalization in the lowest Landau level

We describe here a widely used approximation[13, 19, 52] for calculating the ground

state at a given B, which takes advantage of the simplifications at the B →∞ limit,

i.e., when the relevant Hilbert space can be restricted to the lowest Landau level [then

~ω0 << ~ωc/2 (for B → ∞) and the confinement can be neglected at a first step].

Then, the many-body hamiltonian [see Eq. (12)] reduces to

HB→∞
LLL = N

~ωc

2
+

N∑

i=1

N∑

j>i

e2

κrij
. (15)

Due to the form of the limiting Hamiltonian in Eq. (15), one can overlook the

zero-point-energy term and perform an exact diagonalization only for the Coulomb
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interaction part. The corresponding interaction energies can be written as

ẼEXD
int,LLL(L) = ẼEXD

int,LLL(L)
e2

κlB
, (16)

where ẼEXD
int,LLL is dimensionless. The subscript “int” identifies the e− e interaction as

the source of this term.

In this approximation scheme, at finite B the external confinement ~ω0 is taken

into consideration only through the lifting of the single-particle degeneracy within

the LLL, while disregarding higher Landau levels. As a result, the effect of the

confinement enters here only as follows: (I) in the interaction term [see Eq. (16)], one

scales the effective magnetic length, i.e., one replaces lB by λ/
√

2 (see section 2.2.1 for

the definition of lB and λ) without modifying the dimensionless part ẼEXD
int,LLL, and (II)

the contribution, En=0
sp (B,L) (referenced to N~Ω), of the single-particle hamiltonian

∑N
i=1Hsp(i) to the total energy [see Eq. (12)] is added to ẼEXD

int,LLL(L) [corresponding

to the second term on the right-hand side of Eq. (12)]. En=0
sp (B,L) is the sum of

Darwin-Fock single-particle energies εDF
n,l with zero nodes (n = 0; the corresponding

single-particle states become degenerate at B → ∞ and form the lowest Landau

level). Since

εDF
n,l = (2n + 1 + |l|)~Ω− l~ωc/2, (17)

the En=0
sp (B,L) is linear in the total angular momentum L =

∑N
i=1 li, i.e.,

En=0
sp (B,L) = ~(Ω− ωc/2)L. (18)

Note that En=0
sp (B →∞, L)→ 0.

We denote the final expression of this approximation by ẼEXD
tot,LLL; it is given by

ẼEXD
tot,LLL(B,L) = En=0

sp (B,L) +
√

2ẼEXD
int,LLL(L)

e2

κλ
. (19)

An approximate ground-state energy for the system can be found through Eq. (19)

by determining the angular-momentum value Lgs that minimizes this expression. In
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the following, this ground-state energy at a given B will be denoted simply by omitting

the variable L on the left-hand-side of Eq. (19), i.e., ẼEXD
tot,LLL(B) ≡ ẼEXD

tot,LLL(B,Lgs).

We note that, although few in number, full EXD calculations for finite B that

take into consideration both the confinement ~ω0 and the actual complexity of the

Darwin-Fock spectra (including levels with n > 0) have been reported [14, 15, 17, 21]

in the literature for several cases with N = 3 and N = 4 electrons. These calculations

will be of great assistance in evaluating the accuracy of the REM method (see section

2.3).

In the above Eq. (19), we have used exact diagonalization in the lowest Landau

level for evaluating the interelectron contribution to the total energy. In alternative

treatments, one may obtain the interelectron energy contribution through the use

of various approximate wave functions restricted to the LLL. These include the use

of the Laughlin wave function and descendants thereof (e.g., composite fermions),

or the rotating electron wave functions at the limit B → ∞, which is reached by

setting λ = lB
√

2 in the right-hand-side of Eq. (7) (defining the displaced orbital).

For these cases, we will use the obvious notations ẼLaughlin
tot,LLL (B,L), ẼCF

tot,LLL(B,L), and

ẼREM
tot,LLL(B,L).

2.3 Comparison of approximate results with exact diago-
nalization calculations

2.3.1 Ground-state energies in external confinement

Before proceeding with the presentation of results for N > 10, we demonstrate the

accuracy of the two-step method through comparisons with existing EXD results

for smaller sizes. In Fig. 1, our calculations for ground-state energies as a function

of B are compared to EXD calculations [14] for N = 4 electrons in an external

parabolic confinement. The thick dotted line (red) represents the broken-symmetry

UHF approximation (first step of our method), which naturally is a smooth curve

lying above the EXD one [solid line (green)]. The results obtained after restoration of
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symmetry [dashed-dotted line (blue); marked as REM] agree very well with the EXD

one in the whole range 2 T< B < 15 T. [53] We recall here that, for the parameters

of the QD, the electrons form in the intrinsic frame of reference a square about the

origin of the dot, i.e., a (0,4) configuration, with the zero indicating that no electron is

located at the center. According to Eq. (9), L0 = 6, and the magic angular momenta

are given by Lm = 6 + 4k, k = 0, 1, 2, ...

To further evaluate the accuracy of the two-step method, we also display in Fig.

1 [thin dashed line (violet)] ground-state energies calculated with the commonly used

[13, 19, 52] approximation ẼEXD
tot,LLL(B) (see section 2.2.2). We find that the energies

ẼEXD
tot,LLL(B) tend to substantially overestimate the REM (and EXD) energies for lower

values ofB (e.g., by as much as 5.5% at B ∼ 4 T). On the other hand, for higher values

ofB (> 12 T), the energies ẼEXD
tot,LLL(B) tend to agree rather well with the REM ones. A

similar behavior is exhibited also by the ẼREM
tot,LLL(B) energies [the interaction energies

are calculated within the LLL using the REM wave function; dotted line (black)]. We

have found that the overestimation exhibited by the ẼEXD
tot,LLL(B) energies is due to

the fact that the actual dimensionless Coulomb coefficient ẼEXD
int,LLL(L) [See Eq. (19)]

is not independent of the magnetic field, but decreases slowly as B decreases when

the effect of the confinement is considered (see Appendix A). A similar agreement

between REM and EXD results, and a similar inaccurate behavior of the limiting-

case approximation, was found by us also for N = 3 electrons in the range 2 T < B <

16 T shown in Fig. 2 (the EXD calculation was taken from Ref. [21]).

In all cases, the total energy of the REM is lower than that of the SEM (see, e.g.,

Figs. 1 and 2). Indeed, a theorem discussed in Sec. III of Ref. [54], pertaining to the

energies of projected wave functions, guarantees that this lowering of energy applies

for all values of N and B.
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Table 1: Comparison of yrast-band energies obtained from REM and EXD calcula-
tions for N = 6 electrons in the lowest Landau level, that is in the limit B →∞. In
this limit the external confinement can be neglected and only the interaction energy
contributes to the yrast-band energies. Energies in units of e2/(κlB). For the REM
results, the (1,5) polygonal-ring arrangement was considered. For L < 140, see Table
2.4 in Ref. [16](b) and Table 2.2 in Ref. [18](c). The values of the fractional filling
may be obtained for each L as ν = N(N − 1)/(2L).

L REM EXD Error (%)
140 1.6059 1.6006 0.33
145 1.5773 1.5724 0.31
150 1.5502 1.5455 0.30
155 1.5244 1.5200 0.29
160 1.4999 1.4957 0.28
165 1.4765 1.4726 0.27
170 1.4542 1.4505 0.26
175 1.4329 1.4293 0.25
180 1.4125 1.4091 0.24
185 1.3929 1.3897 0.23
190 1.3741 1.3710 0.23
195 1.3561 1.3531 0.22
200 1.3388 1.3359 0.21

2.3.2 Yrast rotational band at B →∞

As a second accuracy test, we compare in Table 2.1 REM and EXD results for the

interaction energies of the yrast band for N = 6 electrons in the lowest Landau level

[an yrast state is the lowest energy state for a given magic angular momentum Lm,

Eq. (9)]. The relative error is smaller than 0.3%, and it decreases steadily for larger

L values.

2.4 Illustrative examples from microscopic REM calcula-

tions

2.4.1 Which ring isomer has the lowest ground-state energy?: REM ver-
sus UHF energies

For a given number N of electrons, there exist[47] in general more than one polygonal-

ring isomers, associated with stable and metastable equilibrium configurations of N

electrons inside an external harmonic confinemnet ~ω0. Figure 3 displays UHF and
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REM ground-state energies forN = 6 and N = 9 electrons associated with the various

classical polygonal-ring configurations. For N = 6, one has two isomers, i.e., a (0,6)

configuration and a (1,5) configuration (with one lectron at the center). For N = 9

electrons, there exist three different isomers, i.e., (0,9), (1,8), and (2,7). From the

bottom panel in Fig. 3, we observe that for N = 9 electrons, the lowest REM energies

correspond to the classically stable isomer, i.e., to the (2,7) configuration with two

electrons in the inner ring and seven electrons in the outer ring. In particular, we

note that the (0,9) isomer (which may be associated with a single-vortex state) yileds

REM energies far above the (2,7) one in the whole magnetic-field range 5 T < B <

25 T, and in particular for magnetic fields immediately above those associated with

the MDD (the so-called MDD break-up range); the MDD for N = 9 electrons has

an angular momentum L0 = 36 and corresponds to the first energy oscillation in the

figure.

We have found that the (0, N) isomer is not associated with REM ground energies

for any magnetic-field range in all cases with N ≥ 7. The only instance when the

(0, N) configuration is associated with a REM ground-state energy is the N = 6 case

[see Fig. 3, top frame], where the REM energy of the (0,6) configuration provides the

ground-state energy in the range 6.1 T < B < 7.7 T, immediately after the break-up

of the MDD.

For comparison, we have also plotted in Fig. 3 the UHF energies as a function of

the magnetic field. Most noticeable is the fact that the REM ground states, compared

to the UHF ones, may result in a different ordering of the isomers. For example, in the

range 5 T < B < 6.1 T, the UHF indicates, by a small energetic advantage, the (0,6)

as the ground-state configuration associated with the MDD, while the REM specifies

the (1,5) arrangement as the ground-state configuration. A similar switching of the

ground-state isomers is also seen between the (1,8) and (2,7) configurations in the

case of N = 9 electrons in the magnetic-field range 5 T < B < 11.5 T. We conclude
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that transitions between the different electron-molecule isomers derived from UHF

energies alone[55, 56] are not reliable.

2.4.2 The case of N = 9 electrons

In figure 4 we show ground-state energies for the case of N = 9 electrons, which have

a nontrivial double-ring configuration (n1, n2). Here, the most stable configuration for

classical point charges[47] is (2, 7), for which we have carried UHF (SEM) and REM

(projected) calculations in the magnetic field range 5 T < B < 25 T. We also display

in Fig. 4 the energies ẼREM
tot,LLL(B) [dotted curve (black)], which, as in the N = 4 and

N = 3 cases discussed in the section 2.3, overestimate the ground-state energies, in

particular for smaller B. [57] In keeping with the findings for smaller sizes [16](c)

[with (0, N) or (1, N − 1) configurations], both the UHF and the REM ground-state

energies of the N = 9 case approach as B → ∞ the classical equilibrium energy of

the (2,7) polygonal configuration [i.e., 16.75 meV; 4.088E0 in the units of Ref. [47],

E0 ≡ (m∗ω2
0e

4/2κ2)1/3].

In analogy with smaller sizes [see, e.g., Figs. 1 and 2 for N = 4 and N = 3],

the REM ground-state energies in Fig. 4 exhibit oscillations as a function of B.

These oscillations reflect the incompressibility of the many-body states associated

with magic angular momenta. The magic angular momenta are specified by the

number of electrons on each ring, and in general they are given by Lm = N(N−1)/2+

∑r
q=1 kqnq, where the nq’s are the number of electrons located in the qth ring and the

kq’s are non-negative integers; in particular, Lm = 36 + 2k1 + 7k2 for the N = 9 case

in Fig. 4. An analysis of the actual values taken by the set of indices {k1, k2} reveals

several additional trends that further limit the allowed values of ground-state Lm’s.

In particular, starting with the values {k1 = 0, k2 = 0} at B = 5 T (LMDD
m = 36),

the indices {k1, k2} reach the values {2, 24} at B = 25 T (Lm = 208). As seen form

Table 2.2, the outer index k2 has a short period, while the inner index k1 exhibits a
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Table 2: Ground-state magic angular momenta and their decomposition {k1, k2} for
N = 9 in the nagnetic-field range 5 T ≤ B ≤ 25 T. These results correspond to the
REM [see lower curve in Fig. 2.4, with the electrons arranged in a (2,7) structure].
The parameters used are as in Fig. 2.4.
Lm k1 k2 Lm k1 k2

36 0 0 129 1 13
43 0 1 136 1 14
50 0 2 143 1 15
57 0 3 150 1 16
64 0 4 157 1 17
71 0 5 164 1 18
78 0 6 171 1 19
87 1 7 173 2 19
94 1 8 180 2 20

101 1 9 187 2 21
108 1 10 194 2 22
115 1 11 201 2 23
122 1 12 208 2 24

longer period and increases much more slowly than k2. This behavior minimizes the

total kinetic energy of the independently rotating rings (having a variable radius, see

section 2.5 below).

Table 3: Ground-state magic angular momenta and their decomposition {k1, k2} for

N = 9 electrons associated with the ẼREM
tot,LLL curve [top curve in Fig. 2.4; see section

2.2.2 for an explanation of notation; the electrons are arranged in a (2,7) structure].
Lm k1 k2 Lm k1 k2

36 0 0 57 0 3
45 1 1 64 0 4
52 1 2 71 0 5

We also list in Table 2.3 the first few pairs of indices {k1, k2} associated with

the ẼREM
tot,LLL curve (see top dotted curve in Fig. 4). It can be seen that the magic

angular momenta are different from those associated with the REM curve, when the

confinement is taken into consideration using the full projected wave function in Eq.

(8). The magic angular momenta of the ẼREM
tot,LLL curve coincide with the Lm’s of the

EXD within the LLL, and thus are characterized by having L0 + N = 45 (instead

of L0 + n2 = 43) as the magic angular momentum immediately following that of the
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MDD (i.e., L0 = 36). The L0 + N magic angular momentum is associated with the

(0, N) ring arrangement, which can be interpreted as a single “vortex-in-the-center”

state.

Based on EXD calculations restricted to the lowest Landau level [58, 24, 59] (that

is, ẼEXD
int,LLL or ẼEXD

tot,LLL in our notation), it has been conjectured that for QDs with

N < 15, the break-up of the MDD with increasing B proceeds through the formation

of the above mentioned single central vortex state. However, our REM calculations

show (see also the case of N = 11 electrons in section 2.4.3 and the case of N =

17 electrons in section 2.4.4) that taking into account properly the influence of the

confinement does not support such a scenario. Instead, the break-up of the MDD

resembles an edge reconstruction and it proceeds (for all dots with N > 6) through

the gradual detachement of the outer ring associated with the classical polygonal

configuration (see Table 2.2 for the case of N = 9 electrons). The only case we found

where the break-up of the MDD proceeds via a (0,6) vortex state is the one with

N = 6 electrons (see section 2.4.1),; and naturally the cases with N ≤ 5.

As another illustration of the subtle, but important, differences that exist between

wave functions defined exclusively within the LLL and those specified by the REM

wave function for finite B in Eq. (8), we display in Fig. 5 for N = 9 electrons the

radial electron densities of the MDD at B → ∞ and at B = 5.5 T. While the

electron density of the MDD in the LLL (B → ∞) is constant in the central region

[up to r ≈ 3lB, see Fig. 5(a)], the corresponding density at B = 5.5 T displays the

characteristic oscillation corresponding to the (2,7) multi-ring structure [see Fig. 5(b)];

the latter behavior is due to the mixing of higher Landau levels. To further illustrate

the (2,7) crystalline character of the MDD when higher Landau levels are considered,

we display in Fig. 6 the corresponding CPDs associated with the REM wave function

of the MDD at B = 5.5 T and an external confinement of ~ω0 = 3.6 meV. Our

conclusions concerning the MDD electron densities (and CPDs) are supported by
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EXD calculations for N = 4 electrons.[60] Note that, while the ring structure is well

developed in the CPDs shown in Fig. 6, the internal (2,7) structure of the rings (see in

particular the outer ring in the left panel in Fig. 6) is rather weak, as expected for the

lowest angular momentum L0 (MDD). However, the ring structure is easily discernible

in contrast to the CPDs for the MDD restricted to the LLL where structureless CPDs

(as well as structureless electron densities) are found.

2.4.3 The case of N = 11 electrons

Table 4: Ground-state magic angular momenta and their decomposition {k1, k2} for
N = 11 in the nagnetic-field range 5 T ≤ B ≤ 25 T. The results correspond to the
REM (see lower curve in Fig. 2.7). The parameters used are as in Fig. 2.7.
Lm k1 k2 Lm k1 k2

55 0 0 165 2 13
63 0 1 173 2 14
71 0 2 181 2 15
79 0 3 189 2 16
90 1 4 197 2 17
98 1 5 205 2 18

106 1 6 213 2 19
114 1 7 224 3 20
122 1 8 232 3 21
130 1 9 240 3 22
138 1 10 248 3 23
146 1 11 256 3 24
154 1 12

Figure 7 presents the case for the ground-state energies of a QD with N = 11 elec-

trons, which have a nontrivial double-ring configuration (n1, n2). The most stable[47]

classical configuration is (3, 8), for which we have carried UHF (SEM) and REM (pro-

jected) calculations in the magnetic field range 5 T < B < 25 T. Figure 7 also displays

the LLL ground-state energies ẼREM
tot,LLL(B) [dotted curve (black)], which, as in previ-

ous cases, overestimate the ground-state energies for smaller B. The approximation

ẼREM
tot,LLL(B), however, can be used to calculate ground-state energies for higher values

of B. In keeping with the findings for smaller sizes [16](c) [with (0, N) or (1, N − 1)
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configurations], we found that both the UHF and the REM ground-state energies

approach, as B → ∞, the classical equilibrium energy of the (3,8) polygonal config-

uration [i.e., 19.94 meV; 4.865E0 in the units of Ref. [47], E0 ≡ (m∗ω2
0e

4/2κ2)1/3].

In analogy with smaller sizes [see, e.g., Figs. 1, 2, and 4 for N = 4, 3, and 9,

respectively], the REM ground-state energies in Fig. 7 exhibit oscillations as a function

of B (see in particular the inset). As discussed in section 2.4.2, these oscillations are

associated with magic angular momenta, specified by the number of electrons on each

ring. For N = 11 they are given by Eq. (9), i.e., Lm = 55 + 3k1 + 8k2, with the kq’s

being nonnegative integers. As was the case with N = 9 electrons, an analysis of

the actual values taken by the set of indices {k1, k2} reveals several additional trends

that further limit the allowed values of ground-state Lm’s. In particular, starting

with the values {0, 0} at B = 5 T (L0 = 55), the indices {k1, k2} reach the values

{3, 24} at B = 25 T (Lm = 256). As seen from Table 2.4, the outer index k2 changes

faster than the inner index k1. This behavior minimizes the total kinetic energy of

the independently rotating rings; indeed, the kinetic energy of the inner ring (as a

function of k1) rises faster than that of the outer ring (as a function of k2) due to

smaller moment of inertia (smaller radius) of the inner ring [see Eq. (20)].

In addition to the overestimation of the ground-state energy values, particularly

for smaller magnetic fields (see Fig. 7 and our above discussion), the shortcomings

of the LLL approximation pertaining to the ground-state ring configurations [see

section 2.2, Eq. (19)], as discussed by us above for N = 9, persist also for N = 11. In

particular, we find that according to the LLL approximation the ground-state angular-

momentum immediately after the MDD (L0 = 55) is Lm = 66, i.e., the one associated

with the (0, N) vortex-in-the-center configuration. This result, erroneously stated in

Ref. [59] as the ground state, disagrees with the correct result that includes the effect

of the confinement – listed in Table 2.4, where the ground-state angular momentum

immediately following the MDD is Lm = 63. This angular momentum corresponds

27



to the classicaly most stable (3,8) ring configuration – that is a configuration with no

vortex at all.

Figure 8 displays the REM conditional probability distributions for the ground

state of N = 11 electrons at B = 10 T (Lm = 106). The (3,8) ring configuration is

clearly visible. We note that when the observation point is placed on the outer ring

(left panel), the CPD reveals the crystalline structure of this ring only; the inner ring

appears to have a uniform density. To reveal the crystalline structure of the inner

ring, the observation point must be placed on this ring; then the outer ring appears to

be uniform in density. This behavior suggests that the two rings rotate independently

of each other, a property that we will explore in section 2.5 to derive an approximate

expression for the yrast rotational spectra associated with an arbitrary number of

electrons.

2.4.4 The case of N = 17 electrons

Figure 9 presents (for 5 T ≤ B ≤ 15 T) REM and UHF ground-state energies for

N = 17 electrons, which have a (1,6,10) three-ring configuration as the most stable

classical arrangement. [47]

In analogy with smaller sizes [see, e.g., previous figures for N ≤ 12] the REM

ground-state energies in Fig. 9 exhibit oscillations as a function of B, and each oscil-

lation is associated with a given particular (magic) value of the angular momentum.

Earlier in this section we discussed the physical origins of the magic angular momenta.

As before, the magic angular momenta are specified by the number of electrons on

each ring [(9)], with L0 = 136 and Lm = 136 + 6k2 + 10k3 for N = 17; kq’s being

non-negative integers (the central electron does not contribute to the total angular

momentum). Analysis of the particular values taken by the set of indices {k2, k3}

reveals similar trends to those found for the cases with N = 9 and N = 11 electrons.

In particular, starting with the values {0, 0} at B = 5 T (L0 = 136), the indices
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Table 5: Ground-state magic angular momenta and their decomposition {k2, k3} for
N = 17 electrons in the nagnetic-field range 5 T ≤ B ≤ 15 T. The rersults correspond
to the REM (see lower curve in Fig. 2.9). The parameters used are as in Fig. 2.9.
Lm k2 k3 Lm k2 k3

136 0 0 238 2 9
146 0 1 248 2 10
156 0 2 264 3 11
166 0 3 274 3 12
172 1 3 284 3 13
182 1 4 294 3 14
192 1 5 310 4 15
202 1 6 320 4 16
212 1 7 330 4 17
218 2 7 340 4 18
228 2 8 346 5 18

{k2, k3} reach the values {k2 = 5, k3 = 18} at B = 15 T (Lm = 346). As seen from

Table 2.5, the outer index k3 changes faster, than the inner index k2. This behavior

minimizes the total kinetic energy of the independently rotating rings, as was already

discussed for N = 9 and N = 11 electrons.

We have also calculated the ground-state energies for N = 17 electrons in the

LLL approximation, i.e., we calculated the quantity ẼREM
tot,LLL(B) (not shown in Fig.

9). We find once more that ẼREM
tot,LLL(B) overestimates the ground-state energies in

the magnetic-field range covering the MDD and the range immediately above the

MDD. For N = 17, however, the shortcoming of the LLL approximation is not re-

flected in the determination of the ground-state ring configurations. We find that for

N = 17 the LLL approximation yields a (1,6,10) ring configuration (with Lm = 146)

for the ground state immediately following the MDD, in agreement with the REM

configurations listed in Table 2.5.
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2.5 REM yrast band excitation spectra and derivation of
analytic approximation formula

In Fig. 10, we display the CPD for the REM wave function of N = 17 electrons. This

case has a nontrivial three-ring structure (1,6,10), [47] which is sufficiently complex

to allow generalizations for larger numbers of particles. The remarkable combined

character (partly crystalline and partly fluid leading to a non-classical rotational in-

ertia, see section 2.6) of the REM is illustrated in the CPDs of Fig. 10. Indeed, as

the two CPDs [reflecting the choice of taking the observation point [r0 in Eq. (14)] on

the outer (left frame) or the inner ring (right frame)] reveal, the polygonal electron

rings rotate independently of each other. Thus, e.g., to an observer located on the

inner ring, the outer ring will appear as having a uniform density, and vice versa.

The wave functions obtained from exact diagonalization exhibit also the property of

independently rotating rings [see e.g., the N = 12 and L = 132 (ν = 1/2) case in

Fig. 11], which is a testimony to the ability of the REM wave function to capture

the essential physics [61] of a finite number of electrons in high B. In particular, the

conditional probability distribution obtained for exact diagonalization wave functions

in Fig. 11 exhibits the characteristics expected from the CPD evaluated using REM

wave functions for the (3,9) configuration and with an angular-momentum decompo-

sition into shell contributions [see Eqs. (8) and (10)] L1 = 3 + 3k1 and L2 = 63 + 9k2

(L1 + L2 = Lm; for Lm = 132 the angular-momentum decomposition is L1 = 6 and

L2 = 126).

In addition to the conditional probabilities, the solid/fluid character of the REM

is revealed in its excited rotational spectrum for a given B. From our microscopic

calculations based on the wave function in Eq. (8), we have derived (see below) an

approximate (denoted as “app”), but analytic and parameter-free, expression [see Eq.

(25) below] which reflects directly the nonrigid (nonclassical) character of the REM

for arbitrary size. This expression allows calculation of the energies of REMs for
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arbitrary N , given the corresponding equilibrium configuration of confined classical

point charges.

We focus on the description of the yrast band at a given B. Motivated by the

aforementioned nonrigid character of the rotating electron molecule, we consider the

following kinetic-energy term corresponding to a (n1, ..., nq, ..., nr) configuration (with

∑r
q=1 nq = N):

Ekin
app(N) =

r∑

q=1

~
2L2

q/(2Jq(aq))− ~ωcL/2, (20)

where Lq is the partial angular momentum associated with the qth ring about the

center of the dot and the total angular momentum is L =
∑r

q=1 Lq. Jq(aq)) ≡ nqm
∗a2

q

is the rotational moment of inertia of each individual ring, i.e., the moment of inertia

of nq classical point charges on the qth polygonal ring of radius aq. To obtain the

total energy, EREM
L , we include also the term Ehc

app(N) =
∑r

q=1 Jq(aq)Ω
2/2 due to the

effective harmonic confinement Ω [see discussion of Eq. (7)], as well as the interaction

energy EC
app,

EC
app(N) =

r∑

q=1

nqSq

4

e2

κaq

+
r−1∑

q=1

r∑

s>q

VC(aq, as). (21)

The first term is the intra-ring Coulomb-repulsion energy of nq point-like electrons

on a given ring, with a structure factor

Sq =

nq∑

j=2

(sin[(j − 1)π/nq])
−1. (22)

The second term is the inter-ring Coulomb-repulsion energy between rings of uni-

form charge distribution corresponding to the specified numbers of electrons on the

polygonal rings. The expression fo VC is

VC(aq, as) = nqns 2F1[3/4, 1/4; 1; 4a2
qa

2
s(a

2
q + a2

s)
−2]

×e2(a2
q + a2

s)
−1/2/κ, (23)

where 2F1 is the hypergeometric function.
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For large L (and/or B), the radii of the rings of the rotating molecule can be found

by neglecting the interaction term in the total approximate energy, thus minimizing

only Ekin
app(N) + Ehc

app(N). One finds

aq = λ
√
Lq/nq; (24)

i.e., the ring radii depend on the partial angular momentum Lq, reflecting the lack

of radial rigidity . Substitution into the above expressions for Ekin
app, E

hc
app, and EC

app

yields for the total approximate energy the final expression:

EREM
app,L (N) = ~(Ω− ωc/2)L+

r∑

q=1

CV,q

L
1/2
q

+
r−1∑

q=1

r∑

s>q

VC(λ

√
Lq

nq
, λ

√
Ls

ns
), (25)

where the constants

CV,q = 0.25n3/2
q Sqe

2/(κλ). (26)

For simpler (0, N) and (1, N − 1) ring configurations, Eq. (25) reduces to the expres-

sions reported earlier.7(c), [62]

2.6 A non-rigid crystalline phase: Non-classical rotational
inertia of electrons in quantum dots

In Fig. 12 (left frame), and for a sufficiently high magnetic field (e.g., B = 100

T such that the Hilbert space of the system reduces to the lowest Landau level),

we compare the approximate analytic energies EREM
app,L with the microscopic energies

EREM
L calculated from Eq. (11) using the same parameters as in Fig. 9 for N = 17

electrons. The two calculations agree well, with a typical difference of less than 0.5%

between them. More important is the marked difference between these results and

the total energies of the classical (rigid rotor) molecule (E rig
L ), plotted in the right
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frame of Fig. 12; the latter are given by

Erig
L = ~

2L2/(2Jrig) + 0.5

N∑

i=1

m∗ω2
0|Zi|2 +

N∑

i=1

N∑

j>i

e2/(κ|Zi − Zj|), (27)

with the rigid moment of inertia being [63]

Jrig =
N∑

i=1

m∗|Zi|2. (28)

The disagreement between the REM and the classical energies is twofold: (i) The

L dependence is different, and (ii) The REM energies are three orders of magnitude

smaller than the classical ones. That is, the energy cost for the rotation of the REM

is drastically smaller than for the classical rotation, thus exhibiting non-classical

rotational behavior. In analogy with Ref. [40], we define a “non-rigidity” index

α = (Erig
L − EREM

L )/Erig
L . (29)

For the case displayed in Fig. 12, we find that this index varies (for 1116 ≤ L ≤ 3716)

from α = 0.978 to α = 0.998, indicating that the rotating electron molecule, while

possessing crystalline correlations is (rotationally) of a high non-rigid nature. We

remark that our definition of α in Eq. (29) was motivated by a similar form of an

index of supefluid fraction introduced in Ref. [40]; we do not mean to imply the

presence of a superfluid component for electrons in quantum dots.

In the context of the appearance of supersolid behavior of 4He under appropriate

conditions, formation of a supersolid fraction is often discussed in conjunction with

the presence of (i) real defects and (ii) real vacancies. [38, 39] Our REM wave function

[Eq. 8] belongs to a third possibility, namely to virtual defects and vacancies, with

the number of particles equal to the number of lattice sites (in the context of 4He, the

possibility of a supersolid with equal number of particles and lattice sites is mentioned

in Ref. [42]). Indeed, the azimuthal shift of the electrons by (γ1, γ2, ..., γr) [see Eq.
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(8)] may be viewed as generating virtual defects and vacancies with respect to the

original electron positions at (γ1 = 0, γ2 = 0, ..., γr = 0) on the polygonal rings.

A recent publication [52] has explored the quantal nature of the 2D electron

molecules in the lowest Landau level (B → ∞) using a modification of the second-

quantized LLL form of the REM wave functions. [16] In particular, the modification

consisted of a multiplication of the parameter free REM wave function by variationally

adjustable Jastrow-factor vortices. Without consideration of the rotational proper-

ties of the modified wave function, the inherently quantal nature of the molecule was

attributed exclusively to the Jastrow factor. However, as shown above, the original

REM wave function [Eq. (8)] already exhibits a characteristic non-classical rotational

inertia (NCRI). Consequently, the additional variational freedom introduced by the

Jastrow prefactor may well lead energetically to a slight numerical improvement, but

it does not underlie the essential quantal physics of the system. Indeed, as discussed

previously and illustrated in detail above, the important step is the projection of the

static electron molecule onto a state with good total angular momentum [see Eqs.

(7) and (8)].

2.7 Summary

The focus of this part pertains to the development of methods that permit inves-

tigations of the energetic, structural, and excitation properties of quantum dots in

strong magnetic fields with an (essentially) arbitrary number of electrons. Towards

this aim, we utilized several computational methods, and have assessed their ade-

quacy. The methods that we have used are: (1) Exact diagonalization which is lim-

ited to a rather small number of particles; (2) The “two-step” successive-hierarchical-

approximations method (see section 2.2.1), in which a UHF step leading to broken-

symmetry solutions (static electron molecule) is followed by restoration (via projec-

tion techniques) of circularly symmetric states with good angular momenta (rotating
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electron molecule; REM); (3) An approximation method based on diagonalization of

the electron-electron interaction term restricted to the lowest Landau level (LLL). In

this method, the total energy includes, in addition to the LLL diagonalization term,

a contribution from the harmonic confinement that is linear in the total angular mo-

mentum; (4) An analytic expression [see Eq. (25)] whose derivation is based on the

REM.

We performed comparative calculations for quantum dots with an increasing num-

ber of parabolically confined electrons (N = 3, 4, 6, 9, 11, and 17). The ground-state

arrangements of the electrons become structurally more complex as the number of

electrons in the dot increases. Using the notation (n1, n2, n3, ...) for the number of

electrons located on concentric polygonal rings (see section 2.2.1), the ground-state

arrangements are: (0,3) for N = 3, (0,4) for N = 4, (1,5) for N = 6, (2,7) for N = 9,

(3,8) for N = 11, and (1,6,10) for N = 17.

Analysis of the results of our calculations revealed that, for all sizes studied by us,

the two-step REM method provides a highly accurate description of electrons parabol-

ically confined in quantum dots for a whole range of applied magnetic fields, starting

from the neighborhood of the so-called maximum density droplet and extending to

the B →∞ limit. In contrast, the LLL-diagonalization approximation was found to

be rather inaccurate for weaker magnetic fields, where it grossly overestimates the

total energies of the electrons; the accuracy of this latter method improves at higher

field strengths.

The ground-state energy of the electrons in a QD oscillates as a function of the

applied magnetic field, and the allowed values of the angular momenta are limited

to a set of magic angular momentum values, Lm, which are a natural consequence

of the geometrical arrangement of the electrons in the rotating electron molecule.

Accordingly, the electrons are localized on concentric polygonal rings which rotate
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independently of each other (as observed from the conditional probability distribu-

tions, see section 2.4). Underlying the aforementioned oscillatory behavior is the

incompressibility of the many-body states associated with the magic angular mo-

menta. The general expression for Lm is given in Eq. (9), for a given number N and

occupancy of the polygonal rings {nq}. For the ground-state Lm’s, the values of the

non-negative integers kq in Eq. (9) are taken such as to minimize the total kinetic en-

ergy of the electrons. Since the moment of inertia of an outer ring is larger than that

of an inner ring of smaller radius, the rotational energy of the outer ring will increase

more slowly with increasing angular momentum. Therefore, the kq index in Eq. (9) of

an outer ring will very up to relatively large values while the values corresponding to

inner rings remain small (see section 2.4). As a consequence, we find through REM

calculations with proper treatment of the confining potential that for N > 6, with

increasing strength of the magnetic field, the maximum density droplet converts into

states with no central vortex, in contrast to earlier conclusions[24, 58, 59] drawn on

the basis of approximate calculations restricted to the lowest Landau level. Instead we

find that the break-up of the MDD with increasing B proceeds through the gradual

detachment of the outer ring associated with the corresponding classical polygonal

configuration.

In addition to the ground-state geometric arrangements, we have studied for cer-

tain sizes higher-energy structural isomers (see, e.g., the cases of N = 6 and N = 9

confined electrons in Fig. 2.3). We find that for all cases with N ≥ 7 multi-ring

confined-electron structures (n1, n2, ..., nr), with n1, n2, ..., nr 6= 0 and r ≥ 2, are en-

ergetically favored. For N = 6, a (1,5) structure is favored except for a small B-range

(e.g., 6.1 T < B < 7.7 T for the parameters in Fig. 2.3), where the (0,6) single-ring

structure is favored. For N ≤ 5 the (0, N) single-ring structure is favored for all B

values.

In the REM calculations, we have utilized an analytic many-body wave function
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[Eq. (8)] which allowed us to carry out computations for a sufficiently large number

of electrons (N = 17 electrons having a nontrivial three-ring polygonal structure),

leading to the derivation and validation of an analytic expression Eq. (25) for the

total energy of rotating electron crystallites of arbitrary N .

The non-rigidity implied by the aforementioned independent rotations of the in-

dividual concentric polygonal rings motivated us to quantify (see section 2.6) the

degree of non-rigidity of the rotating electron molecules at high B, in analogy with

the concept of non-classical rotational inertia used in the analysis[40, 42] of supersolid

4He. These findings for finite dots suggest a strong quantal nature for the extended

Wigner crystal in the lowest Landau level, designating it as a useful paradigm for

exotic quantum solids.
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Figure 1: Two-step-method versus EXD calculations: Ground-state energies for
N = 4 electrons (referenced to 4~Ω) as a function of the magnetic field B. Thick
dashed line (red): broken-symmetry UHF (SEM). Solid line (green): EXD (from
Ref. [14]). Thick dashed-dotted line (blue): REM. Thin dashed line (violet, marked

LLL): the commonly used approximate energies ẼEXD
tot,LLL(B) [see Eq. (19)]. Thin

dotted line (black): ẼREM
tot,LLL(B) (see section 2.2.2). For B < 8 T, the ẼEXD

tot,LLL(B)

and ẼREM
tot,LLL(B) curves coincide; we have checked that these curves approach each

other also at larger values of B, outside the plotted range. Numbers near the bottom
curves denote the value of magic angular momenta [Lm, see Eq. (9)] of the ground
state. Corresponding fractional filling factors are specified by ν = N(N − 1)/(2Lm).
Parameters used: confinement ~ω0 = 3.60 meV, dielectric constant κ = 13.1, effective
mass m∗ = 0.067me.
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Figure 2: Two-step method versus EXD calculations: Ground-state energies (per
particle, referenced to ~Ω) for N = 3 electrons. The electrons are arranged in a
(0,3) structure in the intrinsic frame of reference. Thick dashed line (red): broken-
symmetry UHF (SEM). Thinner solid line (green): EXD (from Ref. [21]). Thick solid
line (blue): REM. Thin dashed line (violet): the commonly used approximate energies

ẼEXD
tot,LLL(B) (see text). Thin dotted line (black): ẼREM

tot,LLL(B) (see text). For B < 8 T,

the ẼEXD
tot,LLL(B) and ẼREM

tot,LLL(B) curves coincide; we have checked that these curves
approach each other also at larger values of B, outside the plotted range. Numbers
denote the value of magic angular momenta (Lm) of the ground state. Corresponding
fractional filling factors are specified by ν = N(N − 1)/(2Lm). Parameters used:
confinement ~ω0 = 3.37 meV, dielectric constant κ = 12.4, effective mass m∗ =
0.067me.
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Figure 3: Comparison of REM and UHF ground-state energies per particle (refer-
enced to ~Ω) associated with different ring isomers for N = 6 and N = 9 electrons
as a function of the magnetic field B. The curves are labeled with the computational
method and the isomer (n1, n2). To the left of the vertical arrow (at B = 11.5 T),
the UHF(1,8) curve is energetically favored. To the right of the vertical arrow, the
UHF(2,7) curve is energetically favored. Parameters used: confinement ~ω0 = 3.60
meV, dielectric constant κ = 13.1, effective mass m∗ = 0.067me.
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constant κ = 13.1, effective mass m∗ = 0.067me.
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Figure 5: REM radial electron densities for the MDD (Lm = L0 = 36) of N = 9
electrons [in the (2,7) ground-state configuration] at (a) B → ∞, i.e., in the lowest
Landau level and (b) at B = 5.5 T. Parameters used in (b): confinement ~ω0 = 3.60
meV, dielectric constant κ = 13.1, effective mass m∗ = 0.067me. Lengths: (a) in units
of the magnetic length lB; (b) in units of R0 = (2e2/m∗κω2
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1/3. Electron densities:

(a) in units of 1/l2B; (b) in units of 1/R2
0. Normalization: 2π
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Figure 6: Conditional probability distributions obtained from REM wave functions
of the MDD (L0 = 36) for N = 9 electrons at B = 5.5 T [see Fig. 5(b)]. The
electrons are arranged in a (2,7) structure. The observation point is denoted by a
solid dot. On the left, the observation point is located on the outer shell, and on
the right it is located on the inner shell. Parameters used: confinement ~ω0 = 3.60
meV, dielectric constant κ = 13.1, effective mass m∗ = 0.067me. Lengths in units of
R0 = (2e2/(κm∗ω2

0))
1/3. CPDs (vertical axes) in arbitrary units.
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~Ω) as a function of the magnetic field B. Dashed line (red): UHF (SEM). Solid

line (blue): REM. Dotted line (black): Approximate energies ẼREM
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Parameters used: confinement ~ω0 = 3.60 meV, dielectric constant κ = 13.1, effective
mass m∗ = 0.067me. The inset shows a magnification of the REM curve in the range
5 T < B < 12 T.
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Figure 8: REM conditional probability distributions for N = 11 electrons at B = 10
T (L = 106). The electrons are arranged in a (3,8) structure. The observation
point (solid dot) is placed on (left) the outer ring at r0 = 1.480R0, and (right) on
the inner ring at r0 = 0.557R0. Parameters used: confinement ~ω0 = 3.60 meV,
dielectric constant κ = 13.1, effective mass m∗ = 0.067me. Lengths in units of
R0 = (2e2/m∗κω2

0)
1/3. CPDs (vertical axes) in arbitrary units.
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Figure 9: Ground-state energies (per particle, referenced to ~Ω) forN = 17 electrons
as a function of the magnetic field B. The electrons are arranged in a (1,6,10) struc-
ture. Dashed line (red): UHF. Solid line (blue): REM. Parameters used: confinement
~ω0 = 3.6 meV, dielectric constant κ = 13.1, effective mass m∗ = 0.067me.
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Figure 10: Grond-state conditional probability distributions, CPDs, obtained from
REM wave functions for the ground state of N = 17 electrons at B = 10 T (L = 228).
The electrons are arranged in a (1,6,10) structure. The observation point (solid dot)
is placed on the outer ring at r0 = 1.858R0 (left frame), and on the inner ring at
r0 = 0.969R0 (right frame). The rest of the parameters are the same as in Fig. 9.
Lengths in units of R0 = (2e2/(κm∗ω2

0))
1/3. CPDs (vertical axes) in arbitrary units.
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Figure 11: CPDs for N = 12 electrons and with angular momentum L = 132
(ν = 1/2) calculated with EXD in the lowest Landau level. The electrons are arranged
in a (3,9) structure. The observation point (solid dot) is placed on the outer ring at
r0 = 5.22lB (left frame), and on the inner ring at r0 = 1.87lB (right frame). Lengths
in units of lB. CPDs (vertical axes) in arbitrary units.
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Figure 12: Left: Yrast spectrum for N = 17 electrons at a high magnetic field B =
100 T. Approximate analytic expression [Eq. (25), dashed line (violet)] compared with
microscopic REM calculations [Eq. (11), solid line (green)]. Right: The corresponding
classical (rigid rotor) energy Erig

L for N = 17 electrons (see text). The microscopic
REM energies are referenced relative to the zero-point energy, 17~Ω. Energies were
calculated for magic angular momenta L = L1 + L2 + L3 with L1 = 0, L2 = 21 + 6k2

and k2 = 30, and L3 = 115+10k3. The parameters are the same as in Fig. 9. Note the
much larger energy scale for the classical case (right frame), leading to a non-rigidity
index for the REM of α ∼ 0.99 (see text).
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CHAPTER III

EXACT DIAGONALIZATION FOR ELLIPTICAL DOTS

3.1 Outline of the exact diagonalization many-body method

We consider three electrons under zero or low magnetic field (B) in a single quantum

dot. The corresponding many-body Hamiltonian is written as

H =

3∑

i=1

H(i) +

3∑

j>i=1

e2

κ|ri − rj|
, (30)

where κ is the dielectric constant of the semiconductor material (12.5 for GaAs). The

single-particle Hamiltonian is given by

H = T + V (x, y) +
g∗µB

~
Bσ, (31)

where the last term is the Zeeman interaction, with g∗ being the effective Landé

factor, µB the Bohr magneton, B the perpendicular magnetic field, and σ = ±1/2

the spin projection of an individual electron. The kinetic contribution in Eq. (31) is

given by

T =
[p− (e/c)A(r)]2

2m∗
, (32)

with m∗ being the effective mass (0.067me for GaAs) and the vector potential A(r) =

0.5(−Byı̂ + Bx̂) being taken according to the symmetric gauge. The external con-

fining potential is denoted as V (x, y), where r = xı̂ + y̂.

The external potential is modeled by an anisotropic 2D Harmonic oscillator

V (x, y) =
1

2
m∗(ω2

xx
2 + ω2

yy
2), (33)

which reduces to a circular parabolic QD for ωx = ωy = ω0. The ratio η = ωx/ωy

characterizes the degree of anisotropy of the quantum dot, and it will be referred
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to thereafter as the anisotropy parameter. Results will be presented for three cases:

η = 1 (circular), η = 0.724 (slightly anisotropic), and η = 1/2 (strongly anisotropic).

We find the eigenstates of the many-body Hamiltonian (30) using an exact diago-

nalization method. Accordingly, we expand the many-body wave function as a linear

superposition,

ΨEXD(r1, r2, r3) =
∑

1≤i<j<k≤2K

Aijk|ψ(1; i)ψ(2; j)ψ(3; k)〉, (34)

where |ψ(1; i)ψ(2; j)ψ(3; k)〉 denotes a Slater determinant made out of the three spin-

orbitals ψ(1; i), ψ(2; j), and ψ(3; k). For the spin orbitals, we use the notation

ψ(1; i) = ϕi(1 ↑) if 1 ≤ i ≤ K and ψ(1; i) = ϕi−K(1 ↓) if K + 1 ≤ i ≤ 2K [and

similarly for ψ(2; j) and ψ(3; k)]. K is the maximum number of space orbitals ϕi(r)

that are considered, with ϕi(l ↑) ≡ ϕi(rl)α and ϕi(l ↓) ≡ ϕi(rl)β where α and β de-

note up and down spins, respectively. The space orbitals ϕi(r) are taken to coincide

with the real eigenfunctions of a 2D anisotropic oscillator, that is, the index i ≡ (m,n)

and ϕi(r) = Xm(x)Yn(y), with Xm(Yn) being the eigenfunctions of the corresponding

one-dimensional oscillators in the x(y) direction with frequency ωx(ωy). The parity

operator P yields PXm(x) = (−1)mXm(x), and similarly for Yn(y).

The total energies EEXD and the coefficients Aijk’s are obtained through a direct

numerical diagonalization of the matrix eigenvalue equation corresponding to the

Hamiltonian in Eq. (30). For the solution of this large scale, but sparse, matrix

eigenvalue problem, we have used the ARPACK computer code.[64]

The EXD wave function (34) preserves by construction the third projection Sz of

the total spin, since only Slater determinants with a given Sz value are used in the

expansion. The exact diagonalization automatically produces eigenfunctions of the

square, Ŝ2, of the total spin Ŝ =
∑3

i=1 σ̂i. The corresponding eigenvalues ~
2S(S + 1)

are calculated with the help of the expression

Ŝ2|SD〉 =

[
(Nα −Nβ)2/4 +N/2 +

∑

i<j

$ij

]
|SD〉, (35)
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where |SD〉 denotes a Slater determinant and the operator $ij interchanges the spins

of electrons i and j provided that their spins are different; Nα and Nβ denote the

number of spin-up and spin-down electrons, respectively, while N denotes the total

number of electrons.

Since the spin orbitals ψ’s are orthogonal, the Coulomb matrix elements between

two Slater determinants are calculated using the Slater rules,[65] and the necessary

two-body matrix elements between space orbitals

∫ ∫
dr1dr2ϕ

∗
i (r1)ϕ

∗
j(r2)

1

|r1 − r2|
ϕk(r1)ϕl(r2) (36)

are calculated numerically via a center-of-mass transformation which eliminates the

divergence at |r1 − r2| = 0. We have found that this method produces numerically

stable results in comparison with algebraic expressions.[66]

3.2 Energy spectra of anistropic quantuam dots

In this section, we study the ground-state and excitation spectra as a function of an

increasing magnetic field B with an emphasis on the role of correlation effects and

the influence of the anisotropy.

To better understand the importance of correlations, we first display in Fig. 13 the

spectra in the absence of the Coulomb interaction (non-interacting electrons) and for

the case of a circular quantum dot. The main trend is the formation of three-particle

Landau bands (each with an infinite number of states) that tend for B → ∞ to the

asymptotic energy levels (M+3/2)~ωc,M = 0, 1, 2, . . . In this limit, the states (S, L),

belonging to the same Landau bandM, become degenerate in energy, converging to

the the corresponding familiar Landau level (with index M). Apart from an overall

constatnt, the picture in Fig. 13 is the same as that found in the phenomenological

“constant interaction.” model[67] An important property is the absence of crossings

between individual levels within each Landau band. A consequence of this is that the
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Figure 13: Ground-state and excitation energy spectra (after the substraction of

3~

√
(ω2

x + ω2
y)/2 + ω2

c/4) as a function of the magnetic field for N = 3 non-interacting

electrons in a circular quantum dot (η = 1). Parameters: external confinement
~ωx = ~ωy = 5 meV; dielectric constant κ = ∞; effective mass m∗ = 0.067me,
effective Landé coefficient g∗ = 0. The labels (S;L) denote the quantum numbers for
the total spin and the total angular momentum. Different Landau bands are denoted
by the different M values.

ground state at any B has the same quantum numbers as the one at B = 0, i.e., it

has total spin S = 1/2 and total angular momentum L = 1.

Turning on the interaction introduces correlation effects that lead to important

modifications of these spectra. Fig. 14 displays the corresponding spectra for the

same circular quantum dot, but in the presence of a Coulomb repulsion with κ = 12.5

(GaAs). Of course, a first effect is the increase in the total energy, but the main

difference from the non-interacting case in Fig. 13 is the presence of crossings between

levels within the same Landau band. As a result, within the plotted range of magnetic

fields, the ground-state total-spin quantum number remains S = 1/2 at the first
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Figure 14: Ground-state and excitation energy spectra (after the substraction of

3~

√
(ω2

x + ω2
y)/2 + ω2

c/4) as a function of the magnetic field for N = 3 interacting

electrons in a circular quantum dot (η = 1). Parameters: external confinement
~ωx = ~ωy = 5 meV; dielectric constant κ = 12.5; effective mass m∗ = 0.067me;
effective Landé coefficient g∗ = 0. The labels (S;L) denote the quantum numbers for
the total spin and the total angular momentum.

ground-state crossing (at point B), and then it changes to S = 3/2 (at the second

ground-state crossing at point C). At the same time, the total angular momentum

changes from L = 1, to L = 2, and then to L = 3, respectively. As long as the

effective Landé coefficient g∗ = 0, which is the case for the results presented in

this section, this threefold alternation in the spin and angular momentum quantum

numbers repeats itself ad-infinitum. We note that experimental observation of this

threefold altenation may be forthcoming, since quantum dots with a vanishing Landé

coefficient have been recently fabricated[25] and were used already to measure two-

electron excitation spectra.
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The crossings of the curves associated with the three different pairs of quantum

numbers (S, L) = (1/2, 1), (1/2; 2), and (3/2; 3) form a small triangle (labeled as

ABC), which is located about B ∼ 3.8 T. Anticipating the investigations for non-

circular dots below, we note that this triangle tends to collapse to a single point with

increasing anisotropy.
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Figure 15: Ground-state and excitation energy spectra (after the substraction of

3~

√
(ω2

x + ω2
y)/2 + ω2

c/4) as a function of the magnetic field for N = 3 interacting

electrons in an elliptic quantum dot with intermediate anisotropy (anisotropy param-
eter η = 0.724). Parameters: external confinement ~ωx = 4.23 meV, ~ωy = 5.84 meV;
dielectric constant κ = 12.5; effective mass m∗ = 0.070me; effective Landé coefficient
g∗ = 0. The labels (S;L) denote the quantum numbers for the total spin and the
total angular momentum in the corresponding circular quantum dot.

Another prominent difference between the non-interacting (Fig. 13) and interact-

ing (Fig. 14) spectra is that the degeneracies at B = 0 between the S = 3/2 and

S = 1/2 states are lifted in the interacting case [compare in particular the curves
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with quantum numbers (1/2; 2), (1/2; 0), and (3/2; 0)]. On the contrary, the origi-

nal degeneracies at B = 0 of the S = 1/2 states do maintain [compare the curves

(1/2, 1) and (1/2,−1), as well as the ones labeled (1/2, 2) and (1/2, 0)]. However,

these S = 1/2 degenaracies at B = 0 are lifted as a result of an increasing anisotropy

of the quantum dot, as seen in Fig. 15.

1 3 5

B (T)

ABC

Figure 16: Ground-state and excitation energy spectra (after the substraction of

3~

√
(ω2

x + ω2
y)/2 + ω2

c/4) as a function of the magnetic field for N = 3 electrons

in an elliptic quantum dot with strong anisotropy (anisotropy parameter η = 1/2).
Parameters: external confinement ~ωx = 3.137 meV, ~ωy = 6.274 meV; dielectric
constant κ = 12.5; effective mass m∗ = 0.067me; effective Landé coefficient g∗ = 0.
The single labels denote the quantum numbers for the total spin.

Next, we proceed with futher elaborating on our investigations regarding the effect

of increasing anisotropy of the quantum dot. In particular, keeping the same strength

for the Coulomb interaction (κ = 12.5), we present two representative anisotropy

cases, i.e., η = 0.724 (intermediate anisotropy, see Fig. 15), and η = 1/2 (strong
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anisotropy closer to a quasilinear case, see Fig. 16).

Inspecting the results for the case of intermediate anisotropy (Fig. 15), we see

that compared to Fig. 14 the spectra are distorted, but they maintain the overall

topology of the circular dot. As a result, we have been able to use the same pairs of

labels in naming the different curves, even though the second label does not have the

meaning of an angular momentum (the total angular momentum is not conserved for

η 6= 1). There are two main differences for the circular case: i) the degeneracies at

B = 0 between the S = 1/2 states are lifted, and ii) there is a marked rounding of

all the S = 1/2 curves in the beginning, so that they do not cross the vertical energy

axis at sharp angles as is the case with Fig. 14. This initial rounding and bending of

the energy curves due to the anisotropy has been experimentally observed[25, 68] in

two-electron quantum dots.

In the case of strong anisotropy (Fig. 16), the spectra have evolved to such an

extent that little relation to the circular case can be traced, and as a result we

use the single label of the total spin to distinguish them. An important feature is

that the three curves with lowest energies (two S = 1/2 and one S = 3/2 curve)

form a band that is well separated from the other excited states. The existence of

such an isolated lowest-energy band is important for validating simple two-qubit and

three-qubit models introduced in quantum computation and quantum information

theory.[29, 69]

Another remarkable feature of the strong-anisotropy case is the appearance of

a triple-point crossing in the ground-state curve (see arrow in Fig. 16), which is

created from the collapse of the ABC triangle between the two S = 1/2 and the

one S = 3/2 lowest-in-energy curves. We note that triple-point crossings have been

recently observed experimentally in anisotropic quantum dots.[70]
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Figure 17: Exact-diagonalization electron densities for the ground states of N = 3
electrons in an anisotropic dot with parameters ~ωx = 3.137 meV, ~ωy = 6.274 meV
(η = 1/2), effective mass m∗ = 0.067me, dielectric constant κ = 12.5 (GaAs). (a):
The case of zero magnetic field, B = 0. (b) The case with a magnetic field B = 6 T.
Lengths in nm. The electron densities are in arbitrary units, but with the same scale
in both panels.

3.3 Many-body wave functions for strong anisotropy (η =
1/2)

3.3.1 S = 1/2 ground states: Evolution of electron densities as a function
of the inter-electron repulsion

When the confining potential lacks circular symmetry, charge localization is reflected

directly in the single-particle electron densities. Indeed, electron localization is visible

in Figs. 17 and 18, which display the electron densities for N = 3 electrons in an

anisotropic quantum dot with η = 1/2. Fig. 17 illustrates the evolution of electron

localization with increasing magnetic field in the case of a weaker Coulomb repulsion

(κ = 12.5). One sees that already at B = 0, the electron density is linear for all

practical purposes. However, the three peaks of the localized electrons are rather

weak, which contrasts with the case of B = 6 T [Fig. 17(b)], where the three electron

peaks are clearly stronger.

Fig. 18 [in conjunction with Fig. 17(a)] illustrates the strengthening of electron
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localization as a function of increasing Coulomb repulsion, i.e., decreasing dielectric

constant κ, from a value of 12.5 [Fig. 17(a)] to κ = 3 [Fig. 18(a)] and then to κ = 1

[Fig. 18(b)]. In this last case [Fig. 18(b)], the three electrons are almost fully localized,

with orbitals that practically exhibit zero overlap.
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Figure 18: Exact-diagonalization electron densities at zero magnetic field (B = 0)
for the ground state of N = 3 electrons in an anisotropic dot with parameters ~ωx =
3.137 meV, ~ωy = 6.274 meV (η = 1/2), m∗ = 0.067me. (a): dielectric constant
κ = 3.0. (b): dielectric constant κ = 1.0. Lengths in nm. The electron densities are
in arbitrary units, but with the same scale as in Fig. 17 for both panels.

3.3.2 S = 1/2 ground state: Spin resolved intrinsic structure for strong
repulsion (κ = 1).

In the previous section, we saw that the electron densities already provide partial

information about the formation of a linear Wigner molecule within an elliptic quan-

tum dot. Indeed, from the charge distributions in Figs. 17 and 18, one can guess

that the electrons are localized in three separate positions R1, R2, and R3. If the

electrons were spinless, this situation could be approximately reproduced by a single

Slater determinant denoted as | ©©©〉. However, to probe the spin distribution of

the electrons, the exact-diagonalization charge densities do not suffice; one needs to
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consider spin-resolved two-point correlation functions, defined as

Pσσ0
(r, r0) =

〈ΨEXD|
∑

i6=j

δ(r− ri)δ(r0 − rj)δσσi
δσ0σj
|ΨEXD〉, (37)

where naturally the EXD many-body wave function is given by equation (34).

Using a normalization constant

N (σ, σ0, r0) =

∫
Pσσ0

(r, r0)dr, (38)

we further define a related conditional probability distribution (CPD) as

Pσσ0
(r, r0) = Pσσ0

(r, r0)/N (σ, σ0, r0), (39)

having the property
∫
Pσσ0

(r, r0)dr = 1.

Before examining such numerical EXD CPDs, however, it is instructive to consider

on a qualitative level the spin structure of the wave functions that can be formed with

only three localized spin-orbitals. In particular, we focus on the case with a total spin

projection Sz = 1/2, when the most general three-orbital wave function is given by

the expression

Φ(Sz = 1
2
) = a|©↑ ©↓ ©↑ 〉+ b|©↑ ©↑ ©↓ 〉+ c|©↓ ©↑ ©↑ 〉, (40)

with the normalization a2 + b2 + c2 = 1.

The general states (40) are a superposition of three Slater determinants and have

attracted a lot of attention in the mathematical theory of entaglement. Indeed, they

represent a prototypical class of three-qubit entangled states known as W -states.[35]

For general coefficients a, b, and c, the states (40) are not eigenfunctions of the square

of total spin Ŝ2, as is always the case with the exact-diagonalization wave functions in

Eq. (34). However, the special values of these coefficients that lead to good total-spin

quantum numbers are known ([30, 71]). In particular, using the notation Φ(S, Sz; i)
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(where the index i is employed in case of a degeneracy), one has

√
3Φ(3

2
, 1

2
) = |©↑ ©↓ ©↑ 〉+ |©↑ ©↑ ©↓ 〉+ |©↓ ©↑ ©↑ 〉 (41)

(i.e., a = b = c = 1/
√

3),

√
6Φ(1

2
, 1

2
; 1) = 2|©↑ ©↓ ©↑ 〉 − |©↑ ©↑ ©↓ 〉 − |©↓ ©↑ ©↑ 〉 (42)

(i.e., a = 2/
√

6, b = c = −1/
√

6),

√
2Φ(1

2
, 1

2
; 2) = |©↑ ©↑ ©↓ 〉 − |©↓ ©↑ ©↑ 〉 (43)

(i.e., a = 0, b = 1/
√

2, c = −1/
√

2).

For completeness, we list the case for three fully spin-polarized localized electrons

(which of course is not a W -state).

Φ(3
2
, 3

2
) = |©↑ ©↑ ©↑ 〉. (44)

The wave functions with projections Sz = −1/2 and Sz = −3/2 are similar to the

above, but with inverted single-particle spins.
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Figure 19: Spin-resolved conditional probability distributions for the (1/2,1/2)
ground state of N = 3 electrons in an anisotropic dot at zero magnetic field (B = 0)
with parameters ~ωx = 3.137 meV, ~ωy = 6.274 meV (η = 1/2), m∗ = 0.067me and
κ = 1. (a) ↓↑ CPD with the fixed spin-down electron located at the center. (b) ↓↑
CPD with the fixed spin-down electron located on the right. (c) ↑↑ CPD with the
fixed spin-up electron located on the right. (d) ↑↓ CPD with the fixed spin-up elec-
tron located on the right. The spin of the fixed electron is denoted by a thick arrow
(green online). Lengths in nanometers. The vertical axes are in arbitrary units, but
the scale is the same for all four panels.
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In Fig. 19, we present several spin-resolved CPDs associated with the EXD ground

state at B = 0 and strong anisotropy η = 1/2, which is a ΨEXD(1/2, 1/2) state [see

Fig. 16]. Although the EXD expansion in Eq. (34) consists of a large number of Slater

determinants built from delocalized harmonic-oscillator orbitals, the CPD patterns in

Fig. 19 reveal an intrinsic structure similar to that of the wave function Φ( 1
2
, 1

2
; 1) in

Eq. (42), which is made out of only three localized spin-orbitals. In particular, when

one requires that the fixed electron has a down spin and is located at the center of

the quantum dot, the spin-up electrons are located on the left and right with equal

weights [Fig. 19(a)]. Keeping the down spin-direction, but moving the fixed electron

to the right, reveals that the spin-up electrons are located on the left and the center

with equal weights [Fig. 19(b)]. Considering a spin-up direction for the fixed electron

and placing it on the right reveals that the remaining spin-up electron is distributed

on the left and the center of the quantum dot with unequal weights; approximately 4

(left) to 1 (center) following the square of the coefficients in front of the determinants

|©↑ ©↓ ©↑ 〉 (a = 2/
√

6) and |©↓ ©↑ ©↑ 〉 (c = 1/
√

6) in the wave function Φ( 1
2
, 1

2
; 1).

Similarly, considering a spin-up direction for the fixed electron and placing it on the

right reveals that the spin-down electron is distributed on the left and the center

of the quantum dot with unequal weights – approximately 1 (left) to 4 (center), in

agreement with the weights of the Slater determinants in Eq. (42).

3.3.3 S = 3/2 excited state: Spin resolved intrinsic structure for strong
repulsion (κ = 1).

In section 3.3.2, we investigated the intrinsic structure of the many-body three-

electron wave functions with total spin S = 1/2 and for the case of a strong anisotropy

η = 1/2. In this section, we analyze a case of an EXD wave function with total spin

S = 3/2 and for the same strong anisotropy η = 1/2, again at B = 0 T. In particular,

we analyze the intrinsic structure of a ΨEXD(3/2, 1/2) wave function that is an excited

state for these parameters.
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Figure 20: Spin-resolved conditional probability distributions for the (3/2,1/2)
second excited state of N = 3 electrons in an anisotropic dot at zero magnetic
field (B = 0) with parameters ~ωx = 3.137 meV, ~ωy = 6.274 meV (η = 1/2),
m∗ = 0.067me and κ = 1. (a) ↑↑ CPD with the fixed spin-up electron located on the
right at (70,0). (b) ↑↓ CPD with the fixed spin-up electron located on the right at
(70,0). (c) ↓↑ CPD with the fixed spin-down electron located on the right at (70,0).
(d) ↓↑ CPD with the fixed spin-down electron located at the center. The spin of the
fixed electron is denoted by a thick arrow (green online). Lengths in nanometers.
The vertical axes are in arbitrary units, but the scale is the same for all four panels.
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In Fig. 20, we display spin-resolved CPDs for this S = 3/2 excited state. A

remarkable feature is that for a fixed electron placed on the right all three CPDS,

↑↑ [Fig. 20(a)], ↑↓ [Fig. 20(b)], and ↓↑ [Fig. 20(c)] coincide. This indicates that the

intrinsic structure of the ΨEXD(3/2, 1/2) wave function is close to that of Φ( 3
2
, 1

2
) in

Eq. (41), with all three coefficients a = b = c.

Taking into account the ↓↑ CPD with the fixed electron at the center of the

quantum dot, it is clear that the geometric arrangement of the three localized electrons

is linear. More complicated than linear geometric arrangements can emerge, however,

for a range of different parameters, as is discussed in section 3.4 below.

3.4 Many-body wave functions for intermediate anisotropy

(η = 0.724) and moderate repulsion (κ = 12.5).

In this section, we analyze a case of an EXD wave function with total spin S = 3/2

and for the intermediate anisotropy η = 0.724. In particular, we analyze the intrinsic

structure of a ΨEXD(3/2, 1/2) wave function that is the ground state at a magnetic

field B = 5 T (see Fig. 15).

In Fig. 21, we display spin-resolved CPDs for this ground state. A remarkable

feature is that for a fixed electron placed on the right all three CPDS, ↑↑ [Fig. 21(a)],

↑↓ [Fig. 21(b)], and ↓↑ [Fig. 21(c)] coincide. This indicates that the intrinsic structure

of the ΨEXD(3/2, 1/2) wave function is close to that of Φ( 3
2
, 1

2
) in Eq. (41), with all

three coefficients a = b = c.
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Figure 21: Spin-resolved conditional probability distributions for the (3/2,1/2)
ground state of N = 3 electrons in an anisotropic dot at B = 5 T with parame-
ters ~ωx = 4.23 meV, ~ωy = 5.84 meV (η = 0.724), m∗ = 0.070me and κ = 12.5. (a)
↑↑ CPD with the fixed spin-up electron located on the right at (30,0). (b) ↑↓ CPD
with the fixed spin-up electron located on the right at (30,0). (c) ↓↑ CPD with the
fixed spin-down electron located on the right at (30,0). (d) ↓↑ CPD with the fixed
spin-down electron located at the center. The spin of the fixed electron is denoted
by a thick arrow (green online). Lengths in nanometers. The vertical axes are in
arbitrary units, but the scale is the same for all four panels.
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Figure 22: Spin-resolved conditional probability distributions for the (3/2,1/2)
ground state of N = 3 electrons in an anisotropic dot at B = 5 T with parame-
ters ~ωx = 4.23 meV, ~ωy = 5.84 meV (η = 0.724), m∗ = 0.070me and κ = 12.5.
(a) ↓↑ CPD with the fixed spin-down electron located on the y-axis at (0,20) (solid
dot). (b) ↓↑ CPD with the fixed spin-down electron located on the y-axis at (0,-20)
(solid dot). The spin of the fixed electron is denoted by a thick arrow (green online).
Lengths in nanometers. The vertical axes are in arbitrary units, but the scale is the
same for all panels in this figure and in Fig. 21.
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However, the ↓↑ CPD with the fixed spin-down electron at the center [Fig. 21(d)]

differs from the one expected from a linear molecular arrangement [compare Fig.

20(d)], where there should be no maxima (along the y-direction) away from the x-

axis. The presence of such maxima at points (x, y 6= 0) in the ↓↑ CPD in Fig.

21(d) suggests that the intrinsic structure of ΨEXD(3/2, 1/2) is more complicated.

Indeed, as demonstrated in Fig. 22 where the fixed spin-down electron is successively

placed away from the x-axis at (0, 20 nm) and at (0, -20 nm), the intrinsic structure

corresponds to a superposition of two molecular isomers, each one described by a

three-orbital wave function Φ( 3
2
, 1

2
), but with the three localized spin-orbitals located

on the vertices of two isosceles triangles, each one being a mirror reflection (relative

to the x-axis) of the other. The base of the first isosceles triangle lies -6 nm [Fig.

22(a)] and that of the second one at 6 nm [Fig. 22(a)] away from the x-axis.

The two-triangle configuration discussed for three electrons above may be seen

as the embryonic precursor of a quasilinear structure of two intertwined “zig-zag”

crystalline chains. Such double zig-zag crystaline chains may also be related to the

single zig-zag Wigner-crystal chains discussed recently in relation to spontaneous spin

polarization in quantum wires.[72, 73]

It is interesting to inquire of how this two-triangle structure is reflected in the

charged densities. Indeed, in Fig. 23(a), we display the electron density associated

with the (3/2,1/2) ground state at B = 5 T. To be noticed is the absence of a third

peak at the center of the quantum dot. Instead, two rather small peaks appear

at (0,20 nm) and (0,-20 nm), in agreement with the two-triangle internal structure

revealed by the CPD analysis.
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We further display in Fig. 23(b) the corresponding electron density for the (1/2,1/2)

ground state at B = 0. This latter density has the same features as the one in Fig.

23(a), which indicates that an (1/2,1/2) state can have also a two-triangle internal

configuration. Naturally, the regime of a linear configuration versus a two-triangle

one depends on both the strength of the interaction and the anisotropy. Detailed

studies of the phase boundary between these two intrinsic structures are, however,

left for a future investigation.
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Figure 23: Exact-diagonalization electron densities for the ground state of N = 3
electrons in an anisotropic quantum dot with parameters ~ωx = 4.23 meV, ~ωy = 5.84
meV (η = 0.724), m∗ = 0.070me and κ = 12.5. (a) the (3/2,1/2) ground state at
B = 5 T. (b) the (1/2,1/2) ground state at B = 0. Lengths in nm. The electron
densities are in arbitrary units, but with the same scale for both panels.

3.5 Degree of entanglement

The many-body wave functions for N = 3 electrons analyzed in previous sections are

highly entangled states, since they cannot be reduced to a single Slater determinant.

For special ranges of the dot parameters, we showed that they acquire the same

internal structure as the prototypical W -states. In this section, we demonstrate that

the degree of entanglement can be further quantified through the use of the von
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Figure 24: Von Neumann entropy for the three lowest EXD states with Sz = 1/2
as a function of the magnetic field for N = 3 electrons in an anisotropic quantum
dot with strong anisotropy (anisotropy parameter η = 1/2). Parameters: external
confinement ~ωx = 3.137 meV, ~ωy = 6.274 meV; dielectric constant κ = 12.5;
effective mass m∗ = 0.067me. The single labels denote the quantum numbers for the
total spin. The thin vertical lines indicate the magnetic fields where the ground state
changes character, first from (1/2, 1/2; 1) to (1/2, 1/2; 2) and then from (1/2, 1/2; 2) to
(3/2, 1/2). These changes in the intrinsic structure of the ground state are associated
with discontinuous jumps in the Von Neumann entropy as a function of the magnetic
field.

Neumann entropy SvN, which is defined as

SvN = −Tr(ρ ln ρ), (45)

with ρνµ = 〈ΨEXD|a†µaν |ΨEXD〉 being the single-particle density.[74, 75]
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In Fig. 24, we plot the Von Neumann entropy for the three lowest EXD states with

Sz = 1/2 as a function of the magnetic field for N = 3 electrons in an anisotropic

quantum dot with the same parameters as the energy spectra in Fig. 16 (strong

anisotropy with anisotropy parameter η = 1/2). We see that the von Neumann

entropy increases for all three states as the magnetic field increases and the electrons

become more localized. The thin vertical lines indicate the magnetic fields where the

ground state changes character, first from (1/2, 1/2; 1) to (1/2, 1/2; 2) and then from

(1/2, 1/2; 2) to (3/2, 1/2) [around B = 3.5 T, compare Fig. 16]. These changes in the

intrinsic structure of the ground state are associated with discontinuous jumps in the

Von Neumann entropy as a function of the magnetic field.

3.6 Summary

We have presented extensive exact-diagonalization calculations for N = 3 electrons

in anisotropic quantum dots, and for a broad range of anisotropies and strength of

inter-electron repulsion. We have analyzed the excitation spectra both as a function

of the magnetic field and as a function of increasing anisotropy. A main finding was

the appearance of triple-crossing points in the ground-state energy curves for stronger

anisotropies.

Analysis of the intrinsic structure of the many-body wave functions through spin-

resolved conditional probability distributions revealed that for all examined cases (in-

cluding those with parameters corresponding to currently fabricated quantum dots)

the electrons localize forming Wigner molecules. For certain ranges of dot parame-

ters (mainly at strong anisotropy), the Wigner molecules acquire a linear geometry,

and the associated wave functions with a spin projection Sz = 1/2 are similar to

the socalled W -states that are a prototype of entangled states. For other ranges of

parameters (mainly at moderate anisotropy), the Wigner molecules exhibit a more

complex structure consisting of two mirror isosceles triangles. This latter structures
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can be considered as an embryonic unit of a zig-zag Wigner crystal in quantum wires.

Finally, we demonstrated that the degree of entanglement in three-electron quan-

tum dots can be quantified via the von Neumann entropy, in analogy with studies on

two-electron quantum dots.
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CHAPTER IV

EXACT DIAGONALIZATION FOR DOUBLE DOTS AT

LOW MAGNETIC FIELD

4.1 Two-center-oscillator confining potentials

In the 2D two-center oscillator (TCO), the single-particle levels associated with the

confining potential of the artificial molecule are determined by the single-particle

hamiltonian

H = T +
1

2
m∗ω2

xkx
2 +

1

2
m∗ω2

yky
′2
k + Vneck(y) + hk +

g∗µB

~
B.s (46)

where y′k = y − yk with k = 1 for y < 0 (left) and k = 2 for y > 0 (right),

and the h′ks control the relative well-depth, thus allowing studies of hetero-QDMs. x

denotes the coordinate perpendicular to the interdot axis(y). T = (p− eA/c)2/2m∗,

with A = 0.5(−By,Bx, 0), and the last term in Eq.(1) is the Zeeman interaction

with g∗ being the effective g factor, µB the Bohr magneton, and s the spin of an

indivisual electron. Here we limit ourselves to systems with ~ωx1 = ~ωx2 = ~ωx.

The most general shapes described by H are two semiellipses connected by a smooth

neck[Vneck(y)] .y1 < 0 and y2 > 0 are teh centers of these semiellipses, d = y2 − y1 is

the interdot distance, and m∗ is the effective electron mass. For the smooth neck, we

use

Vneck(y) =
1

2
m∗ω2

yk

[
cky

′3
k + dky

′4
k

]
θ(|y| − |yk|) (47)

Where θ(u) = 0 for u > 0 and θ(u) = 1 for u < 0. The four constants ck and dk

cna expresssed via two parameters, as follows: (−1)kck = (2 − 4εbk)/yk and dk =

(1 − 3εbk)/y
2
k, where the barrier-control parameters εbk = (Vb − hk)/V0k are related

to the actual(controlable) height of the bare barrier(Vb) between the two QDs, and
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V0k = m∗ω2
yky

2
k/2(for h1 = h2, V01 = V02 = V0).

The single-particle levels of H, including an external perpendicular magnetic field

B, are obtained by numerical diagonalization in a (variable-with-seperation) basis

consisting of the eigenstates of the auxilliary hamilton:

H0 =
p2

2m∗
+

1

2
m∗ω2

xx
2 +

1

2
m∗ω2

yky
′2
k + hk. (48)

This eigenvalue problem is seperable in x and y; i.e.,the wave functions are written

as Φmν(xy) = Xm(x)Yν(y). The solutions for Xm(x) are those of one-dimensional

oscillator, and for Yν(y) they can be expressed through the parabolic cylinder func-

tions U
[
αk, (−1)kξ

]
, where ξk = y′k

√
2m∗wyk/~, αk = (−Ey + hk)/(~ωyk), and

Ey = (ν + 0.5)~ωy1 + h1 denote the y-eigenvalues. The matching conditions at y = 0

for the left and right domains yield the y-eigenvalues and eigenfunctions Yν(y)(m is

integer and ν is in general real).

4.2 Structures for three-electron double dots at low mag-
netic field

In this section, we carry out exact diagonalization (EXD) studies for a three-electron

double quantum dot under low and moderate magnetic fields. For the confining

potential, please see the previous section. Below, we present the density and CPD

figures for double quantum dots that contain three electrons at B = 0 and B = 4 T .

We use the same code as for the elliptical dots apart from different input files.

In all instances here, we use a moderate Coulomb repulsion (κ = 12.5). From Fig.

25, we see that the electrons form a dimer with the electrons distributed over the

centers of the two dots. The first two electrons localize at the centers of the dots, the

third electron will have a 50% probability to appear at each center. If we increase the

magnetic field to B = 4 T , the same localization effect appears, but it’s more intense,

see Fig. 26. In order to understand the spin configuration, we need to calculate CPDs

to explore all the spin cases. We have fixed the spin projection along the magnetic
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Figure 25: Charge density for the ground state (with Sz = 1/2) of a double dot
with 3 electrons. The distance between the two dots is 70 nm; ~ωx = ~ωy = 5 meV ;
κ = 12.5; B = 0;

field direction with Sz = 1/2.

In Fig. 27, we fix the observation electron with spin up at the center of the

right dot and find the conditional probability for the other spin up electron. We

find that the remaining spin up electron is localized on the left dot. Futhermore in

Fig. 28, we fix the observation electron with spin up at the center of the right dot

and find the conditional probability for the spin down electron. We find that the

spin down electron has equal probabilities to be on both dots. In Fig. 29, we fix

the observation electron with spin down at the center of the right dots and find the

conditional probability of spin up electrons. We find that the spin up electrons have

different probabilities in the two centers of the dots. These three figures show that

there are two localized electrons with spin up and one delocalized electron with spin

down.
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Figure 26: Charge density for the first excited state (with Sz = 1/2) of a double dot
with 3 electrons. The distance between the two dots is 70 nm; ~ωx = ~ωy = 5 meV ;
κ = 12.5; B = 4 T ;
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Figure 27: CPD for the ground state (with Sz = 1/2) of a double dot with 3
electrons. The distance between the two dots is 70 nm; ~ωx = ~ωy = 5 meV ;
κ = 12.5; B = 0. The observation point is in 70nm (center of right dot) with spin up
electron, and we look for the probability for the other spin up electron.
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Figure 28: CPD for the ground state (with Sz = 1/2) of a double dot with 3
electrons. The distance between the two dots is 70 nm; ~ωx = ~ωy = 5 meV ;
κ = 12.5; B = 0. The observation point is in 70nm (center of right dot) with spin up
electron, and we look for the probability for the other spin down electron.
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Figure 29: CPD for the ground state (with Sz = 1/2) of a double dot with 3
electrons. The distance between the two dots is 70 nm; ~ωx = ~ωy = 5 meV ;
κ = 12.5; B = 0. The observation point is in 70nm (center of right dot) with spin
down electron, and we look for the probability for the other spin up electrons.
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Figure 30: CPD for the first excited state (with Sz = 1/2) of a double dot with
3 electrons. The distance between the two dots is 70 nm; ~ωx = ~ωy = 5 meV ;
κ = 12.5; B = 4 T . The observation point is in 70nm (center of right dot) with spin
up electron, and we look for the probability for the other spin up electron.

If we increase the magnetic field to B = 4 T , the same spin configuration (Sz =

1/2) becomes the first excited state. In Fig. 30, we fix the observation electron with

spin up at the center of the right dot and find the conditional probability of the other

spin up electron. We find that the spin up electron is localized at the center of the

left dot. Futhermore in Fig. 31, we fix the observation electron with spin up at the

center of the right dot and find the conditional probability of the other spin down

electron. We find that the spin down electron has equal probabilities to be on both

dots. In Fig. 32, we fix the observation electron with spin down at center of the right

dot and find the conditional probabilities of the spin up electrons. We find that the

spin up electrons have equal probabilities to be on both dots. These three figures

show that there are two localized electrons with spin up and one delocalized electron

with spin down.
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Figure 31: CPD for the first excited state (with Sz = 1/2) of a double dot with
3 electrons. The distance between the two dots is 70 nm; ~ωx = ~ωy = 5 meV ;
κ = 12.5; B = 4 T . The observation point is in 70nm (center of right dot) with spin
up electron, and we look for the probability for the other spin down electron.
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Figure 32: CPD for the first excited state (with Sz = 1/2) of a double dot with
3 electrons. The distance between the two dots is 70 nm; ~ωx = ~ωy = 5 meV ;
κ = 12.5; B = 4 T . The observation point is in 70nm (center of right dot) with spin
down electron, and we look for the probability for the other spin up electrons.
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CHAPTER V

EXACT DIAGONALIZATION IN THE LOWEST

LANDAU LEVEL

5.1 Introduction

Two-dimensional N electrons (up to 11) quantum dots under strong magnetic field

have been studied extensively. These methods include exact-diagnolization (EXD),

Rotating Electron Molecule (REM) and composit fermion model (CF). As EXD cal-

culates the ground and excited states numerically, it provide rich information about

formation of Wigner Molecules under strong magnetic field, where the wavefuntion

basis is restricted to the Lowest Landau level. The direct numerical diagonialza-

tion has been conducted by Maksym and Charkraborty for N = 3, 4 and Yang for

N = 5, 6.

In this chapter, using EXD, we study the properties of N = 9 electrons under

strong magnetic field to demonstrate the formation of Wigner Molecules. We have

used the basis of Fock-Darwin and the representation of Coulomb Matrix element of

Tsiper in the Lowest Landau Level(LLL). We also show the results obtained with

Lauglin’s method. Our EXD results clearly show that the electrons under parabolic

confinement will form Wigner Molecules instead of liquid states.

5.2 Laughlin’s theory

Laughlin has proposed a wavefunction to explain the Fractional Quantum Hall Effect

(FQHE) in 1983 for the ground state of v = 1/3. Single particle states in the Lowest

Landau level are given by

ηl(z) = (2π2ll!)−1/2zle−
1

4
|z|2, (49)
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where z = x− iy and l is the angular momentum. A LLL function for many electrons

can, but not necceary, have the form

ψ = FA [zj] exp

[
−1

4

∑

i

|zj|2
]

(50)

where FA [zj] is a polynomial of z’s antisymmetric under exchange of two coordinates.

And the spin part of the wavefunction is symmetric under the exchange of electrons.

Laughlin has determined the form for the polynomial under the following assumptions:

1. Following Jastow’s variational wavefunction for superfluid helium, which has

same pairwise correlations, he assume the polynomial part has the form of

FA [zj] =
∏

j<k

f(zj − zk), (51)

2. In order for the wavefuction to be an eigenstate of the total angular

momentum, which commutes with the Coulomb interaction, the product

∏
j<k f(zj − zk) must be a polynomial of z1,z2,. . . ,zN of degree of L, that the

replacement zj → zie
−iθ is equivalent to multiplication by e−iLθ. This is

possible only if f(zj − zk) itself has a definite angular momentum.

3. f should be antisymmetric under the exchange of electrons. The only form

that satisfies the above requirements and has an analytic expression

f(z) = zm (52)

where m is an odd interger and the corresponding filling factor v is expressed

as v = 1/m.

The above three assumptions produces Laughlin’s wavefunction

ψ1/m =
∏

j<k

(zj − zk)
mexp

[
−1

4

∑

i

|zj|2
]

(53)

The wavefunction has explained the experiment well for specific filling factor

v = 1/3.
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5.3 REM analytic trial wave functions in LLL

The approach used in Ref. [16] for constructing the REM functions in high B

consists of two-steps: First the breaking of the rotational symmetry at the level of

the single-determinantal unrestricted Hartree-Fock approximation yields states

representing electron molecules (or finite crystallites, also referred to as Wigner

molecules, see Ref. [18] and Ref. [76]). Subsequently the rotation of the electron

molecule is described through restoration of the circular symmetry via post

Hartree-Fock methods, and in particular Projection Techniques. [77] Naturally, the

restoration of symmetry goes beyond the single determinantal mean-field

description and yields multi-determinantal wave functions. For QD’s, we have

shown that the method of symmetry restoration is applicable to both the zero

[18, 78] and high[16] magnetic-field cases.

In the zero and low-field cases, the broken symmetry UHF orbitals need to be

determined numerically, and, in addition, the restoration of the total-spin symmetry

needs to be considered for unpolarized and partially polarized cases. The formalism

and mathematical details of this procedure at B = 0 have been elaborated in Ref.

[18] (see also Ref. [79] and Ref. [80] for the restoration of the total spin in the case

of quantum dot molecules).

In the case of high magnetic fields, one can specifically consider the limit when the

static electric confining potential can be neglected compared to the confinement

induced by the magnetic field. Then, assuming a symmetric gauge, the UHF

orbitals can be represented [16, 81] by displaced Gaussian functions, centered at

different positions Zj ≡ Xj + ıYj according to the equilibrium configuration of N

classical point charges[82, 83] arranged at the vertices of nested regular polygons

(each Gaussian representing a localized electron). Such displaced Gaussians are
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written as (here and in the following ı ≡
√
−1)

u(z , Zj) = (1/
√
π)

× exp[−|z − Zj|2/2] exp[−ı(xYj − yXj)], (54)

where the phase factor is due to the gauge invariance. z ≡ x+ ıy (see Ref. [84]), and

all lengths are in dimensionless units of lB
√

2 with the magnetic length being

lB =
√

~c/eB.

In Ref. [16], we used these analytical orbitals to first construct the broken symmetry

UHF determinant, ΨUHF
N , and then proceeded to derive analytical expressions for the

many-body REM wave functions by applying onto ΨUHF
N an appropriate projection

operator[16] OL that restores the circular symmetry and generates correlated [85]

wave functions with a total angular momentum L. These REM wave functions can

be easily written down[16] in second-quantization form for any classical polygonal

ring arrangement (n1, n2, ...) by following certain simple rules for determining the

coefficients of the determinants D(l1, l2, ..., lN) ≡ det[zl1
1 , z

l2
2 , · · ·, zlN

N ], where the lj’s

denote the angular momenta of the individual electrons. Since we will focus here on

the case of N = 6 and N = 3 electrons, we list for completeness the REM functions

associated with the (0, N) and (1, N − 1) ring arrangements, respectively [here

(0, N) denotes a regular polygon with N vertices, such as an equilateral triangle or

a regular hexagon, and (1, N − 1) is a regular polygon with N − 1 vertices and one

occupied site in its center],

ΦL(0, N) =

l1+···+lN=L∑

0≤l1<l2<···<lN

(
N∏

i=1

li!

)−1

×
(

∏

1≤i<j≤N

sin
[ π
N

(li − lj)
])

× D(l1, l2, ..., lN) exp(−
N∑

i=1

ziz
∗
i /2), (55)
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with

L = L0 +Nm, m = 0, 1, 2, 3, ..., (56)

and

ΦL(1, N −1) =

l2+···+lN=L∑

1≤l2<l3<···<lN

(
N∏

i=2

li!

)−1

×
(

∏

2≤i<j≤N

sin

[
π

N − 1
(li − lj)

])

× D(0, l2, ..., lN) exp(−
N∑

i=1

ziz
∗
i /2), (57)

with

L = L0 + (N − 1)m, m = 0, 1, 2, 3, ..., (58)

where L0 = N(N − 1)/2 is the minimum allowed total angular momentum for N

(polarized) electrons in high magnetic fields. Notice that the REM wave functions

[Eq. (55) and Eq, (57)] vanish identically for values of the total angular momenta

outside the specific values given by Eq. (56) and Eq. (58), respectively.

Generalizations of expression (55) to structures with a larger number r of rings

involve, for each additional qth ring (2 < q ≤ r),(I) the inclusion of an additional

product of sines with arguments containing nq, and (II) a restriction on the

summation of the associated nq angular momenta.

5.4 Filling factor ν = 1/3

For the fractional quantum hall effect (FQHE) in 2D parabolic quantum dots, Jain

used the CF method to calculate states which show liquid-like character under

strong magnetic fields. But with the EXD method, we find instead the formation of

Wigner Molecules results for 3 ≤ N ≤ 11 electrons. First, we show the CPD for

Laughlin’s wave functions which correspond to liquid-like states. We present EXD

results for 9 electrons under a strong magnetic field with a total magic number
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L = 108, where L is total angular momentum. The electrons organize in two

concentric rings: an inner ring contains 2 electrons and an outer ring contains the

remaining 7 electrons. The CPD with the observation point located on the inner

ring is shown in Figure 33; it shows that the other electron in the inner ring is in a

liquid state instead of forming Wigner molecule. The CPD with the observation

point located on the outer ring is shown in Figure 34, the remaning electrons in the

outer ring show very weak humps.

 


 


Figure 33: Laughlin’s method; CPD for 9 electrons; L = 108 (ν = 1/3). When the
observation point is on the inner ring, the outer ring will be circular, but the inner
ring is in a liquid state.

We see from the above figures that the electrons are not well localized on the same

ring.

Now, we show the CPDs for EXD with the same magic number L = 108 under

strong magnetic field. The CPD with the observation point located on the inner

ring is shown in Fig. 35. The CPD with the observation point located on the outer

ring is shown in Fig. 36.

These figures show that the EXD wave functions exhibit a stronger electron

localization compared to the Laughlin case above. In particular, Fig. 36 displays 6

visible humps corresponding to a (2,7) Wigner molecule configuration.
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Figure 34: Laughlin’s method; CPD for 9 electrons; L = 108 (ν = 1/3). When the
observation point is on the outer ring, the inner ring is circular, but the outer ring is
in a liquid state.

5.5 Filling factor ν < 1/3

For higher magic angular momenta, the formation of a Wigner molecule is stronger.

We show the formation of WM for N = 9 electrons under magic numbers L = 136

and L = 180 in Figures 37, 38, 39, 40.

When we fix the observation point on the inner ring, another electron on the inner

ring forms a two-electron Wigner molecule, which is clearly shown in Fig. 37. The

outer ring is in a uniform density, which means that the two rings rotate

independently of each other; this confirm our previous assumptions in the REM

calculations. When we fix the observation point on the outer ring, six electrons on

the outer ring form a Wigner molecule, which means six humps on the outer ring

that are clearly visible in Fig. 38. Then the inner ring is in a uniform density since

the rings rotate independently.
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Figure 35: EXD method; CPD for 9 electrons; L = 108 (ν = 1/3). The observation
point is on the inner ring. The outer ring is circular.

 
  


 


Figure 36: EXD method; CPD for 9 electrons; L = 108 (ν = 1/3). The observation
point is on the outer ring (visible humps; contrast with the Laughlin state in Fig.
34). The inner ring is circular.

85



 

 


 

 


 


 


 
  


 


Figure 37: EXD method; CPD for 9 electrons; L = 136. The observation point is on
the inner ring. The outer ring is circular, and the inner ring is in a Wigner molecule
state, exhibiting one well-defined hump.

 

 


 

 


 


 
  
  
  
  


Figure 38: EXD method; CPD for 9 electrons; L = 136. The observation point is on
the outer ring. The inner ring is circular, and the outer ring is in a Wigner molecule
state, exhibiting 6 well defined humps.
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Figure 39: EXD method; CPD for 9 electrons; L = 180 (ν = 1/5). The observation
point is on the inner ring. The outer ring is circular, and the inner ring is in a Wigner
molecule state.

The formation of Wigner molecule is more pronounced when we further increase the

total magic angular momentum to L = 180 (ν = 1/5). When we fix the observation

point on the inner ring, the other electron in the inner ring forms a Wigner

molecule, which is clearly shown in Fig. 39. The outer ring is in a uniform density,

which means that the two ring rotate independently and confirm our previous

assumptions in the REM calculations. When we fix the observation point on the

outer ring, six electrons on the outer ring form a Wigner molecule, which means six

humps on the outer ring are clearly seen in Fig. 40. Then the inner ring is in a

uniform density since the rings rotate independently.

All the above examined cases for N = 9 electrons support the conclusion that

Wigner molecules form in parabolic quantum dots in the LLL. The formation of

Wigner molecules becomes more prominent with increasing magic angular

momentum (decreasing filling factor ν).
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Figure 40: EXD method; CPD for 9 electrons; L = 180 (ν = 1/5). The observation
point is on the outer ring. The inner ring is circular, and the outer ring is in a Wigner
molecule state, with 6 well defined electron humps.
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CHAPTER VI

CONCLUSION

The focus of the first part of this thesis pertains to the development of methods

that permit investigations of the energetic, structural, and excitation properties of

quantum dots in strong magnetic fields with an (essentially) arbitrary number of

electrons. Toward this aim, we utilized several computational methods, and have

assessed their adequacy. The methods that we have used are: (1) Exact

diagonalization which is limited to a rather small number of particles; (2) The

“two-step” successive-hierarchical-approximations method (see section 2.2.1), in

which a UHF step leading to broken-symmetry solutions (static electron molecule)

is followed by restoration (via projection techniques) of circularly symmetric states

with good angular momenta (rotating electron molecule; REM); (3) An

approximation method based on diagonalization of the electron-electron interaction

term restricted to the lowest Landau level (LLL). In this method, the total energy

includes, in addition to the LLL diagonalization term, a contribution from the

harmonic confinement that is linear in the total angular momentum; (4) An analytic

expression [see Eq. (25)] whose derivation is based on the REM.

We performed comparative calculations for quantum dots with an increasing

number of parabolically confined electrons (N = 3, 4, 6, 9, 11, and 17). The

ground-state arrangements of the electrons become structurally more complex as

the number of electrons in the dot increases. Using the notation (n1, n2, n3, ...) for

the number of electrons located on concentric polygonal rings (see section 2.2.1), the

ground-state arrangements are: (0,3) for N = 3, (0,4) for N = 4, (1,5) for N = 6,

(2,7) for N = 9, (3,8) for N = 11, and (1,6,10) for N = 17.
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Analysis of the results of our calculations revealed that, for all sizes studied by us,

the two-step REM method provides a highly accurate description of electrons

parabolically confined in quantum dots for a whole range of applied magnetic fields,

starting from the neighborhood of the so-called maximum density droplet and

extending to the B →∞ limit. In contrast, the LLL-diagonalization approximation

was found to be rather inaccurate for weaker magnetic fields, where it grossly

overestimates the total energies of the electrons; the accuracy of this latter method

improves at higher field strengths.

The ground-state energy of the electrons in a QD oscillates as a function of the

applied magnetic field, and the allowed values of the angular momenta are limited

to a set of magic angular momentum values, Lm, which are a natural consequence of

the geometrical arrangement of the electrons in the rotating electron molecule.

Accordingly, the electrons are localized on concentric polygonal rings which rotate

independently of each other (as observed from the conditional probability

distributions, see section 2.4). Underlying the aforementioned oscillatory behavior is

the incompressibility of the many-body states associated with the magic angular

momenta. The general expression for Lm is given in Eq. (9), for a given number N

and occupancy of the polygonal rings {nq}. For the ground-state Lm’s, the values of

the non-negative integers kq in Eq. (9) are taken such as to minimize the total

kinetic energy of the electrons. Since the moment of inertia of an outer ring is larger

than that of an inner ring of smaller radius, the rotational energy of the outer ring

will increase more slowly with increasing angular momentum. Therefore, the kq

index in Eq. (9) of an outer ring will very up to relatively large values while the

values corresponding to inner rings remain small (see section 2.4). As a

consequence, we find through REM calculations with proper treatment of the

confining potential that for N > 6, with increasing strength of the magnetic field,

the maximum density droplet converts into states with no central vortex, in contrast
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to earlier conclusions[24, 58, 59] drawn on the basis of approximate calculations

restricted to the lowest Landau level. Instead we find that the break-up of the MDD

with increasing B proceeds through the gradual detachment of the outer ring

associated with the corresponding classical polygonal configuration.

In addition to the ground-state geometric arrangements, we have studied for certain

sizes higher-energy structural isomers (see, e.g., the cases of N = 6 and N = 9

confined electrons in Fig. 2.3). We find that for all cases with N ≥ 7 multi-ring

confined-electron structures (n1, n2, ..., nr), with n1, n2, ..., nr 6= 0 and r ≥ 2, are

energetically favored. For N = 6, a (1,5) structure is favored except for a small

B-range (e.g., 6.1 T < B < 7.7 T for the parameters in Fig. 2.3), where the (0,6)

single-ring structure is favored. For N ≤ 5 the (0, N) single-ring structure is favored

for all B values.

In the REM calculations, we have utilized an analytic many-body wave function

[Eq. (8)] which allowed us to carry out computations for a sufficiently large number

of electrons (N = 17 electrons having a nontrivial three-ring polygonal structure),

leading to the derivation and validation of an analytic expression Eq. (25) for the

total energy of rotating electron crystallites of arbitrary N .

The non-rigidity implied by the aforementioned independent rotations of the

individual concentric polygonal rings motivated us to quantify (see section 2.6) the

degree of non-rigidity of the rotating electron molecules at high B, in analogy with

the concept of non-classical rotational inertia used in the analysis[40, 42] of

supersolid 4He. These findings for finite dots suggest a strong quantal nature for the

extended Wigner crystal in the lowest Landau level, designating it as a useful

paradigm for exotic quantum solids.

In the second part of this thesis , we present extensive exact-diagonalization

calculations for N = 3 electrons in anisotropic quantum dots, and for a broad range

of anisotropies and strength of inter-electron repulsion. We have analyzed the
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excitation spectra both as a function of the magnetic field and as a function of

increasing anisotropy. A main finding was the appearance of triple-crossing points

in the ground-state energy curves for stronger anisotropies.

Analysis of the intrinsic structure of the many-body wave functions through

spin-resolved conditional probability distributions reveals that for all examined

cases (including those with parameters corresponding to currently fabricated

quantum dots) the electrons localize forming Wigner molecules. For certain ranges

of dot parameters (mainly at strong anisotropy), the Wigner molecules acquire a

linear geometry, and the associated wave functions with a spin projection Sz = 1/2

are similar to the so called W -states that are a prototype of entangled states. For

other ranges of parameters (mainly at moderate anisotropy), the Wigner molecules

exhibit a more complex structure consisting of two mirror isosceles triangles. This

latter structures can be considered as an embryonic unit of a zig-zag Wigner crystal

in quantum wires.

Also, we demonstrate that the degree of entanglement in three-electron quantum

dots can be quantified via the von Neumann entropy, in analogy with studies on

two-electron quantum dots.

Furthermore, we examined the internal structure by EXD wave function of two

separated circular dots, at a distance 70nm, that contain three electrons. Through

the spin-resolved CPD, we find that the electrons are localized at the centers of the

dots. The first two electrons localize at the centers of the dots, while the third

electron will have 50% probability to appear at each center.

Finally, we compare the results of Laughlin’s method with EXD results for circular

dots that contains 9 electrons. While Laughlin’s method states that the electrons

are in a liquid state, EXD clearly shows that the electrons form Winger Molecules in

the LLL, which confirms our previous results obtained with the REM method.
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APPENDIX A

FORMULA DERIVATION

A.1 Proof that u(z, Z) [Eq. (7)] lies in the LLL when
λ = lB

√
2

Using the identity −i(xY − yX) = (zZ∗ − z∗Z)/2, one finds

u(z, Z;λ = lB
√

2) =

e
−zz∗−ZZ∗

+2zZ∗

4l2
B√

2πlB
=
e

−zz∗−ZZ∗

4l2
B√

2πlB

∞∑

l=0

1

l!

(
zZ∗

2l2B

)l

=

∞∑

l=0

Cl(Z
∗)ψl(z), (59)

where z = x+ iy, Z = X + iY , and

Cl(Z
∗) =

1√
l!

(
Z∗

lB
√

2

)l

e
−ZZ∗

4l2
B , (60)

with

ψl(z) =
1√

2πl!lB

(
z

lB
√

2

)l

e
−zz∗

4l2
B (61)

being the Darwin-Fock single-particle wave functions with zero nodes forming the

LLL.

A.2 Coulomb matrix elements between displaced

Gaussians [Eq. (7)]

We give here the analytic expression for the Coulomb matrix elements,

Vijkl =

∫ ∫
dr1dr2u

∗
i (r1)u

∗
j(r2)

e2

κ|r1 − r2|
uk(r1)ul(r2), (62)

between displaced Gaussians [see Eq. (7)] centered at four arbitrary points Zi, Zj,

Zk, and Zl.
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One has

Vijkl =
e2

κλ

√
π

2
eϑe−$I0($), (63)

with

ϑ = −ZiZ
∗
i + ZjZ

∗
j + ZkZ

∗
k + ZlZ

∗
l

2λ2
+ ζη + στ, (64)

and

$ = (ζ − σ)(η − τ)/4, (65)

where

ζ =
Zk + Zi

2λ
+ β

Zk − Zi

2λ
(66)

η =
Z∗

i + Z∗
k

2λ
+ β

Z∗
i − Z∗

k

2λ
(67)

σ =
Zl + Zj

2λ
+ β

Zl − Zj

2λ
(68)

τ =
Z∗

j + Z∗
l

2λ
+ β

Z∗
j − Z∗

l

2λ
. (69)

The magnetic-field dependence is expressed through the parameter

β =
λ2

2l2B
. (70)

The length parameters λ and lB (magnetic length) are defined in the text following

Eq. (7). Note that β = 0 for B = 0 and β = 1 for B →∞. The latter offers an

alternative way for calculating REM energies and wave functions in the lowest

Landau level without using the analytic REM wave functions presented in Ref. [16].

A.3 Fock-Darwin Levels

In this appendix, we follow closely the presentation in the book of Introduction to

condensed matter physics by F. Duan and J. Guojun [86]. For 2D parabolic

Quantum Dots with lateral confinment, V (x, y),the confinment potential can be

written as

V (r) = V0 +
1

2
m∗ω2

0r
2, (71)
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where r = (x, y) is the position vector, m∗ is the effective mass, and ~ω0 is the

confinment potential. And if there is a pendicular magnetic field to the 2D quantum

dots, then the Hamiltonian is

H =
1

2m∗
(p− e

c
A)2 +

1

2
m∗ω2

0r
2 =

p2

2m∗
+

1

2
m∗(ω2

0 +
1

4
ω2

c )r
2 − 1

2
ωclz, (72)

where p is the momentum, lz = xpy − ypx is the projection of angular momentum

on the z direction, which is also the direction of external magnetic field B; A is the

vector potential of B and defined here as (By,−Bx, 0)/2. And ωc = eB/m∗ is the

cyclotron frequency. To get the Fock-Dawin levels, new parameters are defined:

z = x + iy, z∗ = x− iy, (73)

The effective length is

l0 =
lB

(1 + 4ω2
0/ω

2
c )

1

4

(74)

The partial differential operator is

∂z =
1

2
(∂x − i∂y), ∂∗z =

1

2
(∂x + i∂y), (75)

where lB = (~c/eB)1/2 is the magnetic length in the absence of a confining

potential. According to the new parameters, the Hamiltonian in (71) is the

summation of two Harmonic oscillators with the frequencies

ω± = (ω2
0 +

1

4
ω2

c )±
1

2
ωc, (76)

and the eigenstates and eigenfunctions are

ψn+n−
(z, z∗) =

1√
2π

exp(
zz∗

4l0
)
(∂z)

n+(∂z
∗)n+

(n+!n−!)1/2
exp(−zz

∗

2l20
). (77)

and

E(n+n−) = ~ω+(
1

2
+ n+) + ~ω−(

1

2
+ n−), (78)

which are called Fock-Dawin levels. When B = 0, these levels are degenerate,

ω+ = ω− = ω0. And at strong magnetic field, the Landau level is in steps of ~ωc.
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For parabolic confinment, lz = xpy − ypx = z∂z − z∗∂∗z , and lz(n+n−) = n+ − n−.

Also the wavefunction can be written as

ψnm(r, θ) = φm(θ)Rnm(r), (79)

where φm(θ) = (2π)−1/2eimθ is the eigenfunction of the operator of the angular

mementum projection with eigenvalue m. And the radius function is

Rnm(r) =

√
2

l0

[
nr

(nr + |m|)

]
(
r

l0
)|m| exp(− r2

2l20
)L|m|

nr (
r2

l0
). (80)

where L
|m|
nr is the Laguerre polynomials

L|m|
nr (u) =

1

m
u−|m|eu d

nr

dunr
(unr+|m|e−u), (81)

where n = 0, 1, 2, 3 . . . is the principle quantum number, and

m = −n,−n+ 2, . . . , n− 2, n is the azimuthal quantum number. nr = (n− |m|)/2 is

the radial quantum number, and u is real. Also n+ and n− can be expressed by

(n,m) as

n− = (n +m)/2, n+ = (n−m)/2 (82)

The corresponding eneries are

E(nm) = (n + 1)~(ω2
0 +

ω2
c

4
)1/2 − m~ωc

2
. (83)

The Fock-Darwin levels are single-electron approach and have some agreement with

experiment. But we need consider the Coulomb interaction when we require more

exact results.
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APPENDIX B

TECHNICAL PART

B.1 ARPACK

I have used the ARPACK extensively for Eigenvalue problem with real and complex

matrix. As for the Exact Diagnolization Calculation of Quantum dots, the space

will increase exponentially with the number of electrons and applied magnetic field.

The required storage for matrix elements will become every large to dimension of

million, though the matrix may become sparse for EXD. So established ARPACK

provides a very good library for handle large system. Also as the current parallel

ARPACK system is on the early stage and does not fit the need of my application, I

have parallized the code by myself to meet specific requirement. The ARPACK uses

Implicitly Restarted Arnoldi Method (IRAM), which is very closely related to the

Implicitly Shifted QR-Algorithm for dense problems. Now I will give a broad

overview of the theory and present some details in the implementation.

In describing ARPACK, I follow closely the documentations in the website of

http://www.caam.rice.edu/software/ARPACK/ (accessed on 09/2005).

B.1.1 The Implicitly Restarted Arnoldi Method in ARPACK

Start: Build a length m Arnoldi factorization AVm = VmHm + fmeT
m with the

starting vector v1.

Iteration: Until convergence

1. Compute the eigenvalues {λj : j = 1, 2, . . . , m} of m. Sort these eigenvalues

according to the user selection criterion into a wanted set {λj : j = 1, 2, . . . , k} and

an unwanted set {λj : j = k + 1, k + 2, . . . , m}.
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2. Perform m− k = p steps of the QR iteration with the unwanted eigenvalues

{λj : j = k + 1, k + 2, . . . , m} as shifts to obtain HmQm = QmH+
m.

3. Restart: Postmultiply the length m Arnoldi factorization with the matrix Qk

consisting of the leading k columns of Qm to obtain the length k Arnoldi

factorization AVmQk = VmQkH
+
k + f+

k eT
k , where H+

k is the leading principal

submatrix of order k for H+
m. Set Vk ← VmQk.

4. Extend the length k Arnoldi factorization to a length m factorization.

The following discussion begins with a very brief review of the structure of the

algebraic eigenvalue problem and some basic numerical methods that either

influence or play a direct role in the IRAM. Overcoming the basic disadvantages of

the simple power method motivates the introduction of Krylov subspaces along with

the important projection idea and the related approximation properties. The

Lanczos/Arnoldi factorization is introduced as a concrete way to construct an

orthogonal basis for a Krylov subspace and provides a means to implement the

projection numerically. Implicit restarting is introduced as an efficient way to

overcome the often intractable storage and computational requirements in the

original Lanczos/Arnoldi method. This new technique turns out to be a truncated

form of the implicitly shifted QR algorithm and hence implementation issues and

ultimate behavior are closely tied to that well understood method. Because of its

reduced storage and computational requirements, the technique is suitable for large

scale eigenvalue problems. Implicit restarting provides a means to approximate a

few eigenvalues with user specified properties in space proportional to where k is the

number of eigenvalues sought.

B.1.2 Krylov Subspaces and Projection Methods

The methods that underly the ARPACK software are derived from a class of

algorithms called Krylov subspace projection methods. These methods take full
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advantage of the intricate structure of the sequence of vectors naturally produced by

the power method. An examination of the behavior of the sequence of vectors

produced by the power method suggests that the successive vectors may contain

considerable information along eigenvector directions corresponding to eigenvalues

other than the one with largest magnitude. The expansion coefficients of the vectors

in the sequence evolve in a very structured way. Therefore, linear combinations of

the these vectors can be constructed to enhance convergence to additional

eigenvectors. A single vector power iteration simply ignores this additional

information, but more sophisticated techniques may be employed to extract it. If

one hopes to obtain additional information through various linear combinations of

the power sequence, it is natural to formally consider the Krylov subspace and to

attempt to formulate the best possible approximations to eigenvectors from this

subspace. It is reasonable to construct approximate eigenpairs from this subspace by

imposing a Galerkin condition : A vector is called a Ritz vector with corresponding

Ritz value if the Galerkin condition is satisfied. For details, please refer to [87].

B.1.3 The Arnoldi Factorization

Definition : If AV = VH, where V is an orthogonal matrix and H is an upper

Hessenberg matrix of order k with positive subdiagonal elements and called a k-step

Arnoldi Factorization of A, If A is Hermitian then is real, symmetric and

tridiagonal and the relation is called a k-step Lanczos Factorization of The columns

of H are referred to as the Arnoldi vectors or Lanczos vectors, respectively. The

preceding development of this factorization has been purely through the

consequences of the orthogonal projection imposed by the Galerkin conditions. (A

more straightforward but less illuminating derivation is to equate the first k

columns of the Hessenberg decomposition)

The purpose here is to investigate the use of this factorization to obtain
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approximate eigenvalues and eigenvectors. The discussion of the previous section

implies that Ritz pairs satisfying the Galerkin condition are immediately available

from the eigenpairs of the small projected matrix.

B.1.4 Restarting the Arnoldi Method

An unfortunate aspect of the Lanczos/Arnoldi process is that one cannot know in

advance how many steps will be required before eigenvalues of interest are well

approximated by the Ritz values. This is particularly true when the problem has a

wide range of eigenvalues but the eigenvalues of interest are clustered. Without a

spectral transformation, many Lanczos steps are required to obtain the selected

eigenvalues. In order to recover eigenvectors, one is obliged either to store all of the

Lanczos basis vectors (usually on a peripheral device) or to re-compute them. Also,

very large tridiagonal eigenvalue problems will have to be solved at each step. In the

Arnoldi process that is used in the non-Hermitian case, not only do the basis vectors

have to be stored, but the cost of the Hessenberg eigenvalue subproblem is at the

k-th step. The obvious need to control this cost has motivated the development of

restarting schemes. The ARPACK software is based upon another approach to

restarting that offers a more efficient and numerically stable formulation. This

approach called implicit restarting is a technique for combining the implicitly shifted

QR scheme with a k-step Arnoldi or Lanczos factorization to obtain a truncated

form of the implicitly shifted QR-iteration. The numerical difficulties and storage

problems normally associated with Arnoldi and Lanczos processes are avoided. The

algorithm is capable of computing a few (k) eigenvalues with user specified features

such as largest real part or largest magnitude using storage. No auxiliary storage is

required. The computed Schur basis vectors for the desired k-dimensional

eigen-space are numerically orthogonal to working precision. The suitability of this

method for the development of mathematical software stems from this concise and
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automatic treatment of the primary difficulties with the Arnoldi/Lanczos process.

Implicit restarting provides a means to extract interesting information from large

Krylov subspaces while avoiding the storage and numerical difficulties associated

with the standard approach. It does this by continually compressing the interesting

information into a fixed size k-dimensional subspace.

B.1.5 Stopping Criterion

Ritz pair is a good approximation to an eigenpair of A if the last component of an

eigenvector for is small. If the upper Hessenberg matrix is unreduced (has no zero

subdiagonal elements) then standard results imply that However, this quantity can

be quite small even if all of the subdiagonal element of are far from zero. Usually,

this is how convergence takes place, but it is also possible for to become small. If

the quantity is small enough, then all m eigenvalues of are likely to be good

approximations to m eigenvalues of In the Hermitian case, this estimate on the

residual can be turned into a precise statement about the accuracy of the Ritz value

as an approximation to the eigenvalue of A that is nearest to.

B.1.6 Naming Conventions, Precisions and Types

ARPACK has two interface routines that must be invoked by the user. They are

aupd that implements the IRAM and eupd to post process the results of aupd. The

user may request an orthogonal basis for a selected invariant subspace or

eigenvectors corresponding to selected eigenvalues with eupd. If a spectral

transformation is used, eupd transforms the computed eigenvalues for the problem.

Both aupd and eupd are available for several combinations of problem type

(symmetric and non-symmetric), data type (real, complex), and precision (single,

double). The first letter (s,d,c,z) denotes precision and data type. The second letter

denotes whether the problem is symmetric (s) or non-symmetric (n).

I mainly used the subroutines dnaupd,dneupd,znaupd,zneupd. The descriptions are
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the following:

dnaupd Top level reverse communication interface to solve real double precision

non-symmetric problems.

dneupd Post processing routine used to compute eigenvectors and/or Schur

vectors corresponding to the invariant subspace associated with the computed

eigenvalues. This requires output from a converged application of dnaupd.

znaupd Top level reverse communication interface to solve double precision

complex arithmetic problems. This routine should be used for both Hermitian and

Non-Hermitian problems.

zneupd Post processing routine used to compute eigenvectors and/or Schur vectors

corresponding to the invariant subspace associated with the computed eigenvalues in

complex arithmetic. This requires output from a converged application of znaupd.

Thus dnaupd is the routine to use if the problem is a double precision

nonsymmetric (standard or generalized) problem and dneupd is the post-processing

routine to use in conjunction with dnaupd to recover eigenvalues and eigenvectors of

the original problem upon convergence. For complex matrices, one should use

naupd and neupd with the first letter either c or z regardless of whether the

problem is Hermitian or non-Hermitian.

B.1.7 Code usage and Parallelization

The following is the code that is part of my Eigenvalue problem.There are several

aspects that I have modified. First of all, I parallized it for more large system.

Second, I set the dimension directly to nn to suit my specific application.

!// Code for ARPACK

!//allocate matrix instead of static declaration; maximize memory usage

allocate(ax(maxn)) !//maxn is the max dimension that ARPACK can handle
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allocate(v(ldv,maxncv)) !//even after MPI

allocate(workd(3*maxn)) !//work matrix

allocate(resid(maxn))

allocate(w(nmax))

allocate(workdr(3*maxn)) !//real part of workd; for MPI purpose

allocate(workdi(3*maxn)) !//imaginary part of workd

!// ARPACK subroutine to find eigenvalue and eigenstates !//The following include

statement and assignments initiate trace output from the

!//internal actions of ARPACK. See debug.doc in the DOCUMENTS directory for

usage.

!//Initially, the most useful information will be a breakdown of time spent in the

!//various stages of computation given by setting mcaupd =1

ndigit = -3;logfil = 6;mcaitr = 0;mcapps = 0;mcaupd = 1;mcaup2 = 0

mceigh = 0;mceupd = 0

!//The following sets dimensions for this problem

!//nx = 10; n= nx*nx !//I change the dimension here, not useful anymore

nx=icount; n=nx !//n refer to the dimension of matrix; not nx*nx

!Specifications for ARPACK usage are set

!1) NEV = 4 asks for 4 eigenvalues to be computed

!2) NCV = 20 sets the length of the Arnoldi factorization

!3) This is a standard problem (indicated by bmat = ’I’)

!4) Ask for the NEV eigenvalues of largest magnitude (indicated by which = ’LM’)

! See documentation in ZNAUPD for the other options SM, LR, SR, LI, SI.

!Note: NEV and NCV must satisfy the following conditions:
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! NEV ≤MAXNEV ; NEV + 2 ≤ NCV ≤ MAXNCV

nev=maxnev; ncv = maxncv; bmat =’I’;which = ’SR’

if ( n ≥ maxn ) then

print *, ’ ERROR with NSIMP: N is greater than MAXN’

go to 9000

else if ( nev ≥ maxnev ) then

print *, ’ ERROR with NSIMP: NEV is greater than MAXNEV’

go to 9000

else if ( ncv ≥ maxncv ) then

print *, ’ ERROR with NSIMP: NCV is greater than MAXNCV’

go to 9000

end if

!//Specification of stopping rules and initial conditions before calling ZNAUPD

!//TOL determines the stopping criterion.Expect

|lambdaC − lambdaT | < TOL ∗ |lambdaC|

!//computed true If TOL .le. 0, then TOL < −macheps(machineprecision)

!//is used. IDO is the REVERSE COMMUNICATION parameter used to specify

actions

!//be taken on return from ZNAUPD.(see usage below) It MUST initially be set to 0

!//before the first call to ZNAUPD.INFO on entry specifies starting vector

information

!//and on return indicates error codes.Initially, setting INFO=0 indicates that a

!//random starting vector is requested to start the ARNOLDI iteration. Setting

INFO

!//to a nonzero value on the initial call is used. if you want to specify your own
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!//starting vector (This vector must be placed in RESID). The work array WORKL

is

!//used in ZNAUPD as workspace. Its dimension LWORKL is set as illustrated

below.

lworkl = 3*ncv**2+5*ncv; tol=.0d-8; ido = 0; ifo= 0

!//Specification of Algorithm Mode:This program uses the exact shift strategy

!//(indicated by setting IPARAM(1) = 1).IPARAM(3) specifies the maximum

number

!//of Arnoldi iterations allowed. Mode 1 of ZNAUPD is used (IPARAM(7) = 1). All

!//these options can be changed by the user. For details see the documentation in

!//ZNAUPD.

ishfts = 1

maxitr = 25000; !//convergency steps; more enery levels,it should increase;

mode1 = 1; iparam(1) = ishfts; iparam(3) = maxitr; iparam(7) = mode1

!//M A I N L O O P (Reverse Communication Loop)

10 continue

!//Repeatedly call the routine ZNAUPD and take actions indicated by parameter

IDO

!//until either convergence is indicated or maxitr has been exceeded.

!//znaupd has floating underflow problem,which I haven’t figured out.

call znaupd ( ido, bmat, n, which, nev, tol, resid, ncv,v,ldv,iparam,ipntr,&

& workd, workl, lworkl,rworkl,info)

if (ido .eq. -1 .or. ido .eq. 1) then

!//Perform matrix vector multiplication y ← Ax

!//The user should supply his/her own matrix vector multiplication routine here

!//that takes workd(ipntr(1)) as the input vector x , and returns the resulting
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!//matrix-vector product y = Ax in the array workd(ipntr(2)).

!//The following parts are parallelized according to the need of my computation

call mpiav(icount,workd(1),workd(ipntr(2)),my_rank,total,rankcount)

if(my_rank==total-1) then

istart=ipntr(2)+total*int(icount/total)

j=icount-total*int(icount/total)

do i=0,j-1

workd(istart+i)=workd(ipntr(2)+int(icount/total)+i)

end do

end if

workdr=dble(workd) !//transfer to real and imaginary part for BCAST

workdi=dimag(workd) !//transfer to real and imaginary part for BCAST

call mpi_gather(workdr(ipntr(2)),int(icount/total),&

& mpi_double_precision,&

& workdr(ipntr(2)),int(icount/total),mpi_double_precision, &

& 0,mpi_comm_world,mpierr)

call mpi_gather(workdi(ipntr(2)),int(icount/total), &

& mpi_double_precision,&

& workdi(ipntr(2)),int(icount/total),mpi_double_precision, &

& 0,mpi_comm_world,mpierr)

!//processor total-1 may have different number of workd to broadcast

istart=ipntr(2)+total*int(icount/total)

j=icount-total*int(icount/total)

!//broadcast the w(i)s that the rank (total-1) has calculated after the average

allocation

call mpi_bcast(workdr(istart),j,mpi_double_precision,&
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& total-1,mpi_comm_world,mpiierr)

call mpi_bcast(workdi(istart),j,mpi_double_precision,&

& total-1,mpi_comm_world,mpiierr)

call mpi_bcast(workdr(ipntr(2)),icount,mpi_double_precision,&

& 0,mpi_comm_world,mpiierr)

call mpi_bcast(workdi(ipntr(2)),icount,mpi_double_precision,&

& 0,mpi_comm_world,mpiierr)

workd=dcmplx(workdr,workdi) !//get back to double complex

!// L O O P B A C K to call ZNAUPD again

go to 10

end if

if(my_rank==0) then

sumc=0.0d0

do i=1,icount

sumc=sumc+v(i,1)*conjg(v(i,1))

if(i==1) write(213,*)i,v(i,1)

end do

write(213,*)”coefficient:”,sumc

end if

!//Either we have convergence or there is an error.

if ( info .lt. 0 ) then

!// Error message, check the documentation in ZNAUPD

print *, ’ Error with naupd, info = ’, info

print *, ’ Check the documentation of naupd’

else
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!// No fatal errors occurred. Post-Process using ZNEUPD.

!// Computed eigenvalues may be extracted. Eigenvectors may be also computed

now if

!// desired. (indicated by rvec = .true.) The routine ZNEUPD now called to do this

!// post processing (Other modes may require more complicated post processing

than mode1.)

rvec = .true.

call zneupd (rvec, ’A’, select, D, V, ldv, sigma, workev, bmat, n, which,&

& nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, &

& lworkl, rworkl, ierr)

!// Eigenvalues are returned in the one dimensional array D and the corresponding

!// eigenvectors are returned in the first NCONV (=IPARAM(5)) columns of the

two

!// dimensional array V if requested.Otherwise, an orthogonal basis for the

invariant !// subspace corresponding to the eigenvalues in D is returned in V.

if ( ierr .ne. 0) then

!// Error condition: Check the documentation of ZNEUPD.

print *, ’ Error with neupd, info = ’, ierr

print *, ’ Check the documentation of neupd. ’

else

nconv = iparam(5)

do 20 j=1, nconv

!// Compute the residual norm deter(A*x - lambda*x)for the NCONV accurately

!// computed eigenvalues and eigenvectors. (iparam(5) indicates how many are

!// accurate to the requested tolerance)

call av(nx, v(1,j), ax) call zaxpy(n, -d(j), v(1,j), 1, ax, 1)
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rd(j,1) = dble(d(j))

rd(j,2) = dimag(d(j))

rd(j,3) = dznrm2(n, ax, 1)

rd(j,3) = rd(j,3) / dlapy2(rd(j,1),rd(j,2))

20 continue

!// Display computed residuals.

call dmout(6, nconv, 3, rd, maxncv, -6, &

& ’Ritz values (Real, Imag) and relative residuals’)

end if

!// Print additional convergence information.

if ( info .eq. 1) then

print *, ’ Maximum number of iterations reached.’

else if ( info .eq. 3) then

print *, ’ No shifts could be applied during implicit &

& Arnoldi update, try increasing NCV.’

end if

print *, ’ Size of the matrix is ’, n

print *, ’ The number of Ritz values requested is ’, nev

print *, ’ The number of Arnoldi vectors generated’,’ (NCV) is ’, ncv

print *, ’ What portion of the spectrum: ’, which

print *, ’ The number of converged Ritz values is ’,nconv

print *, ’ The number of Implicit Arnoldi update’, &

& ’ iterations taken is ’, iparam(3)

print *, ’ The number of OP*x is ’, iparam(9)

print *, ’ The convergence criterion is ’, tol

end if

!// Done with program znsimp.
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9000 continue

B.2 Fast Fourier Transform

B.2.1 Fourier Transform of Discrete Data

In this section, I follow closely the book of Numerical Recipes: The Art of Scientific

Computing .

The Fourier transform of a function h(t) or H(f) are given by the following

equations

H(f) =

∫ −∞

∞

h(t)e2πiftdt (84)

h(t) =

∫ −∞

∞

H(f)e−2πiftdf (85)

In the above equations, if t is measured in seconds, then f , frequecny, is in unit of

Hertz. When function h(t) is sampled at evenly spaced intervals in time,suppose N

consecutive values, then h(t) can be specifcied as

hn = h(tn), tn = n∆, n = 0, 1, 2, . . . , N − 1 (86)

where ∆ is the sampling interval. If the function is nonzero only in a finite interval

of time, then the whole interval of time is supposed to be contained in the range of

N points. With N numbers of input, we will be able to have the same number of

output. Here, we will only estimate H(f) in discrete values, N is assumed even

number here.

fn =
n

N∆
, n = −N

2
, . . . ,

N

2
(87)

The extreme values of n in 87 correspond to the lower and upper limits of the

Nyquist critical frequecny range. It will turn out that the two extreme values of n

are not independent but equal. This reduces the count to N . So the intergral of 85
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can be approximated by discrete summation:

H(fn) =

∫ −∞

∞

h(t)e2πiftdt ≈
N−1∑

k=0

hke
2πifntk∆ = ∆

N−1∑

k=0

hke
2πikn/N = ∆Hn (88)

Where Hn =
∑N−1

k=0 hke
2πikn/N .The 88 is called the discrete Fourier transform of the

N points of hk.

B.2.2 Fast Fourier Transform in One and Two Dimension

The computation time for DFT is O(N 2), but it can reduced to O(Nlog2N) with

the method of Fast Fourier Transform. The difference of computing time is huge

when N is large enough, like 105. Here I will show the derivation of FFT by

Denielson and Lanczos. They showed that a discrete Fourier transform of length N

can be rewritten as the sum of two discrete Fourier transforms, each of length N/2.

One of the two is formed from the even-numbered points of the original N , the

other from the odd-numbered points. So

Fk =

N−1∑

j=0

e2πijk/Nfj (89)

=

N/2−1∑

j=0

e2πi(2j)k/Nf2j +

N/2−1∑

j=0

e2πi(2j+1)k/Nf2j+1 (90)

=

N/2−1∑

j=0

e2πijk/(N/2)f2j +W k

N/2−1∑

j=0

e2πijk/(N/2)f2j+1 (91)

= Fk
e +W kFk

0 (92)

Where W = e2πi/N , and Fk
e denotes the kth component of the Fourier transform of

length N/2 formed from the even components of the original f ′
js, while Fk

o is the

corresponding transform of length N/2 formed from the odd components. The

transforms Fk
e and Fk

o are periodic in k with length N/2. So each is repeated

through two cycles to obtain Fk. When this method is used recursively, we will

reduce the calculation of Fk
e to the summation of Fk

ee and Fk
eo, which

corresponding to the discrete Fourier transforms of the points which are respectively

even-even and even-odd on the successive subdivisions of the data.
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When this method is used repeatedly, the transform will be optimal when N is

power of 2. With this restriction on N , we can continue applying the

Danielson-Lanczos method until we have subdivided the data all the way down to

transform of length 1. So it is just the identity operation that copies its one input to

its output. For evey pattern of log2N e and o, there is a one-point transform that is

just one of the input number fn

F eoeo...eoe
k = fn (93)

The value n happens to be the binary value of the suquence of eoeo . . . eoe.

The algorithm can be listd as below: We take the original vector of fj and rearrange

it into bit-reversed order, so that the indivisual numbers are in the order

bit-reversing j. Then points as given are the one-point transforms. We combine

adjacent pairs to get tow-point transforms, then combine adjacent pairs of pairs to

get 4-point transform, and so on, until the first and second halves of the whole data

set are combined into the final transform. Each combination takes of order N

operations, and there are log2N combination, so the whole algorithm is in

O(Nlog2N).

Given a complex function h(k1, k2) defined over the two dimensional grid

0 ≤ k1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1, we can defines the two dimension discrete

complex function H(n1, n2), defined over the same grid,

H(n1, n2) =

N2−1∑

k2=0

N1−1∑

k1=0

exp(2πik2n2/N2) exp(2πik1n1/N1)h(k1, k2) (94)

So the corresponding FFT is

H(n1, n2) = FFT − on− index− 1(FFT − on− index− 2 [h(k1, k2)]) (95)

= FFT − on− index− 2(FFT − on− index− 1 [h(k1, k2)]) (96)

112



B.2.3 FFT application in the project

In our REM microscopic method, we have the electron molecule state:

|ΦREM
L 〉 =

∫ 2π

0

...

∫ 2π

0

dγ1...dγr

×|ΨSEM(γ1, ..., γr)〉 exp

(
i

r∑

q=1

γqLq

)
. (97)

Here L =
∑r

q=1 Lq and |ΨSEM[γ]〉 is the original Slater determinant with all the

single-electron wave functions of the qth ring rotated (collectively, i.e., coherently)

by the same azimuthal angle γq. The corresponding enery of REM is given by

EREM
L =

∫ 2π

0

h([γ])ei[γ]·[L]d[γ]

/∫ 2π

0

n([γ])ei[γ]·[L]d[γ], (98)

with the hamiltonian and overlap matrix elements h([γ]) = 〈ΨSEM([0])|H|ΨSEM([γ])〉

and n([γ]) = 〈ΨSEM([0])|ΨSEM([γ])〉, respectively, and [γ] · [L] =
∑r

q=1 γqLq. The

SEM energies are simply given by ESEM = h([0])/n([0]).

For electrons 2 ≤ N ≤ 8, the integration of energy in 98 is one dimension, for they

just forms one ring. Then we just need to restore the symmetry of one ring, though

the N = 6, 7, 8 will have one electron in the center of the ring. As there is no

symmetry restoring for one point, I used here one dimensional FFT to get the

integration results. For electrons 9 ≤ N , they will form two or more rings, so I used

2D FFT for 2 rings to restore the whole symmetry, which means each ring will

rotate independently. (All the FFT codes are taken from online modules). Here I

choose that each parameters in the FFT that are power of 2 and larger than the

maximum magic numbers of each ring. For quantum dots that forms up to 3 rings,

it requires 3 dimensional FFT. Though we choose the parameters that are power of

2 for FFT and parallelize the code, it is still very slow for 3D FFT computation.

For example, it requires 8 hours to get 1 enery point for 3D FFT by 32 UNIX

processors. And for 2D FFT, it will require about 1 hour to get 1 energy point for

32 processors, which is reasonable to get the full spectrum when B range from 0T to
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8T . But for the density calculation, it requires at least 30× 30 points,

approximately the same time as enery point calculation. Though the computation

time is still under control, it’s very time-consuming and resoure-consuming. And it

is not possible for us to carry 3D FFT for full enery spectrum or density calculation.

In the above integrations, we assume that each ring rotate independently. So in

order to restore the whole symmetry, the dimensions of FFT equal the number of

rings. For example, N = 9 electrons will form one ring with the configuration (1,8)

or two ring configuration (2,7). We need 1D FFT for the configuration (1,8) and 2D

FFT for the configuration of (2,7). And teh configuration of (2,7) has lower energy,

a more stable state. Accidently, when I try to test my results for 2D FFT, I decide

to form 1D FFT for the configuration (2,7). The eneries turns out to be exactly the

same for 2D FFT. Then I calculated the energies by 1D FFT for electrons up to 29,

which has already formed 3 rings. Thereafter I found that all the energies by 1D

FFT are the same for 2D FFT or 3D FFT, except for N = 16 and N = 19. And for

the density(just for 2 rings), the results of 1D FFT and 2D FFT are the same with

no exceptions. According to the above results, I can save a lot of computation time

and make it possible to handle electrons up to 34 with 64 processors. Though there

is no proved explanations, we can treat all the rings rotate collectively in the same

direction instead of rotating independently, so we just need to restore one

symmetry. As for N = 16 and N = 19, they form the configuration of (1,5,10) and

(1,6,12). The number of electrons in outer ring is exactly twice the number of inner

ring, so the magic number of outer ring, 12 , is twice the magic number of inner

ring,6. This configuration will mix up each magic number given a specific total

magic number and cause the energy higher. But for other number of electrons, there

is no such condition.(Above explanation is just our assumption)
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B 72, 045309 (2005)] – for N = 4 and N = 6 electrons for a confinement of 3.32

meV and a range of magnetic fields above 3 T have concluded that only fully

polarized states with magic angular momenta are involved in the transition

from the MDD (ν = 1) to the subsequent ground states (i.e., for ν < 1) as B

116



increases, when the effective Landé factor takes the value for GaAs,
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