Min-cut methods for mapping dataflow graphs

Volker Elling Karsten Schwan
Topic number: 2, Topic title: Scheduling and Load Balancing
Volker Elling (RWTH Aachen) Karsten Schwan (Georgia Tech)
Bérenstrafie 5 (Apt. 12) 801 Atlantic Drive
52064 Aachen, Germany Atlanta, GA 30332-0280, USA
volker.elling@post.rwth-aachen.de schwan@cc.gatech.edu
Phone: (+49)241-8794337 Phone: (+1)404-894-2589

Abstract. High performance applications and the underlying hardware platforms are
becoming increasingly dynamic; runtime changes in the behavior of both are likely
to result in inappropriate mappings of tasks to parallel machines during application
execution. This fact is prompting new research on mapping and scheduling the dataflow
graphs that represent parallel applications. In contrast to recent research which focuses
on critical paths in dataflow graphs, this paper presents new mapping methods that
compute near-min-cut partitions of the dataflow graph. Our methods deliver mappings
that are an order of magnitude more efficient than those of DSC, a state-of-the-art
critical-path algorithm, for sample high performance applications.

1 Introduction

Difficult steps in parallel programming include decomposing a computation into various
pieces (‘tasks’), distributing these tasks to the processors (‘mapping’), determining an
order of execution on each processor (‘scheduling’), and providing means for communi-
cating data between tasks. In the past, parallel programs were typically run on dedicated
multiprocessors with processor speeds, network topologies, and bandwidths that were
known in advance. For such cases, programmers could use fixed task-to-processor map-
pings or even develop good mappings by trial-and-error, using performance analysis
tools to identify bottlenecks.

The drawbacks to such adhoc mapping methods are well known. First, some prob-
lems like ‘sparse triangular solves’ (see Section 4.3) are too irregular for partitioning
by a human. Second, when programs are decomposed by compilers, at a fine grain
of parallelism, the potential number of parallel tasks is too large to admit the use of
manual methods, prompting most compiler writers to employ techniques like Dominant
Sequence Clustering (DSC) to construct the parallel tasks and their schedule to be ex-
ecuted on the underlying parallel machine. Third, when using LAN-connected clusters
of workstations or entire computational grids (as in Globus, see [FK97]) for parallel
program execution, manual methods are difficult to employ due to irregular network
topologies and changes in network or machine performance due to changes in load or
platform failures. Concerning program structure, for grid applications, for example, a

typical parallel application is comprised of a collection of parallel and sequential tasks,
with certain task sets implementing single parallel applications linked to each other
in order to solve a larger problem, other task sets implementing the I/O required by
these applications using disk and visualization devices scattered across the grid, and
finally, end users from a variety of ‘access stations’ interacting with these programs to
perform tasks like output inspection, collaboration via the ‘computational instruments’
(see [PEET]) implemented by task sets, and ‘program steering’ (see [GESV98], [ES98]).
As a result, task sets often change at runtime. Finally, in load balancing a busy proces-
sor occasionally shares tasks with a processor that has become idle. It is useful to choose
the share of the other processor so that the communication between both is minimized;
this requires min-cut partitioning methods for dataflow graphs (see below). In all these
situations, automatically generated mappings are attractive or even required. There-
fore, the ultimate goal of our research is to develop black-box mapping and scheduling
packages that require limited degrees of human intervention.

In Section 2, we define the formal problem that is to be solved and give some examples
for its usefulness. Section 3 discusses critical-path vs. min-cut mapping methods. Our
algorithmic contributions, ‘spectral mapping’ and ‘greedy mapping’, are presented in
Sections 3.3 and 3.4. Section 3.5 explains the need for periodic run-time remapping and
discusses ways to adapt our algorithms for this purpose.

Section 4.1 introduces an abstract model for parallel hardware, suited for multipro-
cessor machines as well as for workstation clusters. This model is used for extending
2-processor mapping to an arbitrary number of processors with different speeds and
an irregular interconnect. In Section 4.3, we present two real-world sample problems,
‘Sparse Triangular Solves’ and a climate simulation, that have rather complementary
properties and reflect the wide applicability of our methods. Simulation results for these
two sample problems are shown, for our two problems as well as DSC, a critical-path
algorithm, and ‘DSC-spectral’, a variant of DSC.

2 Formal Problem Definition

Sample Applications Parallel applications are often modelled using dataflow graphs
(also known as ‘macro dataflow models’, ‘task graphs’, or ‘program dependence graphs’).
A dataflow graph is a directed acyclic graph (V, E) consisting of vertices v € V rep-
resenting computation steps, connected by directed edges (v, w) € E which represent
data generated by v and used by w. The vertices are weighted with the computational
costs t(v), whereas edges are weighted with the amounts of communication c(v, w).
There are various choices for the unit of ¢ and ¢. Many mapping and scheduling algo-
rithms, especially critical-path methods (see Section 3.1), require ¢ and ¢ to have the
unit ’computation time in seconds’ and 'point-to-point delay in seconds’. This is unde-
sirable when dealing with different processor or network speeds since computation and
communication times depend on the task-to-processor assignment. In the sequel, we as-
sume that ¢ and c are specified in units that are invariant under change of processor or
network, for example ‘cycles’;, ‘FLOPs’ or ‘computation time on a reference processor’
(for t) resp. ‘bytes’ or ‘delay on a reference network’ (for ¢).

An example is the graph shown in Figure 1. This graph represents a two-hour iteration
step in the Georgia Tech Climate Model (GTCM) which simulates atmospheric ozone
depletion. On our UltraSparc-II-cluster, the tasks in the ‘Lorenz iteration’ execute for
about 2 seconds while the chemistry tasks run for about 10 seconds. ‘Debugging’ simu-
lations have to run for at least 1 month of simulated time; simulations in which certain

. Development
Pentium machines
Pro/Il (UltraSPARC,
clusters Pentium,
SGI Octane/O2)

UltraSPARC SGI Origin

K/’; 7 more Lorenz

iterations 2000

(16 nodes)

1I cluster

Fig. 1. Left: task graph in the Georgia Tech Climate Model; right: high-performance hardware in the
Georgia Tech THPCL lab

1 Lorenz iteration

atmospheric phenomena are investigated run from at least 6 months to 6 years of simu-
lated time. In this graph, each edge corresponds to roughly 100-400 KB of data carried
across tasks. This application constitutes one of the examples addressed by our map-
ping (and remapping) algorithm. Another example exhibiting finer grain parallelism is
presented in Section 4.3 below.

Hardware Infrastructure Figure 1 shows a part of the high-performance hardware in
the Georgia Tech THPCL lab. In addition to Gigabit Ethernet, the Pentium clusters
are partially connected by SCI resp. Myrinet interfaces. All of the machines are shared
by several research groups and usually run several applications at a time in addition
to interactive jobs on the 'development’ stations, each on a subset of the clusters. The
UltraSPARC cluster consists of of 16 single-processor machines, the Pentium Pro cluster
is composed of 64 quad-processor nodes, and the Pentium II cluster contains 32 dual-
processor boxes. The development machines span a wide range of types and speeds. The
operating systems include Solaris 2 (SPARC and Intel), Irix 6.4/6.5, and Windows NT.

Problem Definition ‘Mapping’ is the task of assigning each of the vertices v to p(v), one
of P available processors. Often, the mapping stage is subdivided into forming ‘clusters’
of tasks and assigning clusters instead of single tasks. ‘Scheduling’ (more precisely,
‘local scheduling’) is the subsequent stage of determining an order of execution for the
vertices on each processor. This order can be strict or advisory. Usually, the objective
is to minimize the ‘makespan’, the time between start of the first and completion of the
last task. We define
> ey loady

makespan - Ele speed,,

efficiency =

where load, refers to the number of ¢-units task v takes, and speed, to the speed of
processor p in t-units per second. Obviously, a higher efficiency is equivalent to a lower
makespan, and the maximum efficiency is 100%.

Existing mapping and scheduling algorithms are subject to various restrictions and are
therefore, not easily used to address the problem definition shown above. First, many
algorithms are restricted to dealing with homogeneous processors connected by a uni-
form network. For the cluster and grid machines used in our work, however, we have
to deal with processors of different speeds (‘weakly heterogeneous multiprocessors’) or
even different architectures (‘strongly heterogeneous multiprocessors’). Some processors

are well-suited for floating-point computations while others were designed for integer
tasks, as is the case for the UltraSPARC-II vs. Pentium II clusters used in our work;
the size of on-chip caches is important as well. Some processors, like the SGI Origin ma-
chine, utilize high performance interconnects, whereas the workstation clusters employ
commodity networks like switched Ethernet for interprocessor communication. Finally,
processor and network speeds can vary over time due to their shared use by other
applications. The methods we describe deal with weak heterogeneity, and they can ad-
dress changes in program behavior or resource availability by considering the remapping
problem.

The performance of parallel applications is affected by various factors, including avail-
able CPU performance, the amounts of main memory or disk space, network latencies, or
network bandwidths. Given these factors, some parallel programs are bandwidth-limited
in that the amount of necessary communication among tasks is sufficiently large to cause
slowdown due to network congestion. Other programs are latency-limited, which means
that delays in frequent, fine-grain communications result in program slowdown. This
paper considers both latency- and bandwidth-limited programs.

3 Mapping Algorithms

This section first describes a popular mapping algorithm called ‘Dominant Sequence
Clustering’ (DSC). Next, we present alternative mapping algorithms based on min-cut
methods, called ‘spectral bisection’ and ‘greedy spectral bisection’. In Section 4, these
algorithms are shown to be superior to DSC in terms of mapping quality.

3.1 Critical-path Methods

Critical-path methods are based on t(v) resp. ¢(v, w) being computation resp. commu-
nication time. A path in the dataflow graph is a ‘critical path’ if the sum of ¢(v) and
¢(v, w) on this path equals the makespan. In order to decrease the makespan, one has to
decrease t(v) or ¢(v, w) on the critical paths. Most mapping and scheduling algorithms
for dataflow graphs proceed by looking for critical paths in the graph and assigning
adjacent tasks on the path to the same cluster. Later, tasks v, w in the same cluster
are assigned to the same processor which corresponds to ‘zeroing’ the communication
time ¢(v, w). The most advanced critical-path algorithm known to us is ‘Dominant Se-
quence Clustering’ ("DSC’; see [YG94]). It is faster than older algorithms since it avoids
recomputing the critical paths after every zeroing step, by careful selection of edges
to be zeroed. On the other hand, it is as efficient as the other algorithms in minimiz-
ing makespan (see [GY92]). We will use this algorithm to assess the performance of
critical-path methods as compared to the min-cut methods we describe below.
Usually, critical-path methods do not attempt to minimize cut size. The clusters formed
by DSC are assigned to processors in blocks or cyclically. In [YG94], the use of Bokhari’s
algorithm (see [Bok81]) for overcoming this limitation is proposed: An undirected graph
is formed, with the clusters as vertices and edges (c,d) weighted by the amount of
communication C(c,d) between clusters ¢ and d:

C(e,d) = Z (c(v, w) + c(w,v)).
vEC,WEd
The cut size is reduced by computing small-cut partitions of the cluster graph and
assigning them to processors. Instead of Bokhari’s algorithm, we partition the graph
by spectral bisection resp. greedy bisection (see below). We refer to this variant as
‘DSC-spectral’ resp. ‘DSC-greedy’.

3.2 Min-cut Methods

Rather than shortening critical paths, min-cut methods try to find a mapping 7 : V —
{1,..., P} of the task graph with small cut size, defined as

cutsize(r) := Z c(v,w),

v,weEE, w(v)#m(w)

and loads
load, (m) := Y #(v)
w(v)=p
which are roughly proportional to the respective speeds of the processors p=1,..., P.

Previous Work To the best of our knowledge, there has been no previous attempt
to define explicit min-cut mapping algorithms for dataflow graphs. However, dataflow
graphs often arise from undirected graphs like finite-element grids. There has been
progress on min-cut partitioning algorithms for undirected graphs ([KL70], [FM82],
[PSLI0], [KK]; a good overview is [Els97]). Unfortunately, these methods cannot be
trivially applied to the problem we are solving, since our complex parallel applications
typically consist of several coupled subcomponents (e.g., a finite-element elasticity code,
a finite-volume gas dynamics code, chemistry and and a visualisation) that cannot be
scheduled easily by partitioning a single physical grid.

Communicating long-running processes form an undirected doubly-weighted graph. Bollinger
and Midkiff ((BM91]) have developed a method to map processes onto processors which
is based on Simulated Annealing. Chaudhary and Aggarwal ([CJ93]) propose a method
for a problem similar to our dataflow graphs which proceeds by greedy pairwise ex-
change. However, they recompute the makespan (or a similar objective function) after
every exchange. This is very expensive for large graphs but seems to be inevitable in
absence of the ’time intervals’ we use for ’greedy mapping’ as described in Section 3.4.
Min-cut algorithms for directed graphs cannot easily be adapted to dataflow graphs since
the partition with smallest cut size might be the worst rather than the best mapping
(see Figure 2). As evident from the example in the figure, it is important to take the

ey
G e
i i f f i paﬁmom%@é

Set 1 Set 2 Set 3

Fig. 2. Left: a bad min-cut mapping; right: improved mapping

directedness of the graph into account. Toward this end, we define the earliest-start

resp. earliest-finish ’times’ est(v) and eft(v) by

t(v) = ft
est(v) (wn,}):;écEe (w)
and
eft(v) := est(v) + t(v)

(note that this definition is valid because the graph is acyclic). The nodes are sorted by
est and separated into K sets Vi,...,Vk so that

1<jveViyweV;, = est(v)<est(w).

Instead of requiring load proportional to speed on each processor, we require propor-
tionality in each set Vj:

loady, (7)== Z t(v).

VEVE, w(v)=p

This means that we have load balance in K ’time’ intervals rather than overall. Of
course, the exact start and finish times of the tasks are not known in advance; in
addition, our definition of est and eft does not involve c¢(v,w). Nevertheless, the est and
eft are a practical and useful way of estimating the relative execution order of tasks in
advance. In our experiments, we compute the longest path in the dataflow graph and
set K to half its length (node count). The mapping on the right side of Figure 2 shows
the improvement.

3.3 Spectral Mapping

We have adapted spectral bisection (see [PSL90], [DHT73]) to dataflow graphs since it
delivers, along with multilevel partitioning, the best partitions for undirected graphs.
Its disadvantages are low speed and difficult implementation. For simplicity, we assume
that V = {1,...,|V|}. The ‘Laplacian matrix’ (compare [Chu97]) L = (Lyw) is defined
by

—c(v,w), (v,w)€EE, v#w
—c(v,w), (w,v) €EE, v#w
Ly := .
Z(v’w)EEc(v,w), v=w
0, (v,w), (w,v) ¢ E
It is a positive semidefinite matrix, with (1,...,1) as eigenvector for the eigenvalue

0. The second smallest eigenvalue is always positive if the graph is connected. The
corresponding eigenvector x is called ‘Fiedler vector’. It minimizes the function ¢(z),

Ev,weE‘ C(U’ ’U))(.’Ev - xw)2

Z:vEE ‘1:%

Note that ¢(x) is small if, for adjacent vertices v, w, the difference x, — z, is small. The
‘closer’ vertices are in the graph, the closer are their z-values. For dataflow graphs, we
minimize ¢(z) with respect to the constraints

Z t(v)z, = 0.

vEV)

¢(z) =

This corresponds to finding the smallest eigenvalue and corresponding eigenvector of
the operator
PT'LP

where P is a linear mapping from R"~¥ into the constraint subspace of R".
A ‘bisection’ (2-partition) is obtained by choosing thresholds Tk, £k = 1,..., K, and

setting, for v € Vj,
1, Ty > Tk
v) = .
p@©) {0, else

The thresholds are chosen so that

loado, & (p) -
loado,x (p) + loads,x(p)

«

where « is the speed ratio of the processors executing partition 0 resp. 1. A P-partition
is obtained by repeated bisection.

Spectral mapping is much slower than DSC or greedy mapping (see below), but it takes
only about 1.7 seconds for a 1000 vertices/4000 edge graph (20 seconds for 10000/40000)
on an SGI O2 (R10000 2.6 195 MHz). These times can be improved significantly, as our
current implementation is not very sophisticated and sequential; [BS93] and [Bar95]
propose multilevel parallelized variants for spectral bisection that achieve an order-of-
magnitude performance improvement and could be adapted to spectral mapping.

3.4 Greedy Mapping

A faster but lower-quality method for min-cut bisection is ’greedy mapping. It corre-
sponds to the greedy bisection methods developed for undirected graphs (see [KL70],
[FM82]). At the beginning, an arbitrary mapping p is chosen. The ’gain’ of a vertex is
defined as the decrease in cutsize when this vertex is moved to the other partition (p(v)
is changed from 0 to 1 or vice versa). The vertices are moved between partitions, in
order of decreasing gain. In every iteration, a vertex may be moved only once. A vertex
v € Vi may not be moved if

oo — loado, % (p) |
loado,x (p) + load x(p)

becomes larger than a threshold (for example, 0.07). An iteration finishes when no
vertices with nonnegative gain are left. In our experience, there is no improvement after
10-15 iterations.

3.5 Remapping

As we have mentioned, it is desirable to compute a new mapping if processor or network
performance change during execution. Our atmospheric simulation has running times
of several minutes to several days. During this time, network links and computers can
break down and become available again; other users start and stop their own high-
performance applications on a part of the clusters. It is impossible to adapt to these
changes manually because 24-hour operator supervision would be necessary. On the
other hand, not adapting would degrade simulation speed severely. The only alternative
is to develop automatic mapping methods like the ones we describe.

Greedy mapping is sufficiently fast for a remapping frequency on the order of 1/second
and is easily adapted to take initial data location into account. For spectral bisection, the
underlying problem to be solved is no longer an eigenvalue problem (see the discussion
in [EN198]), but replacing the eigensolver by a more general optimization routine should
not be difficult. Unfortunately, for many parallel applications and execution platform,
given the rate at which they change, the speed of spectral mapping is likely to make
remapping difficult except for long-running applications with stable, long lasting phases
like our atmospheric simulation.

4 Evaluation

4.1 Topologies and their Modeling

We model real-world network topologies by a simple but representative model. The
cluster comsists of processors with different speed. Each processor is connected to an
arbitrary number of buses. Buses themselves can be connected by switches (which are
‘zero-speed processors’).

In order to apply our bisection algorithms to irregular network topologies with more
than 2 processors, we compute a hierarchy of processors. A cluster is modeled as a mesh
of processors, each of which is connected to an arbitrary number of buses. Processors
are weighted with their speed, while buses are weighted with their bandwidth (alterna-
tively, latency or another characteristic can be used). At each step, the bus with highest
bandwidth is chosen and, together with the connected processors, contracted into a
single parent ‘processor’. When all buses have been contracted, only one ‘processor’ is
left. The clustering is undone in reverse order. At each step, one processor is unfold
into a bus and the adjacent processors. The dataflow graph partition corresponding to
the parent processor is distributed to the children by repeated bisection. The ratio « is
chosen according to the performance value of the children in each bisection step. Finally,
all clustering steps have been undone, and every processor has been assigned a partition
of the graph.

As an example, consider Figure 1. Depending on the type of switches, each cluster
would be modeled as a bus to which machines and switch are connected. The p-processor
machines can be treated as single-processor machines with p-fold speed, or as a separate
bus with p nodes connected to it. The latter case is important for large multiprocessor
machines. Starting with the Gigabit Ethernet links, each link, together with machine
and switch would be collapsed into a ‘processor’. After all of them are gone, the ATM
links are collapsed. Obviously, our bisection algorithm will try to assign coherent pieces
of the dataflow graph to the Gigabit clusters and minimize communication via the slow
ATM switch. However, the example also demonstrates the limitations of our simplistic
topology treatment: the link ‘A’ interconnecting the two Gigabit switches might be
collapsed first (before any of the Gigabit-switch-to-processor links is collapsed). Since
it might represent a bottleneck, collapsing it last (i.e. assigning coherent pieces of the
dataflow graph to the processors on each side) would be more appropriate. A more
sophisticated algorithm could consider the cluster topology as an undirected graph and
apply spectral bisection to it.

4.2 Local Scheduling

There are many good heuristics for computing local schedules, for fixed mapping, on
a multiprocessor, even in the presence of communication delays. The survey paper of

Gerasoulis and Yang (see [YG93]) discusses various schemes and compares them for
randomly generated graphs. An interesting aspect is that taking communication delays
into account (as in the RCP* scheme) and neglecting them (in the RCP scheme) does
not change the schedule quality. In our experiments we have used the RCP scheme (in
its non-strict form, i.e. out-of-order execution is allowed if the highest-priority task is
not ready).

4.3 Sample Problems

We have chosen two sample problems that are rather complementary and reflect the
variety of parallel applications. The first, ‘sparse triangular solves’, is very fine-grain and
latency-limited. The tasks take < 1us; the edges correspond to 8 bytes. It is very hard
to achieve good speedup for runtime-generated mappings because the administration
overhead (for distributing data and scheduling tasks) might be larger than the actual
computation time. The cost of runtime mapping can be amortized only if the mapping
is reused many times (which is realistic).

The second problem, the Georgia Tech climate model (see [KSST96]) which has already
been introduced in Section 2, is a very coarse-grain and usually bandwidth-limited
problem. The tasks execute for several seconds; the edges correspond to data in the
order of 100 kilobytes. The model runs for a very long time; this is typical for many of
the so-called grand-challenge applications.

For our simulations below, we use the following simplifications: data is sent in packets
that have equal size on each bus. The bandwidth of a bus is determined by the number
of packets per second. Network interfaces have unlimited memory and perfect knowledge
about the other interfaces on the bus. When a bus becomes available, one of the wait-
ing interfaces is chosen randomly with uniform probability. These simplifications are
not vital. By varying the packet size it is possible to simulate networks with different
latencies.

Sparse Triangular Solves Our first test problem are sparse triangular solves (STS):
solve for z in the linear system
Az =0

where A is a lower triangular matrix with few nonzero entries. Task ¢ corresponds to
solving for z;; this requires all z; with a;; # 0. The dataflow graph is determined by
the sparsity structure of A (see Figure 3).

OO
©,

- o o |
—

W= OoNO

ol moo

—

| m oo o

—_

—_—o oo o

Fig. 3. Lower triangular matrix and its dataflow graph. The vertices are labeled with the index of the
corresponding matrix row

The performance of DSC for STS in comparison to simple mapping heuristics was ex-
amined in [CSBS95] for a real-world implementation. One result is that DSC is too slow
because the mapping time exceeds the actual execution time in practice. A workstation

Efficiency (%)

100

cluster is appropriate only if the matrix is very large; otherwise a multiprocessor machine
with a good interconnect is mandatory. Since spectral mapping is slower than DSC, we
consider sparse triangular solves as a source for real-world dataflow graphs rather than
a practical application. The results shown in figure 4 were obtained by simulation using
the hardware model described in section 4.1. For this experiment, we use 16 equal-speed
processors connected by a bus with packet size 16 byte. Each task is assumed to cost 1
microsecond on these processors. g is the latency (in time units) for sending one num-
ber over an idle network. The matrix is bespwr10 from the Harwell-Boeing collection
(5300 x 5300, 8271 below-diagonal nonzeros; available in ‘netlib’); other matrices from
the bespwr collection yield similar results, as do randomly generated matrices.
Spectral mapping achieves the best results, followed by greedy mapping which offers a
fast alternative. Mapping the task clusters generated by DSC with spectral bisection
(‘DSC spectral’) improves DSC performance but cannot compete with the genuine min-
cut methods. It is worth noting that for the small bcspwr05 matrix (443 x 443, 590
below-diagonal nonzeros), 16 CPUs and an ‘infinitely fast’ network (bandwidth 10%°
MB/s), spectral mapping achieves 95 % efficiency while DSC achieves about 51 %.
Even in this case where communication delays can be neglected, the min-cut algorithm
produces better mappings.

Atmospheric Ozone Simulation In our second application, speedup is bandwidth-
limited due to large data items. Our topology consists of two B MByte/s buses with 8
equal-speed processors at each, connected by a B MB/s link. This topology represents
typical bottleneck situations — in Figure 1, these could occur if, for example, a com-
putation is distributed between the nodes in the UltraSPARC cluster and the 16-node
SGI Origin.

Figure 4 gives results for this problem (with 32 atmospheric levels). In this simulation
we used a network packet size of 256 byte; this size is representative for commodity
workstation interconnects which are well-suited for GTCM.

bespwr10 (16 CPUSs, slotsize 16 byte) GTCM

90

100

*7iDSC o—
tral - Spectral maj

80

33O

reedy mapping
DSG spectral % | Greedy ma
x

80

Efficiency (%)

40

20

_/

1e+07

o
10408 10000 100000 1406
Bandwidth (Byte/;) Bandwidth (Byte/s)

Fig. 4. Simulation results for Sparse Triangular Solves and GTCM

Obviously, the small cut size is essential: spectral mapping achieves the same efficiency
as DSC for B a factor ten smaller. Greedy mapping again qualifies as a fast alternative
with fair quality. Although ‘DSC spectral’ distributes clusters of tasks with respect

1e+07

to min-cut, it is not effective in minimizing communication over the bottleneck link
joining the two buses. This is most likely caused by the fact that DSC does not form
task clusters based on cut size; DSC spectral can distribute whole task clusters only.

4.4 Summary of experimentation

It is apparent that the two min-cut methods we describe are comparable to DSC for
infinitely fast networks and clearly superior for slow networks, since they achieve a
small cut size. Greedy and spectral mapping are well-suited for black-box mapping
software because they are applicable to a wide range of processor/network speed ratios,
to diverse task graphs and regular as well as irregular network topologies. The quality
of spectral mapping is higher, but greedy mapping is faster and therefore suited for
runtime remapping.

5 Conclusions

The main contribution of our work is a method for applying undirected-graph min-cut
methods to dataflow graph min-cut mapping, namely the ‘time intervals’ defined above.
We have adapted spectral bisection and greedy bisection to dataflow graph mapping.
These methods are applicable for a wide range of processor/network speed ratios. We
have demonstrated that, with respect to quality, min-cut mapping methods are slightly
better than critical-path methods for fast networks where small cut size does not seem
to matter, and clearly superior for slow networks. We expect that min-cut-mapping will
replace critical-path methods.

Future work to be done includes the acceleration of spectral mapping in order to make
it practical for a wide range of applications. Furthermore, additional work on greedy
spectral mapping is necessary in order to assess whether this method performs well
for large dataflow graphs, because greedy algorithms ‘look’ at the graph in a ‘local’
way. Toward this end, multilevel bisection strategies as discussed in [KK] for undirected
graphs are promising.

We have considered only weakly-heterogeneous clusters; for an application that consists,
for example, of integer as well as floating-point tasks and runs on a mixed Intel and
MIPS CPU cluster, this would lead to serious performance penalties. Also, it is not
clear whether our simplistic topology clustering method is appropriate for all network
topologies appearing in practice.

References

[Bar95] Stephen T. Barnard, PMRSB: Parallel multilevel recursive spectral bisection,
Proceedings of Supercomputing, 1995.

[BM91] S. Wayne Bollinger and Scott F. Midkiff, Heuristic technique for processor
and link assignment in multicomputers, IEEE Transactions on Computers 40
(1991), no. 3, 325-333.

[Bok81] Shahid H. Bokhari, On the mapping problem, IEEE Transactions on Com-
puters C-30 (1981), no. 3, 207-214.

[BS93] Stephen T. Barnard and Horst D. Simon, A fast multilevel implementation
of recursive spectral bisection for partitioning unstructured problems, Pro-
ceedings of the 6th SIAM Conference on Parallel Processing for Scientific
Computing, 1993, pp. 711-718.

[Chu97]

[CJ93]

[CSBS95]

[DHT73]
[E1198]

[E1s97]

[ES98]

[FK97]

[FM82]

Fan R. K. Chung, Spectral graph theory, Americal Mathematical Society,
1997.

Vipin Chaudhary and J.K.Aggarwal, A generalized scheme for mapping par-
allel algorithms, IEEE Transactions on Parallel and Distributed Systems 4
(1993), no. 3, 328-346.

Frederic T. Chong, Shamik D. Sharma, Eric A. Brewer, and Joel Saltz, Multi-
processor runtime support for fine-grained, irreqular dags, Parallel Processing
Letters 5 (1995), no. 4, 671-683.

W.E. Donath and A.J. Hoffman, Lower bounds for the partitioning of graphs,
IBM Journal of Research and Development (1973), 420-425.

Volker W. Elling, A spectral method for mapping dataflow graphs, Master’s
thesis, Georgia Institute of Technology, 1998.

Ulrich Elsner, Graph partitioning — a survey, Tech. Report Preprint
SFB393/97-27, Technische Universitdt Chemnitz, Sonderforschungsbereich
“Numerische Simulation auf massiv parallelen Rechnern”, December 1997.
Greg Eisenhauer and Karsten Schwan, An object-based infrastructure for pro-
gram monitoring and steering, Proceedings of the 2nd SIGMETRICS Sympo-
sium on Parallel and Distributed Tools (SPDT’98), August 1998, pp. 10-20.
I. Foster and C. Kesselman, Globus: A metacomputing infrastructure toolkit,
International Journal of Supercomputer Applications 11 (1997), no. 2, 115-
128.

C.M. Fiduccia and R.M. Mattheyses, A linear-time heuristic for improving
network partitions, Proceedings of the 19th IEEE Design Automation Con-
ference, 1982, pp. 175-181.

[GESV98] Weiming Gu, Greg Eisenhauer, Karsten Schwan, and Jeffrey Vetter, Falcon:

[GY92]

[KK]

[KL70]

[KSS196]

[PEET]

[PSL90]

[YG93]

[YG94]

On-line monitoring for steering parallel programs, Concurrency: Practice and
Experience 10 (1998), no. 9, 699-736.

Apostolos Gerasoulis and Tao Yang, A comparison of clustering heuristics
for scheduling DAGs on multiprocessors, Journal of Parallel and Distributed
Computing, Special Issue on scheduling and load balancing 16 (1992), no. 4,
276-291.

George Karypis and Vipin Kumar, A fast and high quality multilevel scheme
for partitioning irregular graphs, To appear in SIAM Journal on Scientific
Computing.

B.W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning
graphs, Bell System Technical Journal 49 (1970), 291-307.

Thomas Kindler, Karsten Schwan, Dilma Silva, Mary Trauner, and Fred
Alyea, Parallelization of spectral models for atmospheric transport processes,
November 1996.

Beth Plale, Volker Elling, Greg Eisenhauer, Karsten Schwan, Davis King, and
Vernard Martin, Realizing distributed computational laboratories.

Alex Pothen, Horst D. Simon, and Kang-Pu Liou, Partitioning sparse ma-
trices with eigenvectors of graphs, SIAM Journal on Matrix Analysis and
Applications 11 (1990), no. 3, 430—452.

Tao Yang and Apostolos Gerasoulis, List scheduling with and without com-
munication, Parallel Computing Journal 19 (1993), 1321-1344.

Tao Yang and Apostolos Gerasoulis, DSC: Scheduling parallel tasks on an un-
bounded number of processors, IEEE Transactions on Parallel and Distributed
Systems 5 (1994), no. 9, 951-967.

