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SUMMARY

Malaria, a devastating disease that primarily affects individuals in developing na-

tions in the tropics, is caused by parasites from the genus Plasmodium. Much time

and money has been invested to better understand the underlying biology of both

the parasite and the host response to infection with the ultimate goal of improving

malaria treatment and prevention. In this thesis, I explored the host response to

both anti-malarial drugs as well as to various infection peak types. I found that the

host transcriptome and metabolome are greatly altered in response to pyrimethamine,

an important anti-malarial drug, and I characterized the specific gene sets that are

dysregulated. The nature and persistence of gene expression dysregulation after

pyrimethamine treatment raises important questions concerning the prolonged use

of this drug.

While many genes are altered in response to the anti-malarial drug, pyrimethamine,

the host transcriptome is extensively altered during a primary parasitemia peak in

a P. cynomolgi infection of Macaca mulatta. However, in response to relapsing par-

asitemia peaks, the host transcriptome behaves in a qualitatively different manner.

Specifically, there is extreme response to the primary infection with almost no re-

sponse to relapsing parasitemia peaks. Some of the dysregulated pathways in the

primary malaria infection peak overlapped with previously-identified gene set and

suggest a relationship with auto-immune etiology.

After computationally defining parasite life-stage-specific gene sets, I also profiled

the parasite transcriptional response to multiple infection peaks. Much like in the

xxv



host transcriptional response, parasite gene expression was qualitatively very differ-

ent between primary and relapsing parasitemias. Specifically, there is a shift away

from sexual stage parasites in the relapsing parasite population. I also describe an

artemether-induced difference in the parasite transcriptome, which will require further

experimental validation.

Lastly, I examine the parasite molecular machinery that is associated with anti-

genic variation. I found that, as anticipated, SICAvar transcription is down-regulated

genome-wide in parasites passaged in splenectomized primates. Further, I identified

many exported proteins that are also down-regulated and which may play a role in

the control of SICAvar expression in its broadest sense. Further investigation will

help refine the roles of each of these co-regulated genes in the expression of variable

antigens, an important parasite feature that contributes to virulence.
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CHAPTER I

INTRODUCTION TO MALARIA

1.1 Malaria - a persistent killer

Approximately a quarter of a billion people are stricken with malaria infections each

year, and nearly one million deaths result, mostly in children under 5 years of age.[56]

Malaria is an infectious disease caused by unicellular eukaryotic parasites of the genus

Plasmodium. Once bitten by an infectious mosquito, patients will often not experience

symptoms for one to four weeks.[42] When the patent blood-stage parasites emerge,

patients will experience flu-like symptoms which include headache, fever, chills, vom-

iting, and muscle pain.[98, 42] Clinically, malaria infection can lead to anemia, and

in severe cases, patients may experience coma or death.[69, 68, 92, 98, 42]

Malaria infections are geographically concentrated in the tropical regions of the

world: Africa, Latin America, and Southeast Asia and Oceana (Figure 1A,B).[12, 53,

18, 52, 19] In these regions, it is mostly developing countries that bear the majority

of malaria cases. This pernicious disease impacts not only human health but also

had broader economic impact.[40, 129, 31] Historically, the range of malaria extended

well into Southern Europe and the southern United States.[93, 125] Recently, however,

vector control programs have limited mosquito populations and thereby eliminated

stable transmission of the disease in most developed Western countries.[75, 32] In

spite of the fact that nearly half of the world’s population is at risk of contracting

malaria, there is still no approved and effective vaccine for this disease.[2]
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Figure 1: Malaria endemicity and genetic resistance. Global distribution of
(A) P. falciparum and (B) P. vivax in human populations. (C) The prevalence of
G6PD deficiency. Panels A-C from [53, 52, 65], respectively.

1.2 Human impact of malaria

Malaria infection has exacted a large fitness cost on the human population.[147, 79,

162, 60, 61, 27] As mentioned above, the majority of malaria-related deaths occur
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in children. Furthermore, the anemia caused by high parasite loads may also play a

role in reducing host fitness. Based on population genetics, it has been inferred that

the numerous polymorphisms that confer resistance to malaria have experienced high

levels of positive selection in the past 10,000.[147, 124, 60, 162]

Perhaps the most widely known and referenced human polymorphism of malaria

is the sickle-cell mutation (HbS) in the gene that codes for hemoglobin B (HbB).

This point-mutation (glutamic acid to valine, E6V) at the sixth amino acid residue

of hemoglobin leads to an aggregation of hemoglobin inside the red blood cell when

the hemoglobin is not binding oxygen. In spite of the negative consequences of being

homozygous for this mutation, the sickle-cell allele is at moderate allele frequency

(≈15-20%) in many malaria-endemic regions.[119] Based on haplotype analysis, it is

hypothesized that the sickle-cell trait arose independently in at least four populations,

a observation that provides evidence for the high selective pressure that malaria has

exerted on human genome evolution in the recent past.[79, 1, 61] Furthermore, there

are two other novel mutations in the hemoglobin B gene, HbC and HbE, that confer

protection against severe malaria.[4]

There are countless other mutations that have been selected for their ability to

protect against malaria mortality and morbidity.[147, 79, 162, 60, 61, 27] For exam-

ple, there are α- and β-thalassemias, glucose-6-phosphate dehyrogenase (G6PD) defi-

ciency, and the Duffy-negative phenotype1. Most of these loci show high population-

level signatures of positive selection in the recent past (i.e. within the last 5,000 to

10,000 years).[79, 61] These traits all offer the host resistance to the parasite at the

level of the red blood cell.

1On a more technical note, it should be said that while there is some evidence for protection
against malaria for heterozygotes of Duffy negative genotype (i.e. the FY*O allele), it is generally
considered recessive. That is, only those individuals who are homozygous for the Duffy negative
allele will receive the protection against malaria. This offers evidence that P. vivax was not the
driving selective force for the near fixation of the Duffy-negative allele in African populations. Other
members of Plasmodium lineage may have been the cause of selection for the FY*O allele.
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In addition to alterations in the red blood cell phenotype, it is also likely that

malaria exerted selection pressures that have shifted the host immune response. For

example, there is an human leukocyte antigen (HLA) locus that is highly protective

against severe malaria, HLA-b53.[62] While many loci that provide protection against

severe malaria have been identified, there are likely many others that have yet to be

discovered.

And there are at least intimations that the selective pressures imposed by malaria

infection have affected hosts in such a way as to make them more susceptible to

other immunological disorders.[157] This large number of malaria-resistance loci in

the human genome clearly demonstrates the importance of malaria not just in the

number of cases and fatalities caused each year, but also in the indelible mark that

it has left on the evolution of our species.

1.3 Parasite life cycle

Historically, four (and recently a fifth, P. knowlesi) species have been known to cause

malaria in humans.[113, 138, 117, 34, 41, 88] Of these four, Plasmodium falciparum

is the most well-studied.[47, 23, 37] It causes both the greatest number of malaria

infections each year, as well as the most deaths. P. vivax is the next most highly

abundant malaria parasite in terms of human cases. It is the most common malaria

parasite outside of Africa and has high prevalence in Latin America and Asia. It is

nearly absent from Africa due to the near fixation of the Duffy-negative allele.[160, 86]

The other two parasites are P. malariae and P. ovale, and these two species account

for relative few malaria infections (less than 5%). These protozoa are transmitted from

human to human via the invertebrate vector, mosquitoes of the genus Anopheles. The

entire human component of the Plasmodium life cycle is haploid. The only diploid

stages occur in the mosquito.

After an infective mosquito bites a human (or other host), the injected sporozoites
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then migrate to the liver where they invade host hepatocytes (Figure 2). In some

Plasmodium species like P. vivax and P. cynomolgi, some of the parasites enter into

a dormant liver stage, the hypnozoite stage, which can be reactivated to produce

a relapse infection. The remaining parasites begin active growth and division and

subsequently produce multiple exo-erythrocytic schizonts that rupture the hepatocyte

and form merozoites that will then enter the bloodstream and invade a host red blood

cell. Within the red blood cell, the parasite will cycle through the intra-erythrocytic

development cycle (IDC), passing through ring, trophozoite, and schizont stages. The

parasite will then burst the infected RBC, producing between eight and 32 merozoites

that can then infect other red blood cells. Some of the parasites in the blood will leave

the asexual development of the IDC and develop into gametocytes, the sexual form

of the parasite. Production of gametocytes is an essential part of the transmission

process. It is the gametocytes that are taken up by the mosquito and subsequently

develop into the gametes which later form the zygote.

1.4 Parasite gene expression

Throughout its various stages of development, the malaria parasite experiences dra-

matic alterations and cyclic expression of numerous genes across its genome.[23, 24]

Perhaps the most well-studied section of the transcriptome of Plasmodium is the IDC,

which is readily abundant in the host bloodstream.[23, 24, 37, 44, 97, 110] Bozdech

and colleagues performed a competitive hybridization gene expression study using

microarrays, and elegantly demonstrated the cyclic and tightly regulated waves of ex-

pression across the 48-hour IDC of P. falciparum.[23] More recently, Bozdech and col-

leagues showed that the same cyclic regulation in P. vivax.[24] In yet another seminal

contribution by Bozdech and colleagues, researchers showed that protein abundance

of most genes across the IDC was highly correlated with transcript abundance, albeit

with an average time delay of 11 hours.[44]
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Figure 2: Life-cycle of Plasmodium. (1) An infected Anophiline mosquito takes
a blood-meal from a host and transfers infective sporozoites. (2) The sporozoites
enter the bloodstream and eventually enter a hepatocyte. (3a) For some species of
Plasmodium, the parasite can then enter a dormant (hypnozoite) stage within the
hepatocyte. (3b) Other parasites will go through develoment in the exo-erythrocytic
development in the liver cell, eventually forming schizonts. (4) The schizonts rupture
spilling merozoites into the blood stream. (5) Merozoites enter red blood cells and
begin the intra-erythrocytic development cycle (IDC) and undergo many rounds of
asexual reproduction. (6) Some of the parasites then switch to a sexual development
stage forming gametocytes. (7) These gametocytes are then taken up by a biting
mosquito where the parasite undergoes further development, completing its life cycle.
Figure and legend adapted from Galinski, Meyer and Barnwell (2013).

As described above, some parasites exit the asexual development of the IDC

and enter into sexual development as gametocytes. The transcriptional patterns

of this stage have also been studied, and many gametocyte-specific genes have been

identified.[164, 136, 72] In addition to the above-mentioned studied which were all

performed in vitro in laboratory culture, both in vivo and ex vivo studies of parasite
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transcription in various mammalian hosts have been performed.[37, 87, 36, 83]

While there have been many studies which have examined parasite gene expres-

sion, there have not been any published reports (to my knowledge) that investigate

alterations in parasite gene expression across multiple infection peaks within the same

host. The elucidation of the nature of parasite expression changes over various infec-

tion peaks may shed light on the mechanisms that dictate the severity of disease in

the host.

1.5 Diversity of life-history strategies: antigenic variation
and hypnozoites

In spite of many shared features of the life-cycle and expression profile between the

numerous species of Plasmodium, different species of malaria parasites employ unique

mechanisms for avoiding the host immune system and increasing their reproductive

success. Two of these strategies are directly interrogated in this thesis and will be

discussed in detail in their respective chapters. I briefly introduce antigenic variation

and hypnozoites here.

1.5.1 Antigenic variation

Antigenic variation is the process by which some species of malaria parasite (e.g. P.

falciparum, P. coatneyi, and P. knowlesi) evade clearance by the host immune system

by altering the composition of the cell membrane of the infected RBC. In general,

these parasites export one or a few antigenic proteins to the host cell membrane. In re-

sponse, perhaps, to recognition by the host immune system, the parasite switches the

exported antigenic protein to another of the many antigens in the repertoire in their

genome.[13, 14, 64, 63] The exact parasite molecular machinery used to accomplish

this protein export has not been fully elucidated.[126, 127, 148, 165] Interestingly, it

appears that the presence of the spleen or splenic factors are necessary for the ex-

pression of the variable antigens by the parasite on the iRBC cell membrane.[13, 81]
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The mechanism(s) by which the parasite senses the presence of splenic factors is also

unknown.

1.5.2 Hypnozoites

A second important parasite mechanism for immune evasion is the dormant liver

stage, the hypnozoite, which is employed by a number of malaria parasite species

(e.g. P. vivax, P. cynomolgi, and P. ovale).[66, 45, 15] As described above, after

the mosquito injects the sporozoites into the blood stream of its host, the parasite

migrates to the liver. Some of the sporozoites will immediately begin development and

initiate schizogeny in the hepatocytes. Other sporozoites will enter a dormant stage

called a hypnozoite only to re-emerge weeks, months, or even years later. This delayed

release of blood stages likely increases the complexity of infection (COI): the number

of unique parasite strains in an individual at a given time. A higher COI can result in

a much higher level of out-breeding and may facilitate genetic recombination between

distinct strains of the same parasite species.[28, 30, 35] Increased recombination makes

it easier for P. vivax and other hypnozoite-forming species to improve reproductive

fitness in the face of external pressures (e.g. anti-malarial drugs). This difference

in life-history between P. falciparum and P. vivax may explain why the latter has a

higher genetic diversity and smaller haplotype blocks.[28, 30, 35, 109]

Apart from being a unique component of P. vivax biology, hypnozoites present

an important hurdle in the control and eradication of malaria. Even after curative

doses of co-artemether therapy (Coartem), for instance, the dormant liver stages can

still reactivate.[17] The only FDA-approved anti-malarial drug currently shown to

have anti-hypnozoite activity is primaquine.[17] Primaquine, unfortunately, has only

limited use in many P. vivax -endemic areas because it can cause hemolytic anemia in

individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, a mutation

common in many human populations at risk for malaria.[5, 144]
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1.6 Anti-malaria treatments

In addition to the two above-mentioned antimalarial drugs (primaquine and artemether),

there are many other mechanisms for controlling malaria and treating those who are

infected.

The vaccine which has made the most progress toward regulatory approval is RTS-

S, which targets the circumsporozoite protein.[2, 123] Another recent study found

that using sporozoites dissected from infected mosquitoes salivary glands can yield at

least some short-term protection against malaria infection.[130] In spite of the many

years of malaria vaccine development, an effective vaccine is still not available. Many

difficulties have impeded the development of a malaria vaccine. One such impediment

is that a vaccine requires that the host mount an effective immune response, and it

continues to be difficult to achieve a strong immune response in most individuals who

live in malaria-endemic regions due to immunodeficiency stemming from mal-nutrition

and other socio-economic factors. In the absence of an effective vaccine, continued

enquiry into the underlying biology of the parasite will assist in the development of

other complementary treatment and prevention options, a fact that underscores the

continued need for basic and applied malaria research.

Currently, anti-malarial drugs are one of the defences against the development

of life-threatening severe malaria. Pyrimethamine, an important anti-malarial drug

which is usually paired with a sulfonamide, inhibits the enzymatic conversion of

folate to its active form.[137, 16] In spite of the importance and broad usage of

this drug in the treatment of malaria, there has been little investigation into its

effects on the host at the molecular level. In light of case reports of side effects of

this drug, it is likely that it dysregulates many important molecular pathways of

the mammalian system.[101, 73, 159] Research into this drug’s off-target effects on

the host will inform proper medical usage, especially since pyrimethamine has been

suggested as a treatment for amyotrophic lateral sclerosis (ALS).[80]
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1.7 Malaria Host-Pathogen Interaction Center (MaHPIC)

For most researchers in the malaria field, the ultimate purpose of malaria research is

the elimination of malaria.[45] Due to the complex nature of this disease, achieving

this goal will require a more nuanced and multi-faceted approach than most other

diseases. This difficulty of eradication arises from many factors including the multiple-

staged life-cycle of Plasmodium, as well as the non-linear effects that come from

intervention in the complex ecosystem of interactions involved in disease transmission

cycle.[108, 56] Human intervention to reduce transmission may only shift the burden

to a different age class, or worse, actually increase mortality and morbidity from the

disease.[108, 56] The complexity of this parasite and the host-parasite interaction

demand more research into this devastating disease.

Towards the end of eradication and with all of these challenges in mind, an inter-

disciplinary team from four institutes across the state of Georgia (Emory University,

Georgia Institute of Technology, University of Georgia, and the Centers for Disease

Control and Prevention) were awarded a contract from the National Institute for

Allergy and Infectious Disease (NIAID) to begin to address the gaps in the malaria

knowledge base. As a team, we have generated and will continue to generate and

analyze data from a range of different molecular and cellular technologies including

transcriptomics, metabolomics, lipidomics, proteomics, as well as host and parasite

cell counts and CBCs and more detailed interrogation of immune cell populations

using flow cytometry to quantify both numbers and activity levels of cells from the

innate an adaptive immune systems (Figure 3). Each of these technologies will be

probing a unique part of the host and/or the parasite response. The analysis and

integration of these data types from a 100-day control experiment, a 100-day infec-

tion experiment, and a complementary ex vivo expression profiling experiment are

presented in this thesis.
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Figure 3: Overview of the cores of MaHPIC.

1.8 Specific aims

In CHAPTER II, I describe the analytical methods and integrative techniques which

are used in subsequent infection experiments. I also explore the effects of the anti-

malarial drug pyrimethamine on the transcriptome of the rhesus macaque (Macaca

mulatta).

In CHAPTER III, I investigate the host transcriptional response to malaria in-

fection, specifically interrogating the difference between primary and relapsing para-

sitemia peaks.

In CHAPTER IV, I implement a novel approach to expression deconvolution to

a previously published P. falciparum dataset to identify genes whose expression is

parasite stage-specific.

In CHAPTER V, I assess the qualitative changes in the parasite transcriptome
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between primary and relapsing infection peaks with the goal of identifying and char-

acterizing the qualitative differences between them.

In CHAPTER VI, I conclude the thesis, summarizing my contribution to the

scientific body of knowledge of host-pathogen interactions in malaria.
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CHAPTER II

A SYSTEMS BIOLOGY APPROACH TO DETERMINE

THE EFFECT OF PYRIMETHAMINE ON THE

NON-HUMAN PRIMATE MACACA MULATTA

2.1 Abstract

The Malaria Host-Pathogen Interaction Center (MaHPIC) was established to bring

a integrative systems biology approach to the underlying molecular and cellular pro-

cesses occurring within both the host and the pathogen during malaria infection.

Herein, I present analysis from a control experiment in which rhesus macaques were

profiled over a 100-day experiment.

This chapter is composed of two primary parts: the description of a method-

ology for the integration of multiple data-types including two omics technologies,

and the examination of the biological impact on the host of pyrimethamine, an

anti-malarial drug. Especially when used in combination with other antifolates,

pyrimethamine, a common anti-malarial drug (AMD), has been shown to cause bone

marrow suppression (BMS). Also known as myelotoxicity, BMS is the decrease in var-

ious blood cell populations (red blood cells, immune cells, and platelets) likely due to

pyrimethamine’s disruption of folate cycling. Currently unanswered questions exist

concerning both the duration of cellular process disruption after pyrimethamine ad-

ministration as well as the rapidity of clearance in subsequent exposures. In this study,

I will examine the effect of pyrimethamine on the transcriptome and metabolome of

the rhesus macaque. I further characterize the molecular pathways that are disrupted

after administration of this drug.
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2.2 Introduction

The Malaria Host-Pathogen Interaction Center (MaHPIC) was established to bring

a integrative systems biology approach to the underlying molecular and cellular pro-

cesses occurring within both the host and the pathogen during malaria infection.

To this end, MaHPIC researchers experimentally will infect rhesus macaques with

different strains and species of Plasmodium, which serves as a well-established pri-

mate model for human malaria. As controls for these studies, macaques were inocu-

lated with a mock sporozoite preparation (which contained no Plasmodium parasites).

These control macaques were then followed over the course of 100 days and given anti-

malarial drugs on the days that the infected animals were expected to need treatment.

This experiment offers both the opportunity to describe the methodologies that I will

employ to integrate the data. The data generated herein will also be leveraged to

shed light on the effect of pyrimethamine, an anti-malarial drug (AMD), on the host

animals in the absence of malaria infection.

In this chapter, I first lay the foundation of the analytical framework which will

be used in subsequent chapters for integrating some of the numerous data-types pro-

duced by MaHPIC cores. These include complete blood count (CBC) measures (taken

daily), metabolomic data (various samples) and transcriptomic data (taken at seven

points). The methods that I will use include variance component analysis, principal

component regression, analysis of variance (ANOVA) for differential abundance anal-

ysis, and subsequent pathway enrichment. The methods chosen reflect methods used

by recent large-scale projects for data integration, but are adapted due to underlying

experimental design differences.[38, 29]

2.2.1 Effects of pyrimethamine

In addition to giving a detailed description of the methodologies that will be used

in future MaHPIC experiments, I also investigate the effect of the anti-malarial drug
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pyrimethamine on the host transcriptional profile at both the level of the individ-

ual transcript as well as the pathway scale. Pyrimethamine, a potent and front-

line malaria treatment when paired with a sulfonamide, inhibits dihydrofolate re-

ductase (DHFR), an enzyme responsible for the conversion of dihydrofolate (DHF)

into tetrahydrofolate (THF).[137, 16] The resulting depletion of THF has impor-

tant consequences for the cell, especially rapidly dividing cells like those of the

parasite.[105] Folate-deficiency-induced reduction in the availability of nucleotide pool

and subsequent cell cycle arrest of the parasite is the putative mechanism of action of

pyrimethamine.[134] In spite of pyrimethamine’s important position as a treatment

of malaria, its side-effects on the host have not been fully elucidated.

The host, in this case the macaque, also possesses DHFR, and pyrimethamine will

presumably inhibit its functioning, as well, leading to a host cell reduction in THF.

THF is a co-enzyme for the production of three of the four deoxyribonucleotides,

which are in high demand during the genome duplication of mitosis. THF is also a

co-factor for the metabolism and methylation of some amino acids, and a reduction in

THF therefore can deplete the amino acid pools of the cell and may also dysregulate

post-translational modification of proteins.[9]

Yet another important consideration for pyrimethamine usage is that approxi-

mately 40% of cellular folate is present in the mitochondria, reflecting its importance

in the functioning of this energy-producing organelle.[132, 85] Based on its underlying

molecular mechanism or action, the administration of pyrimethamine is likely to have

dramatic effects on the transcriptome of the host. To assess the magnitude and du-

ration of effect of pyrimethamine administration, I will test the following hypotheses.

2.2.2 Motivating Hypotheses

With respect to the host response to pyrimethamine, I anticipate vast alterations in

the transcriptional profile after AMD treatment. First, I hypothesize that both the
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blood and the bone marrow expression profiles will be affected in the samples taken

only seven days after AMD treatment. I anticipate alterations in the folate pathway

and anticipate that many such genes will be up-regulated in the “treated” time points

as the cell works to restore folate levels. Since pyrimethamine reduces the levels of

THF and subsequently purines, a building-block for DNA synthesis, cells that need

high levels of nucleotides (i.e. those that are dividing and copying their genome)

will likely undergo apoptosis. At a minimum, cell cycle progression will be affected.

A more pronounced effect is expected to occur in the bone marrow compared to the

whole blood since the bone marrow contains many rapidly-dividing cell types whereas

the blood is relatively post-mitotic.

Secondly, I hypothesize that in the two time points that are >30 days after the

last AMD treatment (“inter,” TP4 and TP6), both blood and marrow expression

profiles will have returned to normal. The alternative hypothesis is that more than

a month after AMD treatment, gene expression programs in marrow and blood are

still dysregulated. A finding of this nature should inform decisions concerning mass

administration of AMDs as a way of eradicating malaria versus targeted treatment

of confirmed-infected individuals.

In this chapter, I begin by describing the analytical methods which will be used in

this and subsequent chapters for integrative analysis. Next, I explore the correlation

structure and variance components of the datasets. Finally, I describe findings regard-

ing the transcriptional dysregulation that occurs and persists after pyrimethamine

administration.

2.3 Methods and materials

2.3.1 Experimental design and measured outcomes

The Malaria Host-Pathogen Interaction Center (MaHPIC) is a multi-disciplinary in-

vestigation that utilizes multiple data types to better understand the systems biology
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of the complex host-parasite dynamics in the course of malaria infection. For this

control experiment, the design is as follows. Five male rhesus macaques (Macaca

mulatta) approximately 2 years of age were profiled over the course of a 100-day

experiment after being injected with purified mosquito salivary glands on day 0 of

this control experiment. Complete blood counts were performed daily by the Malaria

core members. Before injection, the timepoint 1 (TP1) samples were taken. Then,

at days 20, 26, 53, 59, 89, and 96, members of the Malaria core collected blood and

marrow samples for TP2-7, respectively. The transcriptome and metabolome were

interrogated at seven (TP1-7) and five (TP3-7) milestones throughout the course of

the experiment, respectively (Figure 4).

2.3.2 Metabolomics feature quantification

High resolution metabolomics was performed by the Metabolomics core using a liquid

chromatography/mass spectrometry (LC/MS) approach on an Orbitrap Mass Spec-

trometer. Two different columns were used for the LC separation stage: C18 and

anion exchange (AE). Each distinct biological sample was run in triplicate to en-

sure high reliability of the data, with randomization within batches. MS peaks were

called using xMSanalyzer.[154] Standard quality control measures were performed,

such that features with greater than 60% missingness or a coefficient of variation

within replicates greater than 1 were removed from the analysis. Since the frequency

distributions of all samples were comparable, no additional normalization was per-

formed, but an abundance cut-off of 256 peak area units was adopted and all features

below this were excluded. All downstream analyses utilized the individual samples

rather than attempting to average or otherwise reduce the technical replicates to a

single measure per biological sample. Each column generates in excess of 10,000 mass-

to-charge (m/z) and retention time features, the majority of which are either not yet

annotated or have ambiguous annotation to multiple possible organic compounds.
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The m/z features include the majority of known components of central metabolism,

as well as xenobiotics.

2.3.3 Library preparation for RNA-seq

Bone marrow (1ml, BM) was collected by the Malaria core into 1.5 ml tubes with

EDTA, and the mononuclear cells were purified by density gradient centrifugation on

Lymphoprep (Stem Cell Technologies) solution and preserved in RLT buffer (Qiagen)

to stabilize mRNA. Whole (peripheral) blood (3 ml, PB) was collected by the Malaria

core team members in Tempus tubes (Applied Biosystems) that also preserve mRNA;

these samples include erythrocytes, platelets and granulocytes in addition to mononu-

clear lymphocytes. RNA was extracted from the BM samples using Qiagen RNEasy

Mini-Plus kits following the manufacturer-recommended procedures, and from PB

samples using Tempus-Spin RNA isolation kits. The quality of all RNA samples was

confirmed using a Bioanalyzer, with an RNA Integrity Number (RIN) greater than 8

recorded for all samples.

Approximately 1 g of total RNA per sample was converted to double-stranded

cDNA using poly-A beads to enrich for mRNA, using Illumina TruSeq Stranded

mRNA Sample Prep kits to generate strand-specific libraries. As a quality con-

trol, 96 spike-in RNAs of known concentration and GC composition (ERCC Spike-In

Control, Life Technologies) were added to constitute approximately 1% of the total

RNA for each library. Adapters were ligated to facilitate 3-plex sequencing on an

Illumina HiSeq2000 at the Yerkes Genomics Core, aiming for 80 million paired-end

100-nucleotide (nt) reads per library.

2.3.4 Short read mapping

To quantify gene expression, the RNA-Seq reads were mapped to the most recent

available rhesus macaque genome (MacaM assembly, Version 4.0, GenBank accession

number PRJNA214746 ID: 214746, created by Aleksey Zimin at the University of
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Maryland, Rob Norgren at the University of Nebraska Medical Center, and their col-

leagues) using Tophat2.[151, 74] Default options were used with the exception that

the command –library-type fr-secondstrand was used since the reads were generated

using a stranded library preparation method from Illumina. This allowed us to dif-

ferentiate between sense and antisense transcripts. We also provided an annotated

reference transcriptome which was supplied with the M. mulatta genome (Version

4.12) which improves the mapping accuracy across splice junctions. Only reads that

map to a single location in the genome were included, to ensure high-confidence map-

ping. All downstream analyses were performed at the level of annotated gene: this

study does not consider exon-specific or transcript isoform relative abundance.

Several quality control steps were used to verify the reliability of the data: linear

correlation of estimated abundance of ERCC spike-in controls with known concentra-

tion; confirmation of 99.9% strand-specificity of the controls; less than 0.1% control

fusion transcripts; and absence of 3 bias in the controls was confirmed with RSeqC

software. Transcript abundance levels were inferred using HTSeq v0.5.4. HTSeq takes

the short-read mapping file (bam) from tophat2 and the gene annotation file which

contains the locations of all annotated genes. Since some libraries were sequenced

more deeply than others, the libraries were normalized before determining differen-

tial gene expression using the gene level expression files with the default parameters

of DESeq version 1.10.1.

2.3.5 Gene expression quantification

After quality control steps verified the reliability of the data, we quantified the gene

expression levels using htseq v0.5.4.[135] HTSeq takes the short read mapping file

(bam) from tophat2 and the gene annotation file which contains the locations of

all annotated genes. We obtained the most updated macaque gene annotations from

rhesusbase. Since some libraries were sequenced more deeply than others, the libraries
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were made comparable (normalized) before determining differential gene expression

between libraries. Gene expression normalization was performed using the library

size estimation procedure implemented by DESeq version 1.10.1, available in the

bioconductor suite in R.[6, 7, 51, 146] Briefly, the software calculates the ratio between

gene expression for a given gene against the geometric mean of all samples in the study.

It then finds the median value across all genes for each individual and uses it as the

library size factor.

2.3.6 Variance component analysis

After data normalization, the transcriptome and metabolome levels were log-2-transformed

and imported into JMP Genomics (version 6.0). To determine how much of the vari-

ance in each of the datasets is explained by the two measured factors (animal and

time), I performed a principal components (PC)-variance component analysis using

JMP v6.0 (SAS) for the transcriptome, metabolome, and the CBC data. This consists

of the generation of all PC explaining up to 90% of the total variance (12 to 15 for

the transcriptomes and 30 for the metabolomes), regressing each PC on Animal or

Timepoint, and generating a weighted average of the squared correlation coefficient

(percent variance explained) across all of the PC. Since the low abundance features

for metabolomics and transcriptomics both have high coefficients of variation, I set

thresholds of 5 log2 units for transcripts and 17 log2 units for metabolites (Supple-

mentary Figure 1) and removed lower abundance features to determine their effect(s)

on the analysis.

To assess whether the major PC capture similar aspects of the data, the first 10

PC were calculated for the four omics datasets (PB and BM transcriptomes, C18 and

AE metabolomes) using JMP. All 780 pairwise correlations of these PC values were

determined, and a Bonferroni multiple comparison adjustment was used to assess the

significance of each pair of PC. Exploratory partial least square regression analyses
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were also performed with MixOmics in attempt to select variables that co-vary, but

did not reveal significant associations.

2.3.7 Differential gene expression (DGE)

The next step in the analysis was the identification of genes that are differentially

expressed across the experimental conditions. For between-TP differences, an analysis

of variance (ANOVA) was performed on each transcript separately using “animal” as

a random effect with 5 levels and “timepoint” with 7 levels, or “drug” with 3 levels

as the fixed effect. For the drug exposure factor, I define our three experimental

conditions as before drug exposure (Pre-drug; TP1 and TP2), 7 days after the most

recent dose (Post-drug; TP3, TP5, and TP7), and 30 days after most recent dose and

immediately before the next dose (Inter-drug; TP4 and TP6), as shown in Figure

1. A false discovery rate cut-off of 5% was used to define differentially expressed

genes. These were examined using hierarchically clustering of the standardized least

squares means and volcano plots of significance against fold difference between specific

conditions.

2.3.8 Gene set enrichment analysis

Gene set enrichment analysis GSEA is most commonly performed in one of two

ways. In the first method, a statistical threshold is set for a list of genes (usually

a Bonferroni-corrected p = 0.05); any gene with a p-value lower than the threshold is

included and a hyper-geometric test for enrichment with other gene sets is calculated.

In the second method, the entire gene list is used, and genes are ranked using

some ranking metric, which is often the t-statistic since it measures both magnitude

and direction of effect in a two-sample comparison.

The second method has the advantage that its results are not dependent upon

the threshold of choice. That is, if one researcher chooses a threshold of p = 0.05

whereas another chooses p = 0.01, the significance levels for the gene set enrichments
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will likely differ. This can effect downstream interpretation.

One of the drawbacks for the second method is that the statistical significance

value has to be calculated empirically from permutations of the data. This requires

running hundreds or thousands of permutations per gene set to obtain empirical p-

values. However, hundreds of gene sets can be interrogated in a matter of minutes

with a standard desktop computer, and so the time considerations were not limiting

in this case.

To perform this analysis, I chose the ranked gene list method and used the Broad

Institute’s GSEA v2.0.14 to perform enrichment analysis.[142] For the two contrast

of interest (pre-versus-post, and pre-versus-inter), we performed gene set enrichment

using the KEGG pathways and GO terms, separately for each tissue. The t-statistic

was used as the rank metric and was obtained from the JMP output file. Gene sets

with an FDR < 25% were considered as significant in accordance with the recommen-

dations of the GSEA software manual. Default parameters were used and included

the removal of gene sets with more than 500 or less than 15 genes.

To perform GSEA, a priori defined gene sets are needed. Since the rhesus macaque

is much less well-studied than the human genome, and considering that the majority

of genes in the macaque genome have well-conserved syntenic orthologs in the human

genome, I used the pre-existing human gene set annotations for this analysis. These

genes sets were obtained from the Broad Institute’s website.

2.3.9 Blood informative transcript (BIT) axes

In addition to principal component analysis, we employed a second method, blood

informative transcript (BIT) axes analysis, which uses an a priori defined set of 9

blood axes, which are composed of genes that covary across many blood transcrip-

tional profiles.[114] This method has been described elsewhere.[102] Briefly, we took
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the genes that make up each of the axes and calculated the BIT score for each individ-

ual for both the blood and the marrow, separately, using the normalized expression

data. Then, we performed one-way ANOVA to test for significant differences across

both animal and time. Since the between-subject variability was so large, we also

performed the analysis with the animal residuals, that is, the error term in the model

after fitting the effect of animal. We then examined the dynamics of the axes scores

over time as before.

2.4 Results

2.4.1 Subject-specific effects dominate variance components in the tran-
scriptome

After normalization and quality assurance of the datasets from the three data types

across the 100-day experiment (Figure 4), I first explored each dataset independent of

the others. First, I performed variance component analysis of each of the datasets to

attribute the variability of the data to either residual (unexplained) variance or one

of the two factors, animal and time. A previous study described high within-subject

conservation of expression of a subset of genes from whole blood in humans,[161] but

it is unclear how much of the variance in the transcriptome is due to inter-individual

variability. I expect to see a moderate to large proportion of the transcriptomic data

sets explained by subject effects. To my knowledge, no variance component analysis

has been performed for a metabolomic dataset of this size; I, therefore have no a

priori expectation for metabolites.

For the transcriptomes of both tissues, PB and BM, as well as the CBC data,

subject effect accounts for a large component of the variance (more than 30%), which

is much larger than the time effect (Figure 5A). That is, greater than 30% of the ma-

jor variance components are explained by subject-to-subject variation. The within-

subject variance in the metabolomics data is much lower (approximately 10%). The

smaller proportion of variance explained by the factor of animal in the metabolome
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Figure 4: Experimental overview and the structure of the data. CBC mea-
surements were taken daily for the course of the 100 day experiment. RNA for
transcriptome analysis was extracted from blood and marrow at seven time points
(TP1-7). Blood plasma was sampled at the last 5 time points for metabolomic analy-
sis (TP3-7). The major sampling time points were selected based on the estimates of
when sampling would occur in the infection experiments. The light blue time points
(TP1 and TP2; pre) are made before the first administration of pyrimethamine.
The red arrows (TP3, TP5, TP7; post) are samples taken 7 days after the start of
pyrimethamine treatment. The yellow arrows (TP4 and TP6; inter) indicate samples
taken more than 30 days after the last pyrimethamine dose.

compared to the transcriptome and the CBC data suggest that there is some buffer-

ing of metabolic alterations in spite of between-individual differences at the level of

transcript abundance.

A recent study contrasting the variance in the transcript and the proteome across

different primate species showed that in spite of alterations at the transcript level,

protein levels were often much closer across species. If the same buffering capacity

of the cell holds true for within-species differences in transcription, I would expect

less variance at the protein level compared to the transcript level with respect to the

between-animal differences. It would then follow that more similar levels of protein

would lead to more similar metabolite levels between individuals.

For all five datasets, the time effect is close to 10% of the variance. In most of the

datasets, more than half of the variance in the data is unexplained by either animal
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or treatment. This residual variance could be explained by either technical variance

introduced by errors in measurement, unmeasured biological factors, or effects which

we are unable to estimate such as subject-by-treatment interaction terms. Specif-

ically, each macaque may be responding uniquely to the drug treatment based on

its underlying genetic background. Without replication, however, these effects are

statistically impossible to estimate.

As others have noted, the coefficient of variation was dependent upon the mean

of the feature for both the transcriptomic and the metabolomic datasets with lower

feature abundance tending to have higher coefficients of variation (Figure 6).[152, 6]

I suspected that this was due to the fact that low abundance features were poorly

estimated, at least in the transcriptomic data. This effect would result in higher

technical variance in the lowly expressed features, and therefore a reduced proportion

of the variance would be explained by our two factors, animal and time. To test this

hypothesis, I removed all genes with expression lower than an average normalized

level of five, and for metabolites, the cut-off was set at 17; this appeared to be the

close to the elbow-point of the graphs.

After removing lowly expressed genes from consideration and assessing this re-

duced dataset, the amount of residual variance not explained by the two factors, ani-

mal and time, decreases sharply for the transcriptomic datasets; this drop in residual

variance is due primarily to an increase in the variance explained by the factor of an-

imal (Figure 5B). This suggests that the variance of the least expressed genes is more

heavily influenced by technical variance. In contrast, the metabolomic datasets did

not experience such an increase in variance explained after removing low abundance

features. Both subject and time explain a similar amount of the variance before and

after data reduction for the metabolomic datasets (Figure 5B). This finding shows

that the low abundance metabolites compared to high abundance metabolites do not

have increased variability due to measurement error. The fact remains, however, that
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Figure 5: Variance component analysis (VCA) for the three data-types.
The effect of animal (that is, the between-individual variance) is more than 30% of
the variance for the two transcriptomes and the CBC data in the full data sets (A).
Whereas the animal effect is much less prevalent in the metabolomic datasets. In the
reduced datasets (B), the factor of animal explains much more of the variance. Note:
a reduced dataset was not generated for the CBC data since it only had 13 measured
features.
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Figure 6: Coefficient of variance changes as a function of mean feature
value. For both of the data-types, there is a relationship between the coefficient of
variation and the mean value for each feature, stemming from increases in technical
and/or biological variability at the lower end of the measurement spectrum. Each
point represents a feature: either a gene or ion peak. Density contours (for every
5%) are included and show that most of the features are maintained after excluding
lower abundance features. A line is drawn at x=5 and x=17 for the transcriptome
and metabolome, respectively. Features lower than this level were excluded in the
reduced dataset used in calculating the VCA. (A) marrow transcriptome; (B) blood
transcriptome; (C) metabolome with AE column; (D) metabolome with C18 column.
Note: the domain for the transcript average level was trimmed to [0,15] and transcript
CV from [0,1] for figure clarity.

lower abundance metabolites have a greater variance, which perhaps indicates that

higher biological variance (that is not correlated to either of our measured variables)

is likely more tolerated for low abundance metabolites.
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2.4.2 Hierarchical clustering

As the next step in my top-down integrative approach, I performed hierarchical clus-

tering of the transcriptome and metabolome. Hierarchical clustering allows the vi-

sualization of similarity between both subjects and measured variables. To visualize

the relationship between the samples in our study, I hierarchically clustered the 70

transcriptomic samples (2 tissues * 5 macaques * 7 time points). The first and deep-

est division was between tissues: all bone marrow samples clustered together and

all whole blood samples clustered together (not shown). Within the blood, each

macaque clustered with itself (Figure 7A). That is, the seven time points for a given

macaque were more closely related to themselves than to similar time points from

other macaques. This is borne out in the principal variance component analysis in

which 36% of the variance in the blood is explained by the animal while only 6% is

explained by time.

Similar to blood, within the marrow, the within primate samples tended to cluster

together. One notable exception was TP4, approximately one month after the first

AMD treatment. Many of the samples from TP4 cluster together (not shown). Once

again, the difference between blood and marrow is reflected in the principal variance

component analysis: within the marrow, time, as a factor, makes up a much large

proportion of the total within-tissue variance (more than 15%) than it does within

blood (about 6%).

In the blood, there is a tight clustering between the individual macaques. Since

each blood cell type has a characteristic expression profile, which allows it to perform

its specified role(s), I hypothesized that the macaques that clustered together in the

expression profile would also have similar levels of the major cell types. However,

upon clustering the samples on the CBC data, I do not observe such a trend (Figure

7B). Therefore, I conclude that the CBC is capturing information about the system

that is non-redundant with the transcriptome. This result is particularly striking
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Figure 7: Hierarchical clustering omics datasets shows lack of correspon-
dence. (A) Heatmap of the blood transcriptome with each primate uniquely colored.
(B) CBC hierarchical cluster for counts of five cell types: RBCs, platelets, monocytes,
lymphocytes, and granulocytes. (C) Heat map of metabolomic data for the C18 col-
umn.
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when considering that both the transcriptome datasets as well as the CBC dataset

have the variance component of animal explaining more than 30% of the variance.

Within the metabolomic datasets (Figure 7C), the clear separation between in-

dividuals seen in the transcriptome does not occur. Importantly, each of the three

technical replicates for each biological sample cluster together. This finding gives

confidence that the machine read-out is capturing reproducible differences that occur

between the samples. While some clustering between time and animal appear in the

metabolome, it is not as clear as in the transcriptome. This is likely because subject

and time effects explain similar levels of the variance in these datasets, about 10%

each in both columns.

2.4.3 Covariance-based approach for data-type integration: principal com-
ponent regression

One commonly used variable reduction strategy is principal component analysis,

which finds the orthogonal vectors of maximum variance in a dataset. To assess the

amount of information shared between the transcriptomic and metabolomic datasets,

I regressed the first 10 principal components of each dataset against each other (Figure

8). The pattern that emerges is informative in many ways.

Firstly, it shows that the two metabolomic datasets are highly correlated (Figure

8, bottom right box). This observation was expected since the two columns measured

metabolites from the same plasma sample; the difference between the two datasets is

the use of different LC columns which optimized peak resolution across a wider range

of metabolites. PC1 and PC2 for the two sets are significantly correlated; many lower

PCs are also correlated. Unlike the metabolomic datasets, the two transcriptomic

datasets, marrow and blood, do not show as much correlation (Figure 8, top left box).

Upon statistical analysis however, we see that PC1, PC2, PC3, and PC4 in blood are

significantly correlated with PC2, PC4, PC1, and PC5 of bone marrow, respectively

(Bonferroni corrected p < 0.05). Such a result is not unexpected considering that the
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two tissues have different functions yet one (blood) is composed of cell populations

derived from the other (marrow). One difference between the tissues is that the

marrow contains many cell types that are rapidly dividing whereas most of the cells

in the blood are post-mitotic and terminally differentiated. In some cases the sign

of the regression is negative, but this is simply a function of PCA which commonly

reverses signs and order of PC due to sampling variance.

Strikingly, there is no significant correlation between the transcriptome PCs and

the metabolome PCs after multiple testing correction (Figure 8, top right (large)

box). This could be explained by the fact that the transcriptome of these two tis-

sues is contained within the cell whereas the metabolome interrogated the plasma

composition. Furthermore, the plasma is not only influenced by metabolites from

blood cells, but also receives metabolites from all tissues in the body. As a result,

these measurements represent a “whole-body” average, whereas the transcriptomes

are tissue-specific, sampled from cells in specific body compartments. This lack of

correlation between the major components of the metabolome and the transcriptome

demonstrates that these datasets are interrogating different components of the host

system.

2.4.4 Blood informative transcript (BIT) axes of variation

As a complementary data reduction method to principal component analysis, I next

examined the the between-animal differences and trajectory of previously identified

BIT axes of variation.[114] These axes covary with some clinical parameters (e.g.

abundance of specific cell types) and are enriched for gene ontology terms (e.g. viral

response, and B-cell activation). To reduce the number of features of the transcrip-

tome examined as well as to assess the impact of normalization, I calculated the BIT

axes scores for these 9 pre-defined axes for the transcriptome dataset using both the

original data and the expression levels after fitting the effect of animal in a linear
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Figure 8: Heatmap of the correlation of the first 10 principal components
of the transcriptome and the metabolome. In the box on the top left (the
correlation between the two transcriptome datasets), there are some significant corre-
lations between the PCs, although there is not a clear one to one mapping (e.g. PC1
for marrow does not correspond to PC1 for blood). In the correlation between the
metabolomic datasets (bottom right box), the significant correlations lie more clearly
on the diagonal, demonstrating that these datasets are capturing similar information.
Between the two data-types (large box, top right), there are no significant correlations
after Bonferroni adjustment.

model. Using these a priori defined gene sets, I found that the axes vary significantly

across both animal and time point (Figure 9). Axes 2-8 for blood and axes 1-3, 5,7,8,

and 9 for marrow were significantly different across the five macaques which shows

that BIT axes are relatively stable over time within an individual (Figure 9A-C).
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Figure 9: Blood informative transcript (BIT) axes of bone marrow expres-
sion as a function of animal and time. Panels (A-C) show the BIT axes 3, 5,
and 7, respectively, which were highly significantly different across the five macaques.
Panels (D-F) show three significantly differentially regulated axes (2, 7, and 9) which
appear to show coherent cycling as a function of the anti-malarial drug dosage.

After removing the effect of animal from the axes, most of the axes change signif-

icantly across time in both the marrow and the blood with some of them varying in

a manner coherent with the times of treatment with the anti-malarial drug (Figure

9D-F). While it is difficult to assign statistical significance to the coherence of the

cycling of axis scores, qualitatively it appears that many of the axes respond to the

drug in predictable ways. For instance, in the marrow, I find that axes 2, 7, and 9 are
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all behaving in a manner consistent with expectation and thus supporting the value

of this data reduction approach for blood and marrow transcriptomics datasets.

Axis 2 genes (Figure 9D), which are related to hematopoesis, were more highly

expressed at the first two time points but have decreased after the first pyrimethamine

administration, and remained low for the rest of the experiment. Both axis 7 and axis

9, associated with viral response and programmed cell death, respectively, appear to

activate in response to pyrimethamine. The later finding is concordant with the gene

set enrichment analysis results, which will be present later.

2.4.5 Differential abundance of genes, metabolites, and blood cell counts

To perform gene set enrichment, I first must identify genes that are differentially

expressed. There is currently much debate as to the best method for identification

of differentially expressed genes for RNA-seq data.[118, 139] Since most RNA-seq

studies have a paucity of samples, information about the variance of expression must

be borrowed across all genes. In some methods, low variance genes have their variance

inflated to account for the possibility of the low variance being due to chance. This

adjustment has the property of making the analysis more conservative and therefore

less sensitive to differential expression.

In this case, I have many samples, and so herein I use an analysis of vari-

ance (ANOVA) approach to determine which features of the transcriptomic and

metabolomic datasets are altered over the course of the experiment. To utilize the

findings made previously in this study, I explore the impact of including “subject” as

a random effect in our significance analysis. I found that there are many genes and

metabolites that are differentially up- or down-regulated as a function of time (table

1). Importantly, without including the animal effect in the model there are many

fewer features identified as differentially abundant in all of the data-types.

In the examination of the hierarchical clustering of the differentially expressed
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Table 1: Significant features for the effect of time. For each dataset, the
number of significant features identified by the ANOVA test is shown for
either fitting the subject effect or not fitting it.

Data type tissue fitting subject not fitting subject
RNA-seq whole blood 292 0
RNA-seq bone marrow 6483 3678

Metabolome (AE) plasma 3951 1394
Metabolome (C18) plasma 7113 3487

CBC whole blood 13 10

genes for the marrow, TP4 is most different from the other time points (Figure 10A).

I also noticed a similar trend for TP5 in blood (Figure 10B). As a result, I wondered

if the marrow transcriptome at TP4 contributed to the blood transcriptome at TP5.

To assess the significance of the overlap, I extracted the genes that were up-regulated

in TP4 of marrow. I then performed a sign-test (binomial test with probability of

success = 0.5) to see if those genes were more likely to also be up-regulated in the

TP5 of blood. The results were highly significant (p < 2.2 ∗ 10−16). I performed a

similar analysis for the down-regulated genes and found a similarly significant result.

As a control, I then took a comparison of TP6 and TP7 in blood for the same

up- and down-regulated genes and did not find an enrichment (p = 0.74). This

shows differential gene expression in marrow is reflected in blood with a time lag.

Further, since blood had many fewer significant genes that marrow, I also conclude

that gene expression in blood is buffered against differential expression in response

to pyrimethamine compared to marrow.

After investigating the changes in expression over the course of the experiment

with each time point considered separately, I next performed differential gene expres-

sion as a function of drug treatment using the three groupings described in Figure 4:

pre, post, and inter. In the marrow and blood, there were 6483 and 0 differentially

expressed genes, respectively, at an FDR=5%. This result is qualitatively similar to

the analysis performed by time point, where marrow had many more significant genes
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Figure 10: Clustering of the significant genes as a function of time. (A)
Marrow and (B) blood gene expression levels clustered by time point. Red (blue)
lines indicate the genes that clustered together and were up-(down-)regulated in the
two transcriptomes.

that blood.

In the metabolome, the two different columns, AE and C18, had 1,452 and 3,011

differentially abundant features (out of a total of 15,728 and 20,767, respectively).

While feature resolution for metabolomics has grown by orders of magnitude in re-

cent years, the ability to assign putative compound names to each of these detected

features has lagged behind. As a result, no pathway analysis was performed for

these many differentially abundant features. However, the large numbers of adducts

that are different across the drug treatment regimen leads me to conclude that the

metabolome has been dramatically affected by pyrimethamine. A notable feature of

the metabolome is the absence of any adducts with a mass-to-charge (m/z) ratio that

corresponded to the administered drug, pyrimethamine.
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2.4.6 Gene set enrichment analysis

After identifying the differentially expressed genes, I then performed gene set en-

richment analysis on the two datasets, marrow and blood. 1 The most significantly

enriched pathway in the marrow for the pre-versus-post comparison was the KEGG

pathway of one-carbon cycling by folate; this was also the second-most significant

pathway in the pre-versus-inter contrast (Figure 11A). The enrichment of this path-

way shows that when the enzyme DHFR is inhibited by pyrimethamine, there is a

subsequent down-regulation of the other genes in this pathway. Interestingly, genes

in this pathway are not enriched in the blood.

Figure 11: KEGG gene set enrichment plots for four representative path-
ways. The bar that transitions from red to white to blue indicates the value of the
t-statistic; red signifies genes that are highly expressed in either the post- or inter-
drug treatment, whereas blue signifies genes that are highly expressed in the pre-drug
treatment. Each vertical black line is the location of a gene in the specified pathway.
(A) One carbon cycling by folate; (B) oxidative phosphorylation; (C) cell cycle; (D)
apoptosis. n/s signifies that the enrichment was not significant at FDR=5%.

Pyrimethamine inhibits DHFR which then leads to decreases in folate cycling

1In spite of the fact that there were no significant differentially expressed genes in the blood,
gene set enrichment is still possible using the pre-ranked list method of GSEA.
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and reductions in the folate pool. Folate, which plays an essential role in nucleotide

synthesis, also is needed for energy generation in the mitochondria (Figure 11B). It

comes as no surprise, therefore, that genes in the oxidative phosphorylation pathway

are also down-regulated after pyrimethamine treatment both seven days as well as

30 days after administration, and the down-regulation occurs not only in the marrow

but also in the blood.

As mentioned above, folate is a required cofactor for the synthesis of some nu-

cleotides, as well as the methylation of proteins and amino acids. With insufficient

production of nucleotides, the rapidly dividing cells of the bone marrow would be

unable to proceed through mitosis at normal rates, or cell division may stop com-

pletely. I report that both seven days and 30 days after pyrimethamine treatment,

genes related to cell-cycle are down-regulated in the marrow (Figure 11C). Since the

blood is mostly a post-mitotic tissue (i.e. most cells are terminally differentiated)

there is no significant enrichment of cell-cycle-related genes in this tissue.

Lastly, with an inability to produce sufficient energy and/or a stalling of cellular

division, a cell may enter a state of apoptosis. If this were the case, there should be

an up-regulation of genes related to programmed cell death, which is what is observed

(Figure 11D).

2.5 Discussion

2.5.1 Methodology for data analysis and integration

In this chapter, I laid the groundwork for the statistical and analytical techniques

that allowed me to integrate the various data-types available for this experiment.

In applying these methods to a group of macaques that will serve as a control, I

demonstrated that pyrimethamine, a common anti-malarial drug, has lasting effects

on both the blood transcriptome as well as the bone marrow.

In the variance component analysis of this study, I was able to account for much of
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the variance in the transcriptome data especially after removing low abundance tran-

scripts (Figure 2B). In spite of the ability to account for such a substantial proportion

of the variance, the residual variance is still around 25-30%. This residual variance

may be due to many factors. Besides the natural variability in gene expression and

other unmeasured biological covariates, this residual variance may be due to primate-

specific responses to the AMD treatment; that is, there may be an individual-by-

drug-treatment interaction effect in which one primate may have a stronger response

to the AMDs due to its underlying genetic background. In a similar experiment

in Drosophila, we found that there was a strong genetic main effect (analogous to

subject, in this case), as well as a moderate gene-by-environment interaction in the

transcriptome. And the effect of the environmental perturbation was relatively small.

While the interaction effect cannot be measured in this study due to lack of replicates,

this proposed explanation is consistent with the observations in this study.

2.5.2 Between-subject effects

In the exploration of the various data-types, I showed that the variance of both the

transcriptomic datasets as well as the CBC data have very strong between subject

effects. This finding underscores the importance of repeated measures to increase

statistical power in differential gene expression analysis.

The high level of within-individual conservation compared to between-individual

differences is under-appreciated in the analysis of many biological data types. The

importance of repeated measures (and subsequent inclusion of this term in the sta-

tistical model) is shown in my analysis in which I identify differential expression

with and without including animal in the model. Perhaps the most data-rich gene

expression studies with longitudinal sampling of individuals comes from the Storey

lab.[38] Without explicitly describing the inter-individual variation in gene expression

profiles, they implicitly control for it by looking at rates of change of profiles over
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the course of many days. Unfortunately, these kinds of profiles (and rates of change

thereof) depend critically on sufficient temporal resolution so as to be able to deter-

mine rates of change. In this case, there was not the required temporal density of

data that would have allowed for this kind of analysis. However, explicitly accounting

for the inter-individual variation was sufficient to resolve important patterns in the

transcriptome.

In spite of this high within-individual conservation of gene expression, there is

no analogous individual-wise clustering of the CBC when using the major cell types.

This implies that the genes that are differentially expressed across individuals are not

differentially expressed across blood cell types.

My approach to integrate the transcriptome and metabolome, principal compo-

nent regression, yielded a negative result. While I observed good correlations within

the datatypes (i.e. blood and marrow transcriptomes were correlated, and C18 and

AE columns for the metabolome were correlated), there was minimal correlation be-

tween the transcriptomic and metabolomic datasets. This finding was unexpected

given the connection between these functional molecular classes. It is important that

we do not have metabolomic data from the first two time points (i.e. there is no

pre-drug exposure). Since the greatest differences in the transcriptome were between

the pre- and post-drug groups, we are clearly missing important data that would have

shed light on the effect of anti-malarial drugs.

Between the CBC data and the transcriptome there was a similar lack of a clear re-

lationship between the features despite intuitive expectations otherwise. Upon further

consideration however, this lack of strong correlation between different technologies

demonstrates that these data types offer non-redundant information about the state

of the system, and adding additional data-types has the potential to increase our un-

derstanding of the system. If the metabolome could be perfectly recapitulated using

only the transcriptome, there would be no need to interrogate multiple data-types.
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The usage of BIT axes scores to reduce dimensionality and infer biological struc-

ture in RNA-seq data represents a new application of this statistical technique which

was originally developed for microarray datasets. Also, this is the first time that this

technique has been applied to a tissue other than blood. Based on the high level of

variance explained by the each of the first PCs (i.e. the axis scores) for marrow, it

appears that this method of data reduction is appropriate for marrow because it is

capturing biological signatures that differ across time and drug treatment.

2.5.3 Dysregualtion of gene expression

In the bone marrow, there were thousands of genes that were dysregulated as a func-

tion of the drug treatment. Genes with altered expression were enriched in biological

functions like one-carbon cycling by folate, oxidative phosphorylation, cell cycle, and

apoptosis. For the one-carbon cycling by folate, I anticipated that the host would

up-regulate genes in this pathway, especially DHFR, to compensate for the inhibition

caused by pyrimethamine. Contrary to my expectation, however, the genes in this

pathway were nearly uniformly down-regulated, suggesting that the cells sensed the

decrease in the substrate tetrahydrofolate, and reduces expression of genes involved

in its cycling.

In addition to the mitochondrial disruption that occurs in both the 7 days post-

drug and the > 30 days post-drug in BOTH tissues (blood and marrow), there are

numerous processes that are down-regulated in the marrow that relate to cell cycle

control and mitosis (e.g. DNA replication, condensed chromosome, G1-S transition

of mitotic cell cycle). This result is expected considering that the bone marrow has

many more cells undergoing cellular division compared to the blood, which has mostly

post-mitotic cells.

Through this thorough examination of the effects of pyrimethamine using high-

throughput transcriptomics, I have identified numerous molecular pathways that are
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dysreguated in response to pyrimethamine treatment. Furthermore, I have shown

that this dysregulation of some pathways persists for at least a month after the last

drug dose, much after the drug should have been cleared from the blood plasma.

Further questions about the possible dysregulation of host molecular pathways

remain unanswered. For instance, pyrimethamine is often given in combination with

another AMD usually the sulfonamine sulfadiazine. However, this medicine is often

given with folinic acid which helps to reduce the level of folate deficiency and the

downstream negative effects. In this study, we did not investigate whether folinic acid

supplementation could abate or completely remove the negative host effects produced

by pyrimethamine administration.

The results of this study are particularly important given the recent trend of

re-purposing pharmaceuticals for the treatment of other diseases. Considering that

pyrimethamine has potential as a treatment of amyotrophic lateral sclerosis (ALS),

these results and datasets represent an important asset to the scientific community.
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CHAPTER III

HOST GENE EXPRESSION ALTERATIONS DURING

MALARIA INFECTION

3.1 Abstract

To address gaps in the understanding of host response to relapsing malaria, we per-

formed a 100-day experiment that spans one primary infection and two relapsing

infections of Plasmodium cynomolgi in the non-human primate Macaca mulatta.

Previous studies have examined the differences in gene expression that occur in

hosts in response to malaria infection. This project represents that first time that

host gene expression has been monitored across multiple peaks of parasitemia using

digital gene expression quantification (RNA-seq).

Leveraging the power of this experimental design, I found qualitatively different

gene sets enriched between the three parasitemia peaks in light of the vast differences

in host clinical parameters between the first and subsequent malaria infections.

After performing differential gene expression followed by gene set enrichment anal-

ysis, I found that previously-identified immune pathways are altered in the host in

response to the primary parasitemia, but not in the relapsing time points. There

are also remarkable differences in the systemic lupus erythematosus (SLE) and heme

metabolism pathways. These findings demonstrate that relapsing and primary par-

asitemias are qualitatively different. I additionally identify differences in host blood

traits that covary with infection severity and have the potential to be diagnostic for

severe disease susceptibility.

43



3.2 Introduction

3.2.1 Project overview

The Malaria Host-Pathogen Interaction Center (MaHPIC) is a multi-institute collab-

oration consisting of a number of different experiments designed to address specific

gaps in the understanding of underlying dynamics of malaria infection by perform-

ing and integrating a number of unique molecular and cellular analyses. In this first

infection experiment, Macaca mulatta was infected with Plasmodium cynomolgi to

understand host and parasite changes across three peaks of parasitemia: a primary

parasitemia followed by two relapsing parasitemias.

3.2.2 P. cynomolgi as a model for P. vivax

Plasmodium vivax, the most common malaria parasite outside of Africa, has received

relatively less attention than its more pernicious cousin P. falciparum. In spite of

its perception as a less-deadly malaria parasite, P. vivax is an important cause of

morbidity and mortality in humans.[100]

Due to ethical considerations, it is difficult to receive approval to infect humans

with P. vivax and observe high parasitemias and subsequent relapses of malaria. P.

cynomolgi, a malaria parasite that also produces hypnozoites, inoculated into M.

mulatta serves as a good model for relapsing P. vivax malaria in humans.

P. cynomolgi is a well established model for P. vivax [104, 128, 33, 45] and re-

cently has been used to study host responses to co-infections with malaria and other

organisms.[77, 155] Only one previous study in macaques (2005) considered the host

response to relapse on a transcriptome-wide level.[163] In this study, they report

many genes that respond differently across the various peaks, but due to lack of suf-

ficient sample size, they do not determine statistical significance of their findings.

They use a unconventional gene set enrichment approach that only broadly impli-

cates immunological defense responses but not cytoskeleton pathways in response to
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infection. Consequently, a clear understanding of the difference in host response to

primary compared to relapsing parasitemias is yet to be established. In the interven-

ing years, vast improvements in functional annotations of primate genomes have been

achieved and should allow for more detailed analysis of gene set enrichment.

3.2.3 Hypnozoites and relapse

Unlike P. falciparum, P. vivax can produce dormant liver stage parasites known as

hypnozoites. These dormant hypnozoites can be reactivated in response to exter-

nal cues; parasitemias caused by reactivation of these dormant forms are known as

relapses. As a result of having a relapse-causing hypnozoite stage, the parasite pro-

longs the duration that it is in the blood stage during which it could be transmitted

to a mosquito, a necessary step in the completion of its life cycle. While secondary

parasitemias increase the probability of continued transmission, another potential

evolutionary benefit for the production of relapsing infections is the increasing of the

complexity of infection (COI), a measure of the number of different parasite strains

within a host at a given time. Having a greater COI offers the opportunity for ex-

change of genetic material between unique parasite strains during recombination in

the mosquito vector.[103] Studies of natural genetic variation of other hypnozoite-

forming species have not been performed.

3.2.4 Host gene expression in malaria infection

Previous work in host gene expression has focused on various aspects of the host re-

sponse: susceptibility and response to severe malaria,[96, 87] gene expression changes

during placental malaria,[20, 99] variation in response due to infection history (naive

versus persistent infection),[106] differential host outcomes, mild versus severe malaria,[78]

and general trends in expression during infection.[67, 57, 163]

In human malaria infections in West Africa, Idaghdour et al reported that the

blood transcriptome showed evidence of up-regulation of certain gene sets including
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immune-related pathways: TNF pathway, chemokine signalling, NOD-like, Toll-like,

and Fc-γ mediated phagocytosis.[67] Also, the PPAR signalling pathway and the in-

sulin receptor signalling pathway were up-regulated suggesting altered host metabolic

state in response to infection. Down-regulated were pathways like aminoacyl-tRNA

biosynthesis and ribosome, which signifies a reduction in translation in the cell pop-

ulation as a whole.

Kwiatkowski and colleagues reported an increase in expression of neutrophil-

related genes during acute malaria.[57] This increase in neutrophil-related genes was

accompanied by an increase in the absolute abundance of neutrophils but was not

completely explained by it. Type-I interferon has been found to be associated with

malaria infection, but reports differ with respect to the direction of effect.[96, 78, 20,

94] While previous expression profiling studies have assessed changes in response to

malaria infection, there is a lack of enquiry concerning differences between primary

and secondary infections.

Many of the previous studies were either performed in humans or mice. As men-

tioned above, there are certain experimental limitations when working with human

malaria infections. For instance, there is likely to be high variance in expression data

due to confounding factors like co-infection with other diseases and different envi-

ronmental exposures like diet and life-style. Because of the large amount of variance

coming from unexplained sources, large sample sizes are needed in human studies.

The benefit of using a mouse model is the ability to both tightly control any poten-

tial confounding factors as well as allowing the subjects to progress to severe levels

of clinical malaria.

Two potential drawbacks of using a mouse model are the genetic homogeneity

(due to inbreeding) of the mouse strains and the evolutionary distance between hu-

mans and mice. The high genetic homogeneity of the mice introduce the possibility

that results are specific only to the strain under study and are not generalizable to
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the population, as a whole, not to mention inability to infer human responses. The

importance of inter-individual variation due to underlying genetic differences in terms

of host response to malaria was underscored in a recent study.[67] In this large expres-

sion quantitative trait locus (eQTL) study in an African population, Idaghdour and

colleagues identified alleles that altered gene expression in a malaria-status-dependent

manner. That is, the allele did not significantly effect the expression of a nearby gene

in the absence of malaria, but did effect the expression in the presence of an active

malaria infection. This finding demonstrates individual-specific responses to malaria.

A second disadvantage of using mouse models to infer human response to malaria

is the evolutionary distance between humans and mice is great. Humans and pri-

mates are sufficiently related that some of the same species of Plasmodium can infect

members of the two groups (e.g. P. knowlesi which infects both humans and rhesus

macaques, and P. falciparum which infects both humans and Aotus monkeys). In

light of their genetic and immunological similarity, primates may offer greater insight

into human malaria response than other model organisms.

3.2.5 Host response to secondary malaria infections

Previous studies have documented great differences between host response to primary

versus secondary infection. In rhesus macaques, it has been observed that parasite

counts during primary parasitemia are much higher, and clinical measures of disease

(anemia, pancytopenia, multi-organ failure, etc.) are much more severe during the

first infection; subsequent parasitemias (both relapsing and recrudescent) were well-

controlled by the host.[163, 98]

Another observation that leads me to believe that the host response on the tran-

scriptional level will be qualitatively different in the relapsing parasitemias compared

to the primary parasitemia is that, in humans, clinical immunity is built over time,

further enforcing the belief that the host immune system becomes more adept at
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neutralizing the threat of harm from the parasite.

In spite of these observations which demonstrate vast differences between a first

and subsequent malaria episodes, a previous expression profiling study only identified

a single gene that was differentially expressed between episodes of severe versus subse-

quent mild malaria, which suggests that in spite of dramatic clinical differences, there

may not be differential response to relapsing parasitemias on the host transcriptional

level.[78]

3.2.6 Motivating hypothesis

In this chapter, I deeply profile the host transcriptome changes that occur in response

to malaria infection and explore whether there are qualitative differences between the

host response to primary and relapsing parasitemias.

Using differential gene expression analysis in series with gene set enrichment, I

will address the following questions. First, are there many genes differentially reg-

ulated between primary and relapsing parasitemias? Based on the results from the

aforementioned study, the null hypothesis may be correct. That is, the host tran-

scriptome may not differ between primary and relapsing parasitemias. However, if

there are many genes differentially regulated in the primary parasitemia that are not

dysregulated in the relapsing time points, that would constitute evidence that there

is a difference in magnitude and/or the quality of effect.

Based on the vastly different clinical outcomes of primary versus relapsing para-

sitemias, I do expect a difference in the magnitude of effect of differential gene ex-

pression. The question remains, however, whether the host response is qualitatively

similar between the two infection peak types. If the host response is qualitatively

similar between primary and relapsing parasitemias, I would expect to see similar

gene sets enriched with the differentially expressed genes. If the host transcriptional

response is qualitatively different between the two infection peak types, however,
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unique gene sets will be enriched.

In addition to gene set enrichment analysis, I also use two additional complemen-

tary methods, blood informative transcript (BIT) axis analysis and cell-type specific

gene expression, to profile the global alterations that occur in the transcriptome over

the course of the experiment. I will specifically contrast the activation of hematopo-

etic and immune-related pathways across the various infection peaks.

3.3 Methods and materials

3.3.1 Experimental design

The Malaria Host-Pathogen Interaction Center (MaHPIC) is an inter-disciplinary in-

vestigation that utilizes multiple data types to better understand the systems biology

of the complex host-parasite dynamics in the course of malaria infection. For this

malaria infection experiment, the design is as follows. Five male rhesus macaques

(Macaca mulatta; RFa14, RFv14, RIc14, RMe14, and RSb14) approximately 2 years

of age were profiled over the course of a 100-day experiment after being injected with

purified sporozoites of the species P. cynomolgi on day 0 of this control experiment.

Complete blood counts were performed daily by the Malaria core team members.

Before injection, the time point 1 (TP1) samples were taken by the Malaria core.

Then, on approximately days 20, 26, 53, 59, 89, and 96, blood and marrow samples

were collected for TP2-7, respectively (Figure 13). A sub-curative dose (1mg/kg)

of artemether was given at TP2 to three of the five animals (RFa14, RFv14, and

RMe14) to stem the increases in parasitemia. At TP3 and TP4, all animals received

an 8-day course of artemether: day 1 (4mg/kg); days 2-8 (2mg/kg). At the end of the

experiment, all animals were given fully-curative doses of chloroquine. All aspects of

this study were all approved by the Institutional Animal Care and Use Committee

(IUCAC) of Emory University.
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3.3.2 Transcriptome analysis

Library preparations, read mapping, and expression quantification were all performed

as described in the previous chapter (Figure 12). Briefly, total RNA was extracted

from whole blood from samples taken across the 100-day experiment. Due to poor

RNA quality, one sample was not sequenced (RFv14 at TP2). mRNA was enriched

from total RNA using poly-dT beads. All library preparation was performed by

Dalia Arafat. Libraries were bar-coded and sequenced on an Illumina HiSeq2000 in

the Yerkes Genomics Core led by Dr. Zach Johnson. After sequencing, reads were

mapped to a combined reference genome including host and parasite genomes; both

genomes were the most recent genomes and were obtained from the iRODS repository

from the MaHPIC project website. HTSeq was used to assign read counts for each

annotated gene. Finally, DESeq was used to calculate normalized expression values,

which were subsequently used for differential gene expression analysis.

3.3.3 Gene set enrichment analysis

After calculating the normalized expression values, a pseudocount of one was added

and the data were then log2-transformed. All genes with an average transformed

expression value below 3 were excluded from further analysis. This transformed

dataset served as input to the statistical software, JMP. Differential expression was

determined using an analysis of variance (ANOVA) test in JMP with animal as a

random effect and time as a fixed effect.

To perform gene set enrichment analysis, I chose the ranked gene list method and

used the Broad Institute’s GSEA v2.0.14 to perform enrichment analysis.[142] For the

contrasts of interest (TP1 against each of TP2-7), I performed gene set enrichment

using the KEGG pathways, Annotated gene sets, and GO terms. The t-statistic was

used as the rank metric and was obtained from the JMP output file. Gene sets with an

FDR < 25% were considered as significant in accordance with the recommendations of
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Figure 12: Analytical pipeline of gene expression profiling. After the 100-day
infection cycle, samples from all time points are then used to make paired-end, strand-
specific libraries for sequencing on the Illumina Hi-Seq. After sequencing, reads are
mapped to a combined reference genome and transcriptome. HTSeq is used to assign
expression levels to each annotated gene, and expression levels are then normalized
using the method suggested by DESeq. Subsequent down-stream analyses including
differential gene expression, cell type profiling, and blood informative transcript axes
profiling are then performed on the normalized expression values.

the GSEA software manual. Default parameters were used and included the removal

of gene sets with more than 500 or less than 15 genes.

To perform GSEA, a priori defined gene sets are needed. Since the rhesus macaque

is much less well-studied than the human genome, and considering that the majority

of genes in the macaque genome have well-conserved syntenic orthologs in the human

genome, I used the pre-existing human gene set annotations for this analysis. These

genes sets were obtained from the Broad Institute’s website.
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3.3.4 Blood informative transcript axis analysis

I employed blood informative transcript (BIT) axes analysis, which uses an a priori

defined set of nine blood axes, which are composed of genes (10 blood informative

transcripts per axis) that represent much larger groups of genes that covary across

blood transcriptional profiles.[114] This method has been described elsewhere.[102]

Briefly, I took the 10 BIT genes for each of the axes and calculated the BIT score for

each individual for both the blood and the marrow, separately, using the normalized

expression data. Then, I performed ANOVA to test for significant differences across

time after fitting the effect of animal. The first PC of most of the BIT axis explained

the majority of the variance for the 10 BIT genes.

3.3.5 Cell-type-specific gene sets

To identify the trajectories of specific blood cell types using the transcriptome data, I

downloaded lists of genes that were previously identified to be expressed in a cell-type

specific manner.[111] Gene sets were available (Additional File 2 from the manuscript)

for the following groups of cells: lymphocytes, B-cells, T-cells, CD8+T-cells, and

granulocytes. As a single descriptive metric of the trajectory of each sub-population

of cells, I performed principal component analysis (PCA) and used the first principal

component (PC1) as a relative measure of the abundance of the cell type. I then

performed an ANOVA to test for significant differences of cell-type abundance across

the experimental time points.

3.4 Results

3.4.1 Parasitemia across the 100-day experiment

Across the course of the 100-day experiment, blood was taken daily to quantify par-

asitemia using manual counting of infected RBCs on blood smears. The parasitemia

count data shows that the primary and subsequent relapse infections occurred at
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approximately the anticipated times during the experiment (Figure 13). Macaques

were injected with the sporozoites on day 0, and on day 12, all primates showed first

positive blood stages. The parasitemias continued to rise, and on day 20 the first time

point with evidence of parasitemia (TP2) was taken. To slow the rise of parasitemia,

three of the five primates (RFa14, RFv14, and RMe14) were given a single-day dose

of artemether to stem the rising parasitemia. Seven days later, the parasitemia lev-

els remained high for most hosts; a sample for TP3 was taken and subsequently all

surviving primates were given a full course of artemether, which quickly reduced the

blood-stage parasitemias to zero for all macaques. Primate RFv14 experienced severe

anemia as well as acute kidney failure, and supervising veterinarians made the deci-

sion to euthanize the animal on day 23 per IACUC-approved procedure. Time point

3 for this animal was taken immediately before euthanasia. The relapsing infections

occurred around day 60 for three of the four animals, and another relapse occurred

near day 90 for all four animals. Parasitemias for the relapsing infections were much

lower, a finding consistent with previous studies.[163]

3.4.2 Host blood cell parameters are altered by malaria infection

In addition to parasitemia counts, daily blood samples were used to perform complete

blood counts. A severe drop in all three major blood cell types (white blood cells,

red blood cells, and platelets) occur during the first and highest parasitemia in all

animals. Subsequent relapsing parasitemias are met with a much smaller response

from the host. Also note in Figure 14A that around day 20, there are two days

where the red blood cell levels for two primates (RFv14 and RMe14, represented by

light blue triangles and dark blue squares, respectively) are much lower than all other

measured readings. These two animals were given blood transfusions at this time

in an effort to prevent complications from severe anemia. As noted above, RMe14

successfully recovered, but RFv14 did not.
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Figure 13: Parasitemia levels across the 100-day infection cycle. Parasitemia
across the 100-day experiment. Approximate days of sampling are indicated by ar-
rows. At TP2 (pink), a single-day dose of artemether was administered. At TP3 and
TP4 (red), a full eight-day course of artemether was given (see methods for dosage).
Primate RFv14 was euthanized on day 23 due to renal failure. Note that a pseudo-
count of 1 has been added to the parasitemia counts before log transformation, and
therefore a log-parasitemia of zero is zero. This data was collected by the Malaria
Core principally led by Alberto Moreno.

As a general feature of the CBC data, I report that as in my previous analysis,

there are significant differences in many blood cell traits across the primates. Of

the 13 blood cell parameters measured, 9 were significantly different across the sub-

jects. Figure 14 shows lymphocyte count, one example of a cell type with differential

abundance. Considering that different animals have different blood cell parameters,

I wondered if such parameters could contribute to severe disease. For the one pri-

mate that experienced severe malaria-induced anemia (RFv14), I noticed that he

had lower levels of both mean corpuscular volume (MCV) as well as mean corpuscu-

lar hemoglobin (MCH). Since the corpuscle (i.e. RBC) is the specific cell type that
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Figure 14: Abundance of blood cell types across the 100-day infection cycle.
Cell abundances in whole blood of the major blood cell populations: (A) red blood
cells (RBCs), (B) white blood cells (WBCs), and (C) platelets. The black line is a
kernel-smoothed fitted line showing the trajectory of cell abundances. Data points are
colored by animal as in Figure 13. At the peak of the first parasitemia corresponding
to days 15-25, there is a precipitous drop in the numbers of all blood cell types, a
phenomenon known as pancytopenia. At the two subsequent relapsing parasitemias
(occurring around day 60 and day 90), there are smaller dips in the three blood cell
populations. (D) The distribution of lymphocyte counts by animal. Center line of
the diamond denotes the mean and the ends are the 95% confidence intervals. The
(E) mean corpuscular volume and the (F) mean corpuscular hemoglobin across the
100-day experiment. The animal that was euthanized due to severe malaria and renal
failure (RFv14, blue triangles) had lower levels of these two blood traits even before
patent blood stages.
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the malaria parasite invades and hemoglobin is the substrate upon which it feeds,

I suggest that one or both of these parameters may be important in severe malaria

pathology. This hypothesis is supported by a recent genome-wide association study

(GWAS) performed in humans, which shows that genomic loci that are important

in malaria resistance and pathology are enriched with SNPs that explain substantial

amounts of the variance in blood cell traits.[39]

3.4.3 Primary parasitemia extensively alters host gene expression

The variance components for this parasite-infection experiment are qualitatively sim-

ilar to what was observed in the control experiment; the effect of animal explains

40% of the variance while the effect of time point explains slightly more than the

control experiment at 25% (Figure 15A). This relationship is born out in the hier-

archical clustering of the principal components. Essentially, the samples cluster by

animal with the exception of the two time points of the first parasitemia, TP2 and

TP3 (Figure 15B).

When the 4,233 significantly differentially expressed genes are hierarchically clus-

tered, TP2 and TP3 do not cluster with the other samples (Figure 16A). Furthermore,

nearly all of the differentially expressed genes are either very up- or down-regulated

in one of these two time points. The time points sampled during the two relapsing

infections (TP4-7) cluster closer to the control time point (TP1) than they do to

either of the samples from the first parasitemia (TP2 and TP3). This result offers

evidence that there are qualitative differences between the transcriptional profiles of

the host response during primary versus relapsing malaria infections. In the volcano

plot for the contrast of TP1 versus TP2, there are many genes differentially expressed

(Figure 16B). In the TP1 versus TP4 contrast (that is, control versus first relapse

parasitemia), however, there are many fewer genes that are differentially expressed

(Figure 16C). After coloring the genes that are up- or down-regulated (red and blue,
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Figure 15: Summary of the blood transcriptome (A) The variance components
of the blood transcriptome. (B) Hierarchical clustering of the samples based on the
correlation of their principal component values.

respectively) according to the TP1 versus TP2 comparison, it is apparent that there

is little coherence in the host transcriptional response with respect to the direction

of expression between the primary (TP2) and secondary (TP4) parasitemias. This

result supports the alternative hypothesis that primary and relapsing parasitemias

elicit not only a different magnitude of response from the host, but also that there

is a qualitatively different host response. I note that there are still several hundred

genes that are dysregulated in TP4 (relapse) compared to the TP1 (baseline), albeit

to a lesser extent than in the first parasitemia (TP2).
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Figure 16: Differential gene expression analysis. (A) A hierarchically clustered
heatmap of the significant genes. Volcano plots comparing (B) TP1 versus TP2, and
(C) TP1 versus TP4. The dotted line near y = 2.3 is the cut-off for FDR=5%. Points
represent genes and are colored (if significant) by there direction of effect in the TP1
versus TP2 contrast, up-regulated at TP2 in red, and down-regulated at TP2 in blue.

3.4.4 Gene set enrichment analysis

To determine the biological pathways that are enriched with genes that are differ-

entially expressed across the three parasitemia cycles, I next performed gene set

enrichment analysis using pre-ranked gene lists.

The most statistically significant gene set enrichment that I identified between

the control time point (TP1) and the time point from the peak of the first infec-

tion (TP2), is the up-regulation of genes in the systemic lupus erythematosus (SLE)
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related pathway (Figure 17). This pathway contains two predominant gene types:

different histone variants and members of the complement pathway, suggesting an al-

teration in chromatin environment and immune response. The genes in this pathway

continue to be elevated at TP3, as well. These two time points correspond to the

highest parasitemias of the experiment. The enrichment of this curated KEGG path-

way has previously been shown in both mild and severe malaria compared to control

blood samples in the same direction as in our study.[67] Extending this finding and

further underscoring the importance of repeated measures across the course of infec-

tion cycles, I found that genes in this pathway are very significantly enriched with

genes that are down-regulated at time points subsequent to relapsing infections (TP5

and TP7). The tight co-regulation and extreme responses of this pathway during

malaria infection support the need for further targeted experimental work on these

genes.

The heme metabolism pathway (KEGG porphyrin and chlorophyll metabolism) is

up-regulated in TP3 compared to TP1, but TP2 does not have this same enrichment

(Figure 18). This may be occurring because of one of two non-mutually exclusive

mechanisms. First, since artemether, the anti-malarial drug (AMD) given at time

point 2, has the property of generating free radicals and reactive oxygen species

especially when in proximity to a heme group catalyst, it may be that the artemether

is destroying the heme group. The cell would then work to replace the lost heme by

synthesizing more of it. A second mechanism that would explain the increase in heme

production enzymes would be that the malaria-induced anemia has stimulated the

production of more red blood cells. As a result, the red blood cell precursors would

have the enzymes necessary for the production of heme. I believe that the latter

mechanism is correct for many reasons. Firstly, mature red blood cells lack a nucleus,

and so even upon sensing a decrease in the level of functional heme in the cell, they

would be unable to increase the abundance of the transcripts in the heme production
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Figure 17: Cycling of the SLE-related pathway. (A) Gene set enrichment
plots of the systemic lupus erythematosus (SLE)-related pathway genes annotated
by KEGG. (B) The first principal component of the SLE-related pathway plotted by
time. TP2 and TP3 are enriched with genes that are up-regulated in the SLE-related
pathway. TP4 there is no significant enrichment. Then at TP5 and TP7 genes in
the SLE-related pathway are expressed in the opposite direction, that is they are
significantly down-regulated. TP6 is enriched with up-regulated genes.

pathway. Secondly, if the single-day dose of artemether at TP2 was strong enough to

have an impact on the pathway seven days later, then presumably the eight day course

begun at TP4 would have caused the same pathway to be dysregulated at TP5, which

is not the case. The CBC data shows malaria-induced anemia in all of the animals
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beginning around day 14 and recovery of RBC counts around day 25. TP3 was

sampled very close to the turning point; the rising levels of RBCs is consistent with

the hypothesis that RBC precursors in the blood are contributing to the transcript

pool and leading to the appearance of increased heme pathway transcription.

Figure 18: Gene set enrichments. For a selection of gene sets with significant en-
richment in at least one time point compared to control, a heatmap of the normalized
enrichment scores (NES), which describe the level of enrichment of each pathway.

Other immune-related pathways that are enriched include NOD-like receptor, Toll-

like receptor (TLR), and RIG-I receptor pathways. These signalling pathways are

most often associated with viral or bacterial infection, and their activation leads to

the release of various cytokines including type I interferons. These signalling pathways
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have been reported as altered in human malaria infection but this is the first report

of genome-wide up-regulation in other primates. The Toll-like receptor pathway is

up-regulated at TP2, TP4, and TP6, which corresponds to the peaks of each of the

three parasitemias. Axis 5 (discussed in a subsequent section) includes TLR activity,

and is also all up at TP2, TP4, and TP6, which is consistent with neutrophilia at the

peak of infection.[59]

3.4.5 Cell-type specific expression

While gene set enrichment analysis offers important insights into the underlying host

pathways that are activated in response to malaria infections, differences in expression

profiles may be, at least in part, due to differences in cell-type abundance. To explore

the changes in host immune cell abundances I used a composite metric of cell-type

abundance (the first principal component of genes that exhibit cell-type specific ex-

pression, see Methods), I estimated the relative changes in cell-type abundance across

the course of the experiment.

There were significant changes in both the B-cell and T-cell populations as a

function of malaria infection. The B-cell specific genes fell at TP2 and then recovered

at TP3 and continued increasing throughout the end of the experiment (Figure19A).

T-cell specific genes followed the opposite trajectory: TP2 had a much increased level

of T-cells, but at all subsequent time points (TP3-7), T-cell genes were reduced below

the uninfected time point (Figure19B). The increase in T-cells does not appear to be

related to changes in CD8+ T-cells (also known as killer T-cells) since the genes

of this specific sub-type do not follow the same trajectory (Figure19C). This is not

surprising considering that CD4+ T-cells (also known as helper T-cells) are usually

the more abundant T-lymphocyte; a CD4+ T-cell-specific gene list was not available

for this analysis. Yet another possibility for the lack of coherence for the CD8+ T-

cell cycling is that activated immune cells often leave the circulation and aggregate
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in peripheral tissues.

Figure 19: Cell-type specific gene expression across the experiment. The
general behavior in B-cells (A) and T-cells (B) is qualitatively opposite. CD8+ T-cells
(C) do not account for the extreme variation in the T-cell population.
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3.4.6 Blood informative transcript axis analysis

In addition to cell-type specific expression, I performed blood informative transcript

(BIT) axes analysis. This BIT axes represent underlying modules of co-expressed

genes that have been previously identified in numerous blood transcriptome datasets.

Many of the axes are enriched with previously determined functional annotations of

gene ontology.

I found that many of the BIT axes showed significant differences across time in

this 100-day infection experiment. Axis 2, an axis enriched with genes associated

with hematopoesis, is significant across time points without controlling for the effect

of animal (Figure 20A).

Axis 2 contains genes that are enriched in GO terms related to oxygen trans-

porter activity and wound healing. The human disease and abnormal mouse pheno-

types associated with this axis are hemolytic anemia and hematopoesis, respectively.

Up-regulation of axis 2 during the peak of parasitemia and consequently the times

of highest parasite-induced hemolysis is expected, and gives further support to the

functional coherence of this axis. Importantly, the axis analysis and the cell type spe-

cific expression analysis are complementary approaches which have captured distinct

aspects of the host response to the infection, hematopoesis and T-cell development,

respectively.

After controlling for the effect of animal (see methods), there were significant

differences in axes 3, 5, 7, 8, and 9; axis 2 became even more significant when removing

the effect of animal.

Another very striking finding is axis 3 (Figure 20B), which is annotated as being

associated with B-cell activation, behaves very similarly to the B-cell gene set (Figure

19A). This initial drop in B-cells at TP2 is likely due to the pancytopenia (that is,

thrombocytopenia, leukocytopenia, and erythrocytopenia) induced by the infection.

This finding lends further support to the ability of BIT axes to capture information
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Figure 20: Blood informative transcript (BIT) axes over time. All plots
except (A) show the BIT axis trajectory after removing the between-animal effect.
(A) Axis 2, hematopoesis-related (p = 0.0002). (B) Axis 3, B-cell activation-related
(p = 0.0032). (C) Axis 5, cytokine receptor activity (p = 0.0067). (D) Axis 7,
interferon signaling (p = 0.0085). (E) Axis 8, RNA-processing (p = 0.0045). (F) Axis
9, apoptosis-related (p = 0.0481).

about the immunological state of the host using a very small number of transcripts.

Previous studies have identified interferon pathway up-regulation during malaria

infection which I also observe here as demonstrated by increases in axis 7 (Figure

20D). Importantly, this interferon axis is down-regulated at TP4-7, further supporting

the conclusion that host response to relapsing parasitemias are qualitatively different
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from the primary peak. Lastly, axes 5, 8 and 9 appear to follow similar trajectories:

high at TP2 relative to the control, followed by a zig-zag pattern: down at TP3 and

then back up at TP4, the first relapse (Figure 20C,E,F). Inflammation and apoptosis

(axes 5 and 9, respectively) are likely a by-product of the immune response to the

malaria infection.

3.5 Discussion

3.5.1 Gene expression in a relapse

The vast differences in the gene set enrichment analysis as well as the BIT and cell-

type specific expression analyses demonstrate that there is a qualitatively different

host response between primary and relapsing parasitemias in this non-human primate

model of P. vivax infection in humans.

A previous study investigated the differences in gene expression between a pri-

mary and secondary malaria infection in humans.[78] (No baseline transcriptome was

reported.) Compared to our analysis, theirs was similar in size, yet they only found

one gene differentially expressed at an FDR of 5%. This lack of significantly differ-

ent expression profiles suggests one of two explanations: 1) either unaccounted for

sources of technical or biological variance or both prevented them from finding many

significantly differentially expressed genes; or 2) the host response to re-infection is

qualitatively different from the host response to reactivation of dormant hypnozoites,

that is, a relapse.

The former is most likely. One source of unaccounted for biological variation in the

aforementioned human study is differences in diet as well as co-infection with other

agents. A source of technical variance could be the difficulty of uniform treatment of

samples in the field.

However, the latter may also be true. Re-infection (or recrudescence, as it may

have been) with P. falciparum may truly elicit a completely difference host response
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than a relapsing parasitemia with P. cynomolgi or P. vivax due to the fact that

the parasites re-activated during a relapse are likely to be genetically similar (or

identical) to the parasites of the first infection. However, population level diversity

of P. falciparum is lower than for P. vivax, and so this is not the likely mechanism

that would explain the difference in response.

The present experimental design measured baseline expression for all genes across

the transcriptome and then across three parasitemia peaks for a total of seven time

points for each macaque. The previous study lacked an uninfected baseline measure

of the transcriptome, a shortcoming that may have decreased their statistical power

to detect differential expression. However, if a re-infection behaved similar to our

relapsing infection, the difference between the first and subsequent infections would

likely have been strong enough to detect.

3.5.2 Comparison with previous study of P. cynomolgi

The macaques in our study showed the first evidence of blood stage on day 12 for all

individuals with a peak being reached around day 20. While the day of appearance of

blood stage parasites is qualitatively similar to a previous study, it took more than a

week for parasitemias to reach their peak in our study, whereas peaks were reported to

have been reached by day 14 (2-4 days after first appearance) in a previous study.[163]

Also, the first relapse for most of our primates occurred between days 50-60, much

later than a previous study.

In this study, I was able to perform statistical testing to identify differentially

expressed genes, which were plentiful. In the previous study, statistical testing for

differential gene expression was not possible.

The hierarchical clustering of all samples in our study was qualitatively different

from a previous study in macaques[163]. This may be the result of different platforms
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for measuring gene expression (microarray versus RNA-seq). Furthermore, normal-

ization method in microarray has been shown to be important differential expression

analysis and subsequently in biological inference.[116]

Unlike the previous study, design included samples both at the peak of relapse as

well as seven days after the peak. This allowed me to identify that the SLE pathway,

which was up-regulated at the first peak of parasitemia, was actually down-regulated

in the recovery periods after the relapses.

Yet another difference between our study and the previous study was that they

performed gene set enrichment analysis on the groups of genes that hierarchically

clustered together. This has the effect of enriching for genes that are highly correlated,

which are also therefore likely to be enriched for the same function if we assume that

genes in the same pathway are co-regulated. This kind of gene set enrichment has the

effect of artificially reducing the p-values of the enrichments. In spite of this difference

in method, we both identify pathways important in hemoglobin metabolism.

3.5.3 Systemic lupus erythematosus (SLE) and immune related gene set
enrichment

The recapitulation of the increased expression of SLE-related genes in response to

malaria demonstrates that this primate model of malaria is a good representation of

what happens in the human body during an infection. However, my identification of a

subsequent down-regulation of many of the genes in this pathway at later times (TP5

and TP7) offers a new and important insight with respect to the immune fluctuations

that occur in primate hosts during malaria infection and recovery.

In the introduction, I discussed the selection for HLA-b53 locus which provides

protection against severe malaria and is highly prevalent in West Africa. But beyond

host adaptations to the parasite, we can also consider the host-parasite co-evolution.

For instance, SLE, an autoimmune disease, is much more prevalent in African women

outside of Africa than it is for European women. Furthermore, there is much more
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SLE susceptibility among southern European women (which until recently had higher

exposure to malaria) than among northern European women. Importantly, there are

relatively very few reported cases of SLE in African women who currently reside in

malaria-endemic regions. I hypothesize, therefore, that chronic infection with the

parasite modulates the host immune system. And in the absence of such modulation,

the over-active immune system leads to the autoimmune destruction of some of the

host’s own cells.

A recent study in humans found evidence for a genotype-by-malaria-status inter-

action effect on the gene expression.[67] This provocative result provides a poten-

tial mechanism which could explain the high rates of SLE among African-American

women compared to European women and African women remaining in malaria-

endemic regions. Specifically, malaria infection may be modulating gene expression

networks of individuals whose genomes have adapted to a malaria-endemic environ-

ment. This finding is important in light of the fact that African-American (AA)

women have much higher levels of SLE than European-Americans (EA). I, there-

fore, hypothesize that the SLE of AA women is possibly due to co-evolution with

the malaria parasite in an attempt to modulate the negative impacts on fitness of

infection.

Further support of the importance of the SLE pathway in malaria infection is found

in a mouse model of SLE.[156, 157] In these studies, mice with susceptibility to lupus

(due to genetic polymorphisms) protected mice from cerebral and placental malaria.

Both of these finding are consistent with a protective effect of SLE against reduction of

reproductive fitness due to severe malaria. Yet another interesting connection between

malaria and SLE is the use of anti-malarial drugs in the treatment of SLE.[22, 71]

We are currently pursuing a further bioinformatic analysis to substantiate the

link between SLE and malaria. Specifically, we will compare genome-wide associ-

ation studies (GWAS) from both malaria susceptibility studies and SLE studies to
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determine if there are co-enrichments in the significance levels of SNPs or closely

linked genetic loci.

3.5.4 Hematopoesis

In my analysis, I observed an up-regulation of the hemoglobin production pathway

(KEGG porphyrin and chlorophyll pathway) at TP3. This hemoglobin production

could be up-regulated due to either parasite-induced anemia and/or artemether bind-

ing to heme groups and causing localized damage. I believe that this up-regulation is

due to the parasite-induced anaemia and not due to off-target artemether destruction

of RBCs.

Axis 2, which is enriched with genes important in hematopoesis, was most highly

up-regulated at TP3. While the animals received a single-day dose of the AMD

artemether seven days before this sample was taken, I do not believe that this al-

teration in RBC genes was related to the drug dose. This is because at TP4, the

macaques received a full eight-day course of artemether, and TP5 was taken near the

end of the treatment. No similar up-regulation of the hematopoetic axis was apparent

in TP5.

3.5.5 Cell type deconvolution of the samples

Blood is a heterogeneous tissue that is composed of many different kinds of cells:

RBCs, platelets, and many subtypes of WBCs, each cell type having a characteristic

expression profile. In a sample of blood, the proportions of each cell type would have

a great impact upon the gene expression profile. One way to determine and account

for differences in cellular composition is to perform sample deconvolution, which is

a computational method whereby the proportion of cell types are estimated based

on expression profiles. In our analysis, we did not perform cell type deconvolution

because we lacked RNA-seq profiles for the numerous cell types that would be ex-

pected to occur in the blood, and most cell type deconvolution software has only been
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written to be compatible with microarray expression data. Advances in this field will

allow for estimation of cell type proportions in our samples. Subsequently, we would

be able to use the cell type abundance data as a factor as well as a covariate in the

model. The infected time points may have differential abundance of certain immune

cell types. Additionally, even after accounting for cell type differences, infected time

points may have pathways that are differentially regulated. It is with this method,

cell type deconvolution, that we can tease apart the alterations that are occurring in

the host due to infection.

3.5.6 Individual-specific responses to malaria infection

In our study, we had measurements for only 5 primates, and yet we were able to

recapitulate many of the findings in a recent study in humans with more than an order

of magnitude more samples, a result that underscores the importance of repeated

measures. This increase in power to determine differential expression derives from

the ability to estimate individual-specific (and likely genetically controlled) levels of

expression.

In light of the differing responses of the hosts to the malaria infection (i.e. one

animal had to be euthanized and another also required a blood transfusion), I looked

for prominent features that co-varied with the severity of disease. The animal that

experienced the severe anemia and subsequent organ failure had the lowest MCH and

MCV in the first two weeks of the experiment before blood-stage infection became

apparent.

A recent study found that baseline hemoglobin levels were strongly inversely asso-

ciated with risk for multiple organ dysfunction syndrome (MODS).[158] In this study,

the animal that experienced the renal failure did not have the lowest hemoglobin levels

at baseline; he was approximately average for the days before evidence of blood-stage

parasitemia (days 0-12). As reported above, however, he did have much lower mean
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corpuscular hemoglobin as well as lower corpuscular volume. The importance of these

blood cell traits, especially MCH, is supported by a recent genome-wide association

study (GWAS) performed in humans, which shows that genomic loci that are im-

portant in malaria resistance and pathology are enriched with SNPs that explain

substantial amounts of the variance in blood cell traits.[39]

3.5.7 Caveats and limitations of this experimental design

While this experiment was able to unveil many important features of the host re-

sponse to relapsing malaria, there were aspects of the design that prevented more

precise dissection of mechanisms of response. For instance, there was a lack of tem-

poral resolution to precisely understand the timing of the hematopoetic activation

during the primary infection. From the CBC measurements, it is apparent that the

pancytopenia of malaria is most prominent during the first blood-stage infection peak.

Future studies could take more dense samples during the course of the first infection

peak. Here, we were limited in the number of samples we could take because there

was a maximum volume that we could extract from the primates over the course of

a given time period, and we were sampling for numerous high-throughput technology

cores.

3.5.8 Future studies

Lastly, I have herein left many lines of inquiry unexamined. First, the advantage of

using RNA-seq (this study) versus microarrays (nearly all previous studies) to profile

gene expression is that we can examine alternative splicing, antisense expression,

and differentially abundance of non-coding transcripts. While these kinds of analysis

may offer unique insights into the host response to malaria infection, it is difficult

to make functional inference about affected pathways. For instance, if there are 100

non-coding transcripts that I detect in the samples and 20 are differentially expressed

in the relapse peak but not the primary peak of parasitemia, what further inference
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can I make about underlying molecular mechanisms. This kind of analysis would

necessitate direct testing of importance of these transcripts by knock-down (say, by

RNA interference).

3.5.9 Conclusions

Many pathways that are differentially regulated in this study with macaques after

a primary malaria infection are qualitatively similar to those identified in humans

using much larger sample sizes; altered pathways (including RIG-I, NOD, Toll-like,

and complement pathways) have previously been identified in human studies as being

enriched during malaria infection, which supports the use of the model system for the

study of malaria in humans.[67]

Relapsing parasitemia peaks induce a much more restrained host transcriptional

response demonstrating that primary versus relapsing parasitemias was qualitatively

different.

Differential host clinical outcomes (e.g. severe malaria, death) appear to be related

to measurable blood cell traits, namely corpuscular volume and hemoglobin.
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CHAPTER IV

COMPOSITIONAL MODELLING OF PLASMODIUM

FALCIPARUM ACROSS THE INTRA-ERYTHROCYTIC

DEVELOPMENT CYCLE

4.1 Abstract

Microscopically, Plasmodium parasites take on three distinct states during progres-

sion in the intra-erythrocytic development cycle (IDC): ring, trophozoite, and sch-

izont. The number of distinct transcriptional states is less clear and is currently

still debated.[36, 83] Using a compositional modelling approach of discretized expres-

sion data, I estimated expression levels for a range of distinct transcriptional states

and simultaneously dissected the proportion of each asexual stage in each hourly

sample using previously published high-resolution expression data from Bozdech and

colleagues.[23] I discovered that there is a stable solution of three distinct transcrip-

tional states in the IDC, a result concordant with microscopic observations of infected

blood samples. Lastly, I used the results from this compositional analysis to identify

genes that are highly expressed in each distinct parasite life-stage, which will be used

in later analyses.

4.2 Introduction

4.2.1 Plasmodium gene expression

Beginning with the publication of the transcriptome of the intra-erythrocytic de-

velopment cycle (IDC) of P. falciparum, much effort has been invested to under-

standing the transcriptional dynamics of Plasmodium using high-throughput omics
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technologies.[23] In the first paper that profiled parasite expression in a transcriptome-

wide manner, Bozdech and colleagues showed that the majority of the parasite genome

is cyclically regulated across the IDC, with each gene having a characteristic peak.[23]

Using microarrays and probing the transcriptome hourly across its 48-hour cycle, they

were able to identify genes that had their peak at different stages of development (Fig-

ure 21A). Subsequently, numerous microarray and RNA-seq studies were published

that shed light on gene expression in Plasmodium.[122, 25, 58, 133, 43, 145, 24, 110, 89]

One important consideration for these kinds of expression analyses is that they

are interrogating a population of cells and not one individual cell. And due to natu-

ral variability in parasite development times, each sample would reflect the average

abundance of expression in a mixed population. A qualitatively similar problem

arises when trying to determine the relative contributions of various cell types of a

mixed tissue to the transcriptome. To determine the composition of a mixed sam-

ple of different cell types, various groups have implemented computational methods

to perform sample deconvolution.[121, 131, 54, 49, 55, 84] The underlying statistical

methodologies of these approaches are vastly different but have a similar underlying

goal: determine the relative proportions of each cell type in a heterogeneous sample.

Most of these previously implemented are deterministic and require a priori pure cell

expression measurements. The former is a short-coming because these models are

mathematically over-specified, that is, there are more equations than parameters to

estimate. A probabilistic algorithm would allow a greater exploration of the solution

space instead of deterministically arriving at a fixed solution. The latter is a difficulty

especially when there are an unknown number of cell types in the mixture.

Malaria researchers have implemented similar statistical methods for the math-

ematical deconvolution of mixed samples. These methods have allowed researchers

to both to get a clearer picture of the expression of the pure life stages and also to

dissect what is occurring at the level of transcription in the parasite over the course
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of an infection.

In a seminal work by Daily and colleagues,[36] researchers investigated the parasite

expression profiles of malaria-infected human blood using non-negative matrix factor-

ization (NMF), which is a spectral decomposition method that essentially performs

factor analysis on the underlying data.[26, 82] Within this analysis, three distinct in

vivo states were identified, and the genes partitioned by these three sets were enriched

for significant pathways and molecular functions. One drawback to NMF is that it is

not compositional; that is, there is no requirement that the components sum to one.

In this sense, it is more similar to a factor analysis decomposition.

A re-analysis of this data by another group accounted for batch effects of microar-

rays and employed a numerical approach which was more compositional in nature.[83]

In the Lemieux et al model, they assumed that all parasites in the blood were either

in an asexual or sexual stage and subsequently estimated the proportions of each

for each infected individual. Further, they used a maximum likelihood approach to

estimate the particular stage of the asexual cycle that most parasites were in. Impor-

tant to note, P. falciparum produces variable antigens which lead to sequestration of

later-stage parasites (i.e. trophozoites and schizonts) in the microvasculature. From

this re-analysis, all of the samples were abundant with ring stage asexual parasites,

as was expected from the biology of this parasite.

The method of Lemieux and colleagues likely produces a reasonable result because

the asexual parasites were all in approximately the same stage: rings. In other

species like P. vivax and P. cynomolgi, however, the trophozoite and schizont stages

do not sequester in the microvasculature, a behavior prominent in P. falciparum

due to its exporting of variable antigens, a molecular mechanism first described in

P. knowlesi.[64, 13, 141] Because their IDC position estimation is also more closely

related to a mixture model (which assigns each sample to one of a many possible

underlying groups), the implementation of this method would likely lead to very
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large confidence interval around the maximum likelihood estimate in a blood sample

from a species that did not sequester in later IDC stages. This is because in a species

that does not sequester in later stages, the parasites in a sample may be in very

different developmental stages.

The purpose of this study is three-fold. First, I explore a range of possible un-

derlying transcriptional states for P. falciparum during its progression through the

IDC. Next, I identify the number of discrete populations of life-stages in blood-stage

Plasmodium that optimizes the likelihood of the underlying data. Last, I determine

gene expression profile for each of the stages and identify genes that have their peak

expression in each stage, which will be used in later down-stream analysis. Based on

microscopic observations of the parasite, I hypothesized that there would be three

distinct transcriptional states in blood-stage Plasmodium, which would correspond

to ring, trophozoite and schizont stages. To achieve these aims, I have taken a full

compositional modelling approach to dissect the proportion of each asexual stage in

a given sample using the data from Bozdech et al, which contains expression mea-

surements from across the entire IDC.[23]

4.3 Methods and materials

4.3.1 Dataset

Bozdech and colleagues reported the hourly gene expression profile across the 48

hour IDC of P. falciparum. I downloaded this dataset from the supplementary data

available from the publication’s website. The expression levels were determined by

performing a competitive hybridization of the each time point against a pool of all of

the time points. Two time points were not present in the dataset (23h and 29h) for

unknown reasons. There were over 3000 genes with expression levels reported. This

represents the first and perhaps highest resolution genome-wide expression profiling

performed in Plasmodium for the in vitro IDC to date.
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4.3.2 Multi-dimensional scaling

To visualize the cyclical nature of the expression levels in the IDC, I performed a multi-

dimensional scaling of both the samples and the genes using R. First, the expression

data were downloaded from the supplementary data of the paper. Gene-by-gene

the expression levels were z-score transformed. Next, I calculated the Euclidean

distances between the feature of interest (either genes or samples). Then I employed

the cmdscale function using only two dimensions of scaling. The results were then

visualized in R.

d.trans.zscore <- dist(trans.data.zscore.Pf)

fit.trans.zscore <- cmdscale(d.trans.zscore,eig=TRUE, k=2)

4.3.3 Developing a method for life-stage deconvolution of mixed cultures
of Plasmodium using STRUCTURE

The aim of this study is to implement a statistical tool that allows for the estima-

tion of the proportion of each blood stage in a mixed population of parasites using

gene expression data. This problem is analogous to one encountered in population

genetics. In human population genetics, a given individual may be a descendant

of one or more historical populations, where each historical population has its own

population-specific allele frequencies for single nucleotide polymorphisms (SNPs) and

other genetic markers across the genome. Based on the allele frequencies of the his-

torical populations, we can estimate the likelihood that an individual came from a

given population using genome-wide genotypic information of the individual and the

historical populations.

In most cases, however, there is no access to the genotypes of the historical popu-

lations. However, if a sample is large and diverse enough, it is possible to estimate the

allele frequencies of the pure populations as well as the percent of the genome coming

from the historical population for each sampled (genotyped) individual. Analogously
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to gene expression data, we have many samples that are composed of a mixture of

cells in different stages of development. Each pure cell type (parasite development

stage) has a distinct expression profile with some genes expressed highly in one cell

type and at a lower level in other cell types. As in the population genetic problem,

we often do not have gene expression data for the pure cell types. In samples that

we wish to interrogate, some (unknown) proportion of cells comes from each of the

pure cell types. And the expression profile of the samples is a function of its cell type

composition multiplied by the expression profile of each pure cell type.

Xij =
�m

k=1 Zik ∗ Pk

X denotes the expression levels of genes coming from the parasite for each sample

(n*m).

Xn,m =




x1,1 x1,2 . . . x1,m

x2,1 x2,2 . . . x2,m

...
...

. . .
...

xn,1 xn,2 . . . xn,m




Z denotes the (unknown) vector of cell-type proportions for each of the k popula-

tions (n*l).

Zn,l =




z1,1 z1,2 . . . z1,l

z2,1 z2,2 . . . z2,l
...

...
. . .

...

zn,1 zn,2 . . . zn,l




P denotes the (unknown) average expression level for each gene from a given

population (l*m).

Pl,m =




y1,1 y1,2 . . . y1,m

y2,1 y2,2 . . . y2,m
...

...
. . .

...

yl,1 yl,2 . . . yl,m



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Where n is the number of blood samples, m is the number of genes, and l is the

number of pure cell types.

The primary objective of this analysis was to implement a tool that allows for

the estimation of the proportion of each blood stage in a mixed population. Since

this cell type deconvolution problem is qualitatively similar to the problem of infer-

ring population structure using genome-wide genotype data, I chose to re-purpose a

widely-used software, STRUCTURE.[115]

To to make our continuous expression data compatible with STRUCTURE, I

performed a tertile discretization. For each gene, the top third of all samples were as-

signed a value of two; the middle third of all samples were assigned a value of one; and

the bottom third of all samples were assigned a value of zero. The discretized dataset

(46 hourly samples, 3719 genes) was then input into the STRUCTURE graphical user

interface. Another discretization was performed using a 10-80-10 division of samples;

qualitatively similar results were obtained.

I ran STRUCTURE for k=3-8 with three independent replicates each, setting a

random seed of 123 for reproducibility. Default parameters were used when available.

The program was allowed 2000 iterations for burn-in followed by 1000 Markov-chain

Monte Carlo (MCMC) iterations.

4.3.4 Identifying genes specific to each IDC life-stage

To find the genes that are specific to each distinct transcriptional state, I performed

the following workflow. For every gene, I calculated where its maximum expression

level occurred in the IDC. Then I identified the genes that had their maximum ex-

pression at each of the hours that had the highest proportion of each of the pure cell

types or had their maximum expression within one hour of the highest proportion.
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4.4 Results

4.4.1 Description of the dataset

To test the ability of this method to deconvolute samples of mixed cell type, I

used a previously published dataset of gene expression profiling across the IDC of

P falciparum.[23] All of the Plasmodium species profiled to date show a similar cyclic

progression of gene expression across the IDC (Figure 21A).

In panel B, hours 1 and 2 along with hours 43-48 all cluster in the bottom center.

This visual representation makes much more clear the relationship between the late

schizonts and the early ring stages in terms of their closeness of gene expression

profiles and serves to emphasize the cyclic nature of the IDC. Just as the samples

cycle in a predictable way through the IDC, so do the genes (Figure 21C). Note that

the coordinate space for multi-dimensional scaling is arbitrary; that is, the axes can

rotated around the origin without losing the relative distances between the points.

4.4.2 Implementation of the probabilistic deconvolution method

To achieve the aforementioned aims, I have taken a full compositional modelling

approach to dissect the proportion of each asexual stage in a given sample using the

data from Bozdech et al, which contains expression measurements from across the

entire IDC. I first transform the data from continuous to discrete values and then

employ a probabilistic framework to iteratively estimate both the fraction of each

life-stage in a given sample and also the expression level for each life stage. The

resulting gene sets will be used in subsequent analyses.

After discretization of the expression dataset, I ran STRUCTURE for k=3-8 using

three independent replications for each level of population number. For all values of

k > 3, I found that at least one of the solutions converged to the k=3 solution (Figure

22); that is, the solutions are essentially identical. This is important because given

the cyclic nature of gene expression, one of the possible outcomes would have been
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Figure 21: Expression profiling of the IDC of Plasmodium falciparum. (A)
A heatmap of the gene expression levels of genes (y-axis) for samples (x-axis) taken at
hourly intervals across the IDC. The extreme red color represents a 64-fold enrichment
over the pooled average across the IDC, whereas the extreme green represents a 64-
fold reduction over the pooled average. The left column of panel A shows microscopic
views of the various life stages. The top part of panel A contains abundance estimates
for each of the three unique cell type. Adapted from [23]. (B) and (C) Multi-
dimensional scaling (MDS) plots of the samples and the genes, respectively. Samples
are labelled by the hour at which they were taken.

convergence to a k=3 solution but with a phase shift. The fact that all of the k=3

results (as well as many of the k > 3 results) are of the same phase suggests that not
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only that k=3 is a stable solution for the number of unique cell types in the IDC but

also that we can assign the labels to the pure cell types based on our understanding

of the IDC progression.

Interestingly, for all k > 3, at least one of the simulations collapsed to the k=3

solution. This suggests that there are really three distinct populations of parasites

in the IDC. This hypothesis is consistent with microscopic observations which led

to the naming of three separate phases of the IDC: ring, trophozoite, and schizont.

Importantly, these estimates are strikingly similar to the microscopic stage estimates

(the top portion of Figure 21A).

Figure 22: Compositional modelling of the hourly expression data of the
IDC. The three panels represent the STRUCTURE output from k=3-5 from top
to bottom, respectively. Importantly, the k=4 and k=5 populations collapse and
converge to essentially the same solution as k=3. This demonstrates that k=3 is a
stable solution for the number of unique cell types in the IDC.
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4.4.3 Genes for each parasite stage

After the assigning the proportions of cell types present in each time point, I then

determined which sample had the highest abundance of each pure cell type. Hours

10, 25, and 39 had the highest proportion (nearly 100%) for each of the three cell

types which I have post hoc assigned the labels of ring, trophozoite, and schizont,

respectively. I then found the genes that had their peak of expression at those peak

samples or the sample time point on either side of it (i.e. 9-11 hours for rings, 24-

26 hours for trophozoites, 38-40 hours for schizonts). These genes were considered

stage-specific and were compiled into gene sets for use in future analyses.

Table 2: Parasite stage-specific genes.
IDC stage Number of genes putative enriched functions

Ring 426 ribosomal and ring-exported proteins
Trophozoite 405 DNA polymerase, helicase, mismatch repair
Schizont 184 glideosome- and rhoptry-associated proteins

There were 426, 405, and 184 genes in each of the stages of ring, trophozoite,

and schizont, respectively. The majority of all genes were annotated as coding for

conserved proteins of unknown function in plasmodb. While I did not perform a

significance analysis of gene set enrichments for these gene lists, the gene names

indicate that the genes with peaks in each of the stages are coherent for the biological

functions that occur therein (Table 2). For instance, genes with a peak in the ring

stage are annotated as ribosomal components and ring-exported proteins. In the

ring stage, the parasite has just successfully invaded a new red blood cell and up-

regulates the transcriptional program that had been turned off for schizogeny. In

the trophozoite stage, genes associated with genome replication and mitochondria-

associated proteins were present. In the trophozoite stage, the parasite the energy-

and resource-intensive growth and division that will take place in the schizont stage.

The schizont stage gene set contains genes that compose the glideosome and rhoptry,

which are essential for successful sinvasion of a new RBC after the schizonts rupture
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the infected red blood cells (iRBC) and release merozoites.

4.5 Discussion

Herein, I have shown that the asexual IDC of P. falciparum has a stable mathematical

solution of three distinct life stages, which correspond well to the stages observed

microscopically. I further compiled lists of genes that have a peak expression at each

of the three stages; these gene lists will be used in subsequent analyses.

While this probabilistic framework successfully recapitulated independent stage

assignment and therefore demonstrated its power, there are many caveats to this

method. First, it requires dense, high-resolution, time points throughout the IDC to

accurately estimate the gene expression of pure populations. Next, it is not easily

transferable from microarray to RNA-seq data, or even between different microarray

platforms. The Bozdech et al microarray dataset for P. falciparum was made using

a two-dye competitive hybridization.[23] As a result, it is difficult to use this dataset

together with, say, the dataset from Daily et al which used a single dye microarray

and therefore captured absolute expression levels.[37]

Concurrent to our development of this discretized method of inferring the rela-

tive abundance of parasite stages in a given sample, another group developed and

implemented a related method for Plasmodium.[70] In their method, they use linear

regression and a priori information about gene expression at each life stage to predict

the relative abundances. Superficially, their method and the one implemented herein

appear similar. However, there are many differences, including the primary objectives

of the work. In my work, I wanted to determine the number of distinct transcrip-

tional states in the Plasmodium IDC. In their study, the goal was to determine the

level of each life-stage in a mixed sample. My method has the advantage that it does

not make a priori assumptions about the number of classes, nor does it require a

priori information about the expression levels of each gene for the various parasite
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blood-stages. However, my method must iteratively estimate both the expression

levels of the pure populations and the composition of each of the samples. Addition-

ally, their linear regression method is based on the minimization of a least squares

term, which makes it sensitive to outlier genes with extremely different expression,

whereas my probabilistic, discretized model is not susceptible to such outlier genes.

As a disadvantage of my approach, in the discretization step, an essential part of my

implementation, information is lost. However, on aggregate across all genes, sufficient

information was preserved to recapitulate microscopic observations.

In conclusion, I have implemented a discretized, probabilistic method for gene ex-

pression deconvolution, and subsequently identified the three microscopically observed

parasite stages. Using these three populations, I extracted genes whose expression is

characteristic of each stage.
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CHAPTER V

GLOBAL SHIFTS IN PARASITE GENE EXPRESSION

PROFILES ACROSS AN INFECTION TIME-COURSE

5.1 Abstract

Gene expression of parasites from the genus Plasmodium has been extensively stud-

ied. However, to date, there has been little investigation of parasite expression over

the multiple infection cycles in an in vivo setting. Basic questions concerning gen-

eral patterns of gene regulation remain unanswered, especially concerning parasite

expression changes in response to anti-malarial drugs (AMDs) and across primary

versus secondary parasitemias. Herein, I examine parasite gene expression from P.

cynomolgi in rhesus macaque (Macaca mulatta) hosts. Clustering of parasite gene

expression demonstrate a distinct profile in the relapsing parasites compared to the

primary parasitemias, which includes a shift away from sexual stages in secondary

parasitemias.

5.2 Introduction

The gene expression program of the intra-erythrocytic development cycle (IDC) of

malaria parasites from the genus Plasmodium has been extensively studied in vitro

and has been shown to be robust to perturbation.[23, 24, 46, 97, 8] In vivo, how-

ever, the parasite needs to do more than just grow and divide especially in response

to differential host pressures (e.g. immune system). To cope with this dynamic

within-host environment, it would benefit the parasite to be capable of responding

appropriately. Furthermore, host clinical parameters and outcomes (e.g. anemia and
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organ failure) are much less severe in relapsing malaria episodes compared to the pri-

mary parasitemia. And whether host outcomes are associated with changing parasite

expression programs has yet to be investigated. Herein, I explore the parasite tran-

scriptional response of a P. cynomolgi infection of rhesus macaques (Macaca mulatta)

across a 100-day infection cycle and interrogate the correlation between the host and

parasite transcriptomes.

5.2.1 Expression profiling of Plasmodium

Bozdech et al paved the way for high-throughput analysis of gene expression in

Plasmodium.[23] Subsequently, it was shown that even under the selective pressure

of antimalarial drugs, the parasite shows an inability to alter its transcriptional

program.[46] Whereas most previous studies were in vitro, Daily et al looked at ex

vivo parasite expression from infected humans and found that there are only a few

distinct transcriptional states of the parasite in the blood.[36]

5.2.2 Relapsing malaria

While the human parasite P. falciparum is considered the most deadly malaria par-

asite, P. vivax causes close to 100 million cases of malaria each year. P. vivax is the

most common malaria parasite outside of Africa and pervades in tropical regions of

the Americas and the Asian Pacific. In spite of its impact on human mortality and

morbidity, this important human malaria parasite remains under-studied because of

its inability to grow in an in vitro culture system.[24] As discussed in a previous

chapter, it is not ethical to infect humans with P. vivax and follow the infection over

multiple peaks of parasitemia. As a result, malaria models in non-human primates

are used to gain insight in to the behavior of the human malaria parasites and their

within-host dynamics.

In this experiment, we use a P. cynomolgi infection of M. mulatta as a model

for P. vivax infection of humans, specifically with the goal of better understanding
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parasite expression changes during relapse. A relapse occurs when the dormant hyp-

nozoite form of the parasite, which exists in the host liver, is re-activated and causes a

distinct blood-stage parasitemia. The host clinical parameters are usually much more

mild during relapse compared to the primary infection. Sometimes the relapsing par-

asitemia produces no noticeable external symptoms, and the positive blood-smear is

the only indication of a relapse.[163]

5.2.3 Experimental design overview

Five male rhesus macaques (Macaca mulatta) were profiled over the course of a

100-day experiment after being injected with purified sporozoites of the species P.

cynomolgi on day 0 of this control experiment. Complete blood counts were per-

formed daily, and microscopic quantification of parasitemia was performed. Before

injection, the time point 1 (TP1) samples were taken. Then, on approximately days

20, 26, 53, 59, 89, and 96, blood and marrow samples were collected for TP2-7, re-

spectively. A sub-curative dose (1mg/kg) of artemether was given at TP2 to three

animals (RFa14, RFv14, and RMe14) to stem the increases in parasitemia. At TP3

and TP4, all animals received an 8-day course of artemether: day 1 (4mg/kg); days

2-8 (2mg/kg). At the end of the experiment, all animals were given fully-curative

doses of primaquine/chloroquine. Animal treatment was all approved by the IUCAC

of Emory University.

5.2.4 Motivating hypotheses

In a previous chapter, I showed that the host transcriptional response is highly altered

between primary and relapsing parasitemias. Now, I will investigate the differences

in the parasite transcriptome across multiple parasitemia peaks.

The motivation question for this chapter is: are there differentially expressed

parasite genes between primary and relapsing parasitemias? Previous experiments
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have shown that even when faced with severe artificial selection pressures (e.g. anti-

malarial drug administration), malaria parasites do not alter their transcriptional

profile.[46] Given the result from this previous in vitro study, I expect that the tran-

scriptional profile of the parasites will not differ over the two parasitemia peak types:

primary and relapse.

The alternative hypothesis is that the parasite transcriptional profiles differ be-

tween the primary and relapsing parasitemias. Evidence for this alternate hypothesis

would suggest that the parasite alters its transcriptional profile as a direct result of

having passed through the hypnozoite stage; alternatively the differential parasite

transcriptome may be an indirect result of attenuated host immune response to the

relapsing parasitemia. Support for the alternative hypothesis would be indicative of

yet another layer of complexity of transcriptional regulation in malaria parasites.

5.2.5 Chapter outline

In this chapter, I first describe the whole genome re-sequencing of the P. cynomolgi

strain that will be used in this experiment to confirm its identity. Next, I qualitatively

explore the structure of the expression profiles from the samples of the different time

points. Then, I perform differential gene expression analysis between the defined

experimental groups, and subsequently perform gene set enrichment to unravel the

differences in parasite expression across primary versus relapsing infection peaks. I

also explore the trajectories of selected multi-gene families.

5.3 Methods and materials

5.3.1 Whole-genome resequencing for Plasmodium cynomolgi B strain

To confirm the identity of the P. cynomolgi strain that would be used in the infection

experiment, a whole-genome resequencing of infected red blood cells was performed.

Genomic DNA was extracted from a whole-blood sample containing infected RBCs.

The DNA was sequenced on a HiSeq2000, and generated approximately 100 million
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paired-end reads. After inspecting the FastQC output files, there was no detectable

contamination of library preparation primers, and subsequently, the raw reads were

used in the mapping step.

Bowtie2 was used for mapping the reads to the P.cynomolgi reference genome with

both the –end-to-end and the –local alignment options, separately. The two methods

performed similarly in terms of the number of SNPs and InDels that they called.

As expected, the –end-to-end flag (which is more stringent in mapping) mapped

fewer reads and called fewer SNPs. However, because of the unfinished nature of the

genome, the –local option is most likely the better choice and was used for reporting

statistics in this report.

Depth of sequence coverage is an important metric because the deeper a region

has been sequenced, the more confident we can be in the genotype calls in that

region. 1 Even with only 6 million reads mapping to the P.cynomolgi genome,

93.4% (24,457,978/26,180,000*100%) of the nucleotides of the genome are covered

with >=20X sequencing depth.

Samtools mpileup was used in series with varscan to call the variants. These are

the options for VarScan. In essence, it requires, at least 8 reads of sequencing depth

to make a call at a given base. As stated above, nearly all of the genome meets this

threshold. Next, there must be at least 2 reads supporting the variant for it to be

called. This is an important threshold. Otherwise, sequencing error could dominate

the SNPs calls. Even though the error rate is only 0.001, with millions of reads, the

likelihood of SNPs would be high. The likelihood of seeing 2 reads support the same

SNP call by sequencing error is 0.0012/3, 2 and so we would only expect about 8

false positives over the whole genome. This suggests that most of the 1031 SNPs that

1Say an allele exists in the population at a frequency of 10%. If a region of the genome is only
covered by 10 reads, then the chances of the minor allele being missed is (.90)10 ≈ 0.35; whereas if
it had been covered by 20 reads, the chances of missing it are only (.90)20 ≈ 0.12.

2The average likelihood of a miss-called base squared for the two occurrences divided by three,
the probability of the two miss-called bases being the same (incorrect) base.
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we identified are likely true positives; these polymorphisms would be the standing

genetic variation in this particular strain.

5.3.2 Transcriptome analysis

Library preparations, read mapping, and expression quantification were all performed

as described in a previous chapter. Briefly, total RNA was extracted from whole blood

from samples taken across the 100-day experiment, and samples were dosed with

spike-in control RNA as described in a previous chapter. Due to poor RNA quality,

one sample was not sequenced (RFv14 at TP2). mRNA was enriched from total

RNA using poly-dT beads. Libraries were bar-coded and sequenced on an Illumina

HiSeq2000 generating approximately 50 million paired-end reads per sample. After

sequencing, reads were mapped to a combined reference genome including host and

parasite genomes. HTSeq was used to assign read counts for each annotated parasite

gene.

After quantification of read counts mapping to annotated genes, I then calculated

the total number of reads from each sample that mapped to an annotated gene. The

samples taken TP1 before infection should have no parasite reads. The number of

reads mapping to annotated parasite genes was, in fact, very low for these uninfected

time points (6-11,835; median 3,103). To only include samples with sufficient ex-

pression depth of coverage to accurately estimate expression, a minimum of 500,000

reads was required for a sample to be considered as having parasite expression. Ten

samples passed this threshold, and the library with the lowest read depth had at least

eight reads for 3,980 genes (≈ 70% of all genes).

In spite of the large variations in the Plasmodium transcriptome due to the cyclic

nature of expression across the IDC, the high correlation of gene expression across

most samples suggested that the robust library size estimation method of DESeq

would yield good scaling factors for making libraries comparable. To normalize the
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libraries, I used the DESeq method also used in previous chapters.[6]

5.3.3 Down-sampling methodology

Of the 10 samples with more than 500,000 uniquely mapping parasite reads, there

was wide variation in the read depth (approximate range 750,000-29,000,000). Reads

from all libraries were probabilistically down-sampled to the depth of the library with

the fewest reads. Briefly, I first determined the number of reads in the smallest library

(749,249). Then, for each library, I determined the number of reads. Then, for every

read in each library, the probability of it remaining in the down-sampled library was

equal to (number of reads in smallest library) divided by (number of reads in the

present library).

The R code is given below:

rm(list=ls())

expression.counts = read.table( "/home/kevin/work/Research/malaria/

Experiment04/Ex04_parasite_counts.txt", header=TRUE,sep="\t",row.names=1)

#remove columns (that is, libraries/time points) thhat have low read counts

expression.counts <- expression.counts[which(apply(expression.counts,2,sum)>500000)]

expression.probs <-t(t(expression.counts)/apply(expression.counts,2,sum))

#initialize the down-sampled expression matrix

new.counts <- expression.probs

for(i in 1:nrow(new.counts))

{

for(j in 1:ncol(new.counts))
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{

new.counts[i,j]<-0

}

}

#calculate number of reads in each column

total.reads <- apply(expression.counts,2,sum)

#calculate (or input) how many reads to sample

#by default, this finds the library with the fewest number

of reads and sets that as the value; this can be modified to fit needs.

reads.to.sample <- min(total.reads)

#loop over all of the libraries

for( i in colnames(new.counts))

{

#calculate the ratio of keeping a read for each library

keep.ratio <- reads.to.sample/total.reads[i]

print (keep.ratio)

#run the sampler

for( j in rownames(new.counts))

{

if(expression.counts[j,i]>0)

{

print(j)

for(k in 1:expression.counts[j,i])
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{

rand.num <- runif(1);

if(rand.num < keep.ratio)

{

new.counts[j,i] <- new.counts[j,i] + 1

}

}

}

}

}

5.3.4 Differential gene expression

After observing the clusters of the time points into natural, discrete groups, I allowed

the groups to be those used for down-stream analysis. Four samples from TP2 were

grouped together (TP2), three samples from TP3 were grouped together (TP3), and

all the samples from the relapsing parasitemias (one sample each from TP4, TP6,

and TP7) were grouped together (secondary).

Then, one-way ANOVA was performed on these samples using the aforementioned

groupings. Unlike in the host expression analysis, the effect of animal was not used

as a random effect due to the small number of samples in the analysis.

5.3.5 Gene set enrichment analysis

To perform gene set enrichment analysis of the parasite gene expression data, we had

to first establish and populate gene sets. Since the majority of functional studies in

Plasmodium have been performed for P. falciparum, I investigated the P. falciparum

literature and made two different gene set groups: stage-specific gene sets, and GO

term gene sets.
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The previously-defined gene sets (Chapter DECONVOLUTION) for the three IDC

stages (ring, troph and schizont) were converted from P. falciparum to P. cynomolgi

using syntenic orthologous genes. Similarly, a list of genes that show gametocyte-

specific expression were extracted and converted to P. cynomolgi gene names.[164]

Gene sets of GO terms were downloaded for P. falciparum and converted to P.

cynomolgi, as well.

The following work-flow was used to obtain the syntenic orthologs between these

species. In PlasmoDB, all gene from P. cynomolgi were selected. Then, a step was

added: transform by orthology. Only genes that were annotated as syntenic or-

thologs between these two species were used. Then, the gene-correspondences were

downloaded and subsequently used to identify the P. cynomolgi orthologs for each

gene set.

Similarly, GO annotations for the entire genome were downloaded for P. falci-

parum and the same methodology was used to identify corresponding genes.

After generating the gene sets, the t-statistic from each of the three contrasts

were used to find gene sets that were coherently differentially regulated between two

or more of the groups. All possible pair-wise contrasts were investigated: TP2 versus

TP3, TP2 versus secondary, and TP3 versus secondary.

5.3.6 Gene group trajectories

Plasmodium helical interspersed sub-telomeric (PHIST) proteins play an important

role in host-parasite interactions during malaria infection. Some PHIST proteins

contain a red blood cell cytoskeleton binding motif, which may facilitate both the

trafficking of parasite proteins to the iRBC cell membrane, as well as the remodelling

and eventually the rupturing of the iRBC to release the infectious merozoites.[112, 91]

Tryptophan-rich antigens are another abundant multi-gene family in Plasmodium

species and which play a role in RBC invasion of merozoites.
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To characterize the expression of these multi-gene families over the time course of

the infection, I extracted genes in these families and performed principal component

analysis on each gene set, separately. I use the percent variance explained by the first

PC as a measure of the coherence of the expression (that is, co-expression) of each

family, and plot the value of the first PC for each sample over time.

5.4 Results

5.4.1 Whole-genome resequencing for Plasmodium cynomolgi B strain

Integral to the analysis of a transcriptomic dataset (using RNA-seq reads) is the pres-

ence of a high-quality reference genome for the species of interest. For P. cynomolgi

the reference genome was initially published in 2012 by Tanabe and colleagues.[143].

This group sequenced B strain, which is the P. cynomolgi reference genome available

in PlasmoDB and is the reference genome used herein.[11, 10]

Before the beginning of the 100-day infection experiment, I first undertook the task

of determining the identity of the P. cynomolgi strain that would be used. The goal

was to confirm that it was the same strain as that of the reference genome (B strain),

as parasites in culture have been observed to accumulate mutations in certain genes;

and sufficiently different genomes could result in poor mapping of transcriptomic

reads and therefore mis-quantification of expression.

To confirm the identity of our parasite strain, DNA was extracted from an in-

fected blood sample containing P. cynomolgi, and was then sequenced on an Illumina

HiSeq2000. Of the 109,375,524 paired-end reads, 6.3% of the reads map to the para-

site genome, using the –local flag3. To account for the reads that did not map to the

P.cynomolgi genome, I also performed a mapping of the reads to the Macaca mulatta

3Using the –end-to-end flag, 4.6% of the reads map to the genome. This discrepancy is occurs
because of the fragmented and incomplete nature of the genome assembly with which we are working.
The –end-to-end flag requires that the entire read map exactly to the genome. This is difficult for this
genome because there are many blocks of N’s, which the mapping software will count as mismatches,
and subsequently, a mapping, even though it is best, will not be considered because it is below a
certain threshold.
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genome. Indeed, approximately 94% of the reads map to the primate host’s genome,

which makes up for the difference.

The next step in confirming the strain’s identity is the calling of polymorphisms.

Since the parasite was isolated more than 30 years ago and has been maintained

through culturing in monkeys and subsequent cryopreservation, I anticipated that

there would be some divergence between the reference genome and the genome of the

parasites that would be used for inoculation. After mapping the reads to the genome,

I called single nucleotide polymorphisms (SNPs) using VarScan.[76] Remarkably, no

polymorphisms were detected in the 14 nuclear chromosomes (Figure 23).

Figure 23: Integrative Genome Viewer screen capture shows no polymor-
phisms. In the reads of this genomic region, there appear to be some sequence
polymorphisms which may be due either to acquired mutations due to passaging of
the parasite or sequence errors.

While the P. cynomolgi genome is relatively well-assembled, hundreds of large

contigs still remain unplaced, and within many of these unplaced contigs, there were

some called polymorphisms. Most of these contigs were difficult to place because

they are members of high-copy-number gene families and therefore share high levels
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of sequence similarity. In general, I do not anticipate that these polymorphisms in

unplaced contigs will qualitatively alter conclusions reached from this work. I note

that in other species (e.g. P. falciparum and P. knowlesi), the variable antigen

genes, which are responsible for immune evasion, represent a high-copy-number gene

family and therefore polymorphisms in unplaced contigs may be important in studies

performed in these species. In light of this result, I conclude that the P. cynomolgi

strain to be used in the 100-day infection experiment is genotypically very close to

the P. cynomolgi reference genome.

5.4.2 100-day experimental summary

As described in a previous chapter, the experimental infection of M. mulatta with

P. cynomolgi lasted 100 days, and spanned multiple parasitemia peaks for the four

macaques that survived the primary infection. Blood samples were taken daily to

quantify parasitemia using manual counting of the infected RBCs on blood smears.

The parasitemia count data show that the primary and subsequent relapse infections

occurred at approximately the same times across all animals supporting the consis-

tency of this model infection.

To stem the increasing parasitemias, a one-day, sub-curative dose of artemether

was given to three of the primates (RFa14, RFv14, RMe14) after taking the blood

and bone marrow samples for TP2. Seven days later, TP3 was taken (experimental

day 26 for all animals except RFv14 which had TP3 taken on experimental day 23

immediately before euthanasia). The relapsing infections occurred around day 60 for

three of the four animals (RFa14, RIc14, RSb14), and another relapse occurred near

day 90 for all four surviving animals. Parasitemias for the relapsing infections were

much lower than the primary parasitemia peak (between 101.5 and 104.5 and between

105 and 106 parasites per microliter, respectively). Note that the limit of detection is

approximately 103 parasites per microliter, and therefore readings below these levels
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have a high measurement error.

Figure 24: Parasitemia across the infection and transcriptome read depth.
(A) Parasitemia for each of the animals across the 100-day experiment. A single-day
dose of artemether was given to three of the primates (RFa14, RFv14, RMe14) at
TP2 (pink box), and full 8-day courses were given to all animals at TP3 and TP4
(red boxes). Parasitemia was much higher during the first infection relative to the
relapsing infections. (B) The number of reads mapping to each of the three sources of
RNA: the host (macaque), the parasite (P. cynomolgi, and the spike-in control RNA.
The highest levels of parasite RNA occur at TP2 and TP3, which corresponds to the
points of highest parasite density.

After collecting the samples, RNA was extracted from them and high-throughput

sequencing was performed. RNA-seq provides a digital read-out of the transcriptomic
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state of a sample. While this technology offers many advantages over other gene ex-

pression quantification techniques, it also has an inherent limitation: insufficient se-

quence read depth prevents accurate quantification of gene expression genome-wide.

At low read depths, technical variance dominates, preventing the accurate estima-

tion of biological variation. With lower coverage, the coefficient of variation in the

expression measurements increases, subsequently decreasing power to detect differ-

ential expression. Furthermore, since most normalization techniques, including the

method used herein, are dependent upon the accurate estimation of many genes, I

have only included samples with at least a half-million parasite reads to ensure robust

inference of differential expression.

Based on this threshold, TP2 and TP3 have enough mapped parasite reads to ad-

equately quantify expression in four and three samples, respectively; in the relapsing

time points, there is only one sample each from TP4 (RSb14), TP6 (RSb14) and TP7

(RFa14) with sufficient read depth. As a matter of convention, I refer to the three

relapsing time points as secondary parasitemias.

5.4.3 Clustering of the parasites

After setting the sequence depth threshold for inclusion in the analysis (see Methods),

I determined the general topology of the relationship between the parasites at each

time point. A hierarchical clustering of the samples shows that samples from TP2

and TP3 cluster mostly within time point, and the relapsing samples (one from each

of TP4, TP6, and TP7) cluster separately (Figure 25A). Given that parasite sequence

depth ranged from about 750,000 reads to more than 29 million and that the relapsing

time points had few reads in comparison to TP2 and TP3, sequence read depth was

confounded with time point. To verify that the separate clustering of the samples

by time point was not due to differences in read depth, I coded a down-sampler in

R, which finds the sample with the fewest reads and subsequently probabilistically
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reduces the number of reads in all of the other samples’ libraries to that level. After

down-sampling, the relapsing time points cluster together, and samples from TP2

and TP3 still cluster in a similar way (Figure 25B).

Figure 25: Primary parasitemia expression profiles cluster away from re-
lapse profiles. (A) A heatmap of ten libraries with sufficient parasite read depth to
be considered expressed. The samples from the first parasitemia peak (TP2 and TP3,
in red and gold, respectively) hierarchically clustered mostly within time point. The
deepest branch in the clustering is between the relapsing parasite profiles (light blue),
and the primary parasitemia samples. (B) Same as in (A) but using the down-sampled
read counts for each library.

After defining the three groups of parasite samples (TP2, TP3, and secondary),

I explored the general correlation between genes in each group. In general, all three
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groups had strong linear correlations with each other (Figure 26). The secondary

time points, however, have a subset of genes that are below line of identity (x = y,

Figure 26B,C). The genes that are down-regulated in the contrast of secondary versus

TP2 (Figure 26B) are colored in black. There is a large overlap of these genes with

genes down-regulated in the contrast of secondary versus TP3 (Figure 26C).

Figure 26: Correlation of average expression between experimental groups
across all genes. (A) TP3 versus TP2, (B) secondary versus TP2, and (C) secondary
versus TP3. Non-parametric density gradients are overlaid in colored lines. Genes
that show a down-regulation in the secondary infection relative to TP2 are colored
in black; all other genes colored in grey
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5.4.4 Differential gene expression across parasitemia peaks

After the initial exploratory analysis of the parasite expression dataset, I performed

differential gene expression to identify genes that are differentially regulated across

the three peaks of parasitemia. Between TP2 (peak of parasitemia during first blood-

stage infection) and TP3 (still during the first blood-stage infection) there are nu-

merous differentially expressed genes (Figure 27A). However, the vast majority of

the genes that are found to be differentially expressed are altered when comparing

the secondary infection time points to those of either TP2 or TP3 (Figure 27B,C).

Significant genes are colored by up- or down-regulation (red or blue, respectively)

in secondary parasitemias relative to TP2 (B). In the plot of secondary versus TP3

(Figure 27C), many of the colored genes maintain both directional coherence and

significance. Next, the nature of these genes that are down-regulated in secondary

parasitemias was investigated.

5.4.5 Gene set enrichment analysis for Plasmodium cynomolgi

The primary objective of this study was to elucidate the differences in the parasite

transcriptional state between primary and relapsing peaks of parasitemia. In the

previous section, numerous genes were identified that fit this criteria. In this section,

I investigated the functional enrichment of the shifts in gene expression by performing

a gene set enrichment analysis of both life-stage-specific gene sets as well as annotated

GO gene sets.

In the ring and trophozoite life-stages, there is a subtle yet significant up-regulation

in the relapsing (secondary) parasitemias compared to either of the primary par-

asitemia groups (TP2 and TP3) (Figure 28). Much more distinct is the down-

regulation in the relapsing time points of both the schizonts and gametocytes. This

down-regulation of gametocyte-specific genes in the secondary infection time points
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Figure 27: Volcano plots showing the magnitude and significance of differ-
ential gene expression across the three experimental groups. (A) TP3 versus
TP2, (B) secondary versus TP2, and (C) secondary versus TP3. The the significance
level of the difference (-log(p-value), y-axis) is plotted against the log-fold change in
expression (x-axis). Significant genes are colored by up- or down-regulation (red or
blue, respectively) in secondary parasitemias relative to TP2 (B).

demonstrates that there is a clear difference in the relative abundances of sexually-

committed parasites circulating in the blood during relapse.
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Additionally, from the bottom panel of the enrichment plots, I infer that gametocyte-

specific genes reach their peak at TP3, since they are up-regulated at TP3 with respect

to both TP2 and relapsing time points. Importantly, after samples were taken at TP2,

three primates were given a sub-curative, one-day dose of artemether. TP3 was then

taken seven days later. The two samples (of the three samples at TP3 for which there

is parasite expression data) in which the primate did not receive the sub-curative

dose of artemether are the ones that have the highest gametocyte expression. The

sample from the primate which did receive the sub-curative dose of artemether shows

a parasite expression profile much more similar to those of TP2 than of the samples

from TP3 that did not receive the AMD. What caused the shift in relative abundance

from asexual to sexual stages from TP2 to TP3 is unclear, but may have been due to

either sustained high densities of parasites in the blood, or host factors. The exact

molecular mechanism by which the parasite controls cell fate determination is yet

unknown.

5.4.6 Effect artemether on parasite life-stage abundance

To investigate the effect of the anti-malarial drug artemether on the parasite expres-

sion profiles, I used the life-stage specific genes to contrast the samples at TP3: one

which came from an animal that was treated with artemether (RFa14), and two from

animals that were not treated with artemether (RIc14 and RSb14); animals RFv14

and RMe14 were also treated with the AMD but samples from these animals did not

have sufficient parasite read depth for expression quantification (see Methods). As

before, I performed principal component analysis using the genes from each of the

life-stages. In this case, I use the first two principal components to plot each of the

samples in PC space.

In both the schizont- and the gametocyte-specific genes, the outlier point for

TP3 is from the primate that received artemether (Figure 29C,D). The two parasite
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Figure 28: Life-stage-specific gene set enrichment. For each pair-wise contrast
of the three experimental groups, the enrichment of life-stage for the three asexual IDC
forms (ring, trophozoite, and schizont) and the sexual development form (gametocyte)
is shown. For each plot, a vertical black line represents a gene specific to the given
life-stage. The bottom horizontal line which transitions from red to grey to blue
represents the t-statistic for the given contrast. Enrichment of genes on the left
side of the GSEA plot indicates coherent up-regulation in the group on the left of
the heading label. Enrichment of genes on the right side of the GSEA plot indicates
coherent up-regulation in the group on the right of the heading label (e.g. gametocyte
genes are up-regulated in TP3 compared to TP2; first column, last row).

populations from animals that did not receive the AMD have much higher relative

abundances of gametocytes, whereas in the parasite profile from the animal that did

receive the AMD is much closer to the TP2 profiles (D); the first PC explains 84% of

the variance in the gametocyte genes.

Interestingly, for the schizont-specific genes, the parasite profiles from TP3 are

all qualitatively similar to those of TP2 in the first principal component direction

(x-axis); this PC explains much of the variance and has been used to describe the

general trajectory of the genes in a group. However, the parasite profiles from the

two animals that did not receive the AMD have a qualitatively different location in

the second principal component (y-axis). This result suggests that there is a shift

in the underlying schizont gene expression program as the infection progresses, and

further, that this shift in schizont-specific genes is ablated by AMD treatment. I
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note that these differences are only suggestive of a trend and that I did not perform

statistical analysis on the differences between the three TP3 samples due to the lack

of replicates.

The PC loading plots of the ring- and trophozoite-specific gene sets show a general

lack tight co-regulation of expression of these genes (Figure 29E,F). In contrast, both

the schizont- and gametocyte-specific gene sets demonstrate a relatively high level of

expression coherence (Figure 29G,H).

5.4.7 Trajectory of selected multigene families

Plasmodium helical interspersed subtelomeric family (PHIST) proteins have recently

been shown to contain a erythrocyte cytoskeleton binding domain and consequently

may play an important role in the rigidity of the infected red blood cell (iRBC),

export of antigens, and formation of cytoadherence knobs, all of which play a role in

the virulence of the infection.[90]

Tryptophan-rich antigens (TRAs), another large multigene family present in many

Plasmodium species, are exported to the parasite cell membrane and may play a role

in erythrocyte binding and invasion, an important step in the parasite blood stage

progression.[95, 153, 21]

Both of the aforementioned protein families, PHIST and TRA, have a high ex-

pression at TP2, with lower expression level at later time points, TP3 and secondary

(Figure 30A,B). Furthermore, nearly all members of these two families are tightly

co-regulated (Figure 30C,D).

I also examined the expression trajectory of P. cynomolgi interspersed repeats

(CYIR) genes (the largest multigene family in this parasite species), but there was

no significant trend across experimental groups, nor was there expression coherence

in the principal component loadings, which shows that transcripts from these genes

are not co-regulated (not shown).
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Figure 29: Life-stage-specific gene expression. (A-D) Plots of the first two PCs
for the life-stage-specific gene sets. In all four plots, the two parasite profiles from TP3
(green inverted triangles) for the macaques that did not receive a sub-curative dose
of artemether are closer together than to the parasite profile from the macaque that
did receive the sub-curative artemether treatment. Samples from TP2, blue triangles;
samples from relapsing time points, gold circles. (E-H) Principal component loading
plots.

5.5 Discussion

In this study, I reported on parasite transcriptome-wide expression profiling across

multiple infection peaks, and determined that P. cynomolgi has a qualitatively differ-

ent gene expression profile between relapsing and primary parasitemias. Furthermore,
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Figure 30: Trajectory of PHIST proteins and tryptophan-rich antigens
(TRA) across the 100-day experiment. Composite measure of (A) PHIST pro-
tein and (B) TRA at the three clustered groups. Principal component loading of the
(C) PHIST and (D) TRA genes show tight coherence of expression with the first PC
explaining 76% and 80%, respectively.

the expression differences were life-stage coherent and indicated that the parasite pop-

ulations of the relapsing time points showed much lower relative abundance of the

sexual stage gametocytes.

5.5.1 Sexual stage abundance

A rather striking finding is that gametocyte-specific genes are lowly expressed in the

relapsing parasitemias compared to both the peak of parasitemia (TP2) and the later

stage of the first parasitemia peak (TP3) of the primary blood stage. This implies

that compared to the primary infection, relapsing parasitemias have a much lower

relative abundance of gametocytes that circulate in the blood. As suggested else-

where, transition from asexual to sexual forms may be due to either host or parasite

factors such as relative reticulocyte abundance or quorum sensing by microvesicle
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or exosome, respectively.[149, 150, 120] But the exact mechanisms controlling the

shift from asexual to sexual development are not completely understood.[3] The re-

sults from this study are inconclusive since reticulocyte data is not yet available, and

microvesicles were not interrogated. Gametocyte formation was qualitatively asso-

ciated with parasite abundance in the blood-stage, but a greater understanding of

gametocyte differentiation requires many more samples.

High gametocytemia in the primary infection and lower gametocyte production

in subsequent relapses may be adaptive and increase the fitness of the parasite in the

following way. When a naive host is infected with P. cynomolgi, there is a strong

host immune response. The parasites that most quickly shift from asexual to sexual

development and produce viable gametocytes to be taken up by a mosquito will leave

the most offspring.

Likewise, in an animal that survived the primary parasitemia, it may be advanta-

geous to the parasite to replicate asexually for a longer period of time. Regardless of

the evolutionary reason(s) for this behavior, the mechanism of control is likely to be

genetic and regulated in response to the host. As more data is gathered, analyzed,

and integrated, a deeper understanding of the mechanisms involved in gametocyte

commitment should begin to emerge.

5.5.2 Parasites from relapse spend less time in the schizont stage

In addition to the decreased number of gametocytes produces in the relapsing time

points, schizont-specific gene expression is also decreased. TP2 has the highest

schizont-specific expression, suggesting that parasites from TP2 –and to a lesser extent

TP3– spend more time in the schizont stage, which is when the parasite undergoes

asexual division to increase its numbers, compared to relapsing parasite populations.

The first peak of parasitemia is characterized by much higher parasite densities

which co-occurs with the longer duration spent in the schizont stage of the IDC. This
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association, while tentative based on the small sample size, should be further explored,

since controlling parasitemia levels and the resulting severe malarial symptoms is an

important goal in the treatment of this disease.

5.5.3 Previously observed effects of AMDs on parasite

Although there is only one sample for which I have parasite expression soon after

artemether administration, it appears that artemether reduced the abundance of ga-

metocytes in the blood stage, a finding consistent with previous reports.[48, 107, 50]

Interestingly, though, the relative level of gametocyte abundance after AMD treat-

ment is only comparable to that of TP2; in contrast, the relapsing parasite popula-

tions have a much lower gametocyte abundances. This finding re-affirms that there

are parasite regulatory networks that limit the production of gametocytes. Further

investigation into these networks and the genes important in gametocyte development

would facilitate drug development to target gametocyte activation pathways, thereby

limiting sexual-stage parasites and decreasing malaria transmission.

5.5.4 Caveats of this study

In this study, there were only 10 samples that contained a sufficient number of par-

asite reads to accurately quantify expression. This low number of samples decreased

statistical power to determine differential expression. In spite of this challenge, many

genes in coherent gene sets were identified as differentially regulated between the

experimental groups. Further, while some libraries had much fewer reads than oth-

ers, my down-sampling methodology demonstrated that the qualitative differences

between the experimental groups were robust to read sequencing depth.

In spite of the high depth of coverage of RNA-seq and the repeated measures

taken from the same animals across numerous time points, the causal direction can-

not be assigned between host and parasite transcriptome dynamics. That is, while I

have found qualitative differences in the parasite transcriptome between primary and
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relapse parasitemias, I cannot make the claim that the qualitatively different host

clinical parameters (anemia, thrombocytopenia, fever, lethargy, dehydration, etc.)

are being driven by the parasite transcriptome changes. Likewise, I cannot say that

the host immune response is causing the differences observed in the parasite tran-

scriptome. However, I have identified parasite transcriptional differences that are

associated with the severity of the malaria infection. These results should shape the

design of future experiments.

5.5.5 Future studies

Using this rich in vivo Plasmodium expression dataset, many additional analyses

could be performed. Firstly, I suggest that the shift in abundance of expressed alleles

should be tracked. That is, over the course of the experiment and in direct response

to the artificial selection imposed by the administration of anti-malarial drugs, advan-

tageous mutations may arise in the parasite. These mutations would then be selected

for if they offered a fitness advantage to the parasite. While this type of analysis has

never been performed previously and could have very important implications in our

understanding of the rate of evolution and selection occurring in the parasite genome

during an in vivo infection within a host, it may not be the best experiment to explore

this phenomenon.

In this P. cynomolgi infection, a completely curative dose of artemether was used

to eliminate the blood stage parasite. Subsequent relapsing parasitemias come from

the reactivation of dormant hypnozoites from the liver. These parasites are not af-

fected by the artemether, and so would not have experienced selection against the

oxidative stress induced primarily in the red blood cell. I would strongly advise,

however, that this type of analysis be performed in subsequent experiments, particu-

larly in the P. coatneyi infection, since in this experiment only subcurative doses of
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artemether are given. I would expect to see advantageous mutations arise which in-

crease the expression of proteins that can mitigate the increases in oxidative damage

to proteins and DNA.

Due to the nature of RNA-seq, the abundance of different isoforms for parasite

genes could also be explored. However, the number of Plasmodium genes shown to

have alternative isoforms is rather low (5% to 10%) compared to, say, Homo sapiens

(nearly all expressed genes).[140]
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CHAPTER VI

CONCLUDING REMARKS

In CHAPTER II, I outlined the analytical methods and integrative techniques which

were used in subsequent chapters. I showed also that the anti-malarial drug pyrimethamine

dysregulates numerous pathways in both the blood and bone marrow and that many

of the effects persist for at least 30 days after the administration of the drug. For

the treatment of malaria, which often requires only intermittent administration, these

host effects may not be of concern. However, in light of the possibility of re-purposing

this drug for the treatment of ALS, which would likely require a more regular usage,

further investigations into the safety of this drug need to be performed.

In CHAPTER III, I reported on the host transcriptional response to malaria

infection, and detail the qualitatively different host response between primary and

relapsing parasitemia peaks. The marked difference in magnitude of host transcrip-

tional changes between the primary and relapsing parasite peaks was unsurprising

given the vast difference in clinical parameters and outcomes between the two peak

types. However, there were qualitatively different pathways enriched in the relaps-

ing parasitemias. With the sparse sampling of this study, I cannot comment on the

day-to-day changes that may have occurred in either the primary or relapsing para-

sitemias. Follow-up studies with greater sampling rates are planned for later this year

and should yield greater insight into host immune response. Furthermore, transcrip-

tional profiling was performed on whole blood. In subsequent experiments, immune

cell subsets will be sorted and profiled separately, a study design change which should

give greater transcriptional resolution and ability to identify differential expression in

important cell types.
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In CHAPTER IV, I implemented a novel expression deconvolution method to

determine the life-stage composition of samples from a previously-reported P. fal-

ciparum IDC. Using this method, I was able to identify genes whose expression is

parasite stage-specific and used those gene sets in two subsequent chapters which

concerned parasite transcriptional profiling. In studies of gene expression profiling,

especially in Plasmodium where most genes have stage-specific expression, it will be

useful to employ expression deconvolution to estimate the abundance of cell types,

and then to subsequently use those estimates as both variables as well as covariate in

differential gene expression analysis.

In CHAPTER V, I identified qualitative alterations in the parasite transcriptome

between primary and relapsing infection peaks across a 100-day infection cycle. I

found that gametocytes were more abundant in parasite populations from untreated

animals compared to parasites from an animal treated with the anti-malarial drug

artemether. Due to a small sample size, it would be inappropriate to conclude that the

AMD caused the shift away from the production of the sexual stage of this parasite.

However, it does merit further investigation.
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