

Technical Report

Golay and Wavelet Error Control Codes in VLSI

Arunkumar Balasundaram, Angelo Pereira, Jun Cheol Park and Vincent Mooney

Georgia Institute of Technology, Atlanta, Georgia, U.S.A

December 2003

 2

1. INTRODUCTION

This technical report describes AGNI (meaning Fire in Sanskrit) – a VLSI chip to implement

error control codes. The chip was initially conceived and designed as part of a Georgia Tech

Cutting Edge Research Grant. However, this chip implementation of error control codes has

been undertaken as a part of the ECE 6130 course taught in Spring 2002 by Dr. John

Uyemura, Professor, Department of Electrical and Computer Engineering, Georgia Institute

of Technology. Two coders have been implemented: a (12, 6, 4) wavelet encoder/decoder

and a (24, 12, 8) golay encoder/decoder, where the (N, M, d) nomenclature stands for

(N=encoded length, M=message length, d=hamming distance). These codes have a

correctable limit of one bit error and three bit errors, respectively. The following section

presents the encoding/decoding functionality of the chip in more detail.

This project could potentially feed a future project to incorporate the chip into a System-on-

a-Package (SoP). It is expected that the chip would function as a high-speed error

encoder/decoder for Radio Frequency (RF) applications.

2. ENCODING/DECODING FUNCTIONALITY OF THE CHIP

Table I presents examples of wavelet and wavelet-based golay encoding schemes [1], in

which we put a comma after every 4 digits to enhance readability. The decoding of wavelet

and golay codes with one bit error and three bit errors, respectively, have been shown in

Table II.

TABLE I
Examples of wavelet and golay encoding schemes

 Message Code

Wavelet 00,0001 0100,1101,0011

Golay 0000,0000,0001 1010,0011,0011,1100,0001,0011

TABLE II
Examples of wavelet and golay decoding schemes

with bit errors

 code Message

Wavelet 0100,1100,0011 00,0001

Golay 1010,0011,0111,0101,0001,0011 0000,0000,0001

 3

The design achieves the encoding/decoding functionality in combinational logic. It has been

found that all blocks, except the golay decoder, can be simplified to a single stage

combinational logic block. This simplification has helped us achieve higher clock speeds of

approximately 150 MHz and data transfer rates of the order of 900 Megabit/sec using a

0.25 µm CMOS library provided by Artisan, Inc. [2].

3. DESIGN APPROACH

The design has been achieved using a typical design flow for designing an Integrated Circuit

(IC). Figure 1 illustrates this design flow and the tools that have been used to implement the

various steps. The following subsections present more details of each of these steps.

RTL Description using Verilog

Functional Verification and
Testing using MODELSIM

Floor Planning, Automatic Place and Route
using Cadence SILICON ENSEMBLE

Design specification

Logic Synthesis using Synopsys
Design Compiler

Logical Verification and timing
simulations using MODELSIM

Physical Layout

Implementation by
MOSIS

Layout Verification

Gate Level Netlist

Figure 1: Design Flow of the circuit

Artisan’s TSMC
0.25 µm library

 4

3.1. Register Transfer Level (RTL) description using Verilog

The RTL description of the circuit has been done using Verilog and the corresponding data

flow is shown in Figure 2. The design is fully synchronous and positive edge triggered.

Wavelet
encoder

Wavelet
decoder

Golay
encoder

Golay
decoder

Output
Register file

Input
Register file

Output
Selection logic

rst
clkin
selin [1:0]
wordin [1:0]
datain [5:0]
validin

dataout [11:0]
validout

6

12

12

24

54

12

6

24

12

The core of the design consists of four modules – wavelet encoder, wavelet decoder, golay

encoder and golay decoder. The input/output specifications of the four modules are shown in

Table III. The first three modules, i.e., wavelet encoder, wavelet decoder and golay encoder

are single stage combinational blocks and take one cycle to compute the output. The last

module, the golay decoder, is a multi-stage combinational block and takes 12 cycles to

compute its output.

TABLE III
Input/output specifications of the encoder/decoder modules

Module Input size (bits) Output size (bits)

Wavelet encoder 6 12

Wavelet decoder 12 6

Golay encoder 12 24

Golay decoder 24 12

The total number of inputs and outputs in Figure 2 is 26. The number of data input bits (six)

and output bits (twelve) is chosen to optimize the wavelet encoder case; another motivation

in choosing only 26 inputs and outputs is to keep packing costs low.

Figure 2: Data flow description of the circuit

 5

3.1.1. Wavelet encoder

The four encoder and decoder modules shown as shaded blocks in Figure 2 are implemented

based on the algorithm structure explained in [9]. Since this report focuses on the hardware

implementation of the four encoders and decoders, the detailed algorithmic derivations are

not fully described. Interested readers may refer to [9] for an in-depth explanation of the

algorithms used.

⁭ 2m(n)

⁭ 2

g0(n)

g1(n)

+ c(n)
x0(n)

x1(n)

αz-l

Figure 3 shows the encoder of an (N, M, d) wavelet code that maps the message block m(n)

of size M = N/2 to the codeword c(n) where n indicates the nth sequence (0 < n < N-1). ‘d’ is

the hamming distance. The wavelet encoder uses (N=12, M=6, d=4). In Figure 3, x0(n) and

x1(n) are wavelet coefficients. The synthesis filters g0(n) and g1(n) are the scaling sequence

and mother wavelet, respectively. In [9], the relationship and values for the wavelet encoder

of synthesis filters are given as follows.

 g0((n))N = g1((-n-1))N (1)

 g0(n) = {10101001001}, g1(n) = {100010010101} (2)

where ((⋅))N denotes a modulo-N operation. The filter bank structure of the wavelet encoder

shown in Figure 3 is expressed as follows:

 c(n) = (G0x0)(n) + (G1x1)(n), (3)

in which G0 and G1 are 2-circulant matrices (in an n-circulant matrix, each row is identical

to the previous row but n-position shifted and wrapped around). The upsampling of periodic

signals by a factor two followed by a filtering operation can be represented by the algebra of

2-circulant matrices. The 2-circulant matrix Gj can be derived from following equations.

Figure 3: Filter bank structure of the wavelet encoder

 6

 T
jHGj = (4)




















−−−
−

=

)1()4()3()2(

)3()0()1()2(
)1()2()1()0(

jjjj

jjjj

jjjj

j

gggg

NggNgNg
Ngggg

H j = 0, 1. (5)

In Equation 3, x1(n) is αz-l ⋅ m(n) (i.e., αz-l ⋅ x0(n)), in which the product of the parameter α

and the delay z-l can be expressed as l∏ . l∏ is a one-circulant matrix, in which each

element of the first row is zero except for the (l+1) position. The delay l can be chosen any

value from the set {1, 2, 4, 5} to satisfy the required hamming distance of four. It may be

noted that codes generated by different choices of l are all equivalent. We use l=5 for the

wavelet encoder and decoder. As a result, Equation 3 can be expressed as follows.

 c(n) = (G0 + G1 l∏)(x0(n)) (6)

Because we use one-bit operation, operation a + b is equivalent to a XOR b (i.e., a ⊕ b).

Finally, the codeword c(n) is expressed with message block m(n) as in Equation 7.

c(0) = m(0) ⊕ m(3) ⊕ m(4)
c(1) = m(0) ⊕ m(2) ⊕ m(3)
c(2) = m(1) ⊕ m(4) ⊕ m(5)
c(3) = m(1) ⊕ m(3) ⊕ m(4)
c(4) = m(0) ⊕ m(2) ⊕ m(5)
c(5) = m(2) ⊕ m(4) ⊕ m(5)
c(6) = m(0) ⊕ m(1) ⊕ m(3)
c(7) = m(0) ⊕ m(3) ⊕ m(5)
c(8) = m(1) ⊕ m(2) ⊕ m(4)
c(9) = m(0) ⊕ m(1) ⊕ m(4)

c(10) = m(2) ⊕ m(3) ⊕ m(5)
c(11) = m(1) ⊕ m(2) ⊕ m(5)

 (7)

Figure 4 shows the logic diagram which implements the expressions in Equation 7.

 7

C(0)

C(1)

C(11)

m(0)

m(1)

m(5)

.

.

.

.

.

.

.

.

.

…
…

…

3.1.2. Wavelet decoder

↓2c(n) h0(n) + s(n)

αz-(M-l)

+

channel error: e(n)

↓2h1(n)

The syndrome of the wavelet is shown in Figure 5, in which s(n) is the syndrome and e(n) is

an error pattern due to the communication channel. A syndrome is a sequence that is

uniquely associated with a set of codewords within hamming distance d (note that the

wavelet code nomenclature (N, M, d) stands for the encoded length, message length and

hamming distance as explained in Section 1). Therefore, if the number of error bits

occurring during data transmission is equal to or less than (d-1), then we can detect that the

received codeword is not valid. However, the number of correctable error bits is smaller than

the number of detectible error bits. h0(n) and h1(n) are two analysis filters that are given as

follows:

 hj((n))N = hj((-n))N j=0,1 n=0,….,N-1 (8)

 h0(n) = {110001001010}, h1(n) = {110101001000}. (9)

Figure 4: Logic diagram of the wavelet encoder

Figure 5: Filter bank of the syndrome generator

 8

The filter bank shown in Figure 5 can be expressed as follows:

 s(n) = (H0 + H1
T
l∏)(e(n)) = H2(e(n)) (10)

where H2 is 2-circulant matrix of h2, i.e., h0(n) + h1((n+2l))N. h2 is given as follows:

 h2(n) = {111100011000} (11)

where H2 is constructed using the relation h2((2n-i))N. To reconstruct m(n), we interpolate

the low (M) dimensional syndrome s(n) into the higher (N) dimensional error pattern e(n).

The given decoder algorithm in [9] inverts the polyphase filters of the syndrome generator

filter h2(n). The two polyphase filters of h2(n) are as follows:

 u00(n) = h2(2n) = {110010},

 u01(n) = h2(2n+1) = {110100}. (12)

The two inverting filters r00(n) and r01(n), which are the circulat inverses of u00(n) and u01(n),

respectively, are defined as follows:

 R0i(z) U0i(z) = 1 mod (z-M – 1) i=0,1

 r00(n) = {001011},

 r01(n) = {011010} (13)

 R00*U00 =



























001000
000100
000010
000001
100000
010000

 , R01*U01 =



























000100
000010
000001
100000
010000
001000

 .

In Equation 13, R0i and U0i are one-circulant matrices. Note the R01*U01 matrix shows z-1

delay from the R00*U00 matrix. Then, the reconstruction algorithm is given as Figure 6.

 9

s(n)

r00(n)

+
ê(n)

z-(N-l)
r01(n)

⁭ 2

⁭ 2

Weight computation h0(n) ↓2 m(n)

c(n)+e(n)1

2

The algorithm generates the message m(n) from syndrome s(n). The algorithm selects node1

or node2 according to the weight computation, in which node 2 is selected whenever the

weight is 5. The error weight wt(e) is given by R00*H2.

even

odd

weight computation

c(n)
12

6

6

6
m(n)

6
selection

m(0) = c(5) ⊕ c(9) ⊕ c(11)
m(1) = c(1) ⊕ c(7) ⊕ c(11)
m(2) = c(1) ⊕ c(3) ⊕ c(9)
m(3) = c(3) ⊕ c(5) ⊕ c(11)
m(4) = c(1) ⊕ c(5) ⊕ c(7)
m(5) = c(3) ⊕ c(7) ⊕ c(9)

even

m(0) = c(2) ⊕ c(4) ⊕ c(8)
m(1) = c(4) ⊕ c(6) ⊕ c(10)
m(2) = c(0) ⊕ c(6) ⊕ c(8)
m(3) = c(2) ⊕ c(8) ⊕ c(10)
m(4) = c(0) ⊕ c(4) ⊕ c(10)
m(5) = c(0) ⊕ c(2) ⊕ c(6)

odd

wt(0) = c(0) ⊕ c(1) ⊕ c(3) ⊕ c(5) ⊕ c(7) ⊕ c(9)
wt(1) = c(2) ⊕ c(3) ⊕ c(5) ⊕ c(7) ⊕ c(9) ⊕ c(11)
wt(2) = c(1) ⊕ c(4) ⊕ c(5) ⊕ c(7) ⊕ c(9) ⊕ c(11)
wt(3) = c(1) ⊕ c(3) ⊕ c(6) ⊕ c(7) ⊕ c(9) ⊕ c(11)
wt(4) = c(1) ⊕ c(3) ⊕ c(5) ⊕ c(8) ⊕ c(9) ⊕ c(11)
wt(5) = c(1) ⊕ c(3) ⊕ c(5) ⊕ c(7) ⊕ c(10) ⊕ c(11)

weight computation

 (14)

We implement the wavelet decoding architecture by optimizing the algorithm given in

Figures 5 and 6. The resulting optimized architecture (and algorithm) is as shown in

Figure 6: Filter structure to reconstruct the message sequence

Figure 7: Logic diagram of the wavelet decoder architecture

 10

Figure 7. The logic blocks “even” and “odd” generate message m(n) from codeword c(n)

using Equation 14. The even and odd logic blocks can be derived from the following

expressions:

 even= H0*(R00*H2+I)*c(n)

 odd = H0*(z-11*R01*H2+I)*c(n). (15)

The weight computation logic computes weights using Equation 14. The selection logic

takes the output of the “odd” logic block as a message m(n) when the result of the weight

computation has 5 ones and 1 zero, i.e., weight=5.

3.1.3. Wavelet-base golay encoder

The wavelet-based golay encoder uses a similar algorithm to the wavelet encoder but has

different sizes for the message block and codeword (i.e., (N=24, M=12, d=8)).

Consequently, the golay encoder uses 24-bit filters instead of the 12-bit filters used in

Equation 2. The scaling sequence and mother wavelet for golay are given as follows:

 g0(n) = {A80011}, g1(n) = {40DD55}. (16)

In the results in [9], the golay encoder does not use the delay element. Hence equation 6 is

modified for the golay encoder as follows:

 c(n) = (G0 + G1)(x0(n)). (17)

The 2-circulant matrices G0 + G1 can be derived from Equation 4 and 5. As a result, the

codeword c(n) is expressed as follows:

c(0) = m(0) ⊕ m(6) ⊕ m(8) ⊕ m(10) ⊕ m(11)
c(1) = m(0) ⊕ m(2) ⊕ m(4) ⊕ m(5) ⊕ m(6) ⊕ m(7) ⊕ m(8)
c(2) = m(0) ⊕ m(1) ⊕ m(7) ⊕ m(9) ⊕ m(11)
c(3) = m(1) ⊕ m(3) ⊕ m(5) ⊕ m(6) ⊕ m(7) ⊕ m(8) ⊕ m(9)
c(4) = m(0) ⊕ m(1) ⊕ m(2) ⊕ m(8) ⊕ m(10)
c(5) = m(2) ⊕ m(4) ⊕ m(6) ⊕ m(7) ⊕ m(8) ⊕ m(9) ⊕ m(10)
c(6) = m(1) ⊕ m(2) ⊕ m(3) ⊕ m(9) ⊕ m(11)
c(7) = m(3) ⊕ m(5) ⊕ m(7) ⊕ m(8) ⊕ m(9) ⊕ m(10) ⊕ m(11)
c(8) = m(0) ⊕ m(2) ⊕ m(3) ⊕ m(4) ⊕ m(10)
c(9) = m(0) ⊕ m(4) ⊕ m(6) ⊕ m(8) ⊕ m(9) ⊕ m(10) ⊕ m(11)
c(10) = m(1) ⊕ m(3) ⊕ m(4) ⊕ m(5) ⊕ m(11)
c(11) = m(0) ⊕ m(1) ⊕ m(5) ⊕ m(7) ⊕ m(9) ⊕ m(10) ⊕ m(11)
c(12) = m(0) ⊕ m(2) ⊕ m(4) ⊕ m(5) ⊕ m(6)
c(13) = m(0) ⊕ m(1) ⊕ m(2) ⊕ m(6) ⊕ m(8) ⊕ m(10) ⊕ m(11)
c(14) = m(1) ⊕ m(3) ⊕ m(5) ⊕ m(6) ⊕ m(7)
c(15) = m(0) ⊕ m(1) ⊕ m(2) ⊕ m(3) ⊕ m(7) ⊕ m(9) ⊕ m(11)
c(16) = m(2) ⊕ m(4) ⊕ m(6) ⊕ m(7) ⊕ m(8)
c(17) = m(0) ⊕ m(1) ⊕ m(2) ⊕ m(3) ⊕ m(4) ⊕ m(8) ⊕ m(10)
c(18) = m(3) ⊕ m(5) ⊕ m(7) ⊕ m(8) ⊕ m(9)
c(19) = m(1) ⊕ m(2) ⊕ m(3) ⊕ m(4) ⊕ m(5) ⊕ m(9) ⊕ m(11)
c(20) = m(4) ⊕ m(6) ⊕ m(8) ⊕ m(9) ⊕ m(10)
c(21) = m(0) ⊕ m(2) ⊕ m(3) ⊕ m(4) ⊕ m(5) ⊕ m(6) ⊕ m(10)
c(22) = m(5) ⊕ m(7) ⊕ m(9) ⊕ m(10) ⊕ m(11)
c(23) = m(1) ⊕ m(3) ⊕ m(4) ⊕ m(5) ⊕ m(6) ⊕ m(7) ⊕ m(11)

 (18)

 11

Figure 8 shows the logic diagram, which implements the expressions in Equation 18.

.

.

.

C(0)

C(1)

C(23)

m(0)

m(1)

m(11)

.

.

.

.

.

.

…
…

…

3.1.4. Golay decoder

For the wavelet-based golay decoder, filters are given in [10] as follows:

 g0(n) = {A80011}, g1(n) = {40DD55},

 h2(n) = {915D8B}, (19)

 r00(n) = {100101001001}, r01(n) = {101100110110}.

s(n)

r00(n)

+
ê(n)

z-(N-l)
r01(n)

⁭ 2

⁭ 2

Weight computation h0(n) ↓2 m(n)

c(n)+e(n)1

2

δ(n-n0)

z-(N-l)

ηoe(n)

⁭ 2

⁭ 2
Weight computation

3

+ +

y0(n)

controller

δ(n-n1) ηeo(n) ⁭ 2+ +

⁭ 2
z-(N-l)

y1(n) Weight computation controller

4

x0(n)

x1(n)

y1(n)

y0(n)

Figure 8: Logic diagram of the golay encoder

Figure 9: Wavelet-based golay decoder to reconstruct message m(n)

 12

Figure 9 shows how the golay decoder algorithm generates message m(n), in which ηεο and

ηοε are defined as follows:

ηεο = u01(n) * r00(n), ηοε = u00(n) * r01(n). (20)

Similar to the wavelet decoder, a golay decoder generates an appropriate error patter e(n)

according to the error weight. The error weight wt(y0) and wt(y1) can be obtained in a

manner similar to the wavelet decoding scheme. Since the weights wt(x0) and wt(x1) are

dependent on n0 and n1, respectively, the weights for the x0 and x1 sequences need to be

calculated at most M times, i.e., 12 times, to obtain desired error weight corresponding to the

most likely bit errors while varying n0 and n1.

H0Y0H

H0Y1H

weight computation

24 12
m(n)X0H

X1H

H0

H0

12

12

12

12
n1

n0

2

c(n)+e(n)

Figure 10 shows the logic diagram of the wavelet-based golay decoder. The logic blocks

H0Y0 and H0Y1 are typical syndrome generators. Logic blocks X0 and X1 calculate the

weight while varying n0 and n1. Unlike the algorithm in [10], which processes X0 and X1

weight computation in serial and thus takes up to 24 iterations, we use parallel weight

computation. The use of parallel weight computation results in a maximum required number

of iterations of 12. The calculated weight from the weight computation logic decides

appropriate message sequences.

3.1.5. Inputs to the circuit

We now describe input/output pins and functional blocks other than shaded encoder/decoder

modules in Figure 2.

Figure 10: Logic diagram of the wavelet-based golay decoder

 13

(a) rst: rst is an asynchronous reset, for all internal flip-flops. The positive edge is used.

(b) clkin: clkin is the pin providing the input clock to all the flip-flops. The positive edge of

clkin is used to update the outputs.

(c) selin [1:0]: selin is a two bit wide signal to select among the four modules available. At

any given time only one of the encoders/decoder modules may be in use. Table IV lists the

select signal for the four modules.

TABLE IV
Select signal for the encoder/decoder modules

Module selin [1:0]

Wavelet encoder 00

Wavelet decoder 01

Golay encoder 10

Golay decoder 11

(d) wordin [1:0]: wordin is a 2-bit wide signal that indicates which segment of a multiple

word sequence (dictated by the module that is chosen by selin) is given in a clock cycle. For

example, if the multi-word input to the golay decoder is 0xa37513 [1010 0011 0111 0101

0001 0011], the sequence of the words, given as datain [5:0], in the various clock cycles is

shown in Table V.

TABLE V
Sequencing of multi - word input

Cycle wordin [1:0] datain [5:0]

0 11 101000

1 10 110111

2 01 010100

3 00 010011

(e) datain [5:0]: datain is a 6-bit wide input bus, that brings in a single binary word for

encoding or decoding. In conjunction with the wordin [1:0] signal, it is used to input

multiple word sequences to the circuit.

 14

(f) validin: validin is a signal used to indicate start/stop/resume of data transmission. A value

of ‘1’ on this line indicates that the current values of datain [5:0] are valid. A value of ‘0’

indicates the converse.

3.1.6. Outputs of the circuit

(a) dataout [11:0]: dataout is the 12-bit wide output bus of AGNI.

(b) validout: validout is the complementary signal to validin on the output side. The dataout

is valid only when validout signal is ‘1’.

3.1.7. Input register file

This module has a 24-bit register with four 6-bit segments, which receive and store the input

data. If the four 6-bit segments are labeled as [5:0], [11:6], [17:12], [23:18], Table VI shows

the data flow from the input register file to the encoder/decoder modules in conjunction with

the selin [1:0] and wordin [1:0] signals in the various clock cycles.

TABLE VI
Data flow from the Input register file to the

encoder/decoder modules
Modules Segments of input register

file activated

Wavelet encoder [5:0]

Wavelet decoder [5:0],[11:6]

Golay encoder [5:0],[11:6]

Golay decoder [5:0],[11:6],[17:12],[23:18]

3.1.8. Output register file

The 54-bit output register file in Figure 2 consists of four registers, one for each

encoder/decoder module. The register widths correspond to the size of the output produced

by the respective encoder/decoder module.

 15

3.1.9. Output selection logic

The output selection logic selects 12-bit data from the 54-bit output register file

corresponding to one output of the four encoder/decoder modules as shown in Figure 2. In

three cases, the 12-bit data contains the entire output; in the fourth case, the wavelet-based

golay encoder case, the output consists of 24 bits. Thus, for the wavelet-based golay encoder

output, the 24-bit data output is communicated in two consecutive clock cycles.

encoding/decoding Logic

selIn [1:0]
dataOut [11:0]
validOut

output selection logic

oslTWL2selWve oslTWL2latchselWve oslTWL2latchselWveDelayed1

dataIn [5:0] input
register file

output
register file

oslTWL2selWvd oslTWL2latchselWvd oslTWL2latchselWvdDelayed1

oslTWL2selGye oslTWL2latchselGye oslTWL2latchselGyeDelayed1

oslTWL2selGyd oslTWL2latchselGyd oslTWL2latchselGydDelayed1

oslTWL2latchselGyeDelayed2

flip-flop
selection

logic

output
data

selection
logic

Figure 11 shows the internal structure of the output selection logic. The selIn signal in

Figure 11 is connected to flip-flop selection logic in the output selection logic. The output

selection logic has four internal pipelines, consisting of the edge-triggered flip-flops shown

as shaded boxes in Figure 11. The flop-flop selection logic transfers a “1” to one of the four

flip-flops connected to the flip-flop selection logic according to the selIn signal. Each flip-

flop in the internal pipelines transfers its input (which, in the case of a “1” input, is a control

signal) to the next flip-flop in each clock. The pipeline for the golay encoder has one extra

stage since the golay encoder requires two cycles to transfer a 24-bit output to the 12-bit wide

dataOut port. The output data selection logic selects 12-bit data from the output register file

according to the control signals from the flip-flops of the internal pipelines. The output data

selection logic transfers the selected 12-bit data to the dataOut port; the output data selection

logic also generates the validOut signal for the validOut port.

3.2. Functional verification and testing using MODELSIM

The following tests are used in the verification effort.

Figure 11: Logic diagram including internal details of the output selection logic

 16

3.2.1. Basic tests for each module

Four tests have been written, one for each encoder/decoder module. The tests for the encoder

are exhaustive, i.e., all message words have been used and thus all corresponding code words

have been generated. For the decoders, both clean code words as well as some subset of

randomly corrupted code words have been used. We verified that the decoders are able to

correct errors within their respective correctable limit. For the wavelet decoder, the

correctable limit is one bit, while for the wavelet-based golay decoder the correctable limit is

three bits. Since we initially targeted 50 Mhz as a worst case operational clock frequency, all

testbenches use a 20 ns clock (later, we were able to reach almost 190 Mhz). The test vector

set and expected result set for each of these tests have been generated from reference designs

implemented in MATLAB.

The simulations have been performed using Mentor Graphics’ MODELSIM simulator [3].

Simulation results are available as a MODELSIM waveform, which are shown as Figures 12,

13, 14 and 15 for the wavelet encoder, wavelet decoder, golay encoder and golay decoder,

respectively. The simulation diagrams show the progression of data flow from data input to

clocking into the input register file, the code or message generated by the appropriate

encoder/decoder module and it’s clocking into the output register file to finally select the

appropriate module for output to be released to the external world. In Figures 12, 13, 14 and

15, the signal irfTBGdataOut1 refers to the input register file. The signals wveTBG2code

(Figure 12) and gyeTBG2code (Figure 13) refer to the codes generated by the wavelet

encoder and golay encoder, respectively. The signals wvdTBG2mesg (Figure 14) and

gydTBG2mesg (Figure 15) refer to the messages generated by the wavelet decoder and golay

decoder, respectively. The signals orfTBG2wveOutReg (Figure 12), orfTBG2wvdOutReg

(Figure 13), orfTBG2gyeOutReg (Figure 14) and orfTBG2gydOutReg (Figure 15) refer to the

appropriate segments of the output register file corresponding to wavelet encoder, wavelet

decoder, golay encoder and golay decoder, respectively.

In Figure 12, the signal selIn=0 means that the wavelet encoder is active. The second input

value in dataIn is 0x01 after the validIn=1. The wavelet encoder generates corresponding

output 0x2d3 through the dataOut port 3 cycles after the data input

 17

The wavelet decoder simulation is shown in Figure 13 (selIn=1). To demonstrate the error

correction functionality of the wavelet decoder, we took the output data from the dataOut in

Figure 12 and modified 1-bit of 12 bits. Then the modified 12-bit is used as data inputs for

the dataIn in Figure 12. The wavelet decoder requires a 12-bit data input and the data input

port is 6-bit wide. Therefore, the 12-bit input data are inserted in 2 cycles in a serial manner.

The most significant 6 bits are inserted first with the signal wordIn=1 and then the least

significant 6 bits are inserted with the signal wordIn=0. In Figure 13, at the third and the

fourth cycles after valid=1, the dataIn inputs are 0x0b and 0x03, respectively. These inputs

represent binary values 001011 and 000011, respectively, which, when placed together, form

{001011, 000011} (=0x2c3). Please note the combined number has a one bit error from

{001011, 010011} (=0x2d3), which is the encoded version of 0x01. The wavelet decoder

generates an error corrected output signal 000001 (=0x01) using the 6-bit dataOut port. The

dataOut output is valid as indicated by the validOut signal 3 cycles after the input of the least

significant 6 bits of the encoded bit pattern input to the wavelet decoder.

Figure 14 shows a golay encoder simulation (selIn=2). The golay encoder also needs

2 cycles to accept 12-bit input data. Similar to the wavelet decoder, the most significant

6 bits are inserted first with the signal wordIn=1 and then the least significant 6 bits are

inserted with the signal wordIn=0. In Figure 14, at the third and fourth cycles after

validIn=1, the dataIn inputs are 0x00 and 0x01, respectively. The combination of the two

inputs forms 0x001. Three cycles after the input of the least significant 6 bits of the

undecoded 12-bit input pattern, the golay encoder module returns corresponding encoded

outputs 0xa37 and 0x513 through the dataOut port. Since the output of the golay encoder is

24 bits wide and the output port of the golay encoder is 12 bits wide, the output of the golay

encoder is returned in two cycles, in which the most significant 12 bits are returned first and

then the least significant 12 bits are returned next.

Figure 15 shows golay decoder simulation (selIn=3). To demonstrate error correction

functionality of the golay decoder, we took data outputs from the dataOut signal of the golay

encoder in Figure 14 and modified one of the 24 bits to introduce 1-bit errors. Then the

modified 24-bit data are used as data inputs to the dataIn port in Figure 15. Therefore, the

data output from the dataOut signal in Figure 15 should be golay decoded to the

 18

corresponding data input from in Figure 14 (if the golay decoder error correction works

correctly). For example, output data {0xa37, 0x513} from the dataOut signal in Figure 14

are modified in one bit location and inserted as a data input for the dataIn signal in Figure 15

(please note that the data 0xe37513 in the irfTBG2dataOut1 in Figure 15 have one bit

different from {0xa37, 0x513}). The golay decoder input is 24 bits wide, while the data

input port dataIn is 6 bits wide. Therefore, 4 cycles are required to insert 24-bit input data.

When the signal validIn=1, [23:18] of the input data is inserted with the signal wordIn=3;

[17:12] of the input data is inserted with the signal wordIn=2; [11:6] of the input data is

inserted with the signal wordIn=1; and [5:0] of the input data is inserted with the signal

wordIn=0. In Figure 15, the inserted input data sets {0x38, 0x37, 0x14, 0x13}, which are

{111000, 110111, 010100, 010011} in binary numbers, are the one bit error representation of

{0x28, 0x37, 0x14, 0x13} (=101000, 110111, 010100, 010011). These numbers can be

represented as {0xa37, 0x513} (=101000110111, 010100010011), which are the encoded

version of {0x00, 0x01} (=000000, 000001). In this example, the golay decoder module

returns corresponding output 0x001 through the dataOut port after 15 cycles of the valid

dataIn[5:0] input, correcting one bit error. The golay decoder can correct errors of up to

3 bits. As mentioned earlier in Section 3.1, the wavelet encoder/decoder and the golay

encoder take one cycle to compute the output while the golay decoder takes 12 cycles. The

extra 3 cycles (15-12=3) are required to prepare input and output data.

3.2.2. Tests for dynamic switching between any two modules

A single testbench has been written to test dynamic switching from one module to another.

Figure 16 shows a dynamic transition between wavelet encoder and wavelet decoder without

losing a single cycle. In Figure 16, the first tbTWL2validIn signal, which represents the

validIn signal in the encoder/decoder modules, lasts for 4 cycles. During the 4 cycles, the

tbTLB2selIn signal, which represents the selIn signal in the encoder/decoder modules,

changes from a “0” to a “1” and then changes back to a “0.” This means that the testbench

first activates the wavelet encoder, second activates the wavelet decoder and third activates

the wavelet encoder again. The testbench takes a data input 0x01 using the tbTBL2dataIn

signal and generates an encoded number 0x2d3 to the tbTBL2dataOut outputs. Then the

testbench takes two data input {0x0b, 0x13} and generates a decoded number 0x001.

Finally, the testbench takes a data input 0x33 and generates an encoded number 0x606.

 19

Figure 12: Simulation diagram of the wavelet encoder

 20

Figure 13: Simulation diagram of the wavelet decoder

 21

Figure 14: Simulation diagram of the golay encoder

 22

Figure 15: Simulation diagram of the golay decoder

 23

 Figure 16: Simulation diagram for dynamic switching between
wavelet encoder and wavelet decoder

 24

3.3 Logic synthesis using Synopsys tools

The synthesis of the RTL design is done using the Synopsys Design Compiler [4]. The

following steps are carried out in this process:

(a) A Synopsys setup file, .synopsys_dc.setup, is created.

(b) A synthesis script is created to read in the Verilog RTL code, to set operating conditions

and optimization constraints, to insert I/O pads and to perform compilation.

(c) The synthesized netlist is ungrouped, i.e, all hierarchy is removed, and the netlist is

written out along with preliminary timing information.

The target library for the synthesis process is Artisan’s TSMC 0.25 µm CMOS library. This

library has been obtained through joint work with Prof. John Uyemura. This library is

characterized for slow, typical and fast parameters. The parameters corresponding to a fast

process has been used in this design so as to obtain the best case performance estimates.

The synthesis results are obtained as Synopsys database (.db) format, Verilog netlist, delay

Standard Delay Format (SDF) and constraint SDF. These delays, i.e, delay SDF and

constraint SDF are based on a wire load model available through Artisan’s library and

represent an approximation to the final delays in the design. The Verilog netlist and delay

SDF are used for timing simulations. The constraint SDF is used as input to the Place and

Route tool.

3.4 Logical verification and timing simulations using MODELSIM

Validation and timing simulations of the synthesized netlist is done using Mentor Graphics’

MODELSIM simulator. The following steps have been carried out in this process:

(a) The Verilog models for the gates, provided by Artisan, the synthesized netlist and

standard SDF, obtained from the synthesis step, are set up for simulation.

(b) A testbench is set up and the design is compiled from the lowest module of the hierarchy

to the top module.

 25

3.5. Floor Planning, Automatic Place and Route using Cadence Silicon Ensemble

The Silicon Ensemble (SE) tool from Cadence [5] performs Place and Route. The Verilog

netlist and the constraint SDF, obtained from the synthesis step, along with Verilog models

for the standard cells, library and timing data provided by Artisan are given as input to SE.

Library data is provided as a LEF (Library exchange format) file. Timing data is provided as

TLF (Timing Library Format) files. The TLF files are not input directly to the tool; rather

the file is specified in a GCF (General Constraints Format) file, along with operating

conditions and miscellaneous information. The following steps are then carried out to obtain

a physical layout of the design:

(a) Floorplanning: This step decides the approximate area of the chip, the amount of space

for the core cells and the Input/Output (I/O) cells.

(b) I/O cell placement: I/O signal pads, VDD/VSS pads and corner pads, which are input to

the tool as a Design Exchange format (DEF) file, are placed on the periphery of the die.

(c) Plan power: An outer VDD ring and an inner VSS ring are built around the core cell area

and vertical metal stripes are evenly spaced across the core area. Choosing the right number

of stripes to distribute power is critical to eliminating power routing problems within the

core.

(d) Timing driven placement of core cells: Automatic placement of core cells is done using

the SDF constraints for the paths in the design.

(e) Clock Tree Insertion: This step builds a tree of clock buffers so that all clocked elements

(flip-flops) receive the clock at exactly the same time. This is critical to remove or lower

clock skews in the design.

(f) Power routing: Power routing connects the VDD/VSS pins of cells to the VDD/VSS nets.

(g) Clock routing: This step is used to route clock to all cells in the design.

(h) Signal routing: Global and final routings are carried out simultaneously. Global routing

assigns a list of routing regions (channels) for interconnects without specifying their actual

geometric layout. Final routing specifies the geometric layout for the interconnects within

their assigned regions.

The physical layout of the design is obtained at this stage as a graphic data system (GDS)

file, which is clock routed, power routed and signal routed. This followed by verification of

the obtained layout.

 26

3.6. Layout verification

The physical layout is verified for timing and connectivity, geometry and antenna errors, as

presented in the following subsections.

3.6.1. Post route timing analysis

Timing analysis can be carried out at several points during the place and route. Typically it

is done after clock tree insertion, and also after the clock and signals have been routed. This

serves as a check that the design still meets the timing goals. The design has been able to

successfully meet a clock period of 5.2 ns.

3.6.2. Verification of connectivity errors

This is used to check the design for opens, antenna loops, partial routing and other

connectivity problems among interconnects in the design. The design has been able to

successfully pass this check.

3.6.3. Verification of geometry errors

This is used to check the design for width, spacing and internal geometry of cells and wiring

between them. There were no geometry errors in the design.

3.6.4. Verification of antenna errors

This step reports pins in the design which have a violation due to the process antenna effect.

The antenna effect is a side-effect of plasma-based etch processes, which are dominant

because these processes can achieve very fine feature sizes. Plasma etchers or ion implanters

can induce charge on a conductor, such as a metal layer, which is not connected to any

diffusion region(s) but is only connected to gates. The conductor acts like an antenna

collecting charges, and the accumulated charges may result in oxide breakdown of gates

(pins) [6]. The check reported 18 antenna errors in the design.

The antenna errors in the design have been fixed using a combination of two techniques.

(a) One way is to break metal layers into small pieces so they can not build enough charge to

destroy transistor input gate oxides. From a place and route CAD software point of view,

this can be done by manually changing the routing of metal layers on those interconnects

which have exceeded a certain critical length [7].

 27

(b) Another way to remove the antenna effect is by inserting protection diodes to antenna

violation metals (the metals are typically chip interconnect using Aluminum or, in some

processes, Copper). Electrical charges on metals connecting to diodes will discharge through

the diode diffusion layer and substrate. Diodes are normally placed as close to input pins as

possible for the protection of input gate oxides. This has been done in Silicon Ensemble (SE)

by setting the appropriate environment variables during the routing process [7].

At the end of the verification step, the design successfully reached a clock period of 5.2 ns

and reported no connectivity, geometry or antenna errors. The area of the chip has been

estimated to be 6.03 mm2. The design was output as a GDS file and sent to MOSIS [8] for

fabrication on November 1, 2002, for the 0.25µm TSMC run.

3.6. Implementation by MOSIS

The design successfully passed the verification steps done by MOSIS. The verification steps

include short, overlap, connectivity, geometry, antenna, electromigration and voltagedrop.

The physical layouts, prior to fabrication (left) and after fabrication and packaging (right),

are shown in Figure 17. The design has been implemented with the following three

packaging options: Dual in line package (DIP), Quad flat package and unpackaged die. The

unpackaged die could be gold bumped for flip chip applications, as an extension of this work.

Figure 17: Physical layout prior to fabrication (left, given by MOSIS) and a chip layout with
wire connections to the DIP after fabrication (right, taken at Georgia Tech)

 28

4. TESTING THE INTEGRATED CIRCUIT (IC)

The fabricated chip has been tested using an HP 83000 Digital IC Test system (Courtesy of

Dr. David Keezer, Professor, School of Electrical and Computer Engineering, Georgia

Institute of Technology). A snapshot of the test system is shown in Figure 18. This test

system provides flexibility for setting individual pin level and timing information as required

by testing of complex, high speed IC’s. An appropriate Printed Circuit Board (PCB) for the

DIP was made as shown in Figure 19 by soldering a DIP test socket onto the PCB and then

making the connections according to the DIP bonding diagram, provided by MOSIS. This

PCB, referred to as the device under test, is connected to the test head, which connects I/O

boards inside of the test system and the PCB with the DIP. The test head supports up to

512 pins. Each pin corresponds to a channel on an I/O board. The test system can support

up to 32 I/O boards, each of which provides 16 bi-directional channels. A snapshot of the

PCB connected to the test-head is shown in Figure 20. The test system provides data rate of

up to 660 MHz. The test system has a mouse-controlled user interface that allows for testing

and execution (Figure 21). The following sub-sections provide experimental details and

result of the testing process.

 29

Figure 18: Snapshot of the HP83000 Digital IC Test System

 30

Figure 19: Snapshot of the printed circuit board

 31

Figure 20: Snapshot of the PCB (holding the chip) mounted onto the test head

 32

Figure 21: Computer interface of the HP 830000 Digital IC test system

 33

4.1 Experimental details

A test program has been developed for checking the functionality of the device and

measuring the total delay. The test program includes the following steps:

(a) Pin Configuration: The first step in developing a test program is pin configuration. This

was used to match the input, output and device power pins to that of the tester channels as

per the connections made. This is a crucial step as this specifies the tester resources to be

used with the corresponding test pins.

(b) Level Setup: The next step is to fix the low and high voltage levels for each pin, which is

configured. A low level voltage of 0V and a high level voltage of 3.3V have been used.

(c) Timing Setup: The timing setup is used to specify master clock period, waveforms and

edge timing. A Return to Zero (RZ) waveform for clkin input pin and a Do not Return to

Zero (DNRZ) format for the other input data pins (rst, selin, wordin, datain, validin) have

been specified. An edge sampling has been specified for the outputs.

Test Vectors: The test vector is the input pattern that is supplied as input to the device under

test. Subsets of test vectors have been randomly selected for the wavelet encoder/decoder

and golay encoder: 5 for the wavelet encoder, 5 for the wavelet decoder, 5 for the golay

encoder and 2 for the golay decoder. The output from the device is sampled for each test

vector and checked for conformity with the desired result.

4.2 Results

The wavelet encoder, wavelet decoder, golay encoder and golay decoder have been

successfully tested for their functionality at a clock period of 6.9 ns or a speed of 145 MHz.

The setup time for the inputs is about 2 ns, and the delay on the outputs is approximately

5 ns. This measures closely to the speed achieved in simulation taking into account the delay

introduced by the pins of the package. The maximum time of flight delay caused due to the

parasitics of the leads of the DIP 40 package, as given by MOSIS, is about 0.21 ns.

Figure 22 illustrates the parasitics arising due to the leads in the DIP 40 package. The

maximum speed obtained in simulations, as reported earlier, is about 5.2 ns or 192 MHz.

Taking into account the delay of 0.21 ns introduced by the package, the theoretical maximum

speed achievable by the circuit is about 185 MHz, which is approximately 30% higher than

the speed of 145 MHz that we have obtained in testing. One of the main reasons of the

difference is a calibration error. We used manual calibration that can possibly have ±1 ns

 34

error bound. Therefore, our simulation clock period can be adjusted up to 5.9 ns. The clock

period can be increased but that is a very rare case in our testing system. Therefore, the

upper bound of the clock period can reach 5.9 ns (170 MHz).

5. COMPARISON OF SPEED OF THE CHIP IN TSMC 0.18 µm AND TSMC 0.25 µm

TECHNOLOGIES

An estimate of an achievable chip speed in 0.18 µm technology is obtained by synthesizing a

Fanout of 4 (FO4) inverter in TSMC 0.18 µm and TSMC 0.25 µm technologies in Synopsys

Design Compiler and estimating the delays. The delay for the FO4 inverter in TSMC

0.18 µm technology is found to be 0.06 ns, while in the case of TSMC 0.25 µm technology,

it is found to be 0.11 ns. As mentioned in Section 4.2, the speed of the chip, fabricated in

TSMC 0.25 µm technology, is 145 MHZ as empirically measured in testing. Therefore, the

theoretical speed of the chip in TSMC 0.18 µm technology can be estimated to be

(0.11 * 145) / 0.06 = 265.83 MHz.

6. Conclusion

We have presented an implementation of wavelet and golay error control codes, which has

been fabricated by MOSIS in TSMC 0.25 µm technology. To the authors’ best knowledge,

this is the first silicon implementation of the wavelet encoder/decoder and the wavelet-based

golay encoder/decoder. The fabricated chip has been successfully tested for its functionality

at a high speed of approximately 145 MHZ. Since the input datain[5:0] has 6 bits and can be

clocked in every clock cycle, this chip can achieve a data transfer rate of

870 Megabits/second.

Resistance Inductance

Capacitance Bond finger Pin

Figure 22: Parasitics arising due to the leads of DIP 40 package

 35

7. REFERENCES

[1] F. Fekri, S. W. Mclaughlin, R. M. Mersereau and R. W. Schafer, “Decoding of half-rate

wavelet codes; golay code and more,” Proceedings of the IEEE International Conference

on Acoustics, Speech and Signal Processing, (ICASSP ’01), Vol. 4, pp. 2609-2612, 2001.

[2] Artisan Inc., http://www.artisan.com

[3] Mentor Graphics Inc., http://www.mentor.com

[4] Synopsys Inc., http://www.synopsys.com

[5] Cadence Inc., http://www.cadence.com

[6] W. Maly, H.T. Heineken, J. Khare, P.K. Nag, P. Simon and C. Ouyang, “Design

Manufacturing Interface: Part II - Applications,” Proceedings of Design for

Manufacturability – Embedded Tutorial, (DATE 98), pp. 557-562, 1998.

[7] Source Link, Cadence, Inc., http://sourcelink.cadence.com

[8] MOSIS, http://www.mosis.org

[9] F. Fekri, S. W. Mclaughlin, R. M. Mersereau and R. W. Schafer, “Double circulant self-

dual codes using finite field wavelet transforms,” Springer Verlag Lecture Notes in

Computer Science (LNCS); Applied Algebra, Algebraic algorithms and Error-Correcting

Codes, pp355-364, 1999.

[10] F. Fekri, S. W. McLaughlin, R. M. Mersereau, and R. W. Schafer, "Decoding of half-

rate wavelet codes; Golay code and more," Proceedings of IEEE Int. Conf. Acoustics,

Speech, and Signal Proc., vol.4, pp. 2609 –2612, May 2001.

