PeerTrust: A Trust Mechanism for an Open
Peer-to-Peer Information System

Li Xiong and Ling Liu
College of Computing
Georgia Inst. of Technology
{Ixiong,lingliu}@cc.gatech.edu

Abstract

In an open peer-to-peer information system, peers often have to
interact with unknown or unfamiliar peers and need to manage the risk
that is involved with the interactions without any presence of trusted
third parties or trust authorities. It is important for peers to be able
to reason about trust when interacting with each other to accomplish
a task. This paper presents PeerTrust, a simple and yet effective
trust mechanism for quantifying and comparing the trustworthiness
of peers. We argue that the amount of satisfaction a peer obtains
through interactions, the total number of interactions that a peer has
with other peers, and the balancing factor of trust all play a crucial role
in evaluating the trustworthiness of the peer. This paper also discusses
the architecture and the design considerations in implementing this
mechanism in a decentralized peer-to-peer system. We report the set
of initial experiments, showing the feasibility, the cost, and the benefit
of our approach.

1 Introduction

The interest in peer-to-peer (P2P) computing continues to grow since the rise
and fall of Napster. Some popular systems that are currently in operation
include SETI@home [7] and Gnutella [4]. A number of research projects have
engaged in this area, among which representative ones include Freenet [3] and

Free Haven Project [2]. Most research on peer-to-peer computing to date has
been focused on efficient resource placement, resource location, and load bal-
ancing. Very few have addressed the need of trust in P2P systems or have
incorporated trust into their resource placement and allocation algorithms.

Why is trust important in P2P systems?

An open peer-to-peer system is a totally decentralized P2P system where
peers can join or leave the system at any time and there is no central directory
to maintain global knowledge of peers. In an open P2P information system,
peers often have to interact with unknown or unfamiliar peers and need to
manage the risk that is involved with the interactions without any presence of
trusted third parties or trust authorities. Trust is an important measure that
a peer can use to assess the risk involved when interacting with other peers
and to accept or reject a peer’s participation based on its trustworthiness for
a critical task.

More concretely, in a P2P system, a task is often performed by a subset of
peers chosen by the underlying service partition and service lookup schemes.
In a centralized scheme like Napster, the selection of peers to perform a task
(e.g. from which peer to download a song file) is determined based on the
global knowledge about which peer is able to perform which types of tasks.
In a decentralized scheme like Gnutella, a service request (e.g. the request
for downloading a song) is first broadcasted to other peers to check out who
can serve the request. The peers who are online and capable of serving
the request will respond. Of course, if more than one peer respond to the
broadcast message, a mechanism is needed to choose a peer to perform the
task.

Many criteria can be used as guidelines for service partition and service
lookup, including network proximity, computing capacity and trust of peers,
and application-specific characteristics. Among these, trust is an essential
factor in an open system where peers have to interact with other unfamiliar
peers in accomplishing a task.

How do we assess trust?

Although trust is a long researched topic both in sociology and computer
security, trust in P2P systems presents its own challenges due to the unique
characteristics of such systems. First, most existing trust models in computer
security focus on how to compute indirect trust given the input of direct trust
valuations. Establishing and assessing trust is considered subjective and is

outside the scope of these models [19]. However, P2P systems cannot rely
on subjective trust valuations and need technical mechanisms for computing
trust directly and revising the trustworthiness of a peer at runtime based
on the feedbacks from other peers. Second, most existing trust production
models proposed for agent systems and online communities require either a
central trusted server or the presence of a trusted third party or authority.
Hence they are not suitable for a decentralized environment. Third, in an
open P2P system, peers come and leave freely. It is hard to uniquely identify
peers on a permanent basis. Peers can misbehave in a number of ways, such
as serving corrupted or low-quality information or providing false feedback
on other peers such as filing false complaint on other peers. Therefore, a
trust mechanism has to be robust against the misuse behavior of the system.
From a risk assessment perspective, measurement of trust can be regarded
as obtaining quantitative bounds on risk of adverse consequences. Higher
levels of trust correspond to lower levels of risk. In short, there is a need for
a computational trust mechanism with a reliable trust metric for supporting
trust in a decentralized P2P environment.

How do we implement a trust model?

The effectiveness of a trust model depends not only on the factors for risk as-
sessment, but also on the factors that affect the performance of a P2P system
that supports trust. A scalable trust management requires efficient storage of
trust data (both the data that are used to assess and compute trust and the
trust values of peers) in a decentralized P2P network, and fast lookup of trust
data when assessing the risk of a peer in performing a task. Furthermore,
there is a need of methods for experimental evaluation of a given trust model
in terms of benefits, costs, and execution performance. Most traditional trust
models only give an analytical model without any experimental validation
due to the subjective nature of trust. Few discuss the implementation issues
of a trust mechanism in a distributed environment. There is also a lack of
general metrics for evaluating the effectiveness of trust mechanisms.

With these questions in mind, we present PeerTrust, a simple and yet
effective trust model for quantifying and assessing the trustworthiness of
peers. The PeerTrust model has two unique features. First, we identify
three important factors for evaluating the trustworthiness of a peer: the
amount of satisfaction a peer obtains through interactions, the total number
of interactions that a peer has with other peers, and the balancing factor

of trust. We argue that all three play a crucial role in computing trust of
peers. In contrast, many existing trust models, when applied to evaluating
the trust of a peer, only take into account the first factor — the amount of
satisfaction that others peers have over the given peer. Second, we introduce
a general trust function that computes the trust of a peer by combining
these three parameters. A complaint-based trust function is presented as a
concrete instance of our general trust function to illustrate the importance
of the three trust assessment factors, and demonstrate the effectiveness and
robustness of our approach. We also discuss the architecture and design
considerations in implementing the PeerTrust mechanism in a decentralized
P2P system. We report the results of our initial experiments, showing the
accuracy, robustness, cost, and efficiency of our approach.

The rest of the paper is organized as follows. We introduce the trust
model including the trust parameters and the trust metric in Section 2. We
discuss the trust management issues in implementing our trust model in
Section 3. Section 4 reports our initial experimental results. We conclude
the paper with a brief overview of related work in Section 5 and a discussion
of our future work in Section 6.

2 The Trust Model

In this section, we first present the trust definitions we use in the context of
PeerTrust, followed by a discussion on the three trust parameters we intro-
duce and their roles in evaluating the trustworthiness of a peer in a decen-
tralized P2P system. We describe the trust metric including the general form
and a concrete form. The concrete trust function is intended to illustrate the
usefulness and the benefits of the general trust function.

2.1 Trust Definitions

Trust is a fundamental concept in computer security yet remains ambiguous.
There are numerous notions of trust and different kinds of trust often satisfy
different properties and can be established differently. In general, trust is
defined in terms of trusting belief and trusting behavior [15]. Trusting belief
between two peers is the extent to which a peer believes that another peer is
trustworthy in this situation. Trustworthy means one is willing and able to
act in the other entity’s best interests. Trusting behavior between two peers is

the extent to which a peer depends on another peer in a given situation with a
feeling of relative security, even though negative consequences are possible. If
a trusting belief means ”a peer A trusts that a peer B is trustworthy”, then
the corresponding trusting behavior means ” A trusts B”. Trusting belief
usually leads to trusting behavior.

In the PeerTrust model, the trust relationship we consider is the trust-
ing belief between two peers. This definition simply says that if a peer is
consistently (predictably) proven to be willing (benevolent) and able (com-
petent) to service the trustor’s interest in an (honest) manner, then this peer
is worthy of trust. More concretely, when a peer A trusts that a peer B is
trustworthy, it means that based on the past experiences A trusts that B
will do what the P2P interaction protocol says that each participant should
do without lying.

An immediate question one would ask now is how to model the consistent
proof that a peer is willing and able to service the other peers in an honest
manner. We address this question in the following subsections.

2.2 Trust Parameters

In a P2P system, peers are clients and servers at the same time. The peer
relationship are established in pair wise interactions during which certain
information or service is exchanged. A peer’s trust in other peers is the
peer’s degree of belief that other peers are willing and able to fulfill their
part of the service agreement during the interactions. To help peers reason
about the trustworthiness of a peer, the problem is essentially to determine
a trust metric, i.e. a function that computes a trust value from information
that is relevant to the trust decision a source peer is going to make. Such a
trust value reflects to what extent a target peer is willing and able to fulfill
the service. Once the trust metric yields a trust value for a target peer,
the source peer can use the trust value to make a trust decision, such as to
decide whether the trust value is sufficient for it to trust the target peer, or
to compare the peer with other peers.

In order to determine a trust metric, we need to determine the trust pa-
rameters that can be used to assess the trust first. In PeerTrust, a peer’s
trustworthiness is defined by an evaluation of the peer in terms of the degree
of satisfaction it receives in providing service to other peers in the past. Such
degree of satisfaction reflects to what extent the peer acts in other peers’ best
interests. We identify three important factors for such evaluation. They are

the amount of satisfaction a peer obtains through interactions, the number of
interactions the peer has with other peers, and a balance factor of trust. We
argue that all these three factors play an equally important role in evaluating
the trustworthiness of a peer.

Amount of Satisfaction

In a P2P network, the amount of satisfaction a peer receives regarding its
service is usually resulting from the interactions other peers have had with
this peer. Intuitively, during an interaction, the better a peer fulfills its part
of the service agreement, the more satisfaction it will receive from the other
peer. The larger the number of peers who are satisfied with a peer’s service,
the more it should be worthy of trust.

Number of Interactions

The total number of interactions a peer has with other peers in the P2P
network is another important factor that affects the accuracy of feedback-
based trust computation. It reflects over how many services the satisfaction
is obtained. Put differently, the amount of satisfaction alone presents the
feedbacks without a specific context. The number of interactions from which
the feedbacks were derived is an important fairness measure with respect to
the amount of satisfaction.

Scenario 1: Consider a simple scenario where two peers obtain the same
amount of satisfaction over the same time period but through different num-
ber of interactions. A peer A performs 10 interactions (services) with other
peers up to time t and obtains satisfaction for each service it performs. An-
other peer B performs 100 interactions but only obtains satisfaction one out
of ten services it performs. The two peers receive the same amount of sat-
isfaction through the services they perform, but it is obvious that peer A
is more worthy of trust than peer B in terms of the overall service quality.
This example simply shows that the amount of satisfaction will not be a fair
measure without using the total number of interactions as the context.

Scenario 2: In a P2P system that relies on a positive measure of feedback,
a peer can continue increasing its trust value by increasing its interaction
volume to hide the fact that it frequently misbehaves at a certain rate. In
contrast, in a system that relies on a negative measure of feedback such as
complaints, a peer can reduce the number of complaints it receives by de-

creasing its interaction volume even though it frequently misbehaves at a
certain rate. Consider a simple example in a system that relies on a positive
measure of feedback. A peer A performs 50 interactions with other peers
up to time t and obtains satisfaction one out of two services it performs.
Another peer B performs 100 interactions with other peers up to time t and
obtains satisfaction also one out of two services it performs. By increasing the
number of interactions, peer B obtains more satisfaction than peer A even
though peer B may not be more trustworthy than peer A as they both mis-
behave one out of two services equally. Such misbehaviors are not captured
fairly when only the amount of satisfaction is considered for computing trust.

Balance factor of trust

The amount of satisfaction is simply a statement from a peer about another
peer as to how much it is satisfied about the other peer’s service and is often
collected from peers through a feedback system. Given that a peer may make
false statements about another peer’s service, the balance factor of trust is
used to offset the potential of false feedback of peers and thus can be seen
as a way to differentiate the credible amounts of satisfaction from the less
credible ones.

Scenario 3: A peer happens to interact with only malicious peers, such as a
peer who falsely claims that another peer provides poor service to badmouth
the other peer or falsely claims another peer provides good service to boost
the other peer’s rating. In this scenario, a trustworthy peer may end up
getting a large number of false statements. Without a balance factor of trust
built in, this peer will be evaluated incorrectly because of false statements
even though it provides satisfactory service in every interaction.

Traditional security approaches such as digital certificate and encryption
can be used to assure the information is originated from the right party and
not tampered during transportation. But they cannot answer the question
of whether the party can be trusted. The role of a balance factor is critical in
computing trust based on feedbacks in the situations where false statements
are not, impossible.

Surprisingly, most existing trust mechanisms only takes into account the
first factor, the amount of satisfaction that other peers have had over a given
peer, when computing the trust value of this peer. Furthermore few have even
considered the role of a balancing factor of trust in their trust computation

7

models.

2.3 Trust Metric

In this section we define a general trust metric that computes a trust measure
by combining the three trust factors identified in the previous section. The
goal of such a metric is to produce a fair measure of trust belief in the presence
of unknown or unfamiliar peers and possible misbehaviors of such peers.

Let P denote the set of N peers in the peer network, and u,v € P be
peers in the network P. Note that at any given time, the number of active
peers may be different, and not decidable in advance. Let I(u,v,t) denote
the number of interactions that peer u has with v up to time ¢. Let S(u,v,t)
denote the amount of satisfaction peer u has with v up to time ¢. Let Cr(v,t)
be the balance factor of trust that offsets the risk of non-credible feedbacks
from v. The evaluation of peer u’s service up to time ¢ by the rest of peers
in the peer network P, denoted by T'(u,t), can be defined as a function of
I(u,v,t), S(u,v,t), and Cr(v,t). A simple and straightforward definition of
T(u,t) could be the ratio of the summary of a balanced amount of satisfaction
other peers have over v and the total number of interactions u has with other
peers in the network P. That is:

Z,UEP,#U S(u,v,t) * Cr(v,t)
ZvEP,v;éu I(“’? v, t)

In the equation 1, a higher value of T'(u,t) indicates that the peer u
is more trustworthy in terms of the collective evaluation of u by the peers
who have had interactions with u. It is important to note that the value of
T(u,t) alone neither represents any peer’s trust in u nor implies any trusting
behavior between any other peer and u, but rather gives a measure that helps
other peers to form a trust belief (opinion) about u. Each peer must consider
to which degree the value of T'(u,t) will make it trust u. Different peers may
have different perception over the same value of T'(u, t).

A simple decision rule can be conducted at peer w as follows: If T'(u,t) >
Cw, then u is trustworthy. This simply says that w believes u is trustwor-
thy if the collective evaluation of u is above a specific threshold defined by
w. The threshold indicates how much the observing peer is willing to trust
others. A more tolerant peer may have a lower threshold. It is a manifest
of dispositional trust [15], which is the extent to which an entity has a con-

T(u,t) = (1)

sistent tendency to trust across a broad spectrum of situations and entities.
A multi-level trust decision rule can be also defined by introducing multiple
thresholds.

In addition to view the value of T'(u,t) as a trust measure of u, one can
also view the value of T'(u,t) as a global reputation measure of the peer u.
In real life, reputation is the general estimation that a person is held by
the public. It is often established through a good tractable history so that
their behavior can be predicted reliably. A person consistently provides good
service to others will in turn establish a good reputation. We are usually more
willing to trust a person with a higher reputation. Similarly, the trust value
can be seen as the peer’s reputation, i.e. a general estimation the peer is
held by the other peers in the network.

2.4 An Example Metric

Now we have a general trust metric to evaluate the trustworthiness of peers
in a P2P network. The next question one may ask immediately is how to
measure the amount of satisfaction according to the service-level agreements.
Different systems may use different measures and the metric may be adapted
into different forms. We present a concrete form of our general metric in this
section and will use it throughout the rest of the paper to demonstrate the
feasibility, the benefit, and the cost of our metric.

Different feedback systems differ from each other in terms of the feed-
back mechanism and the feedback measure. In the first implementation of
PeerTrust, we choose to use an interaction based complaint system.

With such a feedback system, if a peer receives a complaint from another
peer after an interaction, it simply means the amount of satisfaction it gets
through this interaction is 0. Otherwise, it gets 1. Let C(u,v,t) denote the
number of complaints a peer u receives from v up to time ¢. The amount
of satisfaction S(u,v,t) can be simply measured in terms of the number of
interactions for which peer u does not receive a complaint. That is I (u,v,t)—
C(u,v,t).

Now let us consider the balancing factor of trust. It is obvious that peers
cannot be blindly trusted for their feedbacks. Intuitively, a less trustworthy
peer is more likely to file fake complaints to hide their own misbehavior
and badmouth other peers. To make this problem tractable, in the first
prototype of PeerTrust, we apply a simplifying assumption. We assume
peers are rational in a game theoretic sense, i.e. trustworthy peers do not

file fake complaints and untrustworthy peers file fake complaints when they
misbehave during an interaction. Based on this assumption, complaints from
a trustworthy peer can be trusted while complaints from an untrustworthy
peer cannot be trusted. Therefore, it is reasonable to use the trust measure
of a peer obtained from the collective evaluation of this peer in the network
as the balance factor to offset the risk of its non-credible complaints. Thus,
the balanced amount of satisfaction S(u,v,t) * Cr(v,t) can be measured as
I(u,v,t) — C(u,v,t) *x T(v,t) where C(u,v,t) * T(v,t) denotes the credible
complaints filed by v. The complaint-based trust metric can be defined as
follows:

Y vepwzn O, 0, 1) * T(v,1)
ZueP,u;éu I(u,v,1)

Note that the trust metric given above gives a value between 0 and 1.

It determines how many complaints out of the total complaints a peer files

against other peers will be counted. For example, complaints from a complete

untrustworthy peer, i.e. who misbehaves during each interaction, will not be
counted at all.

T(u,t)=1- 2)

2.5 Discussions

We have discussed the trust metric in its general form and presented a con-
crete trust metric based on complaints and interactions. This section answers
a number of questions related to the concrete trust metric.

The first question is related to setting up a default trust value. More
concretely, what is the trust value we can assign to a peer that does not have
any interaction history, e.g. a new peer just joins the network? One solution
is to assign the default trust measure to be 1 for all new peers upon their
entrance to the system, assuming that most of the peers are trustworthy. An
obvious drawback of this setting is the possibility for peers to raise their trust
measure by frequently leaving the system and re-entering it as a new peer.
An alternative solution is to give the peers a default trust value that is fairly
low, ideally lower than all the peers in the network, so the peers will have
an incentive to keep their trust measure and keep on improving it instead of
leaving the system and registering again to get a higher default trust value.
Therefore, it might be desirable in some situations to set the default trust
(reputation) measure of a new peer to be 0. This also conforms to real world

10

experiences where a new manufacturer or store does not have any reputation
and it has to build its reputation through continuously good services.

The second question is related to binding of complaints (feedbacks) with
interactions in the feedback system. It has a number of important features.
First, the system solicits feedback after each interaction and the two partici-
pating peers give feedback about each other based on the current interaction.
So a peer only gets a chance to give feedback about another peer after an
interaction with the other peer. This binding of feedback to interactions re-
duces vulnerabilities in the system by making it difficult to spam feedbacks.
Second, a peer only gives feedback based on current interaction so it does
not have to keep track of any previous interactions with the same peer in
order to give an overall rating or update the rating.

The third question is related to the benefits of a complaint-based feedback
system. The feedback is collected in a form of complaint in the system. A
complaint filed by u against v after an interaction is simply a statement
from wu that it is not satisfied over v’s performance during that interaction.
Different feedback systems may use different feedback measures such as a
positive measure, a negative measure or a hybrid measure such as a numeric
rating. Most of the existing feedback systems tend to use a numeric rating.
There are several reasons why we chose a negative measure. First, it is not
desirable to store complex feedback data as peers only volunteer a portion
of their resources to a P2P system. Since it is reasonable to assume peers
provide satisfactory services most of the time, the feedback data that need
to be stored are relatively reduced compared to positive or hybrid feedbacks.
Second, it is unreasonable to expect peers to take the initiative in providing
feedbacks. The complaint-based feedback alleviates this problem. A peer
will have the incentive to file a complaint against the other peer if the other
peer misbehaves because it wants the misbehaving party to be penalized by
the society in the future.

3 Trust Management

The effectiveness of a trust model depends not only on the factors and the
metric for computing trust measure, but also on implementation of the trust
model in a P2P system. Typical issues in implementing a trust model include
decentralized trust data management and trust computation execution. A
decentralized trust management not only reduces bottleneck but also avoids a

11

single point of failure. This section discusses the architecture and the design
considerations in implementing the PeerTrust model in a decentralized P2P
information system.

3.1 System Architecture

Figure 1 gives a sketch of the system architecture of PeerTrust. There is no
central database. Trust data that are needed to compute the trust measure
for peers are stored across the network in a distributed manner. If individual
database fails due to negligence or intentional corruption by some peers, it
will be corrected by valid information in rest of the community. In addition,
the trust computation is executed in a dynamic and decentralized fashion at
each peer. Instead of having a central server that computes each peer’s trust
value, a peer obtains another peer’s trust data from the rest of the peers and
computes the trust value of this peer on the fly. This allows peers to get an
up-to-date evaluation of the peer by other peers.

Trust Manager

Feedback Trust
Submission || Evaluation

\4 Trust
I Data Locator l—.' Data

Figure 1: PeerTrust System Architecture

The callout of the peer shows that each peer maintains a small database
that stores a portion of the global trust data such as complaints filed. Each
peer has a trust manager for submitting feedbacks, collecting feedbacks and
computing trust measures. Each peer also has a data locator, a data place-
ment and data location component for placement of trust data over multiple
peers and managing the access to the trust data.

The data locator provides a P2P data location scheme for accessing and
updating data in the network. Different applications may use different data
placement and location schemes, which determine how and where the data
can be inserted, updated, and accessed.

12

The trust manager has two main functions. First, it submits feedbacks
to the network through the data locator, which will route the data to the
appropriate peer for storage. Second, it is responsible for evaluating the
trustworthiness of a particular peer. This task is performed in two steps. It
first collects trust data about the target peer from the network through the
data locator and then computes the trust value on the fly.

We discuss the details of the trust data location and trust computation
in the following subsections.

3.2 Trust Data Location

A number of P2P file sharing systems have emerged and each has its own
data location scheme. Examples include Gnutella [4], Freenet [12], CAN [16],
Chord [18], Pastry [17], and P-Grid [10]. Most of them are decentralized
systems where there is no central server and data retrieval is self-organized
by peers.

Depending on the choice of a data location scheme, the implementation
of the trust model may be a little different. Different schemes may also
affect the overhead of the trust data management but should not affect the
effectiveness of the trust metric. In the first version of the PeerTrust, we
decide to use P-Grid primarily because we obtained the P-Grid source code.

P-Grid uses the approach of scalable replication of tree structures [13, 20].
Randomized algorithms based on local interactions among peers are used to
partition the peers into a virtual binary search tree. By local interactions,
peers successively partition the key space and retain routing information to
other peers. Readers who are interested in the detail of the construction
process of P-Grid may refer to [10]. Once the P-Grid is constructed, each
peer maintains a small fragment of the data and maintains a routing table
to other peers for the data it doesn’t store locally.

Figure 2 shows a simple example of a PeerTrust network of 6 peers with
constructed P-Grid. The callout at each peer shows the data keys each peer
is responsible for and the routing table for those keys stored at other peers.
The search keys are binary strings encoded from peer IDs. If KiK. K,
denotes the common prefix of the keys that a peer is responsible for, the
peer keeps n rows in its routing table and the ith row indicates to which
peer the query with a data key of a prefix K;K,...K; will be routed. For
example, P is responsible for key 110, which means P, stores the trust data
for Py, including the number of complaints Py receives from other peers and

13

Routing Table Key

G e Lo

Routing Table Key
1 [ps |[o10
00 | pi L0

1.Query for
Key 110

outing Table Key

D
P2

Routing Table Key
[ee]foro
00 o1l

4. Return
Data

Routin
ot]
P6

10

Figure 2: PeerTrust Data Location

the number of interactions Pg has with other peers. It keeps routing entries
for all the other data keys, i.e. the data keys that have a prefix 0 or 10.

When a peer receives a search or update request with a particular data
key, it first determines if it is able to process this request locally. If yes, it will
process the request with the data key; otherwise it will look up its routing
table to find the matching prefix of the data key and route the request to the
corresponding reference. Figure 2 shows an example of how a search request
is processed in the PeerTrust network. Suppose that peer P, receives a query
with key 110. P, cannot process this query. So it looks up its routing table
and finds the row that has the common prefix with the query key 110, which
is 1 in this case. According to the row 1, the query with key 110 is now
routed to peer Ps. Pg cannot serve this query locally and again looks up its
routing table and finds the row that has the common prefix with the key 110,
which is 11. P now routes the query to P,. P, can serve the query with key
110 locally and returns the trust data.

For any given P2P data location scheme, there is a trust issue associated
with it. Namely peers may misbehave by providing false data or random data
when processing a search or update request for a data item it is responsible
for. To address this issue, P-Grid can be configured to have multiple peers
responsible for the same key. When a peer is searching for trust data about
a particular peer, it simply issues the search request multiple times and finds
multiple peers that are responsible for the same key, referred as witnesses.
The peer then combines the data from all witnesses and gets a consensus

14

value by using a voting scheme [11].

3.3 Trust Computation

The trust computation component is responsible for computing the trust
measure based on the complaints a peer has received from other peers and the
number of interactions. We propose two implementations of the trust value
computation in this section. One is called dynamic computation, which uses
the fresh trust data collected at runtime to compute the trust value. The
other is called approximate computation, which uses cache to speed up the
trust computation process.

Dynamic Computation

Let I(u,v,t) denote the number of interactions that peer u has with v up to
time ¢, and C(u, v, t) denote the number of complaints a peer u received from
v up to time ¢. Let I(u,t) denote the total number of interactions peer u has
with other peers in the network, ie. >° p, ., [(u,v,t). Let A = (ayu) be
a square matrix of order N (recall N is the number of peers in the network
P) with rows and columns corresponding to the peers and a,, is computed
as follows:

C(uw,t)
0, = T i I(u,t) #0 (3)
0 if I(u,t)=0

Let T = (t,) be a column vector of the trust values of all peers up to
time t where t, = T'(u,t). Based on the metric in equation 2, we have:

T=1-AT (4)

We can simply start with a default trust value vector. As we obtain new
trust data (such as complaints) for each peer, we repeatedly compute the
trust vector until it converges. When this is done, all trust values of the
peers in the network will be available.

We can easily see that this computation is very expensive as it retrieves
the trust data of all peers in the network even when a peer is only interested in
evaluating the trustworthiness of a particular peer or a small subset of peers.
To address the high communication cost involved in dynamic computation,
we propose approximate computation, a more cost efficient computation at

15

each peer using a trust cache.

Approximate Computation
Each peer maintains a trust cache that keeps the trust values it has computed
for other peers in the past. Cache size can be determined based on different
factors such as size of the overlay network, available resources at each peer,
and so on. When a peer w needs to evaluate the trustworthiness of another
peer u, it retrieves the trust data of u. Instead of computing the trust value
for the peers who filed complaints against u as the balance factor, w looks for
their trust values in its cache. It then uses the value if it finds one and uses
a default value if it does not. Once the peer w computes the trust value for
u, it can again add the trust value of u to the cache or replace an old value
in the cache. When the cache is full, it uses an LRU-like cache replacement
policy to evict the least recently used data items from the cache.

Let Teocne(v,t') denote an old trust value of v up to time ¢ in peer w’s
cache and Ty fqut denote a default trust value. The approximate computation
conducted at peer w computes the trust value of v up to time ¢ as follows:

Zvep,v?éu C(u,v,t) *T'(v,1)

T(u,t)=1-— (5)
ZvEP,v;éu I(u’ Y, t)
Where (0.) ek
Teaehe(v, t cache hit
i _ cache\V,
T'(v,t) = { Tgefaur cache miss (6)

Our simulation results later show this approximate computation still pro-
duces effective trust evaluation results and significantly reduces the commu-
nication cost for the trust computation.

4 Experiments and Results

This section proposes a few evaluation metrics and reports the set of initial
experiments to show the feasibility, cost, and benefit of our approach.

4.1 Evaluation Metrics

We first define trust evaluation accuracy as a metric to evaluate how well
the trust model helps peers in making trust decisions. A trust evaluation is
considered correct when a trustworthy peer is evaluated as trustworthy or

16

an untrustworthy peer is evaluated as untrustworthy. In contrast, a trust
evaluation is considered incorrect if a trustworthy peer is evaluated as un-
trustworthy or an untrustworthy peer is evaluated as trustworthy. For the
first type of incorrect evaluations, the peer may miss an opportunity to in-
teract with a trustworthy peer. For the second type of incorrect evaluations,
the peer may end up interacting with an untrustworthy peer and coping with
the risk of misbehavior from the other peer.

Let E denote the total number of evaluations peers make in the network
over a time period. Among these evaluations, let E;; denote the number of
evaluations during which trustworthy peers are evaluated as trustworthy, let
E;, denote the number of evaluations during which trustworthy peers are
evaluated as untrustworthy, let £,, denote the number of evaluations during
which untrustworthy peers are evaluated as untrustworthy, and let F,; denote
the number of evaluations during which untrustworthy peers are evaluated
as trustworthy. The trust evaluation accuracy can be simply defined as the
ratio of the correct evaluations over the total number of evaluations. That
is:

E,+ FE,,
Accuracy = o T _;] (7)

Other metrics can be defined for different application domains with dif-
ferent requirements. For example, we can define a false negative rate in terms
of detecting the untrustworthy peers as FFNR = % This may be important
for evaluating the trust metric for application domains where it is critical to
avoid untrustworthy peers, such as electronic commerce applications.

As performance is always a concern with additional security layer, we
also define a metric that measures the overhead a trust model introduces to
the application. A good trust model should be effective and robust against
the misbehavior of peers in the P2P network without introducing significant
overhead to the application. As the communication cost for trust data lookup
is the main overhead, we use the average number of messages among peers
that are needed for each evaluation as the metric for this purpose.

4.2 Simulation Setting

We implemented a simulator in Mathematica 4.0 to evaluate our approach
and demonstrate the importance of the three trust parameters we have iden-
tified as against the conventional approach in which only the first parameter,

17

i.e. the amount of satisfaction, is used to measure the trustworthiness of a
peer.

Our simulated P2P network consists of 128 peers, among which some are
trustworthy and some are untrustworthy. The experiment proceeds as fol-
lows. Peers perform interactions with each other. During the interactions,
trustworthy peers always perform satisfactory services and only file complaint
against the other peer if the other peer performs poor service; untrustwor-
thy peers perform poor services and file a fake complaint against the other
party one out of four times and perform satisfactory services in other times.
After 6400 interactions, i.e. an average of 100 interactions for each peer, 4
peers evaluate the trustworthiness of 100 randomly chosen peers from the
remaining peers.

For the trust evaluation, P-Grid is used as the data location scheme to
store and retrieve trust data about peers. We simulated the misbehavior of
peers for processing queries, namely, untrustworthy peers provide random
data for a query for which it is responsible one out of four times. During
each evaluation, a peer issues a search request for the trust data 15 times and
then uses the mean value computed from data returned by different witnesses.
Both the dynamic computation and approximate computation are simulated
for computing the trust value. A simple decision rule with a threshold 0.8
is used to decide whether a peer is trustworthy or not based on peer’s trust
value.

In order to see how our mechanism performs in different scenarios, we
simulated random interactions and the three special scenarios listed in Sec-
tion 2. Specifically, in random scenario, peers perform interactions with each
other in a random pattern so each peer ends up having about the same
number of interactions. In scenario 1, half randomly chosen peers perform
2 times more interactions than the other half. In scenario 2, half randomly
chosen untrustworthy peers perform 1/10 fewer interactions than other peers.
In scenario 3, half randomly chosen trustworthy peers perform interactions
only with untrustworthy peers. The probability of the third case happening
in the real world may be very low. We use this setup to test the reliability
of our approach in the worse case scenario.

We also simulated different peer communities. In each scenario, we vary
the number of untrustworthy peers from 4 to 128.

For comparison purpose, we use the P2P trust method proposed by
Aberer et al. [11] as an example of the conventional method, esp. given the
fact that we obtained their simulation code of the method. Their method uses

18

a complaint based feedback system and uses the number of complaints for
the trust measure. We refer to this method as complaint-only method. They
proposed two implementations using P-Grid referred as simple and complex
algorithm in their paper. The simple algorithm takes a simple majority
decision from the trust data returned by multiple witnesses. The complex
algorithm checks the trustworthiness of the witnesses first and removes un-
trustworthy witnesses before taking a majority decision. We compare the
trust evaluation accuracy and the communication cost of dynamic computa-
tion and approximate computation of PeerTrust to the simple and complex
implementation of the complaint-only method.

4.3 Simulation Results

a. Trust Evaluation Accuracy in Random Interactions b. Trust Evaluation Accuracy in Interaction Scenario 1

T
\ \\ » p.
M N oo o o o
\ ¥ = N 7 =
0.95' 09 \ b/ W o 4
oy °
\
3) 5 -
<] € osl o —— PeerTrust-Appr |
3 %o e y - PeerTrust-Dyn
8 S . S
< < R x- Complaint-Simp
5 5 > — - Complaint-Compl
g 085 S e Sorr X\\ . 4
T R x @)
& ~ DA . @ N
% R B / B WA
5 0.8 [,/\\ o M gﬂef DA 2.1
= \ Ay = NP " N
. PN ros N [ORNEL LR
. ; N - S
— s e i i
075k —— PeerTrust-Appr Ny 1 o5l \\ ; B
~o PeerTrust-Dyn v A
= Complaint-Simp
— - Complaint-Compl
07 . | . . , , 04 . , . . , ,
20 40 60 80 100 120 20 40 60 80 100 120
Number of Untrustworthy Peers Number of Untrustworthy Peers
c. Trust Evaluation Accuracy in Interaction Scenario 2 d. Trust Evaluation Accuracy in Interaction Scenario 3
1 1
0.9+ 09k
3 3
8 [
> 0.8F > 0.8,
o 153
3 3
< <
g 5
ﬁ 0.7F E /\ | ﬁ 0.7
S v S
3 XA 3
> X0y <
w AN * w
= - e
S o6l *Xox 4 Sosl
= [=
i
v . . < -
osk —— PeerTrust-Appr [SEiaN /x\ 05l ¢ —— PeerTrust-Appr B
- PeerTrust-Dyn L} x_ R -& PeerTrust-Dyn
- Complaint-Simp \ * 7 ¥ -~ Complaint-Simp
— - Complaint-Compl]| Vo — - Complaint-Compl
04 N " . L E 3 04 , , , " ! ,

i L
20 100 120 20 100 120

40 60 80 40 60 80
Number of Untrustworthy Peers Number of Untrustworthy Peers

Figure 3: Trust Evaluation Accuracy

19

First we compare the effectiveness of the two models. Figure 3 represents
the trust evaluation accuracy of the two implementations of each model with
respect to the number of untrustworthy peers in different interaction scenar-
ios.

In the random scenario (Figure 3a), we can see the PeerTrust approxi-
mate computation is comparable to the dynamic computation in most cases.
Interestingly, the complex implementation of complaint-only approach does
not achieve higher trust evaluation accuracy than the simple implementation.
Without an effective metric that takes into account all the necessary trust
parameters, the complex implementation does not help by injecting trust
considerations into the implementation.

We can make a few observations when comparing PeerTrust and the
complaint-only approach. First, the two approaches perform almost equally
well when the number of untrustworthy peers is small. Second, when the
number of untrustworthy peers increase, PeerTrust stays effective while the
performance of complaint-only approach deteriorates. Last, when the num-
ber of untrustworthy peers is close to the total number of the peers, both
approaches gain a little accuracy. These observations can be explained as
follows. When the number of untrustworthy peers is small, the complaint-
only approach relies on there being a large number of trustworthy peers who
offer honest statements to override the effect of the false statement provided
by the untrustworthy peers and thus achieves a high accuracy. When the
number of untrustworthy peers increases, the chances for trustworthy peers
to interact with untrustworthy peers and receive fake complaints increase.
The complaint-only approach uses the number of complaints only for as-
sessing the trust of peers without taking into account the credibility of the
complaints. Therefore, the trustworthy peers with fake complaints will likely
be evaluated as untrustworthy incorrectly in the complaint-only approach.
On the contrary, PeerTrust uses a balance factor of trust to offset the risk of
fake complaints and thus is less sensitive to the misbehavior of untrustworthy
peers. When the number of untrustworthy peers is close to the total num-
ber of peers, there are actually few trustworthy peers that can be evaluated
incorrectly. Consequently, the trust accuracy of both approaches goes up at
the end.

In scenario 1 (Figure 3b) and scenario 2 (Figure 3c), there is also no signif-
icant difference between the two implementations of each model. However,
Peer'Trust performs significantly better than the complaint-only approach.
The difference between the two models increases dramatically as the number

20

of untrustworthy peers increases. This can be well explained by the lack
of both number of interactions and the balance factor of trust as the trust
parameters in the complaint-only approach.

In scenario 3 (Figure 3d), the dynamic computation of PeerTrust achieves
a better accuracy than the approximate computation. Both approaches are
not performing well when the number of untrustworthy peers is small. This
can be explained as follows. As defined in our simulation, half of the trust-
worthy peers only interact with untrustworthy peers. As a result, when the
number of untrustworthy peers is small, more trustworthy peers will interact
with untrustworthy peers only and be likely evaluated incorrectly. However,
PeerTrust is still consistently better than the complaint-only approach.

In summary, we verified that Peer'Trust is much more stable and performs
significantly better in various scenarios regardless of the number of untrust-
worthy peers in the community. In contrast, the complaint-only model is
overly sensitive to the misuse behavior in the network and only performs
well in limited cases.

Trust Evaluation Cost

S,

>© ©-0-0-0-0 9-0-0-0-6 ©0-0-C- © ©-0-0-G © ©-0-0-G- 8 ©-0-0-G

—+— PeerTrust-Appr

-& PeerTrust-Dyn
x-- Complaint-Simp
— - Compaint-Compl

S
T

Average Number of Messages per Evaluation
B
T
r
1

a.

. .
40 60 80 100 120
Number of Untrustworthy Peers

Figure 4: Trust Evaluation Cost

Next we compare the communication cost that the trust evaluations in-
cur in the two models. Figure 4 represents the average number of messages
exchanged for each evaluation of each implementation of the two models with
respect to the number of untrustworthy peers. As the communication cost
does not relate to the interaction scenarios, we only show the random sce-
nario. It can be easily seen that the PeerTrust approximate computation and
the complaint-only simple implementation are very efficient and the messages

21

needed do not change with the number of untrustworthy peers. On the other
hand, the complaint-only complex method has a significant overhead as the
number of untrustworthy peers increases. The reason is that the method
evaluates the trustworthiness of the witness recursively. When the number
of untrustworthy peers increases, there are more complaints in the system
and hence it causes more communications. As we foresee, the cost of the
dynamic computation of PeerTrust is very high. It is interesting to note,
however, if a peer wishes to evaluate the trustworthiness of a large number
of peers at the same time, the dynamic computation cost will stay the same
while the cost of all the other methods will be multiplied by the number of
peers to evaluate.

5 Related Work

Marsh is one of the first who presented a formal trust model based on social
models of interactions and social properties of trust [14]. With a strong soci-
ological foundation, the model is complex and is not suitable as an automatic
trust mechanism for a P2P system.

A few other models are proposed that can be seen as an adaptation of
Marsh’s model to today’s online environments and agent systems [22, 9, 21].
However, they are not suitable for P2P environments for a number of reasons.
First, the models still tend to be complex with a lot of parameters and
operations. In contrast, each peer only donates limited resources to the
network in a P2P network and cannot afford to maintain complex information
or perform complex computations locally. Second, they all rely on a central
server or database or some kind of global knowledge to be maintained at
each agent, which is also not suitable for a decentralized P2P environment.
Last and most importantly, little regard is given for whether participant
can conspire to provide false ratings. Most of them assume the feedback is
always given honestly and with no bias and thus cannot adequately deal with
malicious behaviors of agents.

There are also a few existing reputations systems. The most well known
one is the feedback system of the online auction site eBay [1]. It collects
feedback about each participant in the form of ratings and simply sums
them up. Another example is the reputation system of a news service site
Slashdot [8]. Their reputation system is to help a user figure out which news
store is worth reading. All these systems use the single factor of feedbacks

22

as the reputation measure. Plus all these systems use a centralized approach
and again are not applicable to P2P environment.

A number of research projects have engaged in P2P computing. As we
stated in Section 1, most of these work has been focused on efficient resource
location and load balancing and very few have addressed the need of trust
in P2P systems or have incorporated trust into their resource placement and
allocation algorithms.

The most relevant work is the trust method proposed by Aberer et al [11]
for a P2P information system. This is the closest to our work in the sense
that the data management and trust management are both in a distributed
manner. The important contribution of their work is to emphasize the ques-
tion of choosing the right model to assess trust and the question of obtaining
the data needed to compute trust cannot be investigated in separation. They
also utilize a complicated probability based threshold for trust decisions. Yet
again their trust metric only takes into account the number of complaints and
thus only works for limited scenarios and is very sensitive to the misbehavior
of peers, as we have shown through our simulations.

Our approach differs from all these work in two significant ways. First, we
identify three important trust parameters and argue that they are equally im-
portant for computing trust measure of peers in a decentralized P2P system.
We also present the experimental results, verifying our argument. Second, we
introduce a general trust metric that incorporate all three trust parameters
in the trust computation and describe a complaint-based trust metric as a
concrete form to illustrate the usefulness and benefit of our trust metric. We
also validated our metric through a set of experiments, demonstrating the
significant gain in accuracy when using our trust mechanism, compared with
the complain-only methods.

6 Conclusions and Future Work

We presented PeerTrust, a simple and yet effective trust mechanism for an
open P2P information system. We identified the three important trust pa-
rameters and developed a trust metric that combines these parameters for
quantifying and comparing the trustworthiness of peers. We discussed the
implementation considerations of the trust model in a decentralized P2P
environment. We also simulated two implementations of the metric and
demonstrated the effectiveness, cost, and benefit of our approach in com-

23

parison with another method that only takes into account one of the three
parameters we identified.

Trust in P2P systems is a new research area and there are many open
questions and interesting issues to be addressed. Our research on PeerTrust
continues along several directions.

First, we are interested in incorporating P2P dynamics into the trust man-
agement. For example, a peer may join a network and behave reliably until
it reaches a high reputation and then start committing fraud. Specifically, a
peer may act completely trustworthy for the first £ number of interactions
but start behaving completely untrustworthy for the next y number of inter-
actions. An interesting extension to our current mechanism is to allow the
trust computation to reflect such dynamic change in time. Second, we are in-
terested in combining trust management with intrusion detection to address
concerns of sudden and malicious attacks. Finally, we are working towards
incorporating PeerTrust into two P2P applications that are currently under
development in our research group, namely PeerCQ [6] and HyperBee [5].
PeerCQ is a P2P system for information monitoring on the web based on
continual queries. HyperBee is a peer-to-peer search engine that looks to
solve the problems that challenge today’s search engines by utilizing peers
to crawl the web page faster and cheaper. Both systems are faced with trust
issues such as whether the peer can be trusted for performing a particular
task, namely executing a continual query in PeerCQ and crawling the web
page in HyperBee.

Acknowledgement

We would like to thank Karl Aberer and Zoran Despotovic for providing us
the source code of P-Grid and their trust model for our comparison. This
research is supported partially by a NSF ITR grant. The second author
would like to acknowledge the partial support from a NSF CCR grant, a
DOE SciDAC grant, and a DARPA ITO grant.

References

[1] ebay. http://www.ebay.com.

[2] Free haven project. http://www.freehaven.net.

24

3]
[4]
[5]
[6]
[7]
8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Freenet. http://freenetproject.org.

Gnutella. http://www.gnutella.com.

Hyperbee. http://www.hyperbee.com.

Peercq. http://www.cc.gatech.edu/projects/disl/PeerCQ.
Seti@home. http://setiathome.ssl.berkeley.edu.

Slashdot. http://slashdot.org.

A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities. In
33rd Annual Hawaii International Conference on System Sciences (HICSS-
33), 2000.

K. Aberer. P-grid: A self-organizing access structure for p2p information
systems. In Cooperative Information Systems, 9th International Conference,
CooplS 2001, 2001.

K. Aberer and Z. Despotovic. Managing trust in a peer-to-peer information
system. In Proceedings of the 2001 ACM CIKM International Conference on
Information and Knowledge Management, 2001.

I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed
anonymous information storage and retrieval system. In Workshop on Design
Issues in Anonymity and Unobservability, 2000.

T. Johnson and P. Krishna. Lazy updates for distributed search structure.
In 1993 ACM SIGMOD International Conference on Management of Data,
1993.

S. Marsh. Formalising Trust as a Computational Concept. PhD thesis, De-
partment of Mathematics and Computer Science, University of Stirling, 1994.

D. H. McKnight and N. L. Chervany. The meanings of trust. Technical
Report WP9604, University of Minnesota Management Information Systems
Research Center, 1996.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content addressable network. In ACM SIGCOMM, 2001.

A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object loca-
tion and routing for large-scale peer-to-peer systems. In Middleware 2001,
IFIP/ACM International Conference on Distributed Systems Platforms, 2001.

25

[18]

[19]

[20]

[21]

[22]

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In ACM
SIGCOMM, 2001.

V. Swarup and J. T. Fabrega. Trust: Benefits, models, and mechanisms. In
Secure Internet Programming: Security Issues for Mobile and Distributed Ob-
jects, Lecture Notes in Computer Science. New York: Springer-Verlag, 1999.

H. Yokota, Y. Kanemasa, and J. Miyazaki. Fat-btree: An update-conscious
parallel directory structure. In 15th International Conference on Data Engi-
neering, 1999.

B. Yu and M. P. Singh. A social mechanism of reputation management in
electronic communities. In Cooperative Information Agents, 7th International
Conference, CooplS 2000, 2000.

G. Zacharia, A. Moukas, and P. Maes. Collaborative reputation mechanisms
in electronic marketplaces. In 32nd Annual Hawaii International Conference
on System Sciences (HICSS-32), 1999.

26

