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SUMMARY 

 
 

The fast growing waste stream of electronic and other complex consumer 

products is making the bulk recycling problem an important environmental protection 

issue as many of these products contain hazardous materials such as mercury and lead 

and naturally non-degradable materials such as various plastics. This stream of material 

also contains valuable components in significantly higher proportions than raw ore 

streams. Mechanical recycling is potentially a more environmentally benign method than 

other options such as chemical recycling and energy recycling because recycled materials 

can be reused without significant additional investment. Many traditional mineral 

processing methods, such as sink-float separation, froth flotation, electrostatic separation, 

are now being applied to plastics separation, which is a relatively new research area 

compared to metals separation. The focus of this thesis is the development of systematic 

methods for designing systems to recover mixed plastics from electronic products such as 

computers and televisions. 

No systematic design methodology has been proposed for the bulk recycling area. 

Most existing work has focused on individual experimental technologies or overall 

recycling strategies without using detailed unit models. Furthermore, the impact of 

uncertainty on the design has been ignored. This motivates the development of a 

systematic method that considers uncertainty from the outset.  



 XV 

Bulk recycling systems are similar to other chemical engineering process systems 

and therefore they can be synthesized and designed using the same types of techniques 

that have been applied to distillation and reaction systems. A widely used approach is to 

pose the flowsheet optimization problem under uncertainty as a stochastic Mixed Integer 

Nonlinear Program (sMINLP). Two major challenges arise in applying this method to 

bulk recycling system design. 

One challenge is the efficient solution of a sMINLP. Existing work in literature 

solves this problem with a prefixed sample size, does not provide a way to evaluate the 

solution quality, and is computationally challenging. A Sample Average Approximation 

(SAA) method wrapped on the Outer Approximation method has been developed (Wei 

and Realff, 2004) in this thesis  to decompose the solution of a stochastic problem into the 

solution of multiple smaller sample-size problems and a larger sample-size problem with 

fixed decision variables. The sample sizes can be adjusted based on the confidence 

interval of the optimality gap. The computational time is significantly reduced due to the 

decoupling of scenarios in the larger sample-size problem.  

Another challenge is the development of unit models for bulk recycling systems. 

These models must account for variability in particle properties, such as the size, charge, 

etc., and other random factors, such as the entering position. This work modeled various 

plastics separation methods based on calculating the recovery as a joint cumulative 

distribution function and unified the models using a canonical partition curve 

representation. The modeling approach (Wei and Realff, 2003 a, b, c) can guide other 



 XVI 

users to extend it to other separation methods where there are distributions in properties 

that must be evaluated against a cut-off value.  

Finally, an overall design method is proposed in this work to decompose the overall 

problem into several levels and apply heuristics methods at the upper level, such as the 

design of size reduction step and mathematical programming at the lower level. A step-

by-step design strategy is presented for an integrated design of the design of size 

reduction units and the separation units.   
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CHAPTER 1        

INTRODUCTION 

 

1.1 Introduction to bulk recycling 

 
Recycling plays an important role in environmental protection, particularly for 

electronic products. Used electronic equipment is a fast-growing component of the 

nation’s waste stream. Technological advances rapidly render formerly cutting-edge 

electronics obsolete. Electronic products are made from valuable resources, including 

precious and other metals, engineering plastics, glass, and other materials.  A particular 

problem is the high level of lead contained in the products due to solder materials and 

Cathode Ray Tube (CRT) shielding.  An increasing component of the electronic materials 

mix is engineering plastics.  These are chosen as raw materials for their specific 

properties, design flexibility, and contribution to low manufacturing costs.  It is the very 

fact of their low cost that makes them economically unattractive to recover, and hence 

provides incentive to synthesize low cost recovery processes from innovative unit 

operations.  

 

1.1.1 Flow analysis 

The Environmental Protection Agency (EPA) initiated some collection programs 

at several locations of the United States. Figure 1.1 gives the average percentage-by-type 

of number of items collected by five communities. It indicates that televisions accounted 
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for 36 percent of the products collected by five communities.  Audio/Stereo equipment 

was the second most prevalent product (at 16%) followed by computer monitors (at 11%). 

The U.S. EPA analyzed the data from two residential programs – one in Somerville, MA 

and one in Binghamton, NY. Nearly one half of the material recovered by weight from 

electronic equipment was metal and one-third was plastic (Figure 1.2). CRTs (primarily 

glass) comprised another 12 percent of the total, wood comprised 5 percent and the 

remaining 1 percent consists of “other” materials.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.2 Components by weight after demanufacturing, average of 
two collection programs (EPA report, 1999)  

 
 
Figure 1.1 Percentage-by-type of number of items collected, weighted 
average of five collection events (EPA report, 1999) 
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Table 1.1 shows a breakdown of resins used in electrical and electronic equipment 

markets in North America. These six resins and their blends account for 84 percent of 

total resin consumption in E&E equipment, not including cable and wire. Fire retardant 

grades are used in some applications, which can cause a specific problem: without strict 

temperature control during extrusion there is a potential risk of generating dioxins and 

furans from some halogenated material, in particular, brominated flame retardants.   

 

  

 

While the recycling of plastics bottles has become a well-established industry, there 

are very few recyclers processing plastics from waste electronic products due to the 

variety of the types plastics used and the wide range of grades. Therefore, an approach to 

help recyclers determine how to recover materials more economically is needed. 

 

1.1.2 Plastics Recycling Options 

Unlike metals recycling, plastics recycling has several options. These include 

chemical recycling, energy recovery and mechanical recycling.  

(i) Chemical Recycling: most often refers to the thermal depolymerization of polyolefins 

Table 1.1 Resins in electrical and electronic equipment in North America 
(Fisher et al., 1998) 
 

Resin Percentage 
PS (Polystyrene) 31% 
ABS (Acrylonitrile Butadiene Styrene) 16% 
PP (Polypropylene) 13% 
PU (Polyurethane) 10% 
PC (Polycarbonate) 9% 
Polyamide 5% 
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and substituted polyolefins into a variety of smaller hydrocarbon intermediates. One 

important issue with this method is the cost. Buekens and Huang (1998) estimated that 

for an industrial scale plant with capacity 25,000 ton/yr, the investment is around $20 

million and the unit cost of plastics treatment is $250/ton. The product price is 

comparable to that of crude oil or Naphtha. So the economic sustainability of the system 

is greatly dependent of the market crude oil or Naphtha price.  

 

(ii) Energy Recovery: The energy values (Table 1.2) of plastics are comparable to that of 

fuel oil. Pyrolysis and combustion studies have demonstrated that plastics can be safely 

converted to useful energy in an environmentally sound manner. Studies (Vehlow, et al., 

2002 ) from a pilot plant have shown that 90% of the bromine in the treated waste can be 

recovered in the plant’s gas cleaning system. Therefore, existing incinerators can be used 

where a bromine recovery unit is added to the scrubber system.  

 

Table 1.2 Energy values of common materials 

Plastics BTU/lb 
PP 19850 
PE 19900 
PS 17800 
Wood 6700 
Average MSW 4500 
Food wastes 2600 
Fuel oil 20900 

 

 

(iii) Mechanical Recycling: Plastics separated by mechanical methods are resalable in 

market and can be reused. Studies (Imai, et al., 2003) have shown that plastics containing 

brominated flame retardants can be mechanically recycled in terms of the formation of 
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polybrominated dibenzodioxins/furans (PBDD/Fs) and the ability to maintain the fire 

safety rating after recycling loops. Therefore, it has the potential to be an economically 

viable approach. Mechanical separation of plastics with a different composition requires 

that the materials have different physical and chemical properties such as density, surface 

properties, electrostatic properties and spectrum, etc.  This approach is discussed in more 

detail below.  

 

1.1.3 Mechanical Recycling Process 

In designing the electronics recycling technical program, the American Plastics 

Council (APC report, 1999) has addressed every step along the mechanical recycling 

chain (Figure 1.3).  

 

Figure 1.3 Mechanical Recycling Process (APC report, 1999) 
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It starts with product sorting, proceeds to dismantling/disassembly to isolate 

plastics-rich parts (liberated material), and on to plastic resin identification by the 

spectroscopic method. This is called the upstream separation. Parts with mixed plastics 

and metals are then sent to the downstream separation. There is a size reduction step that 

facilitates the liberation of non-plastic materials (mainly metals) from plastics and 

different plastics from each other. Then metals are removed first, followed by plastics 

separation. Once the plastics are separated, there is a final cleaning step, often followed 

by compounding and pelletizing. If the recycling process is technically and economically 

successful, there should now be clean and sorted post-use plastics ready to be processed 

and molded into new parts and products. This closes the mechanical recycling chain. 

For the upstream separation, it has been shown (Rios, et al., 2003) that limited 

disassembly with identification does not create a bottleneck since the materials at this 

stage are in relatively large sizes, such as the back cover of CRT monitors or televisions. 

Disassembly can also separate parts that require quite different size reduction to achieve 

material liberation.  

 At the interface between upstream and downstream separation, one has to decide 

whether to mix the parts that come from different products or having different material 

liberation requirement. One can choose to classify these parts in terms of their source or 

the required size reduction output size range. For these cla ssified parts, one can choose 

whether to use a single line to do a batch processing (in a sequential fashion) or use 

different lines to process them simultaneously. Of course, one can also choose to mix the 

parts and process them altogether. Batch processing of classified parts requires that the 

system can be adjusted to operate for different feed conditions at an optimal schedule. 
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Parallel processing of classified products requiring multiple lines therefore is an 

expensive option and is probably not economical when the supply is not at stable and 

high volume. The mixing of different parts will probably increase the difficulty of 

separation due to the increased number of components and require over-grinding of some 

parts. Therefore this option requires a more efficient use of different separation methods. 

The optional equipment for each function for the downstream separation is listed 

in Table 1.3.  

 

Table 1.3 Typical functional requirements and equipment 

Function Equipment 
Size reduction Jaw crusher, shear-type shredder, hammer-mill, 

roller-mill, rod-mill, ball-mill 
Ferrous-metal separation Drum / Belt type ferromagnetic separator 
Non-ferrous metal 
separation 

Eddy current separator 

Plastics separation Sink-float separator (Drum or cyclone) 
Froth flotation (Tank or column) 
Electrostatic separator (Free-fall or drum) 
Spectroscopy identification (NIR, Raman) 

 

 

1.1.4 Introduction to mechanical methods for plastics separation 

At the frontier of plastics recycling today is the development of accurate, high 

throughput separation methods to separate different types of plastics from each other and 

from other polymers such as rubber and elastomers. 

Sink and float separation, which is a process that sorts particles on the basis of 

their density relative to that of the medium, is widely used. It is often the case that 

plastics have similar densities (PP/PE; PVC/PET; HIPS/ABS), therefore density-based 

separation can not be applied. Then the differences in properties other than density, such 
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as surface wettability and polarity can be used.  

Flotation is a separation technique based on the material wettability, which can be 

characterized by the measurement of contact angles with water. However, most plastics 

are hydrophobic and floatable in water. It is possible to selectively change the wettability 

of plastics by various conditioning methods (chemical conditioning or physical 

conditioning). An overview of the applications of froth flotation is provided briefly in 

Table 1.4.  

 

Table 1.4  Overview of the applications of froth flotation 

Author/Inventor Plastics Conditioning agent 
Guern (1997) PET/PVC Soda 

Ligno sulfonate 
Shibata (1996) PC/PVC/POM/PPE Lignin sulfonate 

Saponin/Aerosol OT 
Fraunholcz (1997) GRPP, HIPS, ABS, 

PC, PA6, PMMA, 
PVC, POM 

Non-ionic surfatant, Electrolytes 
Inorganic  depressants 
Macromolecular organic 
depressants 

Stuckrad et al. (1996)  
US. Patent 5566832 

ABS/PC/PPO,  
ABS/SAN/PPO 

Plasma treatment 

Shen et al. (2001) PMMA/PVC Tannic acid 
Jody et al. (1997) 
US. Patent 5653867 

ABS/HIPS Acetic acid + water, salt, 
surfactant, water 

 

 

Electrostatic separation, which is widely used in mineral processing, has also been 

extended to the plastics separation. Plastic particles are contacted and those with higher 

dielectric constants become positively charged due to the electron transfer. This process is 

called triboelectric charging or triboelectrification. An overview of the applications of 

electrostatic separation is provided briefly in Table 1.5. 
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Table 1.5  Overview of the applications of electrostatic separation 

 M.Stage Cond. P./D Charging Plastics 
Yanar 
(1995) 

1 stage No P. Copper-lined 
cyclone 

PVC/PE 

Botsch 
(1997) 

3 stages 
2 stages 

No D Rotating drum Car dashboards (ABS-PC/ 
PVC) Bottles (PET/PVC) 

Kamptner 
(1997) 

2 stages Yes P. Vibratory feeder, 
Mixing drum, 
Fluidized bed 

Cable (PVC/EPDM/PE), 
PVC/PE/PS, PVC/PET 

Stahl 
(1997) 

Multiple  Yes P Unknown PP-EPDM/PA, 
PVDF/Acetal , 
Cable plastics (PVC/ EPDM/ 
VPE), Bottles(PET/PVC) 

Inculet 
(1998) 

1 stage No P. Fluidized bed, 
Rotating tube 

PVC/PET, PP/HDPE 

Xiao 
(1999) 

Multiple  No P. Rotating drum ASR(PP/PE), ESR,  
Refrigerators (ABS/HIPS),  
Bottles (PC/PVC) 

M.Stage. : Multistage ;          Cond.: Conditioning ;             P/D:  Plate or drum  

 

Plastics identification by various spectroscopy technologies is also under research 

although this kind of technology has not been applied at industrial scale. A common 

drawback of above technologies is that the identification accuracy is easily influenced by 

the existence of contamination such as additives and labels. In addition, some of the 

technologies are expensive to build and operate.  

The first type of methods (sink-float, froth flotation, electrostatic separation) 

separates plastics based on the particle trajectories in the separator. The separation is 

usually one dimensional and the boundary is determined by the system itself. Thus, the 

accuracy of this type of method is greatly influenced by the distribution of particle 

properties, especially the differentiating properties.  

The second type of method (spectroscopic methods) separates plastics by 

identification. The separation could be multi-dimensional, i.e., spectrum data at different 

wave lengths. The separation boundary can be manually adjusted according to the 
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samples analyzed. Therefore, the accuracy increases and the negative influence of particle 

distribution decreases with the number of samples used to define the separation boundary. 

Table 1.6 is a summary of these different methods. 

 
Table 1.6  Comparison of different mechanical separation methods 
 

 Differentiating  
Property 

Advantages  Disadvantages 

Sink-float 
separation 

Density Low cost Can not distinguish 
materials with overlapping 
densities.  
Medium recovery problem. 

Froth 
flotation 

Surface  
Wettability 

Floatability can be changed 
by agent treatment. 

Additional cost/time of 
conditioning. 

Electrostatic  
separation 

Polarity Dry process. Easy/cheap 
operation 

Charge may be widely 
distributed. 

Spectroscopic  
identification 

Spectrum Low cost. High selectivity.  
Accuracy independent of 
particle size. 

Low throughput. 
Contamination can 
influence accuracy. 

 

 
The selection of the appropriate equipment for each function depends on the flow. 

Different flow requires different size output to achieve certain degree of material 

liberation and different separation methods depend ing on the components contained. 

Therefore, the optimal flowsheet needs to be customized for different inputs. 

 

1.2 Research Objective and Focus 

1.2.1 Research objective 

The design of bulk recycling systems is an emerging field with only a few papers 

addressing the design of bulk recycling of electronic products. Stuart and Lu (2000a) 

developed a decision (reuse or recycle) model to select bulk recycling processing and 

reprocessing options for a take-back center that receives large quantities of similar 

products. They (Stuart and Lu, 2000b) also developed a refine-or-sell decision model, 
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which is capable of determining at what point materials are refined, and at what point 

they are sold. Sodhi et al. (1999) used dynamic programming to determine the sequence 

of operations for float-sink material separation by minimizing the total processing 

volume without using a detailed unit model. Reimer et al. (2000) reported on an 

integrated electronics recycling model and a proposed solution technique using genetic 

algorithms. None of these works have considered the selection of alternative separation 

methods and the individual unit design and operation.  The interaction of the overall 

system design with the unit operation design is critical both from understanding the 

economic costs of carrying out the process steps and in ensuring that the system has the 

appropriate flexibility to handle the uncertainty in the waste stream. 

 It can be seen from our previous introduction that bulk recycling systems are 

similar to other chemical engineering process systems and therefore they can be 

synthesized and designed using the same types of techniques that have been applied to 

distillation and reaction systems. In particular, there is a reasonable similarity between 

the synthesis of plastics separation system and that of the distillation columns (Doherty 

and Malone, 2001) in terms of the determination of the separation sequence.  

Our research objective is to develop a systematic approach to the design of bulk 

recycling systems under uncertainty. “Systematic” means that the alternatives are 

explicitly represented and selections made based on the economic viability and capability 

of the system to meet explicitly defined constraints placed on the system operation.  The 

output will be the process flowsheet, unit sizes and products. There are two approaches to 

generate the output. One approach is to determine the elements of the flowsheet in a 

sequential way with the help of heuristic rules, such as the Douglas’s hierarchical 
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decomposition method (Douglas, 1988). Another approach is simultaneous optimization 

based on mathematical programming.  

The mathematical programming approach to design problems consists of three 

major steps: (I) the development of a representation of alternatives from which the 

optimum solution is selected; (II) formulation of a mathematical program that generally 

involves discrete and continuous variables for the selection of design and operating 

variables, respectively; and (III) solution of the optimization model. In the first step, the 

superstructure approach is widely used. A superstructure is a general flowsheet 

incorporating every feasible realization, from which specific designs are obtained by 

optimization.  

A combination of these two approaches will be employed to make the systematic 

selection from the alternatives. In comparison to previous work in bulk recycling systems, 

the unit operations themselves will be explicitly modeled and the interactions between 

operations through the characteristics of the feed and intermediate streams captured with 

reasonable physical fidelity.   

Due to the existence of a variety of different units in the bulk recycling system, 

the scope  of this research is limited to the plastics separation part in the electronics 

sector of bulk recycling problems. Although the focus of this research is on the recycling 

of electronics, the method developed in this research can be easily extended to other 

applications. The size reduction and metals separations steps will not be explicitly 

modeled. In other words, they are not included in the superstructure.  However, the 

influence of size reduction on the plastics separation will be discussed qualitatively and a 

heuristic method to incorporate the design of size reduction into plastics separation will 
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be presented. Since metals separation is a relatively well-understood problem, hence the 

incorporation of the metals separation units only makes the problem larger, but does not 

bring any unresolved difficulties.  

However, the existing synthesis and design techniques from chemical engineering 

process systems can not be applied straightforwardly to the design of bulk recycling 

problems due to significant uncertainties in the latter. 

 

1.2.2 Research focus 

Various uncertainties include feed flowrate, component, composition as well as 

product prices. The variation of product prices will not make an existing recycling system 

infeasible, however, it could render the system uneconomical. The items generated by 

sector vary substantially, as do the types of collection program. The absence of a standard 

collection method means that the types and quantities of items collected vary 

substantially from program to program, making it difficult for recyclers to determine 

what materials will be generated, in what quantities and with what regularity and with 

what cost.  

 

Uncertainties in the feed streams 

An analysis of the collection programs initiated by EPA (EPA report, 1999) shows 

that the total weight and types of electronic products collected varies with different 

collection program and different time period, which means that the feed flowrate and 

composition to our recycling system tend to vary.  
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Correlation between uncertainties 

The feed compositions do not vary independently. Other uncertainty parameters 

may also be correlated such as product prices. Product prices are influenced by market 

including supply and demand and the overall environment. For example, if at a time, both 

television and computer manufactures decide to use recycled resins then the demand for 

HIPS and ABS will increase, then their prices will show a positive correlation. The price 

of virgin materials is often correlated with the price of energy and hence the increase in 

cost of one virgin resin type is positively correlated with that of anther. For an empirical 

relationship with multiple correlation parameters, these parameters are also correlated. 

Correlated uncertainty parameters should be represented by a joint confidence region 

instead of individual confidence intervals.  

For the design of bulk recycling systems, correlated uncertainties represent very 

important information that can not be neglected in the design procedure. There is also a 

need to study how correlation influences the design and the operability of a plant, 

irrespective of whether or not this is a bulk recycling system or another type of chemical 

facility.  

 

1.3 Research Goals 

        To achieve the above objective, the following three goals need to be completed: 

1. Development of an efficient solution technique for solving stochastic MINLPs 

2. Development of unit models for all separation methods to be considered, and 

3. Development of an overall synthesis method taking account of the interaction 

between size reduction and separation. 
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        Previous work in satisfying these goals is briefly reviewed below followed by the 

contributions this thesis makes towards reaching them. 

 

Design under uncertainty 

Several approaches have been developed in the literature addressing the problem 

of design under uncertainty, such as (1) deterministic-based multi-period/scenario 

problem (Grossmann and Sargent, 1978; Grossmann and Halemane, 1982; Paules and 

Floudas, 1992); (2) probabilistic-based 2-stage stochastic programming (Pistikopoulos 

and Ierapetritou, 1995; Bernardo et al., 1999) and (3) flexibility analysis (Pistikopoulos 

and Grossmann, 1989a,b; Raspanti et al., 2000). Extensive reviews are given by 

Grossmann et al. (1983) and Pistikopoulos (1995). A detailed review of design under 

uncertainty is presented in Chapter 2.  

The first approach is applied to formulate the design under uncertainty problem as 

a stochastic Mixed Integer Nonlinear Program. A method is to be developed to allow 

determination of the sample size needed to achieve certain solution confidence. 

Computationa l savings are expected as samples are used only as large as needed. 

Intuitively, bad solutions should be able to be eliminated without high accuracy.  

 

Unified modeling approach for plastics separation 

One should first realize that not all particles are identical. In other words, particle 

properties, such as size, may be widely distributed, instead of a single constant. Second, 

even identical particles do not have the same behavior in the separator, such as the 

number of contacts with other particles to generate tribo-electric charges or with bubbles 
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to be floated. Therefore, the development of the unit models should take account of these 

issues. Intuitively, the distributions of particle properties should lead to nonsharpness of 

the separations. Ideally, the influence of the distributions on the separation efficiency 

should be explicitly modeled. In this research, models for sink-float, froth flotation, 

electrostatic separation (free-fall and drum-type) will be developed and unified to allow 

others to make progress in the future. This approach is termed trajectory-based separation 

modeling to distinguish it from approaches in the past.  

 

Overall synthesis method 

At the overall system level the major interactions are between the separation 

technique and the extent of size reduction. It is important to establish how the size 

distribution affects the separation efficiency of different methods. Furthermore, how does 

the material liberation influence the choice of size reduction equipment and grinding time? 

The desired output particle size from size reduction will depend on the products to be 

processed and the separation methods to be used. Therefore, instead of grinding to a very 

fine size at the start of the system, it might be helpful to reduce the particle size at 

multiple times throughout the system and arrange the order of separation appropriately 

from favoring larger particles to favoring smaller ones.   

 Finally, a case study will be demonstrated to combine the solution technique and 

unit models for a plastics separation system.  

 
1.4  Research contributions  

The contributions of this research are summarized as follows. They are classified 

into three categories: “general” refers to process synthesis and design including the 
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methodology and computational implementation, “contextual” refers to the bulk 

recycling system, and “specific” refers to a detailed issue such as unit modeling.  

 
General:  Design Methodology and Computational Implementation 

 
The proposed SAA method is the first approach in the MINLP area to determine 

the appropriate sample size based on the solution quality. The user can either adjust the 

sample size successively based on the calculated solution quality or calculate the solution 

quality based on the pre-specified sample size. The approach also provides a way to 

decompose the scenarios; therefore, there is no need to solve a large stochastic problem 

as a whole and the computational time is significantly reduced.  

 
Contextual:  Bulk recycling system design 
 

This research is the development of the first formal and systematic approach to 

the bulk recycling problem. It is the first approach to account for interactions between 

process steps and combine structural decisions with operating decisions. It is also the first 

approach to consider (correlated) uncertainties in the design of bulk recycling systems. 

 
Specific:  Unit modeling 

 It is the first development of unified models for solids separation taking account 

of the influence of particle property distributions and other random factors. It also 

provides a basis to analyze the interactions between size reduction and separation and do 

an integrated design.  

 
 
1.5  Summary 

This chapter gives an introduction to the bulk recycling problem, which has 
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similarities to the distillation sequencing and design problems in chemical engineering. 

However, there are some salient features in the former, such as the various uncertainties 

and separation by different mechanisms, which make the direct application of existing 

synthesis and design techniques impossible. Therefore, the objective of this research is to 

develop a systematic method to the design of bulk recycling problems. To achieve this 

objective, three goals need to be completed including, a method to solve stochastic Mixed 

Integer Nonlinear Programs, an approach to model different separation units accounting 

for the distribution of particle properties, and a method to incorporate size reduction units 

to the optimization of the plastics separation system. The details of the research work are 

presented in the Chapter 2 to 6. In Chapter 2, an efficient solution technique (Sample 

Average Approximation method) for solving stochastic MINLPs is described. In Chapters 

3 and 4, a unified approach is presented for modeling various separation units. In Chapter 

5, a heuristic design method is proposed to incorporate the size reduction unit to the 

separation system. In Chapter 6, a case study, which combines the sample average 

approximation method proposed in Chapter 2 and the unit models developed in Chapters 

3 and 4, is demonstrated. Finally, Chapter 7 concludes the research. 
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CHAPTER 2 

SAMPLE AVERAGE APPROXIMATION  
METHODS FOR STOCHASTIC MINLPS 

 

2.1 Introduction to process design under uncertainty 

Process design under uncertainty can be formulated as multi-period or stochastic 

MINLPs (Halemane & Grossmann, 1983; Paules & Floudas, 1992; Pistikopoulos, 1995). 
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Where y is a vector of binary 0-1 variables denoting the choice of the units or the 

existence of the streams, x is a vector of design variables such as unit sizes, z is a vector 

of control/state variables, which can vary over periods/scenarios, and θ represents a 

vector of uncertain parameters. The objective is often to minimize the expected value of 

costs or maximize the expected value of profit. The constraint set J includes mass 

balances, unit design/operating models, design/operating specifications and some logical 

constraints. The exact evaluation of the expected value is difficult or even impossible 

when the integral cannot be computed exactly or the objective function f is not in a closed 

form. Then the expected value is often approximated through sample averaging. Under 

uncertain conditions, it is assumed that the design must remain feasible for every 

realization of the parameters consistent with their probability distribut ions. Therefore, the 

problem can become unmanageably large and its solution is time-consuming. Several 
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papers in literature have addressed the various issues of solving such problems including 

(i) integration methods, and (ii) sampling methods.  

For the integration methods, when the exact expected value can not be computed, 

one usually uses a numerical integration technique or a sample average approximation 

method. Acevedo and Pistikopoulos (1996, 1998) compared the two approaches: 

Guassian Quadrature formula for numerical integration (with both a full scan of 

uncertainty space and evaluation of feasible region) and Monte-Carlo sampling for 

sample average approximation. Novak and Kravanja (1999) suggested an approximation 

method using extreme points (vertices), in which the objective function is calculated by 

the weighted average over critical points and the feasibility of the design is ensured by 

the constraints at critical vertices. Novak, Pintaric and Kravanja (2000) proposed a 

modified Box’s direct search method for the design stage and a reduced dimensional 

stochastic procedure for the operating stage.  

For sampling methods, one of the most widely used sampling techniques is the 

Monte Carlo method (MC), by which independent pseudo-random samples are first 

generated to approximate a uniform distribution and then specific values of a probability 

distribution are created by inverse transformation of the cumulative distribution function. 

However, for a uniform distribution, uniformity is more critical than randomness or 

independence for the samples to be more representative of the population, Kim and 

Diwekar (2002). To address this issue, Kalagnanam and Diwekar (1997) developed the 

Hammersley Sequence Sampling (HSS) technique and showed that HSS can provide 

much faster convergence to the true mean and variance of a distribution  than MC. 

Sampling-based approximation methods include two basic philosophies: internal 
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sampling and external sampling. The internal sampling methods perform sampling inside 

an algorithm with new independently, identically distributed (i.i.d.) samples generated 

and accumulated over iterations and the entire history of samples is used in computation 

at every iteration. External sampling, which is also called sample-path optimization, 

sample average approximation (SAA) or stochastic counterpart method, approximates the 

true problem by the sample average approximation problem: 
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(SAA-MINLP) 

Hence, once the sample is generated, the stochastic problem becomes a deterministic one, 

which can be solved by existing deterministic algorithms. 

Examples of internal sampling algorithms include the “stochastic decomposition” 

algorithm (SD) for solving two-stage stochastic linear programs by Higle and Sen (1991) 

and “stochastic branch and bound” algorithm (SBB) by Norkin et al. (1998). SD solves at 

each iteration one subproblem to update a piecewise linear approximation of the recourse 

function and one master problem to generate successive iterates with increasingly large 

samples. In the SBB algorithm, stochastic upper and lower bounds are generated through 

the partitioning process and subsets are not fathomed at each iteration until a sufficiently 

large number of iterations are carried out. It has been shown, for both of the algorithms, 

that under some mild assumptions, there exists a subsequence of approximate solutions 

{ }∞
=1kkx with accumulation point belongs to the set of optimal solutions *X , which 

established the convergence of the internal-sampling algorithms (Higle and Sen, 1991 

and Norkin et al., 1998). 
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Examples of external sampling methods include Mak et al. (1999), Linderoth et al. 

(2002) for stochastic linear problems and Kleywegt et al. (2001) for stochastic integer 

problems. The optimality gap of the objective value, estimated by the difference between 

an upper bound (the objective value at any candidate solution) and a lower bound 

(average of replicated solutions), has been used to determine the solution quality. The 

validity of this lower bound has been proved independently by Norkin et al. (1998) and 

Mak et al. (1999). Following this lower-bound generating strategy, Kleywegt et al. (2001) 

used a smaller sample size N to make decisions (with M replications) and a larger sample 

size N’ to re-compute the objective value with the decisions fixed at the values obtained 

previously from solving the smaller problems. One alternative to evaluate solution quality 

is to see if the replications generate an “identical” solution and another is to test the KKT 

conditions. For some problems, in which the decision-making is more important than 

accurate estimation of the objective value, the method of identical solutions is more 

suitable. Convergence with probability one has been established for the external-sampling 

algorithms and under some assumptions the limiting distribution is normal if the solution 

is unique (Shapiro, 1991, King and Rockafellar, 1993).  

The approach described in this chapter is wrapped around a traditional MINLP 

approach.  Duran and Grossmann (1986) proposed the Outer Approximation (OA) 

method to solve deterministic MINLP problems, which is briefly introduced at the 

beginning of the next section. Fletcher and Leyffer (1994) proposed the Generalized 

Outer Approximation (GOA) method for treating infeasible primal problems. Kesavan 

and Barton (2000) presented a generalized branch and cut algorithm as a unified 

framework in which both decomposition and branch and bound algorithms  are 
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incorporated as specific instances. The difficulty in solving stochastic MINLPs lies in the 

coupled discrete and continuous variables over periods. Once these coupled variables are 

known, the problem becomes independent at each period and can be solved easily. 

Intuitively, poor solutions should be capable of being eliminated with only inaccurate 

estimates of their quality. The goal of this work is to translate this intuition into specific 

modifications of an MINLP algorithm for stochastic problems. At each iteration of the 

OA algorithm, the SAA method is applied to each NLP subproblem and MILP master 

problem. In this chapter, two stopping rules are presented: one is the Optimality Gap 

Method (OGM), and another is the Confidence Level Method (CLM) and use examples 

to demonstrate that they can be more efficient than conventional fixed-sample algorithms.  

 

2.2  The Outer Approximation algorithm 

First the OA algorithm (Figure 2.1) is briefly introduced below. For a deterministic 

MINLP problem: 
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where J is the set of constraints,  the OA algorithm solves at each iteration k=1, …, K, a 

NLP subproblem with fixed y variables (denoted as ky~ ) to provide an upper bound (UBk): 
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Figure 2.1 Basic steps of the OA algorithm  

 
and an MILP master problem to provide a lower bound (LBk) and new values of y: 
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(MILP) 

where GLB=LBk-1 and GUB=min{UBk}. K is the current iteration number. The 

procedure is continued until the MILP master problem becomes infeasible.  
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The stochastic versions of the OA algorithm still employ this structure, but the NLP 

sub-problems and MILP master problems are stochastic. Both of the algorithms (OGM 

and CLM) involve solving.  At each iteration,   

(1) a smaller stochastic NLP  sub-problem (S-NLP) M times, each at sample size N 

(2) a larger stochastic NLP sub-problem (L-NLP) at sample size N’ with fixed 

continuous decision variables x~  

(3) a smaller stochastic MILP master problem (S-MILP) M times, each at sample size N 

(4) a larger stochastic MILP master problem (L-MILP) at sample size N’, with fixed 

discrete and continuous decision variables y
~~  and x

~~  (actually a linear problem) .  

The definitions for these problems are presented below. Different sample size N and N’  

are allowed at different iterations, therefore using a subscript k to denote the iteration 

number.  Ik and Ik’ are the sets of the samples at the kth iteration with sample size Nk and 

Nk’, respectively.  

 The problem S-NLP is defined as 
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where the discrete decision variables are fixed at y~ . 

 The problem L-NLP is defined as 
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where both the discrete and continuous decision variables are fixed at y~ and x~ , 
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respectively.  

 The problem S-MILP is defined as 
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where there are no fixed variables, ( )Kk N,Nmin=kN , K,...,k 1=  and superscript * 

denotes the linearization points obtained from solving S-NLP or L-NLP.  

 The problem L-MILP is defined as 
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where the discrete and continuous decision variables are fixed at y~~ and x
~~ , respectively, 
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which are obtained from solving the corresponding S-MILP. ( ),'N,'Nmin'N Kkk  =  

Kk ,...,1= .   M batches of i.i.d samples are generated, each with sample size N and one 

batch of i.i.d (or common random numbers) of samples with a larger sample size N’. The 

sample sizes N and N’ are increased until some stopping criterion is satisfied. Next two  

stopping rules are discussed.   

 

2.3 The Optimality Gap Method (OGM) 

Let UB* denote the optimal solution of the true stochastic MINLP problem 

(SMINLP) and NBÛ denote the optimal solution of the approximation problem (SAA-

MINLP) with sample size N.  According to Norkin et al. (1998) and Mak et al. (1999),  

[ ] *UBBÛE N ≤  (2.1) 

Hence a statistical lower estimate for true optimal value v* is the expected value of the 

replicated SAA solutions, which can be estimated by  
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M
BU

1

1
 (2.2) 

where M,NBÛ  denotes the average of the M replicated solutions ( )m
NBÛ (m=1, …, M) to 

the NLP subproblem (each with sample size N). The “lower estimate” and “upper 

estimate” are used to distinguish them from the “lower bound” and “upper bound” which 

have been reserved for the OA algorithm. M/ŜU
M,N

2
is used to denote the variance of the 

replicated solutions:  
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So the (1-α) confidence interval of the lower estimate of the upper bound is  

M

Ŝ
tBU

U
M,N

/,MM,N 21 α−±  (2.4) 

Where t is the student t-test with M-1 degrees of freedom and 1-α confidence level. 

Similarly, a confidence interval for the upper estimate of the upper bound can be 

constructed. Use 'NBÛ  to denote a solution to the NLP subproblem with sample size N’ at 

any Xx~ ∈ . Then 'NBÛ  is an upper estimate of the true value *UB . Let 'N/ŜU
'N
2

denote 

the variance and 
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Then a (1-α) confidence interval for the upper estimate of the upper bound is  
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Combining the confidence intervals of the lower and upper estimates, the confidence 

interval of the optimality gap for the upper bound is  
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and Mak et al. (1999) have proved that 
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To make it clear, a graphical picture of this interval is given in Figure 2.2. Similarly a 

confidence interval of the optimality gap for the lower bound can be constructed.  
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where M,NBL and M/Ŝ L
M,N are the mean and standard deviation of the replicated 
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Figure 2.2 Illustration of the confidence interval for the upper bound 

 

solutions of the S-MILP with sample size N, respectively. 'NBL̂  and 'N/Ŝ L
'N  are the 

solution and standard deviation of the solution of the L-MILP problem with sample size, 

respectively. 

The notations GUB and GLB were used in the MILP. In the deterministic case, 

GUB is the minimum of all upper bounds and GLB is the lower bound from the previous 

iteration.  However, in the stochastic case there are correspondingly two values for the 

upper bound and lower bound, respectively: one is the average of the objective values of 

the replicated smaller problems and another is the objective value of the larger problem. 

Thus, we have ( 'NM,N BÛ,BU ) and ( 'NM,N BL̂,BL ) as the sequence of upper and lower 

bound values, respectively (Figure 2.3). It should be noted that if different values for S-

MILP and L-MILP are used, one is actually solving two different problems, which make 
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the optimality gap estimate no longer valid. Therefore, in both S-MILPs and L-MILPs, 

the objective value of NLP subproblem at sample size N’ is used for GUB and the 

objective value of MILP master problem at sample size N’ for GLB, i.e., 

 { }   )k(
'NBÛminGUB =    and )k(

'NBL̂GLB 1−= , ... ,2 ,1k =  (2.10)      

The convergence of GUB and GLB is shown in Figure 2.3.  

 

Converging UB

Converging LB
iteration

Objective
    value

'NBÛ

M,NBU

'NBL̂

M,NBL

GUB

GLB

 

Figure 2.3 Converging upper and lower bounds 

 

The SAA algorithm presented by Kleywegt et al. (2001) used the following 

stopping criterion: increase sample size N and/or N’ until the gap and the variance of the 

gap are sufficiently small. It is apparent that the term 'N/Ŝt U
'N2/,1'N α− is part of the 

confidence interval of the optimality gap. Our approach (Figure 2.4) contains an inner 

loop to increase sample size N’ until the term 'N/Ŝt U
'N2/,1'N α− is below the desired 

confidence interval of the optimality gap and an outer loop to increase sample size N 

until the confidence interval of the optimality gap is sufficiently “small”. In our algorithm,  
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Figure 2.4 Basic steps of OGM for stochastic MINLPs 
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a quantitative measure of smallness is chosen, meanv⋅γ , where γ is a small value between 

0 and 1, say 0.02, and meanv  is the optimal value of the deterministic problem at the 

mean values of uncertain parameters. A consequence of using larger problem values for 

the S-MILPs is that the infeasibility of S-MILP does not guarantee the infeasibility of L-

MILP, which will be discussed in the next section. Hence when the S-MILP becomes 

infeasible, one will need to solve (without fixing the decision variables) the L-MILP. The 

algorithm stops only when the L-MILP becomes infeasible.  

 

2.4 The Confidence Level Method (CLM) 

The optimality gap method described in the above section guarantees that at each 

iteration, one gets the optimal solution for the NLP subproblem or the MILP master 

problem with at least (1-α) confidence level. However, this does not mean that the 

confidence level of finding the optimal solution to the overall problem is also at least (1-

α). The above strategy lacks an accuracy estimation of the final solution. Intuitively, to 

compare two candidate solutions, one does not necessarily need an accurate estimation of 

each objective value if they are “far” from each other, where a dimensionless parameter 

can be defined relative to the variance of the objective value. The following algorithm 

formalizes this idea.  

 Considering that the optimal solution y* can be lost during the following 3 steps: 

1) Comparison of the objective values of the NLP sub-problems 

2) The constraint in MILP: GUB≤β    

3) The constraint in MILP:  GLB≥β  
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For 1), in the deterministic case, the optimal solution is updated by comparing the 

upper bound of the current solution and the best upper bound found so far, if the current 

one is smaller, the best upper bound is updated by the current one. In the stochastic case, 

it should be guaranteed that at least the confidence intervals of two cand idate solutions do 

not overlap and if they are away from each other by a certain value, it will give a higher 

confidence than simply using their mean values for comparison. So the rule is modified 

as follows: for some tolerance ε∈(0,1) and yo, the best solution found so far, to ensure 

either 

     ( ) ( ) ayBÛyBU o
'NM,N 2+>      if y is worse than yo (2.11 a) 

or    ( ) ( )o
M,N'N yBUayBÛ <+ 2  if y is better than yo (2.11 b) 

where 





 +=

'NM
a

112
2

ε
σ

. The definition for a is actually obtained from the derivation 

(see Lemma 2 in section 3) of the relationship between the probability of cutting off 

optimal solution at one iteration (=3ε) and the parameter a. So if y* is already the best 

solution so far, y* will be replaced by a new y only when there exists a y such that 

( ) ( )*yBUayBÛ M,N'N <+ 2 ; or if y* is still not the best solution, y* appears to be worse 

than a previous y value if ( ) ( ) ayBÛ*yBU 'NM,N 2+> . If none of these can be satisfied, 

either the value of the parameter a or the sample sizes N and/or N’ should be increased.  

For 2), in order to reduce the possibility of losing y* (i.e., y* is infeasible), the 

constraint is weakened as follows:  

( ) a2yBÛBL o
'NM,N +≤  (2.12) 
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Norkin et al. (1998) used a similar deletion rule in their stochastic branch and bound 

algorithm to cut off any subset when the lower bound is greater than the upper bound by 

a certain value. However, M,NBL is an average of multiple variables which appear in 

different problems. Therefore, it is impossible to impose such a constraint in any MILP 

problem. To deal with this issue, the constraint is removed from MILP master problem. 

Correspondingly, a post-analysis  is done after solving the S-MILP: If the above 

inequality is no longer satisfied, the algorithm should stop. 

For 3), to reduce the possibility of losing y*, this constraint is weakened as 

follows: 

( ) a2yBL o
M,N −≥β   for S-MILP and L-MILP (2.13) 

These two constraints are included in the S-MILP and L-MILP, respectively. Note that 

since L-MILP is solved after S-MILP is infeasible, constraint (2.13) in S-MILP will not 

cut off the optimal solution. It will be shown in the next section that the constraints (2.11 

a, b) (2.12) and (2.13) together guarantee that the probability of losing the optimal 

solution y* is within a tolerance, which can be adjusted by the parameter a, the 

replication number M and sample sizes N, N’.  

 

2.5 Accuracy and convergence of the algorithms 

In this section, first a few issues related to the accuracy of the algorithms are 

discussed, including (i) why need to solve L-MILP after S-MILP becomes infeasible (ii) 

justification of using the objective value from the larger sample size to compare solutions 

(iii) the accuracy of the confidence level method (through a proof of the probability of 

cutting off the optimal solution y* and a proof of the probability of having a bad solution). 
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In the previous section, it has been mentioned that the L-MILP needs to be solved 

after the S-MILP is found infeasible. The following illustration explains why this is 

necessary.  

Figure 2.5 (a) shows the objective function curves at different sample sizes N and 

N’. Suppose we start from point 1' and solve the problem using a small sample size but 

use larger sample size to get a more accurate estimation of the upper bound. At a certain 

stage, say, point 2', S-MILP becomes infeasible because the upper bound UB2 is smaller 

than the minimum objective value of the problem at the small sample size. So in this case, 

the upper bound can cut off the true optimal solution. Similarly, in Figure 2.5(b), the true 

optimal solution can be cut off by the lower bounds generated by linearization at points 

of the objective function curve at larger sample size, which is greater than the curve at 

smaller sample size. The lower bounds (LB1 and LB2) generated by linearization at 

points 1 and 2 have cut off the true optimal solution.  In Figure 2.5(c), for some part, the 

objective function at small sample size is greater than that of the larger sample size; while 

for some other part, this is reversed. So, both upper bound and lower bound can cut off 

the true optimal solution. At point 1, the linearization cuts off the true optimal solution; at 

point 2 the upper bound can also cut off the true optimal solution.  

So, in all cases, after S-MILP becomes infeasible, it can not be guaranteed that the 

optimal solution has been found. Hence, it is necessary to use the larger sample size to do 

a precise search (i.e., solve L-MILP) to find the true optimal solution because only the 

infeasibility of L-MILP can indicate that there is no better solution than the current upper 

bound, but the advantage is that this is done only at the last few iterations.  

Next, the second issue of this section is discussed. Assume that the objective 
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values with sample size N’ are exact and use the objective values from the larger sample 

size to compare solutions and solve master problems. After the S-MILP is found 

infeasible, solve the L-MILP until L-MILP is found infeasible. 

 
 

 
 
 
 

 
 

 
 
 

 
 
 

 
 

Figure 2.5 (a). Case I 
objective function at large sample size 

 < objective function at small sample size 
 

 
 

Figure 2.5 (b). Case II  
       objective function at large sample size 
    > objective function at small sample size 
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Figure 2.5 (c). Case III. 
objective functions at two sample sizes cross each other 

 
 
 
 

Lemma 1:  the optimal solution y* will not be eliminated. 

Proof (by contradiction) 

Assuming the true optimal solution y* is lost. Case a) y* appears in the sequence 

of y values but there is at least another y in the sequence with a smaller objective value. 

Since 'Nv̂  is used to compare the solutions and have assumed that 'Nv̂  are exact, this is a 

contradiction. Case b) y* has been cut off because of the two constraints ( GUB≤β  and 

GLB≥β ) in L-MILP. (i.e. y* does not appear in the sequence of iterations). As the L-

MILP becomes infeasible, we must have ( ) GUB*y'N >β  or ( ) GLB*y'N <β . 

Since ( )*y'Nβ  is a lower bound, a contradiction is reached that a lower bound is greater 

than an upper bound, i.e., the first inequality can not happen. Also, since y* is an optimal 

UB 

N 

N’ 

2 

1 

1’ 

2’ 

LB 
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solution, y* should have a maximal lower bound which is greater than any other lower 

bounds generated at previous y values in the sequence. This means that ( ) GLB*y'N <β  

can not happen either. Combining the two cases, y* can not be lost in either way.   

(End of proof). 

 

 The above states that if the bound estimates are exact, the optimal solution y* will 

be found. However, the bounds are random variables, i.e. they are not 100% exact. For 

the algorithm based on the optimality gap method, a quantitative estimate of the overall 

accuracy can not be provided. Qualitatively, the overall accuracy increases as the 

tolerance on the optimality gap interval decreases. For the confidence level method, a 

bound for the probability that the solution y* will be lost can be derived.  

 

Lemma2: Assume the variances of all upper and lower bounds are bounded by the 

value σ2.  It can be shown that by guaranteeing (2.11a, b), (2.12) and (2.13), the 

probability that y* is lost will be no greater than 3Kε , where K is the number of 

iterations at which the bounds are updated.  

Proof: 

Assume {y(k)} is a sequence of y values that have been examined.  

P {y* is lost at one iteration} =  
         P {y * ∈{y(k)} but is lost during the comparison with another y ∈{y(k)}   
            +   y* ∉{y(k)} because of constraint 2.12  
            +   y* ∉{y(k)} because of constraint 2.13 } 
≤     

P1 {y * ∈{y(k)} but is lost during the comparison with another y ∈{y(k)}  
      +    P2 {y* ∉{y(k)} because of constraint 2.12 }  
      +    P3{ y* ∉{y(k)} because of constraint 2.13 }  

(2.14) 
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Where  

( ) ( ) ( ) ( ){ } 2or      2 1 *yBUayBÛayBÛ*yBUPP M,N'N'NM,N <++>=  (2.15) 

( ) ( ){ }
( ) ( )[ ] ( ) ( )[ ]{ }
( ) ( )[ ]{ } ( ) ( )[ ]{ } 0  0 

 2 

 2 

<+−+>−−≤

+−>−=

+>

a*yUBEyBÛPa*yUBE*yBUP

a*yUBEyBÛ*yUBE*yBUP

ayBÛ*yBUP

'NM,N

'NM,N

'NM,N

 (2.16) 

For the 1st term, Norkin et al. (1998) showed that  

( ) ( )[ ]{ } ( )( )
MaMa

*yUBVar
a*yUBE*yBUP

)m(
N

M,N 2

2

2
 0 

σ
≤≤>−−  (2.17) 

where the first inequality is by the Chebyshev inequality (if a random variable x has a 

finite mean µ and finite variance σ2, then ∀ k≥ 0, we have { } 22 k/kxP σµ ≤≥− ) and 

the 2nd one is by the assumption in Lemma 2.  

For the 2nd term,  

( ) ( )[ ]{ }
( ) ( )[ ] ( )[ ] ( )[ ]{ }
( ) ( )[ ]{ } ( )[ ] ( )[ ]

( )( )
)assumption  theand inequality Chebyshevby  (again,    

  since   0 

  

 0 

2

2

2 'Na'Na

yUBVar

yUBE*yUBE,ayUBEyBÛP

yUBE*yUBEayUBEyBÛP

a*yUBEyBÛP

'N

'N

'N

'N

σ
≤≤

<<+−≤

−<+−=

<+−

 (2.18) 

Therefore,  

( ) ( ){ } ε
σ

=





 +≤+>

'NMa
ayBÛ*yBUP 'NM,N

11
 2 

2

2
 (2.19) 

Parameter a can be defined by setting the right hand side equal ε.  Similarly, we have  

( ) ( ){ } ε≤<+  2 *yBUayBÛP M,N'N  (2.20) 
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However, since the two events ( ) ( ){ } 2 ayBÛ*yBU 'NM,N +>  and 

( ) ( ){ } 2  *yBUayBÛ M,N'N <+  can not occur simultaneously, so we have 

ε≤1P  (2.21) 

Similarly, for P2, we have 

( ) ( ){ }
( ) ( )[ ] ( ) ( )[ ]{ }
( ) ( )[ ]{ } ( ) ( )[ ]{ }
( ) ( )[ ]{ } ( ) ( )[ ]{ }

( )( ) ( )( )
ε

σ
=






 +≤

⋅
+

⋅
≤

<−++>−−≤

<−++>−−≤

−+>−−=

+>=

'NMaa'N

yBÛvar

aM

*yLBvar

yUBEayBLPa*yLBE*yBLP

yUBEayBLPayUBE*yBLP

yUBEayBUayUBE*yBLP

ayBU)*yBLPP

'N
)m(

N

'NM,N

'NM,N

'NM,N

'NM,N

11

 0  0 

 0  0 

  

 2 

2

2

22

2

 (2.22) 

and for P3, we have 

( ) ( ){ }
( ) ( )[ ] ( ) ( )[ ]{ }
( ) ( )[ ]{ } ( ) ( )[ ]{ }
( ) ( )[ ]{ } ( ) ( )[ ]{ }
( )( ) ( )( )

ε
σ

=





 +≤

⋅
+

⋅
≤

>−−+<+−≤

>−−+<+−≤

−−<+−=

−<=

'NMaaM

yLBvar

a'N

*yBL̂var

ayLBEyBLPa*yLBE*yBLP

*yLBEayBLPa*yLBE*yBLP

*yLBEayBLa*yLBE*yBLP

ayBL*yBL̂PP

)m(
N'N

M,N'N

M,N'N

M,N'N

M,N'N

11

 0  0 

 0  0 

  

 2 

2

2

22

3

 
(2.23) 

Therefore, combining (2.14) and (2.21~2.23), we have 

P{y* is lost at one iteration} ε3≤  (2.24) 

If there are K iterations at which bounds are updated (i.e., exclude those iterations where 

NLP subproblems are infeasible for the given y values), the total probability of losing the 

optimal solution is 

P{y* is lost finally} εK3≤  (2.25) 

 (End of proof) 
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First it should be noted that the error is proportional to the square of the ratio 

(σ/a), therefore if a can be chosen a large value, i.e., objective values at different 

decisions are far from each other, a large variance σ2 can be tolerated, which means small 

sample sizes N, N’ or replication number M might be sufficient to obtain a small 

probability of error. Second, since the overall error is also proportional to the number of 

iterations, if the iteration number K is large, the overall error could be large due to the 

error accumulation over the iterations. The problem of error accumulation exists if one 

applies the SAA method to each subproblem and master problem. However, the number 

3Kε is just a conservative estimate, i.e., the actual error might be much smaller.  

It is also important to establish bounds on the probability of having a very bad 

solution (i.e., the probability that the objective value is greater than the true optimal value 

by a certain number if a wrong solution yo is reached instead of y*).  Consider the worst 

case: for a sequence {yk}, k=1,…, K, the true objective values are ordered as: 

( ) ( ) ( )K21 yvyvyv <<< L ; but the CLM algorithm generates a reverse order: 

( ) ( ) ( )K21 yv̂yv̂yv̂ >>> L , so there is an incorrect comparison of objective values at 

each iteration and we end up with a wrong solution yo=yK while the true optimal solution 

is y*=y1. We must have in the algorithm: 

( ) ( )12 −<+ kM,Nk'N yBUayBÛ , for k=2, …, K  (2.26) 

The problem becomes: given (2.26), what is the probability of ( ) ( ) ( )δ1K2*yvyv o −≥− , 

where δ is a parameter.   

 

Lemma 3: for the problem stated above, we have 
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( ) ( ) ( ){ } ( )
( )

'
a'NM

KK*yvyvP o ε
δ

σ
δ =

+






 +−≤−≥− 2

211
1 12  (2.27) 

Proof:  since yo=yK and y*=y1 

( ) ( ) ( ){ }
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By induction 
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Next, the probability ( ) ( ){ }δ2yvyvP 1kk ≥− −  can be calculated. 

( ) ( ){ }
( ) ( )[ ] ( ) ( )[ ]{ ( ) ( )[ ] }   

2

111

1

k'NkM,NkM,Nkk'Nk

kk
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−

δδ

δ
 

 (2.30) 

From inequality (2.26), we have 

( ) ( )[ ] ( ) ( )[ ]{ ( ) ( )[ ] }
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( ) ( ){ } ( ) ( ){ } 0  0 
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 (2.31) 

where 

( ) ( ){ }
( )2

2
0

a'Nk'Nk ayBÛyvP
+

≤≥−−−
δ
σδ  (2.32) 

and  



 43 

( ) ( ){ }
( )2

2
 0 11 aMkM,Nk ayBUyvP

+−− ≤≤++−
δ
σδ  (2.33) 

so, the overall probability is 

( ) ( ) ( ){ } ( )( )
( )

'KK*yvyvP
a'NM

o εδ
δ

σ =+−≤−≥−
+ 2

2111 12 , (defined as ε’) (2.34) 

 (End of proof) 

 

Having established that the error can be controlled by increasing the sample sizes, 

it is necessary to demonstrate that the algorithm will terminate. For each stochastic NLP 

subproblem and MILP master problem, a strong convergence of the SAA algorithm has 

been established for both the solution and the objective value. Under some mild 

assumptions [see the theorems 1 and 2, page 332-334 in Birge (1997), also theorem 3.2 in 

King and Rockafellar (1993) and theorem 3.3 in Shapiro (1991)], the sequences of 

solution and the objective value converge to the optimal solution and optimal value, 

respectively, w.p.1 as the sample size N→∞. Moreover, if the solution is unique, we have 

( )*vv̂N N −  converges in distribution to a normal ( )20 σ,N . The strong convergence 

result also applies to our algorithms: since the OA algorithm converges and at each 

iteration the subproblem and master problem converge to their respective true problems, 

the solution to the SAA problem must converge to the true optimal solution w.p.1 as the 

sample sizes N and N’ → ∞.  

 

2.6 Case Studies 

 In this section, two case studies are presented to compare the two algorithms and 

demonstrate their efficiencies over a single sample size algorithm. The first example is 
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used to compare the two algorithms (OGM and CLM) and their efficiencies with that of 

the conventional fixed-sample algorithm. The second example is used to show the 

computational efficiency. Instead of solving the problem by the OGM with a pre-

specified optimality gap tolerance, the optimality gap intervals are computed by the CLM 

algorithm.  If any of the gap intervals is larger than the tolerance, the sample sizes 

required by OGM are larger than that by CLM.  All examples were coded in AMPL.  

NLP sub-problems and MILP master problems were solved using SNOPT 5.3-4 and 

CPLEX 7.0, respectively, on a PC with 2.5 GHZ CPU and 1G memory.  

Example 1 
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The purpose of this example is to compare the two algorithms (OGM and CLM). 

This example has 12 continuous decision variables xi ,  j (i=1..2, j =1,…,6), 6 binary 

decision variables yj (j=1,…,6), 6 control variables zj (j=1..6) and 3 uncertain parameters 

θk (k=1..3) which are log normally distributed with their respective mean and variance.  

The result is shown in Table 2.1. The problem was first solved using the CLM 

algorithm with a=30, M=40, N=600 and N’=10000. To calculate the probability of 

cutting off optimal solution y*, the value of σ2 is estimated by the maximum variance of 

all upper and lower bounds. In this problem, the maximum variance (54.41) is generated 

for the lower bound ( )'NBL̂var  at the 4th iteration.  Hence, an estimate of the probability 

of cutting off the optimal solution is   

3* 5* 55 /302*(1/40+1/10000) ≈ 2.3 % 

, and the probability of having a bad solution (with 1230≈*)y(v ) is  

 (5-1)*55 /(0.05*1230/2/4+30)2*(1/40+1/10000) ≈ 0.39 %    for 2(K-1)δ=5%⋅v(y*) 

 (5-1)*55 /(0.01*1230/2/4+30)2*(1/40+1/10000) ≈ 0.56 %    for 2(K-1)δ=1%⋅v(y*) 

The gap in Table 2.1 is the size of the 99.9% confidence level of the optimality gap, 

which is estimated according to the Equation (2.7). The maximum of the gap intervals 

decreased from 57 to 34 as the smaller sample size is increased from 600 to 1000 (Table 

2.1, part a and b). However, one can see that the mean values of the upper bounds have 

not been improved significantly and the optimal solution stays the same while the 

computational time significantly increased. Kleywegt et al. (2001) have pointed that the 

optimality gap estimator used here is a weak one: sometimes the optimality gap is still 

very large while a good solution has been found. Therefore, the stopping rule of 

sufficiently small optimality gap seems to be a subjective one. 
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Since the parameter a can not be arbitrarily large, to get an even smaller 

probability, one option is to increase the number of replications M; another option is to 

increase the sample size N or N’, depending on whether the current maximum va riance is 

from the larger problem or the replication of smaller problems. If the value of M is 

 
Table 2.1 Results for example 1 

 
Part a: M=40, N=600, N’=10000, CPU time = 16 min 10 sec 

Y M,NBU  'NBÛ  Gap of UB M,NBL  'NBL̂  Gap of LB 

010001 1197.90 1203.58 22.91 167.19 198.43 57.13 
100010 1104.25 1108.82 32.87 545.74 551.84 27.87 
010010 1031.41 1038.57 36.14 733.96 756.31 46.35 
010100 1101.96 1107.31 33.85 929.82 932.73 35.48 
100001 1270.73 1273.82 28.66 Infeasible  

 
Part b: M=40, N=1000, N’=10000, CPU time= 43 min 9 sec 

Y M,NBU  'NBÛ  Gap of UB M,NBL  'NBL̂  Gap of LB 

010001 1197.34 1202.48 20.46 169.23 178.57 32.61 
100010 1105.28 1107.82 29.84 539.43 543.40 23.08 
010010 1031.58 1036.44 30.44 736.04 747.61 34.23 
010100 1102.99 1106.13 30.38 919.34 921.62 33.51 
100001 1271.04 1273.86 27.71 Infeasible master problem 

 
Part c: M=100, N=600, N’=10000, CPU time= 37 min 29 sec 

Y 
M,NBU  'NBÛ  Gap of UB M,NBL  'NBL̂  Gap of LB 

010001 1196.89 1203.58 20.52 169.21 180.89 31.70 
100010 1104.65 1108.82 28.03 558.36 564.51 23.96 
010010 1030.44 1038.57 31.13 735.14 738.03 23.15 
010100 1102.25 1107.31 28.95 908.40 910.65 30.89 
100001 1271.10 1273.82 24.42 Infeasible master problem 

 
Part d: M=40, N=600, N’=20000, CPU time= 16 min 31 sec 

Y M,NBU  'NBÛ  Gap of UB M,NBL  'NBL̂  Gap of LB 

010001 1197.90 1200.36 16.69 167.19 194.10 48.96 
100010 1104.25 1103.31 22.14 545.74 549.51 21.86 
010010 1031.41 1035.32 28.03 733.96 751.04 36.51 
010100 1101.96 1101.65 22.94 929.82 927.95 23.79 
100001 1270.73 1268.35 18.43 Infeasible master problem 

 
Part e: using a fixed sample size N= 5000, CPU time = 1 hr 2 min 46 sec 

Optimal solution: 010010, optimal objective value= 1028.46 
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increased to 100 (Table 2.1: part c), then the probability of cutting off the optimal 

solution is 

 3* 5* 53 /302*(1/100+1/10000) ≈ 0.89 % 

and the probability of having a bad solution (with 1230≈*)y(v ) is  

 (5-1)*53 /(0.05*1230/2/4+30)2*(1/100+1/10000) ≈ 0.15 %,  for 2(K-1)δ=5%⋅v(y*) 

 (5-1)*53 /(0.01*1230/2/4+30)2*(1/100+1/10000) ≈ 0.22 %,  for 2(K-1)δ=1%⋅v(y*) 

Of course, a tradeoff of this is the significantly increased computational time.  

If the value M is kept the same but the sample size N’ is increased to 20000 (Table 

2.1:  part d), the maximum variance is reduced to 27 and the probability of cutting off the 

optimal solution is  

3* 5* 27 /302*(1/40+1/20000) ≈ 1.13 % 

and the probability of having a bad solution (with 1230≈*)y(v ) is:  

 (5-1)*27 /(0.05*1230/2/4+30)2*(1/40+1/20000) ≈ 0.19 %,    for 2(K-1)δ=5%⋅v(y*) 

 (5-1)*27 /(0.01*1230/2/4+30)2*(1/40+1/20000) ≈ 0.27 %,    for 2(K-1)δ=1%⋅v(y*) 

However, there is only a slight increase of the computational time. Therefore, whenever 

the maximum variance comes from the larger problems, increasing the larger sample size 

seems to be a better choice than increasing the replication number. However, this would 

not be the case if parallel computing is available to solve M problems simultaneously.  

 Compared with using a fixed sample size (part e), the new algorithms provided 

fairly close optimal value while reducing the computational time significantly.    

 

Example 2 

 
This example is taken from Acevedo and Pistikopoulos (1998) with modified 
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yield model and parameter values. The problem (Figure 2.6) is to produce 5 products 

from 5 raw materials with 11 processes, each of which is optional. The uncertainties are 

the availabilities of raw materials and demands for products, i.e., 10 uncertainty 

parameters. The continuous decision variables are the capacities Qk for the processes 

k=1...11. The complete model and parameter values are shown in Table 2.2 and Table 2.3 

respectively.  
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Figure 2.6  Process flowsheet for example 2 (Solid lines show the optimal choice) 

 

It should be noted that in this problem since there are 10 uncertain parameters, 

theoretically the smaller sample size would be at least 210 ≈1000 to include all vertices. 

However, in this case, including the worst case parameter values in samples for the 

smaller problem can guarantee that the larger problem is feasible. This worst case occurs 
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when the demands for all products are at their highest values (35) and the availabilities of 

all raw materials are at their lowest values (29).  

The problem was first solved using the confidence level method with M=20, 

N=200, N’=1000 and a=1000 and the result in shown in part a of Table 2.4. The 

maximum variance (~10000) came from the replicated solutions of the smaller master 

problem at the 1st iteration. At the 2nd iteration, the NLP sub-problem is infeasible, hence  

 

 
Table 2.2 Model for example 2 

Objective 
function [ ]∑∑∑∑

====
×+×−












×−×−×

11

1

11

1

5

1

5

1 k
kkkk

k
kkj

j
ji

i
i yFCQDCISOCRMPEmax αβθ  

Constraints  
1. Yield relations OSk ≤ Pck ln(1+ISk /Kk )     k=1, ...,11 
2. Desired production Pi ≤ Di                                i=1,…, 5 
3. Availability of raw material RMj ≤ MaxRMj                  j=1, ..., 5 
4. Logical constraints ISk ≤ MIkQk                       k=1,…,11 
 Qk ≤ yk MaxQk                  k=1,…,11 
5. Flowrate balances (not shown here) 
Notation:  
Di Uncertain demand of product I 
DCk Design cost for process k 
FCk Fixed cost of process k 
Kk Parameter in yield relation for process k 
MaxRMj Uncertain maximum availability of raw material j 
MaxQk Maximum capacity of process k 
MIk Flow to volume relation for process k 
ISk Input stream to process k  
Pi  Flowrate of product i  
Pck Parameter in yield relation for process k 
Qk Capacity of process k 
OCk Operating cost for process k 
OSkt Output stream from process k  
yk Binary variable denoting the existence of process k 
α j  Cost of raw material j  
β  I  Price of product i  
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no upper and lower bound were updated and the only action performed in this iteration 

was to find a y value for the next iteration. Therefore, only the 1st and 3rd iterations may 

have influence on the probability of losing the optimal solution. The probability of 

cutting off the optimal solution is calculated as below:  

3*2*10000/10002*(1/20+1/5000) ≈ 0.4%. 

and the probability of having a bad solution (with 27920≈*)y(v ) is: 

(2-1)*10000 /(0.05*27920/2/1+1000)2*(1/20+1/5000) ≈ 0.017 %, for 2(K-1)δ=5%⋅v(y*) 

Although the gap intervals are large, the probability of losing y* is low enough due to the 

large difference between the objective values. Again the problem was also solved using a 

fixed sample size (part b in Table 2.4) and the computational efficiency of the proposed 

algorithm is apparent.  

Table 2.3 Parameter values for example 2 

Proc. k 1 2 3 4 5 6 7 8 9 10 11 
PCk 13 15 17 14 10 15 16 11 13 15 17 
Kk 1.0 1.2 1.7 1.5 1.8 1.4 1.5 1.3 1.1 1.2 1.8 
MIk 18 20 15 20 20 21 15 15 25 15 20 
OCk 400 400 400 400 400 400 400 400 400 400 400 
DCk 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 
FCk 4000 2500 3500 3000 4500 2500 3000 2200 2800 2700 2500 
MaxQk 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

Prod. I 1 2 3 4 5       
βI 600 650 500 400 700       
Di Normal distribution ~ N (30, 1.5), 25 ≤ Di ≤ 35 

Raw j 1 2 3 4 5       
αj 200 320 230 250 300       
MaxRMj Normal distribution ~ N(35, 1.5), 29 ≤ MaxRMj ≤ 41 
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Table 2.4 Results for example 2 

 
Part a: M=20, N=200, N’=5000, CPU time = 59 min 
    Y 

M,NBU  'NBÛ  Gap of 
UB M,NBL  'NBL̂  Gap of 

LB 
11111111111 -16189.72 -15287.26 1072.05 -37900.63 -28753.16 29498.70 

00010011101 Infeasible NLP 
00010111111 -28612.15 -27733.56 1045.71 Infeasible master problem 
Part b: using a fixed sample size N=5000, CPU time = 4 hr 50 min 

optimal solution: 00010111111, optimal objective value= -27919.66 

 

2.7. Conclusions 

This chapter describes two new algorithms that combine the SAA method (with 

bounding techniques) and OA algorithm to solve stochastic MINLPs. In both algorithms, 

a smaller sample size N is used to make decisions (with several replications) and a larger 

one is used to re-evaluate the objective value with the decision variables fixed. The 

sample sizes and replication number are increased until a stopping criterion is satisfied. In 

the OGM algorithm, the sample sizes are increased until the optimality gap of each upper 

and lower bound is sufficiently small; in the CLM algorithm, the sample sizes are 

increased until an overall accuracy probability is within a certain tolerance. The case 

study showed that the algorithm based on optimality gap is sometimes not efficient 

because the optimality gap estimator is too weak to be a good indicator of finding the 

optimal solution. It was also shown that the proposed algorithms could result in 

significant computational time savings compared with that of using a fixed sample size 

for the same required confidence. This improvement will enable the solution of larger 

stochastic MINLPs and hence broaden the range of application of this method to process 

design problems. This work has been published in Wei and Realff (2004). 
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CHAPTER 3  

UNIT MODELING I  

  DESIGN AND OPTIMIZATION OF FREE-FALL 
ELECTROSTATIC SEPARATORS FOR PLASTICS RECYCLING 

 

3.1 Introduction 

Electrostatic separation provides many advantages over other separation methods 

(such as froth flotation and sink-float separation): low energy consumption, a dry process, 

independence of particle shape and it is often simpler, cheaper and easier to control than 

froth flotation and other wet medium techniques. Therefore, it is a very important 

separation operation whose design should be treated systematically to explore its full 

potential.  

When two different plastics come into contact and are subsequently separated, 

electrons are transferred from one to the other. Thus different particles acquire opposite 

charges and can be separated in a high voltage field (usually 30~60 kV). In general, 

particles with higher dielectric constant are charged positively against particles with a 

lower constant. Table 3.1 shows the relative triboelectric charging sequence of common 

plastics. It should be pointed out that the relative positions of plastics in the sequence 

depend on the experimental condition, hence the table is only for general reference. For  

further details about the basics of triboelectrification, readers may refer to Lowell et al. 

(1980), Inculet (1984), Botsch et al. (1997) and Kwetkus (1998). 
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Table 3.1 Triboelectric series of plastics (Stahl et al., 1997) 

Material PUR POM PC PA ABS PS PE PP PET PVC PVDF 

Series +                                                                                     − 
 
 
 

Besides the electric properties of the materials, the triboelectric charging process 

can be influenced by many other factors, such as the frequency of collision (contact),  

humidity, material ratios, pretreatment, etc. Kamptner et al. (1997) demonstrated several 

successful examples of using surfactants. It has been shown that it is possible to change 

the charge sign of PE in the mixture of PVC/PE/PS by surface treatment, while the sign 

of PVC and PS charging remains unchanged. Since the charging is affected by so many 

factors, the charges carried by the particles are difficult to predict.  Lowell (1980) found 

that the standard deviation is about 1/3 of the mean even to the extent that wrong sign 

charges are seen. It appears that a wide charge distribution may be fundamental to 

insulator charging, and must be accounted for in any design procedure.  

Figure 3.1 shows the schematic of the separation process.  

 

Charger Separator

Plastic
  mix

Product 1

Product 2

Middling

 

 

Figure 3.1 Schematic of the separation process  

 

First a plastic mix is charged in a charging device and then fed to the separator with 
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usually several bins to collect the products and middling. The overlapping curves 

represent the distribution of particle charges. Due to the various factors mentioned above 

that might have influence on the charging process, it is reasonable to assume that 

different types of plastic particles have normal charge distributions with their respective 

mean and variance.  

There are several methods of contacting particles together to generate triboelectric 

charging. Commonly used devices are an inclined rotating drum (Inculet et al., 1998), 

fluidized bed (Inculet et al., 1998), cyclone (Yanar and Kwetkus, 1995) and vibrating 

feeder (Higashiyama et al., 1997). For the separation process after charging, free-fall 

between two plates or a rotating drum are the most common designs. The free-fall design 

is simpler, eliminating moving parts. However, a rotating drum might be able to provide a 

higher throughput.  

There are few papers addressing the modeling and design of electrostatic 

separators. Vlad et al. (2000) modeled the behavior of charged conductive particles in 

plate-type (a single inclined plate with particles sliding down) electrostatic separator. The 

detachment points of particles were simulated and the detachment voltage at fixed point 

was calculated and verified by experiments. Mihailescu et al. (2000) demonstrated a 

computer-assisted experimental design for optimizing the separation process. Most of the 

previous research on modeling electrostatic separation processes focused on single 

particle behavior, instead of the overall separation efficiency (such as recoveries and 

grades of the products). A model-based design and optimization procedure would be 

helpful as a guide to the preliminary design, which could then be verified by experiments. 

The aim of this work is to present a systematic method which can be used to design and 
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optimize an electrostatic separator system. The system should distinguish among several 

design options (single or two-stage, with or without recycle etc). For this purpose, unit 

separation models for each design option were developed. These were then used within 

nonlinear optimization procedure to find optimized designs.  

 

3.2 The trajectory model of free-fall electrostatic separators 

The schematic of free-fall electrostatic separators is shown in Figure 3.2.  

 

d
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Figure 3.2 Schematic of a free-fall electrostatic separator 

 

The two plates, with feed gap d, end gap d2 and length L, are inclined at angle θ 

and charged at constant voltage ±V. Particles enter the electrical field from a feeder with 

feeding gap 2a, hence the initial position of a particle is a random variable with uniform 
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distribution U(-a, a). Three collection bins (two side bins for the products and one middle 

bin for the middling) are placed at the bottom with the separating positions b1 and b2 as 

indicated in the figure. First, the assumptions that have been used to develop the 

trajectory model are described below.  

 

3.2.1 Assumptions   

1. Pairwise particle-particle interaction (Coulomb force) is negligible 

This is supported by the following quick calculation: for two particles with same 

diameter 5 mm and same charge 7.2e-10 C in an electrical field (4 × 105 V/m), the 

pairwise particle-particle interaction is 1.35 µN, which is insignificant compared to the 

average electrostatic force of 288 µN.  

 

2. Air drag force is negligible 

 For a spherical particle with density 1100 kg/m3 and diameter 5 mm in the air 

with density 1.2 kg/m3 and viscosity 1.8e-5 pa⋅s, a numerical calculation showed that the 

differences of the time for particles to hit the bottom with or without drag force is only 

0.015 second, which generates a difference of the particle horizontal position at the 

bottom only 0.3 cm. For flat pieces, with length to width ratio less than 2.0, the drag 

coefficient in the turbulent region is approximately 1.15 and the difference of the 

horizontal position is less than 2.4 cm, which is also not large enough to generate 

significant error. Therefore, this assumption is justified. 

 

3. Inter-particle collisions are negligible 
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       A simple Monte Carlo simulation showed that the inter-particle collisions have 

insignificant influence on the recoveries. First, the average number of particles in the 

separator was computed based on the mass flow rate and the residence time of particles in 

the separator. These stationary particles were uniformly distributed and placed at the 

center of each cell. One positive particle with random charge and initial position was 

allowed to fall and move toward the right side bin. 20,000 such samples were generated 

and the procedure was repeated 10 times. If during its travel, the perpendicular distance 

of any stationary particle to the trajectory of the moving particle was less than 1.1 the 

particle diameter, there was a collision and the position was recorded. It turned out that, 

for a mass flowrate of 1000 kg/hr and mean particle charge (mass to charge ratio) 3.0 

µC/kg and standard deviation 0.4, there were an average of 19158 collisions. However, 

most of them are ineffective with regards to changing the final classification of the 

particles for the following reasons: 

    (1) There are an average of 1348 collisions in region I (space above the left side bin) 

which are negligible because the positive moving particle has very small velocity, the 

collision has little effect on its trajectory. 

 (2) There are an average of 11247 collisions in region III (space above the right side 

bin) which are mostly negligible because positive particle collides mostly with another 

positive particle, which does not change the classification of both particles.  

 (3) There are an average of 6563 collisions in region II (space above the middle bin). 

Assume half of the collisions are between the positive particle and a positive particle, and 

another half between the positive particle and a negative particle. Again, the collisions 

between two positive particles do not change their final classifications.  Assuming elastic 
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collision between a positive particle and a negative particle, the positive moving particle 

took the velocity of the negative particle after collision. The simulation showed that only 

1083 on average changed the classification of the positive particle (from the right side bin 

to the middle or even the left side bin).  

 Therefore, only 5.6% (1083/19158) of the total collisions affects the recoveries. 

The percentage is reduced as flowrate decreases and mean charge increases. This 

simulation ignores the real distribution of particles in the separator and the effect of 

collisions on this and thus represents a first order attempt to characterize the effect of 

collisions. 

 

4. Plate inner walls are inelastic, hence particles drop to the side bins after impinging 

against the walls.  

This assumption is supported by industrial practice. Some industrial designs used 

box electrodes consisting of a perforated plate and a solid back plate (Yan et al., 2001) or 

parallel tubular electrodes (Norbert and Ingo, 1997) so that the particles can fly through 

after reaching the walls.  

 

5. Edge effects of the electrical field are negligible. 

It implies that the plate width and length are both sufficiently large to confine 

fringing effects to a small portion of the separation.  

 

6. The plate height is much longer than the plate gap, i.e., L⋅ cosθ >> d 
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7. The total charge on the particles is negligible, i.e., the presence of the particles does 

not change the electric field. 

This is supported by the calculations of assumption (1). 

 

Since the air drag force is negligible, the separation process is independent of 

particle size and shape, with the gravitational and electrostatic forces both proportional to 

the particle mass. The above assumptions enable a reasonably simple, analytical model of 

the particle trajectory to be derived and used in a design model. The translation of the 

single particle trajectory model into a recovery model is carried out through a 

probabilistic argument based on the random variables of particle charge and initial 

position.  

 

3.2.2 Model derivation 

    The potential is related to the charge density by Poisson’s Equation: 

0

2
ε
ρ

ϕ c−=∇  (3.1) 

and the electric field is related to the electric potential as follows: 

ϕ−∇=E  (3.2) 

Based on assumption 7, in a charge-free region between two plates, Equation 3.1 

becomes the Laplace Equation in the 2-dimensional space: 
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By assumption 6, the second term of the above equation can be dropped since it is much 

smaller than the first term and the model is simplified to an ODE: 
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022 =dx/d ϕ  (3.4) 

After scaling θcosL/xx~ =  and defining θγ cosL/d= , which is the ratio of feed gap to 

plate height, the plate positions were determined as: 

θθ γγ tan)y~(x~       ,tan)y~(x~ RL −+=−−−= 11 22  (3.5) 

So, the boundary values to Equation (3.4) are: 

11 =−= == LR x~x~x~x~
~    and  ~ ϕϕ  (3.6) 

The solution to Equations (3.4) (3.6) is   
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In the x direction, by Newton’s 2nd law and scaling g/cosL/tt~ θ2= , we have: 
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There are two dimensionless parameters: A= ( ) ( )mg/qd
V2 , which is the ratio of 

electrostatic force to the gravitational force and B= γθ /tan2 , which is the ratio of the gap 

increment (equals 0 for two parallel plates) at the bottom to the feed gap. The term 

( )211 t~B/ +  represents the ratio of the feed gap to the gap at the particle position. The 

solution to Equation (3.9) is: 
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Since y~t~ −= 1 , the particle trajectory is  

[ ])y~(Bln)y~(Barctan)y~(B
B
A

x~x~ −+−−−+= 111120  (3.11) 

and the particle position at the bottom is 

[ ]BlnBarctanB
B
A

x~x~ +−+= 120  (3.12) 

For two parallel plates (θ=0 and B=0), the particle trajectory is  

( )y~Ax~x~ −+= 10  (3.13) 

and the particle position at the bottom is  

Ax~x~ += 0  (3.14) 

Now that we have the equation for particle position at the bottom as a function of 

the initial position, particle charge, and electrostatic design variables, the recovery model 

can be derived, which is presented in the next section. 

 

3.3 The recovery model of the 1-stage and 2-stage free-fall electrostatic 

separators 

One of the objectives of this work is to compare the following design options 

(Figure 3.3):  

(a) 1-stage without recycle 

(b) 1-stage with recycle (middling is sent back to the charging device and recharged) 

(c) 2-stage with recharge (middling of the 1st stage is sent to the 2nd stage after 

recharging) 
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(d) 2-stage without recharge (middling of the 1st stage is sent to the 2nd stage for 

separation directly) 

For this purpose, recovery models need to be derived. The problem is stated as: 

given a separator, the particle charge distribution and the distribution of the entering 

position, what would be the recovery of each type of particle in each bin?  The particle 

charge-to-mass ratio qm is assumed to be normally distributed with mean µ and standard 

deviation σ and the partic le entering position x0 is assumed to be uniformly distributed 

within (-a, a). Once the recovery model for option (a) is derived, the derivation for option 

(b) or (c) is straightforward, assuming for option (b), the recycled portion has the same 

distribution as the fresh feed after recharging and for option (c), the feed to the 2nd stage 

has the same distribution as the feed to the 1st stage. However, for option (d), the model is 

more complicated because the feed to the 2nd stage has different distribution from the 

feed to the 1st stage. Next, the recovery models for design (a) and (d) are derived. 
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C: Charging device; S: separator; P1, P2: products; M: middling  

Figure 3.3 Illustration of four design options 
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3.3.1 The recovery model for design(a) 

       The recovery of any type of particles to the left side bin is the probability of the 

particle position at the bottom being less than b1, i.e., Pr{x < b1} which is a function of 

the initial position by Equation (3.12) 
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and note that M is always nonnegative, then Equation (3.15) can be written as: 

{ }M)xb(qPrr m 011 −<=  (3.17) 

Similarly, the recovery of any type of particle to the right side bin is the probability of the 

particle position at the bottom being greater than b2, i.e.,  

{ }M)xb(qPrr m 022 −>=  (3.18) 

Note that qm, (b1-x0) and (b2-x0) are all random variables and that only the case for 

M)xb(qm 01 −< needs to be examined since the other case can be found by subtraction. 

Assuming particle charge to mass ratio is normally distributed with mean µ and standard 

deviation σ and the displacement )xb( 01 −  is uniformly distributed from b1-a to b1+a, 

we have 

),(N~qZ m σµ=    and    )ab,ab(U~)xb(Y +−−= 1101  (3.19) 

From Figure 3.4, the probability can be computed as: 
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Where fyz is the joint probability density function of Z and Y, which is simply the product 

of their respective probability density functions since they are independent.  
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Figure 3.4 The probability of one random variable less than  
a function of another random variable 

 

The integral gives the recovery to the left side bin:     

)gg(
)g()g(

2
1

 r l,
12

12
1 2 −

−
+=

ΨΨ  (3.22) 

the recovery to the right side bin:    
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the recovery to the middle bin:  
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where   
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and     

πΨ /e)x(erfx)x( x2−+⋅=  (3.26) 

 

3.3.2 The recovery model for design (d) 

        Before applying the Equation (3.20) to the 2nd stage, the particle charge 

distribution of the middling from the 1st stage is derived:  
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(3.27) 

 

where r1,m is the recovery to the middle bin at the 1st stage (Equation 3.24). 

Since there are three different density regions (I, II and III in Figure 3.5), the 

recovery integral depends on how the line Z=YM2 intersects the regions. Now let the 2nd 

stage feeder width be 2c and the collection bin positions be d1 and d2. And let Z 

represents the distribution by Equation (3.27) and Y is the uniform distribution within 

(d1-c, d1+c). In Figure 3.5, the three density regions are defined by the Y-values from d1-c 

to d1+c and Z-values in region I from M1(b1-a) to M1(b2-a), region II from M1(b2-a) to 

M1(b1+a) and region III from M1(b1+a) to M1(b2+a), respectively. The integral for the 

recovery to the left bin covers the density area at the left hand side of the line Z=YM2. 

The intersection points of the line Z=YM2  with the top and bottom boundary of the 

regions have the values (M2(d1-c), d1-c) and (M2(d1+c), d1+c). The left intersection point 
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can be on the bottom boundary of region II, on the bottom boundary of region I or on the 

left boundary of region I. Similarly, the right intersection point can be on the top 

boundary of region II, on the top boundary of region III or on the right boundary of 

region III. Therefore, there are 9 scenarios (i.e., a combination of above 3 by 3 cases).     

t1 is defined as the difference of the Z-values of the left intersection point and the left 

boundary of region I, t2 as the difference of the Z-values of the left intersection point and 

the left boundary of region II, t3 as the difference of the Z-values of the right intersection 

point and the right boundary of region II and t4 as the difference of the Z-values of the 

right intersection point and the right boundary of region III. So, we have the following 

formulae: 

)ab(M)cd(Mt −−−= 11121      )ab(M)cd(Mt −−−= 21122  

)ab(M)cd(Mt +−+= 11123   )ab(M)cd(Mt +−+= 21124  
(3.28) 
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t1

t4

t2
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Figure 3.5 Illustration of the intersection of the line  
Z=YM2 and the three density regions. 
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The signs of the t values can be used to describe the conditions for the 9 cases (in 

Table 3.2). For example, positive t1 and t2 and negative t3 and t4 represent a case that the 

two intersection points are on the bottom and top boundaries of region II, respectively 

(case (a)). Similar conditions (different definitions for t1, t2, t3, t4, just replace d1+c with 

d2+c and d1-c with d2-c) can be constructed for the right side bin. 

 

Table 3.2 Conditions for the 9 cases 

 t1 t2 t3 t4 
case (a) + + - - 
case (b) + - - - 
case (c) - - - - 
case (d) + + + - 
case (e) + - + - 
case (f) - - + - 
case (g) + + + + 
case (h) + - + + 
case (i) - - + + 

     

 

For the first case, we have the following recovery models: 

The recovery to the left side bin:  
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The recovery to the right side bin:  
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where h is defined as below: 
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The complete recovery model for the 2nd stage is shown Table 3.3. 

 

Table 3.3 The recovery models for the 2nd stage (Left side bin) 
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Case 
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Case 
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Case 
(h) 
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Case 
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3.4  Optimizing the designs and operations 

For the design of electrostatic separators, the degrees of freedom are: 
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1) Plate length: L (m) 

2) Feed gap between plates: d (m) 

3) Plate angle: θ  

4) Feeder opening: 2a (m) 

5) Collection bin positions: b1 and b2 (m) 

6) Voltage: V (V) 

7) Plate width: W (m) 

8) Recycle rate: R (between 0 and 1, for design (b) only) 

 

The complete optimization model for 1-stage (no recycle) separators is shown in 

Table 3.4. The cost models and the capacity constraint were developed from industrial 

data. For the objective function which is the maximization of total profit, the 1st term is 

the revenue from selling recycled products; the 2nd term represents the annual unit capital 

cost which is assumed to be a function of plate area LW, and the 3rd term is the operating 

cost (energy consumption) which is a function of plate area (LW) and the voltage V. For 

the 3rd constraint, it is assumed that each slice (with width ∆W and gap ∆d) of the 

separator has constant capacity. Therefore the linear relationship of the flowrate and the 

feed area (Wd) of the separator was developed.  

It is easy to modify the model in Table 3.4 for the other design options. For design 

(b), the feed rate F0 is replaced by the sum of the fresh feed rate and the flowrate in the 

recycle, which is the product of the recycle rate and the middling rate. For design (c), the 

unit capital cost and operating cost are the sum of two separators, respectively; the feed 

flowrate and composition for the 2nd separator are the same as those in the middling of 
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the 1st stage, respectively; the charge distribution of the feed to the 2nd stage is the same 

as that in the 1st stage. For design (d), the objective function is the same as in option (c), 

except that there is no cost of charging device for the 2nd stage. The feed flowrate, 

composition and charge distribution are the same as those in the middling of the 1st stage.  

 

Table 3.4 Model for optimizing 1-stage (no recycle) separators 

Objective:  

[ ] [ ] ( )[ ]  C)(CC
1

   2
340

0.6
21201000 VWLCCWL

Depn
)rfsrfs(FCmax BBBAAA ×××−×+−+  

Constraints 
1. Recovery model: Equations (3.22) and (3.23) 
2. Product purity requirement: ≥ 0.995 
3. Upper bound on capacity F0 : F0≤ 5215.8(Wd)-1055.8 
4. Design specifications: 

• Plate length: 0.9 ≤ L  ≤ 2 
• Plate gap: d ≥ 0.3 
• Plate angle: 0 ≤ θ ≤ 15o 
• Plate width: 0.6 ≤ W ≤ 1.5 
• Ratio of gap to length: d≤ L/3 
• Voltage: V ≤ 80 kV 

Notation 
F0 Feed rate (kg/hr) 
f0

A,  f0B Initial fraction of type A and B plastics in the feed 
sA, sB Prices of two types of plastics 
r1

A, r2
B Recoveries of type A and B particles to left and right bins, respectively 

C0 Coefficient used to convert the units from hour to year. In this case, it is 
1600, based on 8 hrs/day and 200 days/yr 

C1 Fixed investment cost of the unit (=$26,060 ) 
C2 Coefficient for the variable design cost (=$73,690 ) 
C3 Coefficient for energy consumption (=4e-9) 
C4 Electricity price (=$0.06/kWh) 
Depn Number of years depreciation (=5 yrs) 

 

The above models were optimized using AMPL, which is a mathematical 

programming language developed by Fourer et al., (1993) and SNOPT 5.3.4 which is a 

nonlinear optimization solver developed by Gill, et al., (1997) under various feed flow 
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rates, charge mean values and standard deviations. The initial feed ratio was chosen  

as 50/50, and the two types of particles are assumed to have the same absolute value of 

charge mean and the same standard deviation. Different design options are compared and 

analyzed below.  

o Parallel v.s diverging plates 

For the various conditions considered in this work, a parallel-plate design is 

always better than the diverging one (i.e., angle θ=0) since the latter has a weaker 

electrical field and there are no compensating advantages. However, some industrial 

designs do use diverging plates to alleviate the rebound of particles after colliding with 

the walls. The issue was neglected in this work by assuming inelasticity of the walls. 

Since the angle is usually small in these industrial designs, the angle should not have any 

influence on the following comparisons of various design options.  

 

o Influence of particle mean charge and standard deviation on design choices: 

(1) design (a) v.s. design (b) (the unit is µC/kg for all figures below) 

The profit ratio is a normalized objective value which is defined as the ratio of the 

objective value of the design to that of the reference design indicated at the caption 

section of each figure.  

From Figure 3.6 (a), the difference is small when the standard deviation is small 

or high; however, recycling becomes preferable when the standard deviation is in a 

moderate range. The difference is small at low standard deviation is because the recovery 

is good and the amount in the recycle is too small to make any significant difference; the 

difference is small at high standard deviation is because the particles in the middling are 
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not separable hence recycling does not help to improve the overall recovery. The product 

prices and feed flowrate do not have much influence on the above conclusion.   
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Figure 3.6 (a) Comparison of design (a) and (b) at feed flowrate 1000 kg/hr and 
product prices 0.4/0.4 $/kg (The reference design is design (b) at mean charge 3.5 
µC/kg and standard deviation 0.4) 

 

From Figure 3.6 (b), the recycle rate is one when the standard deviation is small 

and then decreases with the standard deviation; as the mean charge increases, the range of 

the standard deviation at which the recycle rate is one is larger. The recycle rate decreases 

because the particles in the recycle become more inseparable and the amount of the 

middling is larger due to the increased number of particles with overlapping charges. 
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Figure 3.6 (b) Effect of charge mean and standard deviation on the 
recycle rate at the same condition as in part (a) 

 

(2) design (a) v.s. design (d) 

From Figure 3.7(a), 1-stage separation is always better than two-stage separation 

since the revenue from recovering more particles by adding one more stage is not high 

enough to cover the cost of the 2nd stage. As the mean charge increases, the objective 

value is more robust to the variation of the standard deviation of charges (curve becomes 

flatter). Initially two-stage separation results are the same as one-stage separation because 

one stage is enough to recover all partic les. As the standard deviation of particle charge 

increases, there is a transition point, where one stage is not enough to recover all particles 

and the 2nd stage starts to take effect.   
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Figure 3.7 (a) Comparison of design (a) and design (d) at feed flowrate 
200 kg/hr and product prices 0.4/0.4 $/kg (The reference design is the 
design (a) at mean charge 3.5 µC/kg and standard deviation 0.4) 

  

Figure 3.7(b) represents a higher feed flowrate. 2-stage separation may be better than 1-

stage separation at moderate standard deviation of particle charges. At mean charge 2.0 

µC/kg, 2-stage separation is better than 1-stage separation for standard deviation of 

particle charge between 0.7 and 1.2. The 1st value (0.7) of standard deviation represents a 

transition at which the revenue from recovered plastics from the 2nd stage just balances 

the cost of the 2nd stage. At standard deviations lower than this value, the 1-stage 

separation is better than 2-stage separation because 1-stage can provide enough recovery 

hence the cost of the 2nd stage exceeds the added revenue. The 2nd value (1.2) of standard 

deviation represents another transition at which the recovery at the 2nd stage becomes 

poor and again the revenue from recovered plastics just balances the cost of the 2nd stage.    
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Figure 3.7 (b) Comparison of design (a) and design (d) at feed flowrate 
1000 kg/hr and product prices 0.4/0.4 $/kg (the reference design is the 
design (a) at mean charge 3.5 µC/kg and standard deviation 0.4) 

 

At standard deviations higher than this value, 1-stage separation is better than 2-stage 

separation because particles fed to the 2nd stage are almost inseparable  hence additional 

stages do not help to improve the overall recovery.  As the mean charge increases, the 

transition points shift towards higher values of standard deviation. 

By comparing the fraction of the product rate recovered by each stage of design (d), 

the relative contribution of each stage to the overall recovery can be seen. From Figure 

3.7(c), at high standard deviation of particle charge (>1.5), the 2nd stage recovers more 

particles than the 1st stage does. At the 2nd stage, with the same voltage, the plates are 

generally longer or more narrowly separated than the 1st stage, which means a stronger 

electrical field and longer separation time. This explains why the 2nd stage is able to 

separate particles from the middling of the 1st stage without recharging them. 
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Figure 3.7(c) Product weight recovered by each stage (for design d) at 
flowrate 1000 kg/hr and product prices 0.4/0.4 $/kg (at mean charge 2.5 
µC/kg, the maximum total product rate is 1000 kg/hr) 
 
 

(3) design (c) v.s. design (d) 

From Figure 3.8, at low standard deviation, the two design options provide similar 

results. If the charging process is expensive, the 2-stage separation without recharging is 

preferable. As the standard deviation increases, the 2nd stage without recharging is not of 

much help in separating the particles and 2-stage separation with recharging is better.  

Therefore, recharging is preferable only at high standard deviation. The product prices 

and feed flowrate do not have much influence on the above conclusion. 
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Figure 3.8 Comparison of 2-stage separations (no recharge v.s. recharge) at feed 
flowrate 1000 kg/hr and product prices 0.4/0.4 $/kg (the reference design is the 
objective value of design (c) at mean charge 3.5 µC/kg and standard deviation 0.4) 

 

o A simple guide to the selection of designs under different particle mean charge and 

standard deviation 

As a summary for the above comparisons, Figure 3.9 provides a general guide for 

selecting an appropriate design (at high feed flowrate or product prices) under various 

values of charge mean and standard deviation.  
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Figure 3.9 Selection guide for choosing an appropriate design 
Region A: (a) ≈ (b) ≈ (c) ≈ (d)    Region B: (b) > (c) ≈ (d) ≈ (a) 
Region C: (b) > (c) > (d) > (a)    Region D: (c) > (b) > (a) > (d) 

 

The two-dimensional space is divided into four regions. In region A, where the 

standard deviation of charge is very low, the four designs provide similar results but 

design (a) is the cheapest one. In region B where the standard deviation of particle charge 

is moderately low, recycling becomes helpful to improve the recovery. In region C where 

the standard deviation is moderate, 2-stage separations are better than 1-stage separation 

(without recycle), but 1-stage separation with recycle is still the best one. In region D,  

due to the high standard deviation, recycling is not as efficient as adding a 2nd stage with 

recharging, therefore design (c) is the best one. The diagram of the best design for each 

region is also shown in the Figure 3.9. If the flowrate and product prices are both low, 2-
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stage separations should not be used and recycling should be used if the standard 

deviation of particle charges is moderate. 

 

3.5 Conclusions 

In this chapter, a general design methodology is presented for free-fall electrostatic 

separators. First, a trajectory model was derived so that the final position of particles at 

arbitrary starting locations and with arbitrary low charge can be computed. Second, the 

recovery models for 4 design options were derived based on probability theory. Fina lly, 

optimization models with the objective of maximizing the total profit were proposed and 

the designs were optimized and compared under various flowrate, charge mean values 

and standard deviations. Therefore, the models proposed in this chapter can be used to   

optimize this class of separators and derive information about the separator size, 

operating conditions such as the voltage and feed flowrate and also whether recycling or 

a 2nd stage (with or without recharging) is helpful.  

It was found that a 2nd stage is preferable at high feed flowrate or product prices and 

recharging is helpful if the standard deviation of particle charge is not small. At low feed 

rate or product prices, recycling is preferable at moderate standard deviation. As a 

summary, a simple guide for selecting an appropriate design was given.  

Although this work is based on free-fall separators, the effect of charge mean and 

standard deviation on the choice of different design may be also applicable to the drum-

type separators except that the critical values (for low, moderate and high values of 

charge mean and standard deviation) might be different. In next chapter, a systematic 

approach (trajectory modeling and recovery modeling) will be extended to other 
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trajectory-based separation processes for particles with different densities, sizes, and 

polarities etc. in various fields (electric or liquid/gas flow etc.).   
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CHAPTER 4 

 
UNIT MODELING 2 

 
  A UNIFIED PROBABILISTIC APPROACH 

FOR MODELING TRAJECTORY-BASED SEPARATIONS 
 

 
4.1 Introduction 

Mechanical separation of solids is of growing importance in the new domain of 

recycling processes, for example, the separation of a mix of different plastics (Cui, J. and 

Forssberg, E., 2002). The differences in various particle properties such as dens ity, size, 

charge etc are utilized to differentiate them. Unlike the equilibrium-based separations 

such as distillation and adsorption, the particle trajectory is the ultimate differentiating 

factor in mechanical separation of solids. However, the trajectory is usually not a constant 

even for identical particles due to hydrodynamic interactions and random initial 

conditions. Moreover, there exist distributions of particle properties caused by 

preprocessing units. For example, the size reduction units such as a shredder or a grinder 

generate a particle size distribution (Kelly and Spottiswood, 1982) and the charging 

devices such as a rotating drum or a fluidized bed produce a wide charge distribution 

(Lowell and Rose-Innes, 1980). Due to the reasons stated above, the separation is usually 

nonsharp.  

The inspiration for many of the recycling separation methods is the mineral 

processing industry, where mechanical separations are widely used. For many of the 

mineral processing steps, an S-shaped partition curve (Figure 4.1) is a common 
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representation of the separation efficiency.  
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Figure 4.1 Partition curve 

 

While many forms of mathematical functions (Napier-Munn, 1991) have been 

used to fit the curve, there are usually two parameters: one for the curve position, another 

for the slope of the curve. For example, the logistic function is of the following form: 

( )50
0986.1

1

1

ββ −
+

=

Epe

R  
(4.1) 

where Ep is the probable error (
2

7525 ββ −
= ), and β75, β50, β25 denote the particle 

properties corresponding to 75%, 50% and 25% recovery, respectively. Therefore, Ep 

represents the separation efficiency. Various empirical Equations have been proposed for 

Ep and β50 as functions of design and operating variables for different separation methods. 

Usually the experimental data were obtained by varying the material property, but each 
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time the property is a constant. In other words, the empirical equation can not be used if 

the feed material property has a distribution. In such a case, one needs the curve to be 

represented as a function of the mean value of the property, with the variance information 

in the Ep value. Such empirical relationships have not been presented in the literature to 

date and it is the purpose of this work to present a systematic methodology for their 

construction and use in a design procedure.  

If an approach based on first principles is used to develop a model then the usual 

starting point is to pose and solve differential equations for the concentration profile. For 

example: 

i) for solids sedimentation in liquids: an axial dispersion model for concentration profiles 

C(t,y): 

( )vC
yy

C
D

yt
C

∂
∂

−







∂
∂

∂
∂

=
∂
∂

 (4.2) 

where D is diffusion coefficient  and v is the settling velocity ;  

ii) or for the elutriation of fines in gas fluidized beds (Kunii and Levenspiel, 1991): a 1st 

order ODE for the concentration at the exit    

kC
t
C

−=
∂
∂

 (4.3) 

where k is a rate constant  

iii) or for column flotation (Finch and Dobby, 1990): a combination of them: 

( ) kCvC
yy

C
D

yt
C

−
∂
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−







∂
∂

∂
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=
∂
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 (4.4) 

When there exists a distribution of particle property, say particle size, individual particles 

with different sizes would have different settling velocities. Thus even if the diffusion 
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coefficient can be assumed constant, the concentration profile can not be obtained 

through solving a single differential equation due to the distribution of settling velocities.  

The major reason that causes both approaches (empirical correlations and the 

differential equations of concentration) fail here is that they are macroscopic methods that 

do not reveal the real separation mechanisms. It has been shown experimentally that long 

time behavior of the sedimentation velocity variance is characteristic of a diffusion 

process (Ham and Homsy, 1988; Nicolai et al.; 1995, Tory, 2000). This can also be 

verified mathematically through the transformation of a Fokker-Planck Equation to a 

stochastic differential equation (Laso, 1994). Therefore, the recovery is the probability of 

the stochastic particle trajectories reaching a certain separation boundary. Thus,  

situations where distributions of particle properties and hydrodynamic interactions 

coexist can be modeled.  To demonstrate this, several different applications will be 

presented in the next few sections.  

Another objective of this work is to build a connection between the partition 

curve model (Equation 4.1) and the recovery model derived from probabilistic 

considerations. Recovery models for different separation methods have various formats. 

However, the partition curve model has a general form. Thus, if explicit relationships of 

Ep and β50 with the random variables as well as other deterministic design and operating 

variables can be determined from the probabilistic approach, we can easily find which 

parameters should be adjusted to achieve the required separation efficiency.   

 

4.2 A Motivating Example (sedimentation in sink-float tank) 

In this section, the particle sedimentation in a sink-float tank (Figure 4.2) in which 
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the particle size distribution and hydrodynamic diffusion cause the particle trajectories to 

exhibit random perturbations. The separation is mainly based on the difference of particle 

density, however, particle size also has an influence on the settling velocity. It is assumed 

that particles that do not settle below the separation boundary Hc, within residence time τ, 

will report to the overflow.  

 

Figure 4.2 Schematic of a sink-float tank 

 

Consider a case where the particle size is normally distributed with mean dpµ and 

standard deviation dpσ . It is assumed that particles are spherical, diffusion coefficient D 

is a constant and particles quickly reach their terminal velocity. Also assume the flow is 

in the turbulent region (drag coefficient Cd=0.44), so we have for the terminal velocity  

dpg.v µβ 033=∞   (4.5) 

Sink-Float Tank 

Separation  
boundary 

Feed 

y 

Float 

Sink 

Hc 
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( )
l
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ρ

ρρ
ρρβ

−
−=  (4.6) 

where ( )




<−
≥

=
0x if   ,

0x if  ,
xsign

1
1

, ρp and ρl are solid and liquid densities, respectively.  

One can start from the view at the particle level and describe the system using 

stochastic differential equations.  It has been shown that the sedimentation process is a 

Markov process that is the solution of the following stochastic differential equation (SDE) 

(Tory, 2000): 

tt BdWdtvdY += ∞   (4.7) 

where tY is the particle vertical position at time t, BBD T=  and W is a vector of 

independent Wiener processes. The Wiener process is a continuous-time stochastic 

process for 0≥t with W(0)=0 and such that the increment W(t)-W(s) is Gaussian with 

mean 0 and variance (t-s) for any 0≤s<t, and increments for non-overlapping time 

intervals are independent. Brownian Motion is the most common example of a Wiener 

process. The 1st term on the right hand side of equation (4.7) describes a deterministic 

settling of a particle in a infinite dilute suspension and the 2nd term accounts for the 

velocity fluctuations caused by particle-particle interactions. Each particle moves 

independently, in each time step, according to the stochastic process defined by equation 

(4.7). 

The SDE can be solved by discretizing the time τ into N intervals (each ∆t) and 

the space variable 

( ) ( ) ψ tDtvtYttY ∆+∆+=∆+ ∞ 2  (4.8) 

where ψ is a random number from the standard normal distribution N(0,1). Since, 
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τ=∆∑ t , ( )N,N~ 0∑ ψ  , ( )τψ∆ ∑ D,N~tD 202 , after adding a series of equation 

(4.8) from Y(0) to Y(τ), and assuming Y(0)=0, we have  

( ) )D,v(N~Y τττ 2∞  (4.9a) 

or        

)/D,v(N~/Yv ττ 2∞=  (4.9b) 

Thus, the diffusion process corresponds to a stochastic process with mean velocity ∞v  

and standard deviation τ/D2 . 

The relationship in (4.9a) is a trajectory model that can be used to derive the 

recovery model. The recovery is simply the probability of particles whose final vertical 

positions Y(τ) are no larger than the separation boundary position Hc: 

 { } { }HcBg.PrHcYPr dp ≤+=≤ τµβ 033 , where ( )τD,N~B 20  

For simplicity, it is assumed that particle size dp only has an influence on the mean 

settling velocity but not on the variance of velocity (i.e., D is independent of dp), 

therefore, the distributions of particle size dp and B are independent. The recovery is a 

joint probability: 

   dBdd
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 (4.10) 

It is impossible to derive an analytical formula for the joint probability. Therefore, a 

numerical calculation of (4.10) was performed to generate Ep data to fit the following 

empirical model: 
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where a12, b12 and c12 are constants, and Ep1 and Ep2 are the Ep values of cases where 

only the 1st random variable (velocity) or the 2nd random variable (size) exists, 

respectively.  

This form of the model is chosen because it satisfies the general requirements:  

(i) Epà Ep2, as Ep1 à0,   

(ii) Epà Ep1, as Ep2 à0,  

There might be some other forms that also satisfy the above requirements, for example: 

1212
211221
cb EpEpaEpEpEp −+=  (4.12) 

    

However, practical calculations in a number of applications indicated that this form is 

worse than the one in (4.12). 

Next, the expressions for Ep1 and Ep2 are derived, respectively.  

(i) For Ep1 : only velocity distribution, constant particle size 

From Equation (4.9), we have  

{ } 
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+=≤= ∞
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 (4.13) 

To find the expressions for Ep and β50 from (4.13),  

let R=0.5, 0.75 and 0.25, we have  

0
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, 47690
22

.
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=
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22
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− ∞
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τ

, respectively 

From (4.5), we have  
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dpg.
/Hc
µ
τ

β
03350 =  (4.14) 
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Hence,  

dpg.
/D.

Ep
µ

τββ
033
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=  

(4.17) 

     

(ii) For Ep2 : Only size distribution, no velocity distribution 
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 (4.18) 

With a similar procedure in i), we have 

( )
222

45500332

6745067450

dpdp

dpdpdpdp

.g.

..Hc
Ep

σµτ

σµσµ

−

−−+
=  (4.19) 

 

With expressions for Ep1 and Ep2, we are now ready to fit the Ep values to the model 

(4.12). Values of design variables (Hc, τ) and distribution parameters (D, µdp, σdp) are 

varied within the ranges shown in Table 4.1 to obtain a number of Ep values.  

The least square method is used and the values of the coefficients are a12= 0.1446, 

b12=0.0387, c12=0.1866, with root mean squared error (RMSE) = 0.0029 and relative root 
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mean squared error (RRMSE)=3.03%.   

 
Table 4.1. Ranges of parameter and variable values  

in regression for sink-float separation 
 

Hc (m) 0.1 ~ 2.0 D  (m2/s) 0.002 ~ 0.2 
τ  (s) 1 ~ 60 µdp  (m)  0.004 ~ 0.015 
  σdp  (m)  0.001 ~ 0.004 

 
 
 

So, we have obtained a recovery model (4.1, 4.11, 4.14, 4.17, 4.19) for solids 

sedimentation in a sink-float tank.  

 

4.3 A Unified Probabilistic Approach for Trajectory-based Separations 

The unified probabilistic modeling approach is a microscopic view of the 

separation problem in which the nonsharpness is caused by random effects, especially the 

particle properties, represented as random variables with known distributions. The 

motivating example above clearly indicates a three-step approach: 

1) Modeling the single-particle trajectory based on a force balance and other first 

principles modeling 

2) Modeling the recovery based on a probability calculation  

3) Deriving expressions for Ep and β50 for the partition curve model.  

Often obtaining an analytical solution of the particle trajectory and/or an analytical 

formula for the probability integral is not possible.  In this case, a numerical solution of 

the differential equation and/or a numerical integration is necessary.  

β50 can be derived from the corresponding deterministic case. For the Ep value, 

when one only has numerical solutions of the probability integral, one can use the 
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following empirical model: 
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 (4.20) 

          

where Epi is the Ep value when only the i-th random variable exists and 

212121 iiiiii c,b,a L,g,f,e,d, jjjjjjjjjjjj 321321321321
,,q,p,

nn kkkkkk LLL 2121
,r

nkkk L21  

nkkks L21
are correlation parameters. While some other forms might be simpler with 

fewer number of parameters, this form does provide some convenience. With equation 

(4.20) in which the overall Ep value is broken down into a function of individual Ep 

models which are much easier to find, one does not need to worry about what form of the 

empirical model should be used. Also note that, if any random variable K becomes 

deterministic (i.e., EpK is zero), any terms containing EpK
 vanish and the model is 

reduced to a case with (n-1) random variables. Therefore, instead of fitting the whole lot 

at once, the parameters can actually be found by a multi-stage approach: first determine 

the values of 
212121 iiiiii c,b,a by only allowing two random variables to exist, second, 
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determine the values of
321321321321 jjjjjjjjjjjj g,f,e,d by allowing three random 

variables to exist, and so on. For example, with 3 random variables, the model looks like:  
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 (4.21) 

Note that when the any one of the 3 random variables becomes deterministic, the model 

(4.21) is reduced to the model (4.12). Therefore, the parameter values of 121212 c,b,a can 

be found by fixing the 3rd random variable to a constant, and similarly for 

232323 c,b,a and 131313 c,b,a by fixing the 1st and 2nd random variable, respectively. After 

finding the values of all ijijij c,b,a (i<j), the parameters 123123123123 gf,ed ,, can be found 

from the case with all 3 random variables. A diagram of the three-step unified 

probabilistic approach is shown in Figure 4.3.  

While the description of the approach is simple, it can be applied to many other 

physical separation problems, as described in the next section. 

 

4.4 Applications 

The first example here shows that the first order equation (4.3), which is applied in 

some cases where a series of discrete events happen, can be arrived at through a 

probability calculation.  
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Figure 4.3 Diagram of the three-step approach 

 

4.4.1 Elutriation in gas fluidized beds  

A fluidized bed usually has two zones (Kunii and Levenspiel, 1991): a dense bubbling 

phase and a dispersed phase. Solids carried in the bubble wake are partly thrown into the 

freeboard.  

It is assumed that the probability of the particle being caught in a bubble wake is p, 

the probability of staying in the bed within time t (not caught in any bubble wake) is a 

binomial distribution, i.e., exactly 0 success out of N Bernoulli trials  ( )Np−1 . Hence the 

probability of the particle entrained to the freeboard is the probability of being caught in 

at least one bubble wake: 

( )NpR −−= 11  (4.22) 

Step 1: Do force balance and derive a trajectory model  
y= f (d, p, θ), where d, p and θ are vectors of design 
variables, operating variables and distribution parameters 

Step 2: Find the joint probability expression for recovery 
R=Pr{ y ≤ y*} and do a numerical calculation if an 
analytical solution is not available 
 

Step 3:  
ü Derive β50 from the deterministic case 
ü Calculate individual Ep values for cases where only 

one random variable exists 
ü Fit the data of Ep to the empirical model (20) 

following a multi-stage approach 
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It is known that as Nà ∞, ( ) pNN

N
eplim −

∞→
=−1 . The above can be approximated by a 

Poisson process:  

pNeR −−= 1  (4.23) 

The number of trials N is the total number of bubble burstings within time t: 

AtNN b=  (4.24) 

where Nb is the bubble bursting rate (i.e., number of bursts per unit time per unit area), A 

is the cross-sectional area of the bed. Nb can be computed from: 

( )
( ) bw

mf
b Vf

uu
N

−

−
=

1
0γ

 (4.25) 

where u0 is the superficial gas velocity and umf is the minimum fluidization velocity, fw is 

the fraction of the wake volume in a bubble, Vb is the bubble volume and γ is a function 

of Archimedes number. Assume the value of probability p is the ratio of the wake volume 

that is actually effective in throwing particles ( mwV ) to the bed volume (Vbed): 

bedmw V/Vp = . We then have 

( )
( )

t
fH

uuf 

wmf

mfmw

eR −

−
−

−= 1
0

1

γ

 
(4.26) 

where fmw =Vmw/Vb, Hmf = Vbed/A. This is exactly the same as in Smolders (1997) where 

the derivation is based on the first order equation (4.3) (Leva, 1951).  

If we view the entrainment of particles to the freeboard as a trajectory with two 

discrete values, the above derivation is another example of the unified probabilistic 

approach.  
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4.4.2 Froth flotation  

The objective of this example is to show an application with 3 random variables. 

The schematic of a flotation tank is similar to the sink-float tank shown in Figure 4.2 

except that there is a third phase (bubbles) and particles are fed from the lower section of 

the tank. Froth flotation is based on the difference of particle wettability: hydrophobic 

particles have a higher probability of reporting to the overflow. Froth flotation of large 

particles is believed to be different from that of small particles (Shen et al., 2001). In the  

former, for example, the flotation of plastics (Shen et al., 1999), more than one bubble 

attach to a large particle hence the flotation of particle depends on the aggregate density, 

while, in the latter, small particles attach to one bubble hence the floatability is 

irrespective of the density or size of the particles.  

In this work, the first case, flotation of large particles, is studied. Shen et al. (2001) 

proposed a model for the particle-bubble aggregate density ρpb:    

p

bp

pb

d
d

K.

.

4591

591

+
=

ρ

ρ
 

(4.27) 

where ρp is the particle density, db and dp are bubble diameter and particle diameter, 

respectively and K is the bubble coverage percentage of the particle surface.  

The behavior of the particle-bubble aggregates is the similar to the particle 

sedimentation in the sink-float tank. Due to the various uncertainties such as conditioning 

and particle-bubble collisions, it is highly unlikely for particles of the same size to carry 

exactly the same number of bubbles, therefore, the parameter K is a random variable. 

Therefore three random variables are considered in this application:  

1) random velocity  ( )v,vN~v σ∞ , where τσ /Dv 2=  
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2) bubble coverage  ( )KK ,N~K σµ  

3) particle diameter ( )dpdpp ,N~d σµ  

The trajectory model is similar to the one for sedimentation:    

( ) Bgd.signY
l

pbl
ppbl +

−
−= τ

ρ

ρρ
ρρ 033  (4.28) 

where B is a random variable with normal distribution )D,(N τ20 , and the origin of 

the Y axis starts from the tank bottom and the direction is upwards. 

Let Kµβ = . It is easy to show that:      
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An analytical solution for Ep can not be found, hence the empirical model in equation 

(4.21) is used.  

First the individual Ep values are determined. 

 

(i) For Ep1: (only velocity distribution) 
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 97 

(ii) For Ep2: (only K distribution) 

K.Ep σ674502 =  (4.31) 

 (iii) For Ep3: (only dp distribution)          

2
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Ranges of design and operating variables (Hc, τ, db) and distribution parameters 

(D, µdp, σdp, µK and σK ) are in Table 4.2. Following a 2-stage regression approach 

described in the previous section, the following result is obtained:  the parameter va lues 

are in Table 4.3, the RMSE is 0.015 and the RRMSE is 3.7%.  

 
Table 4.2 Ranges of variables and parameters values  

in regression for froth flotation 
 

Hc  (m) 0.4 ~ 2.0 µdp (m) 0.002 ~ 0.015 
τ  (s) 1 ~ 30 σdp (m) 0.0005~0.003 
db (m) 0.001 ~ 0.005 µK  0.15 ~ 0.95 
  σK 0.02 ~ 0.2 
  D (m2/s) 0.1 ~ 5.0 
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Table 4.3 Values of model parameters in equation (4.21) 

A12 0.0018 a13 0.0000 a23 0.1679 d123 6.9838 
B12 0.4802 b13 6.4745 b23 0.3583 e123 0.0593 
C12 0.5524 c13 5.7021 c23 1.7663 f123 0.0856 

      g123 10.6837 
 
 
 

The partition curves (recovery v.s. mean bubble coverage) at different particle size 

distributions are shown in Figure 4.4. Apparently, with the same bubble coverage, it is 

easier to float smaller particles. While it is impossible to find experimental data in 

literature to prove our model, Figure 4.5(a) and (b), which show the influence of particle 

size and flotation time on the recovery, are qualitatively consistent with Figure 7 and 

Figure 10 in Shen et al. (2001). 

 

4.4.3 Electrostatic separation 

The purpose of this example is to illustrate separation by using an electrical field. 

Electrostatic separation is based on the difference of particle charges, hence can be used 

for particles with overlapping densities. Two types of separators are considered:  free-fall 

separators are usually used in laboratories and drum-type separators, which have larger 

throughput, are used industrially. In both cases, the drag force (valid for large particles in 

air), inter-particle collisions and influence of particle charges on the electric field are 

neglected.  

(a) Free-fall separators (Wei and Realff, 2003 (a)) 

In the previous chapter, we have derived an analytical solution for the particle horizontal 

position at the bottom x :  
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Figure 4.4 Partition curve for froth flotation (µdp and σdp are in mm) 

 

  

Figure 4.5 Influence of (a) particle size and (b) flotation time on recovery 

 

[ ]BlnBarctanB
B
A

xx +−+= 120  (4.35) 

where ( ) g/qA md
V2=  and d/tanB θ2= , x0 is the initial position, and qm is the particle 

charge-to-mass ratio.  
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An analytical recovery model has also been obtained:     
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The Ep and cut charge for partition curve (recovery v.s. mean charge-to-mass ratio) is: 
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(4.40) 

150 Mbq =  (4.41) 

with RMSE = 0.0316, RRMSE=2.33%. 

And the ranges of design and operating variables (M and a) and distribution parameter σq  

are in Table 4.4: 

 
Table 4.4. Ranges of variables and parameters values  

in regression for free-fall electrostatic separations 
 

M (µC⋅kg-1⋅m-1) 1 ~ 50 
a  (m)   0 ~ 0.2 
σq (µC⋅kg-1) 0.01 ~ 4.5 
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(b) Drum-type separators (Wei and Realff, 2003 (b)) 

Figure 4.6 is a schematic of a drum-type separator without the tribo-electrification 

part. It usually consists of a rotating drum (partly charged with high voltage) and an outer 

plate (either straight or with some curvature, also charged with high voltage). Particles 

are transported on a belt or dropped directly from above the rotating drum. Particles 

detach from the drum surface if the sum of forces (gravitational, centrifugal and 

electrostatic forces) is positive in the radial direction (i.e., outwards). Therefore, particles 

that are attracted by the outer plate detach earlier and their final positions are further from 

the drum. 

 

Figure 4.6 Schematic of drum-type electrostatic separators 

 

The only random variable is then the charge-to-mass ratio. Only numerical 

solutions can be obtained from a system of 2-dimensional 2nd order non- linear ODEs. The 

following empirical trajectory model has been obtained:      

 
            R1             
-V 
                  R2 

         ω 
 

+
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54 332211 bebx~ x~bx~bx~b
b += ++  (4.42) 

where b1 to b5 are model parameters and  

( )121
1

2
R/RlngR

Vq
x~ m−

=  (4.43) 

    Which is the ratio of electrostatic force to gravitational force  

g/Rx~ 1
2

2 ω=  (4.44) 

    Which is the ratio of centrifugal force to gravitational force  

13 R/yx~ c=  (4.45) 

    Which is dimensionless height of the collection bin  

1R/xx~ bb =  (4.46) 

    Which is dimensionless particle horizontal position  

where ω is the drum angular velocity. The variables are varied in the ranges shown in 

Table 4.5. The parameter values are in Table 4.6, in which case (a) has a curved outer-

plate (1/4 circle) that is concentric with the inner drum and case (b) has a straight outer-

plate that is assumed infinitely long and inclined at a 45o angle. 

 

Table 4.5. Ranges of variables and parameters values  
in regression for drum-type electrostatic separations 

 

1x~   - 1.134 ~ 0.783 

2x~    0.0306 ~ 0.925 

3x~  - 2.667 ~ 0.909 

bx~    0.623 ~ 2.784 
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Table 4.6 Parameter values in Equation (4.42) 

 b1 b2 b3 b4 b5 

Case (a) 1.6453 0.9663 -0.1251 0.5098 0.3715 
Case (b) 1.6323     1.1050    -0.1941    0.3581     0.5138 

 

Since there is only one random variable, the derivations of the recovery model and the 

partition curve model are straightforward: 

























 −
−=
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 (4.47) 

where 
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3322
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(4.48) 

σ67450.Ep =  (4.49) 
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b

bx~
ln

q

c

 (4.50) 

 

As summarized in Table 4.7, several applications with various random variables have 

been demonstrated. The trajectory models, dependent on the physics of the problem, can 

be analytical or empirical. When an analytical recovery model can not be derived from 

the joint probability calculation, a numerical calculation is used and numerical values of 

Ep are found to fit the expression for Ep directly. Even if a recovery model is analytic, the 

Ep model could still be empirical and Equation (4.20) is a suggested form of the model. 
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Table 4.7 Summary of the models for different applications 

 Random  
Variables 

Trajectory  
Model 

Recovery  
Model 

Ep and β50 
Models 

Sink-float Velocity, particle size Analytical    -- Empirical 
Froth flotation Velocity, particle size, 

bubble coverage 
Analytical    -- Empirical 

Free-fall  
Electrostatic 

Initial position,  
Particle charge 

Analytical Analytical Empirical 

Drum-type 
electrostatic 

Particle charge Empirical Analytical Analytical 

 

 

4.5 Design Analysis by Manipulating the Partition Curve 

The purpose of this section is to provide a simple procedure to choose the 

appropriate Ep and cut values.  

Consider a separation of two materials (initial fractions: f1 and 1-f1, respectively) 

with purity requirements (p1≥α1 and p2≥α2) for each product. Our task is to find the 

corresponding requirements for Ep and β50 in terms of known parameters: f1, α1,α2, β1 

and β2 . 

The purity requirement can be formulated as: 

( )

( )( )
( ) ( )( )













≥
−−+−

−−
=

≥
−+

=

2
2111

21
2

1
2111

11
1

111
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1

α

α

RfRf

Rf
p

RfRf
Rf

p

 (4.51) 

where Ri is the recovery of material i to product 1.  

It can be shown that the feasible region defined by the inequalities (4.51) in the 2-
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dimensional coordinates (R1, R2) can be approximated by a rectangle. 

In Figure 4.7, the line PB represents a contour for 95.011 == αp , and the line PD 

represents a contour for 95.022 == αp . The quadrilateral PBCD is the feasible region 

defined by constraints (4.51) for R1 and R2. The coordinates of the points B, D and P are: 

( )
12

12
1

1
f
f

BR
α

α −+
= , ( ) 02 =BR  (4.52) 

( ) 01 =DR , ( ) ( )
( ) 11

11
2 1

1
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α
f

f
DR

−
−

=  (4.53) 
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121
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f
f

BRPR  (4.54) 

( ) ( ) ( )( )
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f
f

DRPR  (4.55) 
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Figure 4.7. Feasible region for R1 and R2 



 106 

It can be shown that:  

    if 1121 αα ≤≤− f and 0121 >−+ αα , we have 

( ) ( ) ( )( )( )
( ) 0

1
111

'
2112

1221
11 ≥

−+
−+−−

=−=∆
ααα
ααα

f
f

BRBRB  (4.56) 

  and   

( ) ( ) ( )( )( )
( )( ) 0

11
11

'
1211

1121
22 ≥

−−+
−−−

=−=∆
f
f

DRDRD
ααα

ααα
 (4.57) 

It can also be shown that for 95.0, 21 ≥αα , 002770.Bmax =∆ and 

002770.Dmax =∆ . Since B∆ and D∆  are sufficiently small, the rectangle PB’CD’ is a 

good approximation to the feasible region PBCD. Hence the constraints (4.51) are 

decoupled to: 

( )
( )1

1

211

121
1 −+

−+
≥
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f
f

R  and 
( )( )
( )( )11

11

211

121
2 −+−

−+−
≤

αα
αα

f
f

R  (4.58) 

Note that although two materials are separated in the same separator, they may 

have different partition curve models. Let Ep1, β1,50 and Ep2, β2,50 be the Ep value and cut 

property for material 1 and material 2, respectively.  

From   

( )
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( )
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 (4.59) 

 

we have 11501 γββ +≥, , where    
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Similarly from  
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We have 22502 γββ −≤, , where   
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The decoupled requirements for R1 and R2 can be translated to the following 

requirements for the cut points β1,50 and β2,50. 

50111 ,βγβ ≤+ and 22502 γββ −≤,   (4.63) 

where  
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γ  (4.64) 

      

We divide the problem into two cases for simplicity of explanation. 

1) If β50 is a function of only design and operating variables, such as in electrostatic 

separation, 502501 ,, ββ = . In such cases, inequalities (4.63) become:  

225011 γββγβ −≤≤+  (4.65) 

The above inequalities imply a necessary condition for Ep values: 
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where 21 βββ −=∆ . 

The explanation for inequalities (4.65, 4.66) is: Ep value (sharpness) must be less 

(greater) than certain value which is determined by the purity requirements α1, α2 and the 

difference of the material properties β∆ . Once the Ep value is fixed, the cut value β50 

must fall in an interval ( )2211 γβγβ −+ , . Since the interval width is proportional to – 

Ep1 and – Ep2, the smaller the Ep values are, the larger the interval is allowed. Figure 4.8 

illustrates the feasible region for β50 for an example with f1=0.5, α1=α2=0.95, β1= -0.477, 

β2= 0.477 and equal Ep values (Ep1=Ep2=0.16) which satisfies the requirement in (4.66). 

From (4.65), the feasible interval for β50 is (-0.018, 0.018).  

For 21 αα = , there are three cases with regard to the relative position of feasible 

interval for β50 between β1 and β2. 

(case I):  when f1=0.5 and Ep1=Ep2, 







−
==

α
α

γγ
10986121 ln

.
Ep

 

When the initial fractions and Ep values are equal, respectively, the feasible interval lies 

in the middle between β1 and β2 (as in Figure 4.8).  

(case II): When f1>0.5 or Ep1>Ep2, 21 γγ > . This can be explained from purity 

requirements (4.51) as follows: as f1 increases from 0.5, if β50 is kept the same, the purity 

of product 1 increases, however, the purity of product 2 decreases below the requirement. 

To increase the purity, an efficient way is to decrease the fraction of material 1 in product 

2, i.e., increase the recovery of material 1 in product 1. Therefore, the interval needs to be 

shifted to the right at the cost of reduced recovery of material 2 in product 2. The 
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explanation is similar for the situation when Ep1>Ep2.  

 (case III): When f1<0.5, 21 γγ < , the interval shifts to the left. This can be explained 

similarly as in case II.  
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Ep1=Ep2=0.16 

R 

 

Figure 4.8 Illustration of the feasible region for β50 

 

2) β50 can also be a function of some material property ϕ which is different for two 

materials, such as in sink-float separation and froth flotation, in which the cut point 

functions (4.14) (4.29) contain the mean particle size. If the two materials in the feed 
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have different mean particle size, we then have 502501 ,, ββ ≠ . We can write 

( )ϕβ ,Qf=50 , where Q is a vector of design and operating variables. After 

transformation, we have: 

( ) ( ) ( )222111 ,, ϕγβϕγβ −≤≤+ hQgh  (4.67) 

where g and h are some functions.  Therefore inequalities (4.56) define a feasible region 

for function g(Q), and a similar analysis can be done. For example, if the two materials in 

a sink-float tank have different mean particle size µ1, µ2, plug the cut point function (4.14) 

into (4.63), we then have 

( ) ( ) 222111 03.3/03.3 µγβτµγβ gHcg −≤≤+  (4.68) 

which define a feasible region for the ratio of two design variables Hc/τ.  

When the design model (4.63) is combined with the expressions for Ep and β50, 

we have a very simple design procedure. This is briefly illustrated using the free-fall 

electrostatic separator as an example. From Equation (4.40), the Ep value increases with 

both the standard deviation of particle charge σq and the value of M*a. If any one of them 

is significantly greater than the upper bound, it has to be reduced. If Ma dominates in Ep, 

we will have: 
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(4.69) 

Similarly, if σq1 and σq2 dominate in Ep1 and Ep2, we will have: 
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 (4.70) 

If Ma , σq1, σq2 are in the same magnitude, one can substitute Equations (4.40) (4.41) into 

(4.67) to solve quadratic equations for an upper and a lower bound of M.  

The inequality constraint for M makes the design procedure fairly simple. M can 

be adjusted by controlling the voltage V and the plate geometry d/L, depending on which 

one results in a lower cost.  The feasible region of M can be adjusted by moving the bin 

position b1.  

 

4.6 Conclusions 

In this chapter, it has been shown that how trajectory-based solid-solid separations 

can be modeled with a unified (microscopic) approach based on a joint probability 

calculation of recovery, which is a departure from a traditional differential-equation based 

(macroscopic) approach. One advantage of the unified approach is its ability to handle the 

randomness of individual particle properties. A connection between the probabilistic 

recovery model and the empirical partition curve model was also built that simplifies the 

design to a procedure that changes two parameters. 

The accuracy of the recovery model depends mainly on the physics of the 

trajectory model used at the Step1 of the modeling approach (Figure 4.3) and the 

distributions assumed for the random variables. Given these are sufficiently accurate, the 

calculations at Step2 and Step3 should not bring significant errors. The proposed 

empirical Ep model (Equation 4.20) has been validated with four applications.  
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Although the probabilistic approach interprets the separations from a microscopic 

perspective, this does not mean the macroscopic method can be completely abandoned.    

The microscopic parameters such as the velocity deviation or bubble coverage deviation 

sometimes need to be calculated from experimentally determined macroscopic quantities 

such as the concentration. For example, Martin, et al., (1995) proposed to use a solid-

liquid fluidized bed, in which the upward flowing solvent counterbalances gravity, to 

overcome sedimenting suspension and polydispersity problems. Thus a steady state is 

obtained and the concentration profile, from which the diffusion coefficient and hence the 

velocity deviation can be calculated, is measured. 
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CHAPTER 5 

AN OVERALL DESIGN STRATEGY 

  

The purpose of this chapter is to develop an overall design strategy, with a 

combination of heuristics and mathematical programming, which will assist in the design 

of an entire bulk recycling system for a given feed specification. The Douglas’ (1988) 

hierarchical design method can be used to decompose the problem into several levels. 

Since this is a solid processing process, the hierarchy of decisions is different from that of 

a typical chemical process. Wibowo and Ng (1999) proposed a systematic procedure for 

synthesis of bulk solids processing systems to generate flowsheet alternatives. The step 

by step procedure is as follows: 

Step 1.  Selection of function structure 

Step 2.  Selection of equipment for functional structure 

Step 3.  Generation of flowsheet configurations 

Step 4.  Selection of storage and transportation equipment 

Step 5.  Evaluation of alternatives 

The rules proposed for this procedure by Wibowo and Ng (1999) should in general be 

still applicable to the bulk recycling system. Therefore our work will focus on the specific 

issues for the bulk recycling systems, such as how to decompose the interactions between 

size reduction and separation.  
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5.1  The interactions between size reduction and separation  

The interactions between size reduction and separation are shown in the following 

diagram (Figure 5.1).  

 

 
The size reduction step has influence on the separation through both the particle 

size distribution and the degree of material liberation.  The former affects the separation 

in terms of separation efficiency and costs; the latter can result in product contamination 

or additional cost of removing unliberated pieces.  The particle size distribution is 

dependent of not only the size reduction equipment (technology, design) but also the 

materials to be processed. Also, the distribution changes with processing time. The 

degree of material liberation depends on how different materials are bound together and 

how the breaking force/energy is applied.  

Therefore, many decisions have to be made to synthesize a cost effective system. 

These decisions include:  choices of size reduction and separation units; use of classifiers 

for particle size control; use of detection equipment for unliberated pieces; processing 

time in the size reduction units. 

Size reduction 
� Breakage Technology 
� Design 
� Grinding Time 

Separation 
� Technology 
� Design 

Particle size 
distribution 

Material 
liberation 

Materials 
 

� Materials 
� Binding technology 

Separation Efficiency 

� Product contamination 
� Material loss 

Figure 5.1 Interaction between size reduction and separation 
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 Next, the interactions are discussed, covering the following aspects: (1) Influence 

of size reduction on the particle size distribution (2) Influence of size reduction on the 

degree of material liberation, and (3) influence of particle size distribution on separation.  

 

5.2  Influence of size reduction on the particle size distribution 

5.2.1  Evolution of particle size distribution with time 

Batch grinding experiments such as grinding dolomite by a stirred ball mill (Gao 

and Forssberg, 1995), polystyrene by a shaker bead mill (Molina-Boisseau and Bolay, 

2000), various minerals by a standard ball mill (Aksani and Sonmez, 2000) and limestone 

by three ball mills (Datta and Rajamani, 2002) have observed qualitatively similar change 

of cumulative size distribution with time, shown in Figure 5.2.  

 

 

 
Figure 5.2 Experimental and calcula ted particle size distribution 

(from Figure 1 of Aksani and Sonmez, 2000, page 675) 
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Theoretically, the following Population Balance Equation (PBE) has been widely 

used to solve for the dynamic particle size distribution (Ramkrishna, 1971, 1985).  

( ) ( ) ( )∫
∞=

∂
∂

d 'dt,'df'd,dB'dS
t

)t,d(F
d  (5.1) 

where 

( )t,dF :   Fraction of particles whose size is less than d at time t  (c.d.f) 

( )t,df  :   Corresponding density function  

( )'d,dB :  Amount of particles less than size d broken out of particle size d’ 

( )dS :      Breakage rate 

There is no general closed-form analytical solution of the above equation. For a 

special case (King, 1972) in which it is assumed: 

( ) ( ) 1
0    −= αα dk'd,db'dS  (5.2) 

and by definition ( ) ( )∫= d d'd,db'd,dB  
0 d , an analytical  solution can be obtained: 

( ) ( )[ ] tdke,dFt,dF
α

0  011 −−−=  (5.3) 

( ) ( )( ) ( )[ ] ααα tdke,df,dFdtkt,df 0   001 1
0

−− +−=  (5.4) 

where F(d,0), f(d,0) are the initial cumulative distribution function and probability 

density function, respectively. The case in which the initial particle size is a constant 

value d0 and α=1 is considered,  
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then we have 
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The mean and the variance of the particle size are 
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=  (5.9) 

The mean size is a monotonic decreasing function of time (Figure 5.3a), while the 

variance (Figure 5.3b) increases initially and then decreases. The maximum variance 

occurs when k0td0=1.1265. 
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Figure 5.3 The evolution of the (a) mean and (b) variance of particle size.  
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5.2.2 Selection of size reduction equipment 

 The following table (Table 5.1) is a brief summary of different types of equipment 

in terms of the size control, energy use, costs and applications. More information can be 

found from Kelly and Spoottiswood (1982).  

 

5.3  Influence of size reduction on the degree of material liberation 

The bond between different materials of manufactured products is generally 

weaker than in natural ores, therefore its not energy intensive to liberate materials having 

distinctive mechanical properties (Zhang and Forssberg, 1999).  

Loehr and Melchiorre (1996) classified the liberation procedure into three types: 

i) Chopping: Chopping is independent of its composition or structure, such as cutting 

cables  

ii) Dividing: Dividing bonded materials along their interface, such as breaking coated 

materials by shearing in a cone crusher. 

iii)  Stripping: Stripping specific components from a composite by only disintegrating the 

rest, such as the disintegration of non-metals from scrap cars.  

In selective comminution such as dividing and stripping, the difference of brittleness can 

be enhanced in the cryogenic condition, which is often used in breaking bonded plastics.  

Based on some experimental observations, it is reasonable to assume the curve of 

liberation fraction L v.s. mean particle size dp has an “S” shape (i.e., when dpà 0, Là 1; 

when dpà ∞, Là0). So we use the following empirical function to represent the 

relationship. The values of α and β  depend on the size reduction equipment, the 

properties of materials and the binding methods.   
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Table 5.1 Comparison of different size reduction equipment 
 Size control Energy use Costs Applications  

Crushers: by Compression or Impact 
Jaw 
Crushers 
 
Gyratory 
Crushers 

 
Limited reduction ratio due 
to the fixed size of input 
and output openings;  

Cause fracture by compression; 
Apply energy directly to particles. 
Internal stresses in material broken by 
compression which can cause later 
cracking.  

Gyratory crushers have 
larger capacity. The capital 
and maintenance costs of a 
jaw crusher are slightly less 
than those of the gyratory. 
But the latter have lower 
installation costs. 

Jaws perform better than 
gyratories on plastic 
materials, while the latter 
are found to be particularly 
suitable for hard, abrasive 
material. 

 
 
Roller 
Crushers 

 Some fracture may occur by cleavage in 
toothed machines, but most is by shatter. 
Unlike jaw and gyratory crushers, where 
reduction is progressive by repeated 
pressure, the crushing in rolls is one of 
single pressure. 

Have highest capital cost of 
all crushers because very 
large rolls are required in 
relation to the feed particles. 

 

 
 
Hammer 
mills 

The exit from the mill is 
perforated, so that material 
that is not broken to the 
required size is retained 
and swept up again by the 
rotor for further impacting. 

Cause fracture by impact; Impact causes 
immediate fracture with no residual 
stresses. Some fracture by abrasion, 
which leads to little control on product 
size and a much higher proportion of 
fines than with compressive crushers. 

 Limited use to relatively 
non-abrasive materials. 
Have extensive use in 
limestone quarrying and 
coal crushing. 

Grinders:  
1) As opposed to crushing, grinding is a more random process and is subject to the laws of probability.  2) Mechanisms: Compression or 
Impact or Chipping or Abrasion 3) Control of particle sizes is exercised by the type of medium used, the speed of rotation of the mill, the nature of 
the material and type of circuits 4) Most of the tumbling load is dissipated as heat, only a small fraction being expended in actually breaking the 
particles 
Rod mills 

Ball mills 

Autogenous 

little restriction on the feed 
and product size; exert 
limited amount of control 
on product size ; Products 
from an open-circuit ball 
mill exhibits a wide range 
of particle size  

Predominantly shatter fracture; 
Energy is consumed in keeping the mill 
shell, the media and the particles in 
motion. Fracture occurs as a by-
product of passage through the mill and 
is a statistical process. 

Medium consumption in 
Ball mills can be up to 
40% of total milling 
cost. 

often operated in closed circuit 
with an external classifier;  
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βα pd

eL
−

=  (5.10) 

 

5.4 Influence of particle size distribution on separation 

 In this section, the influence of the particle size distribution on the separation 

efficiency is discussed based on the unit models developed in chapter 4.  Qualitative 

diagrams of how the partition curve evolves with time will be shown. 

 

5.4.1 Electrostatic separation 

A. Charging Process 

The particle size affects the charge-to-mass ratio through the surface-to-volume 

ratio. A linear relationship between the mean charge versus the particle area was observed 

by Trigwell et al. (2003) who used an Electronic Single Particle Aerodynamic Relaxation 

Time (ESPART) analyzer to measure the charge-to-mass ratio of materials, such as Epoxy, 

Toner, Polyester, Acrylic Class, charged by milling with stainless steel beads. The inverse 

relationship between charge-to-mass ratio and particle size is also supported by Rowely 

(2001) who used a cyclone with interchangeable contact surfaces of steel and polymers to 

charge lactose particles for size range from 90 to 500 µm. 

Therefore, for particles with the same material, it is assumed that the total charge 

it can acquire is linearly proportional to their surface area or the square of the diameter, 

i.e. 2
pdq ∝ . Since the particle mass is linearly proportional to the cube of the diameter, 

the charge-to-mass ratio is proportionally to dp/1 , i.e., 
dp
a

qm = , where a is a constant. 

It can be seen that finer particles can acquire higher mean charge-to-mass ratio.   
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B. Separation Process 

The particle size can influence the separation process through its influence on the 

charge-to-mass ratio. 

First, we derive the distribution function of the charge-to-mass ratio. 

From the c.d.f. of particle size,  

( )






≥
<−

=
−

0

0
 

                   1
      1 0

dd,
dd,e

dF
dk

d

τ
 (5.11) 

the c.d.f. for particle charge-to-mass ratio (for the case of qm≥0) is  
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so the p.d.f. of charge-to-mass ratio is: 
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From the c.d.f. of charge-to-mass ratio: 

τβ075 47613 k.z = , τβ025 72130 k.z =  (5.14) 

so  

τβ0
2575 37741

2
k.

zz
Ep =

−
=  (5.15) 

Therefore, as time increases, Ep increases or the separation efficiency decreases because 

particle charge-to-mass ratios are more widely spreaded as particles become finer.  In 

other words, the partition curve is flatter as time increases (Figure 5.4). 

 

 

5.4.2 Sink-float separation 

The mean particle size µdp can influence the separation efficiency through 

partition curve model parameter Ep.   Based on Equation 4.19 (assuming particle size has 

a normal distribution),  

Fq 

q 

Time increases 

Figure 5.4 Evolution of partition curve with time for 
electrostatic separation 
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Ep decreases with increasing µdp and increasing σdp, respectively, which means that the 

separation efficiency (slope of partition curve) increases with µdp, but decreases with σdp.  

 To see how grinding time influences the separation efficiency, let’s use the 

particle size distribution model developed in this chapter.  Other random variables are 

neglected and only the influence of the size distribution is studied.  
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g/tk. Hc
075 0711

τ
β = , g/tk. Hc

025 48790
τ

β = , (5.17) 

so,         

g/tk.Ep Hc
02920

τ
=  (5.18) 

Since Ep is proportional to the grinding time t, the separation efficiency decreases with 

time. The evolution of the partition curve with time is similar to that in electrostatic 

separation (Figure 5.4).  

 Combining the results from the two models, it can be seen that the decreasing 

mean particle size with time has a major contribution to the reduced separation efficiency. 

This result implies that, less grinding favors the SF separation.  
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5.4.3 Froth flotation 

From the model developed in the previous chapter (Equations 4.33 and 4.34), for 

the case when the particle size is the only random variable, we have 
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Some numerical calculations show that for typical values of particle/medium densities 

and separator size, Ep increases with the mean and the variance of the particle size. So 

small particle sizes with small variance favor the separation.  

 To see the influence of grinding time on the separation efficiency, again the 

particle size distribution model developed in this chapter is used. 
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where  
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Assuming 1,pd is sufficiently small such that { } { }221 ,pp,pp,p ddPrdddPr ≤≈≤≤  
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Since 2,pd increases monotonically with K, the evolution of partition curve with time 

(Figure 5.5)  is reversed compared to that in electrostatic and sink-float separations The 

separation efficiency increases with grinding time, therefore longer grinding time favors 

the separation.  

However, to limit the carry-over of fine particles by rising bubbles despite of their 

densities, the particle size should not be too small, hence over-grinding should be avoided 

to limit the fraction of fines.  

 

5.5 The Overall Design Strategy 

Figure 5.6 gives a summary of the size control at each step through the system.  
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The sink-float separation should be placed before electrostatic and froth flotation 

separation because that larger particles favor the sink-float separation and also they are  

cheaper. After the density-based separation, a secondary-grinding might be needed and 

the ratio of size reduction depends on the subsequent separation methods to be used.  

Our objective is to maximize the total profit which is the difference of the 

recovered value and the total cost. As shown in Figure 5.7, the recovered value drops 

sharply as the output particle size is increased to a certain value due to the large fraction 

of unliberated pieces causing contamination of products. The recovered value has a 

similar shape to that of the liberation percentage function. The total cost is a 

monotonically decreasing function of output particle size. The total profit is expected to 

show a transition point for the particle size at which the profit reaches the maximum. This 

defines the optimal average output particle size. 

 

 

FK 

K 

Time increases 

Figure 5.5 Evolution of partition curve with time for froth flotation 
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Recovered 
Value 

dp* 
Mean size 

- Cost 

Profit 
f* 

Figure 5.7 Overall economic analyses 

� Less grinding favors 
SF 

� Output particle size 
is determined by 
material liberation 

 

� Maximum particle size is determined by that 
the aggregated bubble-particle density of 
floating materials should be less than the 
medium density  

� More grinding favors separation 
� Limit the fraction of fines to avoid carry-over 

by bubbles. 

Sink-float 
Separation 

Electrostatic  
Separation 

Froth  
Flotation 

Secondary 
Grinding 

Primary size 
reduction 

Figure 5.6 A step-by-step size control strategy 

� Less grinding favors separation 
� Smaller particles have larger charge -to-mass 

ratio, which may result in cheaper design 
/operating costs 
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Theoretically, one can find the optimal output size and the associated grind time by 

optimizing the profit function given that the above relationships have been 

mathematically defined.  In such an approach, particle size is treated as a variable and the 

size reduction steps are incorporated into the superstructure as optional units. Thus, the 

superstructure size is further increased. Moreover, it might not be easy to find some of the 

relationships.  Therefore, such an optimization approach is not easy to implement.  

 Due to the difficulty of incorporate size reduction into the superstructure 

optimization, the following procedure with heuristic rules is presented to help to make 

decisions regarding the selection of size reduction equipment and the appropriate particle 

size.  

                       

The step-by-step design hierarchy 

In this design procedure, it is assumed that the characteristics of the size reduction 

units are known or available from the manufacture. The information needed include the 

evolution of the degree of liberation and the output particle size distribution with grinding 

time.  

 

Step 1:  Preliminary flowsheet optimization of the separation system.  

Since the separation units operated in different conditions (particle properties, 

medium density, feed composition) will have different requirements for the particle sizes, 

a flowsheet is needed to start with for the analysis of particle size requirements. Therefore 

first the size reduction units are neglected and particle size distribution is assumed to be 

fixed through the separation system. With an estimated particle size distribution, find an 
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optimal flowsheet based on the average condition (i.e., neglect the uncertainties). This 

estimated size distribution is a starting point and will be adjusted later. The size 

distribution that can generate a nearly complete material liberation is a good choice.  

 

Step 2: Determination of appropriate mean particle size for each separation unit 

Based on the flowsheet found from step 1, find the appropriate particle size range 

for each separation unit used in the flowsheet according to the following methods: 

(1) for sink-float tanks: use the largest particle size that is acceptable for the units.  

(2) for froth-flotation tanks: use the following procedure to find the minimum and 

maximum particle sizes.  

(i) Since the particle-bubble aggregates for float and sink particles should in general 

be lighter and heavier than the medium, respectively, we have: 
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            Taking account of the bubble coverage distribution, the above is rewritten as : 
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(ii) To avoid carry-over by bubbles, the particles should not be larger than bubbles.  

 

(3)  for electrostatic separators: Assuming the particle charge-to-mass ratio is 

inversely proportionally to the particle diameter. Then the short-cut design 

procedure can be used to calculate the maximum particle size allowed in the 

electrostatic separation:  

Assume 
dp
a

qm
1

1 −=  
dp
a

qm
2

2 = , we have 
dp

aa
qq mm

12
12

+
=−  

Based on the short cut design model: 225011 γγ −≤≤+ mmm qqq , we should 

have at least: 2211 γγ −<+ mm qq  

Therefore,   

2112 γγ +>− mm qq  , which gives 
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Step 3:  Selection of size reduction units and determination of grinding time.  

The complete system is divided into two phases: (1) primary size reduction – 

sink/float separation (Figure 5.8), and (2) secondary size reduction- electrostatic/froth 

flotation separation (Figure 5.9). 

 

 (1) Primary Size Reduction – Sink/float separation 

This phase mainly consists of a primary size reduction unit, possibly a classifier to 
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remove fines and a sub-network of sink-float units.  

 

 

Rules:  

1) Find the maximum of the mean particle size that can provide nearly complete 

material liberation and is acceptable to all sink-float units.   

2) Find the grinding time that is needed to achieve this mean particle size.  Select a size 

reduction unit that provides a good balance of size distribution and cost, using Table 

5.1 as a guide. To enhance the materials liberation, one should choose one or two 

units in which fractures are generated by a combination of shear, impact, pressure etc.   

3) Use classifier to remove fines if necessary.  Fine particles can report to wrong exit 

due to carry-over by large particles.  

 

(2) Secondary size reduction- Froth flotation/Electrostatic separation 

Primary size 
Reduction 

Classifier 

 Remove fines 

Sink-Float 

Figure 5.8 Phase 1: Primary size reduction – density-based separation 
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Rules:  

1)  Find the maximum particle size dm with which inequalities (5.22 - 5.24) are all 

satisfied.  

2)   Find the appropriate particle size distribution that gives  

{ } 990  .ddPr mp ≥≤  (5.35) 

and the resulting grinding time. Select a size reduction unit that provides a good balance 

of achieving this size distribution and cost, using Table 5.1 as a guide. 

3)  Use classifiers to remover undersized particles and recycle oversized particles for 

regrinding.  

 

Step 4:  Improving the  flowsheet 

With the particle size distribution determined from Step 3, run the superstructure 

optimization with the uncertainties for the separation system to generate a new flowsheet. 

If the flowsheet does not change, the design process is finished; otherwise, return to 

Step1 and repeat. 

2nd Size 
Reduction 

Classifier 

Undersized 

Separation 

Classifier 

Oversized 

Figure 5.9 Phase 2: Secondary size reduction – non-density based separation 
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5.6  Conclusions 

 

The overall design method proposed in this chapter focus on decomposing the 

interactions between the size reduction and separations. The unit models developed in 

Chapters 3 and 4 are used to find the limits for the particle size for each type of 

separation methods. The step-by-step method decomposes the procedure by first fixing 

the size distribution to find a preliminary optimal flowsheet, then fixing the flowsheet to 

find the appropriate size distribution needed for each unit by some heuristics and finally 

adjusting the appropriate size distribution for the two phases of size reduction and re-

optimize the separation flowsheet.  
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CHAPTER 6  

 
A CASE STUDY 

 
 

The main purpose of this case study is to demonstrate the application of the SAA-

MINLP method to solving a large plastics separation system design problem under 

uncertainty, using the unit models developed in Chapter 3.  The size reduction units are 

not included in the superstructure due to the lack of appropriate models. Heuristic rules 

are used to select size reduction units and determine the appropriate particle sizes. Once 

the size reduction units are chosen, the cost is considered as a fixed value. Therefore, this 

case study considers only the selection, sequencing and sizing of the separation units 

themselves.  

 
 
6.1 Problem description 

 

In this case study, the flow stream to be processed is a mixture of TV and 

Computer products. The components of a TV or a computer are assumed to be fixed, 

respectively. However, the fraction of TVs or Computers is uncertain, which makes the 

fraction of each component in the feed stream also a random number. The total feed flow 

rate is fixed at 3600 kg/hr (=1 kg/s) and the fraction of TVs has a normal distribution 

with mean 74% and standard deviation 17% (APC report, 2000). In TVs, HIPS is the 

dominant material, while in computers, ABS dominates. The data are shown in Table 6.1. 
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Table 6.1 Feed components and fractions (APC report, 2000) 
 

 
 
The product prices are also uncertain and correlated. Due to the lack of historical data, 

they are assumed to have normal distributions, with their respective mean and standard 

deviation and the correlation coefficient matrix shown in Table 6.2. 

 
Table 6.2 Product price distribution 

 

 
The material properties for each component, such as density, distribution of 

particle size, distribution of bubble coverage and charge-to-mass ratio are presented in 

Table 6.3.  

Table 6.3 Material properties 

    PE HIPS ABS PPO PC/ABS 
Density (g/cm3) 0.92 1.05 1.06 1.07 1.20 
Particle size (mm) Normal distribution N (6, 0.3)   

Unit 5 0.7 0.9 0.8 0.1 0.1 
Mean  

Unit 6 0.7 0.9 0.1 0.1 0.1 Bubble 
coverage 

S.T.D. 0.02 

Unit 7,9 4 4 3 -5 -4  Mean 
(µC/kg) Unit 8,10 4 3 -4 -5 -4 

Charge 
-to-mass 

 S.T.D. (µC/kg) 0.2 

    PE HIPS ABS PPO PC/ABS 
Feed  Total: 3600 kg/ hr, TV (Mean: 74%; STD 17%) + Computer  

For TV    5%  75%  8% 12% 0% Components 
For Computer   0%  5%  57% 36% 2% 

    PE HIPS ABS PPO PC/ABS 
 Mean 0.4 0.6 0.6 1.5 1.5 
 S.T.D. 0.02 0.04 0.04 0.1 0.1 

1 0.2 0.2 0.2 0.2 
 1 0.5 0.3 0.3 
  1 0.3 0.7 
   1 0.4 

 
 
 
Price ($/kg) 

 
Correlation 
Coefficient 

    1 
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For bubble coverage and charge-to-mass ratio, no quantitative data have been 

reported in literature. Moreover, such properties depend on the type of units and 

operating conditions. Therefore, for a specific problem, the users will need to find these 

data, by either seeking help from the manufacture or experimenting on the materials to be 

processed themselves. 

The following superstructure (Figure 6.1) is proposed, which consists of 10 

optional units (4 sink-float tanks (SF), 2 froth flotation tanks (FF), 2 free-fall electrostatic 

separators (FE) and 2 drum separators (DE)). The superstructure has the following 

features: 

1) First of all, in this structure, a top level separation sequence has been specified: 

density-based separations first, followed by the non density based separations. The 

reasons are the follows: 

a) First, existing research on plastics separation technologies does not support an 

arbitrary cut for a mix of 4 or more plastics and has focused on mainly binary or 

tertiary mixtures with overlapping densities. For  a mix of 4 plastics ( ordered as 

ABCD in terms of floatability), it does not seem that a mix of ABCD conditioned by 

some agent resulting in a bubble coverage order of 100% for A, 70% for B, 30% for 

C and 0% for D can be efficiently separated. Therefore, it would require a 

conditioning method by using a different agent at a time to differentiate A from BCD 

by making A floatable and BCD non-floatable, and then B from CD by making B 

floatable and CD non-floatable, and so on.  However, such a conditioning method 

has not been seen in literature. Therefore, the application of non density-based 

separations is limited to a mixture with 2 or 3 plastics only and assume the 
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Figure 6.1 The superstructure for the case study.  
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conditioning or charging technologies exist to change the floatability/charge of 

component B such that B is non-floatable/ negatively charged in the A/BC or A/B cut 

and floatable/ positively charged in the AB/C or B/C cut.  

b) Second, since the non density-based separations are generally more expensive 

and complicated, one would want to use as many of the density-based separations as 

possible and implement them as early in the flowsheet as possible. 

c) Third, considering that the sink-float tanks can accept larger particles than the 

other two separations do, placing the sink float tanks before the froth flotation and 

electrostatic separations is consistent with the requirement of the order of size 

reduction steps.  

2) For the density-based separation part, the 4 SFs are connected with a combination of 

parallel and recycle streams, separating the feed into 3 streams based on their density 

ranges: (A): PE, (BCD): HIPS + ABS+PPO and (E): PC/ABS. This structure allows a 

choice of the separation sequence: A/BCDE, followed by BCD/E or ABCD/E, 

followed by A//BCD, and if necessary, a two-stage separation for each cut.  

3) Then, the HIPS+ABS+PPO mix is processed further by a non density-based 

separation system consisting of two subsystems, each equipped with an FF, an FE 

and a DE, and connected in parallel and recycle fashion. This structure allows the 

choices of the separation sequence (B/CD+C/D or BC/D+ B/C) and the separation 

unit (FF, FE or DE) for each cut.  

The unit operating conditions, including the medium density, bubble size and diffusion 

coefficient, and the cost coefficients are shown in Table 6.4.  
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Table 6.4 Unit operating conditions and cost constants 

 
 
 
6.2 Model Equations and design/operating constraints: 

 

The design and operating variables in the system are shown in Table 6.5.  

Table 6.5 The design and operating variables 

Unit Design variables Operating Variables 

Sink-float  Hc 
V 
Fmax 

Height to overflow (m) 
Tank volume  (m3) 
Maximum flowrate (kg/s) 

Q 
τ 

Volume flowrate (m3/s) 
Residence time (s) 

Froth 
flotation 

Hc 
V 
Fmax 

Height to underflow (m) 
Tank volume (m3) 
Maximum flowrate (kg/s) 

Q 
τ 

Volume flowrate (m3/s) 
Residence time (s) 

Free-fall 
Electrostatic  
separation 

L 
a 
W 
Fmax 

Plate length (m) 
Feeder opening 
Plate width (m) 
Maximum flowrate (kg/s) 

D 
Volt 
cl 

cr 
 

Plate gap (m) 
Voltage (kV) 
Left collection bin position (m) 
Right collection bin position (m) 

Drum 
Electrostatic  
separation 

R1 
W 
Fmax 

Drum radius (m) 
Drum width (m) 
Maximum Flowrate (kg/s) 

ω 
Volt 
R2 
cl 

cr 

Rotating angular velocity (s-1) 
Voltage (kV) 
Outer plate radius (m) 
Left collection bin position (m) 
Right collection bin position (m) 

 

Table 6.6 shows the notations for variables and parameters that will be used to describe 

the objective function and constraints in this section. 

 
 
 

Unit number 1 2 3 4 5 6 7 8 9 10 
Medium density 
 (g/cm3) 

0.9
8 

0.9
8 

1.1
0  

1.12 0.8
5 

0.8
5 

- - - - 

Diffusion Coefficient 0.01 0.01   
Bubble size (mm) - 1.0 - - 
    - 

FC ($) 5.0×104 7.0×104 6.6×104 8.5×104 
DC  ($/(kg⋅s-1)) 3.5×104 4.0×104 5.0×104 5.5×104 

 
Cost 

OC  ($/(kg⋅s-1)) 0.06 0.1 0.04 0.05 
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Table 6.6 Notation for the case study 

 
Ca [i] The base design cost of unit i at capacity 1000 kg/hr. Therefore, a 

conversion factor 3.6 appears in the cost term. 
Cb [i] The operating cost of unit i per kg/s of feed processed. 
Cc [i] The fixed capital cost ($) of unit i 
De The depreciation (year) 
Fp [l,s] The flowrate (kg/s) of product l at sample s. l=1…6. l=6 for the middling 
fp [p,j,s] The fraction of component j in product p at sample s. 
FI [i,s] The feed flowrate (kg/s) to unit i at sample s. 

[ ]s,j,if I  The fraction of component j in the feed to unit i for sample s 

[ ]s,k,iFO  The flowrate from outlet k of unit i for sample s 

[ ]s,k,j,ifO  The fraction of component j from outlet k of unit i for sample s 

[ ]s,i,iF 21dn  Downward recycle flowrate from unit i1 to unit i2 for sample s 

[ ]s,i,iF 21up  Upward recycle flowrate from unit i1 to unit i2 for sample s 

[ ]s,iF fresh  The flowrate of the stream to unit i coming from the fresh feed  

0F  Flowrate of feed to phase 1 (Initial fresh feed) 

[ ]s,jf0  Fraction of component j in the feed to phase 1 

[ ]sF2  Flowrate of feed to phase 2 (also the intermediate stream of 
HIPS+ABS+PPO) 

[ ]s,jf2  Fraction of component j in the feed to phase 2 

[ ]s,k,iF 2t  Flowrate of the stream from outlet k of unit i to the intermediate stream of 
HIPS+ABS+PPO. 

  
Fmax[i] The capacity (kg/s) of unit i. 
K The number of outlets  

K=2 for SFs (i=1 to 4) and 3 for FFs, FEs and DEs (i=5 to 10). 
k Index for outlets ( 1 for overflow, 2 for underflow, 3 for middling) 
  
M The number of units (=10 in this case) 
N The number of samples 
v[l,s] The price ($/kg) of product l at sample s. 
yi Binary variables representing the selection of unit i  
  
γ A conversion factor to convert the flowrate from kg/s to kg/yr. In this case 

study, it is assumed that the process is run for 8 hours per day and 200 days 
per year. Then, γ=3600*8*200. 

β   A large number. 
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Objective function: 

The objective is to maximize the average profit, which is the difference of the 

revenue and the sum of the capital and operating costs. The revenue is the average annual 

income from selling the recycled products. The capital cost is the annual investment 

(averaged by depreciation), including a fixed cost plus a design cost which is a function 

of the capacity.  The operating cost is  a linear function of the feed flowrate. The interest 

issue is neglected in this case.  

 
 
Maximize Profit = Revenue- (Capital cost + Operating cost) 
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During the SAA algorithm implementation, the maximization problem is transformed to a 

minimization problem by placing a minus sign before the objective function. Therefore, 

in the section, the results reported are negative values.  

 
Constraints: 
 
1) Flow rate balances 
 
For the units: 

[ ] [ ] [ ] [ ]∑ ⋅=⋅
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k
OOII s,k,j,ifs,k,iFs,j,ifs,iF ,     i=1… M;   j=1 … 5;    s=1… N 

[ ]∑
=

=
5

1j
I 1s,j,if ,  i=1… M;     s=1… N 
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[ ]∑
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For the mixers 

There are two types of mixers. One is the “feed mixers”, mixers to combine the 

fresh feed and recycles before each unit. Another is the “product mixers”, mixers to 

combine the streams from different outlets to before each product.  

For the feed mixers 
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i=1,…,M;    j=1,…,5;    s=1,…,N 

For the product mixers 
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For the splitters   

 There are also generally two types of splitters. One is the “feed splitter”, splitters 
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to separate the fresh feed to several streams fed to the units. Another is the “outlet 

splitter”, splitters to separate each unit outlet stream into an upward or downward 

recycle and a stream to each product.  

For the feed splitter  
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     For the outlet splitter       
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      i=1,..,M; k=1,…,4; s=1,…,N 

Note: The above equations for mixers and splitters are just general representations and 

should be modified appropriately for each one according to the superstructure used.  

 

2) Unit design models (Equations from chapter 4) 

    For sink-float units:       Equations (4.1) (4.11) (4.14) (4.17) (4.19) 

For froth-flotation units:  Equations (4.1) (4.29-4.34) 

For free-fall electrostatic separation units:  Equations (4.1) (4.38) (4.40-4.41) 

For drum electrostatic separation units: Equations (4.1) (4.42-4.46) (4.49- 4.50) 

 

3) Other design and operating specifications 
 

Solid volume fraction:   F/Q /1000 ≤ 0.3 

Height to overflow (m):     0.5 ≤ Hc ≤ 2.0 
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Tank volume (m3)             0.5 ≤ V ≤ 10 

Volume flowrate (m3/s)      0 ≤ Q  

Residence time (s)   5 ≤ τ 

Tank height (m):                       0.5≤ H ≤ 3.0 

Plate width (m):    0.5≤ W ≤ 2.0  

Plate gap(m):      0.1≤ D ≤ 1.0 

Voltage (kV):     10≤ Volt ≤ 100 

Angular velocity (rad/s)   0.1≤ ω ≤ 50 

Drum radius (m)     0.1≤ R1≤ 1.0 

Outer plate radius (m)    0.2≤ R2≤ 3.0 

Half- feeder width (m)    0.1≤  a 

Capacity (kg/s)    Fmax ≤ 2  

4) Product purity requirement:  [ ] 95.0s,l,lf p ≥ ,    l=1,…,5;  s in 1,…,N 

5) Selection of units:           [ ] βiI ys,iF ≤ ,  i=1 … M; s=1… N 

6) Capacity:  [ ] [ ]iFs,iF maxI ≤ ,  i=1 … M; s=1… N 
 

 
 

6.3 The non-convexity issue 
 

The nonconvexities of this problem mainly come from the bilinear terms of flow 

rate balances for the units and the mixers, and also the unit models. Then, it can not be 

guaranteed that the global optimum of the solution found fo r NLP subproblems by 

SNOPT. Moreover, the linearizations in the master problem may not give a valid lower 

bound. One approach to solve the issue is to use the methods of global optimization. In 
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our research, the heuristic strategy (Viswanathan and Grossmann, 1990) with the aim of 

reducing the effect of nonconvexities on generating lower bounds in master problems is 

applied.  

 This approach introduced slack variables in the master problem which has the 

following form shown in (MILP-APER)  
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Where wp

k
, wq

k are weights that are chosen sufficiently large; Tk={sign(λi
k)} in which λi

k 

is the multiplier associated with the equation hi(x,y)=0.  

 
6.4 Lagrangian decomposition  
 

The smaller NLP problems have the following form with the discrete variables 

already fixed.  
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Due to the existence of the continuous decision variables x, the scenarios are coupled and 



 146 

the problem has a block diagonal structure shown in Figure 6.2. Solving such a problem 

as a whole without any decomposition is time-consuming and may result in out of 

memory errors if the sample size, number of constraints and variables are very large.  

 
Figure 6.2 The block diagonal structure of the smaller NLPs 

 
However, the special structure of the problem can be exploited to decouple the scenarios 

and solve the problem in an iterative way until the decision variables x solved at each 

scenario converge to the same value. This can be done by first splitting the decision 

variable x into N variables xi (i=1, …,  N) and then applying Lagrangian Relaxation 

(Fisher, 1981; Guignard and Kim, 1987) to the copy constraints ixx = . This is called 

Lagrangian Decomposition .  
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The Lagrangian of the above problem is  
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problem is equivalent (in terms of the optimal objective value) to solving the following 

LD problem: 

( ) ( ) ( )
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However, a duality gap might exist in this case due to the non-convexities of the problem. 

Therefore the solution of LD provides a lower bound to the original problem. Any 

feasible solution to the original problem is an upper bound. Typically a sub-gradient 

method is used to update the multipliers to provide the tightest lower bound. 

Then, the problem can be solved in an iterative way (Wu and Ierapetritou, 2003): 
 
Step1 :  Pick any π i values, for i=1,…,N, solve the following decoupled sub-problems and 

denote the solutions for xi as ix̂  
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and solve the following problem for x and denote the solution as x̂  

Xx.t.s

xminQ
N

i
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Therefore ∑ +=
N

i
i QPLB  provides a lower bound. The initial π i values used in the case 

study are 0.01. 

 

Step2:  Find a feasible solution as the upper bound UB. If the difference of the upper and 
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lower bound is sufficiently small: 

ε<
−

LB
LBUB

,  ε=0.02 in this case study 

or the maximum iteration number (=10 in this case study) is reached, the algorithm stops; 

otherwise go to Step3 to update the multipliers.  

 

Step 3:  Use the subgradient method to update the multipliers: 
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where kβ  is a scalar (0~1) and is decreased (by a factor of 1.05 in this case study) when 

there is no improvement of the objective value (i.e., LB).  Return to Step 1 and repeat 

with new values of π i .  

(End) 

A smaller MILP can be solved as a whole within relatively reasonable time, 

compared to the solution time of a smaller NLP, therefore, the above decomposition 

method was applied to the smaller NLPs only.  

 
 
6.5 Results 
 

The problem was solved with AMPL CPLEX 8.1 and SNOPT 5.3-4 on a PC with 

2.53GHz CPU and 1G memory. All the objective values reported below have been scaled 

by 1E-6 (i.e., have the units of million dollars). Starting with (0110111111) for the binary 
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variables, the optimal solution was reached at the 2nd iteration (0100001100) with an 

optimal objective value -3.622. One sink-float tank and two free-fall electrostatic 

separators are selected and the corresponding optimal design is shown in Table 6.7.  

 
Table 6.7 Case study result – Design variables 

 
 

 SF2 FE7 FE8 
Hc (m) 0.5 - - 
V (m3) 10 - - 

Fmax (kg/s) 1 0.758 0.996 
R1 (m) - - - 
W (m) - 2 2 
a (m) - 0.3 0.23 
L (m) - 3 3 

 
 

Lagrangian decomposition result 

The Lagrangian decomposition problems can in general converge within 2 

iterations with initial multiplier values 0.01. For example, at the first iteration, the lower 

bound generated by Lagrangian decomposition is -3.592 and the upper bound by the 

heuristic rule is -3.481. The stopping rule is not satisfied so the multipliers are adjusted 

by the subgradient method described in the previous section. At the second iteration, the 

lower bound is -3.524 and the upper bound is -3.500. Since the relative difference of 

these two values is with 2%, the Lagrangian decomposition procedure is considered to 

have converged. Therefore, despite of the nonconvexities in the nonlinear problems, the 

duality gaps are negligible.  

As a heuristic rule to find an upper bound, the variables x are fixed at the 

maximum of the ix̂  values found in step1 and then the problem is solved again. This 

heuristic rule can provide a fairly tight upper bound and also the values of the decision 
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variables for the larger NLP.  

If the initial multiplier values are increased to 0.1, the number of iterations for the 

convergence will increase to 6.  Due to the fact that the previous Lagrangian multiplier 

values are used as the starting point for all next replications, they converge only after one 

iteration. 

 

Comparison between the uncertain and the average conditions 

The deterministic case under the average condition (feed fraction and product 

prices) is also solved and the optimal flowsheet is shown in Figure 6.3.  

 

 

Figure 6.3 Optimal flowsheet of the deterministic case with 95% purity 
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The optimal objective value is -3.642, which is slightly better than that of the 

uncertain case, and the choices of the units are the same as in the uncertain case (Table 

6.8). Clearly there is no difference between the uncertain and the average conditions in 

terms of the choice of units (i.e., flowsheet structure) because the variation in the feed 

composition has no influence on the unit separation efficiencies. However, from Table 6.8 

it can be seen that the capacity (Fmax) of the second free-fall electrostatic separator 

designed under the average condition is not feasible for the uncertain case since in the 

latter this unit processes much larger volumes of flow for many scenarios than in the 

average condition.  

 

Table 6.8 Comparison of the uncertain and average condition 

 Under uncertainty Average condition 
Objective value -3.622 -3.642 
Choice of units (0100001100) (0100001100) 

Capacity of unit 2 1.0 1.0 
Capacity of unit 7 0.758 0.402 
Capacity of unit 8 0.996 0.989 

 

 

SAA Computational efficiency and the confidence of the solution 

The computational time with the SAA method was 5 hours and 45 minutes. The 

computational saving is apparent compared with using a fixed sample size of 2000.  

Since at each OA iteration, the former requires solving 3400 single-size NLPs/MILPs 

(assuming the Lagrangian decomposition converges with 2 iterations for the first 

replication and 1 iteration for all other replications) and the latter requires solving 8000 

single-size NLPs/MILPs (assume the Lagrangian decomposition converges with 2 
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iterations) . 

Intuitively one would think that such a problem with uncertainty dimension=10 

should require very large sample sizes. However, our calculation result (Table 6.9) 

showed that the problem can be solved with small sample sizes (smaller sample size 

N=100, number of replications M=6, and larger sample size N’=2000) but still achieve 

high solution quality. The confidence intervals (99%) of the upper and lower bound at 

both iterations are less than 0.077, which is only around 2% of the optimal objective  

value. This is due to the fact that the variances of the feed component fractions in this 

case study do not have a significant impact on the configuration of flowsheet and costs.  

 
Table 6.9 Case study result – confidence intervals of optimality gaps 

(with N=100, M=6, N’=2000) 
 

  Iteration 1 
(0110111111) 

Iteration2 
(0100001100) 

Mean of UB -3.556 -3.660 S-NLP 
Variance of UB 0.0018 0.0023 
Mean of UB -3.545 -3.622 L-NLP 
Variance of UB 0.0891 0.0881 
Mean of UB gap 0.011 0.038  

CI of UB gap  0.0708 0.103 
Mean of LB -3.775 -3.675 S-MILP 
Variance of LB 4.09e-4 4.11e-4 
Mean of LB -3.753 -3.583 L-MILP 
Variance of LB 0.00893 0.00917 
Mean of LB gap 0.022 0.092  
CI of LB gap 0.0576 0.0761 

 
 
 

6.6  Conclusions 
 
 
 The case study is an attempt to solve a plastics flowsheet optimization problem 

with the SAA method. It is also a good example to show that some apparently large 
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problems actually do not require large sample sizes if the variance of solutions is small. 

The SAA method helps to evaluate the solution and make a decision whether it is 

necessary to increase the sample sizes. In this case study, since ABS and HIPS dominate 

in both TV and computer products, and PE and PC/ABS are in relatively small fractions, 

the uncertainty in the feed fraction caused by the variation in the volumes of the products 

does not change the flowsheet structure compared to the average condition, however, the 

unit capacities are under-designed in the average condition.  
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CHAPTER 7 

 
SUMMARY AND FUTURE WORK 

 
7.1 Summary 
 

Before this work, no systematic design methodology has been proposed for the bulk 

recycling system design problem. Most of existing work has focused on individual 

experimental technologies or overall recycling strategies without using detailed unit 

models. The two levels of design, system and unit, were isolated in the past, which is a 

gap of this research seeks to fill.  

The objective of this work is not to provide a single optimal process, since the 

solution is always problem-specific, but to develop a general methodology for the design 

of bulk recycling systems that can identify optimal flowsheets with confidence.  

While the research scope is limited to the plastics separation part of the flowsheet, it 

is a real challenge to design a plastics separation system that can separate a mix of 

various products in arbitrary fractions. Significant uncertainty in the feed is an intrinsic 

problem in the bulk recycling systems.  

Successfully applications of various process systems approaches to typical chemical 

systems design motivated us to consider bulk recycling process design problems in a 

similar way. This leads to the use of the superstructure approach to determine the optimal 

plastics separation sequence. However, the feature of significant uncertainties and use of 

a combination of different separation methods made extending the classical process 

systems approaches to bulk recycling a significant challenge.  

 First, the existence of various uncertain parameters makes the solution of a 
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stochastic MINLP time-consuming. When the sample size is greater than 100, the 

stochastic NLP problem can not be solved as a whole, thus, requiring a decomposition 

method. Moreover, when the uncertainty space is large, it is crucial to make the sample 

size as small as possible, but still achieve a certain solution quality. Previous work in the 

MINLP area uses a pre-specified sample size, fixed by the size of the problem, that can 

be solved in a reasonable time frame. The sample size used could be over or under 

estimated and there have been no criteria to evaluate this. Therefore, an efficient and 

reliable solution technique for stochastic MINLP became a focus of this work, both to 

improve computational efficiencies and thus address more significant problems, and to 

guarantee the solution quality.  

Motivated by existing work of sample average methods in the stochastic LP or IP 

area (Norkin et al., 1998; Mak et al., 1999; Kleywegt et al., 2001), the sample average 

method for stochastic MINLPs is proposed, which combines the basic SAA method of 

constructing the confidence interva l of optimality gap and the Outer Approximation 

method for deterministic MINLPs.  The method uses the average of replicates of NLP 

and MILP solutions at a smaller sample size as the lower estimates of the upper and 

lower bounds, respectively.  Solutions of the NLP and MILP at a larger sample size, with 

fixed decision variables, are used as the upper estimates of the upper and lower bounds. 

The difference of the upper and lower estimates provides the mean of the optimality gap, 

and the confidence interval of the optimality gap can be calculated accordingly, from 

which the sample sizes can be adjusted. Therefore, computational time can be reduced 

significantly due to the decoupled larger problems. When the uncertainty space is very 

large, say the number of parameters is greater than 20, it might be useful to use quasi-
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Monte-Carlo sampling, such as the Latin Hypercube Sampling (Mckay et al., 1979) or 

Latin Supercube Sampling (Owen, 1998). These methods take advantages of the low 

discrepancy of quasi-Monte-Caro sequences (Sobal sequence, Hammersley Sequence, 

etc.) to generate samples that converge more rapidly to the true distributions.  

When the uncertainty space in bulk recycling problems is further enlarged, for 

example, including parametric uncertainties such as the correlation coefficients in the 

empirical unit models, the problem size or the solution time is not expected to increase 

exponentially. The SAA method allows one to solve larger design under uncertainty 

problems without intractable computational difficulty.  

 Another focus of this work is plastics separation unit modeling, which is 

complicated by the fact that the feed particles do not have the same properties, an 

inevitable result of size reduction, conditioning and triboelectrification processes. 

Previous modeling work in this area was mostly empirical, based on experimental results, 

and ignored the influence of the particle differences. The proposed new models directly 

relate the particle distribution with the separation efficiency, therefore providing a basis 

to improve the separation efficiency by particle control. It is not intended to model every 

possible separation method. Instead, a few typical methods are modeled in a unified 

approach, which allows others to follow and model units of their own interests.  

 With the SAA method for MINLPs and unit models developed, more realistic 

plastics separation systems design problems can be solved. The case study in Chapter 6 

shows a successful application of the mathematical programming approach for the design 

of a plastics separation system for a mixture of TVs and Computers with uncertain 

mixing fractions and product prices.  
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 The influence of particle size distribution on the separation efficiency is also 

discussed based on the unit models developed. The result shows that more grinding 

favors the froth flotation and electrostatic separation, but not the sink-float separation 

because in the former the influence of the size reduction overcomes that of the size 

variance on the separation efficiency. This justifies the use of a separation system with 

density-based separation first, followed by non density-based separations. An overall 

design strategy is proposed for the size reduction and plastics separation system. In the 

strategy, the idea of the Douglas’ hierarchical design method is used to decompose the 

problem into two levels. At the level of size reduction design, the short cut design method 

proposed in Chapter 4 is first used to determine the appropriate mean particle size at each 

stage. Heuristic rules are then developed to select the size reduction equipment and at last 

determine the appropriate grinding time by simulation based on population balance 

equations. At the level of plastics separation, the particle sizes at different stages are fixed, 

and the mathematical programming approach is used to solve for the optimal flowsheet 

from the superstructure. Therefore, this overall design strategy is a combination of 

heuristics and optimization.  

 In conclusion, this work solved some critical issues (uncertainty, modeling) in the 

design of bulk recycling problems and developed a design strategy that allows others to 

find customized optimal processes. This work is not only the first approach of systematic 

design for bulk recycling problems, but also a successful example of how the process 

systems approach is extended to the bulk recycling area. 
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7.2 Recommendations for future work 

Future work on the unit modeling, algorithm and overall bulk recycling systems 

design that could have the most impact include the following issues. 

Unit modeling in this research assumes a normal distribution of particle size. Models 

could be developed with a more accurate description of particle size distribution, such as 

a lognormal distribution, with possibly the time factor as a parameter to reflect the 

evolution.  If such a mathematical distribution is available, the size reduction units can be 

incorporated into the superstructure.  

A barrier that prevents us to run a case study for a complete bulk recycling system  in 

this work is the lack of particle property data, such as the grinding data (k0 and α in 

Equation 5.2), the distribution of particle charges, bubble coverage, diffusion coefficient 

etc. It would be a great contribution if future experimental work could follow the unified 

modeling approach and measure the above data.    

For SAA algorithm improvement, using quasi-Monte-Carlo sampling for high 

dimension of uncertainty space could make it converge faster. These methods use the 

quasi-Monte-Carlo sequences which are actually fixed sequences of points. Some new 

issues arise and need further study:  

(1) Some sequences are not incremental, i.e., they increase the number of samples 

and discard the samples already drawn. For example, Halton and Sobol sequence are 

incremental but Hammersley sequence is not. Therefore, the Hammersley sequence is not 

good for adaptive sampling.  

(2) For correlated uncertainties, the random nature of Monte-Carlo sampling allows 

one to take a part of samples but still maintain the right correlation. This might not be the 
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case for Quasi-Monte-Carlo sampling. It is would be important to know how samples can 

be added without disrupting the correlation structure.  

(3) It is not clear at this point whether the existing statistical results for Monte-Carlo 

based SAA can be extended to Quasi-Monte-Carlo based SAA.  

  

For the overall bulk recycling systems design, some strategy is to be developed for 

making top level decisions, such as the choice (as shown in Figure 1.3) between 

processing the mix of different products continuously and processing different products 

in a batch mode without mixing. For a specific problem, basically one can solve the two 

problems independently and then compare the costs. However, it is probably possible to 

make a decision based preliminary estimation of the costs of the two options, without 

solving the strict optimization problems.   
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