
CyberDesk: A Framework for Providing Self-Integrating
Ubiquitous Software Services

Anind K. Dey, Gregory Abowd, Mike Pinkerton

Graphics, Visualization & Usability Center
Georgia Institute of Technology
Atlanta, GA 30332-0280 USA

+1-404-894-7512
{anind, abowd, mpinkert}@cc.gatech.edu

Andrew Wood

School of Computer Science
The University of Birmingham

Edgbaston, Birmingham, B15 2TT UK
amw@cs.bham.ac.uk

ABSTRACT
Current software suites suffer from problems due to poor
integration of their individual tools. They require the de-
signer to think of all possible integrating behaviours and
leave little flexibility to the user. In this paper, we discuss
CyberDesk, a component software framework that auto-
matically integrates desktop and network services, requir-
ing no integrating decisions to be made by the tool design-
ers and giving total control to the user. We describe Cy-
berDesk’s architecture in detail and show how CyberDesk
components can be built. We give examples of extensions
to CyberDesk such as chaining, combining, and using
higher level context to obtain powerful integrating behav-
iours.

Keywords
Adaptive interfaces, automated integration, dynamic inte-
gration, software components, context-aware computing,
future computing environments, ubiquitous services

INTRODUCTION
Users are tired of using monolithic application suites that
allow little to no customization, just because they are in-
dustry standards. Tightly integrated suites of tools/services
currently available are unsatisfactory for three reasons.
First, they require designers to predict how users will want
to integrate various tools. Second, they force users to either
be satisfied with design decisions or program their own
additional complex relationships between the tools. Fi-
nally, users must be satisfied with the available services
themselves, because they are often given no opportunity to
replace or add services.

In response, software companies have been adopting the
notion of component software: using small software mod-
ules as building blocks for a larger application. While there
are many competing standards (OLE [11], Active X [10],
Java Beans [6], OpenDoc [1]), the prevailing view is to
provide a framework which programmers and sophisticated
users can build upon to create desired application suites.

Unfortunately, current component solutions do not entirely
relieve the burden from the designer and end user. Design-
ers must still predict how users will want to integrate vari-
ous services, without knowing what services the user will
have. Designers must also build services specifically for a
particular component solution, rather than build a general
solution that can be used in multiple frameworks. Users

now have the ability to replace and add services at will, but
are still forced to accept the integration behaviour of serv-
ices implemented by the designer.

In this paper, we present the CyberDesk system, a compo-
nent software framework that relieves most of the burden
of integrating services from both the designer of individual
services and the end user, provides greater flexibility to the
user, and automatically suggests how independent services
can be integrated in interesting ways. We begin by giving a
short description of CyberDesk and presenting a sample
scenario showing how the system could be used. Next, we
discuss the architecture underlying the framework and de-
scribe the benefits of our system. We end by showing how
CyberDesk is being extended to provide more powerful
integration behaviour and by describing our future plans.

WHAT IS CYBERDESK?
CyberDesk is a component-based framework written in
Java, that supports automatic integration of desktop and
network services [16]. The framework is flexible, and can
be easily customized and extended. The components in
CyberDesk treat all data uniformly, regardless of whether
the data came from a locally running application or from a
service running on the World Wide Web (WWW). The
services and applications themselves can be running any-
where, meeting CyberDesk’s goal of providing ubiquitous
access to services.

User Scenario
The user selects which applications/components they would
like to use by adding them to a Hypertext Markup Lan-
guage (HTML) page. He loads the HTML page into a web
browser running on his mobile computer and starts to inter-
act with the system.1

The user walks to a grocery store, and the system asks if he
wants to see his shopping list, get more information about
the grocery store, or get directions to his house. The user
chooses the grocery list and goes shopping. He walks to a
friend’s house but nobody is home. The system asks if he

1 A demo version of CyberDesk is available at

http://www.cc.gatech.edu/fce/cyberdesk. The video ac-
companying the paper summarizes CyberDesk and shows
more sample scenarios. Code samples are available at
http://www.cc.gatech.edu/fce/cyberdesk/samples.

wants to check his friend’s calendar, contact him via e-mail
or phone, or get directions to go home. The user chooses
the first option and the system tells him that his friend is at
work. So, he chooses the second option, sends his friend an
e-mail saying that he stopped by, and starts walking home.
On the way home, the system notifies him that he has re-
ceived an e-mail from his friend. The user reads the e-mail
(see Figure 1 below) which has information on a new book
written by his favourite author. The e-mail contains a Web
site address and an e-mail address for the author. The user
highlights the e-mail address (a) and the system gives him
some suggestions (b) on what he can do: search for more
information on the author, put the author’s contact infor-
mation in the contact manager, call the author, or send an
e-mail to the author. He chooses the first two options (c
and d), saves the e-mail, and heads home.

a

b

c

d

Figure 1. Mock screenshot of above user scenario

The scenario described has not been completely realized
with the CyberDesk system. Although, every action and
suggested action in the scenario can be realized and sup-
ported using the CyberDesk framework. We will show
how CyberDesk can support these complex interactions
without requiring effort by the user or the system designer.

ARCHITECTURE
The CyberDesk system has a simple but innovative archi-
tecture. It is based on an event-driven model, where com-
ponents act as event sources and/or event sinks. Events, in
this current version, are generated from explicit user inter-
action with the system. The system consists of five core
components: the Locator, the IntelliButton, the ActOn
Button Bar, the desktop and network services, and the type
converters. The Locator maintains the registry of event
sources and sinks. This allows the IntelliButton to auto-
matically find matches between event sources and event
sinks based on a given input event, a task normally required
of the system or service designer. The IntelliButton dis-
plays the matches in the form of suggestions to the user, via
the ActOn Button Bar. It is through the ActOn Button Bar

that the user accesses the integrating functionality of Cy-
berDesk. The services are the event sources and sinks
themselves, and are the tools the user ultimately wants to
use. The type converters provide more powerful integrat-
ing behaviour by converting given events into other events,
allowing for a greater number of matches. The five com-
ponents are discussed in greater detail below.

Desktop
App.

User selects
text

converter

converter

data type

IntelliButton

data type

new data types

ActOn
Button

Bar

matching service descriptions

Service

user picks
service

Locator

provides
service information
for matching

Figure 2: Runtime architecture diagram

All five of the components have been implemented as Java
applets for simplicity of network programming. We also
chose Java for its promise of platform independence, its
ability to execute within a web browser, and its object-
oriented nature. The first two features support our goal of
ubiquity, the second feature allows us to treat the browser
as our desktop [3], and the last feature made development
easier. Also, most of the network services implemented are
available via the web, so the natural access method was via
a web browser.

Inter-component communication was performed using
techniques based on the CAMEO toolkit [15], a C++ tool-
kit built previously by one of the authors to facilitate the
integration of application-sized components via the use of
agent-like components. Components are able to invoke
methods of other components directly via the use of a com-
ponent handle. The parameter passed in these method calls
is a structured message of the following form:

:sender <id>
:receiver <id>
:interface <array of interface names>
:property <array of event/status names>
:arguments <data>

The first two fields contain the object handles for the
method caller and method callee, respectively. The inter-
face field refers to the types of actions the component sup-
ports. Components declare their ability to be event sinks
and sources via the interface field. This will be discussed
further in the following section. The types of events that a
component consumes or generates is stored in the property
field. Data associated with events is passed in the argu-
ments field.

Locator
The Locator component in CyberDesk keeps a directory of
all the other components in the system, what events they
can generate and/or what events they can consume. In any

system where an arbitrary number of components (where
types and location are unknown at compile time) are going
to be interacting, a method of communication is required;
in other words, a rendezvous mechanism that provides in-
troductions between components is needed.

Typically, such a directory service is run at a well-known
location. In CyberDesk, the Locator is implemented as a
uniquely named applet on an HTML page containing all the
CyberDesk applets in use. Upon startup, each of the com-
ponent applets register themselves with the Locator. It be-
haves as a yellow pages directory by allowing any compo-
nent to request a list of all the components supporting a
particular interface and property. We currently support two
different interfaces: method and select. If the interface field
is set to “method”, the component contains a method(s) that
will consume a particular event type. If the interface field
is set to “select”, the component is declaring that it can
generate a particular event type. Note that a component can
support multiple interfaces, in any combination of selects
and methods.

The Locator supports the following API:
insert (component_name, interfaces[])

adds a component's interfaces to the registry
remove (component_name, interfaces[])

removes a component's interfaces from the registry
locate (component_name, interfaces[])

locates and returns all components matching a given
 interface(s)

IntelliButton
The IntelliButton component is really the core of the Cy-
berDesk system, as it provides the automatic integrating
behaviour. It uses the Locator to keep track of all the
desktop and network services and the type converters, and
all the events sources and sinks they provide. When new
components are added to the system, the IntelliButton noti-
fies them that it is interested in all the events that they can
generate (i.e. it is an event sink). So when a component
generates an event, it notifies the IntelliButton and any
other components that have expressed interest. The inter-
ested components are called observers, as they observe
events in other components. Any component can observe
multiple components and can be observed by multiple
components.

The IntelliButton uses the event information (passed in the
form of a structured message) to find any matches; i.e. any
components registered with the Locator that can consume
the event. It uses simple type checking to identify potential
services that the user may wish to call upon to operate on
the data associated with the event. The matches are dis-
played to the user via the ActOn Button Bar, from which
the user can select any or none of the integrating services
suggested. If the user does choose one of the integrating
services, the IntelliButton is notified and it accesses the
correct service passing the associated data and event as
parameters. In the above scenario, when the user high-
lighted the e-mail address, the IntelliButton used that event

information to determine what services were available
(send an e-mail, save the contact information, etc.) and
suggested them.

ActOn Button Bar
The ActOn Button Bar, as described before, is simply the
user interface for the integrating IntelliButton. We chose to
keep the interface separate from the actual integrating
functionality to allow easier experimentation with alterna-
tive interfaces. Currently, the interface is very simplistic.
It is a dynamically generated list of buttons, where each
button corresponds to a particular service that can be exe-
cuted based on an user-generated event and its corre-
sponding data. The list of buttons is provided by the Intel-
liButton. Each button is labeled with a short textual de-
scription of the following form:

<action> <datatype> using <service>

For example:

Send e-mail to this EmailAddress using Netscape.

Search for a string on the Web using AltaVista.

The ActOn button bar also provides short help messages
when the mouse is placed over the button. These messages
are provided by the individual service and are made avail-
able via the IntelliButton.

Desktop and Network Services
The previous three components discussed provide the core
functionality of CyberDesk. Regardless of what tools the
user wants to use, these three components are required.
The fourth type of component, desktop and network serv-
ices, are the actual services the user wants to access.
Desktop services include e-mail browsers, contact manag-
ers, and schedulers. Network services include web search
engines, telephone directories, and map retrieval tools.

To be included into the CyberDesk system, these services
must register themselves with the Locator, providing a
component handle and a list of interfaces that they support.
These interfaces declare the list of services that they can be
called upon to provide, and a set of data selection events
that they can generate that could be used to trigger inte-
grating behaviour. Currently, most data selection events
are generated when the user selects some text with the
mouse. Others are generated when significant changes in
status occur, as will be seen in the section on higher level
context.

The declaration implementation is usually a simple matter
of writing a wrapper object for an existing service. Cur-
rently, the wrapper must be written by either the service
designer, end user, or a middleman. We are looking at
ways to automate this process. One method is to force all
components in the system to support a common interface,
like the JavaBeans initiative. This would enable the Cy-
berDesk system to query each component and determine
the events it can consume and generate.

One of the services available in CyberDesk is a gateway to
the AltaVista search engine available on the web. The

wrapper for this service, that allows it to interact with other
CyberDesk components, consists of two main pieces. The
first piece handles the declaration of its "method" interface
to the Locator, stating that it can perform a web search on a
String:

CameoProperty properties = new CameoProperty
(“searchFor”, Class.forName(“java.lang.String”),
“Search for a string on the Web using Altavista”);

CameoInterface interfaces =
new CameoInterface(“method”, properties);

The second piece actually implements the search when
called upon by the IntelliButton. With this interface, this
search would be suggested by the IntelliButton whenever a
text string is the target of a selection (assuming the compo-
nent in which the text selection is done, supports the "se-
lect" interface). By their very nature, none of the network
services support the "select" interface. They usually can
not generate events and are of the form: receive input data
and display output data. However, we will see how we can
exploit this to provide even more interesting integrating
behaviour in a process called "chaining".

The desktop services are a little more complicated because
they have the potential to support the "select" interface.
This means the wrapper has to deal with generating the
necessary data selection events. In this case, the wrapper
has an interface declaration section, as before, where it de-
clares any "method" and "select" interfaces. For example,
the Scheduler’s interface is:

CameoProperty properties = new CameoProperty
(“lookupDate”,
Class.forName(“cyberdesk.types.Date”),
“Goto the date in the Scheduler”);

CameoInterface interfaces[0] =
new CameoInterface(“method”, properties);

CameoInterface interfaces[1] =
new CameoInterface(“select”, null);

The first interface declares that it can consume date selec-
tion events and the second interface declares that it can
generate data selection events.

The second section, where it implements the interfaces is
slightly more complicated than with the network services.
The wrapper must have "hooks" into the original applica-
tion code to intercept and broadcast the appropriate data
selection events (for the "select" interfaces), and to execute
a service on data passed to it (for the "method" interfaces).

At the time of development, there were three ways to ap-
proach this problem for the "select" interface. First, we
could modify the original application's event processing
loop to broadcast events in the CyberDesk fashion. Sec-
ond, we could modify the original application code to make
calls to a notification routine in the wrapper when data is
selected. Third, we could rely on the original application to
have a suitable API for retrieving those events. Obviously
the third method is the simplest and is not intrusive to the
original application. Unfortunately, not all of the applica-
tions had APIs that allowed us to retrieve the necessary
data selection events.

All of the desktop applets currently being used in CyberD-

esk (2 e-mail browsers, contact manager, 2 calendar man-
agers/schedulers, scratchpad) were previously written by
other Georgia Tech students. For those that did not provide
sufficient APIs, we used the second method for capturing
data selection events. It was far less intrusive than the first
method, and we had access to the original code, allowing us
to make changes.

In the newest release of the Java Development Kit (version
1.1), support was added for transferring data between (Java
and non-Java) applications via a clipboard-style inter-
face[7]. The use of this feature will allow us to avoid al-
tering any application code in future versions of CyberD-
esk.

The problem is much simpler for the "method" interface.
Either the application contained a method for acting on the
given data, or it didn't. In cases where it didn't, we added
additional methods to act on provided data. Note, that this
didn't change the fundamental integration behaviour of Cy-
berDesk, but only added additional features for us to ex-
ploit.

Type Converters
Data typing is used extensively in the interface declarations
of the event sources and sinks that applications provide.
The property field that corresponds to each interface de-
clares the datatype/event that a component is interested in
or can provide. The CyberDesk system takes advantage of
the Java type system to do the data typing.

Initially, we hardcoded applications to generate events for
different data types. For example, the e-mail browser de-
clares that it can generate String selection events when text
is highlighted, but also EmailAddress selection events
when the "To:" or "From:" field in an e-mail message is
selected. When EmailAddress selection events were gener-
ated, they were passed through the CyberDesk system, as
described before, to the ActOn Button Bar, which displayed
services that could consume EmailAddress selection events
(e.g. Send an E-mail to this E-mail Address using Net-
scape). However, this required the applications themselves
to be aware of the CyberDesk type system. It was also
limiting since e-mail addresses could also appear in the
unformatted body text of an e-mail message and only be
recognized as a String selection.

Consequently, we chose to use type converters. Using
simple heuristics, it is possible to identify potential text
strings that might be e-mail addresses. It would have been
desirable to augment our e-mail browser with this capabil-
ity, so that any time text was selected in it, it would try to
convert the text to an EmailAddress object and create an
EmailAddress selection event rather than just a String se-
lection event. But, rather than just giving this type conver-
sion capability to the e-mail browser, we wanted to add that
ability to the system once, and allow it to be used in every
application where e-mail addresses might appear. We took
the type detection ability out of the individual applications
and created type converters, an independent and extensible
layer in the architecture.

CyberDesk type converters behave a lot like the Intelli-
Button. When new components are added to the system,
the converters determine which ones they are interested in,
so they can add themselves to their list of observers. For
example, the StringToEmailAddress converter is interested
in all components that support the "select" interface for
String objects and wants to observe them. So, when any
component generates a String selection event, the String-
ToEmailAddress converter (and any other observers) are
notified, and the converter attempts to convert the given
String object to an EmailAddress object (while other con-
verters attempt to convert the object to another CyberDesk
type). In the above scenario, this conversion was done
when the user selected the e-mail address. The system ini-
tially saw the selected data as a String but with this con-
verter, it also saw it as an EmailAddress. This results in two
related data selection events to arrive at the IntelliButton:
one containing a string and one containing an EmailAd-
dress. The IntelliButton will therefore seek integrating
behaviour for both these types, allowing the user to access
EmailAddress-relevant services where originally they
wouldn’t have had the option.

Currently the list of CyberDesk types include: Date, Pho-
neNumber, MailingAddress, Name, URL, and EmailAd-
dress. If any of the conversions can be made, then the con-
verter generates a second, but related, selection event con-
taining the newly typed data and sends it to observing enti-
ties. This data also contains the original event. The system
uses this information to ensure the type converters do not
create an infinite loop (e.g. StringToEmailAddress, Emai-
lAddressToString, StringToEmailAddress, etc.).

WHAT DOES CYBERDESK GAIN US?
CyberDesk provides a simple framework for adding new
services and integrating them in reasonably intelligent
ways. It relieves burdens from both the individual service
designer and the end user. The individual service designer
can develop a generic service, with a usable API, and not
have to worry how it will be integrated into CyberDesk.
The designer does not have to design specifically for the
CyberDesk framework. The designer also doesn't have to
think of all possible ways a user may want to integrate this
service with another service, because the integrating be-
haviour is inherent to the CyberDesk framework. CyberD-
esk creates a dynamic mapping at runtime from user ac-
tions to possible user actions, saving the designer from con-
structing this map at design time.

CyberDesk makes things easier for the user as well. The
user has the ability to easily add and remove services from
the framework and does not need to hunt for ways to inte-
grate various tools. The user is often supplied with inte-
grating suggestions that they do not expect or had not
thought of, but are appealing nonetheless.

EXTENSIONS
The CyberDesk framework was designed to be easily exten-
sible. Simple extensions to CyberDesk include adding addi-
tional types, type converters, desktop services and network

services. The real advantages with CyberDesk can be seen
with more complex extensions that include adapting the
behaviour of CyberDesk to individual use and creating more
interesting integrating behaviour.

Adding Types and Type Converters
Type converters and types are often designed together, be-
cause they are intrinsically connected. To make the task
easy for a designer, we have implemented a Conver-
sionApplet class which handles all the CyberDesk commu-
nications and functionality. The designer is just required to
implement three abstract methods:
weCanConvert(selected_data)

determines if the input data is a type the converter
can use

potentialLoop(original data selection event and related
selection events)

determines if this data was already converted to this
type, checking for infinite loops

tryToConvert(selected_data)
code that actually tries to convert the data to the
output object of the type converter

An example converter is the StringToEmailAddress con-
verter, which is a subclass of the ConversionApplet class.
The code for this component and all components described
in the paper can be viewed at
http://www.cc.gatech.edu/fce/cyberdesk/samples. This
converter looks at traditional ways of writing an e-mail
address, and tries to map selected data to one of these ways.
If it is successful, it returns an EmailAddress object. The
ConversionApplet object is responsible for handling the
ties to the CyberDesk framework.

Adding Desktop Services
As stated before, desktop services are a little more difficult
to implement than other components. The main reason is
that desktop services tend to have more complex function-
ality than network services or type converters. Once a
desktop application has been written, it is fairly straight-
forward to implement a wrapper for use with CyberDesk.
The wrapper must be a subclass of the original desktop
application (slightly more difficult if the application is not
written in Java, but is possible using the Java Native Inter-
face [8]). The example below is the wrapper for the Con-
tact Manager (see Figure 3), and it extends the ContactAp-
plet class (the original application class).

public class ContactManager extends ContactApplet
implements CameoObject, Observer {

The wrapper must declare its interfaces,
CameoInterface[] interfaces =

new CameoInterface[2];
interfaces[0] = new CameoInterface("select", null);
CameoProperty[] properties =

new CameoProperty[1];
properties[0] =

new CameoProperty("lookup”,
Class.forName("cyberdesk.types.Name
"Lookup an entry for the name in the

ContactManager");
interfaces[1] =

new CameoInterface("method", properties);

provide methods to execute any services it provides,
/* method for invoking services supported by Contact
Manager */
public void manipulate(CameoMessage msg) {

if (msg.getField
(msg.PROPERTY).equals("lookup")) {

String name = ((Name)msg.getField
(msg.DATA)).getName();

/* call original ContactApplet method */
showMe(name);

}
}

and provide a way to generate data selection events.

The last requirement is a method that should be called when-
ever data is selected in the application. Generating these
calls would often require us to intrude on the application that
we're wrapping, however we have defined a simple selection
API that if implemented by the application, circumvents this
somewhat. The selection API was based on the Observer
interface (note the class declaration above implemented the
Observer interface) and Observable class provided in the
Java language (version 1.0). It allows the designation of an
object as Observable. Any object can choose to observe
changes in an Observable object. For CyberDesk's purposes,
an application must designate the data selected by a user to
be observable and when the selected data changes, it must
notify all observers.

a

b

c

d

Figure 3: Screenshot of contact manager being used with Cy-
berDesk. The user selects the string “Andy Wood” in the e-
mail tool (a). CyberDesk offers some suggestions (b): search
using Altavista, look up a phone number using Switchboard
(c), and look up the name in the contact manager (d).

Adding Network Services
Much like the ConversionApplet, we have a ServiceApplet
which is responsible for handling CyberDesk functionality
and communications for network services. The ServiceAp-
plet defines a set of methods which a service must imple-
ment:
initInterfaces()

declares the interfaces the service supports
manipulate(message containing selected data)

performs service(s) on the input data

The following is an example network service: WhoW-
hereEmail. It is a gateway to the WhoWhere network
service available on the web. When a name is input into
the web service, a list of possible e-mail addresses corre-
sponding to that name is returned. The CyberDesk network
service takes a Name object, inputs it into the service and
displays the results in a web browser. The complete class
definition is in Appendix B, with pertinent selections be-
low. The class declaration is a subclass of the ServiceAp-
plet.
public class WhoWhereEmail extends ServiceApplet {

The service declares its interfaces as follows:
properties[0] = new CameoProperty(

"LookupEmailAddressFor",
Class.forName("cyberdesk.types.Name"),
"Lookup person's e-mail address in the

WhoWhere listings");
return new CameoInterface("method", properties);

The actions the service can perform are defined in the ma-
nipulate method:

/* make sure the property is correct */
if (msg.getField(msg.PROPERTY).
equals("LookupEmailAddressFor")) {

/* convert Name to usable form and
construct URL */

String name = ((Name)msg.getField(
msg.DATA)).getName();

URL search = new URL(new String
("http://query1.whowhere.com/jwz/name.wsrch?"

 + “name=“+name));
/* load URL and display in browser */
getAppletContext().showDocument(

search, "_whowhere");
}

This is a simple service, interested in only one data selec-
tion event - a Name. Other services are more complex and
are interested in multiple selection events, but they are
written and work in the same way. They declare additional
properties, and implement the service for that property in
the manipulate method.

We have had several students develop simple extensions
for CyberDesk, including desktop and network services,
type converters and types. As a testament to the ease of
development, at last count there were 6 desktop services,
68 network services, 7 type converters, and 6 data types.

Case Study: Accessing Mobile Data
A project currently under development in our research
group is LlamaShare, an architecture and set of applications
for providing users and programmers easy access to infor-
mation stored on mobile devices. There are two main goals
for the LlamaShare project, one of them coinciding with a
goal of CyberDesk. The first is to create an infrastructure
that makes it simple for programmers to take advantage of
mobile data in their applications. The second is to provide
applications that demonstrate ubiquitous access to informa-
tion.

Currently, it is very difficult to get information off of a
mobile device (a PDA like a Newton, for example) both for

programmers and for users. From a user's perspective, it is
also very difficult to deal with information stored on a mo-
bile device. The current method of accessing this data is
typically through a "synchronization" process, which does a
reasonable job of copying the data to a user's desktop ma-
chine, but does nothing to aid them in actually doing any-
thing with that information, such as integrating relevant
pieces into their daily tasks. The LlamaShare infrastruc-
ture, consisting of a central server called the LlamaServer,
provides routing for information requests between any mo-
bile device on the network (wired or wireless) and any
desktop machine on the Internet.

There were two reasons for integrating CyberDesk with
LlamaShare. First, we wanted to illustrate the platform-
neutrality and language-neutrality of the LlamaServer,
which CyberDesk allows us to do. More importantly, how-
ever, CyberDesk's vision of ubiquitous information access
was the deciding factor. While LlamaShare provides a con-
crete, visible object to represent the data on a mobile de-
vice, CyberDesk takes the approach that information is
distributed throughout a rather nebulous information space
(consisting of Internet, desktop, and mobile data) that can
be retrieved at any moment depending on the context in
which the user is currently working. This new metaphor of
seamless integration between mobile data and Internet (re-
mote) data was too good to pass up.

Adding services and viewers to CyberDesk was quite sim-
ple. The most common data types that users would be in-
terested in on their PDA (text, names, phone numbers, and
dates) were already supported by CyberDesk so nothing
new needed to be added.

ab

c

Figure 4: Screenshot of LlamaShare being used in Cy-
berDesk. The user selects a name (a) in the e-mail tool.
CyberDesk offers a number of integrating suggestions
(b), including 4 that access data from a remote Newton.
The user chooses the second suggestion and sees the
results (c), obtained from a remote Newton.

The next task involved adding the services that recognized
the appropriate types and created "ActOn" buttons for
them. We added two services (NewtonNames and New-
tonNotes) which, respectively, request contact information
from the Newton about the selected name and request notes
from the Newton containing the selected text in the body or

title. Adding these services was quite simple (see Figure 4),
requiring only the implementation of the ServiceApplet
methods described above.

 The code that displays the results of the query to the
Newton is stored in the NewtonDisplayNames class which
knows nothing about CyberDesk at all. It is just a class that
uses Java libraries to create a window to display informa-
tion and can be used from either an applet or an application.

Here are some examples of what we are doing with Lla-
maShare and CyberDesk:

• You're writing some e-mail and you know you
scribbled down a note on your Newton with some
relevant text in it. Select text and search for all the
notes on your Newton containing that text, then
read them on your desktop machine.

• You get e-mail from a colleague and you want to
call them back. You have her phone number on
your Newton. Select her name to pull her name
card from your Newton and display it on your
workstation.

• Your secretary took down the number of someone
who called while you were in a meeting, but you
don't know who that number belongs to! Select the
phone number and let the Newton search its names
database and return the correct person or company
matching that phone number.

• Your boss sends you e-mail asking you to sched-
ule a meeting with two other people in your group.
How do you find a time that everyone can meet?
Select each of their names and let CyberDesk pull
up their calendar's from their respective Newtons
and display them. Schedule the meeting and make
the change effective immediately in their Newton
calendar.

Chaining
The extensions described so far are fairly simplistic. They
deal with adding more suggestions for the user. More in-
teresting are extensions which add more powerful sugges-
tions for the user. Chaining is an example of this type of
extension. It extends CyberDesk’s type converting ability
by using network services as type converters, to allow for
increased integrating behaviour.

For example, a user is reading an appointment in her calen-
dar manager, and selects the name of the person she's sup-
posed to be meeting. As an experienced user, she expects
to be presented with a list of all possible services that can
use a Name: search for a phone number, mailing address,
look up in the contact manager, search name on the WWW,
etc. However, by using chaining, more powerful sugges-
tions can be had.

The WhoWhereEmail network service described earlier,
takes a name as input and returns a WWW browser show-
ing a list of possible e-mail addresses corresponding to that

name. If we make the assumption (not always a good one)
that the first e-mail address returned in the list is the correct
one, we can now use this service to convert the name to an
e-mail address. The service now creates a related Emai-
lAddress selection event, and the user is supplied with all
possible suggestions for both a Name and an EmailAd-
dress.

Designing this ability was very simple. We just had to cre-
ate a class of objects that supported all the attributes of a
ServiceApplet and a ConversionApplet. All network serv-
ices already implement the ServiceApplet requirements, so
they just had to be modified to support the three methods
that the ConversionApplet required.

This ability is very powerful for the user, providing another
dimension of suggestions for each type the selected data
can be converted to. It allows us to support interactions
like those described in the hypothetical user scenario: the
user was at his friend’s house, and the system offered him
suggestions on calling or e-mailing his friend, or looking at
his friend’s calendar. This chaining example converts a
Location object to a Name, EmailAddress, PhoneNumber
and Schedule objects.

Combining
Along the same line of thought, chaining can be used along
with the concept of "combining" to make services more
powerful. The services previously described were designed
to only operate on a single data type (at a time). With data
being converted to multiple types via chaining, the idea is
that services, both network and desktop, should be able to
take advantage of these multiple types. They can, through
a process we call combining.

Combining, in CyberDesk terms, is the ability to collect
multiple data types for a piece of selected data, and bind
them together, as needed, to create multiple meta-objects.
These meta-objects could be used to perform substantially
more powerful actions. Taking the above example of a
user reading an appointment in her calendar, assume that
there are multiple services capable of chaining, so a URL
selection event is created, a Date selection event is created,
a MailingAddress selection event is created, etc. There is
potentially enough information to create a new entry in the
Contact Manager. The ability to assimilate this widespread
information into a compact entity is very powerful for a
user. It’s this same ability that would allow us to combine
time and a name to search a friend’s schedule as seen in the
user scenario. An example of a combining extension we’ve
created is shown below.

Higher Level Context
CyberDesk contains some simple notions of context. It
knows the application a user is working with and the data
(both type and content) the user is interested in (via explicit
selection with the mouse). But CyberDesk has shown the
potential for supporting higher level context. For example,
if an e-mail message contains information about a meeting,
and the user selects the message content, a type converter

could potentially convert the text to a Meeting object to be
inserted in the user’s Calendar Manager. Of course, re-
trieving context from arbitrary text is a very difficult prob-
lem being investigated by the AI learning community. But
the power of CyberDesk supports the ability to use this
higher level context, if available.

We are interested in using CyberDesk as the basis for con-
text-aware applications that we are developing - applica-
tions that take advantage of knowing a user’s position, his-
tory, behaviour, etc. While there has been a lot of research
in context-aware applications [13,9,14], we are not aware
of a general toolkit which supports higher level context and
integration behaviour like CyberDesk does.

We have implemented prototype services that accept posi-
tion and time information for use with CyberDesk. Ideally,
the position service would notify the system when there
was a significant change in position, where “significant”
depends on the user context. For example, in the user sce-
nario, significant position changes events were generated
when the user moved from one building to another. If a
user is inside a building, a significant change could be a
move from one room to another. This could be accom-
plished by having a single service that can use multiple
levels of detail or multiple services each responsible for a
separate level of detail.

b

a

c

d

Figure 5: Screenshot of position service. (a) is where GPS
coordinates are being input, causing changes in the ActOn
Button Bar (b) when the coordinates correspond to a different
Georgia Tech building. The user is keeping track of his trip in
the scratchpad (c), and is able to view the building URLs in
the web browser (d).

The prototype position service we’ve developed is for the
campus of Georgia Tech. The service coarsely maps GPS
coordinates to buildings on campus. Figure 5 is a screen-
shot showing this service being used. When the updated
coordinates correspond to a new building, a Location se-
lection event is generated, which is then used in combina-
tion with the rest of the CyberDesk system. We would like
to combine this service with a knowledge of a user’s his-
tory. So, when a user approaches a building they’ve never
been to before, the CyberDesk system should offer intro-

ductory information on the building. If the user has been to
the building before, different sets of information should be
offered.

Our prototype time service is currently hardcoded to an-
nounce Time change events every few minutes. When
combined with a Calendar Manager, the behaviour is that
of a reminder service for scheduled events. We are cur-
rently looking at more flexible methods of implementing
this. We also use time in combination with names, to de-
termine the best way to contact people, as shown in the
sample user scenario.

While we have not developed all the services to fully real-
ize the user scenario given at the beginning of the paper, we
have demonstrated and developed services that will enable
us to do so shortly.

CURRENT LIMITATIONS
The CyberDesk framework was designed to be easily ex-
tensible and easy to use, however it suffers from a few
limitations. To ease implementation and to support ubiq-
uitous access, we chose a web browser as our runtime envi-
ronment. Current browsers (with implementations on sev-
eral platforms) have security managers limiting what Java
applets have access to. In general, applets can only access
network information, and not local information. This limits
the scope of applications that can be used in the CyberDesk
framework. As well, most web browsers have Java Virtual
Machines (JVMs - interpreters that execute Java byte code)
that are severely limited in functionality. We have hit the
limit on the number of applets/components that can be run-
ning at any one time. The exact number depends on the
types of applets running, and in our case, the number ap-
pears to be approximately 15. We feel this number is too
low to see the powerful ability of chaining and combining.

To solve these problems, we have built a version of Cy-
berDesk that runs outside the browser. It still allows access
to all network services and desktop services, and WWW
browsers. The components still share a single JVM, but it
is more powerful than ones typically found in browsers,
allowing access to local information and allowing a greater
number of components to run simultaneously. This proto-
type is currently undergoing testing.

Perhaps the biggest limitation of the system is the user in-
terface implemented by the ActOn Button Bar. It consists
of a window that displays a long list of suggested user ac-
tions. It is clear that the number of possible suggestions
could quickly become overwhelming to the user. We are
currently looking at different ways to adapt the interface to
initially show actions that the user is likely to take, but pro-
vide a way for the user to see other possible actions as well.
We are also looking at different presentation methods for
the suggestions, including pop-up hierarchical menus and
document lenses [4].

One of the problems we’ve found with chaining is that
there is the potential for multiple services to generate a data
type: a Name object, for example. Since the services are

running independently, the Name objects that they generate
could be different. If a suggested action to the user is to put
this name in the Contact Manager, which Name object
should be used? We need to investigate methods for de-
termining relevancy and confidence of suggested actions
and results, in order to rank suggestions for the user.

RELATED WORK
Pandit and Kalbag’s Selection Recognition Agent [12] at-
tempts to address the same issues as CyberDesk. Unlike
CyberDesk, it uses a fixed datatype-action pair, allowing
for only one possible action for each datatype recognized.
The actions performed by the agent are limited to launching
an application. When a user selects data in an application,
the agent attempts to convert the data to a particular type,
and displays an icon representative of that type (e.g. a
phone icon for a phone number). The user can view the
available option by right-clicking on the icon with a mouse.
For applications that do not “reveal” the data selected to the
agent, the user must copy the selected data to an application
that will reveal it. It does not support any of the advanced
features of CyberDesk, like chaining or combining.

Apple Data Detectors [2] is another component architecture
that supports automatic integration of tools. It works at the
operating system level, using the selection mechanism that
most Apple applications support. It allows the selection of
a large area of text and recognizes all user-registered
datatypes in that selection. Users view suggested actions
by pressing a modifier key and the mouse button. Like
CyberDesk, it supports an arbitrary number of actions for
each datatype. It does not support chaining and supports
only a very limited notion of combining. When a datatype
is chosen, a service can collect related information and use
it, but this collected information (CyberDesk’s meta-object)
is not made available to other services. The Apple Data
Detectors system does not support the use of higher level
user context, such as position. Its focus appears to be
desktop applications, as opposed to CyberDesk’s ubiqui-
tous services, existing either locally or remotely.

FUTURE WORK
We will continue to add desktop and network services to
expand CyberDesk’s library of components but this will
not be our main focus. We are more interested in the fol-
lowing research areas:

• examining the use of chaining and combining

• searching for other advanced techniques, like
chaining and combining

• investigating learning-by-example techniques [5]
to allow the CyberDesk system to dynamically
create chained suggestions based on a user’s re-
peated actions

• incorporating rich data types into CyberDesk,
other than time, position, and meta-types. This
will allow us to use CyberDesk as the platform for
developing context-aware applications.

• experimenting with adaptive interfaces and differ-
ent interface representations in order to determine
better ways of presenting suggestions to our users.

• automating the registration process of compo-
nents, so that no one will be required to write the
component wrappers we use now.

CONCLUSIONS
CyberDesk is a component software framework that pro-
vides automatic integration between components: desktop
and network services. The automatic integration is a result
of the dynamic mapping performed at runtime, between
user actions and possible user actions. By performing this
mapping at runtime instead of at design time, as is tradi-
tionally done, we move the difficult design decisions out of
the designers’ hands, and provide complete flexibility and
customizability to the user. With the basic CyberDesk
system, a number of interesting integration suggestions are
offered to the user. With the use of advanced extensions
like chaining, combining, and the use of higher level con-
text, more powerful integration suggestions can be ob-
tained. These advanced extensions are possible without
any modifications to the basic CyberDesk structure. In the
future, we plan to investigate the user of other advanced
extensions and study our current extensions further. We
will also look at advanced techniques for automating the
development of CyberDesk components and alternative
user interfaces.

ACKNOWLEDGMENTS
We would like to thank Siddharth Bajaj, Jason Ellis, Dav
Haas, George Riley, and Ashley Taylor who have devel-
oped components for CyberDesk. We would also like to
thank Alan Dix, Dav Haas, and Scott Hudson for their in-
valuable comments on our work and this paper.

REFERENCES
1. Apple Computers. OpenDoc homepage. Available at

http://www.opendoc.apple.com.

2. Apple Research Labs. Apple Data Detectors homepage.
Available at
http://www.research.apple.com/research/tech/AppleDat
aDetectors/.

3. Berwick, R. et al. Research Priorities for the World
Wide Web. Report of the NSF Workshop Sponsored by
the Information, Robotics, and Intelligent Systems Divi-
sion. (Arlington, VA, October 31, 1994).

4. Bier, E.A. et al. ToolGlass and Magic Lenses: The See-
Through Interface. Computer Graphics Proceedings,
Annual Conference Series, 1993. ACM SIGGRAPH,
New York. 73-80.

5. Cypher, A. EAGER: Programming repetitive tasks by
example. In Proceedings of CHI’ 91. ACM Press.

6. JavaSoft. JavaBeans homepage. Available at
http://splash.javasoft.com/beans/.

7. JavaSoft. AWT Data Transfer homepage. Available at
http://www.javasoft.com/products/jdk/1.1/docs/guide/a
wt/designspec/datatransfer.html.

8. JavaSoft. Java Native Interface homepage. Available at
http://www.javasoft.com/products/jdk/1.1/docs/guide/jn
i/index.html.

9. Long, S. et al. CyberGuide: Prototyping Context-
Aware Mobile Applications. In Proceedings of CHI ‘96
(Vancouver, Canada, March 1996), ACM Press.

10. Microsoft. ActiveX homepage. Available at
http://www.microsoft.com/activex/.

11. Microsoft. OLE Development homepage. Available at
http://www.microsoft.com/oledev/.

12. Pandit, M. and Kalbag, S. The Selection Recognition
Agent: Instant Access to Relevant Information and Op-
erations. In Proceedings of Intelligent User Interfaces
‘97. ACM Press.

13. Schilit, B. A Context-Aware System Architecture for
Mobile Distributed Computing. Ph.D. Thesis, Colum-
bia University, May 1995.

14. Want, R. et al. An Overview of the PARCTAB Ubiq-
uitous Computing Experiment. IEEE Personal Com-
munications 2 (6). 1995. 28-43.

15. Wood, A. CAMEO: Supporting Observable APIs. Po-
sition Paper for the WWW5 Programming the Web
Workshop. (Paris, France, May, 1996).

16. Wood, A., Dey, A., Abowd, G. CyberDesk: Automated
Integration of Desktop and Network Services. Techni-
cal Note In Proceedings of CHI’ 97 (Atlanta, GA,
March 1997), ACM Press.

