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ABSTRACT
We explored symbolic canine-human communication for work-
ing dogs through the use of canine head gestures. We identified
a set of seven criteria for selecting head gestures and identified
the first four deserving further experimentation. We devised
computationally inexpensive mechanisms to prototype the live
system from a motion sensor on the dog’s collar. Each detected
gesture is paired with a predetermined message that is voiced
to the humans by a smart phone. We examined the system
and proposed gestures in two experiments, one indoors and
one outdoors. Experiment A examined both gesture detection
accuracy and a dog’s ability to perform the gestures using a
predetermined routine of cues. Experiment B examined the
accuracy of this system on two outdoor working-dog scenar-
ios. The detection mechanism we presented is sufficient to
point to improvements into system design and provide valu-
able insights into which gestures fulfill the seven minimum
criteria.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous;

Author Keywords
Wearable technology; Animal-Computer Interaction; Gestures

INTRODUCTION
Working dogs have a specific skill that enables them to perform
essential tasks for humans [17]. Working dogs that assist
humans with disabilities are called assistance dogs. Other
working dog occupations include field work, such as search
and rescue (SAR) or explosive-detection.

Despite advances in sensing instrumentation and autonomous
systems, working dogs remain a vital necessity in service
roles [14]. These roles rely on the ability of dogs to perceive
the environment with a great level of detail. This detailed
perception can be augmented with occupation-specific training.
For example, guide dogs can distinguish between a "wait"
obstacle (e.g. car) or "go-around" obstacle (e.g. trashcan)
[1]. Explosive-detection dogs can categorize explosives based
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on chemical characteristics, most notably between "stable" or
"unstable" compounds [7].

Unfortunately, our interviews with practitioners suggest the
information perceived by working dogs often exceeds their
ability to communicate it to humans. We classify these barriers
to communication into three categories.

• Perceptual barriers
• Distance barriers
• Contextual barriers

Perceptual barriers are a result of dogs needing to communi-
cate something they can sense but their human companions
cannot. This barrier might be the result of a person’s disabil-
ity (e.g. visual impairment) or a human sensory limitation
compared to canines (e.g. scent). Because human senses
can’t perceive what the dog is sensing, the information must
be communicated explicitly through the remaining available
channels.

Distance barriers are present, for example, in canine-aided
search and rescue, where the dogs’ communication signals (i.e.
barking, positioning, etc.) might be ineffective at distances
beyond line of sight or hearing.

Finally, medical alert dogs must often notify humans other
than their companions that there is an emergency. Because
their signaling behaviors are often only understood by their
companions, the alert can be misinterpreted or ignored, pos-
sibly delaying medical attention. We call these contextual
barriers.

In this paper, our focus is to develop methods to overcome
the first two communication barriers. As pack animals, dogs
have natural gestures to communicate with each other and
with humans [2]. Three examples are shown below arranged
from representative to generic (Figure 1). Representative cues
represent the information being conveyed.

Figure 1. The focus of the present study is to find activities usable for
generic (symbolic) communication. Individual images reprinted with
permission from Jamie Sierra North and Yellow Neener Photography.



For example, a play-bow consists of the lowering of the chest
to the ground while bringing the front legs out. Play-bows are
used to communicate everyday intentions such as the initiation
of play (Figure 1a). Note that representative gestures can
be conceived as equivalent to the indices of communication
described by Charles Saunders Pierce [13] and brought to the
ACI discussion by Mancini et al. [12].

To reduce communication barriers between canines and hu-
mans, we propose training dogs to perform generic gestures to
generate alerts for cues that a dog has been trained to recognize
(Figure 1c). We believe these gestures can be recognized by
combining on-line detection algorithms with inertial sensors.
(Figure 2).

In the present study, we focus on head gestures detected from
a motion sensor on a dog collar. We refer to them as head
gestures because they involve head movements but they can be
coupled with movements of other parts of the body. We chose
the collar placement because canine communication gestures
tend to be heavily based on head movements [11]. Further-
more, this selection has the added benefit of representing little
additional overhead in terms of equipment worn by the dog.
This consideration is important because service dog harnesses
vary by organization, police dogs have heavy harnesses al-
ready, and search and rescue dogs often wear no harnesses at
all.

Figure 2. System diagram.

Related Work
Rossi et al. conducted one of the first documented efforts
aimed at symbolic dog communication [16]. This "dog at the
keyboard project" allowed dogs to ask for objects or activities
by pressing keys on a keyboard that produced sounds. Their
results showed that "dogs may be able to learn a conventional
system of signs associated to specific objects and activities".

In some countries, search and rescue dogs bite brightly colored
cylindrical objects called bringsels to communicate a find by
line of sight [6]. More recently, the FIDO project has explored
wearable input devices that dogs can activate by biting, tugging
or performing a "nose-touch" as a form of communication
[10].

There have also been several previous efforts to recognize
canine activities from inertial measurement data. One early
effort attempted to detect posture in urban search and rescue
(USAR) dogs [14, 15]. The postures were sitting, walking,
standing and lying. Here, a rule-based algorithm achieved
an accuracy of 76%. A subsequent effort attempted to detect
postures as part of an automated training system [4, 5]. By

recognizing the dog’s posture, it was possible for the system
to determine if the correct action was performed and whether
a reward should be dispensed. Although originally intended
for posture estimation, this work has expanded to include
non-static activities.

A recent effort in this field was undertaken by researchers at
the Culture Lab in Newcastle University [11]. Their experi-
ments were focused on monitoring activities that correspond to
healthy behavior traits of pet dogs. Seventeen activities were
detected by an offline PCA-based algorithm with an accuracy
of 76% using an empirical cumulative distribution for feature
scaling. A similar study was conducted at Eötvös Lorand
University in Hungary [8]. In an offline analysis a support
vector machine classified lying down, sit, gallop and canter
with more than 80% for subject independent classification.

While previous systems have focused on offline analysis of
activities of daily living, we expand on them by developing an
on-line system using a single sensor.

Problem Statement
Our long term goal is to address the informational asymmetry
between the large amount of stimuli perceived by working
dogs and the fewer options they have to communicate them,
we propose using wearable inertial sensors to detect and medi-
ate intentional communication between working dogs and the
humans around them. We begin by considering the types of
gestures it must detect. Some of the peculiarities that differen-
tiate this problem from traditional work in human activity or
gesture recognition are the following:

1. Users are unable to annotate their own data.
2. Users are unable to reposition the sensor if dislodged.
3. Activities are non-periodic and short in duration.
4. Unlike humans, dogs are not expected to modify their be-

havior to increase true positives or decrease false positives.
5. The gestures must be taught to the participants without

verbal descriptors.

METHODOLOGY

Participants
For this pilot study, we recruited three dogs previously trained
in allergy alert, assistance, and police work. The demographics
of the participants can be observed from Table 1 below.

S1 S2 S3

Breed Retriever cross Border Collie Belgian Malinois
Training Assistance Allergy alert Explosive-detection
Sex M M M
Age (yrs) 0.5 5 4
Weight (kg) 21.0 21.3 22.23

Table 1. Subject demographics. Retriever cross denotes a cross between
Labrador retriever and golden retriever.

The skills and occupations of the dogs we recruited are not
identical to our target occupations (guide and search and res-
cue). This difference is based on our recruitment process
which emphasized availability and maintaining the integrity
of existing training. We selected participants based on:



• Availability of the dogs and their human companion.
• Proximity to the testing location
• Ability to participate without compromising training

System and Equipment
The main piece of equipment used for this study was a com-
mercially available inertial sensor, the WAX9, by Axivity Inc
[9]. This unit consists of a 9-axis sensor, including three axes
of accelerometer, gyroscope and magnetometer. Only the ac-
celerometer and gyroscope (on the collar) were used during
this study.

We selected the WAX9 due to its light weight compared to sen-
sors with similar capabilities. Considerations of weight were
extremely important because a heavy object might obstruct
the intended movements.

The unit was strapped with two rubber bands (Figure 3) and
padded with polyurethane foam to avoid any movement rel-
ative to the collar. The position and orientation remained
consistent for all subjects. For stability, the collar was placed
above an existing flat collar.

(a) WAX9 (b) Application.

Figure 3. WAX9 inertial sensor attached to dog collar by two rubber
bands supported by an equally sized polyurethane foam piece.

We used a companion application on a smart-phone (i.e. Nexus
4) running the Android 4.4.4 operating system throughout this
experiment. It received sensor readings via a Bluetooth con-
nection and played synthesized audio messages of the gesture
being performed. The gesture messages were voiced by the
Android Text-To-Speech (TTS) engine. If the device went
out of range, or more than 5 samples were skipped, a corre-
sponding message was also communicated. This mechanism
was necessary to distinguish between lack of connection and
lack of detecting a gesture. The smart-phone application illus-
trated a silhouette image corresponding to the basic actions as
a supplemental device for dog handlers participating in this
experiment.

Gestures Attempted
We selected gestures based on the need to balance seven po-
tentially conflicting criteria (Figure 4). Despite these criteria
being similar to the requirements for human gesture detection,
their consequences were reflected differently in dogs.

Figure 4. Ideal characteristics of gestures for detection. For canines, the
ease of training aspects is of utmost importance.

The first criteria is generalizability across subjects. This crite-
ria meant that we could not rely on gestures that could only be
performed by a single participant and considered exceptional
even among dogs of a given occupation.

The balance between true and false positives represented the
second and third criteria. Unlike humans carrying their phones
outside their back pocket to avoid accidental calls (false posi-
tives), dogs are not expected to modify their behavior to avoid
triggering a certain action. Similarly, unlike humans attempt-
ing to speak clearly and slowly to a voice recognition system,
dogs are not expected to modify their behavior to increase
recognition (true positives). In short, the system should work
without the dogs being in the recognition loop.

Even if dogs understand the gesture (fourth) they must be able
to physically perform it and do so with consistency (fifth). Hu-
mans can understand verbal explanations from other humans,
while dogs must learn to use gestures from training (sixth). Ul-
timately, the dog must remember the gesture without constant
training (seventh).

For the benefit of our experiment participants, we had to ensure
that new gestures did not negate a previously learned behavior.

Overall, we relied on gestures the dog could perform in-situ
as opposed to gestures that required displacement. Candidate
gestures involved horizontal movements of the head ("hori-
zontal gestures”), vertical movements of the head ("vertical
gestures”), and the clockwise and counterclockwise rotations
(spin and twirl) which we called "rotational gestures” (Figure
5).

Gesture Training Protocol
The study discussed in this paper depended on training each
subject to perform a set of gestures as described above.

The dogs recruited for this experiment (three) had previous
experience in behavior-reward scenarios. They had some fa-
miliarity with the basic gestures, such as reaching left (Figure
6), but required training for the timing and sequencing aspects.
This training occurred in at most four 30 minutes sessions for
each dog. A fourth participant attended only one training ses-
sion and was not able to subsequently perform the activities.

Trainers requested verbal acknowledgements of the correct
completion of the individual basic gestures when dogs per-
formed a longer sequence. This acknowledgement was pro-



(a) Horizontal gestures.

(b) Rotational gestures.

Figure 5. The companion application has a visual representation of the
basic activities for the purposes of training. Note that spin and twirl are
not only head gestures but also involve body movement.

vided in the same form as the verbal output from the complete
gestures.

Figure 6. Subject performs the left reach gesture during a training ses-
sion.

Identification

Gesture Construction
Initially, we graphed the inertial sensor readings from the neck
in real time as the dogs performed candidate gestures and
movements. The raw readings were stored on the receiving
Bluetooth-enabled device (smart-phone or personal computer)
for later analysis. Based on their visual representations, we
devised a set of rules to capture the desired basic behaviors.
These were determined empirically by pilot testing on three
dogs. The graphs for reaching left and right can be observed
in Figure 7 below.

We devised parameters by asking the dogs to perform the
gestures repeatedly to calibrate our rules. In this way, we
achieved a satisfactory representation for each basic gesture.

(a) Left reach. (b) Right reach.

Figure 7. Gyroscope measurements for left and right reach with a com-
pletely planar movement.

Identification of horizontal gestures
Basic horizontal gestures consisted of turning the head left
or right in a way aimed at touching the nose to the middle
part of the ribcage area. If the head is moving in a perfect
horizontal fashion, this movement will register in the z axis of
the gyroscope. When this value ranged between predetermined
thresholds (gz<-140 degrees per second), a left gesture is
detected. As the head is returning to its forward-position
(gz>140 dps), a right gesture is detected. A combination of
left and right movements in close succession resulted in a left
reach compound gesture. Similarly, a pair of basic left and
right resulted in a left reach (Figure 8). As described above,
we determined these thresholds by observing the measured
movements of three dogs.

Figure 8. Basic scheme to detect gestures with gz representing the z axis
of the gyroscope. The behaviors that lead to spin and twirl are not rep-
resented.

This scheme assumed no lateral preference ("handedness”) on
the part of the dogs. Although this assumption did not always
hold true, we used the same gestures and thresholds on each
side to avoid excessively tailoring to our subjects.

Excluded basic gesture types
Other types of gestures, on which we ultimately did no fur-
ther experimentation, were vertical gestures, looking up or
down. Unlike horizontal gestures, where the motion is short
in duration and is rarely sustained, vertical gestures require



discrimination between the static posture of looking up vs the
movement of looking up because only the latter would qualify
as a gesture. We found that the posture could be determined
by the orientation of the sensor, as conveyed by the effect
of gravity on the accelerometer readings. To expand beyond
posture, we restricted the unit of analysis of all gestures to the
transition between one posture and another.

These strategies ultimately proved unsuccessful for several
reasons. Vertical gestures proved too difficult to train and
perform reliably. In addition, they had a strong propensity for
false positives during everyday activity (looking down more
so than looking up). The readings also varied by dog size
much more so than horizontal gestures. Finally, there was
substantial overlap between horizontal and vertical gestures
because they are not mutually exclusive. For example, when
performing a horizontal gesture, the dog’s head will rarely
move along a perfectly horizontal plane. Although there are
ways to account for this problem, such as redefining the ges-
tures with constraints on all three planes, we postponed such
efforts until first testing the simplest set of gesture definitions.

Identification of rotational gestures
Rotational gestures consisted of spin and twirl. These are: 360
degree rotation to the right and left, respectively. These were
detected when a rightward (gz<-90 dps) or leftward (gz >90
dps) motion was detected for a sustained period of time: Each
movement was monitored by a variable that expired every
second unless a subsequent movement was detected. At the
point where five such rightward samples were detected, a spin
was recognized. Unlike reaching to the left or right, these
gestures do not occur in left-right pairs. Once again, we note
that rotational gestures also consists of movement of the body
in addition to the head.

Provisional solutions
Along the course of preparing the experiment, we had to provi-
sionally accommodate for two issues not foreseen in the initial
design. We describe these solutions for completeness but
acknowledge their limited generalizibility for other scenarios.

If the movements exceeded a threshold of 2g as measured by
the accelerometer, it was likely that the dog was not in position
to perform a gesture. At this point the classifier simply said
"too fast" and slept for 1 second rather than making an irrel-
evant prediction. We determined this threshold provisionally
by observing readings over two one hour sessions with two
different dogs engaging in high and low intensity activities.

Similarly, if the position of the collar moved, the system voiced
a "reposition" command and slept for a second. Misplacement
was judged by the z axis of the accelerometer being greater
than zero. We discuss a more suitable alternative to improve
upon this misplacement in the discussion section.

The time window for the activation criteria is dependent on
seconds∗ sampling− rate. For this experiment, the window
for reaching to the side was set to 3 seconds.

Final Gestures Selected
Based on these experiments, we identified four gestures that
deserved further experimentation (Table 2). To differentiate

them from everyday movement, we added a repetition com-
ponent based on similar techniques with humans [3] to the
horizontal gestures to arrive at this list.

They are: reaching twice to the left or right side, spinning
clockwise (spin) and counter-clockwise (twirl). One of the
constraints we discussed earlier was the ease of remembering
a gesture. To take this constraint into account, we established
a criteria of no more than two repetitions per gesture. Regard-
less of whether dogs are able to count repetitions, we only
assume they can be trained to perform the current gestures
until acknowledgement is provided.

Gesture Description of gestures

Spin Clockwise rotation of 360 degrees
Twirl Counterclockwise rotation of 360 degrees
Right sequence Reaches to right ribcage two consecutive times
Left sequence Reaches to left ribcage two consecutive times

Table 2. Sequences composed from basic gestures.

Identification of gesture sequences
When basic actions are consecutively performed within the
span of a certain amount of seconds (window), a gesture se-
quence is detected (Figure 9). One example of a gesture
sequence is a double left-reach. Basic gestures that are not
part of the sequence must not be performed while a sequence
is in progress, otherwise the counters for compound gesture
detection will reset. Note that the basic actions (such as left or
right) do not necessarily have to be basic gestures themselves.
Both spin and twirl were composed of movements to the right
or left that did not have to meet the threshold for the right or
left gestures in reaching to the side.

Figure 9. Finite state machine for detecting gesture sequences. Dog train-
ers refer to these sequences as behavior chains.

Experimental Procedure
To evaluate the proposed gestures and the first prototype of our
system, we placed the dog collar with a WAX9 sensor above
the manubrium on each one of our participants. The sampling
frequency for all measurements was 50 Hz at a range of +/-
2000 dps (degrees per second) and +/- 8g. Each participant
was subsequently asked to perform at least six repetitions of
each of the gestures by their handler. After completing each
gesture, the experimenter provided a food or play reward.

Performance Metrics
We use separate metrics for system detection accuracy and
the ease of guiding the dogs to perform the gesture. Beyond



quantifying ease, it is necessary to compute such a metric
to accompany the system performance because any failed
detection could be attributed to the dog not performing the
gesture ’correctly’. For example, it would be unfair to penalize
the dog and handler for not performing a gesture on a perfect
horizontal plane or at a speed one degree per second less
than a required threshold. For this reason, we show how the
annotator’s scored both system and dog/handler accuracies to
give the reader an idea of the breakdown.

Dog accuracy represents how well the handlers were able
to guide the dog to perform an activity. For dog accuracy,
we associated penalties with ignoring cues, performing the
wrong cue or performing a gesture spontaneously. These three
items correspond to our deletions, substitutions, insertions,
respectively.

Similarly, for system accuracy, penalties were given to gestures
undetected, incorrectly detected, or false positives (deletions,
substitutions, insertions). All sessions were video recorded
and analyzed at a later time to compute the performance met-
rics (Table 3).

Dog Accuracy System Accuracy

Total N cues given gestures performed
Deletions cues ignored gestures undetected
Substitutions incorrect activities performed incorrect detections
Insertions spontaneous activities false positives

Table 3. Definitions for performance metrics.

We computed the system’s accuracy from the recorded video
based on the previous definitions.

Accuracy =
N −Substitutions− Insertions−Deletions

N
(1)

System Accuracy Metrics for Sequences
Each result table will contain two columns for tabulating accu-
racies of the sequence detection. Sequences depended on the
correct detection of basic gestures and compound gestures. If
a basic gesture was undetected, that deletion would also affect
the sequences accuracy (Tables 4,5).

Stage Time1 Time2

Dog performed right,left right,left
Basic detection right,left right,left
Compound detection right reach right reach
Sequence detection right sequence

Table 4. Sequences depended on the correct detection of basic gestures
and compound gestures.

Stage Time1 Time2

Dog performed right,left right,left
Basic detection right,left right, none
Compound detection right reach none detected
Sequence detection none detected

Table 5. If one of the basic gestures goes undetected, it affects the accu-
racy of the sequence detection. For this reason, we reported sequences
II by counting cases where the basic units were detected correctly.

To account for this case, we computed a second metric (se-
quences II) where no penalty was given to the sequences for
deletions at the basic level.

Repetition Experiment
The dog handler used a target stick, target toy, or a food target
consisting of a small treat, to give the subjects an indication
of how to move their heads. Target sticks are commercially
available and are in common use in agility and obedience dog
training practice. Although the resulting motions for each
target device exhibit some variation, they were considered
equivalent for the purpose of this experiment.

False positives in Urban Environment
We tested the system in a more realistic scenario inspired by ac-
tive service dogs. In particular, we focused on assistance dogs
(guide dogs included) who must accompany their handlers as
they travel through dense urban environments. Although the
leash prevents the testing of gesture detection, this scenario
allows for testing of false positives (Figure 10).

Figure 10. Assistance dog walks through sidewalk while wearing the
insrumented collar.

False Positives in Open Environment
For this experiment, we allowed dogs to run off-leash in an
open environment. During this time, they were given objects
to fetch and retrieve by their handler.

Figure 11. Explosive-detection dog fetching objects in an open environ-
ment.

RESULTS

Repetition Experiment
Our evaluation of the accuracy results are summarized below.
These were analyzed and computed by a single observer and
were subsequently verified by a secondary observer.



S1 S2 S3
Method Target stick Luring Target toy
Total N 47 48 23
Deletions 0 0 1
Substitutions 8 1 0
Insertions 4 4 1
Accuracy 74% 89% 91%

Table 6. Dog accuracy for each subject. Note that the training methods
used were different for each one.

Table 6 shows the ease of guiding the desired gestures in
each dog. The most common substitution was spinning when
a side reach gesture was being induced. The second most
common substitution, particularly for S1, was reaching to the
opposite side of the target stick. When performing a sequence,
S1 would wait to be rewarded for the first activity and not
perform the second repetition. All of the insertions for S1
consisted of attempting to reach the target stick before it was
placed on its intended location.

In cases where S1 performed an inserted or substituted gesture,
we still evaluated the system’s detection. In some cases, the
new gesture affected the timing calculation of the more com-
plex gestures and this was scored accordingly (Table 7). For
this reason, basic actions (left, right) had the highest accuracy
compared to compound (left reach, right reach, spin and twirl)
or sequence detection (double left or right reach).

Gestures Basic Compound Sequences I Sequences II

Total N 82 35 11 11
Deletions 0 2 0 0
Substitutions 7 2 0 0
Insertions 0 3 2 2
Accuracy 91% 80% 82% 82%

Table 7. System accuracy for subject 1. Sequences II analyzes the detec-
tion of gestures sequences by controlling for cases where the compound
gesture should have been detected.

Most of the system deletions observed with subject 2 (Table 8)
can be accounted by two factors. First, the left and right reach
gestures were performed using the technique known as cookie
stretches, a form of luring. When S2 performed the reach, the
right motion was detected appropriately. After doing so, he
would look downwards to ensure that no part of the target treat
was on the floor (Figure 12). At this point, the time-to-live for
the initial basic gesture would expire. When the dog finally
came back to face the handler, this motion was treated as a
new basic gesture, rather than the closing part of an existing
one. Not only did this phenomena cause the performed reach
to go undetected, but it also caused the subsequent one to be
interpreted as the opposite side. For subject S2, this error
resulted in 16 system substitutions (Table 8). This behavior
also explains the large discrepancy between detection of basic
gestures and detection of compound ones.

Dogs trained in occupations requiring constant eye contact
with their handlers maintained it as much as physically pos-
sible while performing the gestures. This behavior was not
foreseen in the design of our identification method or exper-
iment. If the head is vertically oriented (e.g. looking at the

Gestures Basic Compound Sequences I Sequences II

Total N 47 36 14 5
Deletions 0 1 9 0
Substitutions 5 16 0 0
Insertions 1 3 2 0
Accuracy 87% 44% %36 %100

Table 8. System accuracy for subject 2. Sequences II analyzes the detec-
tion of gestures sequences by controlling for cases where the compound
gesture should have been detected.

Figure 12. The use of a treat to lure the reach behavior caused problems
detecting the gesture.

handler) the movement will be increasingly reflected in the x
axis of the gyroscope. Nonetheless, horizontal movements are
rarely aligned perfectly along a single axis. To account for this
issue, we subsequently combined the z axis readings of the
gyroscope with the x axis readings, by taking the Euclidean
distance between each of the two points and keeping the sign
of the z-axis. Below are the results of this modification on
testing with subject S3 (Table 9).

Gestures Basic Compound Sequences I Sequences II

Total N 49 20 5 5
Deletions 0 2 0 0
Substitutions 0 2 0 0
Insertions 0 3 1 1
Accuracy 100% 85% 80% 80%

Table 9. System accuracy for subject 3. In this case, gz and gx were
combined.

False Positive Experiment
We performed the false positive experiment with three dogs
(S1, S2, S3), under different conditions under which no ges-
ture should activate. The results of these experiments are
summarized below (Table 10).

Session 1 Session 2 Session 3 Session 4

Dog S1 S1 S2 S3

Duration 15 mins 60 mins 15 mins 15 mins

Scenario Stairs, walking
crossing street Stairs, car travel, play

Open,
play

Open,
play

False
Positive

Spin(1)
Left Reach(1) Left sequence(2) Down (4) Left Reach(1)

Cause Collar moved
vigorous shake

Repetitive left
movements
while going
down-stairs

Looking up
while chasing
object

Running
and
turning

Table 10. False positives experiment. The up and down gestures trig-
gered much more so than the other, while still being difficult to perform.
For this reason they were not included in the repetition experiments.



DISCUSSION
We can now compare the benefits and drawbacks of each
gesture type along the seven constraints we described earlier.
Although not all the axes are quantifiable yet, our subjective
experience has allowed us illustrate them in provisional form
(Figure 13). Although the given scores can change when
testing a greater number of dogs of different backgrounds,
they represent our understanding at the end of the current
experiment.

(a) Single horizontal gestures
(baseline).

(b) Vertical gestures.

(c) Double horizontal ges-
tures.

(d) Rotational gestures.

Figure 13. Gesture qualities relative to single horizontal gestures, which
serve as a baseline.

Experimental Improvements
An experimental flaw in the lack of counterbalancing resulted
in most twirls being performed before or after a spin. It is
possible that this fact caused their identification to be different
than they would be otherwise.

One way we have tried to eliminate the use of target sticks
and cookie stretch-luring is to design clear markers of the
locations to be targeted. These markers allow both the dog
and the handler to train gestures with more precision.

As mentioned earlier, assistance dogs mostly work on-leash
in an outdoors environment. The training should occur on-
leash from the first practice session through the last. This
requirement will ensure that the gestures selected are feasible
for use while on or off-leash.

System Improvements
One area of improvement is the sensitivity to orientation. This
identification procedure assumes the sensor remains below the
head when the gestures are being performed. Positioning was
particularly difficult in dogs with a smooth coat, (e.g. S3), in
which the collar tended to rotate and slide freely. Even though
the effect of gravity favors the center position, the sensor still
shifted for a non-trivial amount of time as a result of vigorous
activity.

A more suitable alternative to improve upon this misplace-
ment would be to calculate the tilt angle of the sensor based

on the effect of gravity on the accelerometer readings and re-
calibrate the gyroscope readings with the 3x3 rotation matrix
corresponding to "virtually repositioning" the sensor.

CONCLUSION
In this manuscript we illustrated the use of an on-line com-
munication system for working dogs based on head gestures
detected by an inertial sensor placed on the collar. Our prelim-
inary results show the type of gestures that can allow humans
to receive vital information from working dogs.

In this effort we have taken the first step in gesture recognition
for dogs. We have shown the importance of considering the
devices the dog is already wearing such as a leash, harness
or existing collar when selecting the gestures. We also have
to consider how dogs are trained (e.g. the effects of dropped
treats). In our future works, we will account for these factors
by collecting a database of everyday canine activities so as to
select gestures that do not interfere with them. By collecting
this database we can then choose gestures that are appropri-
ate and start employing more sophisticated machine learning
techniques that are conducive to the task.

ANIMAL CARE
The training of the gestures relied exclusively on positive rein-
forcement techniques. These studies were conducted in accor-
dance with the Institutional Animal Care and Use Committee
(IACUC).
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