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SUMMARY

This thegis constitutes an investigation of the feasibility of
developing an analytical model to study the growth of the cuter free
shear.layer_of a two-dimensional incompressible turbulent wall jet
blowing over a cu;ved wall, Suitable equations of motion are developed
for the shear Layef in a curvilinear orthogonal coordinate sysfem. g

Simplification has been achieved by the application of Reichardt's con-

cept of momentum transfer length which has been modified for the curved
jet problem, A successful search has been made to obtain similarity
transformations to.rehder the equations to solvable forms. Physically
pertinent i:-aram_e'tgrs to the pfoblem have been derived and their relation-

" ships with the solutions of the equations have beer examined,



CHAPTER I
INTRODUCT ION

The Wall Jet Problem

Tufbulent free shear layer flow in the ﬁreseuce of a solid
boﬁndary has attracted significant attention of researchers and pfaéticiﬁg
éngineéig in recent years, Commonly termed a wall jet, such a flow field
is generated when a two-dimensional jet blows over an adjacent curved or
straight surface, Among its several applicafions to engineering systems
are the problems of boundary layer{control of aircraft wings and the
operation of fluidic devices,

A widely accepted analytical model of the wall jet flow consists
basically of dividing the flow field into an inner or wall layer and an
outer or free shear layer, The inner layer adjaceﬁt to the wall is
assumed to behave as a non-similar turbulent boundary layer, whereas the
outer layer is normally treated as a self-similar free shear layer. The
two solutions are then matched with suitable contimuity conditions to
yield continuous velocity profiles. A more detailed approach consists
of the application of integral momentun and integral energy analyses to
several subdivisions of the two basic regions, with matching boundary
conditions for adjacent subdivisions, capable of yielding non-similar
profiles for several streamwise statioms.

One common feature of thegse analyses is the inclusion of only
turbulent or eddy shear étresses in the equations of fluid mofion in the

free shear layer, thus neglecting the molecular viscous stresses. Subse-




quent observations have generally validated such an assumption. More
important to the basic problem, however,'is the use of various classical
turbulent dissipation hypotheses, Prandtl's mixing length concept being
the most often quoted mechaﬁism, to.formulate expressions for the shear
stresses. Wha; is somewhat disturbing in these investigations is an
implied use of a significant amount of empirical informatiom to formulate
matching boundary conditions to patch adjacent subdivisions of the wall
- Jet flow field, |

A search for anothef hypothesis-to formulate expressions for tur-
bulent shear stresses in free shear layers seems most appropriate, both
from the point of view of practical applications and a need to understand
the basic mechanisms. One such hypothesis was proposed by Reichardtfl)
who applied it successfully to plane and axisymmetric free jet flows in
quiescent medium in the absénce of solid boundaries in the flow field.
Two immediate problems which pose themselves concern the application of
Reichardt's hypothesis in the free shear layer of a wall jet, and the
modification of Reichardt's formulations to study curved turbulent free
shear layers, Any known reference to resolve either of the two problems
is_not available in open literature at present. It seems quite reasonable
to attempt to answer these problems by specifically considering the
turbulent free shear layer of a wall jef blowing over a curved boundary,
as shown In Figure 1,

The object of the ﬁresent investigation is to examine the feasibility
of using a modified Reichardt’s hypothesis to develop an analytical model
for the study of growth rate of outer frée turbulent shear layer of a

wall jet blowing over a curved surface, Analytical solutions thus
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Figure 1. Wall Jet Blowing Over a Convex Surface




obtained should allow for a ready check against presently available experi-

mental data in the literature on this subject,

A Brief Survey of Pertinent Literature

Analytical results for a wall jet blowing over a flat plate were
first giveﬁ by Glauert.(zj He divided the flow field at any streamwise
station into two overlapping region;, as shown in Figure 2, Although
hié primary attention was focused onithé laminar wall jet flow, he also
6btained_empirical formulas for similar turbulent profiles in the outer
layer and for the streamwise growth rate of the inmer layer.

" In the regiom near the wall the shear stress was aséuméd to obgy
the, Blasius formula and the outer region waé characterized-by a constant
eddy viscosity. Such assﬁmptions ied to useful results in unrestricted
shear flow.(3) Solutions were thus obtained for each region separately
anq then were matched at the transverse location of the maximum velocity,
or zero sheér stress.

Glavert ) obtained formulas for the axial velocity decay and for
the rate of spread of the wall jet, which were similar in form to the .

corresponding free jet formulas., He showed that

am/uo « x-0.583 \ (1_1)

and

b = x , . (1-2)

where ﬁm is the maximum velocity of the profiie, u, is the initial

velocity where maximum velocity begins to decay, & is the outer layer
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Figure 2, Wwall Jet Blowing Over a Flat Plate



thickness, and x is the coordinate along the wall in the jet direction,
Sigalla(a) argued that most of the experimental data of the
variation of maximum velocity aiong the wall could be well represented

by the formula
pfu, = 345807 | - (1-3)

where d is the width of the jet nozzle, He also obtained an empirical

formela for the growth of the inner layer, given as
- - 1/5 | |
Qm = 0.182 x/ (i x/V) / s (1-4)

vhere Qm is the thickness of the ﬁoundary layer up to the maximum velocity
point. The above formula is valid for (x/d) = 25 and is based on
measurements taken in a_rangé of nozzle Reynold's numbers, based on
nozzle efflux velocity and nozzle width, from 2 x 104'to-5.2 X 104.

Myers, Schauer and Fustis ¢3) predicted the maximum velocity
decay, jet thickness, and the shear stress analytically by using integral-
momentum methods, Experimentai data concerning velocity profiles,
velocity decay and jet thickness agree well with previous investigations.
Asymptotic solutions were found for large values of x, where it was

shown that

u, = x~0:3 , (1-5)
6 = x/1% | and (1-6)
8§ -8 = x . . (1-7)

They aléo obtained information regarding wall jet friction factor, given

by

rg.



2
W 1/1

cf R

(x/d) = 0.1976 (1-8)

where C

£ the friqfion factor,'is giﬁen by ZTw/Dug , Tw being the shear

stress at the wall,

(6)

Schwarz and Cosart showed by analysis that & must varylas x,
and u, must vary as x- over a range of self—preserving flows. The
exponent "a'" was empirically determined to be -0,555, Their Reynolds
number was based-ﬁn the maximum.velocity and.the thickness of the bound-
ary layer, snd varied from 22,000 to 106,000,

Experiments and analyses for the problem of a wall jet blowing
over a curved surface, as shown in Figure 1, are also available in the
literature, By consideriﬁg the.fiow in tﬁe hodograph plane, potential

(7)

theories have been obtained b&'Lighthill and Woods(s) for two-

dimensional incompressible jets blowing over a cyiindf;cal surface with -
the surrounding fluid at rest, As in the work of Newman,(g) the surface
pressure distribution and the maximum velocity decay for a turbulent jet

around a c¢circular cylinder were predicted by using an assumed empirical
growth law, i.e,,
(1-9)

ROG 7

¥ : y
‘n/f2 =anu+L5§@)
_ o
where Ym/2 is the width of jet where u = %um, 9 is the angular distance
measured around the circular cylinder from the slot, and Ro is the radius

of circular cylinder, The pressure distribution on the surface of the

cylinder was then obtained as,




8 on(1 + & 20/2)
5B,

(p, - PR, (1-10)
(P -pJ)d -~ y 2 y
[(% ﬁfg + 1) = 142 {1+ %R_:E)]

where p_  is the static pressure of the surrounding fluid at rest, ﬁs is
the static pressure on thé surface of the cylinder, and P is the
stagnation pressure of the fluid supplying the jet, The angle of

separation was also obtained by Newman as
- d d |
Oep = 245 - 391 R—O/(l + 8 5 ) (1-11)

Newman's analysis assumed zero wall friction. = This assumption was based
on a survey of experimental work on plane wall jets which revealed that
the behaviour of the jets depended largely on.the'outer layer,
Spalding(lo) has set up a unified theory which is particularly
sﬁccessful in predicting the local drag force and his results are in

good agreement with the experimental results of Sigalla54) and Bradshaw

and Gee, (11D

Guitton(lz) solved the boundary layer equations for a wall jet
along curved surfaces for which (i) the radius is proportional to the
jet thickness, and (ii) the radius is constant. Solutions were obtained
in the form of a power series in terms Qf the ratio between shear layer
thickness, 6, ‘and the surface radius of curvature R,, truncated after the

first term. The experimental portion of Guitton's work was concerned

with the flow of the jet on a concave surface of constant radius.




CHAPTER II°
ANALYTICAL PRELIMINARIES

Some Remarks on Turbulent Jet Problems

~ The basic geometry of the flow for the development of an analytical
mﬁdel to predicf the nature of self-similar velocity distributions in
.the outerlfree shear layer of an incompressibie two;dimensional turbulent
wall jet biowing over a convex solid surface is shown in Figure 1. A
curvilinear orthogonal system of coordinates is introduced whose x-axis.
is defined along the maximum vélocity line, the y-axis being perpendicular
to it. The outer free shear layer of this flow is highly tﬁrbulent
giving rise to eddy turbulent frictionm, Although the inner shear layer
is governed by the influence of the wall with resultant non-similar
boundary layer, the flow in the outer shear layer develops for the most
part in a self-similar fashion,

wansend(s)

pointed out that in a fully isotropic turbulent flow,
there exists a region, including almost all of the flow, over which the
direct action of viscosity on the mean flow is negligible, i.e.} the
Reynolds stresses are large compared with the mean viscous stresses.
Within this region, the mean motion of turbulence is determined by the
boundary conditions of the flow alone, and is independent of the fluid
viscosity. This is the so-called principle of Reynolds number similarity.
In free turbulence, there is no region cof the floﬁ that is excluded from

Reynolds number similarity, Therefore, in dealing with the present

problem, if one starts from the Navier-Stokes equations, it seems
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reasonabie to meglect the molécular viscous terms because the Reynolds
stressés of turbulent flow ﬁredominate.

Metﬁods for the calculation of turbulent flows, genérally, are
.based on empiriﬁal hypotheses regarding turbulence shear stress or the
turbulent diffusion coefficient, from which, with the aid of the equa-
tions of motion, aﬁd of continuity, and with assumed similarity conditions,
velocity distributions are deduced. In solving tﬁe problems such as free
turbulent flows, numerous examples have shown that the real phenoména
can be described in an excellent way by the use of different semi-
empirical hypotheses for turbulent stresses such as Prandtl'# mixing
length theory. However, such a deductive theory of turbulence suffers
from the deficiency that it is impossible to determine which of the
alternative a priori assumption comes closest to physical reality,

A significantly different approach to the study of free turbulence
was taken by Reichafdt,(l) who introduced the concept of a momentun
transfer length unlike other authors who utilized Prandtl's mixing length

(L

hypothesis. Reichardt and Hinze(13)discussed Reichardt's inductive
theory, which is purely phenomenological, in more detail for a simple two-
dimensional case, |

After a critical examination of the voluminous experimental data
on free turbulent flows, H. Reichardt discovered that the velocity pro-
files_under considefatian could be approximated very successfully by
Gauss'-function, or by its integral, the error function. Starting with
this premise, Reichardt attempted to cover all cases of free turbulent

flow with the aid of a simple set of formulae instead of endeavouring to

solve the differential equations of fluid dynamics, Before attempting to




aprly a modified version of Reichardt's inductive theory of turbulence
to the present problem, it is proper to briefly summarize his original

work,

pressible jet in steady flow without adjacent boundary, - For the free jet
fiow he neglected the streamwise pressure gradient term and terms con-

taining the molecular viscosity. The resulting equation of motion for

Reichardt's Inductive Theory of Turbulent Diffusion

Reichardt considered the flow field of a two-dimensional incom-

the instantanecus velocity u is

o)ch
L3 §
-+
ol
ol
]
o

and the equation of continuity is

or

1f Equation (2-2) is added to Equation (2-1), one obtains,

ox 4y

2
ou 9 =
o + = (uv) o

11

(2-1)

(2-2)

(2-3)

In describing a turbulent flow in mathematical form, it is con-

venient to separate it into a mean motion and into a fluctuating motiom,

where the time-averages of all quantities describing. the flﬁctuations-

are equal to zero, Thus

u=u+u', v

(2-4)
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and
u'=0, v'=0, (2-5)
.1 tot+T "
vhere for any quantity A, A = T I Adt, with T being large compared
to

with the time scale of the turbulent motions. Substitution of these
expressions into Equation (2-3) and averaging with respect to time yields

the required equation for turbulent flow,

!

- NN B
A% + e uw = 0 . (2-6)

This is the equation for the conservation of the momentum component in
the x-direction.
Reichardt argued that if ;Z were to follow the Gaussian error

function, it must satisfy the differential equation

a7
i : - (2-7)
o

In this equation, A has the dimension of length and may still be a
function of x and y. In applying his theory to free turbulent flows,
Reichardt assumed that A was a function of x alone, determined by the
width of the mixing zone, In order to transform Equation (2-6) into

Equation (2-7), he simply postulated that

- "
w = -i’\(}c)gyl . | (2-8)

This relation, which Reichardt called the momentum-transfer law, may be
interpreted as, "the rate of transfer of u-momentum with the velocity v
in the lateral y-direction is proportional to the gradient of the

momentum flux ;2 in that lateral direction."

As mentioned before, Reichardt's theory is purely phenomenological
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and is in good agreement with experimental results. On the other hand,
Equation (2-7) has the advantage, of'being linear in ;I, s0 that.the law
of superposition of elementary solutions holds, The total momentuﬁ flux
;Z contains the contributions of both the mean and the. turbulent motions,
namely,

2 L w0, - (2-9)

u = u" +

In view of the linearity of the differential Equatioﬁ (2-7), the sub-
étitution of Equation (2-9) into Equation (2-7) immediately results in

the set of equations,

-2 2-2 ’
g% = Mx)25- (2-10)
3y
and
2 22 . .
D = M=) : (2-11)
N |

Again, if Equation (2-9) is substituted into Equation.(z-ﬁj, one gets,

-2 § '
au_ . afu') D ==
ax + % + 5? qv = 0

or

-2 2 .
3 afu') == >R ve ies A
%t 5% ay(uv) v (L'v') = 0 .

——

' 2
1
Following Abromovich(14), the term-nggl— can be neglected, because the
velocities and fluctuations of velocity change much more slowly along
the flow than they do in the transverse direction, and, the mégnitude of

u' and v' are of the same order. Thus,

-2 -_—
au 3 -- A 1.1
9O+ 9 e =
¥ P~ (uv) + ay(u v') o ,
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ar -
Bﬁz 3 — |
— = 8] . 2-12
o2 oy d ' ¢ )

Again, in order to transform Equétion (2-12) into Equation (2-10); it is
proper to use
v = -.A(x)a—ﬁ?- | . (2-13)
o _ _ _
The rel#tion in Equation (2-13) will be referred to later.
The meriﬁ of this theory is a practi;ai one, namely, that solu-

tions for distributions of transferable quantity in free turbulence can

be constructed easily and that these solutions do agree very satisfactorily

with experimental data for those cases which have been solved.

.EquatiOns_of Motion
The full equations of motion and continuity for steady, incom-
pressible, two-dimensional free shear layer providing radius of gdfvature
R(x) of its centerline, where és befbre the viscous terms are considered

negligible in comparison with the turbulent terms, are

R__3u pu , w _ _ _ R __ 1l32p .

R+y"ax @ "5y ER+y - R+y pax ’ (2-14)

R du 3V u? 1l ap

Ry > * Yy "R+ry  “paw O’ - (2-15)
and

R au av v

—_— =+ =+ = 0

R+y ax 8y R+y (2-16)
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If 8 is the width of the free shear layer, under the boundary

layer approximation, a resort to the order of magnitude analysis yields
au
ay . .

Following Goldsteihfls).termS'of the order 8 and higher order may be

Ly na 3u ol v
0(67), u~0(1), ax~_0(1), T o(1), v ~_o(a) and < 0{s).

dropped; also it may be assumed that v/R is small. If one carries out
such a process of approximation for the present problem, the equations of

motion and continuiﬁy can be reduced to

u w .12 o
S e @1

2 : : _
au | v g.- L - _ | . '
x Tay - % - - 2-19)

If Equation (2-19) is multiplied by u and then added to Equation

o

(2-17), one obtains,

f5)
Far.

IQBE .
ox

gal

_33- w = - % . | | (2-20)

Qﬁantities such as u, v and p in aﬁove equationé are_inétaﬁtaneous
values. Hence after substituting u =t + u', v=v +v' and p = S + p'!
into Equations (2-18) and (242b),_and carrying out the usual time-
averaging analysis of the.reﬁulfing equation term by term, one obtains

the proper equations to be sélved, - Equation (2-18) cén thus be written

| I | . o ‘;

';dlf-'rd
]
=Rl
2R,
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Since u )

= ﬁz + (u')z and GZIR is much larger than (u' /R if

the radius of curvature of the jet centerline is assumed large enough, it
)2

seems reasonable to neglect the term (u')“/R in comparison with GZIR.

Such an argument results in the simplified equation for the y-momentum,
a.

. 2.2
2 (2-21)

If a similar analysis is performed on Equation (2-20), it gives,

W, 3= _ _12p
+ uvy = o 3%

2
]
where if the term gigil” is again neglected, the above equation can then

be rewritten as

- =D
194 v, 9= .
ax(p) + e + o u = 0 (2-22)

Equations (2-21) and (2-22) are the two equations of interest in
the present problem, It is easy to see that the combination of these
two equations can eliminate the pressure term in Equation (2-22), Once
Reichardt's théory is introduced in Equation (2-22), ene can solve for

z from this equation under the assumption of self-similarity of the

T
flow, However, it is necessary to modify Reichardt's original work
because his inductive theory was derived in a form appliééble to a

two-dimensional cartesian coordinate frame,
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CHAPTER IIIX
DEVELOPMENT OF THE ANALYTICAL MODEL

A Modification of Reichardt's Inductive Theory

As mentioned in Chapter II, Reichardt assumed that the lateral
transport of momentum in a turbulent free jet is proportional to the

transverse gradient of the axial component of the momentum, viz.,
— u2
uv = - A(X)%;- o _ (2-8)

which is derived under the assumption that ;T is to follow the Gaussian

error law

2 22
= QW

Due to the linear nature of Equation (2-7), Equation (248) may be ex-

pressed as

-2
W o= - A(x)g% (2-13)

where the streamwise gradient of the fluctuation in velocity may be
neglected in the free shear layer. If Reichardt's theory_is.to be
applied to the present problem, a modification of Equation (2-13) is
necessary to include the effect of wall curvature. This influence has

(15)

been incorporated in the transformed equations by Goldstein. A
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kinematically and dynamically compatible form of the modified Reichardt's

hypothesis proposed here is expressed as

-cl -2 _
- au u
w o= - A(x)[ay t Ry ] . (3-1)
This equation reduces to
-2 =2
— au 11 *
W o= - A - £ (3-2)

if the effect of y/R is neglected, -

Substitution of Equation (3-2) into Equation (2-22) yields,

2-2 32 |
e = () . =3y
G G-3)

- )
BBy , 3w, 3
Bx(p) + - A

)
] fog

It is possible to eliminate p from Equation (3-3) by using
Equation (2-21); an integration of Equation (2-21) fromy =y toy = &,
where § is the thickness of the outer free shear layer, gives,

- % ‘ €=6 _ j-g=6 ﬁggx ;) dg
- R

P =y L=y

The difference of pressures at y = d and y = @ is negligible, so that
one may write,

P, - P

Gmo_
- =%jgu%m9% (3-4)
SO

where p, is the atmospheric pressure, The derivative of Equation (3-4)

with respect to x is




19

L=w o .
I ue(x,g)dg .  (3-5)
C,=Y .

70 ) .
X' p ax

|

The term %EC§) in Equation (3-3) may be eliminated with the final result

-2 2.2 -2 = o ~
. BL + A 3 u > & .& - Q_ .]; u (x:f;)d'; =0 . (3-6)
x5 Roy xR C=y '

The boundary conditions for Equation (3-6) are

i =1  (3-7a)
oo ™

where ﬁc is the velocity at the jet centerline, and
ou -0, (3-7b)
oy y=0 _

since the turbulent shear stress may be assumed to vanish at the jet

centerline, Furthermore, the following order requirements are impbsed

lim u(x,y) = O, and | _ (3-8a)
y—vcb -

odulxy) L
e | (3-8b)

Hypothesis of Self-Similarity

The additional assumption of self-gsimilarity of the flow implies,

W= %), end A (3-9)
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w =a B, M=y, (A1)

vhere ﬁc is the velocity of the jet along the centerline and L, is the

characteristic thickness of the outer shear layer. Both ﬁo and L, are

functions of x only, Substitution of Equation (3-9) into Equation (3-5)

gives,
- -2 . -2
WL L= uw. 4L dn daL
4 co .t o _c__= X o ..
A )I e(Q)al - "Bt e~ T i e
c=‘n _.2 __2 O . .
uc " A uC 1
-Aze -gg-8 =0 .

Lo o

The multiplication of -the above equation by (—RZIA ﬁz) and a rearrange-

ment resultg in,
2

32 c o {=o L RE 1 duc
[(Aﬁ2 ) a ' )l J‘ g(glag + [(__)(A Y I JTIS - [(T)(Eé Ex—)] g
dL
[(Ro) (,,L T ]Tls + [——] [L—R] g' = 0 . (3-11)

The modified Reichardt's inductive theory, in conjunction with
the assumption of self-similarity of the flow, results in the additional

requirement,
H{s ¥ ['ﬁg]g} =0 . - (3-12)

Since R, A, L and {, are functions of x only, it is observed
that self-similarity is possible only if each of the square-bracket

terms in Equation (3-11) and (3-12) is independent of x, When this
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criterion is applied to the coefficients on the left hand sides of both

Equations (3-11) and (3-12), one obtains,

D
2 ul
R a ¢
)z ) = 9 , (3-13)
Au
[ 64
-2
R2 1 duc
TN =% - e
uC
Lo %o 2, (3-15)
A dx ‘
fﬁ = Cl+ s and : (3-16)
8]
S , (3-17)
]

where €;, C3, C3, C; and ¢ are constants, Equations (3+15) and (3-16)
together imply

an, | | (3-18)

vhere k is a constant, If Equation (3-18) is integrated with respect to
®, one gets

L, = ks ' (3-19)

where the constant of integration vanishes when an infinitesimally small

slit is assumed., Substitution of Equation (3-19) into Equation (3-17)

gives
R=2Xx . (3-20)
€ .
From Equation (3-15),
Lo dLo
A=, & -
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where the constant, Cq, characterizes the particular form of momentum
transfer length, A , basic to the flow geometry, For the present problem,
following Ahromovichsl4) the constant is incorporated into the charac-

teristic jet thickness by assuming that

[

dL
c

A= 59 = - _ ' (3-21)

Lb may be eliminated from Equations (3-21) and (3-19), i.e,,

2

A= L. o (3-22)

mlw

X

Substitution of Equations (3-20), (3-21) and (3-22) into Equations (3-13)
and (3=14), yields,

£2 : -2
u L du
R a c o 2 x [ :
SR TS ST ¢ » and (3-23)
4 uC
2 d'z 4w
u K
R /1 c 2 x =
TS )= S 2 ’ (3-24)
uC : ¢ uc

regpectively. From both Equations (3-23) and (3-24), it is seen that

O , (3-25)

where a is a constant. 'In view of Equation (3-20), if it is expressed in
pﬁlar coordinates, the trajectory 6f the jet centerline observes a loga-
rithmic spiral curve, Giles et al.(16) have demonstrated from analysis
and exﬁériments that for turbulent wall jets whose centerlines are

logarithmic spirals, the velocity at the centerline may be expressed as

e oaxt o (3-26)
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a result which shall be adopted here.
If one substitutes Equations (3-19), (3-20), (3-22), and (3-26)
into Equation (3-16), one obtains a complete dimensionless equation in

terms of similar variables, viz.,
(= |
g" + 2Tg' + 28 + e{?TE + g' - %I ; g(g)dé} =0 . (3-27)
., &=

In view of the boundary conditions for u in Equatioms (3-7a) and (3-7b),
and the definition for g(TD.in Equation (3-9), the boundary conditions
for g(7) are obtained as

g(0) = 1 and  (3-28a)

g'(ﬂ) =0 , (3-28b)

with order requirements,

I}
o
-
oo
[»]
&

lim g(M) (3-29a)
T
limg'(M) = 0 . (3-29b)
"q-bm

Equation (3-27), together with the boundary conditions (3-28a) and (3-28b),
represent the complete analytical formulation of the problem at hand.

For ¢ = 0, Equation (3-27) reduces to

g+ 2Mg' + 25 =0 , (3-30)
which is the governing equation for the free jet case,
In order to obtain g(T), a perturbation method of solution is used

with the plane free jef solution as the zeroth order approximation.
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CHAPTER IV
 ANALYTICAL SOLUTIONS

Assugptions_and Boundary Conditioms -

Equation (3-27) derived in Chapter III is to be solved by using

perturbation techniques, Equation (3-27) may be rewritten as

g" + 2N’ + 2g + e{?ﬂg +g' - I§=:F(c)dﬁ} =0 , (3-27)
subject to |
g(d) =1 ,and (3-28a)

g'(0) =0 , (3-28b)

with order requirements,

lim g(n) = 0 , and . (3-29a)
Tl—-mo
1im gt (1) = 0 . (3-29b)
T‘—tm

With the assumption thaf € 1s a small quantity the solution of the present

problem may be expressed in terms of a perturbation series of the form
2
g_=g0-_l- cgl+€g2+--- . (4-1)
In the present solution omly termé up to order ¢ shall be retained, i.e.,

g=g,+ e . : (4-2)

A substitution of Equation (4-2) into Equation (3-27) yields,
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' L=
)] ] [ t , t —
go + Qﬂgo + 230 + e{gl + 2Tgl + 2g1 4 Eﬂgo + go-%I;; go(;)dg}_o,

i (4-3)

1f Equation {4-3) is to be satisfied identically in ¢, then the coeffi-
cient of the powers of 0(30) and 0(e) must separately vanish. One thus

obtains,

gy + 2Mg, + 2g =0 , and | (4-4)

1t gm .
gy + 2Mg] + 2g, + 2N, + & - 2j€=ngo(g)d; =0 . (4-5)

After comparing Equation.(héh) te Equation (3-30), it is recognized that
- the solution for g, in.Equation {(4-4) i; the solution to the.free jet
case if € is made to vanish, The boundary conditions for the free jet
solution, g,, are

g,(0) =1 , and | (4-6a)
g' (=0 | (4-6b)

with order requirements

%im go(ﬂ) =0 , and (4-7a)
lim g/ (M) =0 . | (4-7b)

Tl-*co
The boundary conditions for g in Equations (3-28a) and (3-28b) and the

definition for g in Equation (4-2) together imply that the boundary

conditions for g, are
g1(0) =0 , and : (4-8a)

g =0 , (4-8b)




with order requirements

lim Sl(ﬂ) = O J_and
ﬂ"’m
1im gi(ﬂ) =0 .
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(4-9a)

(4-9b)

~ With the boundary conditions (4-6a) and (4-6b), (4-8a) and (4-8b),

the solutions for g, and g, may be obtained respectively. Once the

solutions are obtained they are substituted into Equation (4-2), thus

giving a complete solution for the present problem valid up to the first

order of perturbation.

Solution for go-Two-Diménsional Free Jet Case

The differential equation governing g, is

(]
<
-

]
1"
& " 2ﬂg0 * 2go
or d \
1] a =
which is subject to the boundary conditions
go(O) =1 , and

3'0(0) = 0 )

with order requirements

t
o
-
o
Bl

%ﬁflso(n)

|
L]

lim g' (")
e ©

(4-8)

{(4-b6a)

(4-6b)

(4-7a)

(4-7b)
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If one first integratélequation (4-4) twice with respect to 1),

and then applies the boundary conditions (4-6a) and (4&6b), one obtains

g = e (4-10)

It is interesting to note the asymptotic boundary conditions for
a free jet case, namely the vanishing velocity and its gradient at T
it is seen that Equation (4-10) satisfies the order requirements (4-73)
and (4-7b) automatically, As expected in this prﬁblem, the solution for
g, 1s unique. Results of computation of 8o are given in Table 1. A

graphical representation of g, is shown in Figure 3.

'Solution for gy

The substitution of the expression for g, into Eqﬁation'(A-S)

gives the differential equation for g1, viz.,
" &=" -Ce : .
g, + 2Ma! + 2g, + gj e ac -/ ™ = 0 , (4-11)
1 1 1 c=0

~ with the boundary conditions

50 =0 (4-8a)
s'1(03'= o (4-8b)

and the order requirements ) | %
lim g, (M) = 0o , (4-92) '!
T]"'°°
lmgl(M) = 0 . (4-9b)




Table 1. Solutions for gy and g

Ul g0 4]
.00000 1, 000000000 . 000000000
.05000 .997503117 .002212812
.10000 . 990049824 . 008486472
. 15000 .977751233 .018605102
20000 .960789435 .032135593
.25000 .939413056 .048645254
. 30000 .913931184 067670580 .

. . 35000 .884705909 .088728063
40000 .852143787 .111325312
. 45000 .816686481 .134971708
. 50000 . 778800778 .159188874
55000 . 738968484 .183519926
.60000 697676331 .207538165
.65000 .655406259 .230853956
. 70000 - ,612626396 .253120773
. 75000 - .569782823 .274039149
. 80000 L527292423 .293359868
.85000 485536896 .310884684
. 90000 444858074 .326466739
.95000 .405554507 . 340008624

1.00000 .367879443 .351460226

1.05000 .332039956 .360814698

1.10000 .298197284 .368104674

1.,15000 .266468301 .373396829

1.20000 .236927764 .376787238

1.25000 .209611395 .378395278

1.30000 - .184519531 .378358975

1.35000 .161621194 .376829095

1.40000 . 140858425 . 373964965

1.45000 . 122150674 .369929142

1.50000 .105399230 364884354

1,55000 090491446 . 358989097

1.60000 .077304742 .352395758

1,65000 .065710275 .345247317

1.70000 .055576215 .337676592

1.75000 046770625 .329804122

1,80000 .039163898 .321738366

1,85000 .032630759 .313574467

1.90000 .027051848 .305395316

1,95000 022314916 .297270965

2,00000 .018315640 .289260246

.014958136 .281410523

2,05000

28




Table 1. (Continued)

T &o 81
2,10000 .012155180 .273759734
2.,15000 .009828196 .266336273
2,20000 .007907055 .259161197
2.25000 .006329717 .252248157
2.30000 .005041761 .245605370
2.35000 .003995847 .239235770
2.40000 .003151112 .233138578
2,45000 .002472563 .227309475
2.,50000 .001930454 .221742045
2.55000 .001499685 .216427429
2,60000 001159229 .211356035
2,65000 .000891594 .206516758
2,70000 ,000682328 1,201898530
2,75000 ,000519575 ,197489597
2, 80000 - ,000393669 .193278659
2,85000 000296786 .189254194
2,90000 ,000222630 .185405388
2,95000 000166170 .181721603
3,00000 .000123410 .178193051
3,05000 .000091196 .174809979
3.10000 .000067055 .171563862
3,15000 .000049058 . 168446077
3,20000 .000035713 .165449131
3.25000 .000025868 .162565656
3,30000 L000018644 .159789098
3,35000 .000013370 .157113178
3.40000 . 000009540 .154532244
3.45000 .000006773 .152040901
3,50000 . 000004785 .149634322

29
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Figure.3. g , the Dimensionless Velocity
Function for Free Jet Case
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If one first integrates Equation (4-11) from T = 0 to Tj= T, and

then applies'the boundary coﬁditions (4-8a) and (4-8b), one obtains,

=N 2 e
gi + 2Ng) + 2ﬂjg_0 et ag + e . Jﬂ_ MT=-1=0 . (4-12)

ne

After multiplicdtion by the integrating factor, e , an integration of
Equation (4-12) from Tj= 0 to T/ = T, with the boundary conditions (4-8a),

gives,

2

. : __ o
o -0 {=1) _ 2 ll £=" 2.
g = A E . = g e - ngo e ¢ i + e J.,;go ec’ ag . (4-13)

- Also it is interesting to mote that g, vanishes as T} approaches
infinity in Equation {(4-13); furthermore,
lim 27T, = 1 (4-14)
'n-.m

' also vanishes asT~ ®, In other words,

hence, from Equation (4-12), g1
both 8, and gl' satisfy the order requirements (4-9a) and (4-95) auto-
matically. Results of computation of g, are given in Table 1, A

graphical representation of 2, is shown in Figure 4.

Solution for g

Substitution of the solutionsz for o and gl, which are expressed

in Equations (4-10) and (4-13) respectively, intc Equation (4-2), yields,

. 2.=n .2  (4-15)
e = e oE=N R =M ¢
g(M = e L e‘{_ 2” - g e . Jg_oeg ag + e I§=0 e dg}
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The Pressure Distribution Along the Jet Centerline

The pressure distribution along the jet centerline is obtained by

setting y = 0 in Equation (3-4), viz,,

=0

® e =2 -
% e‘[c=.0 s(C)ac : RS 16)

Substitution of Equations (4-2) and (3-16) into Equation (4-16), gives,

P~ f’ | - L= : . .
..°°p_c & ex lj O[SO(;) + egl(g)]ag . (4-17)
{__"= .

If terms of 0(82) and higher order are neglected, one obtains,

.Pm'Pcm ST T (4-18)

The Growth of the Free Shear Layer

It is convenient to express the growth of the outer shear layer in
terms of the trajectory of the half-maximm velocity peoint, i.e,, at
I = ’l]c/2 v = yc/Q) where u = 3u.. From Equation (4-2),
1l ' '
T = go('ﬂc/a) + Sgl(ﬂc/Q) .

| 2
It is noted that 30(1.1774) = 1/4 since g, = e M s it follows that

8oL 1774) - &,(T, /p) = o8y (T, 1) - (4-19)

From the mean~value theorem,
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go{Me/a) = 8(1.27Th) = (1 5 - 1.2TM)e; (¢) (4-20)

where 'ﬂc/2< { < 1.1774. By approximation, it Is possible to let
Cm LITTH

Equation (4-20) then becomes,
'go(nc/z) - 8o (1.277H) = (T 5 = 1.2TTh)gy(1.1774) . (4-21)

If one compares both Equation's (4-19) and (4-21), one imediately

obtains,

- (Ng/p = 22778y (1.277H) = g (T p)
. -2 o
it is seen that go'(1.1774) = - 0.5887 since g = e__-n , the abqv?e

equation is therefdre satisfied by

Tefe = 11774 = 55857 ©1(esa) (4-22)

From Equation (4-19) if € is small enough, it imples that the difference
between go('ﬂc/‘e) and g (1.1774) is small, and ncﬁ may be approximated by
1.1774 , From Figure 4 or Equation (4-13), g1(1.1774) = 0.3754, and thel '
substitution of gy(1.1774) into Equation (4-22) along wit_b'ﬂc/é =Ye/2 /Ly

results in

-

e/o 0.375k
i‘;L- =1.1774 + 6(6_%87()

The subsgtitution of Equation (3-~19) into the above equation gives the

expression for the growth of the outer shear layer, i.e,;
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¥ . » '
—fc@ = K[1.1774 + e(0.6376)] . (4-23)

If k is expanded to generalize the free jet case, it gives

k =k, + €k (4-24)

1 >

| . - _ _
where terms of 0(¢) and higher have been neglected. Equation (4-23) then

becomes

¥ - | | -
—;@ = (1.177h)k, + [(0.6376)K, + (L.177h)s) (4-25)

" again where term of order of O 32 ) has been truncated, It appears that .
a certain amount of empirical information is needed in Equation (4-25)

to evaluate both ko and kl. |

Solution for h

It is recalled that,

h(Tl) = '1_1; s
u
c

and from Equation (3-12)

A ' :
ne-gfor e}
o] .

if the expressions for A and L,, i.e., both Equations (3-22) and (3-19)

respectively, are substituted intec the above equation, one gets,
- L. - 4-26)
h== -2- 2 + eg . . (

Suybsitution of.the expressions for g and k, i.e., Equations (4-15) and

(4-24) respectively, into Equation (4-26), yields,
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2 2 : 2 =1 2 o
- - - 5 ) 1
) (k-27)
where terms of order of 0(62) and-highe; have been truncated,

A perturbation for h(T), the transfer of x-momentum with the

velocity v, may be expressed as

h =h + eh (4-28)
where h  is the solution for free jet case and h is valid up to the

first order of approximation. Substitution 6f Equation (4-28) into

Equation (4-27), then a collection of the same orders for €, yields,
(4-29)

; (4-30)

where kb and k, have to be determined experimentally. A graphical

representation for hy/k,, the free jet case, is shown in Figure 5.
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» b (D /K

Figure 5. hofko, the Dimensionless Momentum

Function for Free Jet Case
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CHAPTER ¥
DISCUSSION OF RESULTS

Analytical work presented in this investigation concerns only
the outer free shear layer of a curved wall jet; in order to present a
total picture of the problem, it is necessary to study the development
‘of a turbulent boundary layer over a curved wall:. Solutions for the
free shear layer and the boundary layer then need to be matched at the
maximum velocity point, or the jet centeriine. Meanwhile, the effect of
separation of the flow has not been inc}uded'in this problém because it
is primarily a property of the turbulent boundary layer which is sand-
wiched between the free shear layer_and the wall,

Experimental data available in the literature on'plane wall jets(g)
indicatés that the behavior of the jet growth depends significéntly on
the development of the cuter free shear layer. Hence if one assumes
there is no wall friction, the radius of curvature of the jet centerline,
R, obtained in Equation (3-20), may be qualitativelﬁ viewed as the locus
of the wall, 1.e,,

X - (5-1)

R =
o]

o =

where R, is the radius of curvature of the wall. This is the equation of

a logarithmic spiral. In addition, from Equation (4-18),

where ﬁs is the pressure on the surface; in other words, the pressure

distribution along the jet centerline can be identified with that along
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the surface of the wall if the wall friction is neglected. It is also
seen from Equation (4-18) that, if ¢ is made to vanish, there is no
difference in pressure between the jet and the ambiept field, i.e., the
pressure field is uniform, This is in agreement with the plane free jet
case where the pressure gradient across and along the jet is assumed to
vanish,

If one comnsiders the solution for.g_which has been expressed as,

8 =8y, " 8 (4-2)
where g = uzfﬁg s
-
g, = eV, and (6-10)
' 2 L= .2 p240= .2

g=0 ¢=0

it can be seen that g, exhibits.a free jet profile, However, this
solution may be rendered more useful by considering the influence of
entrainment of fluid from the surrounding still medium. As pointed out
by Newman(g), it becomes neceggary to include the process of entrain-
ment in any theoretical analysis of the jet flow. Newman(17) has

suggested that the mean-velocity profile for a free jet issuing into

the still air can be represented with fair'accuracy\by

u
= - ¢ © (5-2)

where K/2 = 0,693 and §2= y/yélz , and yé,z is the point where the

velocity equals half of maximum jet velocity in free jet cése. Equation
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(5-2) has been observed to be consistent with experiments.(l?) A com-

parison of Equation (4-10) to Equhtion (5-2) yields,

JEE =1 | | (5-3)
or

M = 1.17748 | (5-4)

The characteristic width of the jet, LO', can then be redefined

following Equation (5-4) as . _
yf
c/2 .
= 5-5
Lo ™ Tamm . . (5-3)

On the other hand, if 7| is transformed according to Equation (5-4),

the solution for the free jet case becomes

- 2
e-1.586§

6. (8) = g (1.1774¢) = (5-6)

It follows that the solution for g; may then be expressed as

S

= T 138662 ¢=t 2
0y(8) = gy (1a7rhg) = L - IR an 0e'l'386§ a +

. et (5-7)
1177k L . 3867 ,[ oL 386¢% a

The solution for the velocity profile is therefore equivalent to,

' £=¢
2 . 2 2
a(e) = o-1-38657 e{i,_’g _ 1{211 -1.386%"_ l.lTTll oo e-1.386g ac

2 .£=E (5-8)
¢ 1T & 1-30E j o1-386¢ d;}

¢=0
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Results of computation of G, and G, are given in Table 2. The
graphical representations 6f G, and G are shown in Figures 6 and 7
respectively,

On the other hand, if both Equations (4-29) and (4-30), i.e., the
transfer of x-moméntum with the velocity v, are transformed according to

Equation (5-4), one obtains,

1

H (£) = h (1.1774€) = 1.177kk § o~1-3%65 ’ (5-9)
' 2
Hl(g) = hl(l.l'r'rhg) = 1.177hk § e"1-38687
- 2
’ o = 2 —l-386€
+ K [1.386 e-l.§86§ jg : 31'3_8& dl;—&(l.l??lag e s
© £=0 - 2 2

vhere ko and kl have to be determined experimentally. The final expres-

sicn for the transfer of u-momeéntum with the velocity v is equivalent to

-1.3866°, -1.386¢°

H(g) = k (1.1774)E e ofr1mrine

. (5-11)
. 2 oL 2 2
+ & [1.386 ¢ 13865 [7 7 138607 5’,‘;&(1.1774)5 e 1-3868° %]}
(=0

A graphical representation for hofko, the free jet case, is shown in

~ Figure B,




Table 2. Solutions for G0 and Gl

il

g Gy Gy
. 00000 1, 000000000 . 000000000
J05000 . 996540986 .003065488
. 10000 .986235604 .011658403
. 15000 .969296232 - .025403712
. 20000 . 946068779 .043563809
.25000 . 917020909 .065400321
. 30000 .882726386 .090130411
. 35000 .843846224 .116951630
. 40000 .801107608 . 145066343
. 45000 .755281314 173704516
. 50000 . 707158819 .202144783
. 35000 .657529935 .229731496
.60000 .607161783 .255889453
.65000 .556780055 .280133188
. 70000 .507052876 .302074112
. 75000 " L458577953 . 321421526
. 80000 .411873102 .337982379
. 85000 .367370293 .351655126
. 90000 .325413059 .362423748
. 95000 .286257084 .370346457
1.00000 .250073608 . 375546463 -
1,05000 .216955086 .3781974983
1.10000 .186922731 .378516093
1.15000 ".159935456 .376742747
1.20000 .135899460 .373137601
1,25000 114678247 367965721
1,30000 .096102504 .361491051
1.35000 079979498 .353966638
1.,40000 .066101757 .345631469
1.45000 054254740 .336703364
1.50000 L044223458 327378921
1.55000 035797941 .317829281
1.60000 028777544 .308202285
1,65000 - 022974166 .298620261
1, 70000 .018214453 .289184000
1. 75000 014341113 .279971637
1.80000 L.011213467 .271043688
1.85000 008707376 .262442335
1,90000 006714675 -.254196793
1.95000 005142248 .246322764
2,00000 .003910853 .238827359
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Table 2 (Continued)

g Go Gy
2,05000 .002953794 .231708428
2.10000 ,002215539 224959174
2,15000 ©,001650322 ©,218566794
2.,20000 ,001220811 " .212516889
2.,25000 , 000896847 206791496
2.,30000 ,000654303 -,201372955
2,35000 000474056 .196241697
2.,40000 000341092 .191379772

" 2.45000 000243726 .186768187
2,50000 000172951 .182390304
2,55000 .000121881 .178228790
2,60000 , 000085298 .174269026
2.65000 .000059283 .170495830

© 2,70000 .000040918 . .166896749
2.75000 .000028047 .163458850
2,80000 ,000019092 ,160171632
2,85000 000012906 .157024249
2,90000 000008665 . 154007975
2,95000 000005777 ., 151113601
3.00000 .000003825 .148334073
3.05000 .000002515 . 145661488
3.10000 000001642 ,143090103
3.15000 .000001065 .140613161
3.20000 , 000000686 138225922
3.25000 .000000439 135922628
3.30000 000000279 133699317
3.35000 .000000176 .131551011
3.40000 000000110 .129474431
3.45000 . 000000068 . 127465168
3.50000 .000000042 125520544
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G_, the Transformed Dimensionless
Velocity Function for Free Jet Case
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

Conclusions
Thg flu%d dynamics of the outer free shear layer of an incom-
pfessible éwo-dimensioﬁal turbulent jet blowing over a curved wall has
been analyzed by utilizing tﬁe Reichardt's concept of turbulent momentum
for self-similar velocity profiles, The results of the amalysis indicate
a successful use of the technique when applied to such flow éields.
Thg conclusions drawn from this investigation.are:

1. The velocity profile for the curved free- shear layer can be

expressed as,

L3 = &M = g,(W + eg (M)
where '
. -T]E
g,(M =e! (4-10)
) : o g=" o) 2 &=1 '
g (M =4 - e J g0 ¢ T agre J =0 © L 4-13)
and _ .
T = ¥/L,

go(g) being the governing solution for plane free jet,

2. The radius of curvature of the jet centerline maj be expressed by
R=§ x | (3-20)

which implies that the jet centerline obsexves a logarithmic spiral

‘for a self-similar flow.
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3, The decay of maximm velocity can be expressed as
nw o« x . ' (3-26)

4, The pressure distribution along the jet centerline is given by,

P, = P o AT ol - : _ (4-18)
o € 75 .

5. The growth of the outer shear layer is obtained as,

Y - ‘
/2 (1.a7700k, + o[(0.6386)k, + (1.1774)k,] (4-25)

where both ko and k., must be determined experimentally.

1

6. The transfer of x-momentum in transverse direction can be expressed

as, .
&/ @ = n(n) = (N) + en, (1)
where
2
h (1) =kne , (4-29)
2 2 . 2 -
By () = kM e i [0 e S S g - ”@ e =31 o)

ho(TD being the governing solution for the plane free jet.

Recommendations

Several suggestions for extending the present investigation can
be summarized as follows:

1. Use of a more general formulation for shear stress, such as

T_oy @2 _ 1
p vT(ay ¢ R)

where Vip is the eddy kinematic viscosity, is recommended instead of the

ot e
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v

present formulation where C is assumed to vanish, It may be noted
that such a modification will allow a nonvanishing shear stress at
the jet centerline.”

As mentioned before, the width of the slot at the nozzle exit is
assumed infinitesiﬁally small and therefore the present solutions

are not valid near the exit. An improvement is necessary by which

. the down stream conditions can be matched to those at the slot, thus

incorporating the width of the slot, d, in the solutions as a parvameter.

A further look into the need for higher order corrections in terms of

. the parameter € may prbve fruitful,
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APPENDIX

The computer program used to obtain the graphical representations

of the functions 8, and g, is written in Fortran IV language and using

the Burroughs B=-5500 cdmputer at the Rich Electronic Computer Center at

the Georgia Institute of Technology., Following are the symbols and

the program.

Symbols Used in this Work

c = JT/2 = 0,88623 : ) ‘
Y = exp(—xz)
Z = exp(x?)
J-X
INTGLl = o €Xp (-xz)dx
er

Lo
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Program

DIMENSION Y(101),Z(101),INTGL(101),INTG2(101)
REAL 1NTG1,1NTG2

READ(5.100)DX,N

WRITE(6,150)

=0.88623

Ca(PT/4)**1/2

DO 5 I=l,4

X=(1-1)*DX

Y(I)-Exp(-x-éx)

Z(D=1./¥(1)

INTG1 (1) =0

INTG1(2)=(Y (1)4+Y (2) )*DX/2.

INTG1 (3)= (Y (1)+4.#¥ (2)+Y (3) )*DX/3, -

INTGL (4)=(Y (1)43.%¥ (2)43. ¥ (3)4Y (4) )*DX*3. /8,
INTG2 (1)=0 |

INTG2 (2)=(Z(1)+2(2))*DX/2.

INTC2 (3)=(Z(1)+4. %2 (2)4Z(3) )4DX/3..
IuTcz(4)-(2(1)+3.*z(2)+3.*z(3)+2(4))*nx*3./s.
DO 15 I=1,4

X=(1-1)*DX

A==TNTG1(I)

B=Y (I)*INTG2 (1)

G1=C*(1-Y (1I))+A+B

WRITE(6,200)X,Y(I),Gl
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Program (Continued)

DO 20 I=5,101
X=(1-1)*DX’
Y (I)=EXP (-X*X)
Z(I)=1,/Y(1)
INTGL (1)=INTG1(I-2)+(Y (I-2)+4. %Y (I-1)+Y(I))*DX/3.
INTG2 (1)=INTG2 (I-2)+(Z(I-2)+4.*Z(1-1)+Z(1))*DX/3,
A=-INTG1(I)
B=Y (I)*INTG2 (1)
Cl=C*(1-Y (I))+A+B
20  WRITE(6,200)X,Y(I),Gl
100 FORMAT(F10.5,15) _ | 3
150  FORMAT (15X, 3HETA, 12X,2HGO,15X,2HG1) |
200  FORMAT(10X,F10.5,2F15.9) | é

END
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