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SUMMARY 

 

 Increased levels of carbon dioxide in the atmosphere are now widely attributed as 

a leading cause for global climate change. As such, research efforts into the capture and 

sequestration of CO2 from large point sources (flue gas capture) as well as the ambient 

atmosphere (air capture) are gaining increased popularity and importance. Supported 

amine materials have emerged as a promising class of materials for these applications. 

However, more fundamental research is needed before these materials can be used in a 

practically relevant process. The following areas are considered critical research needs 

for these materials: (i) process design, (ii) material stability, (iii) kinetics of adsorption 

and desorption, (iv) improved sorbent adsorption efficiency and (v) understanding the 

effects of water on sorbent adsorption behaviour. The aim of the studies presented in this 

thesis is to further the scientific community’s understanding of supported amine 

adsorbents with respect to stability, adsorption efficiency and adsorption behaviour with 

water.  

 The stability of primary amine functionalized silica adsorbents with differing 

alkyl linker length was investigated with respect to thermal, oxidative and CO2-induced 

degradation to assess how differences in stability may result from different chain lengths. 

In conjunction with these studies, DFT calculations were used to assess CO2 induced urea 

formation pathways, as well as to compare differences in stability between the varied 

alkyl chain lengths. Differences in stability were observed between the different 

materials. It was found that amine adsorbents with a methyl alkyl group between the 

amine and silicon atom have no thermal stability, and display a severe loss of amine 



 xvii

content upon heating. Adsorbents with ethyl and propyl alkyl chains demonstrated 

oxidative and thermal stability, but were prone to deactivation via urea formation in the 

presence of high concentration and high temperature, dry CO2 for prolonged periods. A 

greater extent of deactivation was observed for materials with propyl alkyl chains, this 

was attributed to (i) the higher amine efficiency of propyl-based adsorbents compared to 

ethyl-based materials and (ii) the ability of propyl materials to interact with surface 

silanols. DFT calculations showed that the lowest energy route to urea formation was 

through an isocyanate intermediate, and also that amine or silanol assisted deactivation 

lower the energy barrier of deactivation. 

 A fundamental study on the adsorption properties of primary, secondary and 

tertiary amine materials was done to evaluate what amine type(s) are best suited for ultra-

dilute CO2 capture applications, specifically air capture. A series of comparable materials 

comprised of primary, secondary, or tertiary amines ligated to a mesoporous silica 

support via a propyl linker were used to systematically assess the role of amine type 

towards unary CO2 and water adsorption. It was found that primary amines are the best 

candidates for CO2 capture from air, as they possess both the highest amine efficiency for 

CO2 adsorption as well as enhanced water affinity compared to other amine types.  

 Lastly, a study on the effect of low amounts of co-adsorbed water on CO2 

adsorption of primary amines was performed. Three materials were evaluated with amine 

surface coverages ranging from sub-monolayer to multi-layer. It was found that 

enhancement in CO2 adsorption when co-adsorbing water was most pronounced for sub-

monolayer amine adsorbents. In-situ FTIR suggested that one explanation for this 

observation could be due to a different adsorbed species in the presence of humidity for 



 xviii

this material. Whereas ammonium carbamate was the only species detected for humid 

adsorption in a material with multi-layer amine coverage, sub-monolayer materials were 

found to form bicarbonate at longer timescales upon contact with humid CO2, in addition 

to the traditionally observed ammonium carbamate.  

 Overall, the results from these studies serve to further the fundamental 

understanding of supported amine adsorbents. 

 

 



 

1 

   Chapter 1

 

AN INTRODUCTION TO SUPPORTED AMINE ADSORBENTS FOR 

CO2 CAPTURE FROM FLUE GAS AND AMBIENT AIR 

 

 Parts of this chapter are adapted from ‘Bollini, P.; Didas, S.A.; Jones, C.W. 

Amine-oxide Hybrid Materials for Acid Gas Separations. J. Mater. Chem. 2011, 21, 

15100-15120.’ with permission of The Royal Society of Chemistry, and from ‘Bollini, P., 

Amine-oxide Adsorbents for Post-Combustion CO2 Capture. Dissertation, Georgia 

Institute of Technology, 2013.’ with permission of Praveen Bollini. 

 

1.1 Introduction & Motivation 

 The ever-increasing concentration of CO2 in the atmosphere associated with fossil 

fuel combustion has been linked to significant global climate change over the course of 

the last century. As a result, a significant amount of recent research has focused on the 

development of materials and technologies that might be used to capture CO2 from fossil 

emitting processes, especially from large point sources such as coal-fired power plants.1,2 

Additionally, there is a growing need to purify natural gas streams that contain CO2, as 

many large methane reservoirs also contain vast volumes of CO2. 

 For post-combustion CO2 capture from large point sources, well-established 

absorption processes based on solutions of aqueous amines are considered the benchmark 

technology that is most likely to be widely implemented in the near future. This 

technology, which has been practiced commercially on various scales for a number of 
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years, is technologically feasible but carries with it high process costs, with the cost of 

regenerating the amine solution in the CO2 stripping step being identified as a particularly 

expensive step. In the longer term, as a potentially lower cost option, many researchers 

have explored the use of solid adsorbents as potential alternatives to the use of amine 

solutions. An array of solid sorbents that selectively capture CO2 from dilute gas streams 

are available.3,4 These include materials that capture CO2 via strong chemisorptive 

interactions and materials that weakly bind CO2 via physisorptive interactions. Generally, 

the chemisorbents are more effective at adsorbing CO2 from wet gas streams, such as flue 

gases as well as ultra-dilute gas streams, such as ambient air. 

 Among the array of available adsorbents, oxide-supported amine materials have 

recently emerged as a promising class of solids that can affectively adsorb CO2 from 

humid gas streams at low temperature. The solids can then be regenerated using a variety 

of approaches, including use of a temperature swing (TSA), pressure or vacuum swing 

(PSA or VSA),5 or perhaps even electric-field swing adsorption (ESA) methodologies.6 

Although oxide-supported amine materials have been used since 1992 to capture CO2 

from fluid streams, it was not until the last decade that significant activity on the design, 

synthesis and application of a variety of silica-supported amine materials significantly 

accelerated. In this chapter, a brief review is presented of the recent advances in the use 

of silica-supported amine materials for adsorption of CO2 from dilute gas streams. 

Particular emphasis is placed on the significant research needs that exist in this still 

growing field. Detailed discussions of sorbent stability with respect to oxidation and urea 

formation, as well as air capture are avoided as they are discussed in greater detail in later 

chapters. At the end of this chapter, a summary of the critical research needs is presented. 
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1.2  Classes of Amine Adsorbent Materials 

 The array of silica-supported amine adsorbents has been previously categorized 

into three groups as shown in Figure 1.1.5 While oxide-supported amine materials have 

been well-known for decades for use in chromatographic separations or for applications 

in catalysis, their use for the selective adsorption of CO2 in separation applications was 

first reported by Tsuda in 1992.7,8 

 

 

Figure 1.1. Porous silica supports can be incorporated with CO2 adsorbing amines in 
three fashions: physical impregnation, covalent tethering and in situ polymerization 
within the pores. 
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 Class 1 adsorbents are conceptually the easiest to prepare and may be the most 

practical for use on large scales in gas separation applications.3 These materials are based 

on the physical combination of pre-synthesized amines and various silica supports. 

Typically, amine-containing polymers are used like those presented in Figure 1.2, as 

these have low volatility and the silica-polymer composites are more robust to a variety 

of treatment conditions. However, as noted below, amine-containing small molecules 

have also been used, including amine molecules that are well-studied in amine absorption 

applications. Typically, porous supports are impregnated with the amines, to give 

composite materials with the amines physically adsorbed onto or into the support. The 

introduction of this class of materials for applications in CO2 capture was by Song in 

2002,9 and since then, numerous other groups have further explored this basic design.9–21  

 Class 2 adsorbents are based on the use of small amine-containing molecules, 

such as organosilanes, that can form covalent bonds to the silica support. Examples of 

well-studied aminosilanes include 3-aminopropyltrimethoxysilane (APS), 3-(trimethoxy-

silyl)propylethylenediamine (diamine), and 3-[2-(2-aminoethylamino)ethylamino]propyl-

trimethoxy-silane (triamine), yielding one two or three amine sites per molecule grafted 

to the silica surface. Some of the most common aminosilanes are presented in Figure 1.2. 

These materials have been most often prepared by grafting of the amines onto pre-formed 

silica supports, but they can also be prepared by co-condensation with silica sources and 

included within the oxide framework during the silica synthesis.22 In the original 

application of this class of materials for CO2 capture, Tsuda followed a co-condensation 

approach.7,8 
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Figure 1.2. Common silanes and polymeric, amine-containing materials used for 
supported amine adsorbent synthesis. 

 

 The most recent class of silica-supported amine adsorbents, referred to as Class 3 

adsorbents, are prepared by the in-situ polymerization of reactive amine monomers on 

and in the silica support. While in-situ polymerization of amine-containing monomers on 

porous silica supports has been reported a number of times, for example in the work of 

Shantz23 and Rosenholm,24 their application for CO2 capture was first reported by our 

group in 2008.25 Materials of this class can sometimes be considered a hybrid of class 1 

and class 2 adsorbents, having the amine-silica covalent bonds of class 2 materials, and 
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the large site density of polymer amines commonly found in polymer-containing class 1 

materials. 

1.3 Adsorption of CO2 with Supported Amine Adsorbents 

 Amine-oxide hybrid materials adsorb CO2 by exploiting acid-base interactions 

between CO2 and amine groups immobilized onto the external surface or within the pores 

of a solid material. These amines are typically primary, secondary or tertiary amines. 

Primary and secondary amines (including sterically hindered amines) react with CO2 via 

the zwitterion mechanism, proposed by Caplow in 1968,26 as shown in Figure 1.3. In this 

mechanism, an additional free base is needed, which is typically water, a hydroxyl ion or 

another amine. Thus, theoretically, in the absence of water, two moles of amine are 

required to capture one mole of CO2 and in the presence of water only one mole of amine 

is required per mole of CO2 captured. Water thus improves the amine efficiency of 

carbon capture, i.e. the number of moles of CO2 adsorbed per mole of 

primary/secondary/sterically hindered amine. 

 

 

Figure 1.3. Zwitterion mechanism for CO2 capture (valid for primary, secondary, and 
sterically hindered amines) in solution. 
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 Tertiary amines capture CO2 through a different mechanism, as shown in Figure 

1.4. This mechanism was first proposed by Donaldson and co-workers in 1980.27 This 

reaction mechanism is accessible to primary and secondary amines as well but the rate 

constants for this base catalyzed bicarbonate formation are typically smaller than those of 

the zwitterion mechanism described above. From the adsorption mechanism it can be 

noted that CO2 capture by tertiary amines requires water, and under dry conditions 

supported amine adsorbents based on tertiary amines are not highly effective. Also note 

that the reaction mechanisms described above are based on mechanistic studies 

performed on CO2 capture by aqueous amines.26–28 Differences between the mechanism 

in solution versus on a solid surface, if any, are not well understood. 

 

 

Figure 1.4. Mechanism for reaction of tertiary amines with CO2 based on solution studies. 

 

 These adsorbents could potentially be used in a full-scale carbon capture process 

in a variety of configurations. Conventional packed bed configurations are routinely used 

for testing sorbents on the laboratory scale.25,29 However, this configuration is not likely 

to be easily scalable for these materials due to the high heats of adsorption of CO2 on 

amines and the intrinsic difficulty in managing heat transfer in packed bed reactors. 
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Potential commercial deployment configurations include fluidized-bed systems,30–32 

hollow fiber sorbents,33–35 and monoliths.36–38  

 Regardless of the contactor configuration in which an adsorbent is used, it will be 

evaluated based on certain performance criteria. For an ultra-large-scale separation 

process like carbon capture from flue gas, these criteria include a large CO2 adsorption 

capacity, rapid adsorption and desorption kinetics, selective adsorption of CO2 over other 

flue gas components, and stability under a range of practical operating conditions. The 

criteria for a large-scale air capture process would be similar to that of flue gas capture 

without the restriction of ultra-fast adsorption kinetics since operating times can be 

longer. However, an additional constraint to consider for this process is the need for a 

process configuration that allows for the movement of massive amounts of gas volume 

with low pressure drop, without the aid of natural draft that is found in flue gas stacks.39 

Therefore, before being implemented in any type of full-scale carbon capture application, 

adsorbents must be evaluated based on the aforementioned criteria. In this as well as the 

next several sections, these performance metrics will be discussed in the context of 

amine-oxide hybrid materials for CO2 capture. 

1.3.1 CO2 Adsorption Capacities 

 The CO2 adsorption capacity is a measure of an adsorbent’s potential to adsorb 

CO2 and refers to the number of moles of carbon dioxide that a unit mass of an adsorbent 

is capable of adsorbing under (typically) equilibrium conditions. Adsorption capacities 

are dependent on both the partial pressure of CO2 in the analysis gas and the temperature 

of operation and one must make sure that different materials are compared at the same 

temperature and CO2 partial pressure. Furthermore, while some authors report 
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equilibrium capacities, other report working capacities after a specified adsorption time, 

capacities that do not represent a thermodynamic equilibrium. 

 In general, in the absence of transport limitations, the adsorption capacity should 

track approximately linearly with the number of amine sites present in the adsorbent 

under the partial pressure conditions typical of flue gas (PCO2 < 0.2 bar). As shown by 

Sayari and others,40–43 at CO2 partial pressures greater than 0.2 bar, this effect is 

complicated by the significant contribution of physisorption on the bare oxide surface. As 

more amine-containing organic functional groups are incorporated into the solid, this 

should thus increase the chemisorption capacity but decrease the physisorption capacity, 

which is associated with the bare silica surface. As expected, in the case of class 1 

materials, it has been observed that the more polymer there is impregnated into the pores 

of the support, the higher the CO2 adsorption capacity.11,44 However, once the pores are 

filled, extra amine polymer deposits on the outer surface, giving a diffusion-inhibiting 

surface layer that slows adsorption kinetics and can reduce adsorption capacities.9,16,45
 

The highest CO2 adsorption capacity reported for class 1 materials is from Qi et al.46 The 

TEPA impregnated mesoporous silica capsules in that study exhibited CO2 adsorption 

capacities up to 7.9 mmol CO2 g adsorbent-1. The material was measured at 75C using 

pre-humidified 10% CO2 in argon as the test gas.  

 Apart from adsorption capacity, amine efficiency is another metric that can be 

used to assess CO2 capture performance. The amine efficiency of an adsorbent is defined 

as the number of moles of carbon dioxide adsorbed per mole of amine functional groups 

and is expressed as a fraction. It is a measure of the fraction of amine groups present in 

an adsorbent that may actively participate in adsorbing CO2 by chemisorption and was 
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first introduced into the literature by Yogo and co-workers who noted that water vapor 

had a favorable effect on the amine efficiency.47 Note that the theoretical maximum value 

for amine efficiency under dry conditions is 50%, in the absence of significant 

physisorption at non-amine sites.  

 As described in a previous review,3 adsorption isotherms of class 1 adsorbents 

show a plateau after a CO2 partial pressure of 0.3 bar and a very high slope at low partial 

pressures, thus demonstrating significant promise as materials for CO2 capture at low 

partial pressures (both capture from flue gas as well as direct capture of CO2 from 

ambient air).39 It is important to note that even though class 1 materials exhibit some of 

the highest CO2 adsorption capacities reported in the literature, they sometimes have 

kinetic, stability and regenerability issues, as discussed in section 1.5.  

 Class 2 materials differ from class 1 materials in that there is an upper bound on 

the number of CO2 capturing amine groups that can be present per unit mass of the 

adsorbent in the absence of silane polymerization (which better fills the support pores). 

This is because a monolayer or less of amine sites is prepared under most grafting and co-

condensation syntheses. Therefore, the density of amine sites is directly related to the 

accessible surface area, unlike in the case of class 1 adsorbents, where support pore 

volumes dictate the maximum achievable amine loading for a given aminopolymer. On 

the other hand, because the formation of only a monolayer of sites on typical mesoporous 

silica supports occurs, class 2 materials tend to have more open porosity compared to 

class 1 and class 3 adsorbents, resulting in fewer diffusion limitations and potentially 

faster adsorption and desorption kinetics. Sayari and co-workers demonstrated that the 

limitation on the amine loading can be overcome partly by prehydrating the silica surface 
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by adding a small quantity of water to the reaction mixture prior to adding the silane 

coupling agent.48 The presence of water molecules in the pores results in surface 

polymerization of aminosilanes, thus yielding much higher amine loadings than on 

previously reported class 2 materials, the highest being 8 mmol N/g silica. The optimally 

grafted material they developed showed a CO2 capture capacity of 2.65 mmol g-1 at 25C 

at a CO2 partial pressure of 0.05 bar under dry adsorption conditions. Appropriate 

synthesis conditions can allow for significant amine loadings along with good residual 

sorbent porosity in class 2 materials. 

 Class 3 materials can combine the high CO2 adsorption capacities of class 1 

materials with the regenerative stability of class 2 materials. Our group was the first to 

report the application of these class of materials for the separation of CO2 from flue gas.25 

Hyperbranched aminosilica (HAS) adsorbents were synthesized by the in-situ 

polymerization of aziridine molecules on and in a mesoporous SBA-15 silica support. 

The original HAS material, with an adsorption capacity of 3.1 mmol g-1, exhibited almost 

ten times the adsorption capacity of a simple class 2 material synthesized on the same 

silica support. Further investigations into the structure and performance of these HAS 

materials revealed that during the functionalization of the SBA-15 silica support, 

polymerization of aziridine at the pore mouths occurred below a critical pore diameter of 

5 nm, resulting in pore blockages.29 Using supports with larger pore diameters was 

identified as a possible alternative to avoid these pore blocking effects, however high 

amine loadings could not be achieved with the more porous supports.49 The HAS 

materials are promising candidates for CO2 capture, based on CO2 adsorption capacities, 

kinetics and selectivities. Nevertheless, more work is required to thoroughly understand 
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the synthesis of these materials and to be able to exercise control over the location and 

size of the polymer chains.  

 Overall, achieving high CO2 capacity with hybrid aminosilica materials is best 

achieved developing material architectures that can allow for a large loading of highly 

accessible amine groups. For class 1 materials based on amine polymers, this generally 

implies large pore volumes. For class 2 materials, it appears that large surface areas are 

critical, in the absence of silane polymerization, as the grafting surface area dictates the 

overall amine loading. For class 3 materials, the critical role of porosity is not yet fully 

elucidated.  

1.3.2 CO2 Selectivity 

 For any adsorbent, to be considered a candidate for CO2 separation it needs to be 

capable of adsorbing CO2 selectively over all the other major components of the gas 

being processed. In the case of flue gas and air capture, these components are nitrogen, 

water vapor and oxygen. Amine-functionalized oxide materials selectively adsorb CO2 

over both oxygen and nitrogen, as demonstrated in a number of publications.42,48,50 This 

is not surprising, as this is what nearly all nanoporous materials do,51 but the CO2-

selective amines allow for exceptionally high selectivities. Also, as explained above, 

water improves the amine efficiency of CO2 capture. The high selectivity of CO2 over all 

the major components of flue gas combined with the promotion of amine efficiency due 

to the presence of water represents a major advantage for supported amine adsorbents 

over physisorbents like zeolite 13X, that do not have high enough selectivities for CO2 

over the other gas components such as water.52 Other components of flue gas present at 

much lower concentrations, such as SOx and NOx, can adsorb strongly on supported 
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amine materials, as discussed below in section 1.5. Therefore, the flue gas stream will 

require significant scrubbing to lower the concentration of these contaminants to a level 

that makes the amine adsorbents stable for a sufficient number of cycles. Such gas clean-

up is also required for the benchmark amine solution technology, which is already well 

established. 

1.3.3 CO2 Adsorption Kinetics 

 In a large scale carbon capture process adsorption cycles will likely be on the 

order of minutes for flue gas capture and 30 minutes for air capture. Therefore rates of 

adsorption are critical to process economics. These rates determine the amount of 

adsorbent a process requires and hence, the size of the equipment for the CO2 capture 

process. Although there has been a tremendous number of studies measuring the 

equilibrium CO2 adsorption capacities of oxide-supported amine materials,3 providing 

valuable thermodynamic properties of the synthesized material, there has been very little 

work towards developing a quantitative understanding of the kinetics of CO2 adsorption 

and desorption for silica-supported amine materials. 

 In a first-of-its-kind effort to study the kinetics of aminosilica adsorbents, Serna-

Guerrero et al.53 modeled breakthrough curves of a silica supported class 2 material using 

three different kinetic models: a pseudo-first order model, a pseudo-second order model 

and a fractional order kinetic model (Avrami’s model). Of the three models used, 

Avrami’s kinetic model applied with a fractional order of 1.4 was found to give the best 

fit with the experimental data, which indicates that a complex adsorption and transport 

mechanism was present. The major limiting assumption in this study was that the entire 

packed bed adsorption process was isothermal. This assumption, while reasonable in a 
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first study, likely does not hold in the case of a highly exothermic chemisorption 

processes like CO2 reacting with amines. A later study from our group incorporated heat 

effects into the modelling of a combined breakthrough and modelling study for supported 

amine adsorbents and found two interesting conclusions: (i) heat effects were in fact 

negligible for lab scale conditions but would result in inaccurate predictions of 

breakthrough for large scale processes if they were neglected,54 and (ii) adsorbents with 

high loadings of amines exhibited heterogeneous diffusive behaviour of CO2 that led to 

depressed adsorption kinetics and premature column breakthrough.55 

 More recently, studies on the incorporation of silica-supported amines into hollow 

fibers have allowed for experimental and modelling studies on the adsorption and 

desorption kinetics of these materials in an industrially relevant setup.35,56–58 

Mathematical modelling of this system has demonstrated that supported amine hollow 

fiber sorbents can operate in rapid temperature swing adsorption (RTSA) processes with 

complete cycle times of 3 minutes.58 Under non-optimized conditions it has been 

determined that CO2 product purities of 90% and recoveries of 82% are possible. These 

results are very promising and indicate that supported amine adsorbents can allow for 

large quantities of CO2 to be captured and concentrated within a reasonable time frame. 

Further optimization of this system will allow for higher purities and selectivities to be 

achieved.  

1.3.4 Physical and Chemical Characteristics of Amine Adsorbents 

 Rationalizing the aforementioned performance criteria with respect to the physical 

and chemical properties of adsorbents is the key to developing new materials with 

improved CO2 adsorption performance. All three steps of the adsorbent synthesis: the 
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synthesis of the oxide support, the choice of amine and the method used to incorporate 

amine groups into the pores of the support have an influence on the final material 

properties. The effect of the method used to incorporate amines (which in turn determines 

the class (1, 2 or 3) of adsorbent) on the properties of the adsorbent has been discussed 

throughout this article. In this section, the significance of the choice of support as well as 

the active amine on the physicochemical properties of the synthesized material is 

discussed. 

1.3.4.1 Effect of the Oxide Support 

 The literature on amine-oxide hybrid materials for CO2 capture focuses almost 

exclusively on silica-based mesoporous materials as supports for amine-based adsorbents. 

One of the reasons behind this is the fact that silica supports have been found to be 

sufficiently stable using the conditions under which they have been tested so far, with the 

exception of reports from our group which showed that exposure to steam resulted in the 

breakdown of the mesoporous structure.18,59 This has prompted researchers working in 

the field to not only look at more stable silica supports but also non-silica based porous 

supports for CO2 capture.  

 In fact, a few authors have started to study CO2 adsorption properties of alumina 

based amine sorbents.10,18,60–63 Chuang and co-workers compared otherwise similar 

amine-impregnated adsorbents based on three distinct porous supports: a silica, alumina 

and an aluminosilicate BEA zeolite.10 Both the CO2 adsorption performance as well as 

DRIFTS spectra of the TEPA impregnated materials (class 1) were assessed. The 

alumina-based adsorbents showed the lowest adsorption capacities in this study, which 

was attributed to the acidic nature of the alumina support. It was suggested that the 
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interactions between the acidic alumina surface and the basic amine groups, rendered the 

amine groups less reactive to the CO2 molecules. In another study by our group, a basic 

mesoporous alumina was synthesized and compared to a mesoporous silica, both as 

prepared and impregnated with PEI.18 The basic alumina had higher adsorption capacities 

at both flue gas and air capture conditions than the silica adsorbent. This material was 

also found to be stable in steaming environments as compared to the PEI-silica composite 

and therefore could be a good candidate for processes which use steam stripping for 

regeneration. 

 Llewellyn and co-workers64 demonstrated through infrared spectroscopy and 

microcalorimetry measurements that the nature of the amine adsorption site is affected by 

the chemical nature of the support itself, supporting the hypothesis that attractive or 

repulsive interactions between the support and the amine groups can affect adsorption 

performance. This was further demonstrated by work from our group where varying 

amounts of metallic heteroatoms were incorporated into the silica matrix during synthesis 

(Al, Ti, Ze, Ce) and subsequently impregnated with PEI. It was found that different 

acid/base properties of the materials affected the PEI-oxide support interactions which 

thus altered CO2 adsorption capacities as well as adsorption and desorption kinetics.65,66  

 Apart from the chemical composition of the support, the physical characteristics 

of the support such as the surface area, pore diameter and pore volume also have a 

significant impact on the adsorption performance. The pore size and connectivity in the 

support affect the rates of gas diffusion to the CO2 adsorption sites, thus affecting the 

rates of the adsorption process. Son et al.67 studied the CO2 adsorption characteristics of 

50 wt% PEI-impregnated adsorbents based on four different supports and found that the 
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adsorption capacities increased with increasing average pore diameters of the bare 

support. Also, the adsorption halftimes decreased with increasing support pore diameters, 

and this was suggested to be due to faster diffusion into the pores of the adsorbent. Also, 

three-dimensionally interconnected pores, as present in the case of MCM-48 and 

mesocellular foam silica (MCF) could provide better mass transfer properties compared 

to the (primarily) one-dimensional pore networks in the case of SBA-15 and MCM-41. 

1.3.4.2 Effect of the Organic Group 

 A variety of different amines have been used as CO2 adsorbents, with PEI being 

the main polymeric amine used in class 1 materials. A much wider array of amines have 

been used in class 2 materials, with some shown in Figure 1.2 and others described in 

reference 3. The fundamental difference between different amine moieties from the point 

of view of amine-CO2 chemistry is the number of primary, secondary and tertiary amines 

they carry. Amine type can affect the performance of an adsorbent in two distinct ways. 

First, different amines have different basicities, which affects the strength of interaction 

between the CO2 molecules and the amines. For example, aqueous solutions of MEA, 

which contains one primary amine, have been shown to have a higher heat of reaction 

with CO2 (84 kJ mol-1) compared to DEA (66 kJ mol-1) and TEA (64 kJ mol-1), which 

have one secondary and tertiary amine respectively. Amine type can also affect the amine 

efficiency depending on the level of humidity in the gas stream, as tertiary amines do not 

capture CO2 in the absence of water.  

 Whereas the amine type influences the reaction chemistry, factors like the average 

size of the polymer chain and their degree of branching affects the accessibility of 

reactive amine groups to the incoming CO2 molecules. The larger the length of a polymer 
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chain the more difficult it is for the chain to diffuse into the mesopores, which may result 

in immobilization of a smaller amount of amines in the bulk of the adsorbent particles. 

An increase in the degree of branching (which can occur when two amines are cross-

linked by adsorbing CO2 in a 2 N:1 CO2 ratio) can also contribute to CO2 transport 

limitations (discussed in section 1.3.1). It is important to understand that at this stage, the 

degree of understanding about amine distribution and morphology within hybrid 

adsorbents is still poorly developed, especially for materials that contain polymeric 

amines. Additional studies focused on understanding the physical structure of polymers 

located in the pores of the mesoporous supports are clearly needed. 

1.4 Desorption of CO2 from Supported Amine Adsorbents 

 Regeneration of supported-amine CO2 adsorbents can be achieved via a 

temperature or CO2 partial pressure swing, either alone or in combination. To date, 

regeneration of supported amine materials has, with few exceptions, been performed by 

temperature swing adsorption in a flow of inert purge gas (TSA/I). The focus of the 

community has been almost single minded in creating a material with the highest 

adsorption capacity, as noted above, and little attention has been given to practical 

regeneration processes for these materials. Using an inert gas such as nitrogen or argon to 

desorb CO2 does not concentrate the CO2, as required, before pipelining or sequestration. 

Thus, the majority of the papers in this field do not describe a technology that performs a 

useful separation. Other possible regeneration strategies include (i) temperature swing 

adsorption using a pure CO2 stream as the sweep gas (TSA/CO2), (ii) pressure swing 

adsorption (PSA), which includes the more often used vacuum swing adsorption (VSA), 

sometimes in combination with a temperature swing (T/VSA), and (iii) steam stripping. 
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There are advantages and disadvantages to each of these methods, and each method 

presents challenges for the material designer as discussed below. 

1.4.1 Temperature Swing Adsorption with Inert Gas Purge (TSA/I) 

 Regeneration of the adsorbent is most commonly achieved by temperature swing 

with an inert purge gas such as helium or nitrogen to regenerate the adsorbent (TSA/I). 

TSA/I is a common regeneration technique, as the elevated temperatures are useful in 

supplying the energy needed to reverse the highly exothermic adsorption of CO2 on 

amine sites while the inert purge gas provides a concentration driving force. Thus, higher 

temperatures result in larger desorption rates and an increased likelihood that all of the 

CO2 will desorb, thereby returning the adsorbent ideally to its full capacity for the next 

adsorption cycle. 

 Of the three classes of materials, class 1 materials have generally exhibited the 

least stability in long term testing.11,68–72 Specifically, the study by Tanthana et al. shows 

a significant loss of stability over 30 cycles at 115 °C for TEPA and TEPA modified with 

PEG on mesoporous silica. While the PEG modified material did exhibit a decrease in 

degradation rate, both materials exhibited a loss of greater than 50% capacity over the 

cycles.68 However, Liu et al. report a capacity loss of only 5% for TEPA-impregnated 

into KIT-6 during 40 cycles of regeneration at 120 °C.11 This is likely due to the fact that 

Tanthana tested regenerability in humid conditions while Liu performed adsorption in dry 

conditions and so the material may have leached amines due to water condensation and 

solublization, thus resulting in a decreased capacity.11,68 In fact it has often been observed 

that class 1 materials lose significant capacity during cyclic testing in humid conditions 

due to the organic leaching out of the solids (section 1.5 explains this more fully along 
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with other modes of sorbent deactivation). However, Sayari et al. report the opposite 

trend in their humid adsorption/desorption study and observed that adsorption and 

desorption in humid gas streams improved stability for class 1 and 2 materials (PEI, APS 

and triamine on PE-MCM-41) as opposed to cyclic testing with dry gases.73 It should be 

noted that the number of cycles tested for the class 1 material was about half that studied 

by Tanthana and so it is possible that with further cycling, leaching would be 

observed.68,73 Sayari’s findings from this study are discussed in more detail in the next 

section and in chapter 2. 

1.4.2 Temperature Swing Adsorption with CO2 Purge (TSA/CO2) 

 Three studies have been reported using TSA with dry CO2 as a sweep gas for 

adsorbent regeneration.13,72,74 Although complete desorption is not possible with this 

method, as it lacks a significant partial pressure driving force for desorption, it does result 

in a high purity CO2 product stream. The first study using this approach by Kim et al. 

considered both class 1 and 2 materials on MCM-48 (class 1: PEI; class 2: APS, 

polymerized APS and pyrrolidine), heating them to 120 °C in 1 atm of pure CO2.
74 The 

amount of CO2 adsorbed on all the materials started to decrease at temperatures below 50 

°C. However, a weight gain was observed for the two polymeric materials (PEI and 

polymerized APS) once the temperature surpassed 62 °C. The authors attributed this 

behavior to an increased diffusivity at higher temperatures and thus greater accessibility 

to vacant sites in the polymer for these materials, leading to CO2 adsorption. This is 

consistent with the behavior of other adsorbents containing polymeric amines. Both 

materials reverted to desorption upon a further increase of temperature between ca. 85 °C 

and 105 °C, depending on the material. Gray et al. used a temperature ramp with various 
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concentrations of CO2 gas (from 10-80% CO2 in inert) as a desorption technique for class 

1 materials.72 However, none of the CO2 purge mixtures met the stated requirement of 

having a working capacity of at least 3 mmol g-1 adsorbent and so the method was ruled 

out in favor of a TSA/I process. Drage et al. also used pure CO2 for desorption of a class 

1 material (PEI on a mesoporous silica), but provided a larger thermal driving force by 

heating their materials up to 180 °C.13 At temperatures above 135 °C, a weight gain was 

observed, which was attributed to formation of urea species observed by NMR and 

DRIFTS experiments. Attempts to regenerate the material by heating at elevated 

temperatures in inert proved futile and it was concluded that regeneration in flowing CO2 

gas irreversibly degraded the material and thus was not a viable option for adsorbent 

regeneration. Sayari et al. later showed that urea formation could be prevented by 

humidifying the gas stream.73 These results are discussed in more detail in in chapter 2. 

1.4.3 Steam Stripping 

Steam stripping, like TSA with a CO2 purge, represents a potentially practical 

regeneration method for supported amine adsorbents as it can result in a concentrated 

CO2 stream. Like TSA/I, the temperature and composition of a gas stream provide both a 

thermal and partial pressure driving force for desorption of CO2 from the amine. The CO2 

rich steam can then be compressed to produce liquid water and a high purity CO2 gas 

stream that may be ready for a pipeline, sequestration, or other use. Additionally, low-

grade steam (<110 °C) may generally be obtained at low cost from refineries and other 

facilities, as it is often unused and considered waste heat. 

 Thus far there have only been four studies reported on the regeneration of 

supported amines with saturated steam, the first of which was from our group.5,75–77 In the 
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first study by Li et al.5 saturated steam at 103 °C was used to regenerate class 1, 2 and 3 

adsorbents (class 1: PEI on commercial silica; class 2: APS on commercial silica; class 3: 

HAS on mesocellular foam silica) over 3 successive adsorption cycles. It was found that 

steam effectively regenerated all three classes of adsorbents. Furthermore, quick 

regeneration times were observed, with essentially all the CO2 desorbing in the first ten 

minutes, and 66 % within the first three minutes of steaming. However, 3 cycles is not 

enough to conclusively state that this regeneration method will work for these materials. 

In fact, follow up studies from our group showed that the stability of the silica support 

under prolonged steaming conditions may be problematic.18,59 Under extensive, 

accelerated steaming conditions, it was shown that high pore volume, thin-walled 

supports such as mesocellular silica foams breakdown under many steaming conditions 

tested. A more recent study by Hammache et al. examined the stability of PEI 

impregnated in a commercial silica and found that there was no collapse of the support 

after 8 steam cycles. This could be due to the fact that the commercial support had a 

thicker wall and smaller pore volume of the support which could impart better stability to 

the composite adsorbent in the presence of steam. In that study, a slight loss of capacity 

was observed which was attributed to rearrangement of the polymer upon exposure to 

steam.75  

 From these studies it is still too early to make conclusions about the broader 

viability of steam-stripping for regeneration of supported amine CO2 sorbents. Although 

the initial reports suggest that steam-stripping might be a viable option for regeneration, 

more extensive cycling is still needed to assess the impact that direct contact of steam 

will have on the stability of adsorbents. In addition, direct steam contact on the adsorbent 
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material will likely lead to condensed water within the pores of the solid, and its removal 

will incur an energy penalty to the capture process which may be too costly. Therefore 

further investigation of this regeneration strategy is still needed.  

1.4.4 Pressure Swing Adsorption (PSA) and Derivatives 

 Pressure swing adsorption (PSA) is an alternative regeneration method that can 

provide a real separation of CO2 from the adsorbent with no or minimal further 

purification downstream, unlike TSA/I. Pure PSA uses a partial pressure driving force to 

drive the CO2 off of the material as opposed to a thermal driving force discussed above. 

This can be achieved in several ways: pulling vacuum (VSA),78–80 operation at two 

different absolute pressures during adsorption and desorption (PSA),81 or sweeping with 

an inert purge gas in the absence of heating (PSA/I).9,67,73,82,83 PSA can also be used in 

conjunction with TSA to achieve desorption at lower temperatures with shorter 

generation times.41,80,84–87 For example, many authors have combined vacuum and 

temperature swing (V/TSA).42,80,85–89 It should be noted that on the large scales expected 

to be used for CO2 capture from commercial coal plants, the cost and availability of 

vacuum equipment of appropriate size may be currently problematic. 

 Operation under VSA conditions results in a concentrated CO2 purge stream that 

may require no additional downstream purification. However, longer desorption times are 

needed to recover capacity in comparison to TSA.80 Sayari has reported numerous studies 

on regeneration conditions using VSA, PSA/I, TSA/I and V/TSA with class 1 and 2 

materials on PE-MCM-41 (class 1: PEI; class 2: APS and triamine).41,50,73,78,90,91 These 

studies have shown that at lower CO2 concentration, such as 10% CO2 in inert as opposed 

to pure CO2, VSA can yield a capacity comparable to TSA when operating at 70 °C.78 
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Using V/TSA can also yield capacities comparable to TSA, with shorter times for 

desorption required.78,80,90 However, in a statistical study by Sayari on the effect of 

various parameters on regeneration, it was determined that there was no benefit in terms 

of faster desorption or increased recovery when using vacuum at high desorption 

temperatures.91 This does not take into account the added benefit of the more 

concentrated CO2 stream that is recovered after desorption.  

 Overall, there are several regeneration methods that could be realistically used in 

an industrial application: (i) CO2 purge, (ii) steam stripping and (iii) VSA or V/TSA. 

VSA or V/TSA can give a concentrated product stream and can allow for shorter 

desorption times when vacuum is applied with slight heating, with essentially complete 

regeneration.78 Future regeneration studies should use methods such as these so that data 

relevant to practical desorption methods can be obtained. The field collectively needs to 

move away from TSA/I cycles that only give useful data on adsorption capacity and not 

desorption properties. 

1.5 Stability of Supported Amine Adsorbents 

 As previously emphasized, capturing CO2 effectively for flue gas or air capture 

requires that the adsorbent be sufficiently stable under capture and regeneration 

conditions. The solid adsorbent must demonstrate adequate performance over at least 

thousands and ideally many millions of cycles. Despite this, there are relatively few 

studies of aminosilica adsorbents that assess the stability of the adsorbent materials under 

realistic processing conditions, as most authors study adsorption/desorption cycles in the 

presence of CO2, an inert gas, and in some cases, water vapor. Power plant flue gas 

typically contains 10-15% CO2, 5-10% O2, 4-5% water vapor, thousands of ppm of SOx 
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(which must be reduced by scrubbing, in analogy to amine solution capture 

processes),92,93 NOx (which can be removed by selective catalytic reduction),94 trace 

elements like Hg (each by definition less than 100 ppm in concentration) and the balance 

nitrogen. Ambient air contains approximately 21% O2, 395 ppm CO2, up to 4% water 

vapour and the balance nitrogen. Apart from nitrogen, which is an inert gas, the effect of 

all the components in flue gas and ambient air on adsorbent performance must be 

carefully evaluated. Any potential adsorbent degradation as a result of each of these 

components will depend on their partial pressure as well as the temperature at which they 

come in contact with the material. The body of knowledge that currently exists with 

respect to the effects of each of these components on amine-oxide hybrid material 

stability is discussed below. 

1.5.1 Oxidative Degradation 

 In the aqueous amine absorption process, which is the benchmark process for CO2 

capture from power plant flue gas, oxidative degradation reactions are responsible for 

approximately half the overall amine makeup rate, which is about 2.2 kg MEA per tonne 

of CO2 captured.95–98 A number of reports discuss the oxidation of amines (especially 

monoethanolamine) in solution. In contrast, there is very little literature on the oxidative 

stability of supported amine adsorbents, and only recently have we begun to obtain some 

fundamental insight into the oxidation of supported amine adsorbents. These reports are 

discussed in detail in chapter 2. 
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1.5.2 Effect of Other Acid Gases: SOx and NOx  

 It has been reported that in the aqueous amine absorption process, the presence of 

SOx (primarily SO2) and NOx (primarily NO) can result in significant amine losses via 

the formation of heat stable corrosive salts.1,99 Flue gas desulfurization (FGD) scrubbers 

and selective catalytic NOx reduction (SCR) equipment can reduce the concentrations of 

these acid gases to near 10 ppm, so as to limit these degradation losses. The literature on 

the effect of SOx and NOx on supported amines, though limited, indicates that the 

degradation issues observed in solution processes will also be present in adsorption 

processes using supported amines, thus necessitating significant sulfur and nitrogen oxide 

scrubbing prior to CO2 capture, as noted above.  

 The first study on this subject was by Beckman and co-workers.100,101 They 

studied the adsorption of all three acid gases: CO2, SOx and NOx onto amine grafted 

polymeric adsorbents and reported that the thermal reversibility of the acid gas capture 

decreased in the order CO2>SOx>NOx. Since then several other studies have looked at the 

effect of SOx,
78,102 NOx

103 or both gases104,105 on supported amine adsorbents. The most 

comprehensive study to date came from our group which looked at silica impregnated 

with PEI (class 1) and silica functionalized with APS, MAPS and DMAPS (class 2) 

adsorbents that contained solely primary, secondary or tertiary amines.105 This allowed 

for a systematic evaluation of the effect of structure type on stability to SO2, NO2 and NO 

gases. It was found that secondary amines adsorb the most SO2, yet retain the highest 

percentage of CO2 adsorption capacity after exposure to SO2, implying the adsorption is 

reversible. All amine types were found to be resistant to significant NO adsorption. 

Additionally, all amine types were found to have large NO2 adsorption capacities with a 
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corresponding drop in CO2 uptake also, therefore implying this adsorption is irreversible 

and will deactivate materials for CO2 adsorption. All studies to date show that SOx and 

NOx will likely have a detrimental effect on the supported amine adsorbent stability, even 

if ppm levels of SOx and NOx are present in the flue gas stream. However, mechanistic 

insights into the irreversible adsorption mechanism as well as the behaviour of these 

materials in a co-adsorption process are still unknown. Studies to elucidate such 

information are clearly needed. 

1.5.3 Effect of Water Vapor 

 As discussed briefly in section 1.4, in the case of class 1 materials, water vapor 

has an adverse effect on leaching of organics. Leaching has been discussed in greater 

detail in section 1.5.5. In the literature, apart from increasing the degree of amine 

leaching, there are no other reported adverse effects of the presence of water vapor on 

either the support structure or the chemical stability of amines during the adsorption 

stage. In fact, in one study on the effect of co-presence of water vapor and CO2 in the 

feed on amine-oxide stability, Sayari and co-workers reported that in addition to 

enhancing the CO2 adsorption capacity of the adsorbent, water vapor also had a 

stabilizing effect on the amine groups,73 as discussed in section 1.4.3,. Li et al.59 

evaluated the stability of sorbents to simulated steaming conditions and reported the 

appearance of carbonyl groups when all three classes of aminosilica adsorbents were 

exposed to steam in the co-presence of air. The only exception was aminopropyl 

functionalized silica, in which case carbonyl groups were not detected. Whether or not 

these carbonyl groups corresponded to urea linkages was not verified in that particular 

study. Apart from the adverse effects on the chemical structure of the organic groups, 
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structural collapse of the thin walled mesocellular foam silica support was also found to 

be partially responsible for the decrease in CO2 adsorption performance in that work. 

Unlike oxidation effects, pore collapse was observed both in the co-presence of steam 

and air as well as steam and nitrogen.  

1.5.4 Effect of Mercury and Other Trace Elements 

 The trace elements in flue gas include several heavy metals like mercury and 

some lighter elements like boron, beryllium and arsenic.106,107 Because of the harmful 

effects these trace elements have on human health, electrostatic precipitators and fabric 

filters are used to further reduce their concentrations in the flue gas exhaust.106,108 Parts 

per billion levels of mercury have been detected in absorption units when aqueous MEA 

was used as the sorbent, without any significant effects on the capture and regeneration 

performance.109 It seems that the effect of oxidative degradation and degradation by acid 

gases apart from CO2 may be more critical compared to irreversible damage caused by 

mercury and other trace elements. This is further supported by a report by Cui et al.,110 in 

which a feasibility analysis was carried out for combined CO2 and Hg capture using 

MEA. It was found that combined mercury and CO2 capture using MEA was not feasible 

because of the low mercury absorption capacities. It is important to note that no 

degradation or adverse effect on the CO2 capture performance of the MEA solution due 

to the co-presence of mercury was reported. Nonetheless, this topic requires significant 

further study from an environmental perspective, to assess the fate of these important 

trace elements in a process that includes post-combustion CO2 capture using supported 

amine adsorbents. 
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 Apart from the stability issues discussed above there are also some degradation 

mechanisms that occur under certain operating conditions for specific adsorbents that are 

not induced by reactive components in flue gas. These are relevant to both CO2 capture 

from power plant flue gas as well as direct capture from ambient air and are discussed 

below. 

1.5.5 Leaching of Organic Amines 

 An important potential degradation pathway for supported amine adsorbents is the 

leaching of organic groups from the solids, as noted in the above sections. Theoretically, 

this phenomenon should be more limited in class 2 and class 3 adsorbents due to the 

covalent bonding between the organic amines and the porous support. In general, this is 

what is observed experimentally. In contrast, it might be expected that class 1 adsorbents 

may be susceptible to leaching of organics since in their case, the amine containing 

molecules are physically impregnated into the pores without strong chemical bonding 

between amines and the support. Our group was the first to report leaching in class 1 

materials for CO2 capture applications.25 It was observed during fixed bed runs that the 

adsorption column became clogged with leached species when PEI- impregnated SBA-15 

was tested under humid flue gas conditions at both 25 ºC (RH = 99%) and 75 ºC (RH = 

8%). Also, adsorption capacities of TEPA impregnated SBA-15 fell sharply after the first 

cycle and continued to drop in subsequent cycles when tested using humidified gases. 

Leaching was identified as the most likely cause of reduction in adsorption capacities, 

owing to the visible characterization of organic leaching from the solids in the glass 

reactors.  
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 In the only report explicitly evaluating leaching of amines in class 2 CO2 

adsorbents, Langeroudi et al. reported that leaching did not occur during the actual 

adsorption-desorption cycles but did take place during an intermediate treatment step 

when the samples were immersed in water.111 In that study, focused on assessing the 

stability of amine functionalized SBA-15 in water, the authors performed 24-hour 

immersion cycles in water at 40ºC and found that after the first few immersion cycles 

about 40% of the amines had leached out of the adsorbent. When the adsorbent was not 

exposed to liquid water, however, it exhibited highly reproducible CO2 adsorption 

capacities over a limited number of cycles. In conclusion, class 2 and class 3 adsorbents 

have a significant advantage over class 1 adsorbents in that they are more resistant to 

amine leaching under capture and typical regeneration conditions, although more 

systematic studies of amine leaching from all classes of materials are needed. 

1.6 Nature of the Adsorbed CO2  

 As noted above, a fundamental difference between physisorbents and 

chemisorbents is the occurrence of a chemical reaction during the adsorption event in the 

latter materials. In the case of CO2 capture by supported amines, the specific reactions are 

between CO2 and the amine, as discussed in Section 1.3 for amine solutions. Although 

the species produced upon CO2 absorption in solutions is well established, it is reasonable 

to expect that some differences in the structure of the adsorbed CO2 may occur relative to 

these solution studies when using solid adsorbents. Depending on the nature of the 

supported amine, the amine site density, amine mobility, and other factors, one may 

hypothesize that a variety of amine-CO2 interactions may occur during adsorption on 

supported amine adsorbents. A fundamental understanding of the reaction mechanisms 
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and the products formed is certainly critical to understanding the overall adsorption 

process. Also, since water vapor plays an important role in the surface reactions, it is 

necessary to understand the effect of humidity on the products formed. In this section, 

what is currently known about the chemical nature of the adsorbed CO2 is discussed. 

 Fourier transform infrared spectroscopy (FTIR) has been the most widely used 

technique to investigate CO2-amine interactions on solid adsorbents. A number of 

chemical structures have been identified using infrared spectroscopy and are shown in 

Figure 1.5. There are a few disagreements with respect to the peak assignments and 

therefore also the identification of the adsorbed species.3 To gain a comprehensive 

understanding of the nature of the adsorbed species, it is necessary to know not only the 

chemical structures formed on the surface, but also determine under precisely what 

conditions they are formed, how strong/weak the bonds are, and the dependence of these 

structures on the types of amines and supports used.  
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Figure 1.5. Most recent reported structures (top) and debated structures (bottom) of CO2 
supported amine adducts from FTIR studies. 

 

 When exposed to CO2 under dry conditions, most studies report the formation of 

ammonium carbamate ion pairs, carbamic acid and/or surface bound carbamates.64,69,112–

115 Although these stretches are clearly observed in the IR spectra, it is not always 

straightforward to rigorously quantify the relative amounts of these two species based 

solely on the IR measurements, and the combination of solid state NMR data in 

conjunction with calorimetric measurements can help to quantitatively assess the relative 

amounts of carbamate and carbamic acid formed. Pinto and co-workers116 performed a 

solid state NMR study of APS functionalized silica materials (class 2) before and after 

exposure to CO2. Both CO2 physically adsorbed onto the surface of the support (at about 

125 ppm) as well as CO2 chemically bound to the amines (at about 164 ppm) were 
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detected in the 13C high power decoupling (HPDEC) NMR spectra. The peak at 164 ppm 

was assigned to carbamate; it also had a shoulder at 160 ppm that could be deconvoluted 

from the main peak that was assigned to carbamic acid. Correlating the NMR data with 

the adsorption capacity data, the amount of carbamate and carbamic acid species were 

calculated to be about 0.77 mmol g-1 and 0.29 mmol g-1 for samples tested at 1 bar CO2 

pressure. It was hypothesized that CO2 can react with a primary amine to form a carbamic 

acid which then reacts with an amine in close proximity to yield an ammonium carbamate 

ion pair. 

 In the studies discussed so far, water vapor was absent from the gas feed. The 

presence of water vapor makes the interpretation of the structure of the adsorbed CO2 

using FTIR spectroscopy more complicated, but the characterization is more relevant to 

practical operating conditions. Recent studies using in-situ FTIR with humid CO2 do not 

observe the formation of carbonates or bicarbonates, thereby refuting previous studies 

that had identified these products as adsorbed species in the presence of humid 

CO2.
102,114,115,117 Instead it is found that more ammonium carbamate ions pairs form as 

well as carbamic acids that are hydrogen bonded to neighboring ammonium carbamate 

ion pairs.114,115 From these studies, it is suggested that the presence of water improves 

amine efficiency by releasing amine groups that were previously unavailable to interact 

with CO2, due to hydrogen bonding with the support.114 However, there is still much to 

be explored within this realm. As one example, the degree of relative humidity can play a 

significant role in the type of adsorption that occurs since capillary condensation will 

create a quasi-aqueous amine environment. At this stage, the relative stabilities of the 

carbamates versus carbonates and bicarbonates on supported amine adsorbents is not well 



 34

established and there is limited understanding as to why certain products are formed 

under specific sets of conditions and not others. This concept is further discussed in 

chapter 5.  

1.7 Flue Gas Capture vs. Direct Air Capture 

 Silica-supported amine CO2 adsorbents were initially solely intended for and 

evaluated in hypothetical post-combustion CO2 capture processes, as discussed 

previously. In these applications, large installations are envisioned whereby flue gas from 

major point sources, such as coal-fired power plants, would be contacted with the 

adsorbent for selective removal of the CO2, while the remaining flue gases, primarily N2, 

O2 and H2O, would continue out the plant stack. As a result, most studies of CO2 

adsorption using these materials have focused on gas streams with CO2 concentrations 

between 5-20% by volume. However, amine-based adsorbent materials, having a 

relatively large heat of adsorption with CO2, typically have steep adsorption isotherms at 

low pressures, allowing for large CO2 capacities with low inlet CO2 concentrations. 

Therefore, these materials can also prove useful in adsorbing CO2 from ultra-dilute gas 

streams, such as for air purification in confined spaces like spacecraft and submarines.118 

However, the biggest potential impact is in the direct capture of CO2 from the ambient 

air.39,119 Today, the CO2 concentration in ambient air is about 398 ppm and it continues to 

rise. 

 Air capture, unlike conventional CCS, can in principle account for all sources of 

anthropogenic carbon, including mobile sources such as cars, buses, and planes, if it were 

to be practiced on a sufficiently large scale.119–121 In 1999, Lackner first introduced the 

idea of “air capture” as a way of reducing the global atmospheric CO2 concentration. 
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However, technologies for the extraction of CO2 from ambient air are still in their 

infancy, and the ultra-dilute conditions pose a significant challenge, one that might be 

met by only a few technologies, with supported amines being a promising class of 

adsorbent materials for this application.  

 In 2009, our group first reported the use of supported amine materials for CO2 

capture from gas streams simulating ambient air.122 Specifically, class 3 HAS materials 

were reported to be effective adsorbents under simulated air capture conditions, 

efficiently extracting CO2 from a source gas with CO2 concentration of 400 ppm. 

Subsequently, Sayari demonstrated the use of his well-studied, class 2 materials 

(triamine) for adsorption of CO2 from a 400 ppm CO2 gas feed as well.50 The adsorption 

isotherm from that communication is presented in Figure 1.6. It can be seen that the 

supported amine material, a strong chemisorbant for CO2, has a great advantage for CO2 

capture at ultra-dilute concentrations, especially compared to a prototypical physisorbant, 

like zeolite 13X. Work by our group using class 1 and class 3 supported amine materials 

for CO2 capture from simulated flue gas and ambient air showed that despite a 250 fold 

decrease in the CO2 concentration, the adsorption capacity in some cases dropped by as 

little as a factor of 2.2, thus demonstrating the utility of the supported amine materials for 

CO2 capture from ultra-dilute sources.123  
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Figure 1.6. CO2 adsorption isotherms for class 2 adsorbent, TRI-PE-MCM-41 at 298 K 
compared to zeolite 13X up to 0.05 bar; inset: close-up at very low pressure. Reprinted 
from reference 50 with permission from Elsevier. 

 

 Our group also recently reported the use of modified class 1 adsorbents for air 

capture.124 In that work, two modifiers, APS and tetrapropyl orthotitanate (TPOT), were 

added to the PEI polymer during sorbent impregnation, with the goal of creating 

materials that are easy to prepare, like conventional class 1 adsorbents, but that are more 

robust over many thermal cycles. It was hypothesized that the amine groups in APS 

might self-assemble with the amines in PEI and that the Ti surface species created by 

TPOT would coordinate with the PEI to offer materials with enhanced stability. Physical 

characterization of the materials by TGA and FTIR spectroscopy suggested that the 

modifiers affect the structure of the composite materials. Characterization of the materials 

over multiple adsorption-desorption cycles using TSA/I under dry conditions showed the 

materials to have enhanced stability. Furthermore, these materials offer the highest 
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reported adsorption capacities to date for air capture, with a reported uptake of 2.36 mmol 

g-1.124 Since the time that air capture using supported amines was first proposed by our 

group in 2009, a significant amount of research has been put forth in the 

field.18,50,65,66,88,89,123–141 This collection of work to date demonstrates supported amine 

materials are promising adsorbents for the direct extraction of CO2 from ultra-dilute 

sources such as ambient air. However, more work is still needed in developing sorbents 

that combine fast adsorption kinetics, high working capacities, simple and scalable 

designs, and stability over many regeneration cycles. 

1.8 Research Needs & Scope of Dissertation 

 Materials chemists have worked for the better part of a decade on the 

development of aminosilica hybird materials for CO2 extraction from dilute gas streams. 

Over this period, several hundred studies have appeared, with most of them focused on 

developing hybrid materials with very large CO2 capacities. At this stage, it can be 

argued that achieving adsorbents with ever larger CO2 capacities represents minor, 

incremental advances, and the community must now turn its attention towards more 

pressing issues regarding the application of these materials in CO2 capture scenarios. 

Specific areas that need further investigation are listed below:  

1. Scalable adsorbent regeneration methods 

2. Design of sorbents that are stable in their operating environment (CO2, oxygen, 

SOx, NOx, steam) 

3. Quantitative understanding of adsorption and desorption kinetics 

4. Synthesis of more efficient adsorbent materials 

5. Understanding the effects of water on adsorption performance 
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 The work in this dissertation provides fundamental insight into supported amine 

adsorbents that directly contribute to needs 2, 4 and 5 listed above. A study on the 

structural contributions of amine adsorbents with respect to thermal, CO2-induced and 

oxidative degradation are discussed in chapter 2. Chapter 3 describes a study on the effect 

of amine type on adsorption efficiency for air capture applications. Discussion on the 

design, building and validation of a volumetric system for binary (CO2-H2O) adsorption 

studies is presented in chapter 4. This system is used to explore the effect of amine 

surface coverage on the enhancement of CO2 adsorption at ultra-dilute conditions 

imparted by the presence of water vapor in chapter 5.  
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   Chapter 2

 

THERMAL, OXIDATIVE AND CO2 INDUCED DEGRADATION OF 

PRIMARY AMINES: EFFECT OF ALKYL LINKER ON STABILITY 

 

 Parts of this chapter are reproduced from ‘Didas, S.A.; Zhu, R.; Brunelli, N.A.; 

Sholl, D.S.; Jones, C.W. Thermal, Oxidative and CO2 Induced Degradation of Primary 

Amines Used for CO2 Capture: Effect of Alkyl Linker. J. Phys. Chem. C. 2014, 118, 

12302-12311.’  

 

2.1 Background 

 As mentioned in chapter 1, increased levels of carbon dioxide in the atmosphere 

have prompted research efforts into the capture and sequestration of CO2. Supported 

amine adsorbent materials have emerged as promising materials for both flue gas as well 

as air capture processes due to the materials’ high equilibrium adsorption capacities, ease 

of regeneration, fast adsorption kinetics and improved efficiency under humid 

conditions.1–4  

 Today, the majority of research on supported amine adsorbents still focuses on 

incremental adsorption capacity improvements.2 However, increasingly, researchers are 

starting to look at practical issues that will affect the eventual implementation of these 

materials by investigating other critical aspects such as kinetics,5–11 contactor design,12–19 

regeneration conditions6,20–35 and material stability.21,24,27,33,35–50 The topic of material 

stability is especially important as it can affect the adsorbent lifetime and therefore the 
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operating costs of the process. The presence of gaseous species in both flue gas and 

ambient air such as oxygen, steam, SOx, NOx and CO2 itself make it possible for side 

reactions to occur that can deactivate the adsorbent and thus decrease its adsorption 

capabilities. Therefore, before these materials can be used in any practical application, it 

is essential that the possibility of sorbent deactivation be examined and addressed.  

 Most of the studies on sorbent stability so far have been with respect to oxidative 

degradation.36–43 In 2011, Bollini et al.36 and Heydari-Gorji et al.37 independently 

reported the effects of oxidation on primary, secondary and tertiary monoamines as well 

as primary-secondary mixed amines as a function of temperature. Both studies reported 

that primary and tertiary amines possess oxidative stability while secondary and mixed 

amines that include a secondary amine are unstable at temperatures above 80 °C. 

Interestingly, the mixed amine materials that contained a primary amine underwent 

complete deactivation, suggesting that the degradation products or intermediates 

associated with the secondary amine reacted with the primary amine to deactivate all of 

the adsorption sites. In 2012 Heydari-Gorji et al. evaluated the stability of branched and 

linear PEI impregnated sorbents, which contain primary, secondary and tertiary amines, 

with respect to air, simulated flue gas and CO2/O2/N2 gas mixtures, thereby evaluating 

thermal, oxidative and CO2 induced degradation of the adsorbents.39 Control experiments 

carried out in pure nitrogen with temperatures ranging from 75-150 °C showed that all 

materials possessed thermal stability. A slight loss in organic content was observed for 

the lowest molecular weight PEI but this was attributed to evaporation of TEPA, which 

was also present in the polymer mixture. Deactivation from CO2 via urea formation was 

observed under dry conditions; however this could be avoided with humidified gas 
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streams. Mixtures of CO2/O2/N2 showed that the presence of CO2, when humidified, can 

stabilize the material towards oxidative degradation due to the faster reaction of CO2 with 

the amine as compared to O2. In 2013, Bali et al. investigated the oxidative stability of 

impregnated PAA, an all primary aminopolymer, as well as branched PEI on an alumina 

support.42 They showed that PAA, while not fully stable as in the case of grafted primary 

amine sorbents, possessed dramatically increased stability towards oxidative degradation 

compared to PEI. A loss of 10% in adsorption capacity was observed for the most 

extreme treatment condition of 21% O2 at 105 °C, whereas the PEI based material lost 

70% of its capacity. However, it was hypothesized that thermal as opposed to oxidative 

degradation may have played a role in the loss of PAA’s adsorption performance as 

indications of oxidation (imines, amides) could not be confirmed spectroscopically for 

this material.   

 CO2-induced deactivation of supported amine adsorbents was first noted by Drage 

et al.21 in 2008 and since then has predominantly been investigated by Sayari’s 

group.27,35,39,44,45 Drage et al. found that when regenerating silica supported PEI 

adsorbents at elevated temperatures of 110-140 °C in pure CO2 that a weight gain 

occurred, coupled with deactivation of the sorbent’s capacity upon repeated adsorption 

cycles.21 This was attributed to chemical reaction of CO2 with the amines at high 

temperatures to form irreversible urea linkages.  Similar thermal stability studies at high 

temperatures in pure nitrogen showed that the materials were thermally stable. In 2010 

Sayari et al. looked at different temperature swing desorption parameters using pure CO2 

for grafted primary monoamine and (primary-secondary containing) triamine materials as 

well as PEI impregnated silica.27 It was found that under dry adsorption-desorption 
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conditions the primary amine material lost adsorption capacity due to formation of urea, 

which was verified via solid state NMR. It was also found that humidity prevented the 

deactivation from occurring. In 2012, Sayari subsequently presented two studies of CO2-

induced deactivation of amine supported materials. The first considered solely grafted 

amines, specifically a primary, secondary and tertiary monoamine along with a primary-

secondary triamine.44 It was found that the primary amine material was the only 

monoamine to deactivate due to urea formation and that the primary-secondary triamine 

also deactivated. Therefore it was proposed that isocyanate was a reaction intermediate to 

urea formation, which only a primary amine can form.  

 Later in 2012 Sayari et al. published a more comprehensive study looking at the 

grafted amines previously studied as well as the silica supported polymeric amines 

branched PEI, linear PEI and PAA.45 All materials were subject to dry adsorption-

desorption cycling in pure CO2 with adsorption temperatures of 50 and 100 ºC and 

desorption temperatures ranging from 130-160 ºC. The treated materials were then 

analyzed via DRIFT and 13C CP MAS NMR spectroscopy. All the materials except for 

the secondary monoamine material were found to be unstable under mild conditions and 

prone to deactivation via the formation of open chain and/or cyclic ureas, which was 

confirmed spectroscopically. Based on the observed degradation products, two 

deactivation mechanisms were proposed for the formation of open chain and cyclic ureas, 

as depicted in Figure 2.1. The first pathway consisted of dehydration of a carbamic acid 

to an isocyanate intermediate that could then go on to form urea. The second route was 

conversion of carbamic acid to ammonium carbamate that then dehydrated to form urea; 

this is the only possible pathway to urea formation for all secondary amine containing 
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materials. The isocyanate pathway must be initiated with a primary amine, but can 

proceed in the second step with primary or secondary amine, which would explain why 

polymeric amines and triamines deactivate as well. While this seems to be the most likely 

pathway for urea formation to occur, the alternative route whereby urea is formed from 

ammonium carbamate could not be ruled out for primary amine containing materials.  

 

 

Figure 2.1. Reaction pathways proposed by Sayari for the deactivation of amines through 
open chain urea formation.45 

 

 Based on the results of previous studies with respect to stability, primary amines 

have emerged as a favorable amine type for CO2 capture processes as they are the most 

oxidatively stable and because CO2-induced deactivation can be avoided with humid gas 

streams. Additionally, primary amines have been found to be the most efficient amine 

type for adsorbing CO2 at flue gas as well as air capture conditions, as will be discussed 

in chapter 3. More recently, a new set of primary aminosilane grafted materials have been 

developed in our group, with methyl and ethyl alkyl chains on the organosilane.51 These 

materials can be used to tailor the interactions between the amines and the surface both 

for catalytic applications as well as CO2 capture. Additionally, they can be implemented 

into supports with smaller pore sizes due to the smaller size of the aminosilane molecule. 
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One example of this is the report by Kang et al., whereby single-walled 

aminoaluminosilicate nanotubes were synthesized for the first time using 

aminomethylsilane to incorporate amine functionalities into the nanotubes.52 These 

nanotubes showed improved adsorption selectivity for CO2/CH4 and CO2/N2 separations 

as compared to the bare nanotube. With the promising oxidative results of PAA 

aminopolymer and grafted propylamine based adsorbents, and the emerging use of new 

smaller linker primary aminosilanes, it is worthwhile to investigate the stability of these 

new aminosilanes as it pertains to CO2, O2 and thermal induced deactivation to elucidate 

how they compare to their propylamine counterparts. Thus, the objective of this work is 

to examine the stability of different alkyl chain length primary amines supported on silica 

to thermal, oxidative and CO2 induced degradation using prolonged isothermal conditions 

to accelerate the effects of degradation.  In addition to degradation experiments, DFT 

calculations were also performed to examine the effects of different alkyl chain lengths 

on CO2 induced deactivation using the proposed routes by Sayari et al. A definitive 

pathway for deactivation is proposed. 

2.2 Experiments 

2.2.1 Materials Synthesis 

 SBA-15 was the silica support used for this study and was synthesized using 

methods previously reported in literature.51 Briefly, 24 g of Pluronic 123 was dissolved in 

120 mL of concentrated hydrochloric acid and 636 mL distilled water. Next 46.26 g of 

tetraethylorthosilicate (TEOS) was added to the mixture and stirred at 40 ºC for 20 h after 

which the stir bar was removed and heating continued for 24 h at 100 ºC. The reaction 

was quenched with distilled water, the solids were then filtered and washed with copious 



 58

amounts of distilled water and then dried overnight in a 75 °C oven. The surfactant was 

removed via calcination in flowing air with the following protocol: ramp to 200 °C at 1.2 

°C min-1 and hold for 1 h, ramp to 550 °C at 1.2 °C min-1 and soak for 6 h then cool to 

ambient temperature at 10 °C min-1. 

 Silanes that were not commercially available (aminomethyltriethoxysilane and 2-

aminoethyltrimethoxysilane) were synthesized using previously reported methods.51 A 

brief description of the synthesis is as follows: 10 g of the terminally halogenated 

alkyltri(m)ethoxysilane was added to a 50 mL Parr reactor. Helium was passed through 

the reactor to remove air before closing the outlet valve. Ammonia was then condensed 

inside the reactor via cooling with liquid nitrogen while stirring the reactor. Once a 

sufficient amount of ammonia was inside the reactor, the inlet valve was closed and the 

reactor was heated to 100 ° for 5 h under stirring with the reactor pressure reaching 900-

1000 psi. The reactor was then cooled to room temperature and excess ammonia was 

exhausted and purged with helium steam. Next the reactor was opened in a fume hood 

and 20 mL of anhydrous pentane was added to precipitate the ammonium chloride salt.  

The mixture was then filtered and purified using a rotovap followed by vacuum 

distillation. Proton NMR characterization was used to confirm the synthesis of the 

organosilanes. 

 Amine-functionalized materials were prepared by first drying 0.5 g calcined SBA-

15 on a Schlenk line overnight at 110 °C. The round bottom was then capped with a 

rubber septum and degassed with UHP nitrogen for 30 min. Next 12.5 mL dry toluene 

mixed with a 2x excess of the desired molar amount of aminosilane with respect to the 

amount of silica was injected into the round bottom containing the silica with stirring. 
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The mixture was stirred at room temperature for 24 h, after which 10 uL distilled water 

was added and the solution was heated to 80 °C to react for another 24 h. The resulting 

solid was then cooled, filtered and washed with copious amounts of toluene, hexane and 

ethanol. It was then dried overnight at reduced pressure (10 mTorr) and 100 ºC.  

2.2.2 Materials Characterization 

 Elemental analysis (Atlantic Microlabs, Norcross, GA, USA) was used to 

determine nitrogen content of synthesized and CO2 treated materials. Nitrogen 

physisorption measurements were obtained using a Micromeritics Tristar II. Isotherms 

were measured at 77 K and the resulting data was used to determine surface areas and 

pore volume. The Brunauer-Emmett-Teller (BET) model was used to estimate surface 

area while the BdB-FHH method was used to determine pore size distribution and pore 

volume. 13C CP-MAS solid state NMR was used to evaluate the materials before and 

after degradation treatments. Measurements were taken on a Bruker DSX-300 

spectrometer. Samples were spun at a frequency of 10 kHz. A TA Instruments Q500 

TGA was used to evaluate dry adsorption capacities of materials before and after 

degradation experiments. A typical adsorption run consisted of pretreating the material 

with pure He gas at 120 ºC for 3 h and then cooling to 30 °C before switching to a gas 

mixture of 10% CO2 in He for 3 h of adsorption.  

2.2.3 Degradation Experiments 

 To evaluate the stability of materials to various types of degradation, packed bed 

experiments were performed whereby 80 mg of sample was loaded into a 1 cm diameter 

Pyrex tube with a frit in the middle to hold the material in place. Samples were first 
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pretreated by heating to 120 ºC in flowing nitrogen gas at 20 mL min-1 for 3 h to remove 

preadsorbed water or CO2. The temperature was then increased to 135 ºC and the gas was 

either switched to pure CO2 or O2 or maintained with N2 for thermal degradation 

experiments. For CO2 and thermal degradation, gas was flowed at 135 ºC for 4 d. The 

CO2 treatment was designed to simulate the prolonged CO2 exposure associated with 

multiple adsorption-desorption cycles. For the oxidative degradation experiments, 20 h of 

reaction time was used, as this timescale has been shown in the past to be sufficient to 

produce significant degradation for materials that are not stable.36 The material was then 

recovered for post-treatment analysis.  

2.3 Modeling 

 All calculations were carried out using the Gaussian 09 program.53 The geometric 

parameters of the reactants, products, intermediates and transition states along reaction 

pathways were optimized at the B3LYP level of theory (i.e., Becke’s three-parameter 

nonlocal exchange functional54 with the non-local correlation functional of Lee, Yang, 

and Parr55) using the 6-311+G** basis set. All the stationary points have been identified 

for local minima and transition states by vibrational analysis. Intrinsic reaction coordinate 

analyses56 have been performed to confirm the connection between transition states and 

designated reactants, products or intermediates. On the basis of the optimized geometries, 

single-point energies of the stationary points for the lowest-energy pathways were refined 

using the coupled-cluster theory with single, double, and noniterative triple excitations 

(CCSD(T)) combined with the 6-311+G** basis set. Energy values were corrected with 

zero-point vibrational energies (ZPE) calculated at the B3LYP level.  
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2.4 Results & Discussion 

2.4.1 Materials Synthesis & Characterization  

 Adsorbent materials were synthesized using primary aminosilanes with an alkyl 

chain length varying from methyl to propyl, as represented in Figure 2.2. These silanes 

were grafted onto a well-defined SBA-15 mesoporous silica support. Some difficulties 

were encountered in getting appreciably high amine loadings with the aminomethylsilane 

grafting procedure, even when adding catalytic agents such as ethylene diamine.57 

Therefore, only a low amine loading methyl material was prepared while ethyl and propyl 

materials were synthesized with low and high loadings. This way, a comparison could be 

made directly to the methyl material for the low loading adsorbents, while the higher 

loading materials allowed the observation of (i) how increased loading affects stability 

and (ii) what degradation behavior would look like for a practical adsorbent with a higher 

amine content. Material properties along with descriptions and nomenclature are 

presented in Table 2.1. 

 

 

Figure 2.2. Aminosilanes grafted onto silica SBA-15 with one (methyl), two (ethyl), and 
three (propyl) carbon alkyl chains. 
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Table 2.1. Physical properties of bare support and amine functionalized materials. 

Material Material 

Abbreviation 

BET SA 

(m2 gSiO2
-1) 

Amine Loading 

(mmol N g-1) 

Bare silica support SBA 675 -- 

Silica with methyl linker, 

low loading 

SBA-Methyl-low 356 0.76 

Silica with ethyl linker, 

low loading 

SBA-Ethyl-low 340 0.85 

Silica with ethyl linker SBA-Ethyl 269 1.80 

Silica with propyl linker, 

low loading 

SBA-Propyl-low 347 0.74 

Silica with propyl linker SBA-Propyl 314 1.43 

 

 

 Previous work has been done in our group with this range of materials 

investigating their effect on acid-base cooperativity in catalysis as well as CO2 capture 

performance as a function of the flexibility of the alkyl chain length. It was shown that 

for SBA-15 silica supports, three carbons was the critical chain length required to reach 

optimized catalytic as well as adsorption efficiency.51 This was due to the fact that the 

shorter chains had a limited range of flexibility and could not interact with surface 

silanols. Work by Danon et al. using FTIR spectroscopy to observe the nature of 

adsorbed CO2 on grafted aminosilicas suggests that amine-silanol interactions are another 

route for CO2 to adsorb onto the surface in dry conditions, as opposed to the more 

commonly discussed pathway of two amines adsorbing CO2 to form a carbamate.58 A 

schematic description of the potential interactions that can occur between amines and 

silanols based on alkyl chain length is shown in Figure 2.3. Based on these findings we 
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can assume that methyl and ethyl linker materials will only have interactions with 

neighboring amines while amines with propyl linkers can interact with surface silanols in 

addition to neighboring amines. In this study it will be possible to see if these interactions 

play a significant role in deactivation pathways for primary amine materials. 

 

 

Figure 2.3. Proposed amine interactions with the surface and neighboring amines that can 
occur based on alkyl chain length. Amines with short alkyl chains have no ability 
(methyl) or very limited ability (ethyl) to interact with the silanols on the surface. 

 

2.4.2 Degradation Experiments 

2.4.2.1 Stability of Organic Content 

 Materials were evaluated for stability with respect to high temperature carbon 

dioxide and oxygen exposure conditions. Additionally, thermal stability was evaluated 

both as a control to the other experiments as well as to observe effects of prolonged high 

temperature exposure on the materials. Elemental analysis of the materials was obtained 

both before and after degradation experiments to see if there was any effect to the 

nitrogen content of the materials. The nitrogen content of the materials after degradation 

experiments at 135 ºC normalized to the fresh loading are presented in Figure 2.4. The 

results suggest that SBA-Methyl-low is thermally unstable, as it loses a considerable 
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amount of its nitrogen content after heating in any gas. A loss of approximately 80% of 

the organic content is observed even after heating in an inert gas. The lesser degree of 

deactivation for the oxygen treated material can be attributed to the fact that the material 

was thermally treated for a shorter period of time than in the inert gas case. The loss of 

amines from high temperature CO2 and O2 treatment of SBA-Methyl-low cannot be 

conclusively attributed to anything other than thermal cleavage due to the fact that the 

inert gas experiment gave similar results. The rest of the materials showed no appreciable 

loss of nitrogen from thermal, oxidative or CO2 degradative conditions. The slight 

disparities in normalized loading for these materials fall within the expected variation of 

elemental analyses.59 It is unclear what would cause the instability of a methyl alkyl 

chain vs. an ethyl or propyl alkyl between the amine and silicon atom. However, it is 

clear that aminomethyl functionalized materials may not be suitable for higher 

temperature applications as compared to their ethyl and propyl counterparts.  
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Figure 2.4. Nitrogen content of silica SBA-15 amine functionalized materials determined 
from elemental analysis after degradation at 135 ºC. Values are normalized to the initial 
nitrogen loading before degradation experiments.  

 

2.4.2.2 Adsorption Capacity Measurements 

 Carbon dioxide adsorption capacities were evaluated for materials before and 

after degradation experiments to evaluate if there was any deactivation of the material’s 

adsorptive performance. Due to the loss of amine content of SBA-Methyl-low, adsorption 

comparisons cannot be made for this material and so they are excluded in this part of the 

analysis. Normalized CO2 adsorption capacities are presented in Figure 2.5 for the 

remaining four materials. From comparing post-oxidation to post-nitrogen treatment 

experiments it can be seen that any decrease in capacity can be attributed to thermal 

effects alone, and to some degree natural variability in TGA measurements. Therefore it 
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can be concluded that oxidative stability holds for all materials and that the length of the 

alkyl chain for primary amines as well as amine loading does not change its stability for 

ethyl and propyl linked materials. This result was expected for the propyl material due to 

previous research,36,37 but here it is confirmed that a primary amine connected to an ethyl 

alkyl chain also does not undergo oxidative degradation under these conditions.  

 

 

Figure 2.5. CO2 adsorption capacities of silica SBA-15 amine functionalized adsorbents 
treated at 135 °C in flowing CO2, O2 or N2. Values are normalized to the materials’ 
original CO2 adsorption capacity before degradation. 

 

 Differences in stability with these materials can most drastically be seen in the 

results from CO2 induced degradation. It appears that SBA-Propyl has the greatest degree 

of deactivation from CO2, followed by SBA-Ethyl, SBA-Propyl-low and finally SBA-

Ethyl-low, which appears to undergo no deactivation at all. The stability of SBA-Ethyl-
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low is likely due to the fact that the low surface coverage yields limited interactions with 

neighboring amines as well as the inability of the amine to interact with surface silanols 

due to the shortened alkyl chain. This is demonstrated by the lower amine efficiency of 

SBA-Ethyl-low compared to SBA-Propyl-low, with values of 0.13 vs. 0.17 respectively, 

as shown in Table 2.2. Deactivation is observed for SBA-Ethyl however, due to the fact 

that there is a high enough density of proximal amines that sufficient interaction and 

therefore urea formation can now readily occur. A small degree of deactivation is 

observed for SBA-Propyl-low. This suggests that there is either a greater clustering of 

amines on the surface60,61 as compared to SBA-Ethyl-low, which facilitates amine 

interaction and urea formation, or that an improved ability to interact with surface 

silanols can propagate urea formation. This hypothesis is tested in the modeling portion 

of this work, below.  A final observation from these data is that there is a greater degree 

of deactivation observed in SBA-Propyl as compared to SBA-Ethyl, which loses roughly 

70% of its capacity versus roughly 50% for the latter. Considering the data in Table 2.2, 

it can be seen that the amine efficiencies for these materials initially are quite different, 

with values of 0.24 and 0.13, respectively. It is likely that the greater deactivation 

observed for SBA-Propyl is due to the increased amine efficiency of this material, as a 

greater extent of amine utilization for CO2 capture translates to a greater degree being 

deactivated upon heating.  
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Table 2.2. Amine adsorption efficiencies of fresh materials compared to degraded 
materials in pure CO2 at 135 °C. 

 Amine Efficiency 

(mol CO2 mol N-1) 

Sample Fresh Post CO2 

Treatment

SBA-Ethyl-low 0.13 0.13 

SBA-Ethyl 0.13 0.07 

SBA-Propyl-low 0.17 0.12 

SBA-Propyl 0.24 0.07 

 

2.4.2.3 Solid-State NMR Spectroscopy 

 13C CP MAS NMR was used to analyze materials before and after degradation 

experiments to assess if any changes to the carbon chains in the material occurred. Given 

the observed trends from the CO2 adsorption capacity data, it was mainly expected that 

structural changes would be seen in the SBA-Ethyl and SBA-Propyl(-low) spectra due to 

urea formation. Previous studies of amine degradation via urea formation in an 

aminopropylsilane functionalized silica material have reported the appearance of peaks at 

160.527 and 159.6 ppm45 corresponding to urea. The NMR spectra for these materials are 

presented in Figure 2.6-Figure 2.8. The spectrum for SBA-Methyl-low is shown in Figure 

2.6. Shifts at 59.3, 25.7 and 16.3 ppm correspond to the two carbons from dangling 

ethoxy groups and the methyl group between the silicon atom and the amine. A severe 

reduction in the methyl carbon signal at 25.7 ppm, as the intensity of the signal is not 

much higher than the noise in the baseline. This correlates with the elemental analysis 

results and implies that the cleavage is not just the nitrogen being lost from the alkyl 

chain as ammonia but rather via loss of methylamine species. 
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Figure 2.6. 13C CP MAS NMR spectra for SBA-Methyl-low before and after degradation 
experiments at 135 ºC. All spectra were obtained under the same conditions. 

 

 The spectra for SBA-Ethyl-low and SBA-Propyl-low are shown in Figure 2.7a,b, 

respectively. Shifts are observed at 60, 36.3 and 13.4 ppm for fresh SBA-Ethyl-low and 

59.5, 43.9, 25.4, 16.6 and 8.5 ppm for fresh SBA-Propyl-low, corresponding to the 

ethyl/propyl carbons and dangling methoxy/ethoxy groups, respectively. The spectra do 

not show any significant changes to the material apart from cleavage of the (m)ethoxy 

groups upon heating. The lack of a urea peak for SBA-Propyl-low, despite the observed 

reduction in CO2 adsorption capacity, could be due to the combination of a lesser extent 

of deactivation of the material coupled with a smaller abundance of carbon from the 

lower surface coverage. If urea formation occurred, the signal would be extremely weak 

and lie within the baseline noise of these experiments. Spectra for the higher loading 
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materials are shown in Figure 2.8a,b. Shifts for these materials are observed at 60, 36.7 

and 16.6 ppm for fresh SBA-Ethyl and 57.3, 43.5, 23 and 10.1 ppm for fresh SBA-

Propyl. The appearance of a urea peak is observed for the higher loading materials at 

161.4 ppm after CO2 degradation experiments. This peak is similar to that previously 

reported by Sayari and is outside of the range where one would expect to see adsorbed 

CO2 from ambient air in the form of a carbamate signal, which occurs between 164.5-

165.5 ppm.36,62 
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Figure 2.7. 13C CP MAS NMR spectra for (a) SBA-Ethyl-low and (b) SBA-Propyl-low 
before and after degradation experiments at 135 ºC. All spectra were obtained under the 
same conditions. 
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Figure 2.8. 13C CP MAS NMR spectra for (a) SBA-Ethyl and (b) SBA-Propyl before and 
after degradation experiments at 135 ºC. All spectra were obtained under the same 
conditions. 
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2.4.3 DFT Calculations Assessing Urea Formation Pathways 

 The experimental results in the previous sections indicate that SBA-Ethyl and 

SBA-Propyl with higher amine loadings have severe deactivation from high temperature 

CO2 environments. To explain the CO2 induced deactivation phenomena, the possible 

reaction pathways of CO2 with RNH2 in the gas phase have been explored using density 

functional theory (DFT) calculations based on the deactivation pathways proposed by 

Sayari et al., as shown in Figure 2.1. The results are presented in the following sections. 

2.4.3.1 Carbamic acid formation from CO2 with RNH2 

 For the formation of carbamic acid, two scenarios were examined as shown in 

reactions (1) and (2). The barrier for the first process, where one CH3CH2NH2 molecule 

reacts with CO2, is 39.7 kcal mol-1, as shown in Table 2.3. However, if the reaction is 

assisted by a second CH3CH2NH2 molecule (see reaction 2), the barrier is dramatically 

reduced to 15.9 kcal mol-1, indicating an additional molecule is required to catalyze the 

reaction.  

 

RNH2 + CO2  RNHCOOH (carbamic acid)                     (1) 

2RNH2 + CO2  RNHCOOH (carbamic acid) + RNH2     (2) 

 

 Based on this information, we propose that the second amine or a protic molecule 

(such as a neighboring amine or surface silanol) can efficiently catalyze the reaction of 

RNH2 with CO2 to form carbamic acid. Several reactions were used to test the effect of 

alkyl chain length as well as amine-amine versus amine-silanol interactions on the energy 

barrier for carbamic acid formation, as displayed in Table 2.3. The transition state 
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structures are shown in appendix A. Gas molecules terminated with CH2 groups and 

trimethoxysilyl groups were examined and showed a variation of 4.9 kcal mol-1 (Table 

2.3b,e). The energy barrier for a silica functionalized amine is therefore likely to fall 

within this range. The values in Table 2.3 indicate that by lengthening the alkyl chain by 

the addition of one CH2 group, the barrier for carbamic acid formation can decrease 

between 0.6- 2.7 kcal mol-1 for different linkers. Additionally, amine and silanol assisted 

(self-catalyzed versus silanol catalyzed) reactions have similar energy barriers, meaning 

that either can contribute to the reaction pathway.  
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Table 2.3. The first step (carbamic acid formation) energy barriers (kcal mol-1) for the 
degradation of different primary amines from CO2, calculated at the B3LYP/6-311+G** 
level. Barriers are relative to the separated reactants with ZPE corrections.  The transition 
state structures of TS (a) to TS (g) are displayed in appendix A. 

Reactions Barrier  

(kcal mol-1) 

One Step Mechanism  

(a) CH3CH2NH2 + CO2  CH3CH2NHCOOH 39.7, TS(a) 

Self-catalyzed  

(b) 2CH3CH2NH2 + CO2  CH3CH2NHCOOH + CH3CH2NH2 15.9, TS(b) 

(c) 2CH3CH2CH2NH2 + CO2   CH3CH2CH2NHCOOH + 

CH3CH2CH2NH2 

15.3, TS(c) 

(d) 2(CH3O)3-SiCH2NH2 + CO2  (CH3O)3-SiCH2NHCOOH + (CH3O)3-

SiCH2NH2 

13.7, TS(d) 

(e) 2(CH3O)3-SiCH2CH2NH2 + CO2  (CH3O)3-SiCH2CH2NHCOOH + 

(CH3O)3- SiCH2CH2NH2 

11.0, TS(e) 

Silanol catalyzed  

(f) CH3CH2NH2 + (CH3O)3-SiCH2OH + CO2  CH3CH2NHCOOH +      

(CH3O)3-SiCH2OH 

14.9, TS(f) 

(g) CH3CH2CH2NH2 + (CH3O)3-SiCH2OH + CO2  

CH3CH2CH2NHCOOH + (CH3O)3-SiCH2OH 

14.3, TS(g) 

 

 Although the barriers for carbamic acid formation vary slightly for different alkyl 

chain lengths in the primary amine, the mechanism for deactivation of any alkyl chain 

length should be similar since the first step for the interaction of CO2 with RNH2 takes 

place between a nonbonding electron pair at the amine nitrogen atom and an antibonding 

empty orbital in CO2. Therefore in the following calculations only the ethyl molecule, 

CH3CH2NH2, was used to calculate the subsequent pathways shown in Figure 2.9 as it 

can be inferred that energies will be similar for all structures. 
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Figure 2.9. Reaction pathways for the formation of carbamic acid and isocyanate, R = 
CH3CH2. Values in kcal mol-1, calculated at the B3LYP/6-311+G** level with ZPE 
corrections. 

 

2.4.3.2 Isocyanate formation 

 Once carbamic acid has been formed via TS1 (see Figure 2.9), several pathways 

for the formation of isocyanate were examined, as well as a direct route to urea via 

dehydration of ammonium carbamate. Direct dehydration of carbamic acid produces 

isocyanate via TS2 with a rather high barrier (51.2 kcal mol-1), indicating it is a 

kinetically unfavorable pathway. However, if a newly formed carbamic acid is assisted 

catalytically by a neighboring amine or carbamic acid (via TS3 or TS4) to form 

isocyanate, the barrier is reduced to 30.0 and 20.9 kcal mol-1, respectively. The 

ammonium carbamate route for urea formation discussed by Sayari is shown in TS5 

where a carbamic acid reacts with a second amine and dehydrates into urea. The energy 

barrier for this is quite high, with a value of 43.2 kcal mol-1. From these calculations it 

can be seen that the most energetically favored route to urea formation is through an 
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isocyanate intermediate, and more specifically from a self-assisted reaction of two 

carbamic acids.  

2.4.3.3 Urea formation 

 Three pathways were investigated for the formation of urea from isocyanate as 

shown in Figure 2.10. If isocyanate reacts with a neighboring amine and dehydrates via 

TS6, the energy barrier is 27.2 kcal mol-1. If an additional amine is involved to act as a 

catalyst via TS7 it can be seen that the energy barrier is reduced to 8.0 kcal mol-1. The 

final pathway would take advantage of water produced from previous dehydration 

reactions which could now be associated with amines, whereby if an amine and water 

molecule reacts with isocyanate, the energy barrier is lowered even further to 1.5 kcal 

mol-1 with a larger exothermicity of -18.9 kcal mol-1. Once again, it can be seen that an 

additional protic molecule such as a neighboring amine or surface silanol can 

dramatically reduce the energetic barrier to urea formation.  

 

 

Figure 2.10. Urea formation channels, R = CH3CH2. Values in kcal mol-1, calculated at 
the B3LYP/6-311+G** level with ZPEs correction. 

 

 Combining the mechanisms from Figure 2.9 and Figure 2.10 it can be seen that 

isocyanate formation is the most energetically favored route to urea formation and that 

the pathways to urea from isocyanate have an exothermic release and are thus feasible. 
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The lowest energy route to urea formation is shown in Figure 2.11. The fact that assisted 

reactions, by means of a neighboring amine or silanols, have lower energy barriers help 

to support the observation that degradation increases with increased amine loading, as 

there are more proximal amines to interact and initiate the deactivation mechanism. 

Furthermore, the lesser extent of deactivation observed for SBA-Ethyl as compared to 

SBA-Propyl could be partly due to the inability of these materials to interact with surface 

silanols, as that has been shown with these calculations to be another route to catalyzing 

the deactivation pathway. 
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Figure 2.11. The lowest energy pathways (in kcal mol-1) for deactivation of CH3CH2NH2 
from CO2 via urea formation. Calculated at the CCSD (T)/6-311+G**//B3LYP/6-
311+G** level. 

2.5 Conclusions 

 The effect of alkyl chain length for primary aminosilanes was investigated with 

respect to thermal, oxidative and CO2 induced degradation. It was found that materials 

with methyl amine functionality possessed thermal instability and were prone to loss of 

organic content upon heating at elevated temperatures. Therefore moderately high 

temperature applications for materials with methylamine functionality are not possible 

and should instead use ethyl or propyl organosilanes. Materials with ethyl and propyl 

amine functionality possessed thermal and oxidative stability, but were susceptible to 
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deactivation via urea formation in dry, high temperature CO2 environments. Propyl amine 

materials had a greater extent of CO2 adsorption capacity loss as compared to ethyl based 

sorbents. It is believed that this is due to the higher amine efficiency of propyl based 

adsorbents along with the ability of the material to interact with surface silanols, as 

findings from DFT calculations suggest that this increased efficiency could contribute to 

the greater deactivation through self-catalyzed reaction pathways that lead to isocyanate 

and urea formation. DFT calculations showed that there was no significant difference in 

stability for the different alkyl chain materials, and also confirmed the lowest energy 

route to urea formation is through an isocyanate intermediate, thus ruling out the 

ammonium carbamate route and explaining why primary amines are required for urea 

formation. These calculations also showed that assisted deactivation through neighboring 

amine or silanol interactions greatly lowered the energy for reaction, and therefore 

explain why the higher amine loading materials experienced a greater degree of 

deactivation in dry high temperature CO2 environments.  
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   Chapter 3

ROLE OF AMINE TYPE ON SINGLE COMPONENT CO2 AND 

WATER ADSORPTION FOR APPLICATIONS IN AIR CAPTURE 

 

 Parts of this chapter are reproduced from ‘Didas, S.A.; Kulkarni, A.; Sholl, D.S.; 

Jones, C.W. Role of Amine Structure on Carbon Dioxide Adsorption from Ultra-Dilute 

Gas Streams Such as Ambient Air. ChemSusChem. 2012, 5, 2058-2064.’  

 

3.1 Background 

 In chapter 1 air capture was discussed as a complementary technique for carbon 

dioxide removal from the atmosphere. One key technical challenge to air capture over 

flue gas capture is the fact that the process occurs at ambient conditions with ultra-dilute 

CO2 concentrations in the range of 400 ppm. As a result of different operating conditions 

and process requirements, adsorbents deemed acceptable for flue gas applications will not 

necessarily be useful air capture materials.  

 Several methods for air capture have been reported to date. After air capture was 

raised as a means to address increasing anthropogenic CO2 emissions,1 CO2 absorption 

from ambient air using aqueous alkaline solutions was heavily investigated, as this 

technique had been developed over 50 years ago for dilute and ultra-dilute CO2 

separation applications.2–11 However, the energy penalty for regenerating aqueous alkali 

is quite high due to the significant heating that is required to overcome the binding 

energy of CO2 with the material and to heat the large volume of water, so solid 

adsorbents such as solid alkali hydroxides,12,13 quaternary ammonium resins,14,15 and 



 88

supported amines16–37 have more recently been investigated for air capture. So far the 

majority of research with supported amine adsorbents has focused on class 1 and class 2 

materials, with several examples of class 3 materials as well. These initial studies have 

each largely focused on a representative supported amine material that is typically a 

mixture of different types of amines (either primary, secondary and tertiary or primary 

and secondary). In contrast, this study focuses on studying a series of class 2 adsorbents 

in the propyl-silane family to systematically determine the utility of the different types of 

amine sites for CO2 capture from ambient air. Adsorbents based on 3-aminopropyl-

trimethoxysilane, (N-methylaminopropyl)-trimethoxysilane, and (N,N-

dimethylaminopropyl)-trimethoxysilane grafted to mesocellular foam are evaluated for 

their CO2 and water adsorption properties to assess the utility of different types of amines 

for air capture applications. 

3.2 Experiments 

3.2.1 Materials Synthesis 

 Mesocellular foam (MCF) was used as the silica support for these studies and was 

synthesized based on previously reported literature methods.40 Briefly, 16.0 g of P123 

block copolymer was dissolved in a solution 47.4 g concentrated HCl and 260 g of DI 

water at room temperature. Next 16.0 g of TMB was added to the solution and stirred 

vigorously at 40 °C for 2 hours, after which 34.6 g TEOS was added to the solution and 

stirred for an additional 5 min. The solution was then left quiescent for 20 h in an oven at 

40 °C. A solution of 184 mg NH4F and 20 mL DI water was added and the resulting 

solution was briefly swirled before aging at 100 °C for 24 hours. The resulting solid was 

filtered, washed with copious amounts of DI water, dried overnight at 75 °C and then 
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calcined in air at 550 °C with a 1 °C min-1 ramp. Approximately 9.5 g of MCF was 

collected with this method. 

 Aminosilicas were prepared using an adapted procedure reported by Harlick and 

Sayari.41 First, calcined MCF silica was dried overnight at 110 °C on a Schlenk line 

under a pressure of 20 mTorr. The silica was then stirred with toluene for 30 minutes 

after which 0.30 g of DI water was added per gram of silica. The solution was then 

equilibrated at room temperature for 2 hours. Next 2.0 g aminosilane per gram of silica 

was added to the mixture that was then heated at 85 °C for 16 hours. The product was 

then filtered and washed with copious amounts of toluene, hexane and methanol. Finally, 

the recovered material was dried overnight at 75 °C on a Schlenk line under a pressure of 

20 mTorr. 

3.2.2 Materials Characterization 

 Nitrogen physisorption measurements were taken with a Micromeritics Tristar II 

at 77K. Surface area and pore volume were calculated from the isotherm data using the 

Brunauer-Emmett-Teller42 and BdB-FHH method’s,43 respectively. Elemental analysis 

was used to determine the nitrogen content and subsequent amine loading of the 

materials. Analyses were performed by Atlantic Microlabs (Norcross, GA, USA). 13C 

CP-MAS solid state NMR were performed on a Bruker DSX-300 spectrometer. The 

samples spun at a frequency of 4 kHz. FT-IR spectroscopy using KBr pellets were 

obtained on a Bruker Vertex 80v optical bench. 
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3.2.3 Adsorption Measurements 

 A TA Instruments Q500 TGA was used to measure dry CO2 adsorption 

capacities. A typical adsorption run consisted of pretreating the material for three hours at 

120 °C in flowing helium to remove any pre-adsorbed CO2 and water, followed by 

cooling to the desired temperature for adsorption measurement and then adsorbing the 

test gas for twelve hours. Single component water vapor isotherms were measured using 

a Hiden IGASorp. A typical experiment consisted of pretreating the material at 100 °C 

for five hours in flowing nitrogen, followed by cooling to the desired temperature and 

adsorption of water vapor in flowing nitrogen gas. Adsorption is monitored at each 

relative humidity until a 95% equilibrium value is reached as determined by the 

equipment software.  

3.3 Results & Discussion 

 As discussed in chapter 1, there are two mechanisms by which supported amine 

materials can adsorb CO2 based on aqueous amine literature. From these mechanisms the 

maximum amine efficiencies can be determined. Therefore, in dry conditions the 

theoretical maximum efficiency for supported amines in the absence of water is 0.5 moles 

CO2 captured: 1 mole (primary and/or secondary) amine and improves to 1 mole CO2:1 

mole (primary, secondary or tertiary) amine in the presence of water. These amine 

efficiencies are important metrics for evaluating CO2 adsorbents, and will be used 

extensively in the discussion that follows in this chapter. 



 91

3.3.1  Materials Synthesis & Characterization 

 Primary, secondary and tertiary amines were functionalized onto a mesoporous 

silica foam support (mesocellular foam (MCF)). This support has a large surface area, 

large pore diameter and 3D pore network, which reduces diffusive resistance of the 

adsorbates. The silanes used and the corresponding nomenclature for the adsorbent 

samples are presented in Figure 3.1 and Table 3.1. The structure of all of these 

aminosilanes is similar, consisting of an amine group connected to a trimethoxysilane 

group via a propyl chain. Thus, all the amines are structurally similar, allowing for 

systematic comparison of the reactivity of the different types of amine sites. This 

approach has been used previously both by our group and others for examining 

differences of structural effects to oxidation and CO2 desorption kinetics.44–47  

 

Figure 3.1. Chemical structures of common aminosilanes used in previous works as well 
as the aminosilanes used for this study (APS, MAPS, DMAPS). 
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Table 3.1. Silanes used to prepare adsorbent materials. 

Silane Amine Type Sample Name 

3-aminopropyl-

trimethoxysilane 

Primary - APS MCF-APS-low, 

MCF-APS-high 

(N-methylaminopropyl)-

trimethoxysilane 

Secondary - MAPS MCF-MAPS 

(N,N-dimethylaminopropyl)-

trimethoxysilane 

Tertiary - DMAPS MCF-DMAPS 

 

 Upon functionalization, the silica materials were characterized via nitrogen 

physisorption, elemental analysis (EA), thermogravimetric analysis (TGA), Fourier 

transform infrared spectroscopy (FTIR), and 13C cross-polarization magic angle spinning 

(CP-MAS) nuclear magnetic resonance (NMR) spectroscopy (see supplementary 

information). The nitrogen adsorption/desorption isotherms are displayed in Figure 3.2 

and show a dramatic decrease in pore volume upon incorporation of the amine 

functionalities on the silica support. The pore size distributions as well as pore volumes 

of the adsorbents were calculated from physisorption data using the Broekhoff-de Boer-

Frankel Halsey Hill (BdB-FHH) method43 and are presented in Table 3.2 along with the 

amine loading of materials as determined by EA. Primary, secondary and tertiary 

materials were synthesized with similar amine loadings so that direct comparisons could 

be made between adsorption characteristics. A material with a higher loading of primary 

amine was also synthesized so that the influence of loading on amine efficiency could be 

assessed. It should be noted that the primary amine impurity discussed by Sayari et al.47 

was studied and found to have negligible effect on CO2 adsorption after purification and 
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functionalization of the secondary aminosilane. (Purification method and CO2 adsorption 

performance presented in appendix B.)  

 

 

Figure 3.2. Nitrogen adsorption/desorption isotherms of bare and amine functionalized 
silica with 500 cm3 gSTP

-1 offset between isotherms. 
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Table 3.2. Physical properties of adsorbent materials. 

Material Material 

Abbreviation 

BET SA 

(m2 gSiO2
-1) 

Vpore 

(cm3 gSiO2
-1) 

Amine Loading 

(mmol N g-1) 

Bare silica support 1 MCF1 648 2.72 - 

Bare silica support 2 MCF2 563 2.17 - 

Silica with primary 

amines, low loading 

MCF-APS-low 237 1.40 2.70 

Silica with primary 

amines, high loading 

MCF-APS-high 230 1.35 3.75 

Silica with 

secondary amines 

MCF-MAPS 344 2.01 2.41 

Silica with tertiary 

amines 

MCF-DMAPS 317 1.81 2.20 

 

 13C CP MAS NMR spectra for the three amine types are presented in Figure 3.3. 

The 3 shifts at 11.51, 23.37 and 44.39 ppm for MCF-APS-high correspond to the 3 

carbons in the propyl chain. Shifts at 10.97, 21.75 and 53.55 ppm for MCF-MAPS and 

11.51, 22.29 and 63.26 ppm for MCF-DMAPS also indicate the presence of the propyl 

carbon group and have an additional shift at 34.69 and 44.39 ppm, respectively, which 

corresponds to the methyl group bonded to the amine. The shift at 165.14 ppm for both 

MCF-APS-high and MCF-MAPS is from CO2 adsorption from the ambient air. 
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Figure 3.3. 13C CP MAS NMR spectra for amine functionalized materials. 

 

3.3.2 Carbon Dioxide Adsorption 

Adsorption isotherms were approximated by measuring CO2 adsorption capacities 

at multiple gas concentrations using a TGA. Figure 3.4 shows the adsorption results for 

CO2 with primary, secondary and tertiary amines under dry conditions at multiple 

temperatures. As expected, adsorption capacity is highest at ambient temperature, 25 °C, 

and decreases as the temperature increases to 45 and then 65 °C. Primary amines exhibit 

the highest adsorption capacities at all CO2 partial pressures and possess dramatically 

higher capacities at air capture conditions than materials constructed of secondary 

amines. Tertiary amines have negligible CO2 adsorption even at 25 °C, as predicted, due 
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to the different adsorption mechanism for tertiary amines with CO2. Therefore, the 

minimal uptake observed can be attributed to physisorption of CO2 on the silica support. 

It should also be noted that even at the lowest partial pressure of CO2, roughly 100 ppm, 

highly loaded primary amines exhibited adsorption capacities close to 1 mmol CO2 

gsorbent
-1 at ambient temperature and are therefore already outside of the Henry’s law 

regime of adsorption. 
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Figure 3.4. (a) Expanded, low partial pressure region CO2 adsorption isotherms for 
primary, secondary and tertiary amine materials at multiple temperatures and (b) Full 
scale adsorption isotherms. Materials functionalized with MAPS (DMAPS) are shown 
with blue (pink) symbols. Materials functionalized with APS at high (low) loadings are 
shown with green (black) symbols. 
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Comparing amine efficiencies of primary and secondary amines in Figure 3.5, it 

can be seen that at 400 ppm, primary amines possess efficiencies more than twice that of 

secondary amines with efficiency values of 0.20 and 0.07 mmol CO2 mmol N-1 for MCF-

APS-low and MCF-MAPS, respectively, at 25 °C. Tertiary amines have no efficiency 

reported because their CO2 adsorption is negligible. The difference between MCF-APS-

high and MCF-APS-low demonstrates that primary amine efficiency can be increased to 

an extent with increased loading. This is not unexpected, as the loadings are not excessive 

(for example causing significant pore blocking or filling) and, under the dry conditions 

used here, two amines are expected to participate in the adsorption of one CO2 molecule, 

based on the existing mechanistic knowledge of CO2 adsorption under wet and dry 

conditions.38,39 Our data shows that for highly loaded primary amines, efficiency closer to 

0.30 mmol CO2 mmol N-1 can be achieved, even under dry air capture conditions. By 

comparison, Ko et al. found that primary and secondary amines possessed comparable 

amine efficiencies under pure CO2 adsorption conditions, with reported values of 0.28 

and 0.24 mmol N-1, respectively.44 Thus, these ultra-dilute conditions significantly 

decrease the ability for secondary amines to adsorb CO2 but have more limited effect on 

the primary amines. It is apparent that primary amines are strong chemisorbers and can 

obtain efficiencies close to the theoretical maximum (0.5, in this case, under dry 

conditions) even at the dilute CO2 concentrations associated with air capture. This 

dramatic difference in amine efficiency provides strong motivation for the use of primary 

amine materials in dilute CO2 capture processes if such processes are to be practically 

relevant. Secondary and tertiary amines are of limited use as air capture adsorbents since 

they provide little interaction with the CO2 during an adsorption process. Additionally, 
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primary amines exhibit fast adsorption kinetics even at ultra-dilute CO2 concentrations, 

indicating that capture processes can operate with relatively fast cycle times (see 

appendix C for kinetic plots). 

 

 

Figure 3.5. Amine efficiency of primary and secondary amines at multiple temperatures. 
Materials functionalized with MAPS are shown with blue symbols. Materials 
functionalized with APS at high (low) loadings are shown with green (black) symbols. 

 

The experimental data from isotherm measurements of primary and secondary 

amines were used to calculate isosteric heats of adsorption using the temperature 

dependent Toth isotherm model. This model has been used previously for isosteric heat 

of adsorption measurements and is a good approximation for adsorption of CO2 onto 

supported amines.48 The isosteric heat of adsorption as a function of CO2 coverage is 
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presented in Figure 3.6 and shows that primary amines possess a higher heat of 

adsorption at low loadings than secondary amines. This can explain the increased amine 

efficiency at ultra-low partial pressures of CO2 in comparison to secondary amines. From 

the isotherm model, zero coverage heat of adsorption values were found to be 130 and 88 

kJ/mol for primary and secondary amines, respectively. These results for primary and 

secondary amines are comparable to previously reported trends for APS, MAPS and 

triamine on mesoporous silica.48–50  

 

 

Figure 3.6. Isosteric heat of adsorption for CO2 on the primary and secondary amine 
functionalized silica materials as determined using the temperature dependent Toth 
isotherm model. 
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3.3.3 Water Adsorption 

 Understanding water interaction with different amine groups is another key 

component to finding a practical adsorbent for CO2 capture, as both air capture and flue 

gas capture streams typically contain significant amounts of humidity. Assessing the 

hydrophilic/hydrophobic nature of materials is essential to understand what materials will 

be best suited to adsorption in humid environments. Hydrophilic materials can facilitate 

higher CO2 adsorption efficiencies by attracting water that can act as the free base for 

deprotonation of the zwitterionic intermediate during CO2 adsorption, thereby increasing 

amine efficiency.51,52 However, an excess of humidity or extreme hydrophillicity could 

negatively impact adsorption if the water condenses in the pores and blocks access of 

CO2 to adsorption sites. Similarly, in a cyclic temperature swing adsorption process, any 

adsorbed water is likely desorbed under regeneration conditions, potentially incurring an 

energy penalty associated with removal of the water. It should be noted that the ability of 

supported amine materials to work as effective air-capture adsorbents under any humidity 

conditions may offer an advantage over other adsorbents reported for air capture that 

require precise humidity control such as the ammonium resin studied by Wang and 

Lackner.15  
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Figure 3.7. Water adsorption isotherms for bare silica and amine functionalized silica at 
25 °C. 

 

 Based on the hypothesis that water adsorption is dominated by physisorption of 

water onto surface silanol groups, it may be expected that water adsorption will be 

maximized on the bare support. Water vapor adsorption isotherms were measured for all 

the materials at multiple temperatures and it was found that the silica materials 

functionalized with primary amines have the highest water uptake per gram of silica at all 

relative humidities, as can be seen in Figure 3.7 (water adsorption isotherms for these 

materials normalized by surface area are presented in appendix D). Furthermore, MCF-

APS-high displayed higher water uptake values than MCF-APS-low, demonstrating a 

positive correlation between primary amine loading and water uptake. As expected, water 
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uptake decreases with increasing temperatures, as displayed in Figure 3.8. It is apparent 

that primary amines enhance hydrophilicity of the adsorbent, whereas secondary or 

tertiary amines make the material less hydrophillic than the bare support. This 

characteristic of primary amines coupled with high amine efficiencies at ultra-dilute CO2 

concentrations suggests that an enhanced cooperativity between CO2, water and the 

amine would occur upon humid adsorption processes, thus leading to potentially highly 

efficient adsorbents.  

 

 

Figure 3.8. Water adsorption isotherms at multiple temperatures for the high loading 
primary amine material (MCF-APS-high). 
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3.4 Conclusions 

 A fundamental study of primary, secondary and tertiary class 2 amine-

functionalized materials was performed to evaluate adsorption characteristics of different 

amine structures as they relate to air capture conditions. It was found that primary amines 

exhibit significantly higher adsorption capacities and amine efficiencies than secondary 

and tertiary amines with respect to CO2 adsorption. Additionally, water vapor adsorption 

isotherms for bare silica as well as amine functionalized silica materials showed that 

primary amines enhance the water affinity of the solids. This could lead to significant 

enhancements in amine efficiency for air capture processes, as co-adsorbed water has 

been shown to enhance CO2 adsorption in previous studies focused on CO2 capture from 

flue gas.38,39 These results indicate that future studies on supported amines for air capture 

should focus on the design and stability assessment of all primary amine or mostly 

primary amine materials for air capture processes.  
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  Chapter 4

 

AN ADSORPTION APPARATUS TO STUDY BINARY 

ADSORPTION OF CO2 AND WATER ON SUPPORTED AMINE 

ADSORBENTS 

 

4.1 Background 

 It is known that the presence of water vapor will have an impact on the adsorption 

capacities of CO2 on supported amine adsorbents.1 However, the degree of enhancement 

varies between materials and operating conditions used. Nevertheless, because water 

vapor is present both in flue gas streams and ambient air, it is necessary to obtain a 

qualitative and quantitative understanding of the kinetic and thermodynamic behavior of 

water and CO2 co-adsorption on potential CO2 capture sorbents. The former can be 

achieved with a packed bed-mass spectrometer flow system set up whereby the gas lines 

entering the fixed bed can be pre-humidified with water spargers and the breakthrough of 

both CO2 and water can be monitored via mass spectroscopy.2,3 The latter requires an 

instrument that will yield binary adsorption isotherms.  

 Traditionally, single component adsorption isotherms are evaluated in one of two 

ways: gravimetrically with a TGA or volumetrically with a pressure decay cell (PDC). 

TGA is the easiest measurement to perform as it simply consists of measuring the 

increase in weight of a candidate sorbent as CO2 flows past it. The downside to TGA is 

that it is not equipped for humid measurements unless significant modifications are made 
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to the system, as has been done by Sayari’s group.4 A PDC measures adsorption through 

the change in pressure in a sample cell containing adsorbent material followed by a mole 

balance to determine the amount of gas adsorbed. Pressure decay cells are excellent for 

measuring single component adsorption isotherms in the ambient to high pressure range. 

However, they cannot measure multicomponent isotherms, as the adsorption from CO2 

and water cannot be deconvoluted into individual contributions. Both of these techniques 

work well for single component adsorption studies. However, they are less practical to 

use if one wants to consider the additional component of water vapor.  

 To address the need for binary equilibrium adsorption data, I chose to build a 

custom volumetric adsorption system that is similar to other systems traditionally used 

for multicomponent analysis of organics with solid sorbents like zeolites and activated 

carbons.5–7 This system is akin to a PDC but has a GC sampling valve connected to the 

closed loop system so that both CO2 and water adsorption can be monitored. The 

following chapter discusses the design, operational procedure and validation of an 

adsorption apparatus constructed to obtain this critical data.  

4.2 Experiments 

4.2.1 Apparatus 

 The design for the volumetric system was inspired by Qi and LeVan’s system for 

binary organic-water vapor sorption analysis.7,8 The basic premise of the system is to 

place a known amount of sorbent material into a closed, fixed volume (55.7 cm3), 

circulating system where known amounts of CO2 and water vapor can be injected 

periodically. Adsorption of the two components is monitored via a gas chromatograph 

(GC) and a mole balance is used for calculating the amount of adsorbed species. A 
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schematic of the system is shown in Figure 4.1. The system is comprised of a stainless 

steel closed loop that connects a fixed bed (0.5” VCR bulkhead union with fritted gasket), 

water injection port (Swagelok type SS-42GVCR4, one end fitted with GC injector septa 

Restek type 06-802-771), CO2 dose valve (Swagelok type SS-42GXVCR4), GC sampling 

valve (VICI type DC6UWE), pressure transducers (Swagelok type PTU-S-AC3-31AD-

C) and a circulation pump (Ruska type 2330-802). The system is contained within an 

environmental chamber (Russells RB-4-03-03) that controls the temperature and can 

operate at temperatures of -50 to 150 ºC. Two mass flow controllers (MKS type 

1480A00111CR1BM, 1480A00151CR1BM) are used to mix CO2 and helium gas to 

desired concentrations that are then dosed into the closed loop system from the gas 

reservoir (282 cm3). National Instrument LabView software is used to read and record 

system and reservoir pressures. Gas concentrations in the system are sampled with a 250 

µL sample loop (VICI type SL250NW) that are then analyzed via GC (Agilent 7890A 

Series Custom). A flame ionization detector (FID) is used to analyze CO2 concentration 

while a thermal conductivity detector (TCD) is used for water. The GC is equipped with a 

custom designed nickel catalyst bed used to methanize CO2 at 375 ºC during GC analysis 

so that FID can be used. This provides a higher degree of resolution for CO2 detection as 

opposed to TCD (ppb levels versus ppm level detection limit). A HP-Plot U capillary 

column (30 m×530 µm ID×20 µm) is used to separate CO2 and water.  
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Figure 4.1. Schematic of volumetric system designed for binary CO2-H2O adsorption. 

4.2.2 Operation Procedure 

 Before experiments were conducted, the GC signal responses to a wide range of 

CO2 and water concentrations were recorded to calibrate the instrument. Dilute mixture 

cylinders of CO2 in helium were used for CO2 calibration. The gas cylinders were 

directly connected to the GC sampling valve and allowed to flow for several hours before 

sampling. At least three GC measurements were taken and then averaged to obtain one 

calibration point. For water calibration, a helium cylinder was connected to a Setaram 

WetSys humidity generator. This instrument allows for precise setting of gas relative 

humidity, temperature and flow rate. The outlet gas line from the WetSys was connected 

to the GC sampling valve directly and at least three GC measurements were averaged to 

obtain one calibration point. 
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 Before an adsorption experiment, powder adsorbent material was first pressed 

into pellets under a pressure of 1000 psi and then crushed and sieved in a size range of 

355-850 µm. Next, between 50-80 mg of sample was loaded into the fixed bed, sitting on 

top of a 0.5 µm fritted gasket with glass wool on top. The fixed bed was then connected 

to the volumetric system (Note: Fresh VCR gaskets were used every time the fixed bed 

unit was reattached to the apparatus). Prior to each adsorption experiment, the system 

was leak checked by charging with helium gas up to 1 bar gauge at 30 °C and monitoring 

pressure for 1 h. A pressure loss less than -1×10-5 mbar s-1 was deemed acceptable since 

that was within the noise of the pressure transducers. After leak testing the system, heat 

tape was wrapped around the fixed bed unit and heated to 120 ºC for regeneration of the 

sorbent. To regenerate the sorbent, a series of vacuum-helium flush cycles was performed 

to remove CO2 and water previously bound to the adsorbent. The concentration of CO2 

and water in the system was monitored with the GC and regeneration was complete when 

no CO2 or water was detected coming off the adsorbent during the helium purge step. 

After regeneration, the heating tape was removed and the fixed bed unit was allowed to 

cool at room temperature before closing the environmental chamber and setting it to the 

desired temperature of operation. 

 To generate binary isotherms, water was first injected into the system under an 

inert helium environment followed by successive CO2 doses to obtain data for a fixed 

water loading. A custom designed, gas tight syringe with 10 µL capacity from Hamilton 

Company was used so that the point of entrance for the water was directly in line with 

circulation flow of the system to ensure faster dispersion of the water vapor. At the time 

of water injection, the water injection port was heated with heat tape to approximately 
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100 ºC as an additional measure to ensure that the liquid water evaporated within the 

system. After water injection, the heating tape was turned off and the water vapor was 

allowed to circulate in the system for at least 12 h before introduction of CO2. The system 

was monitored with the GC to determine when equilibrium had been reached and the 

concentration of remaining gas species. Equilibrium was defined as a molar adsorption 

rate less than 1×10-9 mmol s-1. This translates to an adsorption rate of approximately 

8×10-5 mmol day-1 and was therefore deemed an acceptable criterion for 

pseudoequilibrium. Typically, equilibrium was achieved within 24 h, except for highly 

loaded materials that took much longer. A material balance was applied to determine the 

amount of adsorbed CO2 and water by subtracting the amount of each component 

circulating in the system by the amount that was injected/dosed.  

4.2.3 Validation Procedures 

 To ensure that the system was operating properly for both CO2 and water 

adsorption measurements, materials were tested on the volumetric system and then 

compared to values obtained with other commercially available single component 

adsorption instruments. The methods for validating both CO2 and water operation for the 

volumetric system are discussed below.  

4.2.3.1 CO2 Validation 

 Two external instruments were used to validate the volumetric system for CO2 

adsorption capabilities, one being a gravimetric technique and the other volumetric. A TA 

instruments TGA was used as the gravimetric apparatus. Standard operating procedures 

for this instrument are discussed in previous chapters. A PDC was used for the 
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volumetric apparatus. For PDC operation, between 30-50 mg of adsorbent was loaded 

into the sample cell and regenerated at 120 ºC under vacuum for 3 h. The sample was 

then cooled down to the adsorption temperature; in this case 30 ºC was used for all 

validation experiments. After the sample cooled completely, the vacuum connection was 

closed and the adsorption measurement was started. The material used for these 

experiments was pelletized silica supported primary amine adsorbent, SBA-APS. 

Synthesis and functionalization for this type of material was discussed in chapter 2. 

4.2.3.2 Water Validation 

 A gravimetric technique was used to validate the volumetric system for water 

adsorption capabilities. A Hiden IGASorp was used to measure single component water 

vapor isotherms that could be compared to water adsorption values obtained with the 

volumetric system. Operation procedures for this instrument were discussed in chapter 3. 

However, for these experiments regeneration was performed for 3 h at 120 ºC under 

flowing nitrogen. The material used for these experiments was pelletized un-

functionalized silica, MCF. Synthesis for this type of material was discussed in chapter 3.  

4.3 Results & Discussion 

4.3.1 Validation 

 To ensure that the volumetric system was operating properly after construction, 

single component water and CO2 adsorption isotherms were obtained using adsorbent 

materials that had been evaluated on other instrumentation as well so that it could be 

verified that accurate values can be obtained with the newly developed system. Figure 4.2 

and Figure 4.3 show the data that was obtained for this purpose. It can be seen that for 
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both CO2 and water adsorption there is good agreement between values obtained with the 

volumetric system (VS) and other adsorption apparatuses.  

 

 

Figure 4.2. Comparison of CO2 isotherms (a) obtained with the volumetric system and 
two other adsorption equipment and (b) measured in duplicate on the volumetric system. 
All measurements are done at 30 ºC. Note: a different SBA-APS material was used for 
the measurements in plot (a) vs plot (b). 
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Figure 4.3. Comparison of water isotherms obtained with volumetric system and another 
adsorption apparatus for the same adsorbent material at 30ºC. 

4.3.2 Error Estimation 

 It is important to understand the potential sources of error for this system to get an 

idea of the accuracy that can be achieved when operating. There are five major sources of 

error that could have an impact on the isotherms measured: (1) the GC calibration, (2) 

variation in the GC measurement, (3) the CO2 dose, (4) the water dose, and (5) 

uncertainty in reaching equilibrium. Each of these and their potential impact on 

measurement accuracy are discussed below. 

4.3.2.1 GC calibration 

 As mentioned in the experimental section, the GC was calibrated for both CO2 

and water responses to known gas compositions so that a calibration curve could be 

obtained to determine the concentration of unknown gas mixtures. Figure 4.4 shows the 
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calibration curves obtained for CO2 and water that are used to interpret co-adsorption GC 

measurements. The calibration equations obtained are as follows: 

 

CO2 Concentration [ng µL-1] = 6.582×10-3 × GC Area – 0.0134 

H2O Concentration [ng µL-1] = 0.0654 × GC Area + 0.437 

 

 

Figure 4.4. GC response areas to known CO2 and H2O concentrations. Data used to 
obtain calibration equation for both gas components. 

 

 If the fit of the calibration curve is not good enough, inaccurate predictions of gas 

concentrations will result during adsorption experiments. This would lead to incorrect 

mass balances that could affect measured adsorption capacities. However, the R2 values 

for both the water and CO2 data fits are greater than 0.999. Therefore, the calibration is 
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considered quite good and will not have a significant impact on operation of the 

volumetric system. 

4.3.2.2 Variation of GC measurement 

 Variability that exists with both the FID and TCD detectors must be evaluated to 

determine what the effects will be on low partial pressure measurements for both CO2 

and water. Therefore the precision of repeated measurements for both detectors with a 

constant gas concentration was evaluated. The result of these measurements for both the 

FID and TCD are shown in Figure 4.5. To evaluate the FID, a helium-CO2 gas mixture 

with a concentration representing a partial pressure of roughly 4×10-4 bar CO2 was 

circulated in the system with no adsorbent. A low concentration was used as this 

represents the region where absolute error is the highest with respect to the calibration of 

the GC and is also where variability in the detector would have the greatest impact on 

measurements. Five measurements were made throughout the course of 21 hours. The 

variation between measurements averaged a 1.7% error. To evaluate the TCD, a helium-

water vapor gas mixture with a concentration representing a partial pressure of roughly 

5.6×10-3 bar H2O was circulated in the system with no adsorbent. Ten measurements 

were made throughout the course of six days. The variation between measurements 

averaged a 2.4% error. Therefore, it can be assumed that the GC will give consistent 

results, even in the lower limits of the detectors’ capabilities.  
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Figure 4.5. GC variation in FID (squares, CO2) and TCD (circles, H2O) measurements for 
a single component gas circulated with no adsorbent over multiple samples. 

 

4.3.2.3 CO2 dose  

 An error in the estimation of how much CO2 is dosed into the system will affect 

the CO2 mass balance and therefore the calculation of how much CO2 has been adsorbed 

by the adsorbent. The amount of CO2 dosed into the system is calculated by measuring 

the change in pressure of the gas reservoir and then applying the ideal gas law to 

determine the number of moles of CO2 that have been introduced into the system. 

Therefore, inaccuracies in operation of the mass flow controllers and pressure transducers 

are the biggest contributors to error in this scenario. The uncertainty in the pressure 

transducers and mass flow controllers are 0.065% and 1% of the set point, respectively. 

To demonstrate the impact this would have on an adsorption experiment, the upper and 

lower bounds of a CO2 dose were calculated for an adsorption experiment considering 



 122

these uncertainties. For a sample size of roughly 75 mg, a ±1.4×10-3 mmol g-1 error is 

introduced for a material with an equilibrium adsorption capacity of 0.038 mmol g-1 at 

295 ppm CO2 partial pressure. Therefore it can be concluded that error contributions from 

the aspect of CO2 dosing will be negligible. 

4.3.2.4 Water dose 

 Similar to the CO2 dose, an error in estimating the amount of water injected will 

affect the calculation of how much water has been adsorbed by the material. The amount 

of water injected into the system is determined visually by markings on the syringe. The 

syringe used has a maximum capacity of 10 µL with indicator markings at every tenth of 

a microliter. Therefore, the uncertainty in measurement will be ±0.05 µL.9 To 

demonstrate the impact this would have on an adsorption experiment, the upper and 

lower bounds of a water dose were calculated for an adsorption experiment using this 

uncertainty. For a sample size of roughly 75 mg, a ±0.036 mmol g-1 error is introduced 

for a material with an equilibrium adsorption capacity of 1.94 mmol g-1 at a water partial 

pressure of 7.09×10-3 bar. Therefore, the uncertainty in water capacities is greater than 

that for CO2 adsorption capacities, but is still relatively low. 

4.3.2.5 Uncertainty in reaching equilibrium 

 Because the GC will never reach an exact equilibrium where there is precisely no 

variation in GC measurements, a reasonable criteria for equilibrium must be established. 

Therefore it is possible that reported adsorption capacities are lower than the true 

equilibrium amount that would be adsorbed for an infinite amount of measurement time. 

As mentioned in the experimental part of this chapter, equilibrium is defined for this 
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system’s operation as the point where the molar adsorption rate of a gas species is less 

than 1×10-9 mmol s-1. For an experiment using 80 mg of adsorbent, if a measurement was 

allowed to go for 20 days past this equilibrium criterion, it would result in an increase of 

adsorption capacity of 0.02 mmol g-1. As diffusionally resistant materials are the most 

likely candidates to suffer from underpredictions of adsorption capacity, and those 

materials possess higher adsorption capacities due to high amine content, it can be 

concluded that this would be a minor fraction of the overall capacity measured. 

4.4 Conclusions 

 Binary adsorption isotherms for supported amine adsorbents can potentially 

enhance the fundamental knowledge of CO2-H2O-amine interactions during various 

adsorption processes. This chapter described the design, operational procedure and 

validation of an adsorption apparatus that will allow for such studies to take place. After 

consideration of potential sources of error to this experimental method it can be 

concluded that sufficiently accurate and consistent dual component isotherms can be 

measured using this system, thus enabling for new fundamental information to be 

obtained in the field of supported amine adsorbents for CO2 capture. The application of 

this system to a series of supported amine adsorbents is discussed in the following 

chapter.  
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  Chapter 5

 

BINARY ADSORPTION STUDIES AT DILUTE CONDITIONS FOR 

PRIMARY AMINE ADSORBENTS: EFFECT OF AMINE LOADING 

 

5.1 Background 

 As discussed in chapter 4, a binary adsorption system was built so that supported 

amine adsorbents could be evaluated at ultra-dilute CO2 conditions in humid 

environments. Based on the results from chapter 3, primary amines were identified as the 

ideal amine type to investigate in this study, as they display the highest amine efficiency 

in dry, low pressure CO2 environments and are also the most hydrophilic amine type. 

Thus, it is believed that primary amines have the potential to display significantly 

enhanced CO2 uptake when co-adsorbing water. This is due to the fact that a different 

adsorption mechanism is postulated to be possible in the presence of humidity, where it 

has previously been shown that water can promote the formation of bicarbonate and 

increase amine efficiency to a maximum stoichiometric ratio of 1 CO2:1 NH2 in aqueous 

liquid systems, as discussed in chapter 1. Because it was also observed in chapter 3 that 

the loading of the primary amine materials affected both CO2 and water adsorption 

properties, it would be useful to examine how that same variation in surface coverage 

would affect adsorption in a humid CO2 environment. Therefore, the aim of this study 

was to examine a set of primary amine materials with different amine loadings and to 

observe how dilute CO2 adsorption was affected when water co-adsorbed on the material. 
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5.2 Experiments 

5.2.1 Materials Synthesis 

 Amine functionalized SBA-15 materials were used for this study. The synthesis 

for SBA-15 is described in chapter 2. The procedure for amine functionalization is as 

follows: 2 g calcined SBA-15 was dried overnight at 120 ºC on a Schlenk line. After 

drying, 200 mL of toluene was added to the round bottom flask and stirred at room 

temperature for 3 h. Next, 3-aminopropyltrimethoxysilane (APS) was added in varying 

ratios. For SBA-APS-low and SBA-APS-medium, 2 g and 8 g of APS were added, 

respectively. The solutions were allowed to stir for 24 h at room temperature. For the 

high loading material, the following alterations were made to the synthesis procedure to 

achieve organosilane polymerization:1 0.6 mL DI water was added to the SBA-15 in 

toluene solution after 30 min of stirring, then after 3 h of stirring, 4 g APS was added and 

the solution was then quickly heated to 85 ºC and stirred for 24 h. The resulting solids of 

all three syntheses were separately filtered and washed with copious amounts of toluene, 

hexane and methanol. They were then dried overnight on a Schlenk line at 50 °C. 

5.2.2 Materials Characterization 

 Nitrogen physisorption was evaluated with a Micromeritics Tristar II. Nitrogen 

content of functionalized materials was determined via elemental analysis from Atlantic 

Microlabs (Norcross, GA, USA). 

5.2.3 Adsorption Measurements 

 The volumetric adsorption system described in chapter 4 was used to obtain single 

component CO2 adsorption isotherms as well as binary CO2-H2O adsorption isotherms. 



 127

Single component water isotherms were measured using a Hiden IGASorp. Operation 

procedures for both apparatuses are described in chapter 4. For binary adsorption, the 

amount of water injected was adjusted so that the quantity of adsorbed water on all 

materials would be approximately equivalent. The amount of water to be injected was 

estimated from the single component water isotherms. All adsorption experiments were 

performed at 30 °C. 

5.2.4 In-Situ FTIR 

 FTIR spectroscopy was performed on a Nicolet 8700 FTIR spectrometer with a 

MCT/A detector. Each spectrum was recorded with 64 scans at a resolution of 4 cm-1. For 

the in-situ FTIR spectroscopy of CO2 adsorption and desorption, the sample was pressed 

into a self-supported wafer and loaded into a high-vacuum transmission FTIR cell. The 

wafer was activated at 110 °C under vacuum (less than 10-6 mbar) for 3 h, cooled down to 

room temperature, and a spectrum was collected. Under dry conditions, the cell was 

dosed with 10 mbar of CO2 and then allowed to equilibrate for 10 h. A spectrum was 

collected every 5 min. Under humid conditions, the cell was dosed with 5 mbar of H2O 

vapor and then equilibrated for 1 h, followed by dosing 1.5 mbar of CO2 and then 

equilibrating for 10 h. A spectrum was collected every 5 min. After 10 h of adsorption 

under each condition, the cell was evacuated for 3 h and a spectrum was collected every 2 

min. Thermo Fischer Scientific Inc Grams 9.1 software was used to process the 

difference spectra. The difference spectra that are presented use the activated spectrum 

before addition of CO2 as the subtrahend for dry adsorption, desorption and humid 

desorption. The spectrum equilibrated with water for 1 h is used as the subtrahend for the 

difference spectra presented for humid CO2 adsorption. 
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5.3 Results & Discussion 

5.3.1 Materials Synthesis & Characterization 

 As mentioned previously, the aim of this study was to explore the effect of amine 

surface coverage on CO2 adsorption properties in a humid environment for supported 

amine adsorbents. To achieve this, adsorbent materials were prepared using a primary 

aminosilane (APS) that was grafted to silica SBA-15 with varying degrees of surface 

coverage. Three materials were prepared as depicted in Figure 5.1. The first material, 

SBA-APS-low, possesses a sub-monolayer surface coverage of amines. This is supported 

by the fact that free OH groups are observable in the IR spectra (see appendix E) and that 

the addition of more silane to the reaction mixture in anhydrous synthesis conditions 

yields a material with higher surface coverage, SBA-APS-medium. It is believed that this 

material is close to monolayer coverage since four times the amount of silane was used as 

compared to the synthesis of SBA-APS-low. The third material has a dense, multi-layer 

surface of amines (SBA-APS-high), and was synthesized using a technique that involves 

the addition of water to the reaction mixture during functionalization to polymerize the 

aminosilane.1 
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Figure 5.1. Hypothetical representation of the materials used in this study: SBA-APS-low 
with sub-monolayer surface coverage (top), SBA-APS-medium (middle) and SBA-APS-
high with multi-layer coverage (bottom). 

 

 Results from elemental analysis and nitrogen physisorption are summarized in 

Figure 5.2 and Table 5.1. The nitrogen physisorption isotherms in Figure 5.2 show that 

SBA-APS-low and SBA-APS-medium retain their mesoporosity while the mesopores of 

SBA-APS-high become completely blocked with grafted amines, as evidenced by the 

minimal uptake of nitrogen and loss of hysteresis. Elemental analysis shows that SBA-

APS-high has more than twice the loading as SBA-APS-medium. This coupled with the 

loss of porosity suggest that SBA-APS-high is a densely loaded material with multi-layer 

coverage. Thus, this set of materials is a good candidate for evaluation of the effects of 

amine surface coverage on CO2 adsorption in the presence of water vapor.  
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Figure 5.2. Nitrogen physisorption isotherms for bare and APS functionalized materials. 
Isotherms are vertically offset by 175 (SBA-APS-medium), 350 (SBA-APS-low) and 525 
(SBA-15) cm3 gSTP

-1. 

 

Table 5.1. Physical properties of bare support and amine functionalized materials. 

Material BET SA 

(m2 gSiO2
-1) 

Vp 

(cm3 gSiO2
-1) 

Nitrogen Content 

(mmol N g-1) 

SBA-15 887 1.02 - 

SBA-APS-low 551 0.75 1.65 

SBA-APS-medium 501 0.78 2.03 

SBA-APS-high 21 0.04 4.33 
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5.3.2 Single Component Adsorption 

 Pure CO2 and water adsorption isotherms were obtained for all materials at 30 °C 

to observe the differences in adsorption capacities between the materials and to serve as a 

benchmark for comparison with the humid adsorption experiments. Adsorption isotherms 

for CO2 are shown in Figure 5.3. The measured data were fit to a single-site Toth 

isotherm model, which is also depicted in Figure 5.3. As expected, CO2 adsorption 

capacity increases with (i) increasing partial pressure of CO2 and (ii) increasing surface 

coverage of amines. It is interesting to note that while the difference in loading between 

SBA-APS-low and SBA-APS-medium is relatively small (roughly a factor of 1.2), the 

adsorption capacity has a correspondingly larger increase between the two materials, thus 

indicating that within this relatively small range of amine loadings a change in the 

behavior of the material to loading and CO2 uptake occurs. This has previously been 

observed by Young and Notestein.2 
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Figure 5.3. CO2 adsorption isotherms at 30 °C for APS adsorbents with different amine 
loadings. Dashed lines through data points are from numerical fitting using the single site 
Toth model.  

 

 Water adsorption isotherms in Figure 5.4 reveal that SBA-APS-high possesses a 

higher water adsorption capacity in the low partial pressure (or relative humidity) regime 

compared to the less densely grafted materials, but a lower capacity at higher partial 

pressures where capillary condensation occurs. This is likely the result of a combination 

of two factors, the first being that the absence of mesoporosity in the SBA-APS-high 

material results in no capillary condensation of water within the highly loaded material, a 

phenomena that greatly increases water adsorption for both SBA-APS-low and SBA-

APS-medium at higher water partial pressures since both materials retain mesoporosity. 

A second potential contribution to the lower uptakes at high partial pressures of water for 
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SBA-APS-high could be due to an experimental constraint, where a maximum 

equilibration time of 5 h was permitted during these adsorption measurements. Due to the 

high loading and diffusional resistance that is known to occur in these materials, it is 

possible that the equilibrium capacities are slightly underrepresented.  

 The focus of this study was to examine binary adsorption at fixed water loading in 

the pre-capillary condensation regime for these materials. Using the information from the 

dry water isotherms, the required amount of water to inject was determined for each 

material so that all materials had similar water adsorption capacities during binary 

experiments. 

 

 

Figure 5.4. Water adsorption isotherms at 30 °C for APS adsorbents with different amine 
loadings.  
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5.3.3 Binary Adsorption 

 As mentioned previously, binary CO2 isotherms were collected for a fixed loading 

of water. By holding the water loading constant for humid studies, the effect of surface 

coverage of amines can be more clearly observed with respect to CO2 uptake. This type 

of measurement can only work if the adsorption of water onto the amine adsorbent is 

independent of CO2 partial pressure and CO2 adsorption. This is verified in Figure 5.5 

below. It can be seen that for all experiments conducted, the water loading stayed 

constant within the margin of error previously discussed in chapter 4. This phenomena 

was previously observed by Gebald et al. for an amine functionalized nanofibrillated 

cellulose.3 

 

 

Figure 5.5. Measured water uptake for SBA-APS materials during humid CO2 adsorption 
isotherm measurements at 30 °C. Note that water loading remains constant as CO2 partial 
pressure increases. 
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 The water loading that was chosen for these binary adsorption experiments is such 

that adsorption occurs in the low water coverage region of the water adsorption isotherm. 

This was done to explore the effects of water on CO2 adsorption capacities when water is 

not condensing in the pores, as this could potentially result in a more aqueous absorption 

behavior for the material than a gas-solid interaction. The measured binary adsorption 

isotherms for the amine adsorbents are displayed in Figure 5.6 along with the 

corresponding dry CO2 adsorption data. 
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Figure 5.6. Binary adsorption isotherms of CO2 at 30 °C and constant water loading for 
(a) SBA-APS-low (b) SBA-APS-medium and (c) SBA-APS-high. Dashed lines through 
the data points are from numerical fitting using the single site Toth model. 
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 From the binary adsorption isotherms, it can be seen that water has the most 

beneficial impact on the adsorption of CO2 for SBA-APS-low, followed by SBA-APS-

medium and then SBA-APS-high, especially in the ultra-low pressure region that 

corresponds to air capture conditions. This could suggest that monolayer to multi-layer 

coverage of amines on the surface in some way hinders the ability of CO2 to interact with 

water as favorably in the adsorption process, or that the presence of surface silanols on 

SBA-APS-low offers an additional route to CO2 adsorption with water that does not 

occur with the other materials. This concept can be further examined by comparing the 

amine efficiency of each material between dry and humid adsorption conditions. To do 

so, the efficiency enhancement was calculated for each material and compared as a 

function of CO2 partial pressure using the numerical fits obtained from measured 

isotherms. Efficiency enhancement is defined as follows: 

 

	 	
	 |
	 |

 

 

The efficiency enhancement for the amine adsorbents is shown in Figure 5.7. This figure 

demonstrates the effect of amine surface coverage with respect to humid adsorption in 

low RH conditions, where the greatest degree of enhancement is observed for the 

material with the lowest amine loading. It is interesting to note that while the low and 

medium loading materials show favorable enhancement throughout the adsorption 

isotherm range when water is co-adsorbed, the high loading material initially displays 

slightly lower amine efficiencies compared to dry adsorption and then surpasses dry 

conditions at higher partial pressures of CO2. Reduced humid CO2 uptake for air capture 
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conditions was also observed by Goeppert et al. when evaluating a fumed silica material 

impregnated with 52 wt% PEI for dry and humid air capture (400 ppm CO2, 67% RH).4 

A more drastic reduction in CO2 uptake was seen for that material, where the humid 

adsorption resulted in an 18% decrease in amine efficiency. Their explanation for this 

behavior was that the adsorbed water could block access to some of the more difficult to 

reach amine groups, thereby reducing capacity. Higher partial pressures of CO2 were not 

evaluated in that study to see if the behavior continued. Subagyono et al. also observed a 

similar trend, where CO2 isotherms measured with 2.8% RH only started to surpass dry 

adsorption capacities in the range of 5-30% CO2 for highly loaded (~70 wt%) branched 

and linear PEI adsorbents.5 Those experiments were performed in a higher partial 

pressure range, from 2.5-50% CO2 at an adsorption temperature of 75 °C. However, the 

general consensus is that the presence of water aids CO2 adsorption, especially for highly 

loaded materials, as the adsorbed water can act as a diffusive intermediate to transport 

CO2.
6 It is not clear why these differences are observed.  

 



 139

 

Figure 5.7. Enhancement of amine efficiency between dry CO2 adsorption and humid 
CO2 adsorption for SBA-APS materials with varied surface loading. 

 

5.3.4 In-Situ FTIR 

 The findings from the binary adsorption studies show a difference in humid 

adsorption behavior for SBA-APS-low and SBA-APS-high. One possible cause for these 

differences could be the result of a different adsorption mechanism occurring with the 

two materials. To investigate this, in-situ FTIR spectroscopy was employed for both 

materials in dry and humid CO2 adsorption conditions. As discussed in chapter 1, it is 

currently believed that the dominant adsorbed species of CO2 are in the form of 

ammonium carbamate ion pairs, carbamic acid, and surface bound carbamate (dry CO2, 

low amine surface coverage conditions only). The most recent literature suggests that 
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bicarbonates and carbonates do not form upon humid CO2 adsorption, and that any 

increase in amine efficiency is the result of (i) more carbamate ion pairs forming (ii) 

formation of hydrogen bond stabilized carbamic acid and/or (iii) the release of additional 

hydrogen bonded amines.7,8 Despite this general consensus, there is still some debate 

over specific band assignments observed in the IR spectrum for supported amine 

materials exposed to CO2. For example, the band evolved at 1480-1495 cm-1 during CO2 

adsorption is attributed to carbamate formation. However, some references ascribe this to 

a symmetric COO- stretch of the carbamate9–11 while others say it is the result of the 

symmetric deformation of NH3
+.7,12,13 As a result, general conclusions about the nature of 

the adsorbed species can be made, but more in depth analysis of the assignment of certain 

bands is still needed. A summary of various band assignments from the literature is 

presented in Table 5.2 for reference.  
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Table 5.2. IR band assignments from recent literature for species observed upon 
contacting CO2 with amine adsorbents. Note there is some disagreement between 
assignments of species. 

Wavenumber (cm-1) Assignment Species Ref. 

1715-1710 C=O stretch Bound carbamate 7,13,14 

1715 C=O stretch Carbamic acid 7,11 

1700-1680 C=O stretch Carbamic acid 7,9,11,12,15,16 

1635-1625 NH3
+ asym def NH3

+ 7,9,10,12,13,16–23 

1601-1590 N-H deformation NH2 
7,11,13 

1570-1545 COO- asym stretch Carbamate 7,9,11–21,24,25 

1550-1485 NH3
+ sym def NH3

+ 7,9,12–16,22 

1520-1510 NH def/C-N stretch Bound carbamate 7,13,14 

1490-1480 COO- sym stretch Carbamate 9,11,19,24 

~1430 COO- sym stretch Carbamate 7,9,12–14,16,21,24,26

~1380 COO- sym stretch Carbamate 12–14,16,21,26 

1360-1350 C-O sym stretch Bicarbonate 10,27,28 

1320 NCOO-1 skeletal vibration Carbamate 9,11,19,24 

 

 The in-situ IR experiments were conducted at a fixed CO2 or CO2/H2O pressure 

and examined over time. The purpose of this was to examine if the nature of the adsorbed 

species changed during the course of adsorption, especially in the presence of water, 

since the formation of different species has been shown to occur over varying 

timescales.29 The dry and humid adsorption difference spectra for SBA-APS-low and 

SBA-APS-high are presented in Figure 5.8 and Figure 5.9, respectively. It should be 
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restated that the difference spectrum for humid adsorption is normalized differently than 

that for dry. In the case of dry adsorption, the difference is between the adsorbed amount 

after a given time of adsorption and the activated spectra, whereas for humid adsorption, 

the difference is between the adsorbed amount after a given time of adsorption and the 

water adsorption spectra just before introduction of CO2. In this way, contributions from 

CO2 adsorption can be more clearly observed.  

 For the most part, the IR results are fairly consistent with what has been observed 

previously in the literature. SBA-APS-low appears to form carbamate, carbamic acid and 

bound carbamate in dry CO2 conditions (further evidence for bound carbamate is 

discussed later), while SBA-APS-high only forms carbamate in dry conditions. It is clear 

that SBA-APS-high would not form bound carbamate during adsorption since there are 

no to relatively few surface silanols. However, carbamic acid could still form for the high 

loading material. The absence of this formation suggests that carbamate ion pairs are the 

dominant species for adsorbed CO2 when amines are clustered. Also noteworthy is the 

apparent slower equilibration time of SBA-APS-high compared to SBA-APS-low. It is 

evident that after 10 h, equilibrium has been achieved for the low loading material, as the 

9 and 10 h spectra overlap. However, the absorbance intensity of SBA-APS-high appears 

to be still increasing after 10 h. This is consistent with what was observed during binary 

adsorption experiments, and can be explained by diffusional resistance that has been 

observed for highly loaded materials.30 

 The humid adsorption spectrum for SBA-APS-low appears very similar to that of 

humid SBA-APS-high with one key exception. It appears that both materials form only 

ammonium carbamate ion pairs, as bands due to bound carbamate and carbamic acid are 
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no longer observed for the low loading material. However, the intensity of the 

asymmetric deformation of NH3
+ at 1626 cm-1 gradually decreases with time and 

redshifts to 1616 cm-1, as can be seen from the inset of Figure 5.9a. Additionally, the 

adsorbed water band at 1658 cm-1 emerges in the shoulder. It is unclear whether this is the 

result of (i) a blueshift in the adsorbed water band at 1651 cm-1 due to interaction with 

some other species (see Appendix E for pure water adsorption spectrum) or (ii) the 

evolution of more adsorbed water, since the pre-equilibration time for water before 

introduction of CO2 was only 1 h.  
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Figure 5.8. In-situ FTIR difference spectra of (a) SBA-APS-low and (b) SBA-APS-high 
contacted with 10 mbar CO2 as a function of adsorption time. Sample spectra were 
collected at room temperature. Assignments can be found in Table 5.2. 



 145

 

Figure 5.9. In-situ FTIR difference spectra of (a) SBA-APS-low and (b) SBA-APS-high 
contacted with 1.5 mbar CO2 and 5 mbar H2O as a function of adsorption time. Sample 
spectra were collected at room temperature. Assignments can be found in Table 5.2. 



 146

 Due to the redshift that was observed in the spectrum for humid SBA-APS-low in 

Figure 5.9a, a more detailed analysis of the dynamics of adsorption was performed. To do 

so, the difference in adsorbed species at different time segments was examined. This 

method allows for the observation of species forming at different timescales and was 

used by Bacsik et al. to deconvolute rapidly forming carbamic acid from slower forming 

silylpropylcarbamate during CO2 adsorption on silica supported APS.7 The results of this 

analysis can be seen in Figure 5.10 and Figure 5.11. For dry CO2 adsorption on SBA-

APS-low, similar behavior as has been reported elsewhere is observed, where bands for 

bound carbamate are more clearly resolved after subtracting out the initial 10 min of 

adsorption.7,13 The humid spectrum of SBA-APS-low looks very different from its dry 

counterpart as well as what is observed for dry and humid SBA-APS-high spectra. A 

blueshift in the band at 1562 cm-1 is likely due to overlap with a newly evolved band at 

1595 cm-1 that corresponds with the liberation of amines from surface hydrogen bonds 

with silanols or silypropylcarbamate in the presence of humidity.7 It can also be seen that 

a new stretch starts to evolve at 1350 cm-1 after the first several hours of adsorption and is 

most clearly seen in the “10h-1h” spectrum. This cannot be seen in Figure 5.9a, because 

it overlaps with the NCOO- skeletal vibration around 1330 cm-1. However, by removing 

the contribution from the rapidly forming carbamate ion pairs in the initial hour of 

adsorption it can clearly be seen that, on longer timescales, a different type of adsorption 

occurs that has not been widely discussed in the supported amine literature. In aqueous 

amine absorption literature, the evolution of a band in the range of 1360-1350 cm-1 is 

attributed to the symmetric C-O stretch of HCO3
-.10,27,28 Therefore, it is suggested that the 

observed band at 1350 cm-1, coupled with the redshift and decrease in intensity of the 
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band at 1623 cm-1, could indicate formation of bicarbonate, as this matches well with 

what is observed for aqueous amines. This band is not observed for humid adsorption of 

SBA-APS-high. In fact, no difference in adsorbed species during later stages of 

adsorption can be observed for this material. It is possible that this is the result of the 

longer equilibration time observed for the densely loaded material, and the fact that 

bicarbonate is a slow forming product. Nevertheless, on these timescales it appears that 

the low surface coverage of SBA-APS-low allows for the adsorption of CO2 via a 

bicarbonate mechanism under humid conditions. This most likely occurs with isolated 

amines that cannot form the more favorable carbamate species. While bicarbonate 

formation for this material is observed, it is not believed that this is the sole contribution 

to increased amine efficiency under humid conditions, as other studies have shown that 

humid CO2 adsorption can increase efficiency through the formation of more ammonium 

carbamate ion pairs as well as through the liberation of hydrogen bonded amines.7,8  
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Figure 5.10. Time evolved FTIR spectra at varying time intervals to display slow and 
rapid forming species for (a) SBA-APS-low and (b) SBA-APS-high in dry CO2 
conditions. 
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Figure 5.11. Time evolved FTIR spectra at varying time intervals to display slow and 
rapid forming species for (a) SBA-APS-low and (b) SBA-APS-high in humid CO2 
conditions. 
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5.4 Conclusions 

 A study on the effect of amine loading towards CO2-H2O interactions in the low 

coverage region of both CO2 and water was conducted for silica supported primary amine 

materials by measuring binary adsorption isotherms. It was found that amine materials 

with low surface coverage displayed the most improvement in adsorption efficiency 

during co-adsorption with water. Adsorbents with multi-layer amine coverage displayed 

the least amount of improvement upon humid adsorption. This is different than what is 

generally observed in higher relative humidity conditions of CO2 adsorption, and could 

be due to the fact that these experiments were done at very low water coverage. In-situ 

FTIR spectra of low and high surface coverage amine adsorbents suggests one possible 

reason for the difference in amine efficiency between materials is a difference in the 

adsorbed species for humid CO2 conditions. Bicarbonate along with ammonium 

carbamate ion pairs are observed for humid CO2 adsorption on amines with low surface 

coverage, whereas adsorbents with multi-layers of amines produce only ammonium 

carbamate species upon humid adsorption at the timescales investigated. The results of 

these studies indicate that the effect of water co-adsorption with CO2 is dependent on the 

choice of amine material and adsorption conditions. This further demonstrates the need to 

explore different operating conditions for adsorption so that an optimum in terms of 

operating costs and adsorption efficiency can be found. 
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  Chapter 6

 

SUMMARY & FUTURE DIRECTIONS 

 

6.1 Summary 

A summary of this dissertation with the main conclusions is broken down by chapters and 

presented below: 

 

Chapter 1 

 

An introduction was given to organic-inorganic hybrid materials used for CO2 capture 

from flue gas and ambient air. Key areas were identified that need to be addressed for 

application of these materials in commercial technologies. 

 

Chapter 2 

 

Differences in stability were observed for primary amine materials with methyl, ethyl and 

propyl alkyl linkers. Amine surface coverage was also shown to affect the extent of CO2-

induced deactivation. Propyl amine materials with higher surface coverage were found to 

undergo the most deactivation in extreme CO2 environments. It was suggested that this 

resulted from the higher amine efficiency and flexibility of this material, as DFT 

calculations showed that the most energetically favored pathway to urea formation 

involved amine or silanol assisted reactions.  
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Chapter 3 

 

Primary amines were identified as the most favorable amine type over secondary and 

tertiary amines for air capture applications. This is due to the materials’ display of high 

CO2 adsorption efficiency along with increased hydrophilic nature compared to the other 

amine types.  

 

Chapter 4 

 

The motivation for, design and validation of a volumetric adsorption system for 

measuring binary adsorption of CO2 and water on adsorbent materials were discussed. 

Estimation of system error confirms the system can get reliable data for typical operating 

conditions of dilute CO2 adsorption analysis. 

 

Chapter 5 

 

Differences in CO2 adsorption efficiency were observed in low humidity environments 

for primary amine materials with surface coverages ranging from sub-monolayer to 

multi-layer. The greatest enhancement for CO2 adsorption with low-level humidity was 

seen for sub-monolayer materials. In-situ FTIR suggests one reason for this behavior is 

the result of a different adsorption mechanism, whereby isolated amines adsorb CO2 as 

bicarbonate over the traditionally observed ammonium carbamate. This was the first 
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compelling demonstration of the formation of bicarbonate for supported amine materials 

in the presence of water. 

6.2 Future Directions 

There still exists work that must be done before supported amine adsorbents can be 

implemented as a practical solution to CO2 capture, either for flue gas or air capture 

applications. Several possibilities for future investigation are discussed below: 

6.2.1 Synthesis of Low Molecular Weight Poly(allylamine) 

 Results from this dissertation suggest that design focus for new adsorbent 

materials should focus on primary or mostly primary amine containing materials as they 

are oxidatively stable, have high amine efficiencies and are hydrophilic. Poly(allylamine) 

(PAA) is a linear, all primary aminopolymer that was introduced by our group as a 

candidate material for CO2 capture from flue gas and ambient air. This polymer has been 

shown to possess improved oxidative stability and comparable amine efficiencies to 

branched PEI adsorbents, which are considered the benchmark material for commercial 

implementation.1–3 However, the molecular weight for PEI is 800 Da while the molecular 

weight for PAA was estimated to be roughly 2200 Da.3 It is hypothesized that a smaller 

PAA polymer would further improve the amine efficiency of this material, as the smaller 

size would likely improve diffusional limitations and bulky interactions inherent in the 

larger polymer network. 
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6.2.2 Further Investigation of Low RH Adsorption Conditions  

 The findings in chapter 5 with respect to humid dilute CO2 adsorption in the 

highly loaded amine adsorbent (SBA-APS-high) were quite interesting. In general, most 

groups study wet CO2 adsorption in much higher relative humidity regimes (typically 

100% RH). Additionally, the conclusions that have been made with respect to water 

decreasing diffusional limitations have been observed in high humidity systems as well.4,5 

Therefore, a more thorough investigation in the low RH region for dilute CO2 capture of 

highly loaded amine adsorbents could provide novel insight into the adsorption behavior 

of these materials.  
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Appendix A  

TRANSITION STATE STRUCTURES FOR DENSITY 

FUNCTIONAL THEORY CALCULATIONS 

 

 The transition state structures discussed in chapter 2 of the first step in the 

deactivation pathway (carbamic acid formation) interacting with different primary amine 

types are reproduced in this appendix and shown in the figure below. Calculations are 

done at the B3LYP/6-31+G** Level. 

 

 

Figure A.1 Transition state structures for different primary amines forming carbamic 
acid. 
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Appendix B  

PURIFICATION PROCEDURE FOR (N-METHYLAMINOPROPYL)-

TRIMETHOXYSILANE 

 

 Primary amine impurities have been observed in the secondary aminosilane, 

MAPS. These impurities were removed from MAPS through reaction with polymer 

bound 4-benzyloxybenzaldehyde to form a benzyliminosilane that can be separated from 

the purified secondary aminosilane through filtration followed by roto-evaporation to 

remove solvent. The purified silane, MCF-MAPS-Purified, was then functionalized onto 

MCF using typical synthesis methods discussed in chapter 3. Adsorption measurements 

at multiple temperatures with 400 ppm CO2 in inert were then carried out to assess the 

potential effect of impurities on adsorption studies. As Figure B.1 shows, there is no 

appreciable difference in amine efficiencies for the as-is and purified silanes. Therefore 

the experiments done using non-purified silanes can still be considered to represent 

adsorption behavior for that amine type.  
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Figure B.1. Amine efficiency comparison of purified and as made MAPS functionalized 
silicas using 400 ppm CO2 measured at 3 temperatures. 
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Appendix C  

CARBON DIOXIDE KINETIC UPTAKE FOR PRIMARY AND 

SECONDARY AMINE MATERIALS 

 

 Kinetic rates for low pressure CO2 adsorption are of interest for commercial 

processes. It can be seen in Figure C.1 that primary amines exhibit fast adsorption 

kinetics even at ultra-dilute CO2 concentrations, indicating that capture processes can 

operate with relatively fast cycle times. From the inset of Figure C.1 it can be seen that 

the initial uptake rates are the same for both primary and secondary amine materials at 

varying temperatures. However, the length of time that the material remains at that initial 

rate is dependent on primary vs. secondary amines, and to a lesser degree, the adsorption 

temperature. A quick tailing out is observed for secondary amines while primary amines 

adsorb at a faster initial rate for a longer period of time.  
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Figure C.1. CO2 mass uptake for primary and secondary amines at 25 and 45 C at 400 
ppm CO2 adsorption conditions. 
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Appendix D  

SURFACE AREA NORMALIZED WATER ADSORPTION 

ISOTHERMS FOR DIFFERENT AMINE TYPES 

 

 

Figure D.1. Water adsorption isotherms at 25 °C for bare and amine functionalized silica 
normalized by surface area. 
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Appendix E  

ADDITIONAL FTIR SPECTRA FOR SBA-APS-LOW AND SBA-APS-

HIGH: ACTIVATED, PURE WATER ADSORPTION AND 

DESORPTION SPECTRA 

 

 

Figure E.1. FTIR spectra for SBA-APS-low and SBA-APS-high after activation by 
heating for 3 h at 110 °C under vacuum to remove pre-adsorbed CO2 and water. 
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Figure E.2. FTIR spectrum of SBA-APS-high contacted with 5 mbar H2O at room 
temperature before introduction of CO2. 
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Figure E.3. In-situ FTIR difference spectra of SBA-APS-low as a function of vacuum 
time after exposure to (a) 10 mbar CO2 and (b) at 1.5 mbar CO2 and 5 mbar H2O. Sample 
spectra were collected at room temperature. 
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Figure E.4. In-situ FTIR difference spectra of SBA-APS-high as a function of vacuum 
time after exposure to (a) 10 mbar CO2 and (b) at 1.5 mbar CO2 and 5 mbar H2O. Sample 
spectra were collected at room temperature. 


