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Abstract— While iterative optimization techniques for Si-
multaneous Localization and Mapping (SLAM) are now very
efficient and widely used, none of them can guarantee global
convergence to the maximum likelihood estimate. Local conver-
gence usually implies artifacts in map reconstruction and large
localization errors, hence it is very undesirable for applications
in which accuracy and safety are of paramount importance.
We provide a technique to verify if a given 2D SLAM solution
is globally optimal. The insight is that, while computing the
optimal solution is hard in general, duality theory provides
tools to compute tight bounds on the optimal cost, via convex
programming. These bounds can be used to evaluate the quality
of a SLAM solution, hence providing a “sanity check” for state-
of-the-art incremental and batch solvers. Experimental results
show that our technique successfully identifies wrong estimates
(i.e., local minima) in large-scale SLAM scenarios. This work,
together with [1], represents a step towards the objective of
having SLAM techniques with guaranteed performance, that
can be used in safety-critical applications.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) consists
in the concurrent estimation of the position of a mobile
robot, and the construction of a model of the surrounding
environment. SLAM is now a well studied research topic, and
the corresponding algorithms are steadily permeating from
academic research to industrial applications [2], [3]. Ap-
plication scenarios include intelligent transportation, search
and rescue, and military operation in hostile environment. In
those scenarios, preserving high accuracy is critical, as an
incorrect map may put human life at risk.

In recent years, optimization-based approaches have be-
come the leading paradigm for SLAM. These approaches
compute the SLAM solution by minimizing a nonlinear cost,
whose global minimum is the maximum likelihood estimate
(maximum-a-posteriori estimate in presence of priors):

f? = min
x
f(x) (1)

where the variable x includes the quantities to be estimated
(e.g., robot positions and orientations), and f(·) describes the
negative log-likelihood of the measurements. The success
of these techniques stems from three main reasons. First,
the approach is general and one can easily model different
sensor measurements [4] and include priors. Second, they
are very fast in practice, as they exploit problem structure
(i.e., sparsity) [5], and can operate incrementally when new
data is received [6]. Third, they are robust, as they can
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Fig. 1. CSAIL dataset: trajectory estimates from g2o using two different
initial guesses. (a) Local minimum. (b) Global minimum, superimposed on
the occupancy grid map of the scenario. (c) In this work we use duality
to compute bounds (d?, l?, u?) for the global minimum f? (illustrative
example in the figure): these can be used to verify if a given solution attains
the optimal cost or was stuck in a local minimum.

incorporate outlier rejection mechanisms to handle spurious
measurements (see [7] and the references therein).

Standard solvers (e.g., gtsam [6] or g2o [8]) minimize
the cost f(x) iteratively, by refining an initial guess. For
instance, Fig. 1a shows the estimated trajectory produced by
g2o on the CSAIL dataset [9], using a suitable initial guess.

Typically, after optimization, a human operator evaluates
the estimated trajectory from visual inspection, to rule out the
possibility that the algorithm converged to a local minimum1;
local convergence implies artifacts in map reconstruction and
large localization errors, hence it is undesirable in practice.

Here we argue that visual inspection cannot be a valid
criterion for future robotics applications. First or all, future
autonomous robots cannot rely on human supervision for
basic tasks, as localization and mapping. Second, in many
cases, visual inspection can be deceptive. For instance, the
trajectory estimated in Fig. 1a looks reasonable (and the cost
attained by the g2o solution is reasonably small, f(x̂) =
1.9 · 101). However, by comparing it with the actual map of
the scenario (Fig. 1b), one realizes that Fig. 1a corresponds to
a local minimum (the actual optimal cost is f? = 1.07·10−1).
For this reason we look for a grounded approach to au-
tonomously and reliably assess global convergence (Fig. 1c).

Related work tackles local convergence using different
strategies. A first set of approaches aims at improving global
convergence by adopting techniques with larger basin of
convergence or different parameterizations. Examples of this
effort are the work from Olson et al. [10], Grisetti et al. [11],
Rosen et al. [12], and Tron et al. [13]. A second research line
proposes to improve convergence by computing an accurate
initial guess for iterative techniques. Initialization techniques
include [14], [15], [16], [1]. A third line of research in-
volves a theoretical analysis of the optimization problem.
Huang et al. [17] identify the accumulation of orientation
errors as the main cause for divergence of iterative solvers.

1We use the term “local minimum” to denote a stationary point of the
cost which does not attain the optimal objective.



Wang et al. [18] and Huang et al. [19] investigate the number
of local minima in problems with a small number of poses or
when using map-joining techniques. Knuth and Barooah [20]
study error accumulation in pose graphs, which is relevant
to quantify the quality of the odometric initial guess for
optimization. Carlone [21] shows that global convergence is
influenced by the information content of the measurements,
inter-nodal distances, and structure of the underlying graph.
Along this line, Khosoussi et al. [22] study the relation
between graph structure and quality of the SLAM estimate,
discussing the role of node degree, number of spanning trees
in the graph, and algebraic connectivity.

The present paper bridges theoretical analysis and practical
algorithms by proposing verification techniques for SLAM.
Rather than analyzing the properties of the optimization
problem, we try to answer a fundamental question: given
an estimate x̂ (say, a solution returned by a state-of-the-art
iterative solver), does this estimate correspond to a global
optimum of the cost function f(x)? If the answer is positive,
we can trust our estimate; if the answer is negative, we must
resort to some recovery technique, as the given estimate is
not accurate, and it is not safe to use it.

Duality theory in optimization [23] offers well studied
tools to obtain a lower bound on the optimal value of an
optimization problem. However the standard SLAM formu-
lation is not directly amenable to apply duality.

Our first contribution is to show that using the chordal
distance [24] in SLAM and choosing a suitable parametriza-
tion for rotations allow writing pose graph optimization as
a quadratic minimization with quadratic equality constraints;
the latter is well suited for duality and can leverage well
established results from the optimization community [23].

Therefore, as a second contribution, we exploit duality
in SLAM and we obtain a lower bound d? on the optimal
value f? of the cost function f(x). This first bound can
be computed via semidefinite programming (SDP) and is
shown to be tight (d? = f?) in the noise regimes of practical
applications. This means that if the candidate solution x̂
produces a cost f(x̂) that is larger than d?, it corresponds
to a local minimum.

While SDPs are convex, they do not scale to large prob-
lems and are currently slow for realistic applications. For
this reason, as a third contribution, we develop other two
bounds: a lower bound l? and an upper bound u?. These
have the advantage of being faster to compute. Therefore,
given the candidate solution x̂, if the cost f(x̂) is outside
the interval [l?, u?], then the estimate is a local minimum.
In practice, the interval [l?, u?] is small, and our technique
is able to discern wrong solutions in all tested scenarios.

Our verification techniques can be integrated seamlessly
in standard SLAM pipelines, and can be used as a “sanity
check” for state-of-the-art incremental and batch solvers. We
believe that this contribution represents a step towards the
objective of designing SLAM techniques with guaranteed
performance, that can be used in safety-critical applications.

Note that the technique [1] already has global convergence
guarantees. However, the results in [1] are restricted to the
orientation estimates; moreover, [1] performs probabilistic

inference, hence it assumes that measurement covariances
are reliable. In practice, measurement covariance are only
rough estimates, and for this reason, in this paper we are
agnostic about the generative model of measurement noise.

The paper is organized as follows. Section II formulates
the optimization problem to be solved in SLAM. Section III
shows how to rewrite the original problem as a quadratic
program with quadratic equality constraints. Section IV
shows how to use duality to compute the lower bounds
d? and l?. Section V shows how to compute the upper
bound u?. Section VI discusses practical use of our findings.
Section VII demonstrates our technique in simulated and real
datasets. Section VIII provides concluding remarks.

II. GRAPH OPTIMIZATION WITH CHORDAL DISTANCE

In this section we propose a formulation of optimization-
based SLAM that uses the chordal distance [24] as a metric
for SO(2). This enables to write the optimization problem in
a form that is well suited to apply duality theory. Moreover,
Remark 1 in this section shows that minimizing the chordal
distance is practically equivalent to minimizing the angular
distance, which is commonly used in related work.

We consider pose-based SLAM in which we have to
estimate n robot poses from m relative pose measurements
(pose graph optimization). The problem can be visualized
as a graph, where a pose is attached to each node, and
each edge corresponds to a measurement. Each relative pose
measurement (between two poses i and j) includes the
relative rotation Rij and the relative position ∆ij between
the two poses. Ideally, the measurements should satisfy:

∆ij = RT
i (pj − pi) , Rij = RT

i Rj , (2)

where Ri ∈ SO(2) and pi ∈ R2 are the rotation and the
position of node i. However, in presence of noise these
relations are not exact and one looks for a set of positions
{p1, . . . ,pn} and rotations {R1, . . . ,Rn} that minimizes
the mismatch with respect to the measurements:

f?
.
= min
{pi}∈R2,
{Ri}∈SO(2)

∑
ij

(
‖pj−pi −Ri∆ij‖2+

1

2
‖RiRij−Rj‖2F

)
(3)

where ‖·‖F denotes the Frobenius norm of a matrix2. The
term ‖RiRij −Rj‖2F is the (squared) chordal distance be-
tween the rotation matrices RiRij and Rj [24].

In order to to compute an estimate for robot positions
{pi} and rotations {Ri}, one has to solve problem (3).
Before moving on, the following remark ensures that (3) is
equivalent to other formulations in related work.

Remark 1 (Chordal distance): We conveniently use the
chordal distance in our formulation as it enables to refor-
mulate the problem as in Section III. A more standard cost
function would use the squared angular distance [1]:

distθij
.
= θ̃2, with θ̃ = ‖Log

(
RT
ijR

T
i Rj

)
‖, (4)

2The (squared) Frobenius norm of a matrix A ∈ Rp×q is defined as
‖A‖2F

.
=

∑p
i=1

∑q
j=1|aij |

2, where aij are the entries of A.



where Log (·) is the logarithmic map for SO(2), and θ̃ is the
rotation angle corresponding to the rotation RT

ijR
T
i Rj .

To clarify the relation between chordal and angular dis-
tance, let us develop the chordal distance as follows:

distcord
ij

.
= ‖RiRij −Rj‖2F =

∥∥I−RT
ijR

T
i Rj

∥∥2
F

=

2
(

sin2(θ̃) + (1− cos(θ̃))2
)

= 8 sin2(θ̃/2), (5)

which also holds for 3D rotations [24]. Eqs. (4)-(5) clarify
that both metrics minimize some function of the error angle
θ̃. The residual error for a single measurement is usually
small and the following first-order approximation holds:

distcord
ij = 8 sin2(θ̃/2) ≈ 8(θ̃/2)2 = 2distθij , (6)

meaning that for small residual errors the metrics differ by a
constant. In order to compensate this constant we introduced
the 1

2 in front of the chordal distance in (3), such that,
for small residual errors, (3) is essentially the same as the
standard formulation with angular distance. �

III. REWRITING PROBLEM (3) AS A QUADRATIC
PROGRAM WITH QUADRATIC EQUALITY CONSTRAINTS

In this paper we consider the case in which we are given a
candidate solution x̂ = {(p̂i, R̂i) : i = 1, . . . , n} for (3), and
we have to check if it is globally optimal. If we knew f? this
would be easy: if f(x̂) = f? then x̂ is optimal; unfortunately,
f? is unknown. Our contribution is to show that we can
compute close proxies of f? using duality theory, without
actually solving (3). To attain this goal, we reformulate (3)
as a quadratic program with quadratic equality constraints
(eq. (16)): this is a well studied problem in optimization and
is directly amenable to apply duality theory.

In order to reformulate Problem (3) as a quadratic program
with quadratic equality constraints we have to choose a
suitable parametrization for the rotations. So far we at-
tributed to each node a rotation matrix Ri ∈ SO(2). In [1]
we parametrized each planar rotation with an angle θi ∈
(−π,+π]. While this is a minimal representation, it requires
dealing with the wraparound problem, which is hard to
tackle [1]. Here we parametrize the rotation of node i with
the cosine and sine of the rotation angle:

ri
.
= [cos(θi) sin(θi)]

T .
= [ci si]

T. (7)

For the vector ri to represent a rotation, it must hold:

sin2(θi) + cos2(θi) = 1, i.e., ‖ri‖2= 1. (8)

Let us rewrite the cost function (3) using our new
parametrization. First, we note that each relative position
measurement ∆ij ∈ R2 includes two components, i.e.,
∆ij = [∆x

ij ∆y
ij ]

T. Therefore, we can develop:

Ri∆ij=

[
ci∆

x
ij − si∆

y
ij

ci∆
y
ij + si∆

x
ij

]
=

[
∆x
ij −∆y

ij

∆y
ij ∆x

ij

]
ri

.
= Dijri,

(9)
where the matrix Dij ∈ R2×2 is known as it only includes
measurements. Moreover, we can write each relative rotation

measurement Rij as Rij =
[
cij −sij
sij cij

]
, which implies

RiRij−Rj =

[
cijci − sijsi − cj −sijci − cijsi + sj
cijsi + sijci − sj −sijsi + cijci − cj

]
.

Noting that the diagonal entries of RiRij − Rj are
identical and the off diagonal entries only differ by a minus
sign, the Frobenius norm in (3) becomes:

‖RiRij −Rj‖2F = 2|cijci − sijsi − cj |2+

2|cijsi + sijci − sj |2 = 2 ‖Rijri − rj‖2 . (10)

Using (9) and (10), and recalling that a valid rotation
should satisfy (8), Problem (3) becomes

min
{pi},{ri}

∑
ij

(
‖pj− pi −Dijri‖2 + ‖Rijri − rj‖2

)
subject to rTi ri = 1, i = 1, . . . , n (11)

In order to rewrite the previous cost in matrix form we
stack the unknown positions and rotation into two vectors:

p = [pT1 . . . pTn]T ∈ R2n, r = [rT1 . . . rTn ]T ∈ R2n.
(12)

This allows writing (11) as

f? = min
p,r

∥∥ATp−Dr
∥∥2 + ‖Br‖2

subject to rTNir = 1, i = 1, . . . , n, (13)

for suitable (known) matrices AT ∈ R2m×2n, D ∈ R2m×2n,
B ∈ R2m×2n, Ni ∈ R2n×2n (we keep the transpose on AT

sinceA is the incidence matrix of the underlying graph [15]).
Ni is a sparse diagonal matrix such that rTNir = rTi ri.

Since we only applied a re-parametrization, problem (13)
is equivalent to the original problem (3), meaning that they
have the same optimal value f?.

Problem (13) has a quadratic objective (involving robot
positions p and robot orientations r) and quadratic equality
constraints. In the following sub-section we reduce the
dimension of the optimization problem by eliminating the
position vector p via Schur complement; this allows obtain-
ing an optimization problem in the sole rotations. Then, in
Sections IV-V we show how to bound the optimal cost f?.

A. Eliminating robot positions via Schur complement

For every fixed choice of robot orientations r, the optimal
translations can be computed in closed form:

p? = (AAT)†ADr (14)

since p appears linearly in the residual errors and the position
vector is unconstrained3. Therefore, we can substitute (14)
back into (13), so to eliminate the variable p and reduce the
dimension of our optimization problem:

min
r

∥∥(AT(AAT)†A− I2m)Dr
∥∥2+‖Br‖2

subject to rTNir = 1, i = 1, . . . , n (15)

3The pseudo inverse in eq. (14) becomes an inverse as soon as the position
of one node in the pose graph is fixed [16].



where I2m is the identity matrix of size 2m. Stacking the
matrices (AT(AAT)†A−I2m)D and B into a single matrix
M ∈ R4m×2n, problem (15) becomes:

f? = min
r

‖Mr‖2

subject to rTNir = 1, i = 1, . . . , n (16)

Problem (16) is now a quadratic problem (in the sole
rotations r) with quadratic equality constraints. Problem (16)
is equivalent to the original problem (3), meaning that the
two problems share the same optimal objective (we only
eliminated some of the variables) and the solution of (3)
is uniquely determined by the solution of (16) via (14).

Later we refer to (16) as the primal problem, whose
optimal value is f?. Problem (16) is still hard to solve, as
equality quadratic constraints are nonconvex.

IV. LOWER BOUNDS FOR f?

Despite the non-convexity of (16), the key advantage
of our reformulation is that (16) resembles well studied
problems in optimization. For instance, (16) is a formulation
of the two-way partitioning problem [23], in which one
minimizes a (homogeneous) least-squares objective subject
to unit norm constraints. Moreover, variants of the prob-
lem have been studied in optimization literature, including
quadratic programming with one [25] and two quadratic
equalities [26], [27]. The same insight is used in [28] to force
the unit norm of quaternions when estimating rotations.

A common denominator of these techniques is the use of
duality. The idea is simple: rather than solving the original
(primal) problem (16), which is hard, one solves the dual
problem, which is always convex. The solution of the dual
problem provides a lower bound on the optimal value of
the original problem and in some cases this lower bound is
tight [23], i.e., the optimal dual cost coincides with f?.

A. The dual problem

In this section we exploit duality to obtain a lower bound
d? on the optimal value f? of (16). Experimental evidence
(Section VII) suggests that this bound is tight (d? = f?) in
common SLAM problems, hence d? is a very good indicator
of the cost we should expect from an optimal estimate.

Let us define the Lagrangian of the primal problem (16):

L(r,λ) = ‖Mr‖2 +

n∑
i=1

λi(1− rTNir), (17)

where λi ∈ R, i = 1, . . . , n, are the Lagrange multipliers
(or dual variables) associated to problem (16). Roughly
speaking, the Lagrangian (17) transforms the hard constraints
in (16) into penalty terms, in which the amount of penalty
is controlled by the Lagrange multipliers. Developing the
squared norm in (17) and rearranging the terms we get

L(r,λ) = rT

(
MTM −

n∑
i=1

λiNi

)
r +

n∑
i=1

λi (18)

The dual function is then defined as the infimum of the
Lagrangian with respect to r:

d(λ) = inf
r
L(r,λ) = inf

r

(
rT
(
MTM−

n∑
i=1

λiNi

)
r+

n∑
i=1

λi

)
(19)

The dual function has an interesting property: d(λ) ≤ f?
for all choices of λ. This motivates the definition of the dual
problem, which simply looks for the λ that makes this lower
bound as tight as possible:

d? = max
λ

d(λ) = max
λ

inf
r
L(r,λ) (20)

The importance of the dual problem in optimization is
twofold [23]. First, it holds:

d? ≤ f? (21)

meaning that the optimal objective of the dual problem
provides a lower bound on the objective f? of the primal
problem (16); this property is called weak duality. For
particular problems, the inequality (21) becomes an equality,
and in those cases we say that strong duality holds [23].

Second, the dual problem (20) is always convex in λ,
regardless the convexity properties of the primal problem.

In the following section we provide an explicit expression
for (20) and show how to compute d?.

B. Solving the dual problem

The solution of the dual problem (20) has been studied in
the context of the two-way partitioning problem [23]. Here
we recall it, adapting it to our SLAM setup.

We first observe that, if MTM −
∑n
i=1 λiNi in (19)

is non-positive definite, then the infimum drifts to minus
infinity. Since the dual problem (20) looks for a maximum
with respect to λ, this case is not of interest and, as in [23],
we limit the search to values of λi that make MTM −∑n
i=1 λiNi � 0, where � denotes positive definiteness.
If MTM −

∑n
i=1 λiNi � 0, the minimum of the

quadratic term in (19) is zero, and the dual function simplifies
to d(λ) =

∑n
i=1 λi. This allows writing (20) as:

d? = max
λ

n∑
i=1

λi

subject to MTM −
n∑
i=1

λiNi � 0 (22)

Problem (22) is an SDP (semidefinite program) and it is
convex, hence can be solved globally using standard solvers.

C. A fast(er) lower bound

Convex programming has polynomial-time complexity.
The solution of the SDP (22) can be computed quickly
for small problems. However, solving the SDP can be still
computationally expensive for large-scale problems, and this
is the case in SLAM, where it is not infrequent to have
problems with tens of thousands poses.

In this section we show how to compute a cheaper lower
bound. The basic idea is to substitute the constraintMTM−∑n
i=1 λiNi � 0 with a simpler inequality that involves λ.



Let us define H .
= MTM −

∑n
i=1 λiNi and let us call

µH the smallest eigenvalue of H . From linear algebra, we
know that the condition H � 0 is equivalent to µH ≥ 0.
Since H is obtained as sum of two matrices (MTM and
−
∑n
i=1 λiNi), the Weyl inequality [29] guarantees that the

smallest eigenvalue of H is larger than the sum of the small-
est eigenvalues of the matrices MTM and −

∑n
i=1 λiNi.

More formally, if we call µM and µλ the smallest eigenvalues
of MTM , and −

∑n
i=1 λiNi, respectively, then

µH ≥ µM + µλ. (23)

Now the interesting observation is that the matrix MTM
is known (hence we can compute µM ), and the matrix
−
∑n
i=1 λiNi is diagonal by construction (with entries −λi

on the diagonal), hence µλ = min(−λ) = −max(λ), where
min(·) and max(·) denote the minimum and the maximum
entry of a vector, respectively. Therefore (23) becomes:

µH ≥ µM −max(λ). (24)

Substituting the condition H � 0 with µH ≥ 0, and
using (24), problem (22) can be relaxed to:

l? = max
λ

n∑
i=1

λi, subject to max(λ) ≤ µM (25)

Note that the condition µM −max(λ) ≥ 0 is sufficient but
not necessary for µH ≥ 0 to hold. For this reason (25) is a
relaxation of (22).4

Problem (25) is a linear program, and one can see that the
optimal solution is λ?1 = . . . = λ?n = µM , which implies:

l? = n µM (26)

The lower bound l? is cheap to obtain since it only requires
the computation of the smallest eigenvalue of the matrix
MTM . Moreover, since (26) is a relaxation of (22), it holds:

l? ≤ d? (27)

We obtained the bound l? by relaxing the dual prob-
lem (22). However, l? also has an intuitive relation with
the primal problem (16), as explained in the following
proposition (proof is given in appendix). This will be useful
to devise the upper bound of Section V.

Proposition 2 (Primal interpretation of l?): The lower
bound l? is the optimal cost attained by the following
relaxation of problem (16):

l? = min
r
‖Mr‖2 , subject to

n∑
i=1

rTNir = n (28)

where the constraint that each of the n vectors ri has unit
norm in (16) is replaced by the condition that the sum of
the (squared) norms is equal to n. Moreover, the optimal
solution l? of (28) is attained by the right singular vector s?

corresponding to the smallest singular value of MTM . �
To wrap-up the discussion of this section: exploiting

duality, one can compute a first lower bound d? solving (22).

4It turns out that analyzing the spectrum of the sum of Hermitian matrices
is not an easy task. This problem has a long history, starting from the Horn’s
conjecture [30], later proven by Knutson and Tao [31].

This bound is tight in common problem instances, but may
be slow to compute. Therefore, we proposed a second lower
bound l? that only requires the computation of the smallest
eigenvalue of MTM , and is attained by the corresponding
right singular vector s?.

V. AN UPPER BOUND FOR f?

Let us consider the primal problem (16). By definition of
optimality, any estimate x̂ that is feasible (i.e., that satisfies
the constraints) is such that f? ≤ f(x̂), hence every feasible
solution provides a valid upper bound for f?. However, a
loose bound would be useless and we look for a tight upper
bound, which is as close as possible to f?.

We propose an upper bound that leverages the result
of Proposition 2. Currently, we do not have theoretical
guarantees on the tightness of this bound, but we show in
the experimental section that it works well for reasonable
measurement noise.

Proposition 2 states that the right singular vector s?

corresponding to the smallest singular value of the matrix
MTM attains the lower bound l?. Unfortunately, in general,
s? is not feasible for problem (16): if we partition s? in two-
vectors s? = {s?1, . . . , s?n}, each s?i is not guaranteed to have
unit norm, as required by the constraints in (16).

To obtain our upper bound, we simply normalize each s?i :

s̄i = s?i /‖s?i ‖, i = 1, . . . , n.

Since, by construction the vector s̄ = {s̄1, . . . , s̄n} satis-
fies the constraints in (16), the cost attained by s̄ is an upper
bound of the optimal cost:

u? = f(s̄) ≥ f? (29)

In the following section we clarify how to use the upper
and lower bounds we computed so far in SLAM.

VI. VERIFICATION OF OPTIMALITY

In this section we wrap-up our discussion and focus on
practical use of our results. From the derivation in this paper
we know that the optimal value f? satisfies:

l? ≤ d? ≤ f? ≤ u? (30)

where l?, d?, and u? are given in Eqs. (26), (22), (29). In
the experimental section we show that in common SLAM
problems d? = f?, hence (30) becomes l? ≤ d? = f? ≤ u?.

Now, let us assume we are given a candidate SLAM
solution x̂. The candidate solution can be the result of the ap-
plication of an iterative optimization technique (e.g., Gauss-
Newton or Levenberg-Marquardt methods) to the SLAM
problem (3). Our task is to check whether x̂ corresponds
to a global minimum of problem (3).

Plugging x̂ back into (3) we compute f(x̂). Then, from
our derivation, we can conclude that:

(C.1) if f(x̂) = d?, then x̂ is optimal;
(C.2) if f(x̂) /∈ [l?, u?], then x̂ is not optimal;

We will show in the next section that the interval [l?, u?] is
small in practice, hence the last check (C.2) also provides a
reliable way to disambiguate global from local minima. This
is particularly useful when one cannot afford to compute d?.



n m l? d? f? u? f(x̂)

INTEL 1228 1505 6.06 · 10−1 ≤ 7.89 · 10−1 ≤ 7.89 · 10−1 ≤ 8.14 · 10−1 7.89 · 10−1

INTEL-a 1228 1505 3.49 · 10+2 ≤ 3.92 · 10+2 ≤ 3.92 · 10+2 ≤ 4.86 · 10+2 5.96 · 10+2

FR079 989 1217 5.39 · 10−2 ≤ 7.19 · 10−2 ≤ 7.19 · 10−2 ≤ 7.49 · 10−2 7.19 · 10−2

FR079-a 989 1217 0.27 · 10+2 ≤ 2.93 · 10+2 ≤ 2.93 · 10+2 ≤ 3.37 · 10+2 3.26 · 10+3

CSAIL 1045 1172 0.89 · 10−1 ≤ 1.07 · 10−1 ≤ 1.07 · 10−1 ≤ 2.39 · 10−1 1.07 · 10−1

CSAIL-a 1045 1172 0.44 · 10+2 ≤ 1.51 · 10+2 ≤ 1.51 · 10+2 ≤ 3.23 · 10+2 1.51 · 10+2

M3500 3500 5453 1.24 · 102 ≤ n/a ≤ 1.38 · 102 ≤ 1.66 · 102 1.38 · 102

M3500-a 3500 5453 7.76 · 102 ≤ n/a ≤ 9.12 · 102 ≤ 3.70 · 103 1.13 · 106

M3500-b 3500 5453 1.57 · 103 ≤ n/a ≤ 2.05 · 103 ≤ 8.65 · 103 1.50 · 106

M3500-c 3500 5453 1.61 · 103 ≤ n/a ≤ 2.55 · 103 ≤ 1.39 · 104 1.08 · 109

TABLE I
NUMBER OF NODES (n), NUMBER OF MEASUREMENTS (m), PROPOSED BOUNDS (l?, d?, u?), OPTIMAL COST (f?), AND COST OBTAINED BY g2o

(f(x̂)), FOR EACH TESTED DATASET. FOR THE SCENARIOS M3500-a-b-c, THE VALUES f? AND f(x̂) ARE TAKEN FROM [1].

VII. EXPERIMENTAL VALIDATION

In this section we evaluate the quality of the bounds
l?, d?, u? in practical problem instances. As we will see,
standard benchmarking scenarios available in SLAM liter-
ature are particularly easy, and our bounds are very tight for
those. For this reason we introduce new challenging datasets
to test the limits of applicability of our technique.

We consider the following datasets:
INTEL: Intel Research Lab [9];
FR079: University of Freiburg, building 079 [9];
CSAIL: MIT, CSAIL building [9];
M3500: simulated dataset, proposed in [10];
INTEL-a, FR079-a, CSAIL-a: variants of the INTEL, FR079, and

CSAIL datasets with extra additive noise on rotation
measurements (std: 0.1 rad);

M3500-a, M3500-b, M3500-c: variants of the M3500 dataset
with extra additive noise on rotation measurements (std:
0.1, 0.2, and 0.3 rad, respectively) [1].

For each dataset we report the number of poses (n) and
number of measurements (m) in Table I.

We implemented the computation of the bounds l?, d?, u?

in Matlab. All the bounds require the computation of the
matrix MTM ; this is a dense matrix in general. The bounds
l?, u? can be computed from the smallest eigenvalue of
MTM and the corresponding singular vector; this can be
done using standard Matlab functions. In order to com-
pute d?, we implemented the optimization problem (22) in
CVX [32]. This worked for small datasets (as the GRID sce-
narios discussed later in this section), but for large scenarios
(as the ones in Table I) we incurred in memory problems. In
those cases we solved the SDP using NEOS [33], [34], which
is an online service designed to solve large optimization
problems. We chose sdpt3 as SDP solver in NEOS.

Table I reports the bounds l?, d?, u? and the optimal
cost f?, following the order of the inequality chain (30).
Moreover, in the last column, we report the value of the cost
f(x̂) attained by g2o, using odometry as initial guess. The
optimal cost f? is obtained by bootstrapping g2o with the
algorithm presented in [1]. In our derivation, f? should be
obtained by optimizing the cost (3), (chordal distance), while
g2o uses the angular distance (Remark 1). We implemented a
routine optimizing directly the cost (3), and we noticed that

it produced the same optimal cost as g2o in all scenarios5,
which essentially confirms Remark 1. For this reason, in the
following, f? denotes interchangeably the optimal value for
the angular cost (g2o) and the chordal cost (3).

In all tested scenarios the lower bound d? was tight, i.e.,
d? = f? (blue entries in Table I). In the largest scenarios,
also NEOS incurred in memory problems and was not able
to solve the problem (n/a entries in the table). The bounds
l?, u? are very close to f? in the scenarios INTEL, FR079,
CSAIL, M3500, which are the usual benchmarking scenarios
in related works. For those and for the scenario CSAIL-a also
g2o was able to attain the optimal cost f?.

Time d? Time (l?, u?)

INTEL 3573.3 2.2
INTEL-a 3321.9 2.3
FR079 3121.5 1.3

FR079-a 1663.6 1.4
CSAIL 2297.8 1.5

CSAIL-a 2389.9 1.6
M3500 n/a 20.9

M3500-a n/a 23.4
M3500-b n/a 25.1
M3500-c n/a 24.2

TABLE II
TIME IN SECONDS TO COMPUTE THE BOUND d? AND THE BOUNDS

(l?, u?) FOR EACH TESTED SCENARIO.

In the noisy scenarios INTEL-a, FR079-a, and M3500-a-b-c,
the solution produced by g2o was suboptimal. In all cases,
our bounds were able to detect the wrong solution: the red
entries in Table I denote the case in which f(x̂) /∈ [l?, u?];
in these cases our verification technique guarantees that the
solution corresponds to a local minimum (Section VI). For
a visual comparison, Fig. 2 shows the estimated trajectory
corresponding to the global minimum against the g2o esti-
mate, for some of the datasets. It is interesting to notice that
our technique was able to detect wrong solutions even when
they only imply small imperfections: for instance, the local
minimum for the dataset INTEL-a is globally correct and only
has a wrong wraparound in the bottom-right loop.

5Maximum observed difference was less than 1% of the cost in all tests.
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Fig. 2. Trajectory estimates corresponding to the global minimum f? against the estimate returned by g2o for different tested scenarios. The scenarios
INTEL-a, FR079-a, and CSAIL-a are proposed in this paper and are noisy versions of the datasets INTEL, FR079, and CSAIL [9]. In the scenarios INTEL-a,
FR079-a, and M3500-a, g2o is trapped in a local minimum. Further details on the scenarios M3500-a, M3500-b and M3500-c are given in [1].

Table II reports the CPU time required to compute the
bounds proposed in this paper, for the scenarios of Table I.
We put together the bounds l?, u? as they are computed
by a single Matlab instruction (the time to normalize the
vectors as per eq. (29) is negligible). The computation of
d? is prohibitive in practically all cases. However, l?, u?

are relatively cheap to compute: recall that the verification
technique can be executed periodically and it is not subject
to strict timing constraints, as in standard SLAM algorithms.

Fig. 3. Example of GRID scenario with 122 nodes. Solid black line denotes
the odometric path, while loop closures are shown as dashed blue lines.

A. Further tests

To better evaluate our bounds, we performed a Monte
Carlo analysis on the simulated GRID dataset of Fig. 3.
Ground truth robot odometry is shown as a solid line in
the figure, while loop closures are added randomly (with
probability 0.5) between nearby nodes. The actual measure-
ments are obtained by adding Gaussian noise to the ground
truth. We indicate with σT and σR the standard deviations of
translation and rotation noise, respectively. Unless specified
otherwise, we consider σT = 0.1 m and σR = 0.01 rad. All
results are averaged over 10 Monte Carlo runs.

First, we consider a relatively small GRID dataset with 72

nodes on which we can solve the SDP and compute d?.
Fig. 4 shows the bound d? versus the optimal cost f? for
increasing levels of translation noise and rotation noise. As
in the previous tests, the bound d? is tight.

Now, we consider a larger scenario with 402 nodes to
test l? and u?. Fig. 5a shows the bounds versus the optimal
value for increasing levels of translation noise. The bounds
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Fig. 4. Optimal cost f? VS our lower bound d? for different levels of
(a) translation noise (std: σT ), and (b) rotation noise (std: σR).
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Fig. 5. Optimal cost f? VS the lower bound l? and the upper bound u?
for different levels of (a) translation noise, and (b) rotation noise.

are fairly close to f? independently on σT . Fig. 5b shows the
bounds for increasing levels of the rotation noise. The upper
bound u? degrades for large noise, while the degradation is
more graceful for l?. Both bounds are close to the optimal
value in the standard range of operation (σR < 0.15 rad).

In order to show that the bounds (l?, u?) are adequate
to discern global and local minima, in Fig. 6 we show
the bounds versus the global minimum and different local
minima obtained by initializing g2o with random initial
guesses (10 runs). In all cases the interval [l?, u?] only
contains the global minimum, meaning that the bounds allow
to accurately identify wrong solutions. Note that the plot
is on log scale, meaning that our bounds are orders of
magnitude better than the values produced by local minima.
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Fig. 6. Global minimum (f?) and local minima (f̂ ) versus the proposed
bounds [l?, u?], for different levels of (a) translation noise (std: σT ), and
rotation noise (std: σR).

VIII. CONCLUSION

We propose techniques to verify whether a given SLAM
estimate is globally optimal. These techniques are based
on duality theory, and rely on the computation of lower
and upper bounds on the optimal cost. Experimental results
show that these bounds can successfully discern globally
correct estimates from wrong solutions corresponding to
local minima. Our verification techniques can be integrated
seamlessly in standard SLAM pipelines, and provide a sanity
check for the solution returned by standard iterative solvers.
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APPENDIX

Proof of Proposition 2. Because of the structure of the
matrices Ni, the following equality holds:

n∑
i=1

rTNir =

n∑
i=1

rTi ri = rTr. (31)

Using (31) and applying the change of variables q =
r/
√
n, problem (28) becomes:

min
q

n
(
qTMTMq

)
, subject to qTq = 1 (32)

Recalling that the definition of the smallest eigenvalue of the
matrix MTM is:

µM
.
= min
q,‖q‖=1

qT(MTM)q, (33)

it follows that the optimal value of (32) is n µM , which
coincides with l? in (26), proving the first claim. The second
claim easily follows, noting that the minimum of (33) is
attained, by definition, by the right singular vector of MTM
corresponding to the smallest singular value. �

http://cvxr.com/cvx
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