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SUMMARY

Disaster relief and response plays an important role in saving lives and reducing eco-

nomic loss after earthquakes, windstorm events and man-made explosions. Mobile robots

represent an effective solution to assist in post-disaster reconnaissance in areas that are

dangerous to human agents. These robots need an accurate 3D semantic map of the site

in order to carry out disaster relief work such as search and rescue and damage assess-

ment. Thus, there exists a research need to automatically identify building elements and

detect structural damage from laser-scanned points clouds acquired by mobile robots. Cur-

rent methods for point cloud semantic segmentation mostly perform direct class prediction

at the point level without considering object-level semantics and generalizability across

datasets. Moreover, current segmentation methods are unsuitable for real-time operation

because they are designed to work as a post-processing step and do not process points from

new scans in an online manner. This research proposes a learnable region growing method

to perform class-agnostic point cloud segmentation in a data-driven and generalizable man-

ner. In addition, an anomaly-based crack segmentation method is proposed where a deep

feature embedding is used as a basis for separation between inlier and outlier points. Fi-

nally, an incremental segmentation scheme is used to process point cloud data in an online

fashion and combine semantic information across multiple scans.

xv



CHAPTER 1

INTRODUCTION

1.1 Background

The hazardous nature of post-disaster scenarios such as earthquakes and hurricanes means

that mobile robots have to be used to effectively carry out disaster relief operations. Mobile

robots can use sensing devices such as cameras and LiDAR devices to acquire scan data

of damaged infrastructure and assess the hazard level of different regions in the disaster

site. Studies [1][2] have shown that the key reconnaissance tasks that need to be performed

are identifying structural weaknesses, locating key assets, and surveying leakages. The

conventional process to perform these tasks is labor-intensive since the raw sensor data has

to be manually examined by human agents and lacks interpretability. In addition, analyzing

the point cloud data is challenging due to the unstructured nature of disaster sites as well

as confounding factors such as occlusion and clutter.

Multiple studies [3][4] have proposed the use of 3D point cloud data as a feature-rich

and geometrically-correct way to represent the physical environment. Obtaining semantic

information from point clouds is important for robots to carry out place recognition, ob-

stacle avoidance, and object retrieval. Especially, the segmentation process can subdivide

a point cloud scene into constituent objects which can help the management and decision-

making process in disaster relief. Although not as mature as 2D object recognition, 3D

object recognition has gained significant research interest in recent years. Some exam-

ples of well-known datasets in the 3D domain are: (i) Stanford Large-Scale Indoor Spaces

(S3DIS) [5] for recognition of building elements (ii) KITTI [6] dataset for autonomous

driving, and (iii) ModelNet [7] and ShapeNet [8] for recognition of Computer-Aided De-

sign (CAD) models.

1



However, there are some limitations in existing methods for 3D object recognition.

Methods that perform classification at the point level (i.e., semantic segmentation) do not

output the object boundary which is important to delineate separate objects in a scene.

On the other hand, methods that represent objects by 3D bounding boxes are inaccurate

when used in situations with non-rectangular objects or when bounding boxes overlap,

since bounding boxes only constitute a rough approximation of the object boundary [9].

Moreover, methods for point cloud semantic segmentation such as PointNet [10] and SGPN

[11] are not suitable for real-time scanning because they are fundamentally offline methods

and do not process data incrementally.

This research proposes an improved methodology for 3D segmentation of robotics

scans as follows: (i) learnable region growing is used to improve generalizability of in-

stance segmentation, (ii) anomaly-based damage detection from point cloud is used to im-

plement crack segmentation without explicit training, (iii) a multi-view context pooling

(MCP) method is used to implement incremental segmentation and combine information

from multiple viewpoints.

1.2 Literature Review

1.2.1 Point Cloud Object Recognition

The simplest method to recognize objects from point cloud data is to assume that the ob-

jects fall into simple geometric categories such as planes and cylinders [12] [13]. The

corresponding geometric parameters can then be estimated using Random Sample Con-

sensus (RANSAC) or Hough transform [14] [15]. Another simple segmentation method is

region-growing, which initializes a seed point and gradually expands the region in a local

neighborhood to form objects [16] [17] [18]. In cases where 3D Computer-Aided Design

(CAD) models of the objects of interest are available, registration and matching can be used

to find the objects in a point cloud scene [4] [19] [20]. The limitation of this approach is

that it is not practical in situations where the design models are not available, such as on

2



historical building sites.

Later research focused on the problem of recognizing complex objects by using the

idea of feature descriptors to numerically encode and summarize the characteristics of 3D

objects. 3D feature descriptors fall into 2 different categories, which are local descriptors

and global descriptors. Local descriptors, such as Fast Point Feature Histogram [21], View-

point Feature Histogram [22], and Spin Images [23], work by binning features in a local

neighborhood (i.e. normals, curvature, and density) into histograms. An object can then

be recognized by finding correspondences in terms of these local descriptors. In contrast,

global descriptors such as Global Radius-based Surface Descriptor [24], Principal Axes

Descriptor [25], and Ensemble of Shape Functions [26], work by computing overall prop-

erties of an object such as area, length, and angles and encoding those values into a feature

vector. Then, classical machine learning classifiers such as support vector machines or K-

nearest neighbors may be use to predict the class label based on this feature vector. Overall,

the use of feature descriptors is advantageous over simpler rule-based methods because it

allows the complex geometry of point cloud objects to be described numerically.

More recent research have been focused on the use of neural networks for point cloud

object recognition due to the prevalence of deep learning in the greater research commu-

nity. Deep learning methods are attractive because they can directly model the relationship

between a 3D point cloud object and its corresponding class label without the need to man-

ually engineer feature descriptors. Deep learning methods have also achieved impressive

results in modern computer vision benchmarks [27]. Initial approaches to perform object

recognition in the point cloud domain are based on 3D convolutions which are an extension

to 2D convolutions commonly used in the image domain. In this case, the input point cloud

is first converted into a voxel representation or occupancy grid before being passed into

a 3D convolutional neural network. Some examples of these networks are 3D Network-

in-Network [28], Voxception-ResNet [29], VoxNet [30], ShapeNets [7]. The limitation of

these methods are that 3D convolutions are computationally expensive, and voxel grids are

3



unable to capture fine geometric detail if the voxel size is too large. In addition, these meth-

ods are limited to object-level classification and do not perform point-level classification.

An alternative category of deep learning methods for 3D object recognition uses bound-

ing boxes as the choice of object representation [31][32][33]. These methods are focused

on using regression methods to estimate the location and extent of specific 3D objects in a

point cloud scene. These methods are popular in the autonomous driving domain which is

focused on a narrow set of object classes such as cars and pedestrians and do not usually

require fine point-level classification. Some examples of works in this category are MV3D

[32], which generates object bounding boxes by fusing information from images and birds-

eye view LiDAR, and Frustum PointNets [34], which predicts object bounding boxes by

projecting object proposals from the 2D images to 3D space. The main limitation of these

methods is that they need to either train separate networks for each class [35] or use class-

specific anchor boxes [32]. Moreover, representing objects in the form of bounding boxes

often result in ambiguity in cases where there are non-rectangular objects or when multiple

objects overlap.

Another line of work in the domain of deep learning methods for 3D object recognition

uses unstructured point clouds directly as input to the neural network. This line of work

is driven by works such as PointNet [10] and PointNet++ [36] which proposed the idea

of using 1x1 convolutions in combination with max-pooling to combine features across an

unstructured point cloud. Later works further expand on this idea by introducing structures

such as Recurrent Consolidation Units [37], grouping matrix [11] or learnable embeddings

[38] [39] to improve the semantic segmentation performance and also jointly perform in-

stance segmentation. One problem with these methods is that they have no elegant way

to handle objects that do not fall neatly into the set of pre-defined object class, often just

designating them as "clutter" objects. In addition, these methods are not continuous in the

sense that they require the point cloud scene to be subdivided into 1m x 1m blocks before

the prediction stage, and a BlockMerging [11] step is used to merge the predictions across

4



different blocks in the post-processing stage. This could lead to inaccurate prediction along

the boundaries of the point cloud blocks.

In the robotics literature, point cloud segmentation is commonly performed through re-

gion growing [40][41][22][42] due to its speed and simplicity. Methods that incorporate

neural networks can usually only process data on a scan-by-scan basis due to the com-

putational demands. There have been some attempts to make use of information from

multiple viewpoints such as joint viewpoint prediction and categorization [43], grouped

pooling [44], or global view pooling [45]. However, the final information merging step is

still performed offline as a post-processing step since it is computationally demanding. In

summary, there is still a research need for 3D object recognition methods that are robust,

generalizable, and work in the real-time robotic setting.

1.2.2 Damage detection using mechanical sensors

A common method for structural health monitoring of civil structures is the use of vibration

sensors [46][47]. Vibration sensors can be used to monitor for frequency shifts and mode

shape changes that are linked to changes in structural properties. However, this method de-

pends on pre-installation of a large number of sensors which is expensive and only practical

for critical structures such as bridges. Acoustic emission is another commonly used tech-

nique for damage evaluation of concrete structures and steel structures [48][49]. Acoustic

emission testing relies on sensors that can listen for acoustic events and measure the com-

ponent strength and risk of failure. However, acoustic emission testing usually requires

physical contact with the damaged structure which is impractical in high-risk or inacces-

sible regions of a disaster site. Other methods such as ultrasonic testing [50] and guided

wave testing [51] make use of actively emitted pulses instead of passively measuring acous-

tic waves. Ultrasonic testing is commonly used to detect internal defects but only works on

an area in close proximity to the transducer. On the other hand, guided wave testing can

be used to inspect large areas of a structure at once but cannot localize the damaged region
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accurately.

1.2.3 Damage detection using 2D images

The main benefit of using images for damage detection instead of mechanical sensors is that

they can be acquired from longer ranges and are lightweight such that they can be equipped

on Unmanned Aerial Vehicles (UAV). There are several works that use deep learning tech-

niques for crack detection from images. Zou et al. [52] used a deep convolutional neural

network (CNN) for automatic crack detection by learning high-level features for crack

representation. The idea of using CNNs can be extended to use guided filtering and Condi-

tional Random Fields (CRFs) to refine the final prediction results [53]. Another possibility

is to pre-process the images using homomorphic filtering and the Otsu thresholding method

before passing them to the network [54]. Benz et al. [55] studied the problem of crack

segmentation from images acquired by unmanned aircraft systems (UAS). The study uses

transfer learning from an auxiliary dataset to initialize the weights of a neural network for

crack segmentation. However, the network still requires fine-tuning in a supervised manner

from an actual labeled dataset of cracks. In the industrial domain, Liu et al. [56] used an

encoder-decoder network in conjunction with background suppression modules to detect

cracks from images of plastic materials. Whereas, Tabernik et al. [57] studied surface

crack detection from images of industrial products. Since the work is targeted for quality

control applications, it focused more on the decision problem of identifying images with

cracks rather than the detection problem of accurately segmenting the cracks. One com-

mon limitation is that these methods require strong supervision in the form of a database

of images with labelled cracks. In addition, these methods are only applicable in the 2D

domain and do not predict the 3D geometric information that is necessary to determine the

crack dimensions.

A subset of works in the literature focus on the highly related problem of crack de-

tection from asphalt pavements. Early studies use the intensity as an indicator feature for
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cracks [58][59]. The problem with these methods is that the performance is negatively

by shadows, lighting effects, non-uniform crack widths, and poor intensity contrast [59].

CrackNet [60] was one of the first large-scale studies into pavement crack detection using

deep learning techniques. The study uses a convolutional neural network (CNN) to detect

cracks in a dataset of 2000 pavement depth images generated by a laser scanning system.

When compared to non-deep learning methods such as 3D shadow modeling and Support

Vector Machines (SVM), CrackNet achieved much more accurate crack detection. Crack-

Net II [61] was introduced as an improvement over the original CrackNet with a deeper

network architecture that has fully learnable parameters. This resulted in higher precision

and recall as well as processing speed. CrackNet-V [62] further improved the network

design with deeper convolutional layers and a more specific activation function and the

performance was also validated using a larger dataset. To overcome the data deficiency

problem for crack images, Li et al. [63] proposed semi-supervised learning using a com-

bination of labeled and unlabeled pavement images. In addition, an adversarial learning

method was used to improve the segmentation predictions. Several works [64][65] explore

crack detection using fully unsupervised algorithms such as Otsu’s thresholding and Ran-

dom Sample Consensus (RANSAC). However, these algorithms require manual tuning of

the threshold hyperparameters to achieve good performance.

1.2.4 Damage detection using 3D point clouds

A simple method to perform damage detection is to measure the deviation between the

post-damage point cloud and the pre-damage point cloud that can be generated from previ-

ous scans or from design models [66][67]. Compared to the image domain, this method is

more practical in the point cloud domain since point clouds can capture the 3D geometry

in absolute scale. The problem with this method is that it requires the pre-damage point

cloud which may not be available for all buildings on the disaster site. A geometry-based

method to detect cracks and spalling in point cloud data is to estimate the surface normal
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and measure the deviation by comparing to a nominal value [68] or by finding outliers af-

ter combining the surface normal and color information [69]. Other alternative methods

for damage detection include measuring the perpendicular distance from a pre-defined ref-

erence plane [70]. However, the limitation of these geometry-based methods is that they

require significant parameter tuning and carefully constructed scoring algorithms.

Similar to the image domain, some researchers turned to machine learning techniques

for damage detection in the point cloud domain. The problem is that large databases with

annotated damages exist in the image domain (e.g. CrackTree260 [52], DeepCrack [53],

and UAV 75 [55]) but are difficult to find in the point cloud domain. One possible solution

is to synthetically generate deformations in the point cloud data derived from a database of

building element Computer Aided Design (CAD) models [71]. However, this method relies

on having the building elements cleanly pre-segmented from a point cloud scene which is

difficult to achieve on real disaster sites due to a high amount of occlusion and clutter.

Another related method to synthesize deformations such as spalling directly on the point

cloud is to apply cubic surface equations together with added noise [72]. Then, geometry-

based classifiers can be trained to segment out damaged regions without reliance on color or

intensity information. However, this method still results in a large number of false positives

due to surface nonuniformities and sharp features such as edges. In the case of larger-scale

damage such as that caused by hurricanes, an airborne LiDAR scanning system can be used

to gather point clouds of the disaster site [73]. Building damage indicators can be derived

from geometric features such as including roof area and volume, roof orientation, and roof

shape. This method works well for macro-level building damage such as destroyed roofs

or collapsed structures but does not work for micro-level damage indicators such as cracks.

Damage information from civil infrastructure can also be summarized and stored in the

form of as-damaged Building Information Models [74][75]. These models contain detailed

and semantically-rich information about the location and shape of infrastructure damage

present in a building that can be useful to civil engineers and reconstruction and recovery
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personnel. In order to automatically generate these models, it is important to reconstruct

the full point cloud scene to provide context for the damaged regions and not just describe

infrastructure damage in a local context.
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1.3 Objectives

The main objective of this research is to identify an automated, accurate, and efficient

method to organize and interpret point cloud data collected from laser-scanning robots on

disaster sites. The proposed method should be capable of instance segmentation of point

cloud data acquired from building structures in a post-disaster reconnaissance scenario to

label different types of building structures and identify damaged structures. The specific

research objectives are as follows:

Objective 1: Investigate a learnable region growing method for point cloud segmenta-

tion

Class-specific point cloud segmentation face issues with generalizability across

datasets due to mismatched classes. Using a learnable region growing method for

class-agnostic point cloud segmentation can allow for more generalizable segmenta-

tion results while maintaining the data-driven and continuous properties.

Objective 2: Identify damaged areas such as cracks from point clouds of building

components based on anomaly-detection

Strictly supervised methods for damage detection from point clouds are impractical

due to a lack of labelled data for post-disaster environments. This research proposes

a crack segmentation method where anomalies are detected based on deep point-level

features vectors. The method is potentially advantageous because it allows the damaged

region to be extracted without requiring explicit training.
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Objective 3: Investigate incremental segmentation of laser scans acquired from mobile

robots

Current point cloud semantic segmentation methods are poorly suited to robotic

real-time scanning because they are meant to operate on single point clouds and do not

have a mechanism to incorporate information from new scans incrementally. To address

these issues, this study proposes a multi-view incremental segmentation method for

online segmentation of point clouds.
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CHAPTER 2

POINT CLOUD INSTANCE SEGMENTATION

Robots commonly make use of 3D perception to understand and interact with their sur-

roundings [40][41]. With advances in technology such as LiDAR, depth cameras, and

photogrammetry, the use of 3D point clouds to represent the geometry of a 3D scene has

rapidly increased in popularity [5][36][76]. While modern sensor technology allows 3D

point clouds to be collected on a large-scale basis, interpreting the raw point cloud data to

infer structure and semantics remains a fundamental challenge.

Point cloud segmentation is a relevant component of robotic sensing due to its use in

localization [41], obstacle detection [66], object recognition [77]. Point cloud segmenta-

tion essentially refers to the task of subdividing an input point cloud scene its constituent

objects. Point cloud segmentation can take the form of semantic segmentation, where each

point is assigned a class label (e.g. chair, table, wall) or instance segmentation, where each

point is assigned an instance label (e.g. object 1, object 2).

One category of approaches to point cloud segmentation is to compute local features

such as color, normals, or curvature and apply a threshold on these features to connect

points together in a region growing process [78][22][79][41]. These approaches are pop-

ular in the robotics domain because they are simple, continuous, and are computationally

efficient. The main issue with these approaches is that they are sensitive to the threshold

hyperparameter and frequently result in undersegmentation or oversegmentation.

Another category of approaches to point cloud segmentation is to use deep neural net-

works to predict the segmentation labels [11][38][31]. These approaches have gained

significant research attention in the past few years due to achieving state-of-the art per-

formance in computer vision benchmarks. The main benefit of these learning-based ap-

proaches is that they are data-driven and require less manual tuning of hyperparameters or
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hand-engineering of feature descriptors. However, current deep learning methods for point

cloud segmentation have the limitation that they are not continuous. In particular, a block

division step is require to subdivide a point cloud scene into smaller blocks. In addition,

most of the deep learning approaches are class-specific, i.e. they are designed to work with

a pre-defined set of classes and not for general segmentation of objects.

The key idea of this research is to formulate the region growing segmentation process

as a deep learning problem and use a deep neural network, LRGNet, to predict the output

of each region growing subproblem. This way, the method is able to have the advantages

of each type of approach, i.e. it is continuous and class-agnostic, but is also data-driven and

generalizable. The following sections will present, in order, the (i) problem definition, (ii)

LRGNet network architecture, (iii) region growing simulation, (iv) inference process, and

(v) experimental results.

2.1 Problem Definition

The problem of point cloud segmentation is defined as taking an input point cloud with N

points and predicting an integer instance label for each of the N points. Suppose that the

input, P, is represented as an N × F matrix, where F is the number of features, and the

output is represented as an N -dimensional integer vector, L.

The idea of region growing segmentation is to consider a point cloud region that starts

from a seed point pseed, and gradually morph that region into a set of points that represents

a complete object. Denoting the set of all points that belong to the same object instance as

pseed as P ∗, the goal of region growing is to incrementally add points to the current region

until the optimal set P ∗ is achieved. Once the region growing process terminates for a

single object, the points in the region are assigned the same unique instance label and the

region growing process starts over again with a new seed point. This process continues

until all N points in P have been assigned instance labels.

The region growing problem can be broken down into smaller subproblems at each
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Figure 2.1: LRGNet network architecture

decision point of region growing. Supposing that the subproblem involves morphing the

current region at step k, Qk, into the region at step k + 1, Qk+1, we can formulate the

subproblem into solving for the function f such that f(Qk) = Qk+1. Thus, starting at

the seed point, we have Q0 = {pseed}. Then, we can iteratively apply the function f so

that Q1 = f(Q0), Q2 = f(Q1), etc. until Qk approaches the optimal region P ∗. In this

study, the function f is derived through a data-driven process, allowing us to arrive at a

"learnable" region growing method.

2.2 Learnable Region Growing

2.2.1 Network architecture

The function f is computed using a deep neural network, LRGNet, as shown in Figure

2.1. The network takes in a set of inlier points and a set of neighbor points and predicts

how to add and remove points from the point sets to create a new point set. The upper

input branch of the network comes from the inlier set, which is defined as a set of I points

that lie in the current region Qk. Whereas, the lower input branch of the network comes

from the neighbor set, which is defined as a set of J points that are unlabeled and are

within δ-distance of any point in Qk. The I and J points are obtained by random sampling
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with replacement when there are fewer or more than I/J points. Both the inlier set and

neighbor set consist of points with F features each. In this study, the input set of features

are the local XYZ coordinates, room-normalized XYZ coordinates, RGB color, normals,

and curvature. The local XYZ coordinates are determined with respect to the center of

the current region whereas the room-normalized XYZ coordinates are determined with

respect to the entire room. The normal and curvature values at each point are computed

using Principal Component Analysis (PCA). Thus, the total number of features is F = 13.

Other than the room-normalized XYZ corodinates, all the feature values are normalized by

subtracting the column-wise median over all the input points.

The input matrices are then processed by a series of feature-wise convolutional lay-

ers, similar to that used in PointNet [36]. The features from each point are combined

into a 1024-dimensional global feature vector by a max-pooling operation across all points

followed by a concatenate operation between the upper and lower branches. This global

feature vector is then concatenated back to each of the feature sets of the I and J points.

These concatenated feature vectors are then passed through a few more convolutional lay-

ers before resulting in output layers in two branches. The upper output branch predicts the

remove mask, which determines which of the I points from the current region should be

removed when generating the next region. Whereas, the lower output branch predicts the

add mask, which determines which of the J points from the neighbor set should be added

to the next region. This mechanism of having both added points and removed points allow

the region growing process to correct for errors. That is, if a point from the neighbor set is

incorrectly added to the region at the current step, there is still a possibility that that point

can be removed at a future step. Given the predicted add mask and remove mask, the cur-

rent region Qk is updated by adding points and removing points to create the next region

Qk+1.

The hyperparameters for neighbor threshold distance, δ, size of the inlier set, I , and

size of the neighbor set, J are set to 0.1m, 512, and 512 respectively. These values are
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Figure 2.2: Visualization of the progression of region growing (green points are inlier set
points and blue points are neighbor set points).

obtained by tuning on the S3DIS validation dataset. Further analysis of the effect of these

hyperparameters will be given in the Experimental Results section.

2.2.2 Region growing simulation and training

Training data for LRGNet is obtained through region growing simulations on the S3DIS

dataset [5], which comes with ground truth instance labels. The S3DIS dataset consists of

6 different building areas, with a total of 272 rooms and an average of 38 object instances

in each room. The simulated region growing process is carried out by taking the labelled

point cloud of a room and performing region growing in a carefully controlled manner from

randomly selected seed points. At each intermediate stage of region growing, the inlier set

and neighbor set can be computed and the ground truth add and remove masks can also be

determined since which points have the same instance labels as the seed point are known

in advance. These sets of inputs and corresponding outputs are stored in batches and used

to train LRGNet in an offline process.

To help LRGNet generalize better to unseen data, artificial errors are added to the sim-

ulated region growing process. This is achieved by randomly adding and removing points

incorrectly from the current region based on the mistake probability α. To ensure that the

region growing process is able to converge to the current set of points, the mistake proba-

bility is gradually decreased by 0.01 after each step. In addition, data augmentation is also

carried out to increase the amount of training data available. Data augmentation is achieved
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by: (i) randomly flipping the x and y axes, (ii) randomly rotating the scene in increments of

90◦, and (iii) randomly adjusting the initial mistake probability, α to a value between 0.2

and 0.4 (this is to simulate different levels of noise during the region growing process). In

total, the training dataset contains 1406516 points clouds and 63047 object instances after

data augmentation.

The proposed LRGNet, as described in the previous section, is implemented in Tensor-

flow. The network is trained with the ADAM optimizer for 40 epochs with a learning rate

of 0.001 and a batch size of 100. The loss function is computed as the sum of the binary

cross-entropy loss for the add mask output and the binary cross-entropy loss for the remove

mask output. Note that the loss term of the remove mask output is normalized by frequency

to account for the fact that removed points occur much less frequently than added points.

2.2.3 Region growing at inference time

Figure 2.2 shows a visualization of the progression of region growing for a wall object at

inference time, demonstrating the number of points that are added and removed at different

stages of the process. In addition, Algorithm 1 summarizes the procedure of applying the

proposed region growing method to output instance labels L given an input point cloud

P . The region growing process consists of starting from a seed point and then iteratively

adding relevant points from the neighbor set and removing incorrect points from the inlier

set until the termination condition is reached. The add mask and remove mask are obtained

from the output of a trained LRGNet, described in the previous section. In this study, the

termination conditions are as follows:

• The current region does not expand for two consecutive steps

• The set of points to be added is predicted to be empty

• There are no unassigned neighbor points remaining

These termination conditions are designed to halt the region growing process when there

17



are no longer useful actions to be taken or when there are oscillatory situations where

points are added, removed at the next step, and then immediately added again. When the

termination condition is reached, all points in the current region Qk are assigned the same

object ID. Then, the region growing process starts over with a new seed point with a new

object ID.

Several heuristic methods are applied to improve the segmentation results. An intel-

ligent seed selection process [42] is used where instead of randomly selecting the initial

seed point, the seed point is selected as the remaining unlabelled point with minimum cur-

vature value. In addition, a cutoff threshold [36][80] is applied to point cloud segments

that are too small (i.e. less than 10 points) to avoid oversegmentation. In cases where the

region growing output results in a segment that is too small, points in that segment will be

relabelled based on the nearest neighbor point among points that are already labelled.

Algorithm 1: Region Growing
Input: PointCloud, P
Output: InstanceLabels, L
ϕ ≡ empty label ;
L = {ϕ,∀p ∈ P} ;
obj_id = 1;
while ϕ /∈ L do

pseed = unlabeled point with min curvature;
k = 0;
Qk = {pseed};
while true do

inliers = sample(Qk, I);
neighbors = sample({p : |p− q| < δ, p ∈ P, q ∈ Qk, L[p] = ϕ}, J);
add, remove = net(inliers, neighbors);
if termination condition then

L[Qk] = obj_id;
obj_id = obj_id+ 1;
break;

else
Qk+1 = Qk − inliers[remove] + neighbors[add];
k = k + 1;
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2.2.4 Local search to optimize region growing

To further correct for errors in the region growing process, this research employs different

local search techniques to iterate through different possibilities of region growing from a

given seed point. This is relevant since the proposed region growing method is probabilistic

in nature: points in the inlier set and neighbor set are randomly sampled at each step and

the learnable function f also returns a probability distribution over the points to be added

or removed. The local search techniques that are considered in this research are (i) random

restart from the same seed point while probabilistically sampling points to be added and

removed and (ii) beam search [81], where multiple states for the current region are simul-

taneously stored and expanded, limited to a fixed number of states after each expansion

step. On the other hand, the optimality criterion that are considered in this research are (i)

Maximum Likelihood (ML): sum of the log-likelihoods from each step and (ii) number of

points (NP): number of points in the final point cloud region, based on the intuition that

regions with more points are usually more complete. The region growing outcomes are

separately stored and at the end of the local search process, the region growing outcome

corresponding to the highest value for the optimality criterion will be used as the final re-

sult. In the Experimental Results section, these local search techniques will be compared

against the greedy inference technique of directly applying the add and remove masks with

a cutoff threshold of 0.5.

2.3 Experimental Results

2.3.1 Generalization of segmentation performance across datasets

Performance validation of the proposed LRGNet method is carried out using the metrics of

normalized mutual information (NMI), adjusted mutual information (AMI), and adjusted

rand index (ARI), as defined in [84], as well as precision (PRC), recall (RCL), and mean

intersection-over-union (mIOU). The baseline methods used for comparison are (i) sim-

19



Table 2.1: Segmentation performance comparison on the ScanNet and S3DIS datasets

Method NMI AMI ARI PRC RCL mIOU

ScanNet (train) → S3DIS (test)
Region growing 0.71 0.70 0.59 0.19 0.34 0.38

Rabbani et al. [82] 0.72 0.71 0.62 0.17 0.31 0.36
FPFH [83] 0.62 0.60 0.39 0.14 0.25 0.32

PointNet [36] 0.58 0.48 0.38 0.18 0.17 0.25
PointNet++ [76] 0.62 0.56 0.40 0.15 0.22 0.31

JSIS3D [38] 0.74 0.73 0.63 0.28 0.29 0.36
3D-BONET [31] 0.75 0.72 0.68 0.20 0.29 0.35

LRGNet 0.75 0.74 0.67 0.25 0.41 0.43
LRGNet +
local search

0.76 0.75 0.68 0.34 0.44 0.45

S3DIS (train) → ScanNet (test)
Region growing 0.62 0.60 0.44 0.17 0.23 0.30

Rabbani et al. [82] 0.64 0.62 0.49 0.13 0.24 0.32
FPFH [83] 0.53 0.51 0.28 0.10 0.14 0.26

PointNet [36] 0.57 0.51 0.40 0.08 0.13 0.26
PointNet++ [76] 0.63 0.57 0.47 0.15 0.21 0.32

JSIS3D [38] 0.57 0.56 0.31 0.15 0.13 0.22
3D-BONET [31] 0.59 0.54 0.34 0.10 0.13 0.24

LRGNet 0.69 0.67 0.54 0.25 0.33 0.39
LRGNet +
local search

0.69 0.68 0.56 0.31 0.33 0.38

ple region growing based on thresholding, (ii) smoothness constraints from Rabbani et

al. [82], (iii) Fast Point Feature Histogram (FPFH) descriptor [83], (iv) PointNet [36] (v)

PointNet++ [76] (vi) JSIS3D [38] and (vii) 3D-BONET [31]. To be compatible with other

methods, (iv) and (v) compute the instance labels by first predicting the class labels and

then connecting neighboring points that have the same class labels.

Validation is carried out using two different datasets with different class definitions in

order to fully examine the generalization performance of different point cloud segmentation

methods. To be precise, the S3DIS dataset [5] and the ScanNet dataset [85] are used as

training and test data alternatingly, as shown in Table 2.1. In Table 2.1, the performance

metrics are obtained by averaging across all rooms/scenes of the dataset. Precision and

recall are computed based on an IOU threshold of 50%.
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Results in Table 2.1 show that the propsoed LRGNet method shows the best generaliza-

tion performance compared to other segmentation methods, whether tested on the ScanNet

dataset or on the S3DIS dataset. In addition, after applying a local search method (random

restart with number of points as the optimality criterion) to optimize the region growing

process, the performance of LRGNet further improves by 1% - 9%. The main reason that

LRGNet is able to achieve good generalization performance is that it is class-agnostic, i.e.

it does not make any assumptions about the classes of objects that are present in the scene.

This factor comes into play when the training dataset and test dataset differ in terms of the

type of scene and types of objects that are usually present in the scene. In this research,

S3DIS consists of mostly office and hallway scenes whereas ScanNet consists of mostly

living room and bedroom scenes. As a result, methods that are tuned to work with objects

in a particular scene might not work with objects in different scenes.

Figures 2.3 and 2.4 show visualizations of the segmentation results on 3 different scenes

of the S3DIS dataset and ScanNet dataset respectively. Results show that the proposed

method is able to generate object segments that are closer matches to the ground truth

whereas the other methods generate either too few or too many segments.

2.3.2 Ablation study

An ablation study was carried out to examine the difference in segmentation performance as

different configuration changes and architecture changes are made to the proposed LRGNet.

This study was conducted on the S3DIS dataset with Areas 1,2,3,4,6 used as training data

and Area 5 used as validation data. Results in Table 2.2 show that having the remove mask

mechanism, using intelligent seed selection, and performing feature normalization all play

important roles in improving the segmentation performance. In addition, using the full

suite of input features (i.e. XYZ + RGB + normal + curvature) as well as larger values of

the I and J parameters tend to improve performance.

The effect of applying different local search methods to optimize the region growing
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Figure 2.3: Segmentation results on 3 different rooms of the S3DIS dataset: (from left to
right) (i) original RGB point cloud (ii) ground truth (iii) PointNet++ (iv) 3D-BoNet (v)
proposed method

process of LRGNet is analyzed in Table 2.3. The results are obtained on the S3DIS dataset

using the metrics of NMI, AMI, ARS, and average number of inference steps needed to

segment one object instance. In order to ensure that each method has roughly the same

number of computation steps, random restart is applied with 10 total restarts whereas beam

search is applied with a branching factor of 3 and expansion factor of 3. Results in Table 2.3

show that random restart with the number of points criteria achieved the best performance

overall. Note that applying the local search methods cause a significant increase in the

number of computational steps required, even higher in proportion to the number of restarts
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Figure 2.4: Segmentation results on 3 different scenes of the ScanNet dataset: (from left
to right) (i) original RGB point cloud (ii) ground truth (iii) PointNet++ (iv) 3D-BoNet (v)
proposed method

or branching carried. This is because local search introduces more variance to the length

of an average region growing subroutine.

2.3.3 Discussion

The main advantages of the proposed method are that is can be used to segment objects

of arbitrary shape, size, or class, and that it is more accurate and generalizable compared

to existing methods. In addition, the process for generating training data is based on sim-

ulation, so large-scale data augmentation can be easily performed from a single annotated

dataset.

One limitation of the proposed learnable region growing method is the high computa-
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Table 2.2: Performance comparison of different configurations of LRGNet

Method NMI AMI ARI PRC RCL mIOU

no remove mask 0.78 0.75 0.73 0.51 0.41 0.42
no seed selection 0.81 0.77 0.76 0.40 0.55 0.53

no feature
normalization

0.81 0.76 0.75 0.39 0.53 0.52

only XYZ 0.76 0.75 0.61 0.24 0.42 0.44
only XYZ+RGB 0.78 0.78 0.70 0.33 0.53 0.51

I = 128, J = 128 0.79 0.79 0.69 0.32 0.57 0.55
I = 256, J = 256 0.80 0.80 0.74 0.35 0.56 0.54

complete method 0.81 0.78 0.77 0.43 0.56 0.54

Table 2.3: Performance comparison of different local search methods

Method NMI(%) AMI(%) ARS(%) Avg steps

greedy 82±4 73±7 74±12 13.38
random restart - ML 82±5 78±7 77±12 190.06
random restart - NP 82±4 79±6 77±10 188.70
beam search - ML 82±5 78±7 77±12 159.79
beam search - NP 82±4 78±6 77±10 175.50

tional cost of having to run the deep network multiple times to segment each object. To

enable real-time implementation, it may be necessary to reduce the network size or use

techniques such as distillation to speed up network inference. Another possibility is to use

LRGNet as a post-processing method for auto-annotating point cloud data. This will enable

another faster network to be trained for the segmentation task based on the auto-annotated

labels.

Another limitation is the lack of temporal consistency or temporal reasoning when per-

forming inference with LRGNet. Currently, the input to LRGNet is conditioned on only the

current state of the segmented object and not on previous states. Ideally, the region grow-

ing process should be temporally consistent from each segmentation state to the next. This

could involve modifying the network architecture to incorporate Recurrent Neural Network

(RNN) or Long-Short Term Memory (LSTM) layers.
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CHAPTER 3

DAMAGE ASSESSMENT FROM POINT CLOUDS

Conventional methods for building damage assessment rely on manual inspection of dam-

age indicators such as liquefaction, tilting or cracks [86][87]. The problem with manual

inspection is that it is time-consuming, labor-intensive, subjective, and risky. Sensor-based

damage assessment methods such as vibration testing [46], acoustic emission testing [48],

and guided wave testing [51] can usually provide more objective measurements of the struc-

tural damage. However, the limitation of these sensor-based methods is that they require

pre-installation of sensors and physical contact with the damaged structure which is im-

practical in high-risk or inaccessible regions of a disaster site. On the other hand, damage

assessment can also be performed by observing the surface of damaged structures using a

remote sensing approach by acquiring image [53] and point cloud data [69]. Image and

point cloud data can efficiently capture the surface condition without physical contact, but

the raw data is difficult to parse due to the high dimensionality. Although various learning-

based architectures and datasets have been studied for this purpose, classifying damaged

and deformed structures is still challenging due to the low availability and possible non-

existence of ground truth datasets.

This research focuses on the problem of damage assessment in the point cloud domain

since point clouds can directly represent 3D geometry and can also represent additional

quantities such as color and reflectivity. Point clouds are easy to visualize and can be used to

estimate multiple damage indicators such as tilt, drift, cracks in physical units (i.e. meters).

To tackle the problem of automated damage assessment from disaster site point clouds, this

research proposes a method for crack segmentation using unsupervised machine learning

techniques. In particular, a deep neural network is used to compute a discriminative point

feature embedding under a transfer learning framework. Moreover, an unsupervised learn-
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ing technique based on anomaly detection is used to overcome the data deficiency problem

for crack detection due to a lack of annotated data for cracks in point clouds. The proposed

method is evaluated based on laser-scanned point clouds from (i) the 2015 Nepal earth-

quake and (ii) the Guardian Centers disaster preparedness and tactical training center. The

performance of the proposed point feature embedding is compared against that of other

feature representations such as color, intensity, normal vector, curvature, Fast Point Feature

Histogram (FPFH), and PointNet++. In addition, the performance of the anomaly detection

algorithm is compared against that of other algorithms for segmenting the damaged regions

such as K-means clustering and mean-shift clustering.

3.1 Structure Level Damage Assessment

The acquired point cloud data will be used to perform structure-level damage analysis. A

common method to perform point cloud-based damage analysis is to detect the deviation

between the as-damaged point cloud and the as-designed model. However, this requires a

detailed as-designed model that closely matches the damaged building which may not be

available for all buildings. Thus, for cases where the design model is not available or where

the damage can only be detected through drift measurements, a computational geometry

approach is proposed to reconstruct the post-damage building status directly from 3D point

cloud data. In particular, inter-story drift estimation and tilt estimation are performed since

they represent critical damage indicators for structural health monitoring. In this section,

the experiments are carried out on point cloud data of a damaged concrete structure at the

Hanyang University ERICA Structures Lab.

3.1.1 Inter-story Drift Ratio Estimation

The first step is a floor segmentation procedure that organizes the point cloud into multiple

subsections corresponding to each building story. The raw point cloud is partitioned into

floor/ceiling points and non-floor/ceiling points for each building story. The point cloud
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is sorted according to ascending z-coordinate, and the points is assigned to one of discrete

z-coordinate bins. For each z-coordinate bin, the point density is calculated and plotted on

a graph. We will classify the points into floor/ceiling points and non-floor/ceiling points

based on the property that the point cloud is dense with respect to the z-coordinate in floor

or ceiling areas and sparse for the area in between. The classification process is based on

the local point density distribution for each z-coordinate bin. For example, if the point

density is greater by 50% compared to the median of the surrounding 10-bin window, then

all the points in that bin are classified as floor/ceiling points, else the points are classified

as non-floor/ceiling points. This procedure allows the point cloud regions that separate out

each building story to be extracted from the scene.

The next step is to parameterize each building story as a plane model using Random

Sample Consensus (RANSAC) algorithm for plane detection. The RANSAC algorithm is

chosen because it is robust with respect to noisy data and can work even when the data has

multiple underlying modes. After a reference plane is selected, the drift for each story is

measured as the deviation from the nominal position. Figure 3.2 shows an example of the

inter-story drift estimation from the point cloud of a damaged concrete structure (Figure

3.1). In this example, the RANSAC algorithm will detect the top, middle, and bottom

planes. Then, the drifts of the middle and top planes will be measured by using the bottom

plane as the reference plane. For each story, the drift will be quantified in mm in both the

x-direction, y-direction, as well as the total horizontal drift.

3.1.2 Tilt Estimation

In addition, the tilt of each building story will be measured in a similar manner. The normal

vector of each detected plane will be compared using the bottom plane as the reference

plane and the tilt angle will be measured with respect to the difference in normal vector

direction. For example, in the concrete structure in Figure 3.3, the tilt of the middle plane

is estimated to be 1.21 degrees (1.09 degree in the x-axis and 0.51 degrees in the y-axis)
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Figure 3.1: Post-damage model of the structure captured by a 3D scanner after an external
force is applied

and the tilt of the top plane is 1.39 degrees (1.21 degrees in the x-axis and 0.69 degrees in

the y-axis).

3.2 Surface Level Damage Assessment

3.2.1 Feasibility of Damage Assessment based on Crack Segmentation

Based on existing literature, there are multiple sensing methods available to assess struc-

tural damage such as cracks after disaster events. However, several of these sensing meth-

ods rely on pre-installation of sensors or physical contact with the damaged structure which

is impractical in a disaster relief scenario. Thus, in this research, a remote sensing ap-

proach based on point cloud data is proposed that can be deployed on mobile robots for

non-intrusive damage assessment.

The Federal Emergency Management Agency (FEMA) guidelines for evaluation of

earthquake damaged concrete show that observed damage such as cracks are important

indicators for building component behavior in post-earthquake scenarios [88]. For exam-

ple, even a one-eighth inch crack in a wall panel could indicate that the structure is on the

verge of brittle shear failure [88]. In general, seriousness of structural damage is tied to its
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Figure 3.2: Inter-story drift estimation of a damaged concrete structure based on RANSAC
plane detection

observability. More specifically, the maximum crack width is indicative of the maximum

reinforcement strain and is a good indicator for damage severity. Thus, the proposed point

cloud-based approach is advantageous since the physical crack geometry can be directly

estimated in 3D from point cloud data.

One concern with this approach is that inspecting external structural damage (e.g. sur-

face cracks) may not reflect the internal structural damage that cannot be observed. How-

ever, current post-earthquake inspection guidelines show that visual inspection of external

cracks is an established practice for post-earthquake structural safety evaluation [89][88].

Generally, earthquake damage to concrete and masonry walls is visible on the exposed

surface[88]. Besides, in concrete structures, internal damage is usually caused by thermal

attacks such freezing or fire events, whereas earthquakes usually cause stress forces that

result in external damage [90]. In certain situations, earthquakes may cause hidden dam-

age such as a buckled rebar. Even in these situations, it is still cost-prohibitive and even

dangerous to intrusively test every structure in a building for hidden damage [88]. Thus,

the proposed point cloud-based approach is a reasonable solution for non-intrusive damage

assessment.
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Figure 3.3: Inter-story drift estimation of a damaged concrete structure based on RANSAC
plane detection

3.2.2 Building Component Extraction

The first step in detecting damaged building elements is to isolate specific building com-

ponents of interest. This study uses a semi-automated framework for building component

extraction from a raw point scene (shown in Figure 3.4). First, a region growing segmenta-

tion algorithm is applied to group neighboring points together into clusters such that each

cluster contains points from a unique building component. The region growing algorithm

works by considering the normal vector and color features from each point and joining them

if they have similar features and are within a neighborhood of 0.1m. Figure 3.5 shows a vi-
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sualization of the region growing segmentation results for two different scenes where each

point cloud cluster is shown in a different color. Next, the building components of interests

are extracted by manually indicating the dimensions for a specific type of building compo-

nent. For example, the concrete columns from the scene in Figure 3.5a can be extracted by

filtering for point cloud segments that match dimensions of 0.4m x 0.4m x 2.6m.

Figure 3.4: Visualization of overall framework for building component extraction (e.g.
columns)

Figure 3.5: Region growing segmentation results for (a) concrete column scene and (b)
concrete slab scene

3.2.3 Point Feature Embedding Computation

Once the building components of interest are extracted, point features are computed for

each point in that building component. In any machine learning framework, features are
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important to describe the characteristics of a data sample and are used as a basis for differ-

entiation between samples from different classes. In this study, point features are used to

differentiate between cracked regions and undamaged regions in point cloud data. Simple

examples for point features are measurements that can be obtained directly from the data

acquisition device such as color, intensity and XYZ coordinates. Other examples for point

features are features derived from the local geometry such as the normal vector, which de-

scribes the orientation of the local surface, and the curvature, which describes whether the

local surface is flat or curved.

On the other hand, this study uses the concept of a feature embedding to represent

discriminative information about a point. A feature embedding is a transformation of the

original space of raw features into a new feature space that is more semantically meaning-

ful. The benefit of having a point feature embedding compared to the raw features is that

the embedding is able to capture high-dimensional information in the local geometry and

summarize that information succinctly in a feature vector. There exist feature descriptors

such as Viewpoint Feature Histogram (VFH) [91], Fast Point Feature Histogram (FPFH)

[92], and Spin Images [93] that can compute geometrical features for each point. However,

these feature descriptors are manually designed and not data driven. There are also deep

neural nets for point clouds such as PointNet [94], PointNet++ [95], and Recurrent Con-

solidation Units [96] that can predict feature embeddings but these embeddings are tuned

more for classification instead of segmentation.

This research proposes a point-based deep neural network that is used to extract dis-

criminative point features using the geometry of the local point neighborhood. Since an-

notated data from disaster sites are difficult to obtain, this research uses a network that

is trained on regular building scenes and applied on disaster site scenes under a transfer

learning scheme. The network is trained to distinguish different types of points without

being conditioned to specific types of objects so that it can generalize to new scenes. In

this study, the network is trained using the Stanford 3D Indoor Spaces (S3DIS) dataset [97]
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which contains common building elements such as walls, floors, columns, and beams.

Figure 3.6 shows the neural network architecture used to compute CrackEmbed, point

feature embeddings in this study. The input to the network is a point cloud with N points

represented by a N x 6 matrix, where each row is a point with 6 features which are the

XYZ coordinates and RGB color. The network uses a context pooling module to extract

geometrical information from neighboring points. In particular, for each of the N input

points, a set of M neighboring points are sampled at a radius of 0.01m to be used as context

information. In this study, N and M are set to 256 and 50 respectively after hyperparameter

tuning. The input features of the neighboring points are processed using a series of con-

volutional layers and finally pooled into a 200-dimensional feature vector. This contextual

feature vector is concatenated back to the 6-dimensional vector of raw features for each

input point. Next, the concatenated features are processed with two more convolutional

layers to form a 50-dimensional feature embedding, which means that each input point is

represented with a set of 50 features. This feature embedding is trained using the triplet loss

function [98], which aims to optimize the weights of the network such that points that are

semantically similar are close together in feature space whereas points that are points that

are semantically dissimilar are further apart in feature space. During the training process,

triplets of points are sampled from the training dataset with each triplet having two points

with the same instance label and one point with a different instance label. The optimizer

then updates the network weights so that the feature embeddings of the similarly labeled

point pair are closer together compared to the feature embeddings of the differently labeled

point pair. This process works under the assumption that points that originate from the

same object instance have similar geometry and should have similar feature embeddings

whereas points that originate from different object instances should have dissimilar feature

embeddings. Since this triplet loss embedding is trained to separate out points with differ-

ent types of geometry, it can be transferred to the crack segmentation task because cracked

points are likely to have different geometry compared to the surrounding points.
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Figure 3.6: Network architecture to compute CrackEmbed point feature embeddings based
on the triplet loss function

3.2.4 Anomaly Detection

After the point features are computed, an unsupervised learning algorithm is applied to

separate out damaged points from non-damaged points based on their distribution in feature

space. This process works based on the intuition that non-damaged points have features

that appear at a high frequency whereas damaged points that features that deviate from

normal and appear at a lower frequency. Thus, an unsupervised learning algorithm that

can analyze the feature space and identify anomalies will be able to function as a damage

detection algorithm. Using unsupervised learning algorithms is advantageous compared

to supervised learning algorithms in the context of disaster site data because they do not

require training data which is difficult to acquire and annotate. Unsupervised learning is

also a more robust solution compared to applying a fixed threshold on the features values

since it can adapt to the feature distribution.

This study uses several clustering methods as baseline algorithms for crack segmen-

tation since clustering is a commonly used unsupervised learning algorithm. One such
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algorithm is K-means clustering [99], which divides the data into K clusters by iteratively

computing the cluster centers and assigning data points to the closest cluster. Figure 4

shows a visualization of K-means clustering used to segment out the cracked region. To

show the distribution of points in feature space, Principal Component Analysis (PCA) is

used to reduce the feature dimensionality to two dimensions so that it can be plotted. As

shown in Figure 3.7, the points are color-coded into 5 different colors with corresponds

to the K=5 clusters determined by K-means clustering. From these clustering results, the

cluster with the smallest number of points is assumed to be the outlier and the points in that

cluster are returned as the cracked region. Another clustering method is Gaussian Mixture

Models [100], which considers both the mean and covariance of each cluster and also uses

soft assignment of data points to clusters. A third clustering method considered in this

study is mean-shift clustering [101], which aims to discover a set of centroids and updates

them so that they represent the mean of their respective regions.

Figure 3.7: Visualization of K-means clustering used to segment the points belonging to
the cracked region in the feature space

In order to specifically segment out anomaly points, this study uses anomaly detection
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methods which are also known as novelty detection or outlier detection methods. This study

considers 4 different anomaly detection algorithms which are (i) isolation forest [102],

(ii) one-class SVM [103], (iii) robust covariance [104], and (iv) local outlier factor [105].

Isolation forest constructs a decision tree structure over the data points and uses the number

of splits required to isolate a point as a measure of normality. On the other hand, one-class

SVM works by constructing a frontier over the regular data points and defines anomalies

as points that lie outside the frontier. Robust covariance assumes that the regular data

points are Gaussian distributed and solves for the covariance of these data points so that the

normality can be measured based on the distance to the central mode. Finally, local outlier

factor measures the normality of each data point by comparing the local density to the

average density of its nearest neighbors, Figure 3.8 shows a visualization of the isolation

forest algorithm used to segment out the crack region. Each point is color-coded by its

normality score where red indicates points that are likely to be common points whereas

blue indicates points that are likely to be anomaly points. As shown in the figure, the points

that have low normality score (i.e. anomaly points) are correlated with points in the cracked

region of the original point cloud.

3.3 Experimental Results

To thoroughly evaluate the effectiveness of the proposed crack segmentation method, this

research makes use of two laser-scanned point cloud datasets: (i) a maternity hospital that

was damaged during the 2015 Nepal earthquake, and (ii) a damaged concrete structure at

the Guardian Centers disaster training facility. The Nepal dataset is taken from a publicly-

available repository [106] whereas the Guardian Centers dataset is collected by the authors.

The Nepal dataset (Figure 3.9a) contains 7 cracked concrete columns each measuring about

0.4m x 0.4m x 2.6m whereas the Guardian Centers dataset (Figure 3.9b) contains 2 cracked

concrete slabs each measuring about 5m x 3m x 0.5m. The Guardian Centers dataset has

several damaged slabs but only 2 were selected for evaluation because the others either do
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Figure 3.8: Visualization of Isolation Forest used to segment the points belonging to the
cracked region in the feature space

not have visible cracks or are overly deformed. In addition, the slabs had some shadow

artifacts and outlier points due to registration errors which were manually removed as a

pre-processing step. To create ground truth annotations of the cracked regions for each

building structure, the authors manually labelled the point cloud data with segmentation

masks using the CloudCompare software [107].

The crack segmentation accuracy is measured using the point-wise precision and re-

call metrics, which are determined by how well the predicted segmentation mask matches

the ground truth segmentation mask. In addition, the F1-score is used to represent the

combined information from both precision and recall metrics (since the F1-score is the

harmonic mean of precision and recall). Finally, the length and width of the crack is esti-

mated by taking the extent of all the points within the predicted segmentation mask. Then,

the length error and width error are used to measure the absolute error in the predicted

dimensions of the overlapped segmentation mask. Note that the length and width error are

measured at the longest and widest part of the crack respectively, so the length and width
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(a) Nepal dataset containing damaged columns

(b) Guardian Centers dataset containing damaged slabs

Figure 3.9: Different datasets for damaged structural components
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error could be zero even though the predicted segmentation mask is not perfect.

Tables 3.1 and 3.2 show the performance comparison of different feature representa-

tions on the Nepal dataset and the Guardian Centers dataset respectively. Crack detection

was performed on damaged columns in the Nepal dataset and on slabs in the Guardian

Centers dataset. The proposed CrackEmbed was compared with several baselines includ-

ing raw features such as (i) RGB color and (ii) intensity, geometric features such as (iii)

normal and (iv) curvature, and computed features such as (v) Fast Point Feature Histogram

(FPFH) [92] and (vi) PointNet++ [95]. In this performance comparison, the isolation forest

algorithm is used for anomaly detection. Results show that the CrackEmbed achieved the

highest precision, recall, and F1-score as well as the lowest length error and width error.

Figures 3.10 and 3.11 show the visualization of the crack segmentation results using differ-

ent feature representations where the predicted crack region is highlighted in yellow. The

figures show that there are still many false positive points that are segmented across all the

methods but the CrackEmbed method resulted in the overall closest match to the ground

truth.

Table 3.1: Performance comparison of different feature representations on the Nepal
dataset

Feature Precision Recall F1-score Length error (m) Width error (m)

RGB color 0.32 0.44 0.36 0.001 0.011
Intensity 0.17 0.33 0.21 0.003 0.004
Normal 0.26 0.37 0.30 0.001 0.012

Curvature 0.29 0.42 0.34 0.001 0.015
FPFH 0.21 0.10 0.13 0.020 0.018

PointNet++ 0.15 0.10 0.12 0.002 0.045
CrackEmbed 0.41 0.70 0.50 0.000 0.004

Table 3 shows a performance comparison of different unsupervised machine learning

algorithms used to separate out the cracked points. These include anomaly detection meth-

ods such as (i) isolation forest [102], (ii) one-class SVM [103], (iii) robust covariance [104],

and (iv) local outlier factor [105]. Clustering methods such as (i) K-means clustering [99],
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Table 3.2: Performance comparison of different feature representations on the Guardian
Centers dataset

Feature Precision Recall F1-score Length error (m) Width error (m)

RGB color 0.72 0.57 0.63 0.027 0.021
Intensity 0.60 0.61 0.60 0.006 0.008
Normal 0.52 0.40 0.45 0.146 0.148

Curvature 0.47 0.44 0.44 0.049 0.040
FPFH 0.61 0.08 0.14 0.083 0.086

PointNet++ 0.60 0.34 0.41 0.052 0.068
CrackEmbed 0.69 0.75 0.71 0.004 0.004

Figure 3.10: Visualization of column crack segmentation results with different feature rep-
resentations: (a) input point cloud (b) ground truth (c) RGB color (d) intensity (e) normal
(f) curvature (g) FPFH (h) PointNet++ (i) CrackEmbed

(ii) Gaussian Mixture Model [100], and (iii) mean-shift clustering [101] are also included as

baseline methods for comparison. In this study, the anomaly detection and clustering algo-

rithms are implemented using the scikit-learn [108] library. Results in Table 3.3 show that

the anomaly detection methods, with the exception of local outlier factor, outperform the

clustering methods in general. Among the anomaly detection methods, the isolation forest

method achieved the highest recall and the lowest length error and width error. Whereas,

the robust covariance method achieved the highest precision and F1-score.

Figure 3.12 shows the end result of damage detection where the segmented cracks from

each column can be mapped back to the original point cloud scene. In this way, the affected
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Figure 3.11: Visualization of slab crack segmentation results with different feature repre-
sentations: (a) input point cloud (b) ground truth (c) RGB color (d) intensity (e) normal (f)
curvature (g) FPFH (h) PointNet++ (i) CrackEmbed

Table 3.3: Performance comparison of different unsupervised algorithms on the Nepal
dataset

Method Precision Recall F1-score Length error (m) Width error (m)

Anomaly detection
Isolation Forest 0.39 0.76 0.50 0.000 0.004
One-class SVM 0.38 0.62 0.41 0.027 0.010

Robust covariance 0.59 0.50 0.52 0.040 0.010
Local Outlier Factor 0.13 0.12 0.12 0.018 0.008

Clustering
K-means 0.58 0.36 0.43 0.287 0.010

Gaussian Mixture Model 0.27 0.15 0.19 0.386 0.020
Mean-shift 0.34 0.24 0.27 0.032 0.012

building can be described in terms of the precise location of each crack as well as the length

and width of each crack. This information can be used for further processing by the disaster

relief team for structural analysis and risk analysis.

3.4 Performance Analysis

3.4.1 Analysis of different feature representations

The effectiveness of different point feature representations when used for the task of crack

segmentation can be analyzed based on the results in Tables 3.1 and 3.2. Overall, the

proposed CrackEmbed achieved the best performance across both the Nepal dataset and
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Figure 3.12: Visualization of crack segmentation results for concrete columns mapped back
to the original scene

the Guardian Centers dataset. This demonstrates that the proposed embedding is able to

successfully capture the relevant information in point cloud data and represent them as

feature vectors that are useful for segmentation. The RGB color, normal, and curvature

features also achieved reasonable performance whereas the FPFH and PointNet++ features

resulted in poor performance. This is because FPFH is designed for point cloud registration

whereas PointNet++ is designed for point cloud classification and the computed features

may not be suitable for segmentation.

The segmentation performance can also be compared in terms of the qualitative results

in Figures 3.10 and 3.11. One caveat of this comparison is that the ground truth outline of a

crack is difficult to define in certain situations where the outline of the crack is not visually

prominent. However, the performance can still be compared by examining the frequency

of false positive points in regions that clearly do not have cracks. The RGB color, intensity,

and CrackEmbed features have false positives that are mostly caused by shadow effects in

the point cloud. Whereas, the normal, curvature, FPFH, and PointNet++ features have false

positives that occur around the edges of the building component. Other confounding factors

include uneven surface and uneven resolution of the point cloud caused by incomplete

laser scanning. Especially in the Nepal dataset, the performance of the intensity feature is
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negatively affected by false positives, possibly since the intensity measurement could vary

depending on the laser incident angle as well as the distance between the scanned structure

and the laser scanner.

3.4.2 Analysis of different unsupervised algorithms

Table 3.3 analyzes the segmentation performance comparison of different unsupervised al-

gorithms on the Nepal dataset, including anomaly detection algorithms and clustering algo-

rithms. Among the anomaly detection algorithms, the isolation forest and robust covariance

algorithms performed the best overall when considering all the metrics. One-class SVM

achieved a reasonable performance whereas the local outlier factor algorithm performed

poorly, especially in terms of the F1 score. This could be due to the way the cracked points

are distributed in feature space, where they are isolated from other regions, but not sparse

enough such that the local outlier factor is significant. On the other hand, among the clus-

tering algorithms, K-means clustering achieved the best performance whereas the other two

algorithms did not perform as well. One downside of using a clustering algorithm is that

the hyperparameters such as the number of clusters (for the case of K-means clustering and

Gaussian Mixture Model) and the bandwidth (for the case of mean-shift clustering) have to

be carefully selected to achieve good performance. A clustering algorithm usually creates

multiple clusters, one of which is assigned to the anomaly region, whereas an anomaly de-

tection algorithm directly separates the anomaly region and the non-anomaly region. Based

on this as well as the results in Table 3.3, it is better to use anomaly detection algorithms

such as isolation forest and robust covariance for the task of crack segmentation.

3.4.3 Analysis of the effect of crack width

Crack width is an important factor to consider when analyzing the accuracy of crack seg-

mentation since it is related to the visibility of the crack and the difficulty in extracting the

crack points from surrounding points. Figure 3.13 shows a graph analyzing the trend of
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the F1 score with varying crack widths when performing crack segmentation on the Nepal

dataset. The graph shows that there is a general upward trend in F1 score as the crack width

increases and this trend is observed across different feature representations. Larger cracks

usually occupy a larger region in the point cloud and have more prominently different color

and intensity values, so it is reasonable that larger cracks can be more accurately detected

by the crack segmentation algorithm. There are a few cases where the F1 score decreases

with crack width. This is because there are other factors that affect the difficulty of seg-

menting a particular crack such as the noise level in the point cloud and the prominence

of the crack. Overall, the impact on performance of crack width is acceptable because the

lower accuracy on smaller cracks is less important whereas the higher accuracy on larger

cracks is more important for structural analysis of the building component.

Figure 3.13: Graph of F1 score vs crack width for different feature representations
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3.4.4 Analysis of the effect of outlier ratio

Another important factor to consider when analyzing the crack segmentation accuracy is the

ratio between the number of points on the crack and the total number of points on a building

component. This is because the assumption of the anomaly detection step is that the points

on the crack makes up a minority of all the points and can be separated as outliers. The

effect of this outlier is analyzed in Figure 3.14, which shows the relationship between the F1

score and the outlier ratio for different feature representations on the Nepal dataset. Based

on the results, there is no clear increasing or decreasing trend in the accuracy with different

outlier ratios. This is likely because the outlier ratio is mostly low in the Nepal dataset

(i.e. points on cracks only make up around 5% - 15% of the point cloud) so it does not

significantly alter the feature distribution when performing anomaly detection. There could

potentially be situations where the outlier ratio is high such as partially collapsed structures

or structures with a deformed surface. However, those situations are more suitable to be

processed by deformation detection or debris detection algorithms and not crack detection

which is the focus of this study.

3.4.5 Analysis of the effect of point cloud resolution

The crack segmentation accuracy can be further analyzed by examining the effect of point

cloud resolution. Depending on the laser scanning hardware as well as the distance between

the scanned structure and the laser scanner, the point cloud resolution (i.e. the spacing

between individual points in the point cloud) could be different. This effect was simulated

on the Nepal dataset by applying voxel-grid downsampling to the original laser-scanned

point cloud at varying resolutions of 0.001m, 0.002m, 0.005m, 0.007m, 0.01m, 0.02m,

0.05m, 0.07m, and 0.1m. Figure 3.15 shows the effect of point cloud resolution on the F1

score whereas Figure 3.16 shows the effect of point cloud resolution on the crack width

estimation error, averaged over all the columns in the dataset. Note that in both graphs, the

X and Y axes are plotted on a logarithmic scale for easier visualization. Results show that
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Figure 3.14: Graph of F1 score vs outlier ratio for different feature representations

the segmentation performance remains mostly unchanged in the 0.001m to 0.01m range.

Whereas, the F1 score decreases significantly and the width error increases significantly

when the resolution approaches the 0.1m range. This trend makes sense because when

the point spacing is large, there is less information in the point cloud for the segmentation

algorithm to clearly identify the outline of the crack. On a practical level, the results also

suggest that when acquiring the point cloud data, having a resolution (point spacing) in the

1 mm to 1 cm range is important to maintain accurate crack segmentation and crack width

estimation.
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Figure 3.15: Graph of F1 score vs point cloud resolution for different feature representa-
tions

Figure 3.16: Graph of width error vs point cloud resolution for different feature represen-
tations
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CHAPTER 4

INCREMENTAL SEGMENTATION

When surveying an unknown environment such as a disaster site, mobile robots need to be

able to sense and understand the surrounding environment. Whether using cameras [109],

depth sensors [110], or laser scanners [111], the surrounding 3D scene can be represented

and processed as point cloud data. The use of point cloud data has seen increased popu-

larity as the representation of choice for 3D scene understanding [3][4]. This is because

point clouds can be stored as a simple array of points and are able to represent precise 3D

geometry of objects.

When considering the problem of processing point cloud data for robotic applications,

current methods for point cloud semantic segmentation such as PointNet [10] and SGPN

[11] are not suitable for real-time scanning because they are fundamentally offline methods

and do not process data incrementally. It is desirable to have a point cloud segmentation

method that can process new scans in an online manner and still incorporate information

from previous scans.

This study proposes a multi-view incremental segmentation method to address the prob-

lem of online instance segmentation of 3D point clouds. The segmentation process is de-

signed to assign a semantic label and an instance point to each scanned point. A deep neural

network, MCPNet, is proposed, which uses a multi-view context pooling (MCP) module

to incorporate information from previous scans to improve the segmentation of the current

scan. The MCP module works by selectively extracting points from the global pool of

points that are relevant to the current region scanned by the robot. This mechanism allows

the segmentation method to process new scans within tenths of a second compared to half

a minute if an offline method were used to perform segmentation of the entire point cloud.

The following sections will present, in order, the (i) architecture design, (ii) experimen-
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tal results on simulation studies, (iii) field test at Guardian Centers, and (iv) experimental

results on Guardian Centers data.

4.1 Architecture Design

4.1.1 Data generation with ray tracing

To be able to generate a sufficient amount of training data for incremental segmentation, a

simulated scanning environment is created where a virtual robot is able to acquire virtual

scans by ray tracing. The simulated environment is generated based on the Stanford 3D

Indoor Spaces (S3DIS) dataset [5], which contains ground truth semantic labels and in-

stance labels for each point. The S3DIS dataset consists of 6 building areas in a university

environment. The dataset has 13 labelled classes which are board, bookcase, beam, chair,

column, door, sofa, table, window, ceiling, floor, wall, and clutter.

First, the original point cloud data is converted into a 3D occupancy grid representa-

tion where each occupied voxel in the simulated environment maps to a point in the real

environment. Next, a collision-free trajectory is manually generated for the virtual robot to

travel through the building and fully scan the surrounding environment. The virtual robot

then executes this trajectory while collecting scan data every 0.2m. The virtual robot is as-

sumed to have accurate localization so that the scanned coordinates are correct. The robot

utilizes a virtual laser scanner which has a horizontal field of view of 360◦, vertical field

of view of 180◦, horizontal resolution of 1◦, and vertical resolution of 1◦. The point cloud

generated by this virtual laser scanner can be computed by ray-tracing: whenever a ray

intersects an occupied voxel in the simulated environment, the corresponding point will be

added to the scanned point cloud. The acquired point cloud scan consists of XYZ + RGB

color points (assuming that the virtual robot has a camera to map color information onto

the raw point cloud). The ground truth instance label and semantic label for each point can

also be obtained from annotations of the original point cloud.

Figure 4.1 shows a comparison of the original point cloud and the synthetic point cloud
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generated with ray-tracing. The figure shows that the original point cloud is more complete

whereas the synthetic point cloud contains scanning artifacts such as occlusion and uneven

resolution which are more representative of robot-scanned data in the real world. This ray-

tracing process is advantageous because it can be used to automatically generate training

data on a large-scale basis while reproducing real-world scanning issues such as occlusion

and clutter. The ray tracing code has been publicly released at [112].

(a) Original point cloud

(b) Synthetic point cloud generated with ray-tracing

Figure 4.1: Ray-tracing example to generate a synthetic point cloud
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Figure 4.2: Network architecture of MCPNet

4.1.2 Incremental segmentation

The incremental segmentation framework is designed to be able to work in an online man-

ner: at each timestamp where the robot acquires a new point cloud scan, the point cloud

will be processed with a segmentation algorithm to obtain semantic labels and instance la-

bels. More, specifically each point will be assigned a semantic label indicating what type

of object it belongs to and an instance label indicating which object instance in the scene it

belongs to.

A global lookup table is used to keep track of the scanned point clouds as well as

the corresponding segmentation results. In this study, the lookup table is represented as

a voxel grid with a voxel size of 0.1m, where the voxel coordinate is used as a unique

key to retrieve a row from the global lookup table storing the raw point coordinates and

segmentation results. This mechanism allows the incremental segmentation framework to

be computationally efficient, since only one point is stored per voxel, and neighbor/context

points for an arbitrary voxel can be easily retrieved from the global lookup table with
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constant time complexity.

The input scan goes through a few pre-processing steps. First, the scan is filtered to

keep only points that are within 2m from the scan origin. This is to overcome the sparsity

issue for regions that are too far from the robot, with the idea that only points that are close

to the robot should be processed whereas points that are far away can be processed as the

robot moves closer to them. Next, the input coordinates are normalized by subtracting the

scan origin the X-Y coordinates as well as subtracting the minimum Z value from the Z

coordinates. Finally, random sampling with replacement is used to divide the scan into

batches of N points.

Next, the input scan is passed to a deep neural network, MCPNet (shown in Figure 4.2).

The input to MCPNet is a Nx6 matrix consisting of N points with 6 features each (XYZ and

RGB color). The input feature matrix is passed through a feature convolution layer before

splitting into two branches. The upper branch predicts a 50-dimensional feature embedding

for each point and is responsible for computing instance labels. Whereas, the lower branch

predicts a probability distribution that is used to determine the class labels. The lower

branch initially uses a max pooling layer to obtain a global feature vector representing all

points in the current scan. This global feature vector is then concatenated back into point-

wise feature vectors and these combined features are passed to another convolution layers

to predict the output of class probabilities.

The main innovation in MCPNet lies in the Multi-view Context Pooling (MCP) module

which is used to pool features from past views and use them as contextual information to

aid inference for the current scan. For each of the N original points in the input matrix,

MCP extracts M neighbor points from past views and their corresponding features to form

a Mx6 matrix. Neighbor points are defined as points that are at most three voxels away

from the original point in the global lookup table. Random sampling with replacement over

the neighbor points is used to ensure that the dimensions of the neighbor point input matrix

is fixed at Mx6. This neighbor point input matrix is processed with 2 feature convolution
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Figure 4.3: Framework for incremental point cloud segmentation using MCPNet

layers and 1 max pooling layer to arrive at a 200-dimensional feature vector, which repre-

sents the context information available for the original point. This process is repeated for

each of the N original points to obtain a Nx200 context matrix which is concatenated to

the original Nx6 input matrix.

MCPNet is trained from scratch using data generated from ray-tracing simulations. The

loss function used for training is the sum of the triplet semihard loss for the upper branch

and the softmax cross-entropy loss for the lower branch. The network is trained using the

ADAM optimizer for a total of 100 epochs. The learning rate used is 0.001 whereas the

batch size used is N = 256 points.

4.1.3 Point cloud clustering

As described in the previous section, the upper branch of MCPNet is used to predict a

50-dimensional feature embedding which can be further used for instance label prediction.

The feature embedding is designed such that points that belong to the same object instance

are close together in feature space whereas points that belong to different object instances

are further apart in feature space. MCPNet is trained to learn this feature embedding using

the triplet loss function [113], which computes a loss term based on a sample of three
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points consisting of one similar pair and one dissimilar pair. The triplet loss is designed to

enforce the constraint ||f(p1)−f(p2)||2+α < ||f(p1)−f(p3)||2, where f is the projection

function to feature space, p1 and p2 are points from the same object, p1 and p3 are points

from different objects, and α is the margin of separation.

Once the feature embedding is obtained, the instance labels can be determined by per-

forming agglomerative clustering. Agglomerative clustering works by forming clusters of

connected points. Connected points are defined to be points that are within one voxel dis-

tance away in the global lookup table and have similar feature embeddings. Similarity in

the feature embedding is determined based on the cosine similarity, f(pi)·f(pj)
||f(pi)|| ||f(pj)|| , and this

value must be greater than β, where is a preset threshold hyperparameter. For a given point

in the input scan, the instance label is assigned according to the following rules:

• If no connections exist, the point is initialized as the seed for a new cluster with a

new instance ID.

• If connections exist to a single existing cluster, the point is added to that cluster and

takes the corresponding instance ID.

• If connections exist to multiple existing clusters, all connected clusters are merged

and their instance IDs are updated accordingly.

4.1.4 Incremental segmentation framework

The overall framework for incremental segmentaiton is shown in Figure 4.3. The frame-

work utilizes a global lookup table based on voxel coordinates that stores the original point

coordinates, point features, instance labels, and class labels. When the robot acquires laser

scan data, new data is added to the global lookup table for points that lie in previously un-

seen voxels. The current scan points, together with neighbor points obtained by Multi-view

Context Pooling (MCP), are passed to MCPNet to predict a class label and instance label

for each point. Finally, these labels are used to update the global lookup table.
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Figure 4.4: Visualization of different feature embeddings: (i) original point cloud (ii) SGPN
embedding (iii) proposed embedding (without MCP) (iv) proposed embedding (with MCP)

4.2 Experimental Results on Simulation Studies

4.2.1 Classification performance

Table 4.1 shows a comparison of the classification performance of different segmenta-

tion methods, evaluated on the S3DIS dataset [5]. The evaluation metrics used are the

Intersection-over-Union (IOU), IOU averaged over all classes, point-wise accuracy, and

point-wise accuracy averaged over all classes. Cross validation is used, where 5 building

areas are used as training data and 1 building area is used as validation data. The baseline

methods for comparison are PointNet, PointNet++, SGPN, and VoxNet. In addition, the

offline versions of PointNet and PointNet++ are also shown for comparison.

Results in Table 4.1 show that the proposed MCPNet has the best classification per-

formance among online methods in terms of all four evaluation metrics. The use of the

MCP module also resulted in a significant improvement in performance compared to the

baseline method without using the MCP module. MCPNet did not perform as well as the

offline versions of PointNet and PointNet++, but only for the case where the point clouds

are pre-segmented into rooms. This shows that one of the critical reasons why the original

offline versions of PointNet and PointNet++ are able to perform well is the availability of

room segmentation, which is not the case for robotic real-time scanning.

Figure 4.5 shows the graph of average accuracy and inference rate against the number

of context points used for MCPNet. The graph shows that as the number of context points

increases, the average accuracy increases but the inference rate decreases. The final im-
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Table 4.1: Classification performance on S3DIS dataset

Method Mean IOU(%) Overall IOU(%) Mean Acc.(%) Overall Acc.(%)

Offline methods
PointNet [10] 39.6 58.3 55.1 73.6

PointNet++ [36] 49.3 65.3 67.0 78.9
PointNet [10]

(no room segmentation) 36.2 54.0 51.1 70.0
PointNet++ [36]

(no room segmentation) 39.0 55.3 57.1 71.1

Online methods
PointNet [10] 25.0 42.1 41.9 59.1

PointNet++ [36] 23.8 43.1 36.5 60.2
SGPN [11] 24.9 43.3 39.5 60.3
VoxNet [30] 18.2 29.5 33.4 45.5

Proposed 25.4 41.1 40.8 57.7
Proposed + MCP 39.2 59.5 57.8 74.9

plementation uses 50 context points to maximize accuracy while maintaining a reasonable

inference rate.

4.2.2 Clustering performance

Table 4.2 shows a comparison of the clustering performance (i.e. performance on the in-

stance label prediction task) on the S3DIS dataset. The performance metrics that are used

are Normalized Mutual Information (NMI), Adjusted Mutual Information (AMI), and Ad-

justed Rand Index (ARI), defined as in [84]. The baseline methods considered are normal

and color-based region growing, PointNet, PointNet++, SGPN, and VoxNet. PointNet,

PointNet++, and VoxNet perform clustering by assigning neighboring points that have the

same class label to be in the same cluster. Whereas, SGPN and MCPNet perform clustering

by predicting a feature embedding and using agglomerative clustering. Results in Table 4.2

show that MCPNet achieves the best clustering performance across all three metrics.

Figure 4.4 shows a visualization of the feature embeddings generated by different deep

neural networks. The visualization is generated by taking the final layer of the network
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Figure 4.5: Graph of average accuracy and inference rate against the number of context
points

branch used to perform clustering, projecting the feature vector to 3 dimensions using Prin-

cipal Component Analysis, and then assigning the RGB color of each point based on its

projected 3-dimensional feature vector. Figure 4.4 shows that the proposed method with

MCP is able to generate feature embeddings that are most suitable for clustering (i.e. points

from the same object are colored similarly).

Figure 4.6 shows a visualization of different stages of incremental segmentation on the

S3DIS dataset. The figure shows that as the simulated robot moves around the building and

acquires more point cloud data, the instance labels and semantic labels are incrementally

updated. On the other hand, Figure 4.7 shows a visualization of the classification results in

different areas of the building and from different angles.Note that the ceiling is removed in

Figure 4.7 for clarity.
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Figure 4.6: Visualization of incremental segmentation results on the S3DIS dataset. Top
row shows the input point cloud, middle row shows the clustering results, and the bottom
row shows the classification results.

4.2.3 Efficiency evaluation

The performance of different online segmentation algorithms can also be compared with

respect to their time efficiency and memory efficiency. The efficiency evaluation is per-

formed on an Intel Xeon E3-1200 CPU paired with a NVIDIA GTX1080 GPU. Table 4.3

shows that the proposed MCPNet has a higher processing time than other methods, but still

has a short enough processing time to be run in real-time for a laser scanner operating at 10

Hz. The CPU usage is on par with other methods, whereas the network size is smaller than

all the other methods except VoxNet. Figure 4.5 shows that the inference rate is dependant

on the parameter for number of context points. Thus, the inference rate can be increased
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Figure 4.7: Visualization of classification results from different angles: (i) hallway with
doors (ii) hallway with tables and chairs (iii) office room with board, bookcases, tables and
chairs (iv) three adjacent offices

Table 4.2: Clustering performance on S3DIS dataset

Method NMI(%) AMI(%) ARI(%)

Normal + color 78.5 63.4 25.0

PointNet [10] 72.1 59.2 12.1
PointNet++ [36] 76.1 66.4 17.1

SGPN [11] 78.5 60.5 26.1
VoxNet [30] 70.5 58.0 11.3

Proposed 75.9 64.8 18.3
Proposed + MCP 85.6 74.2 39.7

by decreasing the number of context points while sacrificing the accuracy.

4.2.4 Comparison with other online variants

This study also compares the performance between the proposed MCPNet with other vari-

ants of PointNet that can work online. Figure 4.8 shows a visualization of these different

variants. The simplest version of online PointNet, which is the result shown in Table 4.1.

This variant works by processing point cloud data on a scan-by-scan basis, i.e. the point

cloud from each scan is passed in single batches to PointNet to predict the class labels.

Another version of PointNet is with temporal expansion, where previous scans within 0.1s

of the current scan are combined together to form contextual information that can be used

as input to PointNet when predicting the class labels. The output class labels are then
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Table 4.3: Efficiency comparison for instance segmentation on S3DIS

Method
Processing Time

per Scan (s)
Network

Size (MB)
CPU Memory
Usage (GB)

PointNet [10] 0.017 14.0 0.94
PointNet++ [36] 0.027 11.5 0.97

SGPN [11] 0.019 14.9 2.49
VoxNet [30] 0.017 0.5 1.22

Proposed 0.019 0.9 1.26
Proposed + MCP 0.034 1.8 1.26

masked so that only the points in the current scan are updated. A third version of PointNet

is with spatial expansion, where previous scans within 0.5m of the current scan are com-

bined together to form contextual information. Note that these 3 variants use the original

PointNet architecture and are trained using the original method. In contrast, MCPNet uses

a novel Multi-view Context Pooling module to incorporate context information from previ-

ous scans in a more structured manner and also conducts training in scanning simulations

that provide realistic sequences of point cloud data.

Figure 4.8: Comparison of MCPNet framework with other online variants of PointNet

Table 4.4 shows a quantitative comparison between the segmentation performance of

these online variants of PointNet with the proposed MCPNet on the S3DIS dataset. Results

show that both variants of online PointNet that use multiple scans outperform the single

scan version on semantic segmentation accuracy metrics. This result is expected since

using multiple scans in the prediction stage can provide more contextual information about

objects in the scene. The results also show that MCPNet still has the best segmentation
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performance overall. This suggests that the custom MCP module and training framework

are effective in helping the network learn to incorporate information from previous scans.

In terms of the computation time, the temporal expansion PointNet variant did not lead to

significant increase in computation time compared to the simple online PointNet since the

scans are already sorted and indexed in the order of acquisition time so the overhead of

looking up context points is not too big. On the other hand, the spatial expansion variant as

well as MCPNet have larger increases in computation time. This is because they require a

spatial lookup for context points from previous scans which are not stored contiguously in

memory.

Table 4.4: Online segmentation performance on S3DIS dataset

Method Mean IOU
Overall

IOU Mean Acc.
Overall

Acc. Time(s)

PointNet
(single scan) 25.0 42.1 41.9 59.1 0.017

PointNet
(multiple scans in 0.1s) 27.8 48.0 43.4 64.8 0.017

PointNet
(multiple scans in 0.5m) 29.4 49.7 45.4 66.4 0.051

Proposed MCPNet 39.2 59.5 57.8 74.9 0.034

4.3 Field test at Guardian Centers

To verify the proposed method for robotic scanning at disaster sites, the Guardian Centers

disaster training facility was selected as a test environment. The facility has multiple large-

scale structures with simulated damages from earthquakes, hurricanes, or terrorist attacks.

This environment allows further investigation of the ability for mobile robots to complete

scanning missions and perform incremental segmentation of the acquired scans.

This research makes use of the Ground Robot for Mapping Infrastructure (GROMI) to

carry out scanning of damaged structures. The mobile robot is equipped with a Velodyne

VLP-16 laser scanner and is built to travel over rough terrain. Figure 4.9 shows the robotic

scanning process carried out around a damaged concrete structure at Guardian Centers. The
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scene spans a region of 65m x 55m x 20m and contains a mix of regular building structures

such as beams, columns, walls, and slabs as well as damaged structures and debris. As the

robot travels around the site, laser scan data is collected dynamically and registered into

a combined point cloud using Simultaneous Localization and Mapping (SLAM). Overall,

the scans collected amounted to around 4 hours of data totaling 60GB.

Figure 4.10 shows the overall experimental setup for annotation and organization of the

acquired point cloud data. First, a static ground-based laser scanner is used to obtain high

resolution point clouds of the test site. The resulting point cloud is manually annotated to

get ground truth instance labels and class labels for each point in the scene. The instance

labels delineate the object or building element instances whereas the class labels indicate

the type of objects. There are two main advantages of annotating ground truth from the

static laser scans: (i) the static laser scans are acquired at a higher resolution and have

a lower level of noise, (ii) the static scan of a structure only has to be annotated once

and the annotations can be reused for multiple robotic scans of the same structure. On

the other hand, the mobile robot data is divided into individual scanning sequences each

spanning a duration of around 3 minutes. Each of the scanning sequences are automatically

registered by using the Lightweight and Ground-Optimized Lidar Odometry and Mapping

(LeGO-LOAM) [114] method. The scanning sequences are then registered to the annotated

static point cloud so that the ground truth annotations can be matched to each individual

scans. Note that the ground truth annotations are matched on a point-to-point basis so that

any point not contained in the robotic scans, such as those from the interior areas of the

damaged structure, is not considered for evaluation. The scanning sequences are subdivided

into training scenes and test scenes for the application of a deep learning framework.

Figure 4.11 summarizes the main differences between the indoor simulation environ-

ment used in Section 4.3 and outdoor scanning with a real robot. First, the simulation

environment has ideal localization and mapping whereas the real environment has noisy

localization and mapping due to robot motion and vibration as well as registration errors.
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Next, the simulated environment has mostly smaller scenes and objects at the room-level

whereas the real environment spans a larger region and has large building structures. In

addition, it is possible to acquire a dense point cloud in the simulated environment whereas

the real environment has mostly sparse point clouds since the VLP-16 scanner has only

16 vertical scan lines. Finally, the simulated environment has regular building structures

whereas the real environment has damaged building structures that could be significantly

deformed from the original shapes. These differences make it much more challenging

to implement an effective segmentation method for the real environment compared to the

simulated environment.

To overcome these differences, the incremental segmentation framework was slightly

modified for the outdoor scanning environment. First, the local scanning range is extended

to 10m relative to the robot position compared to 2m in the indoor environment. This is

because the Velodyne VLP-16 device has a minimum scanning range of around 1m so not

many objects can be scanned at close range. At the same time, scan points that are fur-

ther away than 10m are filtered out because those regions are too sparse to be accurately

segmented. Another modification is in terms of staging the training data. In the simulated

indoor environment, the robot motion is constant so scan data is acquired at a set interval

of 0.2m. Whereas in the outdoor environment, the robot motion is variable so scan data is

acquired at the native scanning rate of 10Hz and the point clouds are randomly downsam-

pled to remain memory efficient. Finally, the hyperparameter β for incremental clustering

is increased from 0.9 to 0.92. This is because the outdoor point clouds are much noisier and

more cluttered so increasing the clustering threshold helps maintain the separation between

point cloud segments of different objects.

4.4 Experimental Results on Guardian Centers data

The segmentation performance was evaluated on the Guardian Centers dataset as described

in the previous section. The dataset consists of 6 scanning sequences, of which 5 are used
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Figure 4.9: Robotic laser scanning at a damaged concrete structure at Guardian Centers:
(left) photo of the GROMI robot captured by a drone (right) registered point clouds after
applying SLAM

Figure 4.10: Experimental setup for data collection at Guardian Centers

for training and 1 is used for testing. Each scanning sequence generates a point cloud scene

of around 100000 points after downsampling. The training sequences contain 5475 indi-

vidual Velodyne scans whereas the test sequence contains 900 individual Velodyne scans.

The semantic segmentation performance is measured using the classification accuracy and

classification IOU metrics whereas the instance segmentation performance is measured us-

ing the NMI and AMI metrics. Table 4.5 shows a comparison of the semantic segmentation

and instance segmentation performance between MCPNet and several baselines including

(i) PointNet, (ii) PointNet++, (iii) SGPN and (iv) VoxNet. All networks are trained on the

Guardian Centers training dataset. Results show that MCPNet obtained the best perfor-

64



Figure 4.11: Comparison between indoor simulation with S3DIS and outdoor scanning at
Guardian Centers

mance in 3 out of 4 metrics (classification accuracy, classification IOU, and NMI).

Figures 4.12 and 4.13 show the instance label prediction results and semantic label

prediction results respectively. Compared to the simulated environment, the instance label

prediction resulted in significantly more oversegmentation due to the sparser point cloud. In

addition, it is more difficult to accurately predict the segmentation boundaries due to noise

in the point cloud. The class label prediction results are also less accurate compared to the

simulated environment. This is because there are several classes that are easily confused

for each other such as clutter and debris as well as wall and damaged wall.

Table 4.6 shows the computation time and memory usage of each segmentation method

on the Guardian Centers dataset, measured on an Intel Xeon E3-1200 CPU with a NVIDIA

GTX1080 GPU. Results show that similarly to the case with the S3DIS dataset, MCPNet

had a higher processing time per scan, but still at a reasonable rate such that it can be run

at the 10 Hz capture rate of the Velodyne LiDAR scanner.
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Table 4.5: Segmentation performance on Guardian Centers dataset

Method Class Acc.(%) Class IOU(%) NMI(%) AMI(%)

PointNet 28.8 16.8 46.7 42.8
PointNet++ 32.1 19.1 33.1 24.3

SGPN 29.9 17.6 54.8 24.2
VoxNet 19.6 10.9 37.1 28.8

Proposed MCPNet 42.8 27.2 56.4 33.7

Table 4.6: Efficiency comparison for instance segmentation on Guardian Centers

Method
Processing Time

per Scan (s)
Network

Size (MB)
CPU Memory
Usage (GB)

PointNet 0.036 14.0 1.07
PointNet++ 0.050 11.5 1.72

SGPN 0.039 14.9 1.61
VoxNet 0.036 0.5 1.55

Proposed MCPNet 0.054 1.8 1.85

Figure 4.12: Visualization of instance label prediction results

Figure 4.13: Visualization of class label prediction results
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

In conclusion, this thesis presents a framework for 3D segmentation and damage analysis

from robotic scans of disaster sites. First, to address the issue of generalizability in point

cloud segmentation, a learnable region growing method, LRGNet is introduced. LRGNet

is class-agnostic in the sense that it does not rely on class information during training

and can theoretically segment object classes that it has not seen during training. LRGNet

works by decomposing the region growing problem into smaller subproblems and uses a

deep neural network to predict how to add an remove points from a region to morph it

into a more complete point cloud object. Experimental results on the S3DIS and ScanNet

datasets show that LRGNet is able to better generalize across datasets that have different

classes of objects. On the other hand, to tackle the problem of automated damage assess-

ment from disaster site point clouds, a method for crack segmentation using unsupervised

machine learning techniques is proposed. A deep neural network is used to compute a

discriminative point feature embedding which is then processed by anomaly detection al-

gorithms to detect cracks in point clouds. The performance of the proposed approach was

evaluated based on experimental studies on laser-scanned point clouds from two different

sites. Findings show that isolation forest and robust covariance were the best performing

anomaly detection algorithms whereas the triplet loss embedding was the most effective

feature representation for crack segmentation. An ablation study into the effects of dif-

ferent parameters showed that the crack segmentation performance increases with crack

size whereas the effect of outlier ratio is less significant. In addition, having a resolution

(point spacing) in the 1 mm to 1 cm range is important to maintain accurate crack segmen-

tation and crack width estimation. Finally, the MCPNet method is proposed for performing

multi-view incremental segmentation to achieve real-time segmentation of laser-scanned
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point clouds for robotic applications. MCPNet is initially trained by utilizing simulated

data that is generated through ray-tracing from the S3DIS dataset. MCPNet is able to out-

perform other online methods in terms of both classification metrics and clustering metrics

on this simulated dataset. The incremental segmentation framework was further validated

with real robot experiments at the Guardian Centers disaster training site. Even though

the disaster environment was much more challenging than the indoor environment due to

noise and clutter, the proposed approach still performed the best by making use of context

information from multiple views.

Overall, the research findings from this thesis offer promising directions for future re-

search in the area of robotic point cloud data collection for disaster relief. Having a learn-

able region growing method for class-agnostic point cloud segmentation is an important

first step since it can be used to segment objects of arbitrary shape, size, or class. This is

especially relevant in the context of disaster relief operations since building elements are

likely to be damaged or deformed and are more difficult to be be matched with a specific

class of objects. In view of its high computational cost, future work should be focused on

enabling real-time implementation by reducing the network size or using techniques such

as distillation to speed up network inference. In addition, modifying the network architec-

ture to use Recurrent Neural Network (RNN) or Long-Short Term Memory (LSTM) layers

could improve performance by enforcing temporal consistency in region growing. On the

other hand, the anomaly detection based framework for crack segmentation provides an

avenue for structural damage detection under low supervision conditions. Future work in

this area should involve extending the method to segmentation of a wider variety of surface

damage, including concrete spalling and water damage. In addition, a larger scale experi-

mental study should be carried out to validate the effectiveness of point cloud based damage

detection in comparison with more traditional methods of damage detection such as vibra-

tion sensors or acoustic sensors. Finally, this research offers a new direction for incremental

segmentation of robotic scans using the idea of multi-view context pooling. The method
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performed well in the simulated indoor environment but did take a performance hit in the

outdoor disaster site environment. Future research should be focused on improving the

robustness in cluttered environments commonly found on disaster sites. Moreover, further

efforts need to be carried out to integrate the learnable region growing and crack segmenta-

tion methods into the incremental segmentation framework. Nonetheless, the experimental

studies in this thesis have demonstrated the importance of generalizability, transferability,

and efficiency when it comes to processing data from challenging environments such as

disaster sites. It is hoped that the ideas and results presented in this thesis can contribute to

a better understanding of how robots can effectively acquire and process spatial data from

disaster sites, enabling rapid assessment of structural damage after disaster events and en-

suring that the post-disaster rehabilitation process can be carried out safely and smoothly.
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