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The trend of space commercialization is changing the decision-making process for future 

space exploration architectures, and there is a growing need for a new decision-making 

framework that explicitly considers the interactions between the mission coordinator (i.e., 

government) and the commercial players. In response to this challenge, this paper develops a 

framework for space exploration and logistics decision making that considers the incentive 

mechanism to stimulate commercial participation in future space infrastructure development 

and deployment. By extending the state-of-the-art space logistics design formulations from the 

game-theoretic perspective, the relationship between the mission coordinator and commercial 

players is first analyzed, and then the formulation for the optimal architecture design and 

incentive mechanism in three different scenarios is derived. To demonstrate and evaluate the 

effectiveness of the proposed framework, a case study on lunar habitat infrastructure design 

and deployment is conducted. Results show how total mission demands and in-situ resource 

utilization (ISRU) system performances after deployment may impact the cooperation among 

stakeholders. As an outcome of this study, an incentive-based decision-making framework that 

can benefit both the mission coordinator and the commercial players from commercialization 
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is derived, leading to a mutually beneficial space exploration between the government and the 

industry. 

Nomenclature 

𝒜 = set of arcs 

𝒞 = set of commodities  

𝒞C = set of continuous commodities 

𝒞D = set of discrete commodities 

c = cost coefficient 

𝑑 = mission demand 

𝐺 = commodity transformation matrix 

𝐻 = concurrency constraint matrix 

𝐼𝑠𝑝 = specific impulse, s 

𝒥 = space mission cost 

𝒦 = set of commercial players 

𝑙 = concurrency constraint index 

𝒩 = set of nodes 

𝑁 = total number of players 

𝑄 = baseline mission cost 

𝑟 = disagreement point utility 

𝒯 = set of time steps 

𝑈 = total utility 

𝑢 = mission utility 

𝒱 = set of spacecraft 

𝑊 = set of time windows 

𝑥 = commodity variable 

𝒵 = set of game players 

∆𝑡 = time of flight, day 



∆𝑉 = change of velocity, km/s 

𝛼 = participation coefficient 

𝜃 = incentive coefficient 

Ω = feasible domain of the participation and incentive coefficients 

Subscripts 

𝑖 = node index 

𝑗 = node index 

𝑘 = commercial player index 

𝑚 = commercial player index 

𝑡 = time step index 

𝑣 = spacecraft index 

𝑧 = game player index 

I. Introduction 

HERE is a growing trend of space commercialization; more government and commercial entities exhibit their 

interest in participating in future large-scale space exploration. Each entity has potentially different mission objective 

preferences and technology advantages, and the coordination among these entities will become a critical component 

of space exploration and design practice. This trend is also closely related to the needs of campaign-level mission 

design for future deep space explorations beyond Earth orbits, where space logistics infrastructures, such as in-situ 

resource utilization (ISRU) systems [1], will play a critical role in reducing space mission cost leveraging mission 

interdependencies.  

Campaign-level space exploration and logistics design methodologies have been extensively studied recently. 

Earlier works focused on discrete-event simulation environments [2], followed by the graph-theoretic or network-

based modeling of space logistics [3-5]. Based on the space logistics network, dynamic space mission design 

optimization methodologies have been established using the time-expanded generalized multi-commodity network 

flow model [6-8]. Depending on the mission designers’ needs, the campaign-level space logistics model has been 

extended to the concurrent optimization of the mission scheduling and the optimal allocation of vehicles (high-thrust 

or low-thrust) to each mission leg [9] as well as the optimal subsystem-level design of the deployed infrastructure such 

as ISRU plants [10]. Furthermore, for a long-horizon campaign with regularly repeating demands, a partially periodic 

T 



time-expanded network has been developed to simultaneously optimize the infrastructure deployment phase and 

operational phase [11].  

Despite the rich literature in the space logistics field, all the aforementioned space logistics mission design methods 

have assumed that a single stakeholder has top-down control over all systems and resources during the space campaign. 

The optimization formulation proposed in these studies can lead to a theoretically optimal mission design, which would 

be helpful if one entity (e.g., NASA) controls the entire process. However, these theoretically optimal solutions are not 

necessarily practical because they do not consider the interaction between the coordinator and commercial players. 

While some studies have looked into particular commercial opportunities in different industrial fields for space 

exploration, such as the satellite industry [12,13] and the commercialization of low-Earth orbit (LEO) [14], they did 

not take into account space architecture and design as part of the trade space, and therefore cannot be used for mission 

architecture decision making for commercialization. Other studies have also looked into the commercial suitability of 

space infrastructure design from the modularity perspective [15], but they only focused on limited commercialization 

perspectives and did not explicitly consider the incentive and objectives for commercial players.  

A related topic studied in the literature is the federated system (i.e., system-of-systems, SoS), which has been used 

as one of the important ways to stress cooperation and competition among multiple actors. The idea of a federated 

system has been proposed and applied to federated satellite systems [16], the government extended enterprises SoS 

[17], and the multi-actor space architecture commercialization [18]. However, these studies solely focused on 

allocating resources to each player rather than considering the architecture design from the commercialization 

perspective. An effective federation needs to allow players to actively decide to participate in or leave the federation 

considering their mission objective, available resources, architecture design, and potential benefits. This scenario 

would require the government/coordinator to offer incentives and perform architecture design from the 

commercialization perspective, which is the focus of this paper. 

The problem of interest is how to perform effective architecture design together with the incentive mechanism to 

achieve their goal with minimum resources. To solve this problem, this paper proposes an architecture and design 

decision-making framework that can incentivize commercial players to join the space exploration enterprise. The 

proposed architecture and design decision-making method aims to build a mutually beneficial relationship between the 

government mission coordinator (e.g., NASA) and the industry. Incentive mechanism design has been widely studied 

in various applications, including mobile phone participatory sensing [19-21], corporate entrepreneurship [22], and 



health risk assessment [23]. Specifically, a recent study focusing on infrastructure deployment [24] established an 

incentive design method for the mobile network market. Leveraging the approach in the incentive mechanism design 

field and extending the state-of-the-art space logistics and mission design approaches, we propose an architecture 

design framework for commercial participation in space infrastructure development and deployment. Building upon 

our previous work [25], we establish the framework based on the Nash bargaining solution and analyze its properties. 

Depending on the mission planning circumstances, we discuss the different roles of the mission coordinator and 

the incentive design properties. There are two problems in the architecture design framework to solve. The first is the 

deployment task assignment problem to determine the mission demand for each player. The second is the incentive 

value optimization problem to distribute the total utility of the system through incentives. These two problems lead to 

three mission scenarios to be discussed in this paper: 1) when we can make decisions for both task assignment and 

incentive values (i.e., the global optimization can be solved); 2) when we are given a pre-determined deployment 

demand for each player (i.e., only the incentive value optimization problem is considered); 3) when we are given the 

fixed incentive budget allocation (i.e., only the task assignment problem is considered). 

The major contributions of this paper will connect the incentive design for commercialization with the existing 

space mission design and logistics framework. It introduces a new perspective to analyze international and public-

private federation with a diverse range of space activities and mission objectives from different space-faring countries 

and companies. We believe that the proposed framework will be a foundational work for future space exploration 

mission architecture and design through collaboration between government, international, and commercial players. 

 The remainder of this paper is organized as follows. Section II first introduces the game theory model settings and 

definitions. In Sec. III, we propose the architecture design framework based on game theory, particularly the Nash 

bargaining solution, and analyze its properties. Three different mission scenarios are discussed, and the corresponding 

solving approaches are established. The performance and comparison of the proposed architecture design framework 

are then demonstrated in Sec. IV through a lunar exploration campaign case study. Finally, Sec. V concludes the paper 

and discusses future works. 

II. Game Theory Model 

In this section, we introduce the problem formulation and the game theory model. We consider a space logistics 

problem, where a government or commercial entity as a player has a mission demand to deploy some space 

infrastructure or deliver a certain amount of payload to a designated orbit or the lunar surface. We assume the total 



mass of the infrastructure or payload to be transported is 𝐷, in the unit of kg. This player can either complete this 

mission by itself only using its resources or relying on other players (i.e., other active government or commercial 

entities) to satisfy the mission demand. Other players may have deployed propellant depots, ISRU architectures, and 

lunar habitats that can complete the transportation mission at a lower cost. However, these commercial players also 

have their own mission goals. Transportation vehicle capacities and availabilities limit the available transportation 

capability for potentially extra commercial missions. We assume that all players are selfish but rational. Hence, they 

will only participate in the infrastructure deployment mission when it is beneficial. We define a player as a 

coordinator/planner who has a specific infrastructure deployment mission demand and would like to leverage other 

players’ capability and resources to complete the space mission. A two-player incentive design example is shown in 

Fig. 1. 

 

Fig. 1 Incentive Design Problem Example

For simplicity, in this paper, we consider a scenario with only one coordinator, labeled as player 0. All other players 

are commercial players, labeled as players 1, 2, etc. The problem is how to leverage the infrastructure owned by 

commercial players to support the space missions of the coordinator. For more general cases with multiple 

coordinators, we can always simplify the problem by considering the incentive design for each coordinator 

independently.  

We define 𝒦 = {commercial players} as the set of commercial players. Then, the total number of players 𝑁 in 

this game is the cardinality of 𝒦 for commercial players plus one coordinator, 𝑁 = |𝒦| + 1. According to available 

resources and mission demands, the coordinator can complete the transportation mission partially and complete the 

rest of the structure deployment relying on other players. We define a participation coefficient 𝛼𝑘 ∈ [0,1] for each 

commercial player, denoting the fraction of mission demand to be deployed by the commercial player 𝑘. In this paper, 



mission demands are measured by the mass of payload in the unit of kg. Based on the above definition, the 

transportation mission demand for the coordinator is (1 − ∑ 𝛼𝑘𝑘∈𝒦 )𝐷; whereas the mission demand for the player 𝑘 

is 𝛼𝑘𝐷. We assume that the total mission cost to complete the entire infrastructure deployment mission by the 

coordinator itself is 𝑄, which we call it the baseline mission cost. The baseline cost to deliver 1 kg of infrastructure 

by the coordinator is 𝑄 𝐷⁄ . Then, we can define an incentive coefficient 𝜃𝑘. The feasible region of 𝜃𝑘 would need to 

satisfy certain constraints depending on 𝛼𝑘; we denote the vectors of 𝛼𝑘 and 𝜃𝑘 by 𝜶 and 𝜽, and denote their feasible 

region as 𝛀 such that (𝜶, 𝜽) ∈ 𝛀; this domain 𝛀 will be discussed further later. As a rational coordinator, player 0 is 

only willing to pay the incentive no more than the baseline mission cost. The incentive to deliver 1 kg of infrastructure 

by the player 𝑘 can be denoted by 𝜃𝑘𝑄 𝐷⁄ . 

 As a result, our decision variables include 𝛼𝑘 and 𝜃𝑘. We define 𝑢𝑜(𝜶, 𝜽) as the utility of the coordinator. We also 

define 𝑢𝑝𝑘
(𝛼𝑘 , 𝜃𝑘) as the utility of the commercial player 𝑘. The utility is defined as the mission cost savings for the 

coordinator or the profit for the commercial player. For the coordinator, the mission cost saving is calculated with 

respect to its baseline mission cost 𝑄. Therefore, the utility function of the coordinator can be expressed as 

𝑢𝑜(𝜶, 𝜽) = 𝑄 − 𝒥𝑜 (1 − ∑ 𝛼𝑘
𝑘∈𝒦

) − ∑ 𝛼𝑘𝜃𝑘𝑄
𝑘∈𝒦

(1) 

And the utility function of the commercial player 𝑘 can be written as 

𝑢𝑝𝑘
(𝛼𝑘, 𝜃𝑘) = 𝛼𝑘𝜃𝑘𝑄 − 𝒥𝑝𝑘

(𝛼𝑘) (2) 

where 𝒥𝑜 and 𝒥𝑝 are the space mission costs to complete the assigned portion of space infrastructure deployment for 

the coordinator and commercial players. Both are functions of only the participation coefficient 𝛼 because the total 

infrastructure deployment demand 𝐷 is assumed as a known constant before the optimization. By definition, 𝒥𝑜(1) =

𝑄. These cost functions can be found numerically through space logistics optimization methods. Studies also have 

been done to establish analytical expressions for the mission cost functions [25, 26], but the accuracy of these methods 

depends on the actual mission scenarios. Note that the utility functions defined in Eqs. (1) and (2) have an implicit 

assumption that the incentive exchange between the coordinator and commercial players is frictionless. Friction losses 

(such as overhead) were not considered in this paper. Moreover, we also assume that the utilities of all players are 

fungible quantities like currency. More general utility functions of the coordinator and commercial players that cannot 

be exchanged among players are not considered in this framework.  



We know that the utilities for all players are always non-negative; otherwise, they would not participate in the 

space mission. This leads to the constraints for the incentive coefficient 𝜽: 

𝑄 − 𝒥𝑜 (1 − ∑ 𝛼𝑘
𝑘∈𝒦

) − ∑ 𝛼𝑘𝜃𝑘𝑄
𝑘∈𝒦

≥ 0 (3) 

𝛼𝑘𝜃𝑘𝑄 − 𝒥𝑝𝑘
(𝛼𝑘) ≥ 0    ∀𝑘 ∈ 𝒦 (4) 

Then, we can get 

∑ 𝛼𝑘𝜃𝑘
𝑘∈𝒦

≤
𝑄 − 𝒥𝑜(1 − ∑ 𝛼𝑚𝑚∈𝒦 )

𝑄
(5) 

𝜃𝑘(𝜶) ≥
𝒥𝑝𝑘

(𝛼𝑘)

𝛼𝑘𝑄
    ∀𝑘 ∈ 𝒦 (6) 

Equations (5) and (6) define the feasible domain of the pair of 𝜶 and 𝜽, which is denoted by 𝛀. 

 According to the utility functions defined in this section, we propose an incentive design framework in the 

following section. 

III. Incentive Design Framework 

In this section, we propose an incentive design framework based on the utility functions, Eqs. (1) and (2), and the 

Nash bargaining solution. The bargaining problem studies how players share a jointly generated surplus. To formulate 

the bargaining problem, we need to define the disagreement point, denoted by 𝑟, which is a set of strategies that 

provide the lowest utility as expected by players if the bargaining breaks down. In our problem, the disagreement point 

is when commercial players refuse to participate in space infrastructure development and deployment, which means 

𝑟 ≡ 𝑢(𝜶 = 𝟎|𝒦|×1, 𝜽) = 0. Setting the disagreement point to be zero also eliminates any potential negative incentives. 

We define 𝒵 = {coordinator} ∪ {commercial players} as the set of all game players, indexed by 𝑧.  

Nash proposed that a solution to the bargaining problem should satisfy four axioms [27]: 1) independence of 

equivalent utility transformations, 2) independence of irrelevant alternatives, 3) Pareto optimality, 4) symmetry. The 

unique solution that satisfies all these axioms is the particular utility vector that maximizes the Nash product 

∏ (𝑢𝑧(𝜶, 𝜽) − 𝑟𝑧)𝑧∈𝒵 . This solution was originally proposed for cooperative bargaining [27], but has also been shown 

to be relevant in the non-cooperative bargaining game [28]. In our case, because the disagreement point 𝑟𝑧 = 0 for all 

players 𝑧, the problem of interest becomes: 

maximize 



∏ (𝑢𝑧(𝜶, 𝜽))
𝑧∈𝒵

(7) 

subject to 

(𝜶, 𝜽) ∈ 𝛀 (8) 

Note that this feasible region in Eq. (8) ensures the incentive is beneficial to both the coordinator and commercial 

players: 

𝑢𝑧(𝜶, 𝜽) ≥ 0    ∀𝑧 ∈ 𝒵 (9) 

Depending on different mission planning circumstances, there are three different mission scenarios for decision 

variables to be discussed: 

• Scenario 1: Optimal design: both 𝜶 and 𝜽 are decision variables – This case corresponds to the mission 

planning scenario where the coordinator is trying to find the optimal design point without a pre-determined 

payload transportation assignment and the limitation of incentive budget. 

• Scenario 2: Fixed demand allocation: 𝜶 is a given constant vector and 𝜽 is the only decision variable – This 

case corresponds to the scenario where the coordinator has already determined the transportation task 

assignment for each player, the only problem is how to identify the optimal incentive. 

• Scenario 3: Fixed budget allocation: 𝜶 is the only decision variable and 𝜽 is a given constant vector – This 

case corresponds to the scenario where the coordinator has to decide the optimal space transportation task 

assignment given certain total mission demand under the limitation of a given incentive budget allocation. 

In the following sections, we discuss the properties of each design scenario and approaches to solve the problem. 

A. Scenario 1: Optimal Design 

When both 𝜶 and 𝜽 are decision variables, we can prove two important properties of the Nash bargaining solution 

(𝜶𝐍𝐁𝐒, 𝜽𝐍𝐁𝐒) with respect to the total utility and the utility distribution. 

Theorem 1. Given the utility definition in Eqs. (1) & (2) and zero disagreement points, for a multi-player incentive 

design problem with one coordinator, the Nash bargaining solution (𝜶NBS, 𝜽NBS) maximizes the total social welfare, 

which is the total utility of the coordinator and commercial players. 

  

∑ 𝑢𝑧(𝜶NBS, 𝜽NBS)
𝑧∈𝒵

≥ ∑ 𝑢𝑧(𝜶′, 𝜽′)
𝑧∈𝒵

    ∀(𝜶′, 𝜽′) ∈ 𝛀 (10) 

PROOF. Based on the definition of utility functions, we know the total social welfare can be expressed as 



∑ 𝑢𝑧(𝜶, 𝜽)
𝑧∈𝒵

= 𝑄 − 𝒥𝑜 (1 − ∑ 𝛼𝑘
𝑘∈𝒦

) − ∑ 𝒥𝑝𝑘
(𝛼𝑘)

𝑘∈𝒦
 

which is independent of the incentive coefficient, 𝜽. Namely,  𝜽 only influences the distribution of utilities but does 

not impact the total utility. We define 𝑈(𝜶) = ∑ 𝑢𝑧(𝜶, 𝜽)𝑧∈𝒵  as the total utility of all players (i.e., total social welfare). 

Given an 𝜶 value, the total utility of all players 𝑈(𝜶) is fixed, and the optimal utility distribution to maximize the 

Nash product under that constraint is achieved by making the utility of all players equal if that solution is feasible. 

Thus, we first show the feasibility of such a solution in the considered scenario; namely, for any specific positive 

participation coefficients 𝜶, we can always find an incentive coefficient vector 𝜽 in the domain 𝛀 to make the 

coordinator and commercial players achieve an equal utility, 𝑢𝑜(𝜶, 𝜽) = 𝑢𝑝𝑘
(𝛼𝑘 , 𝜃𝑘) ∀𝑘 ∈ 𝒦. Then, we only need to 

prove that the Nash bargaining solution maximizes the social welfare (i.e., by varying 𝜶) when the utility for each 

player is equal.  

First, to make 𝑢𝑜(𝜶, 𝜽) = 𝑢𝑝𝑘
(𝛼𝑘, 𝜃𝑘) ∀𝑘 ∈ 𝒦, we have 

𝑢𝑜(𝜶, 𝜽) = 𝑢𝑝𝑘
(𝛼𝑘 , 𝜃𝑘) = 𝑄 − 𝒥𝑜 (1 − ∑ 𝛼𝑚

𝑚∈𝒦
) − ∑ 𝛼𝑚𝜃𝑚𝑄

𝑚∈𝒦
= 𝛼𝑘𝜃𝑘𝑄 − 𝒥𝑝𝑘

(𝛼𝑘)    ∀𝑘 ∈ 𝒦 (11) 

𝑢𝑝𝑘
(𝛼𝑘, 𝜃𝑘) = 𝑢𝑝𝑚

(𝛼𝑚, 𝜃𝑚) = 𝛼𝑘𝜃𝑘𝑄 − 𝒥𝑝𝑘
(𝛼𝑘) = 𝛼𝑚𝜃𝑚𝑄 − 𝒥𝑝𝑚

(𝛼𝑚)    ∀𝑚 ≠ 𝑘, ∀𝑚, 𝑘 ∈ 𝒦 (12) 

Combining Eqs. (11) and (12), we can get 

𝜃𝑘
∗(𝜶) =

𝑄 − 𝒥𝑜(1 − ∑ 𝛼𝑚𝑚∈𝒦 ) + 𝑁𝒥𝑝𝑘
(𝛼𝑘) − ∑ 𝒥𝑝𝑚

(𝛼𝑚)𝑚∈𝒦

𝑁𝛼𝑘𝑄
    ∀𝑘 ∈ 𝒦 

Here, we show (𝜶, 𝜽) ∈ 𝛀  using Eqs. (5) and (6). We know that 𝜃𝑘
∗(𝜶) satisfies Eq. (5) because 

𝑄 − 𝒥𝑜(1 − ∑ 𝛼𝑚𝑚∈𝒦 )

𝑄
− ∑ 𝛼𝑘𝜃𝑘

∗(𝜶)
𝑘∈𝒦

=
𝑄 − 𝒥𝑜(1 − ∑ 𝛼𝑚𝑚∈𝒦 ) − ∑ 𝒥𝑝𝑚

(𝛼𝑚)𝑚∈𝒦

𝑁𝑄
=

∑ 𝑢𝑧(𝜶, 𝜽)𝑧∈𝒵

𝑁𝑄
≥ 0 

We also know that 𝜃𝑘
∗(𝜶)  satisfies Eq. (6) because 

𝜃𝑘
∗(𝜶) −

𝒥𝑝𝑘
(𝛼𝑘)

𝛼𝑘𝑄
=

𝑄 − 𝒥𝑜(1 − ∑ 𝛼𝑚𝑚∈𝒦 ) − ∑ 𝒥𝑝𝑚
(𝛼𝑚)𝑚∈𝒦

𝑁𝛼𝑘𝑄
=

∑ 𝑢𝑧(𝜶, 𝜽)𝑧∈𝒵

𝑁𝛼𝑘𝑄
≥ 0    ∀𝑘 ∈ 𝒦 

Thus, for all 𝜶, we have 

(𝜶, 𝜽) ∈ 𝛀  

Next, we can show that the Nash bargaining solution gives the maximal social welfare when utilities are equal, 

which is equivalent to the statement that the Nash bargaining solution maximizes the total utility in general. 

For the Nash bargaining solution, we have 



∏ 𝑢𝑧(𝜶NBS, 𝜽NBS)
𝑧∈𝒵

≥ ∏ 𝑢𝑧(𝜶′, 𝜽′)
𝑧∈𝒵

    ∀(𝜶′, 𝜽′) ∈ 𝛀 

When the utilities are equal, we have 

𝑢𝑜(𝜶, 𝜽) = 𝑢𝑝𝑘
(𝛼𝑘, 𝜃𝑘) =

𝑄 − 𝒥𝑜(1 − ∑ 𝛼𝑚𝑚∈𝒦 ) − ∑ 𝒥𝑝𝑚
(𝛼𝑚)𝑚∈𝒦

𝑁
    ∀𝑘 ∈ 𝒦 

Thus, we get, 

(𝑄 − 𝒥𝑜(1 − ∑ 𝛼𝑚,NBS𝑚∈𝒦 ) − ∑ 𝒥𝑝𝑚
(𝛼𝑚,NBS)𝑚∈𝒦 )𝑁

𝑁𝑁
≥

(𝑄 − 𝒥𝑜(1 − ∑ 𝛼𝑚
′

𝑚∈𝒦 ) − ∑ 𝒥𝑝𝑚
(𝛼𝑚

′ )𝑚∈𝒦 )𝑁

𝑁𝑁
   ∀𝜶′ 

Because the total utility is defined to be nonnegative (i.e., 𝑈(𝜶) ≥ 0), 

𝑄 − 𝒥𝑜 (1 − ∑ 𝛼𝑚,NBS
𝑚∈𝒦

) − ∑ 𝒥𝑝𝑚
(𝛼𝑚,NBS)

𝑚∈𝒦
≥ 𝑄 − 𝒥𝑜 (1 − ∑ 𝛼𝑚

′

𝑚∈𝒦
) − ∑ 𝒥𝑝𝑚

(𝛼𝑚
′ )

𝑚∈𝒦
  ∀𝜶′ 

This inequality leads to 

∑ 𝑢𝑧(𝜶NBS, 𝜽NBS)
𝑧∈𝒵

≥ ∑ 𝑢𝑧(𝜶′, 𝜽′)
𝑧∈𝒵

    ∀(𝜶′, 𝜽′) ∈ 𝛀 

Therefore, we can claim that the Nash bargaining solution of the incentive design also maximizes social welfare. 

∎ 

Besides the total utility obtained by the system, we also care about the fairness of the benefit distribution. The 

incentive can be designed focusing on fairness leveraging the maximin strategy. The purpose of the maximin strategy 

is to optimize the utility distribution among players. It achieves this goal by maximizing the minimum utility among 

players. For the Nash bargaining solution, we can also prove the following theorem regarding the utility distribution. 

Theorem 2. Given the utility definition in Eqs. (1) & (2) and zero disagreement points, for a multi-player incentive 

design problem with one coordinator, the Nash bargaining solution (𝜶NBS, 𝜽NBS) also maximizes the minimum utility 

among players. 

min{𝑢𝑧(𝜶NBS, 𝜽NBS), 𝑧 ∈ 𝒵} ≥ min{𝑢𝑧(𝜶′, 𝜽′), 𝑧 ∈ 𝒵}    ∀(𝜶′, 𝜽′) ∈ 𝛀 (13) 

PROOF. Because of the symmetry of the utility space in our problem, the symmetry axiom of the Nash bargaining 

solution shows 

min{𝑢𝑧(𝜶NBS, 𝜽NBS), 𝑧 ∈ 𝒵} =
𝑄 − 𝒥𝑜(1 − ∑ 𝛼𝑚𝑚∈𝒦 ) − ∑ 𝒥𝑝𝑚

(𝛼𝑚)𝑚∈𝒦

𝑁
 

Thus, based on Theorem 1, we get 

𝑁 min{𝑢𝑧(𝜶NBS, 𝜽NBS), 𝑧 ∈ 𝒵} = ∑ 𝑢𝑧(𝜶NBS, 𝜽NBS)
𝑧∈𝒵

≥ ∑ 𝑢𝑧(𝜶′, 𝜽′)
𝑧∈𝒵

≥ 𝑁 min{𝑢𝑧(𝜶′, 𝜽′), 𝑧 ∈ 𝒵} 

∎ 



Remark 1. Theorems 1-2 can be easily extended to the case with nonzero disagreement points by focusing on the 

surplus utility 𝑢𝑧 − 𝑟𝑧  in place of the utility 𝑢𝑧 itself. 

 Based on Theorem 1 proven above, we do not need to solve the original nonlinear formulation with the 

multiplicative objective function (i.e., Nash product) as shown in Eqs. (7)-(9). Instead, we propose an analytical 

approach and a numerical mixed-integer linear programming (MILP) approach as follows to solve the incentive design 

problem. In these two approaches, we have objective functions that are only linearly dependent on the mission cost 

functions 𝒥𝑜 and 𝒥𝑝. 

1. Analytical Approach 

If we know the analytical expression of mission cost functions 𝒥𝑜(𝜶) and 𝒥𝑝(𝜶), we can solve the incentive design 

problem analytically. Based on Theorem 1, we can identify the optimal 𝜶NBS for the Nash bargaining solution by 

maximizing the summation of total utilities, 

𝜶NBS = arg max
𝜶

𝑄 − 𝒥𝑜 (1 − ∑ 𝛼𝑚
𝑚∈𝒦

) − ∑ 𝒥𝑝𝑚
(𝛼𝑚)

𝑚∈𝒦
(14) 

Then, the optimal 𝜽𝑁𝐵𝑆 can be determined by letting utilities be equal, 𝑢𝑜(𝜶, 𝜽) = 𝑢𝑝𝑘
(𝛼𝑘, 𝜃𝑘) ∀𝑘 ∈ 𝒦, which 

gives 

𝜃𝑘,NBS =
𝑄 − 𝒥𝑜(1 − ∑ 𝛼𝑚,NBS𝑚∈𝒦 ) + 𝑁𝒥𝑝𝑘

(𝛼𝑘,NBS) − ∑ 𝒥𝑝𝑚
(𝛼𝑚,NBS)𝑚∈𝒦

𝑁𝛼𝑘,NBS𝑄
    ∀𝑘 ∈ 𝒦 (15) 

 The analytical solution is convenient if we know expressions of mission cost functions explicitly. Some studies 

have proposed approximate mission cost functions [25, 26]. However, the application of these cost functions is limited 

to certain mission scenarios to achieve accurate approximation. We mainly rely on the numerical approach to solve 

the incentive design problem for most general mission planning problems, which will be discussed in the next 

subsection. 

2. Numerical Approach 

If we do not know the accurate analytical expression of mission cost functions 𝒥𝑜(𝜶) and 𝒥𝑝(𝜶), we can solve the 

incentive design problem numerically as a MILP problem leveraging the network-based space logistics optimization 

model [8]. In this problem, the nonlinear objective function in Eq. (7) is converted into a linear one using Theorem 1. 

The proposed formulation considers space logistics as a multi-commodity network flow problem. In the network, 

nodes represent orbits or planets; arcs represent space flight trajectories; crew, propellant, instruments, spacecraft, and 



all other payloads are considered as commodities flowing along arcs, as shown in Fig. 2. A time dimension is 

introduced to take into account time steps for dynamic mission planning. There are mainly two types of arcs: 1) 

transportation arcs that connect different nodes at different time steps to represent space flights; 2) holdover arcs that 

connect the same node at different time steps to represent in-orbit or surface space mission operations after space 

infrastructure deployment.  

Consider a network graph defined by a set of arcs 𝒜 = {𝒵, 𝒱, 𝒩, 𝒯}, which includes a player set 𝒵 (index: 𝑧), a 

spacecraft set 𝒱 (index: 𝑣), a node set 𝒩 (index: 𝑖 and 𝑗), and a time step index set 𝒯 (index: 𝑡). We define a commodity 

flow variable 𝒙𝑧𝑣𝑖𝑗𝑡 as the decision variable for space mission planning, denoting the commodity flow from node 𝑖 to 

node 𝑗 at time step 𝑡 using spacecraft 𝑣 performed by player 𝑧. If we denote the set of commodities as 𝒞, this 𝒙𝑧𝑣𝑖𝑗𝑡 is 

a |𝒞| × 1 vector, and its elements include both continuous and discrete variables depending on the commodity type. 

For example, a continuous variable is used for the mass of payload or propellant; whereas a discrete variable is used 

for the number of crew members or spacecraft. We define 𝒞C and 𝒞D to denote the sets of commodities that are 

considered as continuous and discrete variables, respectively. Then, the commodity flow variable can be expressed as 

𝒙𝑧𝑣𝑖𝑗𝑡 = [
𝒙C

𝒙D
]

𝑧𝑣𝑖𝑗𝑡
 

where 𝒙C is a |𝒞C| × 1 vector for continuous commodities and 𝒙D is a |𝒞D| × 1 vector for discrete commodities. 

 To measure the space mission planning performance, we also define a cost coefficient 𝒄𝑧𝑣𝑖𝑗𝑡. The mission demands 

or supplies are determined through a demand vector 𝒅𝑧𝑖𝑡 , denoting the mission demand or supply for player 𝑧 in node 

𝑖 at time 𝑡. Mission demands are negative, and mission supplies are positive. As there are |𝒞| types of commodities, 

𝒄𝑧𝑣𝑖𝑗𝑡 and 𝒅𝑧𝑖𝑡  are both |𝒞| × 1 vectors. 

 

Fig. 2 Space logistics network model [6, 11] 

Besides the parameters defined above, we also need to define the following parameters for the formulation: 

 ∆𝑡𝑖𝑗 = time of flight. 



𝐺𝑧𝑣𝑖𝑗 = commodity transformation matrix. 

 𝐻𝑧𝑣𝑖𝑗  = concurrency constraint matrix. 

 𝑊𝑧𝑖𝑗 = mission time windows. 

 

Based on the aforementioned notations, the problem formulation for social welfare maximization is shown as 

follows: 

maximize 

𝑈(𝜶) = ∑ 𝑢𝑧(𝜶NBS, 𝜽NBS)𝑧∈𝒵 = 𝑄 − ∑ 𝒄𝑧𝑣𝑖𝑗𝑡
𝑇𝒙𝑧𝑣𝑖𝑗𝑡(𝑧,𝑣,𝑖,𝑗,𝑡)∈𝒜 (16) 

subject to 

∑ 𝒄𝑧𝑣𝑖𝑗𝑡
𝑇𝒙𝑧𝑣𝑖𝑗𝑡

(𝑧,𝑣,𝑖,𝑗,𝑡)∈𝒜

≤ 𝑄 (17) 

∑ 𝒙𝑧𝑣𝑖𝑗𝑡

(𝑣,𝑗):(𝑧,𝑣,𝑖,𝑗,𝑡)∈𝒜

− ∑ 𝐺𝑧𝑣𝑗𝑖𝒙𝑧𝑣𝑗𝑖(𝑡−∆𝑡𝑗𝑖)

(𝑣,𝑗):(𝑧,𝑣,𝑗,𝑖,𝑡)∈𝒜

≤ 𝒅𝑧𝑖𝑡 + 𝒅𝑧𝑖𝑡
′ (𝜶)      ∀𝑧 ∈ 𝒵  ∀𝑖 ∈ 𝒩  ∀𝑡 ∈ 𝒯 (18) 

𝐻𝑧𝑣𝑖𝑗𝒙𝑧𝑣𝑖𝑗𝑡 ≤ 𝟎𝑙×1   ∀(𝑧, 𝑣, 𝑖, 𝑗, 𝑡) ∈ 𝒜 (19) 

{
𝒙𝑧𝑣𝑖𝑗𝑡 ≥ 𝟎|𝒞|×1     if 𝑡 ∈ 𝑊𝑧𝑖𝑗

𝒙𝑧𝑣𝑖𝑗𝑡 = 𝟎|𝒞|×1   otherwise
     ∀(𝑧, 𝑣, 𝑖, 𝑗, 𝑡) ∈ 𝒜 (20) 

𝒙𝑧𝑣𝑖𝑗𝑡 = [
𝒙C

𝒙D
]

𝑧𝑣𝑖𝑗𝑡
, 𝒙C ∈ ℝ≥0

|𝒞C|×1
 , 𝒙D ∈ ℤ≥0

|𝒞D|×1
      ∀(𝑧, 𝑣, 𝑖, 𝑗, 𝑡) ∈ 𝒜 (21) 

In this formulation, Eq. (16) is the objective function that maximizes social welfare. After obtaining the optimal 

value of 𝜶 from this optimization, we can calculate the optimal 𝜽 using the Eq. (15) introduced earlier. These optimal 

𝜶 and 𝜽 lead to the Nash bargaining solution by Theorem 1. The term ∑ 𝒄𝑧𝑣𝑖𝑗𝑡
𝑇𝒙𝑧𝑣𝑖𝑗𝑡(𝑧,𝑣,𝑖,𝑗,𝑡)∈𝒜  is the total mission 

cost to complete the infrastructure deployment mission, which is equivalent to 𝒥𝑜(1 − ∑ 𝛼𝑚𝑚∈𝒦 ) + ∑ 𝒥𝑝𝑚
(𝛼𝑚)𝑚∈𝒦 . 

Equation (17) makes sure that the total mission cost is always smaller or equal to the baseline mission cost, which 

creates a non-negative total utility for the system. Equation (18) is the commodity mass balance constraint. It 

guarantees that the commodity inflow is always larger or equal to the commodity outflow plus the mission demands. 

The second term 𝐺𝑧𝑣𝑗𝑖𝒙𝑧𝑣𝑗𝑖(𝑡−∆𝑡𝑗𝑖) in this constraint represents commodity transformations during space flights or 

operations, including propellant burning, crew consumptions, and ISRU resource productions. For the detailed settings 

of the transformation matrix 𝐺𝑧𝑣𝑖𝑗, please refer to Ref. [8]. In this constraint, the demand vector 𝒅𝑧𝑖𝑡  denotes the 

original mission demand depending on each player’s mission goal. Another demand vector 𝒅𝑧𝑖𝑡
′ (𝜶) denotes additional 



infrastructure deployment demand determined based on the participation coefficient 𝛼. Equation (19) is the 

concurrency constraint that defines the commodity flow upper bound typically determined by the spacecraft payload 

and propellant capacities. The index 𝑙 is for the type of concurrency constraints considered. Equation (20) is the time 

bound. It defines the space flight and operation time windows. Only when the time windows are open, is the space 

transportation along the arc permitted. 

 This linear formulation can solve the incentive design optimization problem in a computationally efficient way 

without relying on the original nonlinear optimization formulation in Eqs. (7)-(9). 

B. Scenario 2: Fixed Demand Allocation 

If 𝜶 is a given constant vector and 𝜽 is the only decision variable, the coordinator has already determined the 

deployment task assignment for each player, the only problem is how to optimize the incentive.  

This scenario is a special case of Scenario 1. Theorem 1 in Scenario 1 is still valid because 𝜶 only determines the 

total utility of the system, while 𝜽 determines the utility distribution among players. Thus, for any given 𝜶∗, we can 

always determine the optimal 𝜽NBS by the same approach as Scenario 1, 

𝜃𝑘,NBS =
𝑄 − 𝒥𝑜(1 − ∑ 𝛼𝑚

∗
𝑚∈𝒦 ) + 𝑁𝒥𝑝𝑘

(𝛼𝑘
∗) − ∑ 𝒥𝑝𝑚

(𝛼𝑚
∗ )𝑚∈𝒦

𝑁𝛼𝑘
∗𝑄

    ∀𝑘 ∈ 𝒦 (22) 

Similarly, players' utilities and mission costs can be solved either through the analytical approach or the numerical 

formulation introduced in Sec. III.A. 

C. Scenario 3: Fixed Budget Allocation 

If 𝜶 is the only decision variable and 𝜽 is a given constant vector, the coordinator has to make the deployment task 

assignment under the incentive budget limitation. Assuming that the given incentive coefficient is 𝜽∗, we can define 

the incentive budget for the commercial player 𝑘 as 𝑅𝑘 = 𝜃𝑘
∗𝑄. Then, the utilities for the coordinator and the 

commercial player 𝑘 can be rewritten as, 

𝑢𝑜(𝜶, 𝜽) = 𝑄 − 𝒥𝑜 (1 − ∑ 𝛼𝑘
𝑘∈𝒦

) − ∑ 𝛼𝑘𝑅𝑘
𝑘∈𝒦

(23) 

𝑢𝑝𝑘
(𝛼𝑘 , 𝜃𝑘) = 𝛼𝑘𝑅𝑘 − 𝒥𝑝𝑘

(𝛼𝑘) (24) 

Now that the participation coefficient vector 𝜶 is the only decision variable, we can see that Theorem 1 no longer 

holds. This is because the solution we used to derive these theorems (i.e., equating the utilities of all players) is not 



feasible as 𝜽 cannot be freely chosen. A fixed incentive coefficient vector 𝜽 cannot guarantee equal utilities for 

players. We have to solve the original nonlinear optimization formulation, Eqs. (7)-(9), to identify the optimal 𝜶∗, 

𝜶∗ = arg max
𝜶

∏ 𝑢𝑧(𝜶)
𝑧∈𝒵

(25) 

By implementing the network-based space logistics optimization model, we can express the utility 𝑢𝑧(𝜶) as a 

linear function of 𝜶. The original nonlinear problem is then converted into a mixed-integer nonlinear programming 

formulation as follows: 

maximize 

∏ 𝑢𝑧(𝜶)𝑧∈𝒵 (26) 

subject to 

Eqs. (17)-(21) 

IV.  Lunar Exploration Case Study 

In this section, we perform case studies of a lunar exploration campaign to demonstrate the performance of the 

proposed incentive design framework and the value of commercialization in space infrastructure development and 

deployment. First, in Sec. IV.A, we introduce the problem settings and mission scenarios for the analysis. Then, in 

Sec. IV.B, we perform numerical experiments to discuss the impact of the proposed incentive design framework. We 

also conduct a sensitivity analysis to evaluate the impact of deployment demands and ISRU productivities. 

A. Problem Settings 

The coordinator (player 0) has annual infrastructure deployment demands; whereas commercial players (player 

1,2,3,…) focus on their own lunar exploration mission. For simplicity, we assume the commercial players are the only 

players who have the ability to develop and deploy ISRU systems on the lunar surface to support space transportation. 

Commercial players can participate in the infrastructure deployment mission if the coordinator provides enough 

incentives.  

We consider a cislunar transportation system, containing Earth, low-Earth orbit (LEO), Earth-Moon Lagrange 

point 1 (EML1), and the Moon. It is a four-node transportation network model, as shown in Fig. 3, where the discrete 

time-expanded network model uses one day as one time step. The space transportation ∆𝑉 is also shown in Fig. 3. 



 

Fig. 3 Cislunar Transportation Network Model 

 For simplicity, we assume all players use identical spacecraft to conduct the space infrastructure deployment 

mission. The spacecraft has RL-10 rocket engines using liquid hydrogen and liquid oxygen (LH2/LOX) as the 

propellant. Based on the spacecraft sizing of the Advanced Cryogenic Evolved Stage (ACES) [29] spacecraft and the 

Centaur [30] spacecraft, we assume the transportation spacecraft considered has a dry mass of 6,000 kg and an inert 

mass fraction of 0.1. We assume the player may also have deployed ISRU systems in advance to support the 

infrastructure deployment in the transportation system. The ISRU system is assumed as a water electrolysis ISRU, 

which generates oxygen and hydrogen from water. The baseline productivity of the ISRU is 5 kg water/yr/kg plant 

[11], meaning that a 1 kg ISRU plant can electrolyze 5 kg water per year on the lunar surface. We also take into 

account the ISRU system maintenance, which requires maintenance spare resupply annually. The mass of maintenance 

spares needed is equivalent to 5% of the ISRU system mass [11]. The space mission operation parameters and 

assumptions are summarized in Table 1. 

Table 1 Mission parameters and assumptions 

Parameters Assumed value 

S/c propellant capacity, kg 54,000 [29, 30] 

S/c structure mass, kg 6,000 [29, 30] 

Propellant type LH2/LOX 

Propellant 𝐼𝑠𝑝, s 420 

Propellant 𝑂2: 𝐻2 ratio 5.5 

Water ISRU productivity, kg 
𝐻2𝑂/ yr/ kg plant 

5 [11] 

ISRU maintenance, /yr 5% plant mass 

[11] 

  

 To analyze the space mission cost, we also need a space mission cost model. This paper uses the same mission 

cost model proposed by Chen et al. in a multi-actor space commercialization study [18]. It includes rocket launch cost 

to LEO, spacecraft manufacturing cost, space flight operation cost, and LH2/LOX propellant price on Earth. The 

cislunar transportation cost model is listed in Table 2. 

Table 2 Cislunar transportation cost model [18] 

Parameter Assumed value 



Rocket Launch cost, /kg $3,500 

Spacecraft manufacturing, /spacecraft $148M 

Spacecraft operation, /flight $1M 

LH2 price on Earth, /kg $5.94 

LO2 price on Earth, /kg $0.09 

  

At the beginning of the space mission, we assume that each commercial player has already built a lunar base with 

a 10 metric ton (MT) water ISRU system. For the nominal mission scenario, the coordinator plans to deploy 30 MT 

lunar habitats and infrastructures to the Moon every year. The nominal mission demands and supplies for this case 

study are shown in Table 3. The baseline mission cost is the value that the coordinator completes the mission 

independently. 

Table 3 Mission demands and supplies 

Actors Payload Type Node Time, day 
Demand, 

MT 

Coordinator 

Infrastructure Earth 
360 (repeat 

annually) 
+30 

Infrastructure Moon 
360 (repeat 

annually) 
-30 

Propellant Earth All the time +∞ 

Commercial 

Player 

ISRU plant, maintenance, and 

propellant 
Earth All the time +∞ 

ISRU plant Moon 0 +10 

B. Numerical Experiments 

In this section, we first conduct a detailed analysis of a two-player case, with one coordinator and one player. We 

perform a sensitivity analysis to examine the relationships among mission demands by the coordinator, the size of the 

ISRU plant deployed by the commercial player, and the design spaces of decision variables, 𝜶 and 𝜽. In addition, we 

extend the analysis to a three-player case, where we analyze the performance of the incentive framework in generating 

effective development strategies for one coordinator and two commercial players. 

1. Two-Player Case: Nominal Case 

For the nominal mission scenario, we assume that the coordinator (i.e., player 0) plans to complete two consecutive 

lunar transportation missions. Except for the existing ISRU plant owned by the commercial player, no players are 

allowed to deploy extra ISRU plants during the mission. We first calculate the baseline mission cost for this problem 

through the network-based space logistics model, which gives us $2,058M.  



 

Fig. 4 Nash Product Contour Plot and Optimal Solutions. 

The incentive design space contour and the optimal solutions for Scenario 1, 2, and 3 are shown in Fig. 4. Scenario 

1 is the best solution within this contour plot; Scenario 2 is the best solution within this same plot given a value of 𝛼; 

and Scenario 3 is the best solution within this same plot given the value of 𝜃. In this figure, the upper right corner 

means that the commercial player completes most of the deployment task, and the coordinator pays a relatively high 

incentive comparing with its own baseline mission cost. In the design space, moving left means less deployment task 

is assigned to the commercial player, while moving down means the coordinator pays lower incentive per unit mass. 

For this nominal mission scenario, the global optimal design point appears when the participation coefficient 𝛼 is 

equal to 1, as shown as the red star in the figure. As expected, this Scenario 1 solution corresponds to the best one 

among the feasible solutions of Scenario 2 for all possible 𝛼, which is also the best one among the feasible solutions 

of Scenario 3 for all possible 𝜃.  

We first look into the impact of 𝛼. From Fig. 4, we can find that the feasible incentive design space appears when 

𝛼 ≥ ~0.5. The feasible design region means that by leveraging the incentive design mechanism, the coordinator can 

complete its space infrastructure deployment mission at a lower total expense, while at the same time, the commercial 

player also receives profit through the difference between the incentive from the coordinator and its mission cost based 

on its existing infrastructure. (Note that it does not mean the mission is always feasible for any incentive coefficient 

𝜃. It means that we can always find feasible and optimal 𝜃 when we are given an 𝛼 in the domain.)  

To further look into the feasible region of 𝛼, we analyze the performance variation with 𝛼 using the formulation 

in Scenario 2. The total expense comparison for this nominal mission between the baseline (i.e., in which the 



coordinator completes the mission independently) and the case with an incentive design implemented is shown in Fig. 

5. Also, the optimal incentive paid to the commercial player and the total utility with respect to 𝛼 is shown in Fig. 6. 

 

Fig. 5 Total Expense Comparison (Scenario 2) 

 

Fig. 6 Total Utility and Incentive (Scenario 2) 

 

From Fig. 5, we can find that within the feasible design space of 𝛼, the total expense of the coordinator after 

implementing the incentive design is lower than the baseline. Note that for the baseline case, the total expense is equal 

to the coordinator’s mission cost; whereas, for the incentive design case, the total coordinator's expense is the 

summation of the coordinator’s mission cost and the incentive paid to the commercial player. This result shows the 

value of space commercialization. By leveraging supporting infrastructures operated by other commercial players, the 
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coordinator can reduce its own total expense to complete the deployment mission, even considering the additional 

incentive cost. The commercial player receives profit at the same time. Thus, the resulting solution is mutually 

beneficial for the government and the industry. 

To better interpret the utility variation in the proposed model, for any given 𝛼, we can also examine the mission 

costs of players 0 and 1 separately; note that these costs are calculated by the validated space mission design methods 

in the literature [6-8]. In this study, the surplus utilities come from the mission cost savings because the coordinator 

takes advantage of the power of commercial players. Therefore, based on the mission costs generated using traditional 

mission design methods, we are able to interpret the behavior and variation of the utility and the design space.  

The mission cost of each player and the total transportation cost for any given 𝛼 are shown in Fig. 7. Results in 

Fig. 7 explain why the feasible incentive design space appears when  𝛼 ≥ ~0.5 for the considered mission scenario. 

This is the region where the total cost of space transportation starts to be smaller than the baseline cost (i.e., the total 

cost when 𝛼 = 0); this suggests that the two players can achieve more savings by working together than working 

independently (i.e., the utility is positive). 

 

 

 

Fig. 7 Mission Costs 

 

 Moreover, it is also interesting to observe how the optimal value of 𝜃 changes as 𝛼 changes. As can be observed 

in Scenario 2 in Fig. 4, as the increase of 𝛼, the optimal 𝜃 for the Nash bargaining solution is decreasing. However, 

there are three sudden changes in optimal 𝜃 values during this process. These points correspond to three mission cost 
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sudden drops or increases for players, as shown in Fig. 7. These dramatic changes in the transportation mission cost 

are initially caused by spacecraft because we consider the number of spacecraft as an integer variable, and the 

spacecraft manufacturing cost is also a significant portion of the transportation cost. When one more or less spacecraft 

is needed for transportation, there will be a sudden change in the mission cost. These changes are also reflected in the 

total expense of the mission in Fig. 5 and the total utility and incentive of the system in Fig. 6. The direction of the 

sudden change comes from the definition of utilities. We know that the incentive required is positively correlated to 

the cost of the commercial player (i.e., player 1) but negatively correlated to the cost of the coordinator (i.e., player 

0). This explains that when there is a sudden decrease in the cost of the coordinator or a sudden increase in the cost of 

the commercial player, there will be a sudden increase in the value of optimal 𝜃. The choice of the optimal 𝜃 is the 

balance between the coordinator’s and the commercial player’s mission costs. 

 

2. Two-Player Case: Sensitivity Analysis 

We conduct a sensitivity analysis to analyze how the optimal solutions change with different parameter values. 

We consider the impact of the payload deployment demand and the size of the ISRU plant deployed in advance on 

the same nominal two-player mission scenario.  

First, we consider a fixed 10 MT ISRU plant deployed in advance and only vary the space mission deployment 

demand. The incentive design space contours are shown in Fig. 8.  



 

Fig. 8 Incentive Design Space with Different Deployment Demands 



 

We can find that the mission demand determines the feasible domain of the participation coefficient 𝛼 for the 

incentive design. When the deployment demand is small (i.e., 20 MT), the incentive design is only feasible when 𝛼 is 

close to 1. As the demand increases, the feasible range for 𝛼 expands from 1 to lower values. However, when the 

deployment demand is so large that no single player can complete the mission independently, any value that is close 

to 0 or 1 becomes infeasible. Eventually, the design space for 𝛼 will converge to a constant value, which depends on 

the maximum transportation capacity of players. In this case, we assume that both players have two identical spacecraft 

at the beginning of each mission that provides a similar maximum transportation capacity. The maximum 

transportation capacities of the two players are not exactly equal because the ISRU plant operated by the commercial 

player can slightly increase its transportation ability though the impact is not significant. Thus, the optimal 𝛼 converges 

to a value close to 0.5, as shown in Fig. 8, f).  

The optimal 𝛼∗ (i.e., the optimal solution of Scenario 1) also varies similarly to the feasible design space. For our 

case study, because of the existence of the ISRU plant, the commercial player can always complete the transportation 

mission at a lower cost than the coordinator. Therefore, when the deployment demand is low, such that a single player 

can complete the entire mission, the best strategy for the coordinator is to fully rely on the commercial player to 

complete the entire mission, which makes 𝛼∗ to be 1. However, when the deployment demand exceeds a single 

player’s capacity, 𝛼∗ starts to converge to a value based on each player’s maximum transportation capacity. Both the 

commercial player and the coordinator need to take over some portion of the deployment demand. 

Next, we can assume the deployment demand is fixed to the nominal case of 30 MT, and only vary the size of 

ISRU plant deployment in advance. We can evaluate the change of design space with respect to the ISRU plant. The 

result is shown in Fig. 9.  



 

Fig. 9 Incentive Design Space with Different Size of ISRU System Deployed 

It is shown that the size of the ISRU plant has a limited impact on the feasible domain of 𝛼. Some portions of 𝛼 

may become infeasible in the domain ~0.5 ≤ 𝛼 ≤ 1, especially when the size of the ISRU is small. These infeasible 

gaps are caused by the sudden increase of total mission cost from spacecraft that eliminates positive system utility. 

But this impact becomes negligible when the ISRU becomes more productive (i.e., larger size). 

 However, the size of the ISRU plant directly determines the width of the feasible domain for the incentive 

coefficient 𝜃. When a larger ISRU plant is deployed, the commercial player can achieve considerable mission cost 

savings, which leads to a larger total utility. This result shows that a larger ISRU plant enables the decision-maker a 

more extensive design space for the incentive. 



3. Three-Player Case 

The proposed framework can also conduct performance analyses on missions with multiple commercial players. In 

this section, we consider a mission scenario with one coordinator and two commercial players. The mission planning 

assumptions and parameters are the same as the nominal case.  

First, we consider a case where two commercial players have identical spacecraft and the same amount of ISRU 

plant deployed in advance. By changing the total deployment demand, we can observe the variation of the design 

space in the task assignment between two commercial players. The result is shown in Fig. 10. Note that this contour 

plot only shows 𝛼1 vs. 𝛼2, where 𝜽 is always optimized to maximize the Nash products using the Eq. (15). The optimal 

points in the figure (labelled as red stars) are global optimal, which are also the solutions of Scenario 1. Because two 

commercial players are identical in this case, the contour plot should also be symmetric, and there may be two 

symmetric optimal points. The entire contour plot shows solutions to Scenario 2. Scenario 3 is not sghown as 𝜽 is 

optimized. The dash lines indicate the optimal 𝛼 for any given 𝛼 of the other commercial player, which means the 

optimal 𝛼1
∗ for any given 𝛼2 and the optimal 𝛼2

∗ for any given 𝛼1. 

 



 

Fig. 10 Three-Player Design Space with Different Deployment Demands 

 The same trend can be observed as that for 𝛼 value in Fig. 8. Similar to the two-player mission scenario, for this 

three-player mission, when the deployment demand is low, the optimal points only appear when 𝛼1 + 𝛼2 ≈ 1. As the 

deployment demand increases, the total payload starts to exceed the transportation capability of commercial players. 

The coordinator starts to complement some transportation capacity.  

 Next, we consider a case where the capabilities of each commercial player is not equal to each other. Suppose we 

fix the total deployment demand to 50MT and vary the pre-deployed ISRU plant and the number of spacecraft operated 

by player 2. In that case, we can evaluate the imbalance in task assignment design space caused by the different sizes 

of the ISRU system and the transportation capacity. The result is shown in Fig. 11. For commercial player 1, the pre-



deployed ISRU plant is fixed to 10 MT, and the number of spacecraft is fixed to 2 per mission as in the nominal 

mission scenario.  

 From the results, we can find that enlarging the ISRU plant and launching more spacecraft bring player 2 additional 

transportation capacity. In both cases, player 2 becomes capable to complete more deployment tasks. However, the 

number of spacecraft may constrain the potential improvement achieved by enlarging the ISRU plant. When player 2 

only has one spacecraft, further increasing the size of ISRU cannot provide many benefits in the mission. This example 

demonstrates that the proposed framework is not only helpful for the coordinator to conduct incentive design but also 

beneficial to commercial players to identify effective development strategies in the commercialization environment. 



 

Fig. 11 Three-Player Design Space with Different Size of ISRU and Number of Spacecraft 

 



V.Conclusions 

This paper proposes a space exploration architecture decision-making framework by extending state-of-the-art 

space logistics design methods from the game-theoretic perspective to enable the analysis in stimulating commercial 

participation in space infrastructure development and deployment. In the framework, a participation coefficient 𝜶 is 

defined to measure the deployment mission task assignment, and an incentive coefficient 𝜽 is defined to measure the 

strength of the incentive. Based on the mission planning circumstances, there are three different scenarios for 𝜶 and 

𝜽 that correspond to the scenarios with the optimal design, fixed demand allocation, and fixed budget allocation. We 

analyze the incentive design properties under these scenarios and propose corresponding approaches to solve the 

problem.  

A lunar exploration case study is performed to demonstrate the value of the incentive design framework. The 

analysis shows that by implementing an adequately defined incentive mechanism, the mission coordinator can 

complete its space mission at a lower total expense leveraging other commercial players’ resources. Results show the 

value of space commercialization for future human space exploration. Moreover, sensitivity analyses also show the 

relationships between mission demands and the design space of the participation coefficient 𝜶, and between the size 

of the ISRU plant and the design space of the incentive coefficient 𝜽. As an outcome of this case study, we derive an 

incentive design framework that can benefit both the mission coordinator and the commercial players from 

commercialization, leading to a mutually beneficial framework between the government and the industry. 

Furthermore, findings from the three-player mission analysis demonstrate the value of the proposed method in 

generating effective development strategies in a space commercialization environment. 

Future research includes the consideration of uncertainties in the incentive design, including demand changes, 

spacecraft flight or rocket launch delay, and infrastructure performance uncertainties. Further implementations can 

also be explored to consider multiple commercial players with different technology strengths or take into account the 

long-term perspective of technology development by accepting temporary high mission costs. 
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