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Abstract

We introduce the Marco Polo Localization approach, where
we apply sound as a tool for gathering range measurements
between robots, and use those to solve a range-only Simulta-
neous Localization and Mapping problem. Range is calculated
by correlating two recordings of the same sound, recorded on
a pair of robots, after which the resulting time delay estimate is
converted to a range measurement. The algorithmic approach
we use is a straightforward application of the Bayesian estima-
tion framework. We also present two complementary views on
the associated optimization problem that provide insight into
the problem and allows one to devise initialization strategies,
indispensable in a range-only scenario. We illustrate the ap-
proach with both simulated and experimental results.

1 Introduction

In this paper, we apply sound as a tool for gathering the
range measurements between robots, and use those to solve a
range-only Simultaneous Localization and Mapping (SLAM)
[1] problem. In many mobile robot applications it is essential
to obtain an accurate metric map of a previously unknown en-
vironment, and to be able to accurately localize the robot(s)
within it. The process of reconstructing such a map from
odometry and sensor measurements collected by one or more
robots is known as SLAM. By applying sound as a sensor for
gathering range estimates, we hope to demonstrate the feasi-
bility of using sound for localization and to increase the gen-
erality of the SLAM problem.

The name “Marco Polo Localization” is inspired by a chil-
dren’s game, commonly played pool-side, where a blindfolded
person who is “it” shouts “Marco”, and everybody else has to
shout “Polo” to reveal where they are. From these audio cues,
the person who is “it” has to catch and tag someone else.

However, the inspiration for using sound as a localization
mechanism comes from biology. People as well as animals
are able to estimate both bearing and range information to a
sound source using a combination of inter-aural time differ-
ences (ITDs) and intensity. An ITD is a measure of the dif-
ference in the time of arrival of a sound at each ear, allowing
us to recognize bearing, while range is correlated with the in-
tensity and spectral characteristics of the sound. Exactly how
people acquire ITDs is still being debated by the psychologi-
cal community[2, 3], but they have become the standard model

for sound localization work in digital signal processing (DSP).
The motivation for using sound in stead of or complement-

ing an alternative sensing modality is because microphones
and speakers can be included cheaply and compactly on small
robots, in contrast to more bulky ultrasound, vision, or laser-
based sensors. In addition, the approach is insensitive to light-
ing conditions, but is of course prone to interference by noise.
The latter disadvantage can be alleviated by working in the
ultrasound spectrum and filtering the sound as part of the pre-
processing. Hence, it has potential applications as a sensor for
24 hour operations, where a variety of very different lighting
conditions would arise. One obvious application is underwater
robotics, where sound-waves have long been used by man and
animal alike to perform localization and mapping.

The next section (Section 2) gives an overview of how
sound has been used in the DSP community and in robotics,
and discussed other works related to our approach. Section 3
discusses the technical details of the approach, Section 4 de-
scribes the simulation results for stationary and moving robot
formations, and Section 5 describes implementation details on
real robots and experimental results.

2 Related Work

Within the signal processing community, ITDs are relatively
easy to acquire [4] and have long been used as a localization
tool. Typically, some number of microphones are statically lo-
cated somewhere in an environment, and used to identify the
location of a moving sound source such as speech. Because
sound travels at a finite speed, the sound arrives at each mi-
crophone at a different moment in time depending on how far
away it is from the sound source in addition to some other
properties of the environment. Using a cross-correlation algo-
rithm [4] on the sound stream, one can determine the differ-
ence in the time of arrival at each microphone, the ITD, and
thereby the range to the sound source. With enough micro-
phones, it is possible to identify coordinates in 3-dimensions
relative to the known positions of each microphone.

Humans have always used sound as a tool for localization,
but its application to robotics has been limited. The tradi-
tional application of sound in robotics has been to find bearing
measurements to to a sound source [5, 6]. Typically, this is
only used to guide the robot when other sensors cannot detect
the desired target. Noise from the robots, and from the en-



vironment tends to obscure sounds and make accurate range
information from a microphone pair difficult to obtain. This
work however, focuses on using those range measurements
by thresholding physically impossible results, and combining
what remains with odometry to reduce noise.

To the best of our knowledge, the application of sound to
the SLAM problem has not been done. Unlike the localization
problem in DSP, we know that the sound source is co-located
with a microphone, but all of the microphone locations re-
main unknown. Given enough robots, the resulting range mea-
surements can be transformed into the relative positions of all
robots in the room. Range-only SLAM itself is a newly emerg-
ing field and has only been explored recently. Work by Kantor
and Singh [7] at CMU uses radio beacons in the environment
with known positions. A set of beacons measures the distance
to the robot, and transmit their measurements and unique id
to the robot. The robot then determines where it was using
a variant of evidence grids. Some strongly related work was
performed by LeMaster and Rock [8] for self-calibrating pseu-
dolite arrays. A more sophisticated approach, based on multi-
variable optimization, was proposed by Newman and Leonard
[9] in the area of sub-sea mapping, although the details are as
yet unpublished.

The approach taken in this paper follows the same strategy,
by casting the problem as a multi-variable Bayesian estimation
problem, but one where the robots themselves are used as land-
marks. As such it is an application of the more general Intrin-
sic Mapping and Localization (IML) framework that we have
put forward in [10]. Recent work at USC [11] takes a similar
optimization approach for the case when robots can sense the
orientation of other robots in addition to range and bearing.
The range-only case discussed here is more difficult, because
of the ambiguities and initialization problems involved. The
idea of using stationary robots as landmarks has been around
for a while, and dates back to Kurazume [12, 13] and later
work by Rekleitis et al. [14].

3 Marco Polo Localization

The problem at hand is to estimate the poses X of all robots
at all times given odometry data O and range measurements
Z. We will assume that the identity of each robot can be estab-
lished by the sound emitted. In terms of notation, we will refer
to the entire set of sought poses as X , whereas the poses of one
robot only are denoted as Xi, with i

� 1 ���m, and the poses of
all robots at a specific time t as X t , with t

� 1 ��� T . The pose of
robot i at time t is denoted as xt

i . Similar conventions are used
for the odometry O and the range measurements Z. The range
measurement between robots i and j, if available, is written as

zi j . We define � e � 2Σ ∆� eT Σ � 1e to be the squared Mahalanobis
distance with covariance matrix Σ.

3.1 Odometry Measurements
Given no other information, the maximum a posteriori

(MAP) trajectory X̂i of a single robot i given odometry Oi is
obtained simply by integrating the odometry over time. If no
prior on the initial pose x1

i is available, the trajectory can be

determined up to a 2D displacement only, i.e., an arbitrary
translation and rotation in the plane. If a prior is available,
there is no remaining ambiguity. In detail, the MAP trajectory
is found by maximizing the posterior probability

P � Xi �Oi � ∝ P � Xi � P � Oi �Xi � � P � x1
i � ∏

t
P � ot

i � xt
i � xt 	 1

i � (1)

where we make the usual conditional independence assump-
tions, and the only prior knowledge available is a guess x̄1

i for
the initial pose x1

i . In the case of normally distributed mea-
surement noise, the associated error to be minimized is equal
(up to a constant) to the negative log-posterior, given by

Eoi
∆� � x1

i 
 x̄1
i � 2Q � ∑

t
� ot

i 
 g � xt
i � xt 	 1

i � � 2R (2)

where g � x � y � is the odometry measurement function between
two poses x and y, and Q and R are the covariances for the prior
on x1

i and odometry measurements ot
i, respectively1. The error

(2) will be exactly zero for the MAP trajectory, iff only odom-
etry information is available, regardless of whether a prior
P � x1

i � is available or not.

3.2 Range Measurements
Similarly, assuming no prior for now, at each time-step t we

can obtain a maximum likelihood estimate X̂ t for the config-
uration of poses X t given only the range measurements Zt at
time t, by maximizing

P � Zt �X t � � ∏
i j

P � zi j � xt
i � xt

j � (3)

or, alternatively, minimizing the associated error:

Et
z
� ∑

i j

� zi j 
 h � xt
i � xt

j � � 2S (4)

where h � x � y � is the range measurement function associated
with the ordered pair of poses x and y, S is the noise covari-
ance for each set of measurements, and the summation is over
all pairs � i � j � where a range measurement is available. Since
the orientation of the robots is not observable using only range,
the number of unknown parameters is 2m, i.e., x and y position
for each robot. However, any solution can only be determined
up to a 2D displacement and an orientation flip. In addition,
the problem can be solved only if the number of measurements
K is larger than 2m 
 3, the degrees of freedom (DOF) of the
system. Since in the best case, the maximum number of (non-
redundant) range measurements is equal to Kmax

�
� m
2 � , is is

easily checked that at least 4 robots need to be available in
order to converge to a single solution (up to the stated ambi-
guity), as in that case there are potentially 6 measurements to
constrain 8 unknowns, up to a 3DOF displacement (and a flip).

3.3 The Global Optimization problem
The global problem can now be seen as combining these

two estimation problems, i.e., obtaining the MAP estimate for

1Note that in general these can be different for each measurement, but
explicit time and robot indices are omitted to unburden the notation.
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Figure 1: Given a set of range estimates with no odometry, these are the intermediate steps of the Levenberg Marquardt algorithm in
determining 2D coordinates for all robots. The resulting configuration is an inverted transformation of the true values (last frame).

the poses X for all robots 1 ���m and times 1 ��� T , given the odom-
etry O and the range measurements Z:

X̂ � argmax
X

P � X �O � Z � � argmax
X

P � X � P � O �X � P � Z �X �
or, alternatively, minimizing the following error function:

E
∆� ∑i Eoi � ∑t Et

z
�

∑i � x1
i 
 x̄1

i � 2Q � ∑it � ot
i 
 g � xt

i � xt 	 1
i � � 2R � ∑ti j � zi j 
 h � xt

i � xt
j � � 2S

We use a non-linear optimization method, Levenberg-
Marquardt with a sparse QR solver, to obtain the MAP es-
timate in a batch optimization procedure. To compute the
(sparse) Jacobian ∂E

∂X we have implemented an automatic dif-
ferentiation (AD) framework. AD is neither symbolic nor
numerical differentiation, and calculates the Jacobian at any
given value exactly, efficiently, and free of numerical instabil-
ities. See [15] for more details.

4 Simulation results

The scenario we use is as follows: a group of robots are
scattered about the environment in unknown starting positions.
They each generate a sound, and time differences are gathered
between each of the robots, allowing us to generate range es-
timates. We call this a slice, as it reveals the position of the
robots at one point in time. After sounding off, the robots
move about the room, recording their odometry. At some time
later, the robots are stopped, and another slice is gathered. This
procedure is repeated throughout the experiment.

The simulation results can be divided into two types of sce-
narios: the slice view, and the track view. In the slice view,
every slice which can be calculated is first calculated from the
range measurements. Then the odometry measurements are
used to orient the slices in space. In the track view, the odom-
etry of each robot is first held to be correct, i.e., it is known
how the robot travels through space from an initial position.
The range measurements are used to align these rigid tracks
translationally and rotationally with each other.

4.1 Slice View
In the slice view, we look at each individual slice in which

range measurements were acquired. If we do not need to re-
cover the angle of the robot for a slice, then each slice only re-
quires 2m 
 3 measurements, up to a rotationally, translation-
ally, and inverted transform of the true value. Figure 1 shows

how an initial estimate for a slice is transformed into the cor-
rect geometry using the Levenberg-Marquardt algorithm. At
each step, the points of a geometric shape represent the posi-
tions of each robot in that estimate. The last shape in the series
is the shape of the true geometry.

However, the configuration displayed in Figure 1 is
“flipped” or inverted, which demonstrates a fundamental dif-
ficulty with range-only measurements. From an algorithmic
standpoint, this is a correct answer unless prior information is
included. From the robot localization standpoint, this inverted
geometry needs to be corrected in order to properly map the
progress of each robot.
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Figure 2: When using odometry to align a set of slices, the
system regularly falls into configurations with inverted inter-
mediate steps.

With a single slice, the flipping is wrong for mapping, but
algorithmically correct. With odometry included however,
“flipped” solutions are no longer correct because the angles
would not align with those measured by the robot. Unfortu-
nately, the “flipping” of individual slices introduces a large
number of local minima to the system. So much so that the
equation solver cannot reach the correct solution. Figure 2
(left) displays a local minima solution obtained with the slice
view, where an intermediate slice has been inverted.

Although the slice view regularly converges (94% of 1000,
using 4 robots) to a correct, albeit transformed, solution with
individual slices, it rarely converges to the correct solution us-
ing multiple slices and odometry (4% of 1000 trials).
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Figure 3: If we hold the tracks to be rigid, then finding the global solution is a matter of rotating and aligning all of the individual
tracks. This figure shows the intermediate steps generated by the Levenberg Marquardt algorithm, using the track view method, in
left-to-right reading order. For clarity, the last two sub-figures also show the slice shapes, respectively for the final solution and the
ground truth, which only differ up to a 2D displacement.

4.2 Track View
In the track view, the odometry of each robot is held invio-

late, creating a set of tracks through space. These rigid tracks
are then moved and rotated into the correct relative position,
through the range measurements gathered over the duration
of the experiments. The track view method requires 3m 
 2
range measurements, in order to identify starting positions and
angles of each the robots. Figure 3 shows how the tracks are
transformed through space into the correct configuration in the
last frame, using the Levenberg Marquardt algorithm. Note
that by choosing the track method, we are holding the odome-
try to be more reliable than the range measurements generated
through time difference estimates.

Like the slice view, the track view still has a local minima
problem due to an inverted first figure. However, if we detect
that the system has fallen into a local minima, we can invert
the initial guess [M � 
 M] passed into the system and pass
that instead. With this trick, if we generate a set of values
for 4 microphones and 15 slices, then in 18.2 out of 20 (91%)
runs on average, the system of equations settled in the correct
answer. These numbers were generated over 100 simulated
configurations with no error in the measurements.

We can improve performance even further by bootstrap-
ping the track view algorithm with a known slice. If we have
enough range measurements to determine the x,y coordinates
without angle information for any one slice during testing,
then in 19.5 out of 20 (97.5%) runs on average, the system
settles in the correct solution

5 Experimental Results

Figure 4: Robots used for the experiments. The wires lead
from the microphones to a desktop machine off screen.

Experiments were run on four Nomad 150 robots, shown
in Figure 4, equipped with laptops and a wireless connection.
Each Nomad had a speaker mounted on one side of the lap-
top, and a microphone mounted on the other. In order to syn-
chronize the recordings between channels, microphones were
plugged into a single desktop computer with a 16bit sound
card. The digital sampling quality of all recording was per-
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formed at 16 bit quality, and 22,050 Hz. While the micro-
phones used were wired, the system can in principle be imple-
mented wirelessly without difficulty.

5.1 Experimental Procedures
Distance estimates were gathered from the robots in pairs.

One robot played a sound while recording data, while a second
robot was also recording data. These two files were then saved.
Then the robot started recording again and repeated the sound
while another robot was listening. This process repeated until
every pair of robots had recorded a time-delay between them.
We were limited to two robots at a time, because the standard
sound we used was limited to recording two channels at a time.
In principle, one sound could be used to generate n 
 1 read-
ings using the appropriate hardware to synchronize n channels.

Once all the data was recorded, each pair of sound files is
compared using a cross-correlation algorithm to find the time-
delay between the two channels. The sound used was a click-
ing noise that was experimentally determined to provide the
best time-delay estimates using cross-correlation. The soft-
ware used for the actual cross-correlation was Ishmael 1.0,
developed by the Office of Naval Research[16]. If the cross-
correlation algorithm returned an estimated time-delay greater
than 15 ms., then that measurement was discarded. This
threshold value was experimentally determined to be the phys-
ical limit of the microphones/amplifier used.

5.2 Stationary Robots
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Figure 5: (left) Reconstructed slice for real robots. (right) Ac-
tual configuration in meters.

Using 4 Nomad 150 robots equipped with a microphone and
a speaker, we could measure the relative position of all robots
in the room. The left of Figure 5 shows the resulting configu-
ration from a set of 6 time-delay measurements. On the right,
we see the actual configuration of robots in the room. The
points of each geometric figure are the positions of the robots.

From a stationary position with only 4 robots, we can expe-
rience lots of noise in the recordings. If a robot was located
in a corner, or some other acoustically difficult location, then
sounds could be obscured by echoes or not heard at all. In
those cases, we received bad time-delay estimates that make
accurate reconstruction of the robot positions difficult. During

testing, out of 5 sets of recorded data for individual slices, one
was not recognizable at all, while two had obvious discrepan-
cies from the correct position.

5.3 Results with Odometry

Test # Bad TD # Good TD Average Error

1 4 14 0.313 m
2 8 10 0.416 m
3 8 10 0.288 m

Table 1: Statistics on the time-difference estimates calculated
during each test.

In practice, a large number of the actual time-delay mea-
surements will not be available to help align the tracks. Es-
pecially as robots start to move around in the environment, it
occurs more often that they are located in positions where a
good time-delay estimate is difficult to obtain. On the exper-
iments with 4 robots and 3 stops, three tests recorded 14, 10,
and 10 useful time-delay estimates out of a possible 18. The
rest were removed by thresholding.

The statistics revealed in table 1 for each of the tests demon-
strate an average error from the true values for the range mea-
surements. Actual bad measurements which were not removed
by thresholding were rare, and did not influence the data much
in small tests. The error here is mostly due to the off cen-
tered position of the microphones on each robot. Microphones
could not be placed exactly center because of existing equip-
ment on the robots.
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Figure 6: (left) Experimental results for 4 robots, and 3 slices
using the track view method. (right) True positions. In this
experimental run, 14 range measurements were used to align
the 4 rigid tracks.

Unfortunately, with that amount of average error, we did get
some skew in the output. Figure 6 displays the reconstructed
results from test 1, using the track view method. Two changes
to procedure would help correct this error. First, locating the
microphones as close to the center as possible or including
their position on the robot into the model. Second, obtaining
more range estimates. With 10 measurements, there is only
one extra measurement for removing noise.
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6 Conclusion

The range-only Simultaneous Localization and Mapping
method we presented is applicable to any multi-robot scenario
where sound or any other range measurement between robots
is available. In this paper, we demonstrated this both with large
scale simulation experiments as well as with preliminary ex-
perimental results, using sound as a measurement device. The
method is applicable to determining stationary configurations,
as well as recovering trajectories and relative positions of a
robot team over time.

However, for sound-based range estimation, we found that
the success of the method depends crucially on the quality and
the robustness by which the time differences can be recovered.
In our current setup, we are plagued by occasional outliers
due to erroneous correlations, which we cannot identify other
than comparing them to the ground truth values. Success on
a larger scale will depend on better identifying such outliers
or avoiding them altogether, for example by using more struc-
tured sounds that afford less opportunity for error.

A number of additional improvements are possible. The
robots are currently required to stop and sound off to gather
time-delay estimates, because the sound emitted is obscured
by the noise the robot itself generates while moving. If an-
other sound which is not obscured by noise can be located,
then the robots could potentially be gathering range estimates
while moving around in the environment.

Our current implementation uses the stereo sound-card of a
nearby desktop computer to establish the range between two
robots. Clearly this is not the way such a system would be
used outside the lab. We would like to investigate whether we
can reliably correlate the sound recorded by one robot with
the waveform file, given that this can be distributed among all
robots. This scheme would still require a synchronized clock,
which is not always obvious in a wirelessly networked envi-
ronment. Thus, an obvious question is whether we can syn-
chronize the clocks of the different robots using the sounds
themselves, as part of the optimization process.

Finally, can we get relax the requirement that robots gener-
ate the sounds themselves? With enough robots, the algorithm
could potentially solve for the problem with both unknown
source and unknown sink locations. However, which sounds
in the environment can we use for localization, how do we rec-
ognize them as such, and if those problems are solved, can we
keep the algorithm from settling in a local minimum ?
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