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SUMMARY

This project was an attempt to design a deterministic algorithm for dose prediction

using cone beam CTs (CBCTs) that could output a prediction on the time-scale of pa-

tient setup during proton image guided radiotherapy (IGRT). We hypothesized that a com-

parative analysis of a reference CBCT (RefCBCT) matching the anatomy of a treatment

planning CT (TPCT) and a secondary CBCT (SecCBCT) taken as part of an IGRT setup

sequence could be used to consistently and accurately predict the daily dose distribution

using the original treatment plan as a guide. In the interest of simplicity and speed of pre-

diction, only a small number of simple corrections were applied to the CBCTs to determine

their effectiveness, and in an attempt to minimize the number of corrections necessary for

accuracy. The corrections used included histogram matching both to the TPCT and the

most recent quality assurance CT (QACT), the standard hounsfield unit (HU) to relative

stopping power (RSP) curve used in the treatment planning system (TPS), as well as a

simple gaussian smoothing to lessen the local effects of CBCT artifacts.

The comparison itself involved interpolating each line dose along the beam path from

the cumulative corrected hounsfield units (cHU) RefCBCT to the cumulative cHU Sec-

CBCT. After all corrections were applied on a sample set of 21 oropharynx patients with

4-5 QACTs each making up 103 prediction sets, an average global gamma passrate of

96.75 % was achieved with an average prediction time of 21.89 s. Predictions were com-

pared to dose distributions calculated by the TPS on deformed CTs matching the anatomy

of the SecCBCT used in the prediction process. Gamma values were determined using

parameters of 3 %/3 mm with a dose cutoff of 2 Gy, or one fraction.

xii



CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Computed Tomography

As an x-ray beam pass through some material, photons are removed from it in proportion

to the amount of photons currently in the beam.

I ∝ dI

dx
(1.1)

This basic relation gives rise to the attenuation equation.

I

I0
= e−µx (1.2)

Where µ is the attenuation coefficient, x is the depth in the material from the surface, and

I/I0 is the intensity of the beam relative to the surface. The attenuation coefficient in

turn can be related to the electron density (ρe) within whatever medium the beam is pass-

ing through[1][2]. The attenuation coefficient in this form is an amalgamation of many

different interaction coefficients describing many different types of interactions. The two

important categories of interactions for the purposes of this work are catastrophic interac-

tions where a photon is removed entirely from the beam and scattering interactions where

a photon changes energy or direction.

For medical imaging the attenuation coefficient is often expressed in terms of the hounsfield

unit (HU), defined below[1].

HU = 1000(
µ

µwater

− 1) (1.3)
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The primary reason for this definition is for data storage purposes over the range of at-

tenuation coefficients normally found in medical imaging. Each voxel within a computed

tomography (CT) image is associated with an average HU value. These values are ob-

tained through a few different algorithms, that take the known intensity of an x-ray beam

and compare it to measured intensities after the beam has passed through the patient.

The two types of CTs important for this work are fan-beam or standard CTs, and cone

beam CTs (CBCTs). A fan beam CT, as its name implies, uses a fan shaped geometry

for the beam and makes multiple passes around the patient where each pass roughly corre-

sponds to an image slice. A CBCT on the other hand uses a cone shaped beam so that the

third dimension is covered by the beam instead of taken sequentially. The largest benefit of

the standard fan-beam CT method is that it avoids scatter along that third dimension, and

therefore can provide a much less noisy and far more accurate representation of the HU

values within the imaged object. A CBCT on the other hand is much faster, and requires

less mechanical support as the detector and x-ray generator only need to rotate once. These

distinctions make the standard CT (nearly) perfect for applications where exact HU values

are necessary, for instance when attempting to measure electron density, and the CBCT

perfect for applications that just need a general geometry check.

Cone beam CTs have a number of artifacts that make their image quality less than ideal.

Scattered radiation in all its forms is the bane of radiation physicists everywhere. The

same holds true for medical imaging. A scattered photon in the center of the beam of a

CBCT has a high chance of making it to the detector, and adding to the measured beam in-

tensity at some other location. This artificially decreases the calculated attenuation through

all voxels within whatever projection passes through the detector pixel in question. As the

area of the detector increases, the larger the probability a scattered photon will be detected,

and the image as a whole shows greater noise and overall less attenuation. Since there is

no simple way to tell what photons have been scattered and what photons have been unaf-

fected in the medium, the mathematics of image reconstruction assume that all interactions

2



are catastrophic.

The energy spectrum of a standard x-ray tube is generated using bremsstrahlung inter-

actions. This gives a somewhat broad energy distribution, and due to the fact that lower

energy photons are attenuated more strongly the energy distribution of the beam changes

as it passes through an object. The imaging system expects a more consistent energy dis-

tribution, and therefore has a tendency to under-estimate the amount of attenuation in areas

behind highly attenuating objects. A thick object, such as a torso, can also show this effect

as a darkening in the center of the image. This effect is known as “beam hardening.”

Many implants used in dentistry or other reconstructive/replacement applications are

made of highly attenuating material. In addition to the high amount of scatter these objects

introduce, they also heavily decrease beam intensities. Beam intensity can suffer behind

these types of objects so much that the detector is unable to measure the final intensity.

This can be thought of as an extreme case of beam hardening, and is known as extinction.

In areas where the boundary between one of these heavily absorbing objects and low at-

tenuating material exists there tends to be bright and dark streaks that fan out around these

boundaries. Partial volume averaging is to blame here as the attenuated and non-attenuated

sections of the beam are averaged across one pixel after another. This effect is known as

the exponential edge gradient effect (EEGE).

Rings may appear in CBCTs around the center of the image if a single detector pixel is

dead or otherwise mis-calibrated. They are most notable in areas of homogenous composi-

tion, but can appear anywhere.

Aliasing is an artifact that looks like rays diverging from the center of the image, and is

a consequence of under-sampling of the spatial domain within the periphery of the image.

Due to the fact that a CBCT uses a diverging source, the spatial frequency detectable by the

imaging system changes along the beam axis. This often leads to a violation of the Nyquist

sampling theorem when structures with a high spatial frequency pass close by the detector.

This is most likely to happen near the image boundaries where beam divergence is more

3



pronounced than in the center.

For a more detailed discussion of CBCT artifacts and their causes see Schulze et al.[3].

1.1.2 Relevant Physics of Proton Therapy

One of the most important equations in the field of proton therapy is the Bethe-Bloch

stopping power formula:

(
dT

dx

)
coll

= 307.1
ρZz2

Aβ2

[
ln

(
1.022MeVβ2

I(1− β2)

)
− 2β2

]
keV

cm
(1.4)

Where Z/A is the electrons/amu of the target material, z is the charge of the particle, and β

is that particle’s relativistic velocity (v/c). The variable I is the mean excitation potential

of the medium respectively. Mean excitation potential is the geometric-mean value of all

ionization and excitation potentials of the medium the charged particle finds itself in.

Figure 1.1: Bragg Peak
Calculated Linear Energy Transfer (LET) from a stopping power approximation by Grimes et al. plotted
against a visualization of LET data for a 205 MeV proton in high density polyethylene taken from the
Brookhaven National Laboratory website. Differences at the end of the particle track between the two plots
are primarily due to the fact that the calculated stopping power begins to exceed the kinetic energy of the
particle.
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Figure 1.2: Spread Out Bragg Peak
spread out bragg peak (SOBP) constructed from multiple simulated bragg peaks using LET data from Fig-
ure 1.1. The SOBP is the curve in red, and is constructed by summing contributions from all other curves in
the figure.

This equation describes the aggregate effect of all collisional interactions on a charged

particle traveling through any medium. These interactions may be atomic excitations, ion-

ization events, or even the production of δ-rays, a form or secondarily generated electrons

with enough energy to cause ionization events on their own. Regardless of the form it takes,

the energy removed from the traveling charged particle eventually makes its way into the

surrounding medium where it is dissipated. This energy deposition and its controlled dis-

tribution within the body is the primary goal of any radiation therapy modality.

Importantly this formulation shows us three important dependencies for stopping power.

There is a linear dependency on electron density (ρZ/A) of the medium. The atomic com-

position of the stopping medium determines how tightly these electrons are bound, and

therefore determine the mean excitation potential (I). And the kinetic energy of the charged

particle (T ∝ β2) determines how strongly the particle interacts with its surroundings. The

first two remain constant throughout the particle’s path within a single material as they

are entirely dependent only on the properties of the stopping medium. The last dependency

shows us that as the particle looses energy the stopping power acting on it must also change,

and owing to the fact that the β2 is in the denominator we can also see that as the energy of

the particle diminishes the strength of it’s interactions increase.
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This positive feedback gives rise to a catastrophic deposition of energy at the end of

the particle’s path, a phenomenon known as the bragg peak. Seen in Figure 1.1, the bragg

peak is the fundamental building block of proton therapy. Energy modulation can be used

to stretch the bragg peak out creating a plateau known as a SOBP shown in Figure 1.2.

As discussed above two of the primary dependancies of Equation 1.4 are electron density,
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Figure 1.3: RSP conversion curve
Curve used by RayStation to convert HU to relative stopping power (RSP).

and electron binding energy. It is rather simple to define the electron density of a medium

using attenuation coefficients (subsection 1.1.1) so long as the x-ray beam has well defined

energy. The mean excitation potential, however, is not directly measurable in every voxel

of a CT. As fate would have it, most tissues within the body with similar densities have

similar atomic compositions. This means that, at least approximately, there is a one-to-one

relationship between HU and mean excitation potential. Given this, we can construct a

one-to-one mapping from HU to stopping power, or as it is stored in treatment planning

systems (TPSs): relative stopping power to water.
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Figure 1.4: Response to Range Changes
The effects of small range changes on the order of 0.5 cm on the dose profile. One can see that the photon
dose barely changes at depth, where the proton dose nearly entirely misses it’s mark.

While the fundamental mechanisms of dose absorption for both photons and protons are

the same, namely the fact that only charged particles deliver dose directly, the steps to get

there for each method are quite different. Dose delivery for an x-ray beam is carried out by

the secondarily generated charged particles, however the shape and general characteristics

of the beam are governed mostly by the physics of non-charged particle interactions. Proton

beams on the other hand are governed by the physics of charged particle interactions, and

being a charged particle themselves are capable of directly depositing dose within a volume.

This difference is important when considered from the perspective of uncertainties along

the beam path. As seen in Figure 1.4, a small change in density won’t have much effect

on a x-ray beam at depth due to its relatively flat local dose distribution. Protons on the

other hand are highly sensitive to changes owing to the steep dose falloff at the distal end

of the beam. The irony is that the very thing that makes proton radiotherapy theoretically

superior to other forms of radiotherapy is also its greatest weakness.
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1.2 Motivation

1.2.1 Dose Verification

On-line and off-line methods for dose verification has been a warm topic for some time [5].

Techniques have used anything from measurements of Cherenkov radiation[6], positron

emission tomography (PET) from activated β+ emitters[7], thermally generated sound

waves[8] to calculations on setup CBCTs[9]. This interest derives from the effect of range

uncertainties in Proton therapy. Due to the steep falloff on the distal end of the SOBP, any

minor range uncertainties can become major dose uncertainties. These uncertainties in-

evitability lead to planning techniques that are unable to take full advantage of the benefits

of proton therapy.

Any technique that measures dose proxies (Cherenkov/PET/Ultra Sound) necessitates

specially designed equipment, and therefore adds a significant amount of expense when

compared to CBCT based calculations for any clinic attempting to implement them. Ad-

ditionally, these methods do not allow for prediction, only verification. The advantage of

CBCT dose calculations is that they provide predictive power, and therefore may be used

to show an expected dose distribution based on the geometry of a particular setup before

beam-on. A major obstacle here is time/computational power due to the fact that most

methods using CBCTs run dose calculations from scratch.

The method proposed in this work is designed to piggy-back on previously generated

dose calculations and interpolate dose from one CBCT to another thereby bypassing the

computational time required for a full dose calculation.

1.2.2 CBCT proton dose calculations

A significant amount of work has gone into using image guided radiotherapy (IGRT) setup

CBCTs to calculate dose[9]. In a study by Giacometti et al., the authors reviewed sixty-

nine studies on the topic and found that no single dose calculation method seemed to be

8



superior. Of the methods discussed, a subset of the “HU override” technique that used

histogram matching to match a CBCT to a corresponding CT was of particular interest

to us. Histogram matching is a fairly quick process, and doesn’t require any additional

input in the form of clinical target volumes (CTVs), organ at risk (OAR), or any other

delineated structure[10, 11]. This makes histogram matching a prime candidate for use in

quick automatic dose calculations.

The purpose of a histogram matching algorithm is to take the cumulative histogram

of all grayscale values within an image or region of interest and increase/decrease their

values until the cumulative histogram for the image matches that of a reference image.

The assumption is that the relative proportions of each type of tissue, and therefore relative

proportion of HU values remains unchanged. This is not strictly true, especially for patients

(a) Histograms Before Matching (b) Histograms After Matching

Figure 1.5: Cumulative histogram for a CT and a CBCT both before and after the matching process.

that have lost or gained significant weight. The goal however, is not to perfectly recreate

a CT, but to get reasonably close. A visual representation of Histogram Matching can be

seen in Figure 1.5.

One of the major problems with histogram matching a CBCT to a CT is the former’s

propensity for beam hardening artifacts. Including a large volume affected by this artifact

would drastically effect the relative frequencies of each HU value. For this reason, his-

togram matching alone can only be applied to relatively thin structures, and even then care

9



must be taken to ensure the regions being compared are, anatomically, as similar as pos-

sible. Head and neck (H&N) CBCTs fit this criterion provided the shoulders are avoided

during histogram matching.

10



CHAPTER 2

METHODS

2.1 Input Data Set

All patients included in this study were treated using a 4 or 5 field simultaneous integrated

boost (SIB) technique for oropharyngeal cancer at Emory Proton Therapy Center (EPTC).

14 out of 21 of the patients received a replan due to anatomical changes. Every patient

received the first day’s CBCT between 10 to 23 days after CT simulation.

Table 2.1: Input Images and Dose Distrobutions

Name Derived from Deformed to Dose Purpose
SecCT QACT SecCBCT Calculated in TPS Evaluation

RefCBCT first day CBCT TPCT Planned dose Prediction reference
SecCBCT CBCT of the day – Predicted Dose prediction

Each patient had 4 to 5 quality assurance CTs (QACTs) throughout treatment allowing

for the creation of deformed CTs that matched the anatomy of some of the CBCTs taken

during setup. These deformed CTs were called secondary CTs (SecCTs), and were used

to generate expected or “evaluation” dose distributions for the prediction model using the

TPS.

Each prediction would need a baseline image for reference when interpolating dose

onto a new CBCT. The first treatment day’s IGRT setup CBCT was deformed to match the

anatomy of the treatment planning CT (TPCT) so that the dose predictor would be compar-

ing CBCT to CBCT. This synthetic CBCT was known as the reference CBCT (RefCBCT).

The CBCTs used for prediction were referred to as secondary CBCTs. Each secondary

CBCT (SecCBCT) was the setup CBCT with the minimum number of days between it and

some QACT. As these were supposed to be a direct input for the algorithm they were not

11



Figure 2.1: Data Pipeline
Visualization of the prediction and evaluation process. This figure shows how each piece of data was gener-
ated, but does not represent any temporal relation between them.

modified in any way before being exported from the TPS

These CTs, their purpose, and their respective dose distributions are listed in Table 2.1

for ease of reference, and their relationship to other images and dose distributions are dis-

played in Figure 2.1. All CTs and dose files along with the structure set generated for the

TPCT were exported as Digital Imaging and Communications in Medicine (DICOM) files

and imported to Matlab.

2.2 Dataflow

Each set of TPCT/RefCBCT and the corresponding dose files were loaded into a single

data structure. The RefCBCT then had any of the desired correction methods applied to it;

see section 2.5 & section 4.2. The values in each voxel were called corrected hounsfield

12



units (cHU) to distinguish them from the HU values measured in CBCT acquisition, and

to avoid using the term RSP as absolute RSP is never calculated for any voxel. Within this

data structure, the beam dose and a copy of the RefCBCT for each field were rotated to

beam’s eye view (BEV) and the reverse transformation was saved for use after prediction.

The rotation was necessary to align the voxel columns with the beam direction, and avoid

(a) Pipeline overview (b) Pipeline Visualization

Figure 2.2: Visualization of the steps within the prediction algorithm. Any calculations that can be done
offline are completed and loaded into memory before the SecCBCT is taken.

dose interpolation along oblique angles through the images. These steps were completed

13



offline to minimize the amount of calculations required during the online section of the

algorithm.

The second input for our dose predictor was the DICOM files for the SecCBCT and

it’s IGRT setup sequence registration file. As this image is created with the patient on the

treatment couch, the rest of the algorithm must be run against the clock.

The SecCBCT DICOMs were loaded into the algorithm, its registration file was used

to place it on the same coordinate system as the TPCT, and the chosen CBCT corrections

were applied; see section 2.5 & section 4.2 for correction details. Once loaded the function

would then rotate the SecCBCT to BEV just as had been done with the RefCBCT and call

the dose predictor described in section 2.3 for each beam. The outputs of the dose predictor

were rotated back to the original coordinate system using the saved reverse transformations

from the reference data set, and added together to form a predicted dose distribution. The

prediction time per field as well as the total time for all corrections and the time for the

entire prediction process were recorded, and are displayed in Table 3.1.

Both global and local gamma evaluations as well a dose volume histograms (DVHs)

for the CTV were used as a measure of method evaluation. The pass-rates generated by

the gamma evaluations were used to flag problem runs, debug/modify our method, and also

to evaluate how similar our predicted plans were to the evaluation plans generated by the

TPS.

2.3 Dose Stretching

After the CBCTs were processed, the first step in the prediction was to find the distal end

of the beam in each voxel column. The last voxel containing dose was used as a proxy

for beam end. A cumulative cHU map of the rotated RefCBCT was created for each voxel

column from patient surface to the beam end, and the same was done for the SecCBCT

stopping once the targeted cHU for the beam end was reached or the algorithm exited the

patient. An equation representation is given below, and a more visual representation is
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Figure 2.3: Dose Stretching
The planned SOBP from patient surface (s) to beam end (x) is stretched or contracted using interpolation on
the cumulative cHU for both the RefCBCT & SecCBCT to fit within the new beam size (s to y).

given in Figure 2.3.

y∑
i=s

cHUi(refCBCT ) =
x∑

i=s

cHUi(secCBCT ) (2.1)

In both Equation 2.1 & Figure 2.3 s is the voxel corresponding to the patient surface within

the column in question, and x & y are the beam ends of the RefCBCT & SecCBCT respec-

tively.

To create the predicted SOBP in Figure 2.3 the dose from the cumulative RefCBCT

was interpolated over the cumulative cHU of the SecCBCT within the defined beam. Any

columns who’s line integral dose was less then 0.5 Gy or fell outside the region of interest

were ignored, and simply transferred, unchanged, to the prediction dose map.

2.4 Proof-of-Principle

Proof-of-principle was carried out using direct TPCT to QACT comparison for a subset of

6 patients for a total of 21 predictions. The TPCT was used as both the TPCT & RefCBCT

while the QACT was used as the SecCT & SecCBCT. The only correction applied was the

HU to RSP curve discussed in subsection 2.5.3. Results for the proof-of-principle run are

shown in Table 3.1
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2.5 CBCT Corrections

Tested permutations of the corrections below and their respective gamma passrates and

prediction times are displayed in Table 3.1.

2.5.1 Histogram Matching

When employed, the histogram matching algorithm used some defined beam region of

interest (ROI) on both the CT and CBCT in question to construct a cumulative histogram of

HU values and modify the values of the CBCT such that its cumulative histogram matched

that of the CT. Both CBCTs were matched to the TPCT. There was an attempt to match

the SecCBCT to the most recent QACT, however the data-set used in this work was not

conducive to this alteration. The results from that run were thrown out, and it will be

investigated as an option in future work.

A few different ROIs were chosen for the generation of the cumulative histograms em-

ployed during the matching process. Using the entirety of the body was the simplest ap-

proach, and this ROI mask was constructed using edge detection. This ROI was not tested

directly, however it was used as the base structure on which to build more complicated

ROIs. One of these more complicated masks was the intersection of the body mask and

the union of each beam mask; in Table 3.1 this is the base histogram correction. Due

to the decrease in accuracy of the histogram matching process discussed further in sub-

section 4.2.2 it was determined that more complicated ROIs were needed, and the masks

labeled as “sans shoulders (-sh)” and “sans Extreme HU’ (-ex)” were created. The first was

the previous beam path mask with the first 55 slices removed in an attempt to remove the

shoulders from the histogram ROI. The second was a more dynamic mask involving the

removal of voxels from the Beam Path ROI if its HU value in the CBCT was outside the

range −700 to 2000. The purpose of this HU exclusion was to partially remove the effects

of artifacts from the histogram matching process. Results for this section are displayed in
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Table 3.1.

2.5.2 Smoothing

A gaussian smoothing technique was also employed on some iterations to smooth out the

contributions of CBCT artefacts. A 3D smoothing function (smooth3 in Matlab) with a

kernel with a radius of 7 mm and a standard deviation of 0.75 mm was used initially for

both the RefCBCT and the SecCBCT. Various kernel radii and standard deviations were

tested; results shown in Table 3.3.

2.5.3 Application of the RSP Curve

Conversion from HU to RSP was done through lookup table with a resolution of integer

HU values. The RSP conversion curve from RayStation was used, as it is the TPS used at

EPTC.

2.6 Dose Smoothing

After the most accurate method for CBCT correction was determined, it was realized that

the dose prediction method used thus far was operating on a 1 × 1 × 1mm voxel size,

but the TPS calculates dose over a voxel size of 3 × 3 × 3mm. This realization lead to

the application of gaussian smoothing on the per-field dose distributions before they were

summed together with a kernal radius of 3 voxels and a standard deviation of 4 voxels.

2.7 Evaluation

Each prediction run was compared to a corresponding evaluation dose map generated using

deformable registration of a QACT to the anatomy of the SecCBCT in question. Local

and global 3D gamma evaluations were performed at 3 %/3 mm and a dose cutoff of one

fraction (2 Gy). A DVH was also constructed for the CTV. The CTV was lifted directly,

undeformed, from the original treatment plan as if this method is to be used in a clinic there
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will be no time to deform the target. A short investigation was done to see if the DVH could

be used as a proxy for a gamma analysis, but the primary function of the DVH evaluation

was to quickly visualize when there was a problem with the prediction method.
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CHAPTER 3

RESULTS

3.1 Overview

Correction labels are as follows:

• S = Gaussian Smoothing

• H = Histogram Matching

• R = RSP curve

• -ex = Ignore “extreme” HU values during histogram matching

• -sh = Ignore shoulder region during histogram matching

• -sm = Dose is smoothed per beam before gamma analysis

When more than one is applied they are applied in the order listed above.

For the 21 patients in this study, the best dose interpolation was the one that used all

three correction methods while removing extreme HU values outside the bounds −700 to

2000 giving a global gamma passrate of 96.75 % with a standard deviation of 1.29 % after

dose smoothing. Table 3.1 shows how this, and other correction permutations fared against

the proof-of-principal run discussed in section 2.4. Table 3.2 shows both the paired T-test

and Wilcoxon signed-rank test significance values for each permutation of corrections vs

every other. This is intended to show if a correction had a significant effect on the accuracy

of the prediction method.
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Table 3.1: Dose Accuracy Evaluations

Gamma Passrates (%) Prediction Time (s)

Corrections Local Global Per field Correctioin Total

Proof of Princ. 94.69± 1.35 97.79± 0.79 4.49± 0.42 0.92± 0.18 22.57± 2.09

None 52.59± 3.89 59.06± 3.57 4.47± 0.73 0.4± 0.13 22.29± 3.92
R 92.16± 1.82 95.85± 1.39 4.34± 0.74 0.84± 0.24 21.69± 3.96
RH 89.46± 4.40 93.94± 3.11 4.38± 0.72 2.67± 0.71 21.86± 3.89
RS 92.35± 1.83 96.01± 1.40 4.41± 0.79 1.24± 0.31 22.05± 4.23
RH-ex 92.62± 1.76 96.29± 1.32 4.37± 0.73 3.06± 0.88 21.85± 3.92
RH-sh 88.65± 5.56 93.45± 4.00 4.4± 0.72 2.69± 0.66 21.96± 3.91
RHS 92.07± 1.95 95.8± 1.57 4.4± 0.75 3.36± 1.08 21.99± 4.03
RHS-ex 92.74± 1.78 96.4± 1.31 4.38± 0.73 3.52± 1.02 21.89± 3.92
RHS-ex-sm 93.72± 1.74 96.75± 1.29 4.38± 0.73 3.52± 1.02 21.89± 3.92

Results presented as mean ± standard deviation.

Table 3.2: Comparitave Significance

Corrections R RH RS RH-ex RH-sh RHS RHS-ex RHS-ex-sm T-test

R 0.000 0.000 0.000 0.000 0.508 0.000 0.000 R
RH 0.000 0.000 0.000 0.031 0.000 0.000 0.000 RH
RS 0.000 0.000 0.000 0.000 0.008 0.000 0.000 RS
RH-ex 0.000 0.000 0.000 0.000 0.000 0.000 0.000 RH-ex
RH-sh 0.000 0.003 0.000 0.000 0.000 0.000 0.000 RH-sh
RHS 0.711 0.000 0.007 0.000 0.000 0.000 0.000 RHS
RHS-ex 0.000 0.000 0.000 0.000 0.000 0.000 0.000 RHS-ex
RHS-ex-sm 0.000 0.000 0.000 0.000 0.000 0.000 0.000 RHS-ex-sm

WSR-test R RH RS RH-ex RH-sh RHS RHS-ex RHS-ex-sm Corrections

Significance as calculated with global gamma passrates by a T-test (top right) and a Wilcoxon signed-rank
(WSR) test (bottom left) for each correction permutation vs every other permutation. Highlighted in red are

the cells that correspond to a test failure (significance value > .01). Significance values below 10−3 are
truncated for ease of viewing.
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3.2 Smoothing Strength

Table 3.3: Smoothing Strength

Smoothing std (mm) Local Passrate Global Passrate

0 89.46± 4.40% 93.94± 3.11%
0.5 92.00± 2.15% 95.77± 1.69%

0.75 92.07± 1.95% 95.8± 1.57%
1 92.05± 1.95% 95.77± 1.60%

1.5 92.10± 1.96% 95.77± 1.62%
2 92.10± 1.95% 95.76± 1.62%

2.5 92.08± 1.97% 95.73± 1.64%
3 92.07± 1.98% 95.71± 1.66%

(a) Global passrates (b) Local passrates

(c) Local and Global Passrates

Figure 3.1: Smoothing Strength
The effects of increased gaussian smoothing on the gamma passrates of the RHS correction

method.
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3.3 Sensitivity to Variation

The relationship between time since CT simulation and gamma passrate is given in Fig-

ure 3.2, and was used as a proxy for sensitivity of the script to patient anatomy variation.

The relationship exists, but appears to be very weak.

Figure 3.2: Gamma Passrates vs Time Since CT Simulation
Gamma Passrates for each prediction using the RHS-ex-sm method plotted against the number of days since
CT simulation. The equations in the top right and bottom left are linear fits for the Global and Local passrates
respectively.
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3.4 Gamma Evaluations per Field

A single patient was selected to verify the prediction process on a per field basis. Passrates

generated using the same gamma parameters (3 %/3 mm), but with a dose cutoff equal to

the beam weight times 2 Gy

Table 3.4: Global Gamma Passrates per Field

Beam #
Secondary CBCT

A B C D E

1 97.58% 97.08% 96.52% 93.52% 98.10%
2 95.63% 96.06% 96.14% 95.22% 96.35%
3 96.23% 97.15% 95.48% 96.88% 96.98%
4 96.82% 95.62% 94.70% 97.00% 97.12%
5 97.58% 95.93% 96.13% 97.21% 98.01%

Average 96.77% 96.37% 95.80% 95.97% 97.31%

Global gamma passrates for each predicted field for all 5 SecCBCTs for a single patient using the correction
method RHS-ex.
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CHAPTER 4

DISCUSSION

4.1 Visualization

Of the methods tested, the RHS-ex-sm method proved the most accurate. In Figure 4.1 one

can see one selected slice from one of the patients in the study this illustrates where this

method succeeds and fails.

(a) Predicted Dose (b) Evaluation Dose (c) Planned Dose

(d) Predicted Dose (e) Evaluation Dose (f) Planned Dose

Figure 4.1: Dose Visualization
Slice # 153 from one of the patients in the study. Selected for illustration purposes. Top row (a-c)

is the full plan, and the bottom row (d-f) is a single field. Each row has the dose color scale
normalized to the maximum point dose among all three images in either the entire distribution or

the single field respectively.
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When comparing Figure 4.1d and Figure 4.1e the first thing that may pop out is the

remarkable similarity in the large scale structure of the high dose region (orange/red) near

the end of the beam path. The differenced are more pronounced on a smaller scale, and

indeed this was to be expected. On a more local scale it should be expected that the shape

of the dose distribution would be more dependent on artifacts, but on a larger scale those

effects begin to cancel out. The same effect is also expected due to the imperfections in

deformable registration. The large scale structure should be less affected by local imperfec-

tions due to either process. For this reason, global passrates were deemed more indicative

of plan similarity then local passrates.

4.2 CBCT Corrections

4.2.1 Application of the RSP Curve

0 10 20 30 40 50 60 70 80 90

Dose (Gy)

0

10

20

30

40

50

60

70

80

90

100

C
ov

er
ag

e 
(%

)

Original Plan
Evaluation
No Corrections
RSP curve applied

Figure 4.2: CTV DVH before and after RSP curve application
DVHs displayed are calculated using the CTV from the treatment plan. These structures remained unchanged
when applied to the evaluation and prediction doses, and therefore are not representative of actual dose on
the structure. This is still useful as a qualitative demonstration of the importance of the RSP curve.

One fairly standard correction for dose calculation is the RSP curve. Since this method

is looking at the density differences between images instead of the absolute density one

may be forgiven for assuming it is reasonable to omit the HU to RSP conversion. This is

not what was found however. The non-linear region seen between −500HU and 500HU
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in Figure 1.3 implies that it’s not that simple, and indeed there was a drastic improvement

to the prediction accuracy when the RSP curve was applied. This is most easily illustrated

by looking at the DVH before and after RSP curve application shown in Figure 4.2. The

RSP curve was by far the largest improvement to the prediction model, and because of this

it is applied in addition to every other correction explored here.

4.2.2 Histogram Matching Improvements

Scatter and beam hardening artifacts discussed in subsection 1.1.1 can have drastic effects

on the actual HU values calculated for a CBCT. It seemed necessary to ensure that the RSP

conversion had the most correct values to work with. As discussed in subsection 1.2.2, a

histogram matching algorithm was the optimal choice for this, and was used to match the

CBCTs to the TPCT.

The naive approach of histogram matching the entirety of the beam paths within each

patient actually lead to a decrease in accuracy when compared with just the HU to RSP

curve. This was likely due to the inclusion of some of the shoulder region and the heavily

artifacted slices containing the jaw. It was decided that the simplest way to correct this

problem was to exclude regions of the CBCT containing extreme HU values from the his-

togram construction. As can be seen in Table 3.1 this lead to a drastic improvement to the

histogram matching process.

It was expected that by ignoring the first 55 slices of the CBCTs containing the majority

of the shoulders the prediction results could be improved. Not only was this not the case,

but the prediction accuracy decreased when ignoring the shoulder region. It is suspected

that this is due to a few factors. The first is that the choice of slice #55 was too rigid, and

did not account for differences between patients. This should only increase the standard

deviation while having only a minimal effect on the average, so something else must be

at play. The decrease in average accuracy is suspected to be due to the artifacts elsewhere

in the CBCT, like those due to the teeth, that would make up a larger proportion of the
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included voxels and therefore hold greater sway over the outcome of the histogram match-

ing process after the removal of the shoulders. This was just speculation however, and the

development of a more dynamic process for determining the shoulder boundary and other

artifact detections is likely to shed some light on the exact process at play here.

4.2.3 Gaussian Smoothing

Artifact correction in a CBCT is a somewhat involved process taking 4 min in some cases

even with graphics processing unit (GPU) acceleration[12]. This is far too slow for an

algorithm attempting to make a dose prediction in under 1 min. Artifacts, however may

still be a problem especially on a local scale. Luckily all of the CBCTs that will be used

are taken on the same patient using very similar if not identical machines. It was suspected

that this meant most artifacts would appear near enough to each other that a simple gaussian

smoothing of the images would suffice as a rudimentary artifact “corrector.”

A smoothing standard deviation of 0.75 mm was chosen due to the local maximum in

Figure 3.1 and its low standard deviation in Table 3.3 This seems to be only a minor choice,

as the absolute effect of the smoothing strength is fairly low. The lower spread in the output

data was deemed more important than the absolute improvements in local passrates given

by higher smoothing standard deviations.

Table 4.1: Smoothing Effects

Label Global (%) Stdev Improvement (s) T-test WSR-test

R 95.85 1.39
0.16 0.00 0.00RS 96.01 1.40

RH 93.94 3.11
1.86 0.00 0.00RHS 95.80 1.57

RH-ex 96.29 1.32
0.11 0.00 0.00RHS-ex 96.40 1.31

Selected data from Table 3.1 & Table 3.2 for ease of reference.
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Smoothing in general proved to be effective, but only provide a minor improvement.

From Table 4.1 we can see that the absolute global accuracy improvement is fairly small,

but statistically significant.

4.3 Dose Smoothing

While not applied to every correction method, It is clear that smoothing the predicted dose

distributions such that their resolution is more in-line with the calculation resolution of the

TPS brings the predictions more in-line with the evaluation doses. Smoothing the dose of

the most accurate prediction method (RHS-ex) improved the global passrates from 96.40%

to 96.75%, but it is unclear if this would be a useful improvement in a clinical setting. In

(a) Unsmoothed Dose (b) Smoothed Dose

Figure 4.3: Before and After Dose Smoothing
Slice # 120 selected at random from among the RHS-ex predictions before and after dose

smoothing.

Figure 4.3 we can see that the dose smoothing has an effect, but it is unclear if this effect

would be aiding in a visual evaluation or just artificially increasing the prediction passrates.

Visually the effect of this smoothing is easiest to notice outside the body, and therefore is

unlikely to have any effect on the decision to treat.
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CHAPTER 5

CONCLUSION

The goal of this work was to produce a method for quick online dose prediction that could

be easily implemented in a proton clinic. With prediction times below 30 s, and an ex-

pected global accuracy of 96.75%± 1.29%, this method is just on the boundary of clinical

usefulness.

The speed could easily be improved, as everything was written in Matlab without any

parallel computing tools. A non-interpreted language optimized to use multithreaded CPUs

or GPU acceleration would hopefully reduce the average prediction time to below 15 s

These improvements would also allow for more complicated CBCT corrections, such as

bow-tie filter modeling for beam hardening corrections, or multilayered histogram match-

ing without exceeding 30 s prediction times.

A combination of optimization and the addition of additional correction methods should

push this tool/process into the realm of clinical usefulness. The interpolation of dose from

one CBCT to another has promise as a useful clinical tool for both therapists and physicists,

but the method as presented thus far only lays the foundation for future work.
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