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SUMMARY 

 

 

Subduction zone megathrusts produce the majority of the world's largest 

earthquakes. To understand the processes that control seismicity here, it is important to 

improve our knowledge on the subduction interface characteristics and its spatial 

variations. Nicoya Peninsula, Costa Rica, extends the continental landmass ~50 km 

towards the trench, making it a very suitable place to study interface activity from right 

on the top of the seismogenic zone of the Middle America Subduction Zone (MASZ). We 

contribute to and utilize an earthquake catalog of 8765 analyst-picked events to 

determine the spatial variability in the earthquake frequency-magnitude distribution 

(FMD) in this region. After initial detection, magnitude determination and location, the 

events are precisely relocated using a locally derived 3-D seismic compressional and 

shear wave velocity model (DeShon et al., 2006). After restricting the dataset to events 

nearest the interface and with low formal error (horizontal location error < 5 km), we 

retain a subset of 3226 events that best resolves interface activity.  

Beneath Nicoya, we determine the spatial variability and mean FMD of the 

interface, and focus on the relative relationship of small-to-large earthquakes, termed b-

value.  Across the region, the overall b-value (1.18 ± 0.04) is higher than the global 

average (b~1), and much larger than the global subduction zone average (b~0.6). 

Significant variation in b-value is observed along the active plate interface. A well 

resolved zone of lower b is observed at and offshore central Nicoya coast, in a 

previously determined locked patch using deformation observed from Global Positioning 

System (GPS). Conversely, high b-values prevail over the subducted portion of the 

Fisher ridge, which likely ruptured in the 1990 Gulf of Nicoya Mw 7.0 earthquake. 
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Observed regions of low b-value approximately corresponds to more strongly-locked 

segments of the subduction interface resulting in higher differential stress, which may be 

released in the next large interface earthquake in this part of the MASZ. Across the 

region the b-value is found to vary inversely with the degree of interface locking. Thus, it 

is proposed that if sufficient data exist, spatial b-value mapping can be used as a proxy 

to determine interface locking. This method is especially useful along the subduction 

megathrust, which is generally offshore making geodetic measurements difficult. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

 

Plate boundaries are the most seismologically active areas around the 

world. Convergent boundaries, especially the subduction zones, are very interesting 

because of their high rate of seismicity and the complexity generated by the combination 

of different geological processes. This type of plate boundary is characterized by the 

subduction of a lithospheric plate beneath another making it one of the most active 

geologic features on the earth. The majority of the world's largest earthquakes are 

generated at the plate interface of the subduction zones, also known as subduction 

megathrusts. From the point of view of earthquake hazard, it is important to understand 

the processes and their interactions that may control the earthquake activity at the 

subduction interface. In this study, I examine Middle America Subduction Zone (MASZ) 

near Nicoya Peninsula, Costa Rica to understand the variability in seismicity pattern and 

earthquake potential along the subduction megathrust. The trench associated with 

MASZ is commonly referred to as Middle America Trench (MAT). 

In this study, I apply the Gutenberg and Richter (1944) earthquake 

frequency-magnitude distribution (FMD) to study the earthquake activity along the 

megathrust of this subduction zone. Throughout this study, the main focus is on the 

parameter b, also known as b-value, and its variation along the interface. Variation in b-

value at different tectonic regimes and its interpretation is an active area of research for 

the past several decades. However a conclusive answer remains elusive. This study 
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aims to enhance our understanding of the physical meaning of the variation in b, as well 

as its implications in the subduction environment. 

 

 

1.2 Location 

 

MASZ is situated at the southern-most part of the North America continent. 

This northwest-southeast trending convergent boundary goes along the western coast of 

this area. Geographically, the northwestern tip of MAT starts from the middle of Mexico, 

while it terminates at its southeastern tip in the northern Panama (Figure 1). The total 

length of the trench is approximately 3000 km. This study examines approximately a 150 

km long segment in the southern part of MAT offshore Nicoya Peninsula, Costa Rica. 

This region is characterized by some of the most complex tectonic features along the 

MAT (see section 1.3 for details). Here, a part of the subduction thrust plane is 

investigated with earthquake FMD analysis. Considering the geographic location of the 

seismic network and the coverage of the local velocity model, a rectangular area is 

selected which is bounded by the following coordinates (longitude and latitude) at its four 

corners (Figure 2): 

86.37 W, 10.00 N 

85.60 W, 10.90 N 

84.60 W, 10.05 N 

85.37 W, 09.15 N 

In the following chapters, the results of the FMD analysis only within this 

area will be shown and discussed unless otherwise indicated. 
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Figure 1: The oceanic Cocos plate subducting beneath the Caribbean plate along the 

MAT at a rate of ~85 mm/yr (DeMets, 2001) near Nicoya. Notice the rough bathymetry 

near Cocos Ridge off Nicoya Peninsula, Costa Rica. 
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Figure 2: Map of the Nicoya Peninsula, Costa Rica with low error (within 5 km horizontal 

error) earthquakes (solid squares) recorded between late-1999 to early-2001 as a part of 

the CRSEIZE project. Open diamonds indicates the location of the seismic stations. 

Saw-toothed curve represents the Middle America Trench. Dashed box is boundary of 

grid used for subsequent b-value results. [Inset] map of the region with present study 

area in smaller black box. 
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1. 3 Tectonic setting 

 

The section of MASZ off Nicoya Peninsula has a very interesting and a 

complicated tectonic setting. It is a convergent margin characterized by the subduction 

of the oceanic Cocos plate beneath the Caribbean plate (Figure 1), at 85 mm/year 

(DeMets, 2001) near Nicoya. This part of the Cocos plate consists of several tectonic 

and morphological boundaries. The most evident one is the boundary separating two 

distinct morphological domains, which was identified as early as 1960s (Fisher, 1961). 

The northwestern part of the Cocos plate has a smooth topography, distinguishing itself 

from the southeastern part that has a relatively rough bathymetry dominated by 

numerous seamounts. The rough-smooth boundary is located off the southern part of 

the Nicoya Peninsula, such that Cocos plate with mostly smooth seafloor is subducting 

beneath Nicoya. In addition, Cocos plate is composed of materials of two origins and 

ages. The northwestern part of the plate is originated at the fast-spreading East Pacific 

Rise (EPR) while the medium-spreading Cocos-Nazca Spreading (CNS) center created 

the southeastern part of the Cocos plate (Barckhausen et al., 2001). The boundary 

between these two parts are also subducting off Nicoya, adding to its complexity. 

Seafloor heat flow measurements and hydrothermal modeling also detect this boundary 

as an abrupt thermal transition in this part of the Cocos plate (Fisher et al., 2003). Heat 

flow measurements on the CNS created seafloor are 105-115 mW/m2, consistent with 

the conductive models. In contrast, the northern region with EPR generated crust is 

anomalously cool, with heat flow values of 20-40 mW/m2. Newman et al. (2002) showed 

that the seismogenic updip limit changes from 15 km in the south (CNS generated crust) 

to 20 km in the northern section which is originated at EPR, consistent with the heat flow 

measurement. At the trench, the crust generated by the EPR is ~24 Ma old (Figure 3), 

but CNS created crust is almost ~1.5 Ma younger with an age of ~22.5 Ma 

 5



(Barckhausen et al., 2001). However, demarcating these different boundaries are 

challenging considering the fact that this area bears signatures of superimposition of 

different tectonic, morphological and possibly volcanic activities. Barckhausen et al. 

(2001) noted at least two tectonic boundaries in this area: the traditional bathymetric 

rough-smooth boundary associated with a tectonic scarp and the trace of the triple 

junction between Pacific, Cocos and Nazca plates. Moreover, from the magnetic 

anomaly map, the authors found a ~80 km long fracture zone trace separating EPR and 

CNS generated crust. The fracture zone is almost orthogonal to the MAT off the central 

Nicoya Peninsula. High resolution bathymetric data also show the fracture trace. In the 

shallow subduction environment across Nicoya, the plate interface changes dip from ~6° 

near the trench, to ~35° by 40 km depth (Christeson et al., 1999; Sallarès et al., 1999, 

2001),  before increasing to ~80° down-dip of the seismogenic zone (e.g. Protti et al., 

1995a). 

The first consistent models for the evolution of the CNS along with the 

formation of Cocos ridge (further southeast) are given by Hey (1977) and Lonsdale and 

Klitgord (1978). They proposed that the Farallon Plate broke into the Cocos and Nazca 

Plates along a preexisting fracture at ~27 Ma. Later, Wilson and Hey (1995) and 

Barckhausen et al. (2001) revised this model to include a pattern of propagators and two 

ridge jumps at 19.5 Ma and 14.5 Ma, based on the new magnetic data. The propagator 

corresponds to a prominent topographic feature, the Fisher Ridge, in the Cocos plate off 

southeastern boundary of the peninsula. Husen et al. (2002) obtained a tomographic 

image of what appears to be a subducted seamount associated with the subducting 

Fisher Ridge. Below the southeastern part of the Nicoya Peninsula, they found a velocity 

anomaly at a depth of 30 km, and interpreted the zones of higher and lower P-wave 

velocities as the summit and the root of the subducted seamount. This seamount is 

thought to be the cause of 1990 Mw 7.0 Gulf of Nicoya earthquake. 
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Figure 3: Tectonic map of the study area and its surrounding region. Lines with numbers 

represent isochrones with ages derived from magnetic anomalies. Triangles are 

volcanoes. FS, Fisher Seamount; QSC, Quesada Sharp Contortion. (after Barckhausen 

et al., 2001). 

 

 

1. 4 Motivation and objective 

 

Subduction zones have always been an area of great interest for earth 

scientists, mainly because of their potential to generate large earthquakes. These 

earthquakes can not only destroy surrounding areas with strong ground shaking, but 

also can generate tsunami that may have damaging affect even at the places far from its 

source, such as the Sumatra earthquake and associated tsunami on 26th December 

2004 (Lay et al., 2005). The convergent boundary hosts a combination of geological 

processes that influences the overall subduction characteristics. The thermal state of the 

subduction zone, age of the lithosphere, rate of convergence and regional stress regime 
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are some of the important parameters that significantly control the seismicity pattern 

here. Most of the large earthquakes occur along the interface of the subduction zone 

megathrust. Shallow seismicity is mostly concentrated in a narrow band of the interface, 

called the seismogenic zone. 

It is useful to study the characteristics of seismogenic zone and the 

prevailing stress regime to understand earthquake processes. Properties of the 

seismogenic zone can vary considerably along the strike, as evident from the along 

strike shift of updip limit of seismogenic zone at Nicoya (Newman et al., 2002). This part 

of the MAT interface is also considered to represent a seismic gap that would possibly 

rupture in a near future large earthquake (Nishenko, 1989), thus it is essential to 

investigate the along strike variability in megathrust characteristics. Stick-slip behavior in 

the megathrust is believed to be the cause of large earthquake in the seismogenic zone. 

Large earthquakes occur at the late stage of ‘stick’, when the rock cannot sustain the 

high stress accumulated by the plate convergence. In other words, large earthquakes 

are associated with locked portions of megathrust, which defines the region of high 

stress buildup along the interface. Modeling of geodetic data is a conventional way to 

determine the locked patch along a fault plane. But this technique is mainly dependent 

on land-based Global Positioning System (GPS) instruments that cannot constrain the 

strain accumulation near trench, typically sitting 100 km offshore. In this study, a method 

is developed to use microseismicity to infer the stress regime and its variability of along 

the megathrust. The objective of this study would be to image the subduction interface in 

terms of its variability in stress regime, and hence locking. If successful, this technique 

will be able to delineate the locked part of the interface that accumulates significant 

stress over the seismic cycle. 

Previously, microseismicity had been used in terms of its FMD to 

demarcate the highly stressed region and/or asperities in the San Andreas Fault 
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(Schorlemmer and Wiemer, 2005; Schorlemmer et al., 2004; Wiemer and Wyss, 1997). 

The present study extends this technique to the convergent margin which is generally 

much larger in dimension and more difficult to study. One of the motivations of this study 

is to test the usefulness of FMD analysis as a proxy for stress in the subduction 

environment. 

 

 

1. 5 Earthquake frequency-magnitude distribution 

 

Scientists have been trying to understand earthquake process for centuries 

(Darwin, 1845). Many different ways are explored to study earthquakes. Earthquake 

frequency-magnitude relationship is a way to examine seismic activity in an area. The 

FMD of earthquakes, which was first introduced by Ishimoto and Iida (1939) and 

Gutenberg and Richter (1944), has a power-law relationship, such that: 

log10 N = a –  b M,  

where N is the cumulative number of earthquakes greater than or equal to magnitude M, 

and a and b are constants describing the activity and slope, respectively.  Here, we 

focus on the parameter b, or b-value, which describes the ratio of occurrence of small to 

large earthquakes. Globally, b-value is ~1 (e.g., Stein and Wysession, 2003), meaning a 

10-fold decrease in seismic activity associated with increase in each subsequent unit 

magnitude (M). In the past decades, earthquake researchers argued back and forth over 

the variability of b in different regions. Some authors suggested that it does not vary 

systemetically in different tectonic regime (Bayrak et al., 2002). But Schorlemmer et al. 

(2005) and numerous other workers showed that b-value varies significantly between 

individual fault zones (e.g., Wesnousky, 1994, Schorlemmer and Wiemer, 2005), and 

even within a particular space and time range (e.g., Nuannin et al., 2005). Though the 
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absolute value of b, and even its variability, may heavily depend upon the accuracy of 

the earthquake catalog, homogenization of the catalog, calculation technique and 

algorithm used, several attempts had been made to understand the physical meaning of 

the b-value (Mogi, 1962; Scholz, 1968; Warren and Latham, 1970; Wyss, 1973). 

However a conclusive answer still remains elusive. The first serious attempt to 

understand the physical significance of b was made by Mogi (1962) when he carried out 

laboratory experiment to suggest that b varies with material heterogeneity. Warren and 

Latham (1973) found a relationship of b-value with the thermal state of the rock. 

Systematic variation of b-value also with depth was reported in California (Mori and 

Abercrombie, 1997). Scholz (1968) is the first to recognize that b-value has a clear 

relationship with the stress in a volume of rock. In his experimental study, he observed 

that b decreases with the increased stress in the rock. Wyss (1973) took this idea 

beyond the laboratory, and found similar inverse relationship of b and stress in the 

California earthquake dataset. Over time, seismic networks generally become denser 

with more technologically advanced instruments capable of recording smaller events. 

Seismic catalogs are becoming more and more accurate with the help of improved 

location algorithms, velocity models and increased computational power. Taking full 

advantage of these positive developments, researchers have recently performed many 

excellent studies on b-value that tend to support its relationship with stress. FMD studies 

have been extensively used in volcanic areas in Washington, Alaska and Italy 

(Schorlemmer et al., 2003; Wiemer and McNutt, 1997). High b is found to be associated 

with existence of the magma chambers. This result is interpreted to be the result of low 

effective stress due to increased pore fluid pressure. Weimer and Benoit (1996) also 

claim that regions with high b-values at the subducting slabs are responsible for magma 

genesis at Alaska and New Zealand convergent margins. Recent studies with different 

global and regional seismic catalogs show that b-value is significantly lower for events 
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associated with thrust (Figure 4) as compared to normal and intermediate for strike-slip 

faulting (Schorlemmer et al., 2005). Because faulting type is directly governed by the 

orientation and magnitude of stress regime of an area, it is evident that stress has 

considerable effect on b. Based on this result, the authors proposed that b-value has an 

inverse relationship with differential stress, which is in turn tied to the confining pressure. 

Therefore, b can act as a stressmeter in the earth crust. Strong support of this concept 

came from the fact that the asperity, a locked and highly stressed zone along the fault 

plane, near the Parkfield segment of the San Andreas Fault is marked by a pronounced 

zone of low b (Wiemer and Wyss, 1997). In fact, 99% of the slip and 95% of the 

aftershocks of the 2004 Mw 6.0 Parkfield event occurred within the rock volume having 

low b-value (Schorlemmer and Wiemer, 2005). An FMD study of the Sumatra subduction 

zone shows that the area around the epicenter of two giant earthquakes, 2004 Mw 9.0 

and 2005 Mw 8.7 events, occurred within the zones of low b-values (Nuannin et al., 

2005). 

All these evidences strongly indicate that stress is the single-most 

important factor affecting b. Although other features like, material heterogeneity, thermal 

state may locally influence b, they do not seem to have any significant effect on b at 

large scale (Wiemer and Benoit, 1996). Therefore, it is reasonable to use b-value to infer 

the stress regime in a volume of rock provided it is calculated from a rich and robust 

earthquake catalog. 

 

 

1. 6 Previous works 

 

As a natural laboratory for earth scientists, the MASZ has been the place of 

concentrated study for the last several decades. This is, in part, because this region has 
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a very active interface and complex tectonic history within a relatively small geographic 

location. One of the important aspects of these studies is to determine the variability of 

locking along the subduction megathrust. The megathrust beneath Nicoya Peninsula is 

of particular interest because it represents a seismic gap (Nishenko, 1989). Several 

attempts had been made to illuminate the state of locking in along this region, using 

GPS data and modeling. 

 

 

Figure 4: Frequency−magnitude distributions for pure normal (green) and pure thrust 

(blue) events of the SCSN and Harvard catalogues (Schorlemmer et al., 2005). 

 

 

Lundgren et al. (1999) first came up with a geodetic model of subduction 

locking at Nicoya Peninsula. GPS data was collected from 1994 to 1997 in three 

campaigns. The geodetic network consisted of 14 stations covering the entire peninsula. 
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The simple dislocation model (Okada, 1985) suggests the presence of a small locked 

segment from 70 to 95 km downdip from trench. Two different inverse methods are 

applied to model the coupling between plates. Both the model put forward a 

heterogeneous seismic coupling along the interface. Central and southeastern Nicoya 

coast is modeled as strongly locked patches with more than 80% locking. A northwest 

forearc sliver transport is also detected in this study. 

 

 

Figure 5: The best fit model for locking along the subduction interface near Nicoya 

Peninsula using GPS data between 1994 and 2000 (Norabuena et al., 2004). Locking 

had been modeled as locked slip. Note the elliptical highly locked patch just offshore 

Nicoya. The near trench updip region which appears weakly locked is poorly constrained 

due to lack of data in that area. 
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The network was reoccupied by Norabuena et al. (2004) in 2000. All the 

data from 1994 onwards are reanalyzed. Their model is better than previous one as this 

model takes into account both short-term elastic deformation processes and long-term 

irrecoverable processes that have potential to permanently deform the upper plate. The 

new model also demonstrates heterogeneous backslip (Figure 5). The most strongly 

locked patch is centered at 14 ± 2 km depth with a lower one centered at 39 ± 6 km 

depth. It either indicates a gradational variation of locking at the interface or two distinct 

locked patches separated by freely slipping zone. However the GPS data could not 

determine which is occurring in this area. In addition, as in the earlier model, it also 

found a northwest translation of the forearc block at an average rate of 8 ± 3 mm/yr. 

Iinuma et al. (2004) obtained a two-dimensional geodetic model of the 

area. They analyzed the GPS data from a transect of 10 GPS receivers that extends 

from the central Nicoya coast to inland Costa Rica, making an approximate straight line 

perpendicular to the trench across central Nicoya. Data from 3 campaigns within one 

and half year (from late 2001 to early 2003) are used to calculate velocity vectors. It 

shows the northwest forearc sliver motion at a rate of ~8.5 mm/yr. To estimate the inter-

plate coupling, an inversion analysis with this data had been carried out. It gives the 

model strain along the line as well as the backslip distribution. The model shows the 

maximum backslip (and hence locking) just offshore central Nicoya, while it diminishes 

fairly quickly towards the inland part of the peninsula. Based on the backslip, the authors 

estimated a future earthquake of Mw 7.5 in this area. 

It is worth noting that all the models used slightly different subduction 

interface geometries. The models are also associated with some inherent simplification 

and assumptions that may impart significant uncertainty in the model results. Norabuena 

et al. (2004) did note the sensitivity of their model to the geometry of the interface and 

the location of the locked patch. 
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An attempt to determine spatial variation of b-value in the Nicoya Peninsula 

was not successful due to insufficient events in MIDAS catalog (maintained by Middle 

America Seismograph Consortium) for this region (Monterroso and Kulhánek, 2003). 

However, an overall b-value of 0.92 ± 0.1, calculated using maximum likelihood method 

with 96 events, is reported for this area. 
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CHAPTER 2 

 

DATA AND METHODOLOGY 

 

2.1 Seismic Data Acquisition and Processing 

 

Although much work had been done to understand the subduction process 

along the MASZ, not much high quality seismic data in Costa Rica were available until 

1999. The national earthquake catalogs maintained by Observatorio Vulcanológico y 

Sismológico-Universidad Nacional de Costa Rica (OVSICORI-UNA) and the Red 

Sismológico Nacional (RSN-ICE) have relatively large error (DeShon et al., 2006) due to 

limited spatial coverage. A high precision earthquake catalog is the primary requirement 

to study the seismicity pattern of a region. One of the largest difficulties in accurately 

constraining the seismogenic extent of the subduction zone is that most subduction 

megathrusts occur almost entirely offshore, thus making it difficult for land-based 

techniques to constrain their earthquake activity. However, because the Nicoya 

Peninsula of Costa Rica extends the shoreline significantly closer to the trench, this 

region is unique to examine interface seismicity along the megathrust using primarily 

land-based techniques. To take advantage of this geometry, the Costa Rica 

Seismogenic Zone Experiment (CRSEIZE) was performed jointly by University of 

California, Santa Cruz, University of California, San Diego, University of Miami and 

OVSICORI. The experiment was able to capture much of the ongoing earthquake 

activity and deformation due to seismogenic zone processes (Newman et al., 2002; 

DeShon and Schwartz, 2004; Norabuena et al., 2004; DeShon et al., 2006). The seismic 

component of this project consists of deployment of seismic arrays from mid-September 
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1999 to June 2001. This total time period had been divided between Osa and Nicoya 

seismic arrays. However, in this study, I only explore data from the Nicoya seismic array. 

The Nicoya passive seismic network started working from mid-December 1999 and 

continues till June 2001. It consisted of 10 short-period and 10 broad-band three 

component land stations. For the first six months, the network was augmented by a 14 

station offshore ocean-bottom (OBS) deployment. Land data acquisition is made in 

continuous 40 Hz mode, while OBS data were recorded in 64 Hz mode. Land data were 

quality checked and time corrected using the PASSCAL software 

(http://www.passcal.nmt.edu/), version 1.9.20 (DeShon, 2004). The seismic array was 

placed such that it transect the seismogenic zone, and therefore, it was deployed 

starting from the Cocos plate, very near to the trench, to inland Costa Rica covering the 

whole Nicoya Peninsula with nearly evenly-spaced land seismic stations (Figure 2). The 

geodetic component of the CRSEIZE composed of GPS campaigns across Costa Rica 

that result in a locking map of the interface in this part of MASZ (Norabuena et al., 2004), 

as discussed in detail in section 1.6. 

The seismic array of Nicoya peninsula recorded more than 10,000 local, 

regional and teleseismic earthquakes. All waveform data were compiled and initial 

earthquakes locations were determined using the Antelope Relational Database System 

(version 4.7), developed by Boulder Real Time Technologies Inc. (http://www.brtt.com/). 

This software gives users the capability to manage and view a large seismic dataset in a 

graphical user interface (Figure 6). It integrates various algorithms useful for 

seismological study. In addition, it allows the user to automatically detect earthquakes, 

filter the waveforms, manually pick different phase arrivals, locate earthquakes, estimate 

magnitudes and many other analysis techniques that are useful for earthquake studies. 

However, the automatic detection algorithm within Antelope was not used in this study 

because the algorithm missed many valuable local events which were important for this 
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work. Instead, many earthquake analysts, including myself, manually checked the raw 

waveforms to detect earthquakes and pick first P- and S-arrivals. Though it has been a 

very time consuming process, the end product is a high quality earthquake catalog that 

can be used in this and future seismological studies to understand the seismic process 

in this area. However, we could not finish picking the events for 58 days starting from the 

day after the July 21, 2000, Mw 6.4 events. These days are characterized by numerous 

aftershocks of this large outer rise earthquake. Moreover, including these clustered 

aftershocks in the FMD calculation may bias the result. So, I decided to exclude these 

58 days from the present catalog. The Antelope location algorithm is used for preliminary 

location of the events from manually picked phase arrivals with IASP91 global velocity 

model. In total, more than 10,000 events are detected and located using Antelope. The 

location and phase information are stored in ASCII format that can be easily manipulated 

for farther analysis. 

 

 

2. 2 Earthquake Relocation and Magnitude Estimate 

 

The resulting earthquake catalog created within Antelope contains the 

phase information of first arrivals of P- and S-wave and locations given by the built-in 

location algorithm, using IASP91 velocity model. Because the model does not account 

for lateral seismic wave velocity variations in the earth, initial locations are poorly 

constrained. Since a spatial FMD study is very sensitive to the event locations, it was 

necessary to relocate the events using an available 3-D velocity model for this area 

(DeShon et al., 2006). The velocity model was developed by simultaneous inversion of 

P- and S-wave arrival time data of small magnitude local events from this very catalog 

using the FORTRAN program SIMULPS13Q (Thurber, 1983; Evans et al., 1994). I used 
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the latest available version of the same program, named Simul2000, to accurately 

relocate 8765 earthquakes in this catalog. Some events were not relocated due to 

inadequate phase picks. This improved catalog contains accurate location information 

with error estimates in all three directions and local magnitude (ML) estimates. The 

average resultant horizontal error is 14.52 km, though more than 88% of events contain 

error within 5 km. Though it does not contain all the events from Julian day 203-2000 to 

260-2000 (as mentioned in previous section), It contain approximately 7000 more events 

than the last study (DeShon et al., 2006) that had been done using this catalog. This 

high precision rich catalog is a great resource for seismological study in this area. 

 

 

 

Figure 6: A screenshot of the Antelope program. ‘dbpick’ window is showing waveform 

and manually picked first P- and S-wave arrivals. 
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Figure 7: Magnitude comparison between ANSS catalog and Nicoya2000 catalog. Solid 

traight line is the best fit line (slope = 0.71) between magnitudes reported in two 

Along with locations, magnitude estimates are the main parameters of this 

study. Local magnitudes (ML) are estimated using the algorithm in the Antelope. 

Considering the importance of this parameter in this work, I checked the reliability of the 

magnitude estimates against the Advanced National Seismic System (ANSS) global 

catalog (http://www.ncedc.org/anss/). This composite global catalog is created by 

merging different catalog from allover the world and removing duplicate solution for the 

same event. It is a result of the effort of Council of National Seismic System (CNSS), 

s

catalogs. Dashed grey line represents the slope = 1. 

 

 

 20



USA. I selected the events that are recorded in both the ANSS and the catalog I used 

here, and compare the magnitudes of these events (Figure 7). The comparison shows a 

reasonable fit with a slope of 0.71 ± 0.06. More than 90% of the event magnitudes fall 

within the range of ± 0.5. It is important to note that ANSS catalog does not only report 

ML, but it gives different types of magnitude estimates for different events, because it is a 

combination of various earthquake catalogs. For this comparison, all types of 

magnitudes reported in the ANSS catalog is taken into account. Considering this fact, 

magnitude estimates of Nicoya catalog seems reasonably good. 

Throughout this study, this catalog, with high precision location, timing and 

magnitude (ML) estimates, henceforth called Nicoya2000 earthquake catalog, is used for 

this spatial FM

. 3 Calculation of Frequency-Magnitude Distribution 

 for Nicoya Peninsula, the next 

portant step is to develop an algorithm and associated codes to accurately calculate 

b-values and

D study. 

 

 

2

 

Now that a robust earthquake catalog exists

im

 its spatial variation in this region. Though the Nicoya2000 earthquake 

catalog contains 8765 earthquakes, I exclude 58 days of earthquakes, as mentioned in 

the preceding sections, and used only 6620 events with low formal location error (σhoriz ≤ 

5 km) to assure a higher quality result. b-value mapping was done at several major faults 

(Wiemer and Benoit, 1996; Monterroso and Kulhánek, 2003; Schorlemmer and Wiemer, 

2005; Nuannin et al., 2005). Most of these studies including those of the subduction 

zones used all the available earthquakes in the catalog within an area to map spatial 

variation of b, irrespective of the orientations of the faults and the nature of seismicity 

around it (Wiemer and Benoit, 1996; Schorlemmer and Wiemer, 2005; Nuannin et al., 
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2005). This method can significantly increase the number of events to evaluate. 

However, all the earthquakes evaluated may not be associated with the fault under 

consideration. Including the off-fault events in the b-value calculation may produce 

artifacts in the spatial b-value map that no longer represents processes along the fault 

interface as these events may represent a completely different stress regime as 

compared to the major fault plane itself. This factor is particularly important in subduction 

zones, because the seismicity produced here is the mixture of crustal and interface 

events which may represent vastly dissimilar states of stress. Since the objective of this 

study is to investigate the seismicity produced at the subduction interface, it is important 

to eliminate crustal earthquakes and select the events that best represent the interface 

seismicity. To minimize the effect of crustal and off-interface earthquakes in the b-value 

calculation, I select the events that define the Wadati-Benioff zone for the study area 

using a spatially varying polygon. Using this subset of seismicity, a best fit parabolic 

function is derived [(114.8 - x)2 / 130.7; where x is the distance in km perpendicular to 

the trench] to farther refine the interface activity. This function represents the best 

approximation of the interface on the basis of seismicity. Finally I retain only events 

within 10 km of this parabolic function (Figure 8). After employing this procedure, most of 

the seismicity associated with July 21 Mw 6.4 outer rise mainshock is eliminated, 

resulting in a homogenized version of the main Nicoya2000 catalog. This refined catalog 

contains 3226 earthquakes that best represent the interface activity and is used for 

farther analysis. It is important to note that although considerable effort is made to 

separate the interface earthquakes, it is practically impossible to distinguish interface 

events from those generated at other smaller scale faults surrounding it, especially at the 

crustal region (up to 15-20 km depth from surface). This is because we still do not have 

a clear seismic image for most part of the subduction interface, and it can be imagined 

as the complex combinations of smaller faults that can generate earthquakes with 
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different fault mechanisms. The method describe above may be the only reasonable way 

to approximately separate the interface activity, from most intra-plate seismicity down to 

such a small magnitude. 

 

Figure 8: Vertical cross-section of low error CRSEIZE seismicity (open circles). Solid 

s represent events defining subduction zone seismicity. Only these events are 

considered for the frequency-magnitude distribution in this study. 

This subset of events is analyzed in terms of its FMD for spatial variability 

f b-value along the interface. Wiemer (2001) developed software called ZMAP that is 

able to comp

circle

 

 

o

ute spatial variation in b-value.  Instead of using ZMAP, similar algorithm 

and codes are developed that are more suitable for this particular study. My program 

named bval, can generate a spatial map of b given a earthquake catalog, like ZMAP 
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does. In addition, users can define a sampling radius which is useful to exclude nodes 

that have severely smoothed b-values. By doing so, the areas which do not have 

enough events to calculate meaningful results are removed. 

The program bval, takes an earthquake catalog written in a specific format 

as the only input file. It automatically makes a grid of the study region. In this work, I 

created a squ

hich had 

previously be

are grid with uniform 0.02° (approximately 2 km) spacing. After that, it goes 

to each grid-node and finds the closest 200 events in the catalog in vertical cylindrical 

volume. Both the grid-spacing and the event number can be modified as needed. From 

now on, all the computation in that node is done using these selected 200 events. First, 

it calculates the magnitude of completeness (MC) and eliminates all the events having 

magnitudes less than MC. Then it determines b- and a-value and associated standard 

error using both the maximum likelihood (Aki, 1965) and least square fit methods. bavl 

loops over all the nodes to compute these values for each node and stores in an output 

file. Finally, it brings up a color-coded contour plot of b-value only considering the nodes 

which have the sampling radius less than or equal to that is defined by the user. I use 60 

km maximum sampling radius for this study. Determining a useful sampling radius is a 

trade-off between the spatial extent one would like to have and the smoothing of b that 

can be tolerated. After several tests, 60 km appears to be a good compromise that gives 

a reasonable spatial extent without loosing too much on the smoothing factor. 

The methods used by bval for calculating MC and b-value warrant some 

discussions. For MC calculation, I used maximum curvature method w

en used in several FMD studies (Wiemer and Katsumata, 1999; Wiemer 

and McNutt, 1997). This method simply picks the point of maximum curvature in the non-

cumulative FMD curve. Though it is a widely used technique, it tends to underestimate 

MC because in most of the cases, FMD does not have a perfect linear logarithmic fit. 

Instead, it tends to gradually fall back from the linear trend near estimated MC and when 
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it approaches towards large magnitudes. The deviation of FMD near MC is due to the 

underestimation of MC by maximum curvature method. On the other hand, it is an easy 

and quick method and gives a good first hand estimate of MC that can be successfully 

used in spatial FMD study. Wiemer and Wyss (2000) devised a way to compute MC on 

the basis of synthetic FMD. But it is rather complex method compared to the maximum 

curvature. The authors also showed that the average difference in MC between the two 

methods is not much (0.13). To account for this difference, a constant shift of MC (of may 

be 0.2, to have a more reserve MC) can be applied, but it may significantly reduce the 

number of earthquakes available for FMD calculation which adversely affect the quality 

of the estimates of b, as well as its spatial resolution. Hence, it seems that maximum 

curvature method is the optimum method for a reasonably good estimate of MC. 

Throughout this study, I use maximum curvature method to estimate MC. 

For calculation of b- and a-value, I used both least square fit and maximum 

likelihood methods. Least square fit is a simple mathematical procedure to compute the 

best fitting lin

or. Here, 

on. It works reasonably well for 

65). This method calculates b using the following equation: 

e (or curve) to some data points by minimizing the sum of the squares of 

the differences between the line and the corresponding points (Scheaffer and McClave, 

1986). Standard error in this method is calculated using the following equation: 

                                          err = √ ( ∑ (y - ŷ)2 / (n - 2)) 

where, y = actual data, ŷ = estimate of y, n = number of data, err = standard err

standard error is used same as standard deviati

calculation of FMD parameters. But in most of the cases, FMD deviates significantly 

near the large magnitude events, particularly in an earthquake catalog which covers only 

slightly more than 16 months of seismicity. This deviation imparts significant error in b-

value calculation. 

This problem can be avoided by using maximum likelihood method to 

estimate b (Aki, 19
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ss, e = 

). The standard error is given by Shi and Bolt 

mean)2 / n(n-1). 

maximum likelihood method is mainly dependent on the smaller 

ch effect of the deviation at the large 

magnitude re

  b = log10(e) / (Mmean - MC) 

where, Mmean = mean magnitude, MC = magnitude of completene

2.718281…(base of the natural logarithm

(1982) which is as follows: 

                      err = 2.30b2σ(Mmean) 

and σ is given by, 

                         σ2(Mmean) = ∑ (Mi - M

The 

magnitude part of the FMD, thus does not has mu

gion. It also requires an accurate estimate of MC. Although both least-

square fit and maximum likelihood methods are used in previous b-value studies, the 

latter technique seems to give better estimate of b because of its efficiency to avoid the 

deviation in FMD. It also becomes a generally accepted method in the FMD studies in 

recent years. Although, bval has the ability to compute b using both the methods, I 

primarily use the results given by the maximum likelihood method for interpretation 

purpose. 
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CHAPTER 3 

 

RESULTS AND DISCUSSIONS 

 

3.1 Earthquake Relocation 

 

Figure 9: Seismicity in the study area from the present catalog. Saw-toothed curve 

represent MAT. Red solid circles show interface events with horizontal error within 5 km. 

Green solid circles show non-interface seismicity. Yellow star represents July 21, 2000 

Mw 6.4 event at the outer rise. Note that the aftershock cluster is landward of the trench. 

Also notice the strong seismic lineation (red events) along the coast of the Nicoya. 
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The relocated earthquakes show interesting features. The most prominent 

feature is the

et al., 2006 ench, the spatial 

distribution d landward of the 

trench and lies within th anism is normal 

and the mainshock  by the 

lineation tre  Peninsula. It 

becomes extremely pro ered (Figure 9, 

and 10), su band on the 

interface. Th Nicoya coast. It 

implies that this area rather 

than smaller scale feat on the fault plane. When 

compared with the subduction interface geometry for this region (Figure 10) derived by 

Thomas et al. (2007), it reveals some interesting aspects of subduction processes here. 

The seismic lineation corresponds well with the 20 km depth contour, also trending 

northwest-southeast, of the subduction interface, and is where the subduction interface 

changes its dip sharply from a shallow ~10º to a steep ~40º. This abrupt and large 

change in the dip of the subduction interface can be observed beneath the entire Nicoya 

coast, similar to the seismic lineation. The sharp change in the dip results in the strong 

 clustering of the aftershocks of the July 21, 2000 Mw 6.4 event (Figure 9). 

The mainshock is a result of the normal faulting located at the shallow part of the outer 

rise, the seaward side of the MAT. But interestingly, most of the aftershocks are 

concentrated towards the landward side of the trench, north of the mainshock. They are 

mainly located beneath the subduction interface and not associated with interface 

activity (Figure 9). Though the mainshock was denoted as an outer rise event (DeShon 

; Norabuena et al., 2004) and located seaward of the tr

of the aftershocks strongly suggests that most slip occurre

e subducting slab. Because the faulting mech

is located landward of the trench, it is likely that it was caused

extension of the downgoing Cocos plate. 

Perhaps the most intriguing seismic feature in this area is a strong seismic 

nding northwest-southeast along the coast of the Nicoya

minent when only interface seismicity is consid

ggesting the majority of the events occur along a narrow 

is linear seismic feature is very persistent along the entire 

 the seismic lineation is a result of large scale tectonics in 

ures like asperity and/or locking 

 28



bending of th

nch (Figure 3). At the interface contortion, the age 

difference sh

e interface. This linear zone of strong bending of the subducting slab at 20 

km depth may cause frequent rupture along this zone to accommodate the bending 

producing the linear pattern of seismicity along this region. This finding depicts that 

subduction interface geometry plays an important role in pattern of earthquake 

production in and around Nicoya. 

A close perusal of interface geometry also shows a sudden along strike 

bend in the interface depth contours suggesting a contortion of the interface beneath 

central Nicoya (Figure 10). It indicates that the interface suddenly become shallower at 

the southeastern side of contortion. A slight shift in the line of seismicity is also observed 

in this region. This zone of interface contortion corresponds well with landward projection 

of fracture trace on the Cocos plate (Figure 10). The fracture trace separates the CNS 

from EPR generated oceanic crust (Barckhausen et al., 2001) while the corresponding 

interface contortion marks the boundary between the shallower (southeastern side) and 

deeper (northeastern side) part of the interface. The shallower part at the southeastern 

side of the contortion (and the fracture trace) is characterized by the subduction of CNS 

generated oceanic crust which is ~1.5 Ma younger than the EPR created crust at the 

northwestren side. Moreover, orientation of the seafloor magnetic anomaly suggest that 

the age difference between CNS and EPR crust across the fracture trace increases as 

one goes landward form the tre

ould goes up to ~3 Ma. Barckhausen et al. (2001) pointed out that the 

subducted extension of the fracture trace may be a more pronounced feature. In 

addition, CNS crust produced higher heat flow measurements and modeled as the 

warmer part of the Cocos plate relative to the EPR crust (Fisher et al., 2003). These 

evidences suggest that CNS crust is possibly less dense than EPR one. The difference 

in densities may be the reason of the difference in the depths of the subduction interface 

across the contortion (and the fracture trace). The CNS crust in the southeastern side is 
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shallower because of its low density relative to the EPR crust at the northwestern part of 

the Cocos plate. It appears that the fracture trace is an important tectonic boundary and 

has significant effect on the interface geometry. 

 

Figure 10: Interface seismicity and subduction interface geometry in the study area. 

Saw-toothed curve represent MAT. Red solid circles show only interface events with 

horizontal error within 5 km. Contours in km from mean sea level represent subduction 

interface geometry for this region derived by Thomas et al., 2007. Note the bend in the 

depth contours of the subduction interface beneath the central Nicoya. Dashed grey line 

represents the trace of the fracture zone in the Cocos plate and its landward projection. 

Notice that dashed line corresponds well with the bending of the depth contours. 
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3.2 Overall Frequency-Magnitude Distribution 

 

Figure 11: Overall b-value of the subduction interface off Nicoya Peninsula calculated 

using the maximum likelihood method. 
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Figure 12: Overall b-value of the subduction interface off Nicoya Peninsula calculated 

using the least square fit method. 

 

 

Results of this FMD study shows some very interesting features. Before 

going into the details of spatial FMD mapping, I would like to present the overall FMD for 

this area. The overall b-value estimate for the Nicoya subduction interface using the 

maximum likelihood method is found to be 1.18 (Figure 11) with a standard error of 0.04 

(3%). A least squares estimate gives similar results with a b-value of 1.25 (Figure 12) 

and somewhat larger error of 0.11 (9%). The MC is calculated to be 2.7 using the 
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aximum curvature method for the entire interface catalog. Shifting MC by 0.2 towards a 

more conservative estimate does not produce much change in b, such that the 

, 

 

r. 

D 

 

 

However, in this study I used a local seismic catalog that spans only ~16 months. 

Moreover the events used in this study represent only subduction interface activity 

without much contamination from the crustal events. Therefore, comparing the outcome 

of this work directly to the global FMD study may results in misleading interpretations. 

For example, Southern Tyrrhenian Subduction Zone in Italy shows an overall b of 1.64 

based on a regional catalog provided by the Istituto Nazionale di Geofisica e 

Vulcanologia (Schorlemmer et al., 2003). An overall b of 1.14 ± 0.13 is reported from 

m

maximum likelihood b is estimated to be 1.23 with 0.05 standard error and the least 

square method gives a value of 1.24 with a standard error of 0.12. The larger error in b

when calculated with a more conservative MC of 2.9 is possibly attributed to the fact that 

approximately 45% data are lost due to the small (in this case, 0.2) increase in MC. In

addition, using both the methods of MC calculation, the b estimates look very simila

Hence, the cost of a more reserve MC is too high in this study with not much change in 

the results; therefore, the maximum curvature method is also used for spatial FM

analysis. 

The global average of b is observed to be approximately 1 (e.g. Stein and 

Wysession, 2003), which is a little lower than that is found here. Interestingly, the world-

wide subduction zone b shows an even lower value with a range of 0.53 to 0.74 (Bayrak 

et al., 2002) mainly because the seismicity here is dominated by thrust faulting

(Schorlemmer et al., 2005). In contrast, Nicoya subduction megathrust has relatively 

large b (1.18). As discussed in the section 1.5, relatively higher b indicates lower stress. 

Thus larger b in Nicoya compared to the global average apparently suggests a generally 

weak interface in this region. But it should be noted that most global FMD studies are

based on relatively spatially unfiltered global earthquake catalogs over long time periods. 
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New Zealand subduction zone using a regional catalog compiled by the Seismological 

Observatory, Institute of Geological and Nuclear Sciences in New Zealand (Wiemer and 

Benoit, 1996). This part of the New Zealand subduction zone had been identified as 

strongly locked (Reyners, 1998), and hence an area of strong seismic coupling. Nuannin 

et al., (2005) came up with the most striking example when they analyzed FMD of 

earthquakes reported by United States Geological Survey spanning a time period of five 

years, preceding the great Sumatra 2004 Mw 9.0 event, in Sumatra and Andaman-

Nicobar Island subduction zone. They found an overall b-value of 1.21 ± 0.13 for this 

region. Occurrence of the great earthquake suggests that the subduction megathrust 

was a region of very high stress accumulation (strong seismic coupling). All the studies 

mentioned above are done using ZMAP which uses the maximum likelihood method to 

compute b, negating any possible effects on the magnitudes of b due to difference in 

calculation methods. In the light of these recent works, it seems that Nicoya subduction 

interface, with b-value of 1.18 ± 0.04, may represents a megathrust with high stress 

concentration. The main cause of high stress concentration in a large scale tectonic 

feature like subduction megathrust is the seismic coupling. Comparing the overall b-

value of Nicoya to the global and regional FMD studies, it appears that the subduction 

interface near Nicoya Peninsula may be a region of moderate seismic coupling. 

eodetic model also shows a combination of locked and freely slipping patches on the 

 this region (Norabuena et al., 2004). Another important factor that may 

significantly a

G

interface in

ffect the stress accumulation along a fault plane at a particular time window 

is the stage of seismic cycle under investigation. Irrespective of the nature of seismic 

coupling (strong, moderate or weak), high stress accumulation likely to occur only at the 

last stage of seismic cycle. Thus the high stress concentration along the interface near 

Nicoya possibly indicates that it may be close to the end of a seismic cycle which 

eventually will terminates in a large earthquake in recent future. This inference is 
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supported by the long history of devastating “50 year” earthquakes (magnitude ~7.7 or 

larger) that occurred in this region in 1853, 1900 and 1950 (Brown et al., 2006). 

However, it is important to note that the overall b-value (1.18) for this area should not be 

taken as a typical value for all subduction megathrust with moderate seismic coupling 

that is at the last stage of a seismic cycle. It may vary from one subduction zone to 

another depending upon the seismic network, accuracy of the velocity model and event 

locations, type of magnitude and methodology used for b-value calculation. 

Although overall b-value can give a broad idea of the prevailing stress 

regime in an area, it lacks the spatial detail. In the next section, I will address this issue 

with the help of the spatial distribution of b. 

 

 

3.3 Spatial Frequency-Magnitude Distribution 

 

The overall b-value of Nicoya subduction interface suggests moderate 

seismic coupling between the overriding and subducting plates. In Nicoya, the coupling, 

or locking generally varies over the interface (Norabuena et al., 2004) covering several 

thousand square km, and the next large event is most likely to occur at the zone of the 

strongest locking and high stress accumulation. The most challenging work in 

subduction zone earthquake hazard analysis is to delineate this zone. I used spatial 

FMD mapping to understand the stress regime along the interface, and infer the state of 

locking. Before calculating b, spatial distribution of MC is determined with the maximum 

curvature method. In this region, MC varies from 1.5 to 2.7. The lowest MC is observed 

near central Nicoya and offshore and the highest MC appears near the four corners of 

the rectangular study area (Figure 13). As MC is calculated at each grid node, and the 
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events below MC's are eliminated before computing b, so that the variability in MC should 

not affect the b-value. 

 

 

Figure 13: Spatial distribution of MC calculated by the maximum curvature method. The 

lowest curvilinear bathymetric feature represents MAT. Yellow solid circles show 

epicenters of interface earthquakes used for the calculation. 
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b shows a wide variation along the interface in this region. The maximum 

likelihood estimates of b vary from 0.63 to 1.98 (Figure 14). The standard errors in the 

estimates range from 4.9% to 20.9% of b-value, but for approximately two-third of the 

data, it is within 10% (Figure 15). The b-value distribution, when calculated with the least 

square fit method, shows similar spatial pattern but with a little higher magnitude of b 

(Figure 16), as also noticed in the overall b-value. In this case, b varies from 0.73 to 

2.79, while the standard error fluctuates from 2.1% to as high as 33.6% (Figure 17). 

However, ap

 radius is found to be 5.24 km and the 

aximum is chosen as 60 km. But at approximately 74% of the total grid nodes, 200 

vents are found within 40 km radius. The sampling radius is relatively small along the 

the edges (Figure 19). The average 

solution, meaning the number of events available after removing the ones below MC, is 

approximatel

 

proximately 60% of the data contain error within 10%. The spatial pattern of 

the a-value (seismicity rate) looks similar to that of b, and it varies between 3.07 and 

6.56 (Figure 18). The minimum sampling

m

e

entire peninsula and it gradually increases at 

re

y 80 per node. 

I also tested the spatial variability of b with a more reserve estimate of MC, 

by increasing MC by 0.2 from that calculated using maximum curvature method. The 

distribution of b is again very similar to that discussed earlier (Figure 20), though the 

magnitude of variation is little higher (0.67 to 2.63). Interestingly, the error goes up from 

the previous method to vary from 6% to 37% (Figure 21), because more than 40% of the 

data is eliminated as a cost of increasing the MC by 0.2. The average events per node 

reduced to approximately 48 from 80 per node in the earlier method. The sharp 

decrease in the event number can adversely affect the b-value estimate, as evident from 

the enhanced error. Hence, MC estimated using maximum curvature method is used for 

this spatial FMD analysis. 

 37



 

 

 

 
Figure 14: Spatial distribution of b-value calculated by the maximum likelihood method. 

Yellow star shows the epicenter of 1990 Mw 7.0 Gulf of Nicoya event (Protti et al., 

1995b). Other features are similar to Figure 13. 
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Figure 15: Spatial distribution of standard error in b-value estimates using the maximum 

 

likelihood method. Other features are similar to Figure 13. 
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Figure 16: Spatial distribution of b-value calculated by the least square fit method. 

Yellow star shows the epicenter of 1990 Mw 7.0 Gulf of Nicoya event (Protti et al., 

1995b). Other features are similar to Figure 13. 
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Figure 17: Spatial distribution of standard error in b-value estimates using the least 

square fit method. Other features are similar to Figure 13. 
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Figure 18: Spatial distribution of a-value calculated by the maximum likelihood method. 

Other features are similar to Figure 13. 
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Figure 19: Spatial distribution of sampling radius in km. Other features are similar to 

igure 13. 

 

 

F

 

 43



 

 

 

Figure 20: Spatial distribution of b-value calculated using the maximum likelihood 

method with a conservative M  (increaC sed by 0.2 from that calculated using maximum 

urvature method). Other features are similar to Figure 13. 
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Figure 21: Spatial distribution of the standard error in the b-value estimated by the 

C

sing maximum curvature method). Other features are similar to Figure 13. 

maximum likelihood method with a conservative M  (increased by 0.2 from that 

calculated u
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The spatial distribution of b reveals some interesting features. Three 

distinct regions with anomalous b are found. A pronounced zone of low b is observed 

slips/ruptures in a big earthquake, releasing most of the strain energy. Thus, it is 

reasonable to suggest that the low b-value zones are strongly locked and in its late 

r hand, the area with high b 

presents a region with relatively low stress accumulation. This area is very near the 

990 Mw 7.0, Gulf of Nicoya earthquake (Figure 14, and 16). In addition, this zone is 

irectly above the landward projection of the Fisher Ridge and, the Gulf of Nicoya 

near the central Nicoya and offshore (Figure 14). This well-defined rectangular-shaped 

low b zone has value typically lower than 1. The second area with anomalously low b-

value is observed near the northeastern corner of the Nicoya Peninsula at a greater 

depth of the subduction interface. It is a relatively small circular patch with b-value lower 

than 1. The third area with an anomalously high b-value is found to be located at the 

southeastern part of the peninsula. In this case, the b-value goes up to approximately 2. 

This zone of high b is relatively smaller in dimension than that of the low b regions, and 

approximately coincides with the landward projection of the subducting Fisher Ridge. 

Now the important question is: What do these areas of anomalous b signify? 

As discussed in section 1.5, b-value is believed to represent the stress 

regime of an area, and hence, can act as a stressmeter. b-value is found to be inversely 

proportional to the differential stress in an area, such that the higher the stress, the lower 

the b-value (Schorlemmer et al., 2005). Thus, the areas of low b in central Nicoya and 

offshore, and near northeastern part of the peninsula are likely to be characterized by 

high stress accumulation. This state of stress may well be caused by the increased 

locking in part of the interface due strong seismic coupling. A strongly locked patch of 

the fault plane gradually accumulates stress in that part of rock volume until it 

stage of seismic cycle. Therefore, these regions are likely to produce the next large 

interface earthquake in the MASZ near Nicoya. On the othe

re

1

d
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arthquake is thought to be produced by the subducted seamount (Protti et al., 1995b). 

Moreover, Husen et al., (2002) showed clear tomographic image of the subducted 

Peninsula can be correlated with the second locked patch found in the GPS model at the 

greater depth (centered at 39 ± 6 km). Though the second low b zone shows weak 

et 

l. (2004) found two locked portions along the interface, one is at greater depth relative 

 other. Similarly, the spatial b-value map shows two zones of anomalously low b, at 

o different depths with similar spatial distribution. Moreover, the southeastern part of 

e

seamount in this region. It is believed that subducted seamount can increase the seismic 

coupling at the seismogenic zone, and has the ability to increase the magnitude and 

recurrence interval of large subduction event (Scholz and Small, 1997). However, most 

of the stress in this part of the interface had been released by the Gulf of Nicoya event 

making it a zone of decreased stress concentration. Because this dataset was taken 

only 10 years after the event, it is in the very early stage of the seismic cycle, hence 

making it a good case of an area with depleted stress in that time period. 

Interestingly, spatial b-value mapping not only reflects the stress regime on 

the subduction megathrust, but also corresponds well with the state of locking along the 

interface (Figure 22). Norabuena et al., (2004) performed an inversion of GPS data 

across Nicoya Peninsula from 1994 to 2000 to build a model of locking along the 

interface that is independent of the seismic data collected in this area. Like the b-value 

map, the GPS model also shows a strongly locked patch on the interface just offshore 

the central Nicoya. The locking goes up to more than 60% in this region and can 

possibly go up to 100% further offshore (Brown et al., 2006). The b-value map also 

delineates a profound zone of anomalously low b zone in this part. Likewise, another 

patch of low b at higher depth of the interface beneath northeastern part of the Nicoya 

correlation with the second geodetically derived locked patch, the pattern of distribution 

of low b-value areas and the GPS derived locked portions matches well. Norabuena 

a

to

tw



the peninsula

re 23). The 

relationship b

 with high b corresponds with a zone of decreased interface locking in the 

GPS model (less than 20%), sitting over the down-dip extension of the Fisher Ridge. 

However, the shape, the spatial extent and distribution of the locked (or unlocked) 

patches differs slightly from zones with anomalous b-values, possibly because the GPS 

model used an assumed subduction interface that differs from the best fit interface 

derived on the basis of Wadati-Benioff zone seismicity in this study. The GPS model is 

heavily dependent on the fault plane geometry, while this FMD study has little 

dependence on the derived interface as events within a window of 20 km around the 

interface were selected. 

A point-by-point comparison between b and locking shows a negative 

correlation (-0.38), meaning that b-value decreases as locking goes up (Figu

etween b and locking is found to be, b = 1.73 – 0.01L, with somewhat high 

scatter; where L represent the locking in percent. These results show that variability of b 

also depicts the state of locking along this subduction interface, and the b-value is 

inversely affected by the degree of locking along the fault plane. FMD study in San 

Andreas Fault also revealed that the locked part of this active transform fault is marked 

by a zone of low b-value (Schorlemmer et al., 2004). While the authors of the Parkfield 

study mainly relied on qualitative comparison between b and locking, this study gives a 

quantitative assessment of the correlation between b and locking in an active fault plane. 

This work strongly suggests that spatial variation of b-value can be used to infer locking 

along the subduction interface based solely on the micoroseismicity. 

Though inversion of GPS data showed two locked portions of along the 

interface, it was not able to determine whether these two patches are separated by a 

gradational variation of locked slip or a distinct freely slipping zone (Norabuena et al., 

2004). Spatial b-value mapping shows that two zones of low b are separated by an 

unambiguous area of relatively higher b with a value close to the overall b for this area 
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(Fig. 14, and 24). It may indicate that the locked patches are separated by a freely 

slipping zone. Hence, in this case, FMD mapping illuminates some fine details of 

variability of locking that was not clearly understood by GPS modeling. Interestingly, 

variation in b also reflects the effect(s) of the interface geometry and one of the major 

tectonic boundaries in this region, the fracture trace separating CNS and EPR created 

crust. The projection of the fracture trace and the contortion at the interface at the central 

Nicoya corresponds with a region of typical b (~1.18) for this area that is situated within a 

broad zone that is mostly characterized by anomalously low b and interpreted to be the 

locked part on the interface (Figure 24). It appears that the low b-value zone in the 

southeastern part of the fracture trace extends farther towards land, and hence to a 

greater depth along the interface, than its counterpart in the northwestern side of the 

fracture trace. Clear variability in the distribution of b across the boundary between CNS 

and EPR crust may be caused by the variations in the physical properties (including heat 

flow, pore pressure, and density) and resulting stress regime between them. This 

observation depicts that FMD mapping not only illustrates the variation in stress and 

locking along the interface, but also has the ability to capture the effect(s) of major 

tectonic features in this area. 
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hows the epicenter 

of 1990 Mw 7

GPS derived interface locking in percent (Norabuena et al., 2004). Other features are 

Figure 22: Spatial distribution of b-value calculated by the maximum likelihood method 

with MC estimated by the maximum curvature method. Yellow star s

.0 Gulf of Nicoya event (Protti et al., 1995b). The contour lines define the 

similar to Figure 13. 
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Figure 23: Direct point-by-point comparison between GPS locking (in percent) and b-

m likelihood method. The line shows the best fit using the least square 

ethod. 
value in maximu

m
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Figure 24: A summary plot of this study. Saw-toothed curve represent MAT. Green solid 

ircles show all non-interface relocated events in the catalog. Red solid circles show only 

The spatial distribution of b-value is color-coded. 

c

interface events with horizontal error within 5 km. Yellow star shows the epicenter of 

1990 Mw 7.0 Gulf of Nicoya event (Protti et al., 1995b). Contours in km from mean sea 

level represent subduction interface geometry for this region derived by Thomas et al., 

2007. Dashed grey line represents the trace of the fracture zone in the Cocos plate and 

its landward projection. 
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CHAPTER 4 

 

CONCLUSIONS 

 

 

 

One of the important products of this work is a high precision regional 

earthquake catalog, Nicoya2000, containing 8765 relocated events in and around 

Nicoya Peninsula, Costa Rica. The catalog covers a time span of approximately 16 

months, and reflects the seismicity along the seismogenic zone in this segment of the 

MASZ. The relocated aftershocks of the July 21 Mw 6.4 event suggest that the rupture 

and/or slip area of this large earthquake is distributed mainly on the landward part of 

MAT, though the mainshock is located at the outer rise of MASZ. A strong seismic 

lineation along the subduction interface beneath the entire Nicoya coast is observed. It is 

caused by rupturing of the Cocos plate due to sharp bending of the subducting slab to 

accommodate the abrupt large change in the dip of the interface. The subduction 

interface shows a contortion beneath the central Nicoya that is possibly a result of the 

difference in the densities between the CNS and EPR generated crust. I selected events 

lose to the subduction interface from the Nicoya2000 catalog and analyze it in terms of 

subduction interface in this region. Spatial FMD mapping shows that there is 

ignificant variation in b-value along the interface. Here, b varies from 0.63 to 1.98 with 

ree distinct zones of anomalous b. Two pronounced zones of low b in the central 

icoya and offshore, and beneath the northwestern part of Nicoya Peninsula at a greater 

depth, indicate regions with high stress accumulation and increased locking along the 

c

it FMD. The overall b-value is found to be 1.18 ± 0.04, which suggests a moderately 

coupled 

s

th

N
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interface. Conversely, a zone of high b in the southeastern part of Nicoya suggests low 

stress concentration with decreased locking. Spatial variability of b corresponds well with 

04). 

b  

 

that 

rt. It 

 

 

 

ain 

 

b  

 

the independent GPS model of interface locking in this region (Norabuena et al., 20

 is found to reflect the stress regime as well as the degree of locking on the subduction

interface. Direct correlation between b and GPS locking suggests an inverse relationship

between them, as locking increases, b goes down. The distribution of b indicates 

two locked patches on the subduction interface are separated by a freely slipping pa

also shows the effect of a major tectonic boundary and the interface geometry. While

inversion of geodetic data may be an optimal method for determining interface locking,

assumptions about material homogeneity and precise slab geometry is necessary.

Alternatively, mapping b-value requires fewer assumptions and can help constr

locking in regions that are not easily accessible by land-based geodetic techniques, such

as updip regions of most subduction zone environments. In this work, I find that spatial 

-value mapping of the subduction zone interface can be effectively used to infer the

prevailing stress regime and the variability of degree of locking on the interface, if 

adequate seismic data exist. 
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