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INSPECTION SYSTEM AND METHOD FOR 
BOND DETECTION AND VALIDATION OF 

SURFACE MOUNT DEVICES 

CROSS REFERENCE TO RELATED 
APPLICATION 

This application claims benefit of the filing date of 
previously filed provisional application entitled INSPEC
TION SYSTEM AND METHOD FOR BOND DETEC
TION AND VALIDATION OF SURFACE MOUNT 
DEVICES, Ser. No. 60/023519, filed Aug. 7, 1996. 

FIELD OF THE INVENTION 

The present invention relates generally to quality control 
inspection systems and more particularly, to an inspection 
system and method for bond detection and validation of 
surface mount devices using vision and infrared sensors, 
combined with a technique for discriminating and detecting 
solder joint defects. 

BACKGROUND OF THE INVENTION 

It is indeed paradoxical that, on one hand, the quality of 
manufactured printed circuit boards (PCBs) has increased 
steadily over the past years while, on the other hand, the 
need for quality assurance has become more pronounced. As 
packaging technology marches on from through hole to 
surface mount to multichip modules, the complexity and 
sophistication of these processes introduce a larger aggre
gation of defect categories and impose stringent perfor
mance requirements. The critical role of electronic devices 
in diverse application areas such as missiles, aircraft, auto
motive manufacturing, computers and communications, etc. 
necessitates means for "proof-of-reliability" and metrics of 
performance. In the case of surface mount technology 
(SM1), finer pitch leads have increased the complexity of 
PCBs beyond the point of accurate and repeatable manual 
inspection. Many studies have been performed that show on 

2 
very costly and still cannot detect all the defects. The 
limitations of automated systems are caused by the scope of 
the individual sensors in classifying the known range of 
defects. Kenneth Reid, "Automated Soldering Inspection 

5 Technology Study," Proceedings of Technology Program of 
NEPCON West, Anaheim, California, vol. 3, pp.1288-1297, 
February 1993. The complementary nature of IR and vision 
sensors improves the reliability of the inspection scheme and 
broadens the scope of quality assurance strategies. The use 

10 of multiple sensors requires a system to fuse the information, 
process it for classification, and ultimately provide feedback 
to the process. For the system to have practical application, 
it should be cost effective, and operate in a timely fashion. 

A low-cost, robust, flexible and accurate inspection sys-
15 tern for detecting and identifying surface mount defects is 

needed. Inspection requirements vary from one industry 
sector to another just as the products to be inspected exhibit 
an enormous range of variability, however there is no 
universal definition of a good solder joint. In order to meet 

20 such diverse requirements, it was decided to design, develop 
and implement an inspection system that utilizes the syner
gism and complementarity of vision and IR sensing in a 
unified platform that may carry out an inspection task on the 
basis of either 100% testing or a sampled population. The 

25 inspection procedure is performed in two stages in order to 
reduce the inspection time and to have control over the 
production line delays. The first stage is called a GROSS 
inspection station that scans a PCB to determine global 
features to find probable defective areas of the PCB. The 

30 second stage is a FINE inspection station that uses intensive 
methods on questionable areas and generates local features 
for classification. Since the FINE inspection is performed 
off-line, it does not create a bottleneck in the production 
process. The complementary nature of the vision and IR 

35 sensors allows a broad range of classifications that would 
not be possible using only one sensor. This fusion combined 
with an on-line and off-line inspection procedure, offers a 
reliable and time efficient system for solder joint inspection. 

a given day, an operator may inspect the same PCB and 
declare different defects. This lack of reliability and repeat- 40 

ability demands a more accurate approach using automated 
systems. The most widely used methods for automated 
inspection are based on vision, infrared (IR),and X-ray. 
Vision systems are relatively mature but are limited to 
surface level defects and cannot detect structural defects 45 

such as voids. P. J. Besl, et al., "Automated Visual Solder 
Inspection", IEEE Transactions on Pattern Analysis 
Machine Intelligence, vol. PAMI-11, pp.42-56, March 
1985, D. W. Capson and S-K Eng, "A Tried Color Illumi
nation Approach for Machine Inspection of Solder Joints", 50 

IEEE Transactions on Pattern Analysis Machine 
Intelligence, vol PAMI-10, pp.387-393, May 1988 and S. L. 
Bartlett, et al., "Automatic Solder Joint Inspection," IEEE 
Transactions on Pattern Analysis Machine Intelligence, vol. 
PAMI-10, pp.32-42, January 1988. Vanzetti used IR for 55 

inspection employing the radiance of the material to deter
mine the mass of solder present. This method is not capable 

SUMMARY OF THE INVENTION 

A hybrid inspection system which includes vision and IR 
sensors. The vision sensors are gray scale charge coupled 
device (CCD) cameras which take 640x480, 256 gray scale 
2-dimensional images of the solder joints. The visual inspec
tion techniques include image processing and pattern rec
ognition approaches for automatic inspection of visible 
defective joints. The IR side of the system uses a laser to 
heat the joint and observe the IR radiance curve as the joint 
heats and cools. The IR radiance curve is called a thermal 
signature of the joint. A two color IR sensor is used to record 
the thermal signature of a solder joint. The two color IR 
sensor is used to get emissivity independent thermal signa
tures by performing data level sensor fusion. 

The GROSS inspection station is employed first on-line, 
to rapidly detect defects such as missing components, angu
lar misalignment, linear misalignment, and solder mass 
related defects on a sample basis. A vision system checks for 
the component's presence and for placement related defects. 
After these defects have been screened, a statistical sampling 
scheme is used for IR screening to detect defect categories 
such as excess solder, insufficient solder, no solder and lifted 
leads. At this stage, the complete thermal signature of the 
solder joints is captured, but only the difference between 
starting and peak value, and the difference between peak and 
final value is analyzed to determine if it falls within normal 
range. If a potentially defective board is recognized, the 
candidate PCB is shipped to the FINE inspection station 

of reliably detecting surface level defects such as linear 
misalignment and angular misalignment. Riccardo Vanzetti 
and Alan C. Traub, "Combing Soldering with Inspection", 60 

IEEE Control Systems Magazine, pp.29-31, October 1988. 
The X-ray based inspection uses radiographic imaging tech
niques to obtain X-ray images of the solder joints for defect 
classification. M. Juha, "X-ray Machine Vision for Circuit 
Board Inspection," Proceedings of Vision 86 Conf. of SME, 65 

Detroit, Michigan, pp.3-41-3-55, June 1986. The X-ray 
based inspection is reliable in its scope of coverage, but it is 
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where another vision system captures a higher resolution 
two-dimensional 256 gray level image of the probable 
defective areas and exhaustive defect search is performed at 
the lead level. For the IR inspection, the complete thermal 
signature, stored at the GROSS inspection station, is ana- 5 

lyzed both in the heating and cooling cycles and the defect, 

FIG. 18 illustrates the feature space for IR based GROSS 
inspection. 

FIG. 19 illustrates the block diagram of FINE inspection 
procedure. 

FIG. 20 illustrates good solder joints and typical solder 
joints defects. 

if there is one, is declared and classified. The trade-off here 
is between speed of inspection and thoroughness. The sta
tistical sampling scheme is used to cut down the time 
required to inspect each joint. The sampling rate can be 
adjusted to meet the constraints of the process. Sensor fusion 
techniques have been developed to combine vision and IR 
sensors' data at various levels of abstraction. A data level 
sensor fusion methodology for two IR sensors provides 
emissivity independent thermal signatures of the solder 
joints. At the FINE inspection station, active perception is 
employed to perform feature level sensor fusion. 

Other features and advantages of the present invention 
will become apparent to one of skill in the art upon review 
of the following drawings and the detailed description of the 
preferred embodiments. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 21 illustrates a sequence of nested subsets of 8. 
FIG. 22 illustrates the flow chart of DOC calculation 

10 procedure. 

FIG. 23 illustrates DOC trajectories for class A 
FIG. 24 illustrates the active perception procedure for 

defect classification. 

FIG. 25 illustrates the mixture probability density func-
15 tion of a feature for two class case. 

FIG. 26 illustrates the graphical representation of distin
guishability measure. 

FIG. 27 illustrates the centerline offset feature for a 

20 linearly misaligned IC. 
FIG. 28 illustrates a menu screen of the vision/IR inspec

tion system. 
FIG. 29 illustrates DOC trajectories for an excess solder 

defect. 
The present invention, as defined in the claims, can be 25 

better understood with reference to the following drawings. 
The drawings are not necessarily to scale, emphasis instead 
being placed on clearly illustrating principles of the present 

FIG. 30 illustrates DOC trajectories for a bridging defect. 
FIG. 31 illustrates DOC trajectories for a solder ball 

defect. 
FIG. 32 illustrates DOC trajectories for a good solder 

joint. 
invention. 

FIG. 1 illustrates the proposed assembly line inspection 
system for surface mount devices. 

FIG. 2 illustrates the block diagram of combined vision/ 
IR inspection system. 

FIG. 3 illustrates the hardware configuration of combined 
vision/IR inspection system. 

FIG. 4 illustrates the block diagram of GROSS Inspection 
procedure. 

FIG. 5 illustrates a PCB image with directional front 
illumination. 

FIG. 6 illustrates histograms of the dark side for compo
nent present and absent cases. 

FIG. 7 illustrates perceptron results for component pres
ence test. 

30 
FIG. 33 illustrates DOC trajectories for a bridging defect. 
FIG. 34 illustrates DOC trajectories for an insufficient 

solder defect. 
FIG. 35 illustrates DOC trajectories for a good solder 

35 joint. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

With reference now to the figures wherein like reference 
40 numerals designate corresponding parts throughout the sev

eral views, FIG. 1 is a view of the proposed assembly line 
inspection system 20 for surface mount devices and FIG. 2 
is a block diagram of the combined vision/IR inspection 

FIG. 8 illustrates a typical PCB image using diffuse front 45 

illumination 

process. The GROSS inspection station 21 is employed first 
on-line, to detect missing components, angular 
misalignment, linear misalignment, and solder mass related 

FIG. 9 illustrates a binary image of the leads of one side 
of an IC. 

FIG. 10 illustrates the max scan at different stages of 50 
morphological filtering. 

defects. A vision system 23 inspects for component presence 
and placement related defects. Once these defects have been 
screened, a statistical sampling scheme is used for IR 
screening to detect defect categories such as excess solder, 
insufficient solder, no solder and lifted leads. The laser 27 

FIG. 11 shows an illustration of angular misalignment 
defect detection. 

FIG. 12 illustrates the graphical representation of linguis
tic labels, ZERO, POSITIVE, NEGATIVE, VERY 
POSITIVE, and VERY NEGATIVE, as fuzzy sets. 

FIG. 13 illustrates a typical thermal signature of a solder 
joint. 

FIG. 14 illustrates spectral radiant emittance curves at 
different temperatures and. 

FIG. 15 illustrates blackbody spectral radiant emittance at 
different temperatures, superimposed on InSb and MCT 
detectors' sensitivity. 

FIG. 16 illustrates the Z signal. 
FIG. 17 illustrates the Z signals of good and defective 

solder joints. 

heats the solder joint under inspection while the IR detector 
26 captures a complete thermal signature of the solder joint. 
At this time, only the difference between starting and peak 

55 value, and the difference between peak and final value is 
analyzed to determine if it falls within normal range. If a 
potentially defective board is recognized, the candidate PCB 
is shipped to the FINE inspection station 28 where another 
vision system 29 captures a higher resolution two-

60 dimensional 256 gray level image of the probable defective 
areas and an exhaustive defect search is performed at the 
lead level. For IR analysis, the complete thermal signature, 
stored at the GROSS inspection station, is analyzed both in 
the heating and cooling cycles and the defect, if there is one, 

65 is declared and classified. The statistical sampling scheme is 
used to reduce the time required to inspect each solder joint. 
The sampling rate can be adjusted to meet the constraints of 
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the process. Sensor fusion techniques have been developed 
to combine vision and IR sensors' data at various levels of 
abstraction. A data level sensor fusion methodology for two 

6 
determined, its linear alignment 38 and angular alignment 
42 is checked. To perform these tests, two images are 
captured at each programmed location. These locations are 
programmed during the off-line training phase. The first IR sensors provides emissivity independent thermal signa

tures of the solder joints. At the FINE inspection station, 
active perception is employed to perform feature level 
sensor fusion. 

5 image is captured using a directional front illumination 
technique 32 for the components' presence test. The second 
image is captured using a diffused front illumination 
approach 36 for linear and angular misalignment tests. FIG. 3 illustrates the principal components of the com

bined IR/Vision inspection system 10. The experimental 
setup for the IR inspection utilizes a Nd:YAG 1.06-\um, 100 10 

W, class IV laser 12 to heat the solder joints, and a two color 
EG\&G Reticon IR sensor 14 to sense the thermal radiation 
of the joints. The IR sensors used are Indium Antimonide 
(InSb) and Mercury-Cadmium-Telluride (MCT), which are 
sensitive in the 2-5 µm wavelength range and the 6-10 µm 15 

range, respectively. The sensor is cooled using liquid nitro
gen. Two vision systems are used, one for the GROSS 
inspection station and one for the FINE inspection station. 
The GROSS inspection station vision system consists of a 2/3 

inch CCD camera 16, a 24 mm telecentric lens, a 9 inch 20 

monochrome monitor, and a frame grabber capable of 
capturing 640x480, 256 gray level images. In general, the 
solder joint is brighter, and therefore has a higher overall 
gray scale value than the substrate. The substrate is com
monly a shade of green. To assure high quality absorption of 25 

the incident light by the substrate, a red-pass filter is used in 
the illumination. To have uniform shadow free illumination, 
a circular fiber optics ring light is used. For oblique 
illumination, a fiber optics goose neck is employed. The 
FINE inspection station vision system consists of the same 30 

setup as that of the GROSS inspection station except for the 
lens. The lens of FINE inspection station is microscopic lens 
with variable magnification ratios from 0.7x to 4.Sx. An X-Y 
positioning table 18 with 30 inch travel, is used for moving 
the PCB under test. The two vision systems, the IR system 35 

and X-Y positioning table are controlled by a 90 MHz 
Pentium based personal computer 22. 
GROSS Inspection Software 

This section details the software developed for the 
GROSS inspection station. The software has been developed 40 

for defect detection and identification, sensor fusion, and 
control of the overall system. The various preprocessing and 
recognition modules for the GROSS inspection have been 
implemented such that they communicate and transfer infor
mation sequentially to perform the comprehensive GROSS 
inspection. FIG. 4 illustrates the flow diagram 30 of the 
GROSS inspection procedure. 

45 

The GROSS inspection station has been designed as a 
conservative inspection procedure to insure no defective 
solder joints are declared as good. The defect detection 50 

performed at this stage uses vision data and IR thermal 
signatures in a complementary manner. Since IR can reliably 
detect the solder mass related defects, it is used to detect the 
solder mass related defects, such as bridging, excess solder, 
insufficient solder, cold joint, and lifted leads. The vision 55 

GROSS inspection station is used to detect missing 
components, and component placement related defects such 
as angular misalignment, and linear misalignment. 
Vision Based GROSS Inspection 

Referring now to FIG. 4, the vision data system consists 60 

of a two-dimensional 256 gray scale image of the PCB. A 
pattern recognition methodology is employed to detect dif
ferent types of solder joint defects using these images. Both 
crisp and fuzzy classifiers have been investigated for defect 
detection at this stage. The first step in the inspection process 65 

of a PCB is to determine whether the components are present 
on the board 34. Once the component presence is 

Component's Presence Test 

To detect the component presence and absence efficiently 
and reliably, features were found that were able to discrimi
nate between the presence and absence of a component. 
Since the components are three-dimensional objects, while 
the solder pads underneath are two-dimensional, techniques 
were considered to exploit this disparity and generate the 
desired features. Using a directional front illumination 
technique, the detection of component's presence or absence 
can be performed effectively and in a timely fashion. The 
PCB is illuminated by projecting a goose neck halogen light 
source at approximately 30° from the PCB plane. If the 
component is present, a shadow is cast. FIG. 5 illustrates the 
shadow cast by a present component 52 and the lack of a 
shadow on the missing component 54. 

The side of the component toward the light source is 
called the bright side, and the side with the shadow is called 
the dark side. 

Sub-images are extracted by using rectangular windows 
on all the sides of a component. The windows are defined 
such that they contain areas specified for the leads of that 
component. The normalized histogram of each sub-image is 
calculated and appropriate features are extracted for classi
fication. Referring to FIG. 6, the normalized histogram 60 of 
the dark side of a component present case 62 and a com
ponent absent case 64 are shown. 

The features extracted for component presence test are the 
expected value and the standard deviation of the normalized 
histogram. Since the feature space is linearly separable, a 
perceptron classifier 70 is selected for classification. The 
training data set for the perceptron consisted of 28 exem
plars while the evaluation set consisted of six data values. 
Referring to FIG. 7, the training data 72, validation data 74 
and the class boundary 76 is shown. 

Linear Misalignment Test 

The shadow free images of a PCB are captured using fiat 
a illumination source. A red-pass filter is added to a light 
source to enhance the contrast of the green substrate and 
solder joints. FIG. 8 illustrates a typical surface mount 
component image. 

Programmed rectangular windows are used to get sub
images of the solder joints 71 of the components 73. From 
each sub-image a one-dimensional vector is obtained such 
that the information about component leads and their place
ment location on the solder pads is preserved. This vector is 
called a max scan. The peaks of the max scan represent 
solder joints and solder pads while valleys represent the 
substrate. To obtain a max scan from a sub-image, first the 
sub-image is segmented using a threshold. Since the histo
gram is bimodal, threshold selection is easy. FIG. 9 illus
trates a binary image of one side of an integrated circuit's 
leads. 

Consider an image I of size MxN, represented as pix(i,j), 
i=l, ... , M, j=l, ... , N. pix(ij) is the pixel value at location 
(i,j) in I. Let S={S1 ,S2 , ... ,Sj, ... ,SN} be the max scan of 
I in the horizontal direction. The jth entry of S is calculated 
as 
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(1) 

5 
where ajk is the average of the kth set of Q number of pixels 
in the jth column of I. The ajk is calculated as 

1 Q-1 

a 1, = - ~ pu(k + i.j). 
Q ;~o 

(2) 

10 

8 
Angular Misalignment Test 

Using the same segmented sub-image as used for the 
linear misalignment test, the outside corners of the first and 
last solder pad in the sub-image are determined using a 
search algorithm. Also the outside corner of the compo
nent's first and last lead on that side is determined. Let solder 
pads' corners be (XP1 , YP1 ) and (XP2 , YP2). Aline L1 passing 
through these points has the slope, mpad' given as 

Yp2 - Ypl 
mpad = ---. 

Xp2 - XpJ 

(8) 

For a horizontal max scan, Equation 2 acts as a low pass 
filter in the vertical direction of the image I. By changing the 
value of Q, the filter cut-off frequency can be changed. 

Seymour Lipschutz, Theory and Problems of Linear Algebra 

15 2nd Edition, McGraw-Hill, Inc. 1991, ch.1, pp.1-38. 

A max scan may have noisy peaks and valleys. To filter 
out such peaks and valleys, a morphological filter is applied 
to the max scan. The mathematical morphology is a tool for 
extracting two-dimensional image components that are use-
ful in the description of the region shape such as boundaries, 20 

skeleton, and convex hull. It can also be used for pre- and 
post-processing, such as morphological filtering, thinning, 
and pruning. R. Gonzalez and R. Woods, Digital Image 
Processing, Addison-Wesley Publishing Company, Reading, 
Mass., 1992. The mathematical morphology can be applied 25 

to one-dimensional data also. Let SM be the output of the 
morphological filter, which is represented as, 

s M=( ( (SOB)EBB)EBB)OB, (3) 

where B is the structuring element, (symbol bigodotO is the 
erosion operation, and EB is the dilation operation. For set X 
and Y in Z1 one-dimensional space, the erosion of X by Y 
is defined as 

30 

XOY={xl(Y)x .. c:=._x}, 
35 

(4) 

Similarly, the slope, Mzead' of the line passing through the 
outside corners of the component leads is determined. The 
difference of two slopes gives an error angle, calculated as 
follows: 

8en0 ,=ltan-1 (mpad)-tan-1 (m1ead)I (9) 

where 1·1 is an absolute operation. Tue eerror is then com
pared with a predetermined threshold for the declaration of 
an angular misalignment defect. Referring to FIG. 11, an 
angular misalignment defect having A 92 and B 94 as the 
outside corners of solder pads and C 96 and D 98 as the 
outside corners of the component's leads. 
Defect Identification using Fuzzy Relations and Linguistic 
Variables 

To identify the defective solder joints at the GROSS 
inspection stage, a fuzzy classification approach using fuzzy 
relations and linguistic variables is used. This classification 
scheme works on linguistic labels rather than numerical 
quantities and underlines a generality of the construction 
performed. Often pattern description is provided in a lin
guistic manner rather than precise numerical quantities. For 
example, a statement formulated by a human being with 
respect to recognition of a class co would be, "If the object 
size is LARGE and its speed is FAST, then it belongs to class 

which means that the erosion of X by Y is the set of all points 
x such that Y translated by x is contained in X. 
Mathematically, the translation of Y by x is defined as, 

(Y)x={ cic=y+x, for yEY}. (5) 

The dilation of X by Y is defined as 

40 co." The size and speed are linguistic variables taking values 
expressed as linguistic labels such as LARGE, SMALL, 
FAST, SLOW, etc. The linguistic labels can be modeled as 
fuzzy sets on an appropriate universe of discourse. 

(6) 45 

Let X be the object to be classified having features that 
take linguistic values such as zero, positive, negative, etc. If 
there are N such features, then there is a fuzzy relation_on 
the universe Z=U1 xU2 x ... xUnx ... UN where Un is the 
universe of discourse of the nth feature. Sankar K. Pal and 
D. Dutta Majumder, Fuzzy Mathematical Approach to pat-

which means that the dilation of X by Y is the set of all x 
translations ofY, such that Y, and X overlap by at least one 
nonzero element, where Y represents the reflection of Y, 
defined as 

l'={ cic=-y, for yEY}. (7) 

50 tern Recognition, John Wiley & Sons (Halsted), N.Y., 1986, 
ch. 3, pp 70--73. For fuzzy sets A, B on universe U, V, 
respectively, the membership of fuzzy relation AxB on 
universe UxV is defined as 

Referring now to FIG. 10, the noisy peaks 82 and valleys 
84 in the original max scan 86 are removed by the morpho- 55 

logical filtering. After the morphological filtering, connec
tivity analysis is performed to determine the length of each 
bright and dark region encountered in the max scan 88. The 
number of peaks encountered gives information about the 
components' leads detected. The length of the bright region 60 

corresponds to the width of the solder joint and the length of 
a dark region corresponds to the distance between two 
adjacent solder joints. A fuzzy relation and linguistic vari
able based classifier, explained in the next section, has been 
developed to detect linear misalignment defects. A fuzzy 65 

classifier has been used to accommodate the uncertainty 
associated with the misalignment defect definition. 

(10) 

Lofti A Zadeh, "Outline of a New Approach to the Analysis 
of Complex Systems and Decision processes", IEEE Trans
actions on Systems Man., Cybern., vol. SMC-3, no.1, 
pp.28-44, 1973. 
where µA(u) is the membership of u in A and µs(v) is 
membership of u in B. Let the training set consist of L 
patterns partitioned into c classes, wk, for k=l, ... , c. Let 
QP j=l, ... ,L be a vector of size lxc, representing the class 
membership of the jth pattern. The training patterns are 
expressed as fuzzy relations vj, j=l, ... ,L. By taking the 
Cartesian product of -j and QP j=l, ... ,L, fuzzy relations 
are formed on the universe Zx[0,1]. The interval [O, 1] 
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represents the universe of discourse of Q. The relation, R, 
for the fuzzy classifier is obtained by, 

10 
solder joint and an IR sensor records its thermal radiation 
curve 103, called IR thermal signature or simply thermal 
signature. The thermal signature of a solder joint is a time 

L 

'R= V (Y1xfl1) 
j=l 

(11) senes. 
5 A problem associated with thermal signature analysis is 

where V is the symbol for the maximum operator. The 
quantity yjxQj is obtained using (10). Given an unknown 
pattern X with feature values, <I> 1 (X), <I>iX), ... , <I>~X), 10 

its corresponding13 is obtained and then its class 
membership_is calculated as, 

<f>=yoR (12) 

that the sensor measurements are dependent on the emis
sivity of the solder joint. The IR radiant emittance, W, of a 
target is given as 

(13) 

J.M. Lloyd, Thermal Imaging Systems, Plenum Press, New 
York, 1975. 
where E is the emissivity, T is temperature in degrees 

where o is the composition rule of inference. Lofti A Zadeh, 
"Outline of a New Approach to the Analysis of Complex 
Systems and Decision processes", IEEE Transactions on 
Systems Man., Cybern., vol. SMC-3, no.1, pp.28-44, 1973. 

15 
Kelvin, and a is the Stefan-Boltzmann constant which is 
equal to 1.38054xl0-23

. For an ideal blackbody, Eis equal 
to 1.0. The objects with radiation curves similar to those of 
a blackbody, but lower, are called graybodies. The ratio 
between the actual radiant emittance of an object and that of Referring now to FIG. 12, let us consider the extracted 

features which are, solder joint width and the distance 
between two adjacent solder joints. Let the features be 
represented as a vector X={ x1 ,x2 } where x1 is solder joint 
width and x2 is the distance between the adjacent solder 
joints and the templates be represented as Tk={tk1 , tk2}, 
k=l, ... , p, where p is the surface mount components' type 25 

to be inspected. The templates are generated during the 
off-line training of the system. For the jth type surface mount 
component under inspection, an error vector E={ e1 ,eJ is 
calculated where e1 =X1 -tj1 and e2~x2-tj2, which are the 
linguistic variables taking values expressed as linguistic 30 

labels ZERO 91, POSITIVE 93, NEGATIVE 97, VERY 
POSITIVE 99 and VERY NEGATIVE 101. FIG. 12 illus
trates these linguistic labels represented as fuzzy sets. 

20 
the blackbody value is the emissivity. Mathematically, 

'111actual 
E=--. 

'1Videal 

(14) 

The emiss1v1ty of unoxidized solder is between that of 
unoxidized tin (0.043) and unoxidized lead (0.05). CRC 
handbook of Chemistry & Physics, CRC Press Inc., Boca 
Raton, 49th edition, pp. E227. The emissivity of a solder 
joint can vary substantially because of differences in surface 
finish (i.e., a rough finish has higher emissivity because of 
greater absorption), the presence of pinholes, vents or 
blowholes, or surface contamination. The surface contami
nation may be present as genuine contamination or as 
normally occurring flux residues in a no-clean process. The fuzzy relations, y, are constructed using the a priori 

information about specific good and defective solder joints. 
During the off-line training phase, the system generates the 
fuzzy relation R for the classifier. The training is completed 
in only one pass through the training data set. 
IR Based GROSS Inspection 

35 Varying emissivity changes the thermal signature of a joint 
in two ways. First, it increases the temperature rise of the 
joint because a higher emissivity surface absorbs more 
impinging radiation. Second, at a given temperature, the 
radiance is increased in direct proportion to the emissivity 

The purpose of the IR sensors in the GROSS inspection 
station is to detect subsurface and solder mass related 
defects. These defects include voids, insufficient, no solder, 
excess solder, solder ball, and bridging. These defects 
exhibit the gross characteristics of a significant variance in 
the amount of solder present on the component, since the IR 45 

signal is a function of the radiance of the component. I. Dar, 

40 increase. These variations of emissivity add a random noise 
to the sensor measurement. 

K. Newman and G. Vachtsevanos, "Bond Validation of 
Surface Mount Components Using a Combined IR/Vision 
System", Applied Machine Vision 94 Conference of SME, 
Minneapolis, Minnesota, vol. 2, session 7, June 1994. The 50 

solder mass related defects can be divided into two general 
categories: excess solder mass, and insufficient solder mass. 
The excess solder mass category includes defects such as 
excess solder, solder ball, and bridging whereas the insuf
ficient solder mass category includes defects such as voids, 55 

insufficient, and no solder. The IR based GROSS inspection 
identifies whether the solder joint under test is good or it 
belongs to one of two defect categories. Before explaining 
the details of IR based GROSS inspection algorithms, the 
emissivity dependence of a thermal signature, a limitation of 60 

IR based solder joint inspection, is discussed. A data-level 
sensor fusion methodology has been developed to obtain 
emissivity independent thermal signatures of solder joints. 
Emissivity Dependent Thermal Signature 

Referring to FIG. 13, the IR technology utilizes IR 65 

thermal signatures of solder joints for inspection. These 
signatures are produced when a laser heats an individual 

Fusion of IR Detectors 
A sensor-fusion approach at data level has been developed 

to obtain emissivity-independent thermal signatures using 
two IR detectors sensitive in different radiation wavelengths. 
Planck's equation for the spectral distribution of a black
body radiation provides a model of the radiance of a 
blackbody as a function of temperature and wavelength. It is 
given as 

(15) 

J.M. Lloyd, Thermal Imaging Systems, Plenum Press, New 
York, 1975. where A is the wavelength in µm, T is the 
temperature in degrees Kelvin, C1 and C2 are constants with 
values equal to 3.7415xl04 and 1.4388xl04

, respectively. 
Referring to FIG. 14, three curves related to Equation 15 are 
depicted. The solid lines 102 show the spectral radiant 
emittance curves for a blackbody, while the dotted line 104 
illustrates a spectral radiant emittance curve of a graybody 
with emissivity equal to 0.85. 

The total radiance of a graybody at a given temperature is 
the area under its spectral radiant emittance at that 
temperature, i.e., the graybody spectral radiant emittance 
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summed over all wavelengths at a given temperature. 
Mathematically, 

(16) 

An IR detector functions by integrating the intensity of all 
wavelengths to which it is sensitive. For example, an Indium 
Antimonide (InSb) based IR detector is sensitive in the 2-5 
µm range. Equation 16 for an InSb detector, can be written 
as 

(17) 

where N represents radiance outside the sensitive band of 
the detector, v is the output voltage of the sensor that 
represents the IR energy in the detector's sensitive band. 
Due consideration should be given to the information being 
lost because of the IR detector bandwidth limitations. The 
MCT detector is sensitive in the 6-12 µm range. Referring 
now to FIG. 15, the blackbody spectral radiant emittance 
curves for 25° C. 112, 50° C. 114, and 75° C. 116 are 
superimposed on the sensitivity curves of an InSb detector 
118 and a Mercury-Cadmium-Telluride (MCT) detector 119. 
FIG. 15 illustrates that a large portion of the radiance curves 
lies within the two detectors' sensitive range. Since solder 
joints are heated to 75° C. or less for inspection purposes, it 
is more appropriate to use both the IR detectors to measure 
the thermal signature of solder joints. For the two IR 
detector cases, Equation 16 becomes 

(18) 

where v 1 represents the output voltage of InSb detector and 
v2 represents the output voltage of MCT detector. Notice 
that in Equation 18 E is a constant with respect to the 
integral. The IR detectors' output is fused by taking the ratio 
of the detectors' output. Let Z be the ratio of the MCT 
detector's output and the InSb detector's output. 
Mathematically, 

(19) 

In Equation 19, E cancels out, therefore Z is independent of 
the emissivity. Equation 19 can be written in terms of the 
detectors' voltage as 

5 

12 

Z=~. (20) 

VJ 

FIG. 16 illustrates the Z signal 111 obtained by fusing the 
outputs of the MCT and InSb IR detectors. 
GROSS Inspection using Thermal Signatures 

To identify solder joint defects using thermal signature, 
features are determined that maximize the variation between 

10 the good solder joint signature and the defective solder joint 
signature. In the insufficient solder mass category, there is a 
lack of solder; therefore, for the same laser heating time, the 
signature will be elevated because of an increase in IR 
radiation. For the excess solder mass category, there is an 

15 excess of solder, thereby decreasing the amount of the IR 
radiated from the joint and lowering the thermal signature. 
FIG. 17 illustrates the Z signals of solder joints of an 
integrated circuit. 

The number of joints to be tested is determined prior to 
20 inspection by a random sampling scheme. This is a function 

of the perceptance of inspection to be performed. The 
amount of time required for the inspection of one joint is 
approximately 500 milliseconds. This takes into consider
ation the amount of time required to position the joint using 

25 X-Y table, fire the laser, collect the data, and process the 
information. The majority of the time is devoted to the 
collection of the signature which takes on average 400 
milliseconds. Inspection of a largely populated board would 
be time consuming if 100% inspection was desired. This is 

30 the reason for the sampling methodology for on-line appli
cations. 

The two most noticeable and easy to obtain features in the 
Z signals are the differences between the starting point 113 
and the maximum point 117, and the maximum point 117 

35 and the end point 119. These features can be determined 
rapidly from the data. Referring to FIG. 18, the feature space 
122 and the decision boundaries 124 for the GROSS inspec
tion are shown. Since the feature space is linearly separable, 
a perceptron classifier has been designed to perform the 

40 classification. 
FINE Inspection Software 

The potentially defective solder joints, identified by the 
GROSS inspection, are analyzed more closely in order to 
confirm the joints' defects and classify them into defect 

45 categories. This classification is performed using informa
tion provided by the two-dimensional gray level images of 
the solder joints and their thermal signatures. The software 
developed for the FINE inspection station performs sensor 
fusion at feature level using an active perception approach. 

50 The active perception methodology developed for the FINE 
inspection not only fuses the complementary information 
obtained from the IR sensors and vision sensors but also 
minimizes the processing time by controlling the informa
tion gathering process. The premise used for this control is 

55 to acquire only that much information which is required to 
perform the task at hand. The active perception approach is 
generic in the sense that it can be applied to a multi sensor 
environment as well as to the features extracted from a 
single sensor. 

60 FIG. 19 illustrates the block diagram of the FINE inspec-
tion procedure. The data acquisition module 132 consists of 
a vision sensor 134 and a two color IR sensor 136. The 
vision sensor provides high resolution two-dimensional 
images of the solder joints while the two color IR sensor 

65 generates thermal signatures of the joints. FIG. 20 illustrates 
an image of good solder joints and typical images of some 
of the solder joint defect categories. 
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The IR sensor data is fuised at the data level to obtain a 
Z signal, as explained in the previous section titled IR Based 
GROSS Inspection. A preprocessing module 138 includes an 
image processing means 137 for converting the images 
captured by the vision system, and a thermal processing 5 

means 139 for converting the thermal signatures recorded by 
the infrared sensors into a form from which characteristic 
features of different defect classes can be easily extracted. 
The pre-processing involves operations such as frequency 
domain filtering, spatial filtering and enhancement by noise 10 

removal. Since the FINE inspection is performed only if 
GROSS inspection detects a potential linear misalignment 
defect, excess solder mass defect, and/or insufficient solder 
mass defect, the FINE inspection procedure is broken down 
into three modules. These modules are linear misalignment 15 

test 142, insufficient solder mass test 144, and excess solder 
mass test 146. The linear misalignment test 142 confirms 
whether the potentially defective joints are linearly mis
aligned. The insufficient solder mass test 144 classifies a 
potential defective joint into good, void, insufficient solder, 20 

or no solder categories. The excess solder mass test 146 
classifies a potential defective joint into good, bridging, 
excess solder, or solder ball categories. The excess solder 
mass test 146 and the insufficient solder mass test 144 
modules use the active perception methodology to perform 25 

feature-level sensor fusion for defect classification. Before 
presenting the details of each of these modules, the active 
perception for feature-level sensor fusion is explained. 
Active Perception 

Active perception can be defined as the problem of 30 

controlling one or more sensors during data acquisition to 
maximize the performance of the information-gathering 
process. Human perception is primarily governed by this 
concept. If we analyze the human perception process, it 
appears that perception involves adaptiveness and intelli- 35 

gence to reason and make decisions as quickly as possible. 
These attributes are desirable for machine perception as 
well, which usually involves processing a large number of 
data sets originating from one or more sensors. 

The objective of active perception is to achieve reliable 40 

recognition in a minimum amount of time. The conventional 
machine perception or pattern recognition approach 
involves a sequence of steps, namely, data acquisition, 
feature extraction/selection, and classification. The feature 
extraction process converts the objects into an 45 

N-dimensional feature space, such that one class of objects 
is clustered together and can be distinguished from other 
classes. However, in general, not all objects of a class need 
N features to form a compact cluster. It is only the objects 
that are in the overlapping region of two or more classes that 50 

govern the number of features required to perform classifi
cation. If there is a way to judge the classifier result at each 
feature, then one could optimize the perception procedure by 
using that much information, which is sufficient for the task 
at hand. An index has been derived using the Dempster 55 

Shafer theory and fuzzy logic, which represents the faith or 
confidence committed to a classification result. This index is 
called degree of certainty (DOC). 
Degree of Certainty 

For a frame of discernment 8 and a proposition Ac 8, 60 

the degree of certainty associated with A, DOC(A), is 
defined as 

DOC(A)=m(A)-Bel(A), (21) 

where m (•)represents the mass function, Bel(•) represents 65 

the belief function over 8 and A represents the complement 
of A 

14 
The belief function over 8 is defined by Bel: 28 ~[0,1] and 
derived from the mass function m by 

Bel(A) = ~ m(B) VA <;; 0. (22) 

B~A 

G. Shafer, A Mathematical Theory of Evidence, Princeton 
University Press, New Jersey, 1976. 
The value of DOC indicates a relative amount of belief or 
confidence in the frame of discernment. The properties of 
DOC with appropriate explanations are given below. 
DOC has a value in [-1,1]. 
DOC(A)=l indicates that the evidence supports A exclu

sively because m(A)=l is always satisfied. 
DOC(A)=O is satisfied when m(A)=m(A), which implies 

that the amount of belief on A is equal to that of belief on 
the rest of 8. 

DOC(A)=-1 indicates that Pl(A)=l-Bel(A)=O, which 
implies that evidence does not support A at all. 
From equation 21 it is clear that in order to calculate DOC 

associated with any one or more atomic propositions, the 
mass function needs to be determined first. Once the mass 
function for all the subsets of 28 has been calculated the 
belief function can be estimated for any subset of 8 by ~sing 
Equation 22. Finally, the DOC for any subset of 28 can be 
calculated using Equation 21. 
Calculation of Mass Function 

In this section, a systematic approach is derived using 
fuzzy logic and possibility measure to calculate mass func
tion on a frame of discernment. A family of subsets of a 
universal set is nested if these subsets can be ordered in such 
a way that each is contained within the next. Consider a body 
of evidence whose focal elements are nested. For such a 
body of evidence, the associated belief and plausibility 
measures are called consonant. G. J. Klir and T. A. Folger, 
Fuzzy Sets, Uncertainty, and Information, Prentice-Hall 
Inc., Englewood Cliffs, N.J., 1991. Consonant belief and 
plausibility measures are usually referred to as necessity 
measure and possibility measure, respectively. Let F={ x1 ,x2 , 

... ,xJ be a body of evidence with n nested focal elements 
such that F={A;!A1 cA2 ... cA,,}, where A/:=2F. If it and 
ri denote a possibility measure and a necessity measure on 
2F, respectively, then 

(23) 

and 

n(AUB)=max [n(A), n(B)]ifA,BA2F. (24) 

Every possibility measure it defined on 2F can be uniquely 
determined by a possibility distribution function pd: F~[o, 
1], as 

n(A) = maxpd(x) VA E 2T 
xcA 

(25) 

G. J. Klir and T. A Folger, Fuzzy Sets, Uncertainty, and 
Information, Prentice-Hall Inc., Englewood Cliffs, N.J., 
1991. 
Let a possibility distribution function pd be defined on a 
frame of discernment El={ x1 ,x2 , ... ,xJ with nested focal 
elements. A possibility distribution associated with pd is 
given as 

(26) 

where P;=pd(x;) for all X;EE>. Assume that a possibility 
measure it is defined on 28 in terms of its mass function m. 
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FIG. 21 illustrates a complete sequence of nested subsets of 
8 152 with associated mass function 154 and possibility 
distribution function 156. 

From the definition of possibility measure as consonant 
plausibility measure and using Equation 24 and Equation 25 5 

it follows that 

for all xEE>. The relationship between possibility measure 
and mass function is given as 10 

Pl(A) = ~ m(B) VA <;; 0, 
AnB*0 

(27) 

16 
with respect to the maximum membership so that the 
maximum becomes equal to one. The mass function 166 for 
a nested body of evidence is calculated via Equation 29. 

DOC 168 associated with each class is then calculated via 
Equation 21. 
Active Perception in Sensor Fusion 

In this section the active perception approach which 
performs the sensor fusion at feature level is explained. Let 
F={F 1 , ... ,F Jbe a set of n features extracted from the data 
obtained from m sensors to perform classification over the 
frame of discernment 8 having c atomic propositions. A 
total of n evidence can be generated using the n available 
features. Each evidence is represented as set of mass func
tions calculated from the fuzzy classifier output using the 

G. Shafer, A Mathematical Theory of Evidence, Princeton 
University Press, New Jersey 1976. 
where 0 is the null set. Thus, it can be obtained from 
Equation 27 

15 procedure explained in the section titled "Calculation of 
Mass Function". The evidence E; is generated based on the 
ith feature by performing fuzzy classification using F;, only. 
The evidence E; obtained from the ith feature and evidence 
Ej obtained from the jth feature are combined using Demp-

n 

p; = Pl({x;)) = ~m(A,) 
k=i 

(28) 

20 ster's rule of combination. For two body of evidence, 
represented as mass functions m1 and m2 , the combined 
body of evidence, m1 2 , is obtained using the Dempster's 
rule of combination ai 

since x;EA/v'j ~i, a condition satisfied because of nested 25 

focal elements of 8. Equation 28 can be written as a set of 
equations for i={ 1,2, ... ,n}. These equations are 

~ m1 (B;)m2(Cj) 

sinc1=A 

m1.2(A)= l-K VAE0,A*o, 

(30) 

PI = m(A1) + m(A2) + ... + m(A;) + ... + m(An) 

P2 = m(A2) + ... + m(A;) + ... + m(An) 

30 G. Shafer, A Mathematical Theory of Evidence, Princeton 
University Press, New Jersey, 1976. 

Pi= m(A;) + ... + m(An) 

35 

Pn = 

Solving these equations for A;, i={l,2, ... ,n}, the relation 40 
between possibility measure and mass function is obtained 
as 

m(A;)=n( { x;} )-n( { X;+i}) if integer i, (29) 

where K is calculated by, 

K= ~ m1(B;)m2(Cj). (31) 

sinc1=0 

For active perception, F;, and Fj, could be obtained from 
a single sensor data or from multiple sensor data to provide 
a combined body of evidence. Once a combined body of 
evidence is obtained, DOC associated with any subset of 28 

can be calculated using Equation 21. 
The body of evidence E1 n obtained by pooling n 

evidence is independent of 'th~ ~ider in which pooling is 

where it( { xn+l })=0. 45 performed. Therefore, the DOC associated with E1 n is 
also independent of the evidence pooling order. H~~e~er, 
the DOC trajectories are dependent on the order in which the 
pooling of evidence is performed. The DOC trajectories 
represent a set of loci on a two-dimensional plane whose 

Zadeh founded the fuzzy set theory in which a fuzzy set 
is viewed as a basis for possibility theory. L. Zadeh, "Fuzzy 
sets as a basis for a theory of possibility", Fuzzy Sets and 
Systems, vol. 1, pp.3-28, 1978. Let Z be a fuzzy set of a 
universe of discourse U, which is characterized by the 
membership function µz with the grade of membership, µz 
(u)'v'uEU. Let X be a variable taking values in U, and let Z 

50 axes are DOC and feature number. Let all the available 

act as a fuzzy restriction, R(X), associated with X. Then, the 
proposition "X is Z," which can be written as R(X)=Z, 
associates a possibility distribution, Jtx with X, which is 55 

postulated to be equal to R(X), i.e., Jtx=R(X). The possibility 
distribution function, pdx, associated with Jtx is defined to be 
equal to the membership function of Z. Thus, pdx (u), the 
possibility that X=u is postulated to be equal to µz(u). 

features be ordered in a sequence. The DOC trajectory for 
the kth ordered feature F k can be written as 

t(k)=k7+ako, (32) 

where f (with overhead vector arrow) and D (with overhead 
vector arrow) are unit vectors in the feature number and 
DOC axis, respectively. The sum oft (with overhead vector 
arrow) (k)+t (with overhead vector arrow) (k+l) is obtained 

Referring to FIG. 22, the steps required for DOC calcu
lation for a pattern recognition approach are illustrated and 
can be summarized as follows: 

60 as 

Obtain a fuzzy set representing the membership 162 of the 
unknown pattern to all the possible classes. Rearrange the 
fuzzy set in descending order such that the first entry of the 65 

set represents the class with maximum membership. To 
obtain a possibility distribution 164, normalize the fuzzy set 

t(k)+ t(k+1)=(K+1) 7 +(ak®ak+i)D, (33) 

where® represents Dempster's rule of combination. Since, 

in general, a;®aj"'ai81aq for j,.q, it is clear that the DOC 
trajectory is dependent on the order in which the various 
pieces of evidence are combined. Because evidence is 
obtained from the features, this implies that DOC is depen-
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performed for each pair of classes. Let there be c number of 
classes that need to be classified. The total number of 
ordered feature sets required is c(c-1)/2. An ordered feature 
set, F;j represents the feature order that maximizes distin-

dent on the feature ordering. FIG. 23 illustrates an example 
of DOC trajectories when four pieces of evidence 163a, 
163b, 163c and 163d are combined in three different orders 
167a, 167b and 167c. The four evidence expressed as mass 
functions are given in Table A 

Evidence Mass Functions 

m 1(A) = 0.250 m 1(ABC) = 0.750 

5 guishability between the ith and the jth classes, while 
keeping the processing time low. During the active percep
tion procedure, the DOCs for all possible classes are calcu
lated based on the evidence provided by the current features 
and all previous ones. If the highest DOC value is less than 

m 2 (C) = 0.222 m 2 (AC) = 0.333 m 2 (ABC) = 0.444 
m 3 (A) = 0.474 m 3 (AB) = 0.474 m 3 (ABC) = 0.032 
m 4(AB) = 1.000 

10 the prespecified threshold, the next feature is selected so that 
it maximizes the distinguishability between the class with 
the highest DOC and the one with the second highest DOC. 
Thus, feature ordering for an unknown object is dynamically 

For supervised classification approaches, the a priori 
information about the classes is available in the form of a 15 

training data set. Using the training data set, the distinguish
ability power of each feature can be determined. Thus, it is 

modified on-line during the active perception process. 
To start the active perception procedure, the pairwise 

ordered feature sets cannot be used since all the classes have 
an equal chance of occurring. Therefore, another feature 
ordering that considers the distinguishability power of a 
feature with respect to all the classes and its processing time 
is also determined. The feature out of all the available 
features, which is optimum in terms of distinguishability 
with respect to all the classes and processing time, is 
selected as the first feature to start the active perception 
processes. This feature is called the first feature. The pro-

a reasonable assumption that the knowledge base contains 
information about the distinguishability of features of each 
object as well as the time necessary to measure the features. 20 

It is generally true that the time required to derive a set of 
mass functions differs widely from one feature class to 
another, as much as from one sensor to another similar 
device. In order to achieve a reliable classification in the 
minimum amount of time, the features should be aligned in 
an optimal order such that features that require less process
ing time and provide greater distinguishability between 
classes should be first in the feature-ordering scheme. 
Assuming that an ordered feature set has been obtained, 
fuzzy classification is performed using one feature at a time 30 

from the ordered feature set. Each classification result based 

25 cedure to determine the first feature will be explained in the 
section titled "Off-Line Learning". 

35 

on a feature is converted into a body of evidence. Thus, for 
each feature, the classifier provides a piece of evidence. To 
determine the degree of perception achieved based on the 
latest evidence and all the previous evidence, DOC associ
ated with the combined body of evidence is calculated. The 
total evidence is aggregated until the required DOC is 
achieved. The process of fuzzy classification is stopped as 
soon as enough evidence is obtained to achieve a pre
specified DOC. Thus, the active perception scheme controls 40 

the information-gathering process and uses that much infor
mation that is sufficient for the task at hand. FIG. 24 
illustrates the active perception approach for a multisensory 
environment. 

Referring to FIG. 24, the active perception procedure 170 45 

for defect classification is shown. The knowledge base 172, 
represents the database including the optimal feature order
ing and the training data set for the fuzzy classifier. The 
active perception procedure is generic in the sense that it can 
be applied in a multisensory 174 environment to perform 50 

sensor fusion at the feature level or on only the features 
extracted from a single sensor 171. Features are extracted 
176 and a fuzzy classification 178 is performed. A DOC is 
calculated 173 and a decision 177 is made on whether DOC 
threshold has been reached. If DOC threshold has not been 55 

Distinguishability Measure 
For the active perception scheme, the features need to be 

ordered on the basis of their ability to distinguish between 
various classes. Distinguishability measure quantifies a fea
ture's ability to differentiate between various classes by 
finding the area of the region in which the two classes 
overlap. The smaller the area, the higher the ability of the 
feature to distinguish between the classes. 

Suppose there are two classes, w1 and w2 , that need to be 
classified based on a feature A Let there be a training data 
set that includes N 1 samples belonging tow 1 and N2 samples 
belonging to w2 . Assuming Gaussian distribution for the 
training data belonging to each class (a valid assumption for 
a large training data set), the mixture probability density 
function for feature A, can be written as 

P1 ( (z- µi)2) P2 ( (z - µi)2) 
p(z) =--=--exp ---

2
- +--=--exp ---

2
- , 

,,./ 2Jr cr1 2cr1 ,,./ 2Jr cr2 2cr2 

(34) 

where µ1 is the mean of w 1 training data set, µ2 is the mean 
ofw2 training data set, 0 1 is the standard deviation aboutµ 1 , 

0 2 is the standard deviation about µ2 , and P 1 and P are the 
a priori probabilities of the two classes. FIG. 25 illustrates 
one such mixture probability density function for a feature. 

Referring to FIG. 25, the shaded region 182 is the region 
for feature A, in which the two classes, w1 and w2 overlap. 
Let T 184 be a feature A value such that all the data points 
having feature A values less than Tare considered belonging 
to class w 1 and all the data points having feature A values 
greater than or equal to T are considered belonging to class 
w2 . The probability of erroneously classifying w1 data point 

60 as w2 data point using feature A is 

reached an additional feature is considered. Once DOC 
threshold has been reached or total features evaluated indi
cating defect classification the process is stopped. To obtain 
the optimal order of the available features, the processing 
time for classification and the distinguishability for each 
feature should be evaluated. These evaluations can be per
formed as an off-line learning process, using the training 
data set. The feature-ordering scheme developed for active 
perception will be discussed in the section titled "Off-Line 
Learning". Feature ordering considers features from all 65 

available sensors, thus, fusing information from various 
sensors at feature level. An optimal feature ordering is 

wi Jr 1 ( (z -µi)2 ) 
E:ll (T)= --=--exp ---

2
- d/z. 

-oo ,,./Dr CT2 2CT2 

(35) 

Similarly, the probability of classifying a w2 data point as a 
w 1 data point, using feature A is 
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w1 100 

1 ( (z-µiJ2) E:ll (T) = -=--exp ---
2

- d/z. 
T ,,./Dr CTJ 2CT1 

(36) 

Therefore, the overall probability of error, for feature A is 

(37) 

Referring now to FIG. 25, the shaded region 182 graphically 
represents Equation 37. EA (T) can be considered as a 
distinguishability measure for feature A to differentiate 
between classes w1, and w2. Since both classes have an 
equal chance of occurring, the a priori probabilities are 
P 1=P2=0.5 and can be neglected in Equation 37 for com
parison purposes. Thus, the distinguishability measure of 
feature A for classes w1 and w2 is 

(38) 

where Ew\ (T) is calculated using Equation 35 and Ew2
A (T) 

is calculated using Equation 36 

5 

20 
strained. For such a case, the distinguishability measure, 
dswi,w2

, of feature B for classes w1 and w2 is equal to 2.0, 
calculated by using Equation 41 with T 1 =-oo and T 2=+oo. 

Learning 

Learning is the process of acquiring knowledge. In a 
pattern recognition paradigm, learning is often used as a 
synonym for training the classification stage. R. Gonzalez 
and R. Woods, Digital Image Processing, Addison-Wesley 

10 Publishing Company, Reading, Mass., 1992. This learning is 
achieved using the training data set. In an artificial neural 
network paradigm, learning is defined as a process accom
plished by incorporating past experiences into the intercon
nection weights. The learning accomplished by using the a 

15 priori information (training data set) is also called off-line 
learning. Learning can also be regarded as an ongoing 
process. Whenever new information supporting a prior 
knowledge is acquired, it is plausible to say the learning has 
been accomplished. I. Kim, A Hybrid Analytical/Intelligent 

20 Methodology for Sensor Fusion, Doctoral Thesis, Georgia 
Institute of Technology, December, 1992. This type of 
learning is called on-line learning. 

FIG. 26 illustrates the feature distinguishability measure 
graphically. The mean value of a feature for a particular class 
192 is shown. A small value of distinguishability measure is 
shown as shaded area 194 illustrating an example of a 

25 
"good" feature, while a large value of distinguishability 
measure is shown as shaded area 196 illustrating an example 

For FINE inspection, learning is accomplished both as an 
off-line process and as an on-line process. The off-line 
learning is achieved by incorporating the a priori knowledge 
about the classes in terms of feature ordering for active 
perception. The on-line learning process fine tunes the 
feature ordering by aggregating the feature effectiveness 

of a "bad" feature. To calculate dA wl,w2
, T needs to be 

determined. The value of T is determined such that EA (T) 
is minimal. This is done by differentiating EA (T) with 

30 
respect to T and equating the result to zero. Thus, by 
Liebnitz's rule, we get 

calculated while performing the pattern recognition of 
unknown objects. 

Off-Line Learning 

(39) 

Taking the natural logarithm of Equation 39 and simplifying 
gives the quadratic equation 

Off-line learning is accomplished by performing the fea-
35 ture ordering for the active perception scheme. The training 

data set, which provides the a priori information about the 
various classes of interest, is used for the off-line learning 
process. 

AT2+BT+C=0, (40) 40 

The feature ordering is performed using the distinguish
ability measure, previously defined in the section titled 
"Distinguishability Measure", and the processing time 
required for each feature extraction. The processing time for 
a feature can be determined in terms of the central process
ing unit (CPU) time of a computer, floating point operations 

where 
A=012-022 

B=2(u1022-µ2012 

C=o/µ/-02
2µ/+20/o/ ln (02/01) 

Of the two possible solutions for T, the value is selected such 
that one of the following conditions is satisfied. The condi
tions are 

µi<T~µ2 

µi~T<µ2 

µi<T~µ1 

µi~T<µ1· 
If the variances are equal, o 2=o1 

2=o/, a single solution is 
obtained for T that is equal to the average of the means. If 
the means are equal, µ=µ1 =µ2, all the conditions for the 
selection of a single T are violated. When o/,.o/ and 
µ=µ1=µ2, T has two valid solutions, T1 and T2. The distin
guishability measure, dw1 ,w2 

B of feature B for classes w 1 
and w2 with two valid Ts is calculated as 

(41) 

where T1<T2. When o/=o/ and µ1=µ2, i.e., the two dis
tributions are exactly the same, Equation 40 is undercon-

45 per second (flops), or clock time. 

Let there be N total features that are used to classify c 
number of classes. As mentioned previously in the section 
titled "Active Perception in Sensor Fusion" the total number 

50 of ordered feature sets required for c classes is c( c-1 )/2. Let 
F;j, i=l, ... , c,j=i+l, ... ,c,,.j, represent the ordered feature 
set for the ith and the jth class pair. Let i:k represent the 
processing time required to extract the kth feature, fk, where 
k=l, ... ,N. A cost function for each feature is evaluated by 

55 considering its processing time and the distinguishability 
measure for classifying a class pair. Let Skij be the cost 
function of the kth feature for the ith and the jth class pair, 
where k=l, ... ,N, i=l, ... ,c,j=i+l, ... ,c, i,.j. The cost 
function of the kth feature for class i and j is calculated as 

60 

(42) 

where w1, w2 are weighting constants, selected such that 
w1+w2=1. dp/ represents the normalized distinguishability 

65 measure of the kth feature fk for the ith and jth class and i:k 

represents the normalized processing time for the kth fea
ture. dp/ is calculated as 
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di,j 
jk 

(43) 

max{d;:i)' 
k jk 

where dp/ is the distinguishability measure of the kth 
feature fk for the ith and the jth class and is calculated using 
Equation 38. The normalized processing time for the kth 
feature 'tk, is calculated as 

r, 
fk=---. 

rnax{rkl 
k 

(44) 

The cost function Skij is calculated for c(c-1)/2 number of 
class pairs and for all the available features. These cost 
functions can be represented as a matrix 1P given as 

?/2 ?f' ?f' ?f' ?f' ;;1c-l)c (45) 

'I'= 
?i2 ?i' ?i' ?i' ?i' ;;1c-l)c 

?fl ?h' ... ?h' ?~' ... ?~' ;;Yrl)c 

22 
correct cluster type in the feature space. In practice, the 
solder joint defects that are generated by the system 
(resulting from malfunctions or drift in control parameters) 
may cover a limited range of the expected feature range. 

5 Therefore, a feature that is considered bad on the basis of 
distinguishability measure (calculated using the training 
data set) may perform better under the current operating 
conditions of the system. Referring now to FIG. 27, a 
linearly misaligned surface-mounted integrated circuit (IC) 

10 has its leads 202 shifted to one side with reference to the 
solder pads 204 underneath. Consider the offset 206 between 
a solder pad centerline and an IC's lead centerline as a 
feature. For a 50 mil (mil is a unit used in the electronics 
manufacturing industry. 1 mil=lx10-3 inch.) pitch IC, this 

15 feature may have values in the range of 0.25 mm to 1.25 
mm. 

20 

However, the system may generate the linear misalign-
ment defects with centerline offsets in the range of 0.25 mm 
to 0.50 mm. Thus, by monitoring the current state of system 
operation, the ordered feature sets may be rearranged such 
that the active perception process is adapted to the system's 
current operational state. 

A learning procedure has been developed by on-line 
monitoring of the effectiveness of the features used by the 

25 active perception process for an unknown pattern. The 
effectiveness of a feature in distinguishing between two 
classes is determined on-line from the fuzzy partition of an 
unknown pattern. The effectiveness, nij k, of the kth feature in 
distinguishing the ith and the jth classes is defined as 

The feature ordering F;j for the ith and the jth class pair 
is obtained by sorting the column of 1¥, which represents 
cost functions for the ith and the jth class pair in ascending 
order. Thus, the first entry of the feature ordering F;j for the 
ith and the jth class pair is the feature fq which satisfies the 30 

following relation: 
(48) 

(46) 
where l·I represents absolute operation, µhd ik(x)is the jth 
class membership of the unknown pattern x, and µjk(x) is the 

35 
jth class membership of x. 

The effectiveness of all the features for all the class pairs, 
which are employed during the active perception, is deter
mined for a finite number of classifications. The effective
ness obtained for all the classifications is summed together 
and normalized for each class pair such that the maximum 
effectiveness becomes equal to 1.0. A new cost function 'E;ij k 

To begin the active perception procedure, the first feature 
is required. As mentioned previously in the section titled 
"Active Perception in Sensor Fusion", the pairwise ordered 
feature sets cannot be used to initiate the active perception 

40 
procedure since all the classes have an equal chance of 
occurring. The first feature is determined by considering its 
distinguishability power for all the possible class pairs and 
its processing time. The first feature, f15,, is the feature 
whose cost function s/', satisfies 

45 

?1,, = nyn{ .t ?;1}, k = 1, ... , N, 
i=l,j=i+l 

(47) 

of the kth feature for the ith and the jth class pair is 
calculated as 

(49) 

where riij k, represents the normalized effectiveness of the kth 
feature for the ith and the jth class pair, 'tk is the normalized 

where Skij is the cost function calculated using Equation 42 
with weighting factors w1 =W2 =0.5. N is the total number of 
available features and c is the total number of classes. 
On-line Learning 

50 processing time for the kth feature. w1 and w2 are weighting 
factors for feature effectiveness and its processing time, 
respectively. The weighting factors are selected such that 
w 1 +w2 =1.0. The cost functions of all the features and for all 
the class pairs are represented as a matrix r, given as 

On-line learning has been incorporated into the FINE 55 

inspection for adapting the active perception algorithm to 
the system changes by fine tuning the feature ordering 
obtained from the off-line learning process. A measure has 
been defined to monitor the system changes in terms of 
feature utilization. This measure is called the effectiveness 60 

of a feature. 
The off-line learning process uses the training data set to 

determine the ordered feature sets. For defect classification, 
the training data set is gathered so as to provide examples of 
solder joints belonging to various defect classes. It is desir- 65 

able that the training data set include all the possible patterns 
that belong to a single defect class in order to determine its 

§/2 S'l' S'l' §f' §f' sy-oc (50) 

r= 5'i2 S'i' S'i' S'i' S'i' 

5'h2 S'!l ... S'h' {f] ... §~-l)c 

where N is the total number of available features and c is the 
total number of classes. The feature ordering F;j for the ith 
and the jth class pair is obtained by sorting the column of r, 
which represents cost functions for the ith and the jth class 
pair in descending order. Thus, the first entry of the feature 
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ordering F;j for the ith and the jth class pair is the feature fq 
which satisfies the following relation: 

(51) 

24 
captured using a CCD camera. The IR thermal signature of 
these solder joints, captured at the GROSS inspection 
station, are also called upon for detailed investigation. 
Features are extracted from the image as well as the IR fq = rnax{§;1} fork = 1, ... , N. 

k 

Linear Misalignment Test 
At the FINE inspection station, the linear misalignment 

test is triggered only if the GROSS inspection station finds 
a possible linearly misaligned solder joint. The linear mis
alignment test at the FINE inspection confirms whether the 
solder joints under inspection are linearly misaligned or not. 
Since the IR detector is insensitive to the placement defects, 
only vision data i.e. two-dimensional 256 gray level images, 
is used for linear misalignment defect classification. 

5 thermal signatures of the joint under test. The complete 
feature set available for the active perception consists of 15 
vision based features and 19 IR thermal signature based 
features. The output of the test is the class declaration of the 
solder joint under test with the associated degree of certainty 

10 Menu Driven User Interface 
This section details the software developed for the pro

totype operation and user interface. To make the prototype 
user-friendly, efforts were devoted to the development of a 
user-friendly interface which can be used as the basic 

15 platform for integrating various processing, recognition and 
control algorithms. The development of the user-interface 
facilitated the integration of the overall methodology for the 
GROSS inspection and FINE inspection. 

The shadow free higher resolution images of the probable 
defective solder joints are captured using a front diffuse 
illumination technique. FIG. 20 illustrates an image of a 
typical linear misalignment defect 151. The preprocessing 
technique called max scan, developed for GROSS 20 

inspection, can be applied to high resolution FINE inspec
tion images, since the max scan is independent of the image 
resolution. 

Amax scan of the solder joints under test is calculated and 
compared with the max scan of good solder joints. Since the 25 

images are of high resolution, the max scan can handle noise 
more effectively. The noise is sometimes generated because 
of printed letters and traces in the processing window of max 
scan. A linguistic labels based fuzzy classifier is used for 
linear misalignment defect classification. The fuzzy classi- 30 

fier was explained previously in the section titled Defect 
Identification using Fuzzy Relations and Linguistic Vari
ables. 
Excess Solder Mass Test 

In designing a user-friendly interface for the prototype, 
consideration was given to make it as simple and as self 
explanatory as possible. The interface developed is menu 
driven. When a user wishes to interact with the experimental 
setup, he/she is offered a list of options to select from. The 
menus are nested in such a way that if any menu option 
requires a prerequisite action, the option could not be 
selected until the prerequisite action has been performed. If 
the user selects such an option, a message directing the user 
to the prerequisite action is displayed on the screen. The X-Y 
table motion control, laser firing and image capture proce
dures have been embedded in the menu driven options such 
that they are transparent to the user. If a selected option 
requires X-Y table motion and image capture, it is performed 
automatically. The training phase for a new PCB for inspec
tion has been developed such that it reduces to simple mouse 

The excess solder mass test is triggered at the FINE 
inspection station, if the IR GROSS inspection detects a 
solder joint with more solder mass than a good solder joint. 
The objective of this test module is to inspect the probable 
defective solder joint and to classify it into bridging, ball, or 
excess solder defect classes. In case of a false alarm at the 
GROSS inspection station, this test module should classify 
the solder joint as good. 

35 driven and/or arrow keys operation. The software for the 
interface has been developed using C computer language. 
The programming has been done in a modular fashion so 
that adding new menus or new options to existing menu do 
not require any modification of the existing menus. FIG. 28 

40 illustrates a menu screen developed for the prototype. 
Results 

A set of five GVC Ethernet cards were purchased and a 
number of defects were created at the U.S Army Missile 
Command soldering facility at Huntsville, Alabama. The 
algorithms developed for GROSS inspection and FINE 
inspection were tested on these PCBs. 
GROSS Inspection Results 

The perceptron classifier for the component presence test 
gave 100% correct classification results. The classifier is 
very reliable and robust to shadow side window placement 
and the angle of illumination. The linear misalignment and 
angular misalignment test did not miss any existing defects, 
but for some PCBs they had a false alarm of 3% to 4%. The 
false alarms were created because of the printed letters and 

This classification module uses the active perception 
approach to fuse vision and IR data at feature level. High 
resolution images of the probable defective solder joints are 45 

captured using a CCD camera. The IR thermal signature of 
these solder joints, captured at the GROSS inspection 
station, are also called upon for detailed investigation. 
Features are extracted from the image as well as the IR 
thermal signatures of the joint under test. The complete 50 

feature set available for the active perception consists of 15 
vision based features and 19 IR thermal signature based 
features. The output of the test is the class declaration of the 
solder joint under test with the associated degree of cer
tainty. 55 traces in the processing window. These printed letters and 

traces appear as bright spots in the processing windows. To 
avoid the false alarms, the processing windows need to be 
defined carefully. This requirement makes these test proce
dures sensitive to the window location. The processing time 

Insufficient Solder Mass Test 
The insufficient solder mass test is triggered at the FINE 

inspection station, if the IR GROSS inspection detects a 
solder joint with less solder mass than a good solder joint. 
The objective of this test module is to inspect the probable 
defective solder joint and to classify it into void, insufficient, 
or no solder defect classes. In case of a false alarm at the 
GROSS inspection station, this test module should classify 
the solder joint as good. 

This classification module uses the active perception 
approach to fuse vision and IR data at feature level. High 
resolution images of the probable defective solder joints are 

60 for the vision GROSS inspection, depending upon the num
ber of processing windows and their sizes ranging from 0.7 
seconds to 1.5 seconds. 

The perceptron classifier for the IR GROSS inspection 
detected all the defective solder joints and classified them 

65 correctly into excess solder mass category or insufficient 
solder mass category. The IR GROSS inspection had a false 
alarm of 2%. The false alarms were created because of the 
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high sensitivity of InSb sensor to the surface profile of the 
solder joint. If the surface of the solder joint is contaminated 
with dust particles or flux, the InSb sensor may not detect 
any signal at all. The MCT sensor is not sensitive to these 
variations. 
FINE Inspection Results 

5 

The linear misalignment test module at the FINE inspec
tion station classified all the linearly misaligned solder joints 
correctly. The satisfactory performance of this module illus
trates that max scan is independent of the image resolution 10 

and can be effectively applied at various resolution levels. 
The excess solder mass test module was tested using 52 

solder joints belonging to good, excess solder, bridging, and 
ball classes. The DOC threshold was set to 0.90. The active 
perception approach to classification misclassified one 15 

excess solder joint as bridging defect. The remaining 51 
solder joints were classified correctly. The application of 
active perception allowed the classification of defects to be 
performed using a subset of the 38 feature set. FIG. 29 
illustrates the DOC trajectories 212 obtained for an excess 20 

solder defect classification using the active perception 
approach. Note that the classification is performed using 
only six features 214 with a DOC of 0.915 216. 

26 
images of said surface mount component are 
developed, said sub-images used to develop a one
dimensional vector corresponding to placement of said 
surface mount component on the printed wiring board, 
said one-dimensional vector having peaks and valleys, 
wherein said peaks represent solder joints and said 
valleys represent a substrate upon which said surface 
mount component is moumted; 

at least one infrared sensor that collects thermal signature 
inspection information pertaining to a surface mount 
component; and 

a processing means for processing said visual inspection 
information and said thermal signature inspection 
information in order to detect and classify said solder 
joint defects on said surface mount components on said 
printed wiring board, said processing means including 
a means for processing said one-dimensional vector 
corresponding to the placement of said surface mount 
component on the printed wiring board using a mor-
phological filter, said processing means also including 
means for fusing the data from a plurality of said 
infrared sensors using data level sensor fusion to obtain 
emissivity independent thermal signatures of solder 
joints. FIG. 30 illustrates DOC trajectories 212 obtained for a 

bridging defect classification. For this case, only four fea
tures 218 were used and the associated DOC is 0.920 222. 

25 
2. The system according to claim 1, wherein said pro-

cessing means comprises a combinational logic circuit con
figured to perform said processing. FIG. 31 illustrates the DOC trajectories 212 obtained for 

a solder ball defect classification. 
This test module also classified the good solder joints 

correctly. FIG. 32 illustrates the DOC trajectories 212 
obtained for a good solder joint classification. 

3. The system according to claim 1, wherein said pro
cessing means comprises a neural network configured to 

30 
perform said processing. 

4. The system according to claim 1, further comprising: 

The active perception scheme aggregates the evidence 
obtained from each feature until the specified degree of 
certainty is obtained. This means that for borderline defect 
cases between defect classes, more features are used as 35 

compared to the typical defects. FIG. 33 illustrates the DOC 
trajectories 212 obtained for a bridging defect using 17 
features 224 out of an available 38. 

The classification of 52 solder joints, by the excess solder 
mass test module, was performed using 139 features which 40 

is 7% of the total available features. 
The insufficient solder mass test module was tested using 

41 solder joints belonging to good, insufficient, and no 
solder classes. The DOC threshold was set to 0.90. The 
module gave 100% results. The 41 solder joints were 45 

classified using 78 features which is 5% of the total available 
features. 

FIG. 34 and FIG. 35 show the DOC trajectories 212 
obtained by the insufficient solder mass test, for an insuffi-
cient solder defect and a good solder joint, respectively. 50 

The FINE inspection results show that the active percep
tion scheme using sensor fusion at feature level not only 
performs the classification with a fewer number of features 
(which implies less processing time), but also provides an 
index of confidence associated with the classification. 55 

It is to be understood that the foregoing is descriptive of 
an illustrative, preferred embodiment of the invention. 
Numerous variations or changes may occur to those skilled 
in the art without departure from the spirit and scope of the 
invention. 60 

Wherein the following is claimed: 
1. A system for detecting solder joint defects on surface 

mount components on a printed wiring board, comprising: 
a machine vision sensor that collects visual inspection 

information pertaining to a surface mount component, 65 

said visual inspection information used to develop 
programmed rectangular windows from which sub-

an additional infrared sensor; and 
means for combining said thermal signature inspection 

information from said infrared sensor and said addi
tional infrared sensor. 

5. The system according to claim 4, wherein said infrared 
sensor and said additional infrared sensor provide an emis
sivity independent thermal signature. 

6. A computer readable medium having a program for 
detecting solder joint defects on surface mount components 
on a printed wiring board, the program comprising: 

means for receiving visual inspection information from a 
machine vision sensor, said visual inspection informa
tion used to develop programmed rectangular windows 
from which sub-images of said surface mount compo
nent are developed, said sub-images used to develop a 
one-dimensional vector corresponding to placement of 
said surface mount component on the printed wiring 
board, said one-dimensional vector having peaks and 
valleys, wherein said peaks represent solder joints amid 
said valleys represent a substrate upon which said 
surface mount component is mounted; 

means for receiving thermal signature inspection infor
mation from at least one infrared sensor; and 

means for processing said visual inspection information 
and said thermal signature inspection information 
resulting in the inspection of surface mount component 
solder joints on said surface mount components on said 
printed wiring board, said processing means including 
a means for processing said one-dimensional vector 
corresponding to the placement of said surface mount 
component on the printed wiring board using a mor
phological filter, said processing means also including 
means for fusing the data from a plurality of said 
infrared sensors using data level sensor fusion to obtain 
emissivity independent thermal signatures of solder 
joints. 
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7. The program according to claim 6, wherein said pro
cessing means comprises a combinational logic circuit con
figured to perform said processing. 

8. The program according to claim 6, wherein said pro
cessing means comprises a neural network configured to 5 

perform said processing. 
9. The program according to claim 6, further comprising: 

means for receiving an additional thermal signature infor
mation from an additional infrared sensor; and 

means for combining said thermal signature inspection 10 

information from said infrared sensor and said addi
tional infrared sensor. 

10. A system for combining and processing the compli
mentary nature of visual inspection information and thermal 
signature inspection information to increase the degree of 15 

probability of detecting a solder defect in an object, com
prising: 

a computer system which processes said inspection 
information, said inspection information including 

20 
visual inspection information and thermal signature 
inspection information, said visual inspection informa
tion used to develop programmed rectangular windows 
from which sub-images of said surface mount compo
nent are developed, said sub-images used to develop a 

25 
one-dimensional vector corresponding to placement of 
a surface mount component on a printed wiring board, 
said one-dimensional vector having peaks and valleys, 
wherein said peaks represent solder joints and said 
valleys represent a substrate upon which said surface 

30 
mount component is mounted and said thermal signa
ture inspection information obtained by fusing data 
from a plurality of said infrared sensors using data level 
sensor fusion to obtain enissivity independent thermal 
signatures of solder joints; and 

35 
a statistical sampling means for detecting said solder 

defect in said object, said statistical sampling means 
including a morphological filter for processing said 
one-dimensional vector. 

11. The system of claim 10, further comprising a means 40 
for classifying said visual inspection information for com
parison against a known good specimen. 

12. The system of claim 10, further comprising a means 
for classifying said thermal signature inspection information 
for comparison against a known good specimen. 

13. A method for detecting solder joint defects on surface 
mount components on a printed wiring board, comprising 
the steps of: 

45 

50 
collecting visual inspection information and thermal sig

nature inspection information, said visual inspection 
information used to develop programmed rectangular 
windows from which sub-images of said surface mount 
component are developed, said sub-images used to 
develop a one-dimensional vector corresponding to 
placement of said surface mount component on the 55 

printed wiring board, said one-dimensional vector hav
ing peaks and valleys, wherein said peaks represent 
solder points and said valleys represent a substrate 
upon which said surface mount component is mounted, 
said thermal signature inspection information obtained 60 

by fusing data from a plurality of infrared sensors using 

28 
data level sensor fusion to obtain emissivity indepen
dent thermal signatures of solder joints; and 

processing said visual inspection information and said 
thermal signature inspection information resulting in 
the inspection of surface mount component solder 
joints on said surface mount components on said 
printed wiring board, said processing step including the 
step of processing said one-dimensional vector corre
sponding to the placement of said surface mount com
ponent on the printed wiring board using a morpho
logical filter, said processing step also including the 
step of fusing the data from a plurality of said infrared 
sensors using data level sensor fusion to obtain emis
sivity independent thermal signatures of solder points. 

14. A system for detecting solder joint defects on surface 
mount components on a printed wiring board, comprising: 

a machine vision sensor that collects visual inspection 
information pertaining to a surface mount component, 
said visual inspection information used to develop 
programmed rectangular windows from which sub
images of said surface mount component are 
developed, said sub-images used to develop a one
dimensional vector corresponding to placement of said 
surface mount component on the printed wiring board, 
said one-dimensional vector having peaks and valleys, 
wherein said peaks represent solder joints and said 
valleys represent a substrate upon which said surface 
mount component is mounted; 

at least one infrared sensor that collects thermal signature 
inspection information pertaining to a surface mount 
component; and 

logic configured to process said visual inspection infor
mation and said thermal signature inspection informa
tion in order to detect and classify said solder joint 
defects on said surface mount components on said 
printed wiring board, said processing means including 
means for processing said one-dimensional vector cor
responding to the placement of said surface mount 
component on the printed wiring board using a mor
phological filter, said logic also configured to fuse the 
data from a plurality of said infrared sensors using data 
level sensor fusion to obtain emissivity independent 
thermal signatures of solder joints. 

15. The system according to claim 14, wherein said logic 
comprises a combinational logic circuit configured to per
form said processing. 

16. The system according to claim 14, wherein said logic 
comprises a neural network configured to perform said 
processing. 

17. The system according to claim 14, further comprising: 

an additional infrared sensor; and 

logic configured to combine said thermal signature 
inspection information from said infrared sensor and 
said additional infrared sensor. 

18. The system according to claim 17, wherein said 
infrared sensor and said additional infrared sensor provide 
an emissivity independent thermal signature. 

* * * * * 
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Column 9, 

-9?-

Line 11, delete "corresponding13", and insert -- corresponding y --. 
Line 12, delete "membership_", and insert -- membershiplf!l --. 
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Line 27, before "Distinguishability Measure", insert a blank line. 

Column 19, 
Line 44, delete "B = 2(µ1a?-µ2df ",and insert -B = 2(wri-µ2af)-

Column 20, 
Line 17, after "supporting a", change "prior", to -- priori--. 
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It is certified that error appears in the above-identified patent and that said Letters Patent is 
hereby corrected as shown below: 

Column 21, 
Line 54, before "On-Line Leaming", insert a blank line. 

Column22, 
Line 3 3, after "operation," delete " µ hd ik( x) ", and insert -- µik ( x) --. 

Column 23, 
Line 34, before "Excess Solder Mass Test", insert a blank line. 
Line 56, before "Insufficient Solder Mass Test", insert a blank line. 

Column24, 
Line 9, after "certainty", insert -- . --. 
Line 10, before "Menu Driven User Interface", insert a blank line. 
Line 41, before "Results", insert a blank line. 
Line 47, before "GROSS Inspection Results", insert a blank line. 

Column 25, 
Line 6, before "FINE Inspection Results", insert a blank line. 

Column 26, claim 6, 
Line 50, after "solder joints", delete "amid", and insert -- and--. 

Column 28, claim 13, 
Line 15, after "of solder", delete "points", and insert -- joints--. 

Signed and Sealed this 

Eighth Day of January, 2002 

Attest: 

JAMES E. ROGAN 
Attesting Officer Director of the United States Patent and Trademark Office 


