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SUMMARY 

Experiment and theory are in qualitative agreement, but not in 

A theoretical and experimental study of nuclear magnetic double 

resonance experiments on chemically exchanging molecules is carried out 

in this thesis. The compounds CCLjCHgOH and CH3OH are used to illustrate 

the results. The CC1 3CH 20H compound is treated as an AX 2 spin system, 

and the CH3OH compound as an AX3 system. 

The Gutowsky, McCall, and Slichter, as well as the McConnel ex

tension of the Bloch equations are compared and cast in a convenient 

probability formulation. Explicit line shape formulas are obtained for 

AX 2 and AX3 systems in which the A nucleus undergoes chemical exchange. 

Theoretical intensity expressions are derived for frequency sweep 

double resonance experiments in which an X transition is irradiated by 

the strong rf field, Hg. The expressions are derived using a model 

based upon energy level populations. This double resonance technique 

provides a method for investigating slow self-exchange processes between 

the same molecules. The line shape technique is valid only if the ex

change rate is fast compared with the experimental line width. The 

analysis takes into account possibilities of multiplet structure and arbi

trary amplitudes of the strong rf field. The above results are illustrated 

with the compound CC1 3CH 20H for an AX 3 spin system. The exchange rate of 

CClgCHgOH is varied by complexing with dimethylsulfoxide. The exchange 

rate of CI^OH is changed by temperature variation. 
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satisfactory quantitative agreement. This is believed due to experimental 

difficulties associated with the strong rf field used in the double re

sonance experiments. The large signal produced by the strong rf tended 

to overload the detector and distort the NMR spectra. The results indi

cate that the chemical exchange has the same effect as the spin-lattice 

relaxation in driving the perturbed spin system toward the Boltzmann 

distribution. 
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CHAPTER I 

INTRODUCTION 

In a weakly coupled spin system,"'" several modifications of the 
2 

Bloch equations have been used to investigate proton exchange between 

different sites. One such set of equations, the GMS equations, was ob

tained from the modified Bloch equations solved by Gutowsky, McCall, and 3 k Slichter. The GMS approach was extended by Gutowsky and Saika, and 
5 6 Grunwald, Loewenstein, and Meiboom, and Luz, Gill, and Meiboom. Start-

7 

ing from a different point of view, McConnell introduced a modification 

of the Bloch equations known as the McConnell equations by assuming that 

the magnetization could be transferred between different sites in a 

manner analogous to that of ordinary chemical exchange. If there is a 

steady state and no saturation, the McConnell equations reduce to the 

GMS equations. 

In strongly coupled systems the nuclear spin density matrix master 

8 9 
equation was used by Alexander to investigate chemical exchange. 

In addition to the above steady state line shape methods, other 

techniques were introduced. McConnell and Thompson"^ used adiabatic 

fast passage to measure exchange rates. Nonequilibrium nuclear spin 

magnetization equations were derived to calculate exchange rate con-
11 12 

stants. Forsen and Hoffman ' have determined the rate constants and 

spin-lattice relaxation times at chemically shifted sites by double 

resonance experiments. 
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The purpose of this thesis is to study nuclear magnetic double 

resonance experiments on chemically exchanging molecules. The double 

resonance experiments discussed in this thesis are related to those of 
11 12 

Forsen and Hoffman. ' Forsen and Hoffman consider only chemically 

shifted peaks, and therefore studied exchange between different com

pounds. They also confined their studies to complete saturation by the 

strong rf field. In this thesis, multiplet structure is considered and 

self-exchange involving one compound is investigated. Also, expressions 

are derived for intermediate saturation strengths for the strong rf 

field. 

In Chapter II, an explicit probability notation is introduced to 

compare the GMS and McConnell extensions of the Bloch equations to chemi

cal exchange. Explicit line shape formulas are derived for AX g and AK 3 

spin systems"*" in which the A nucleus undergoes chemical exchange. The 

AX 3 formulas are applied to CC1 3 CHgOH, and the AX 3 formulas to CHgOH. 

A theoretical description of the combined effect of double reso

nance saturation and chemical exchange on the multiplet structure of 

CCibjCHgOH and CHgOH is presented in Chapter III. This provides a method 

for determining the average time interval between chemical exchange when 

the exchange is too slow to affect the line shapes. The strong rf is 

used to perturb the weakly coupled spin system from the Boltzmann distri

bution, but the chemical exchange and spin-lattice relaxation decrease this 

deviation. This has been investigated in CCLj CHgOH and CHgOH as a 

function of proton exchange rate. The experimental results are compared 

with theoretical predictions in Chapter IV. 
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CHAPTER II 

DEPENDENCE OF LINE SHAPES ON CHEMICAL EXCHANGE 

The GMS and McConnell extensions of the Bloch equations to 

chemical exchange are compared in this chapter. An explicit probability 

notation is introduced in making the comparison. Explicit line shape 

formulas are derived for AX 2 and AX 3 spin systems 1 in which the A nucleus 

undergoes chemical exchange. The AX 2 formulas will be applied to 

CCLjCHgOH, and the AX 3 formulas to CH3OH. 

Let T be defined as the average time interval between chemical 

exchange. The probability factor, ^ i - 3 defined as the probability of 

a proton transferring from site b to site a during a chemical exchange. 

Actually, f , is equal to the probability of a proton leaving site b aD 

times the probability of this proton arriving at site a. The GMS equa

tions assume a steady state and no rf saturation. They are derived as 

follows. 

The Bloch equations 1 for the transverse magnetization at site a 

in a coordinate system rotating with an angular velocity of are 

dm. m xa xa (1) dt 

dm. m. 
and dt - &i> m. xa - 2TT VJ, mo (2) 
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In equations (l) and (2), T 2 is the transverse relaxation time, m and 
xa 

m are the components of magnetization per molecule along the x and y 
ya 

axes of the rotating coordinate system, and mo is the thermal equilibrium 

magnetization per molecule at site a. If there is no rf saturation, the 

magnetization per molecule along the z axis at site a is equal to m 0. 

The observing rf field E1 is given in the laboratory frame by 

E1 = 2rr V1 cos u>i t i - 2TT V1 sin t j 

where V1 is the amplitude of H x in cps, u>i is the angular frequency in 

radians per second, and i and j are unit vectors along the laboratory x 

and y axes, respectively. The frequency deviation Auu is defined by 
a 

&) =00 - (U, , where u/ is the resonance frequency of site a in radians a a i a *± o 

per second. 

Now, g is defined as the complex magnetization per molecule at a 
site a and equals m + i m The steady state magnetization1 per mole-

xa ya 
cule at site a, < g >, due to chemical exchange is obtained from (l) and 

a 
l -t/j 

(2) by first time averaging with a weight factor of — e , and then 

averaging over initial conditions. It is given by 
-2TT i Vx m o a T < G O A > 

* g a > = " 1 + a T + 1 + a T ( 3 ) 

a a 

In equation (3), < g 0 a
 > = average initial value and a a = ^- - i &u a. 

Set n equal to the number of exchange sites. In this thesis, sites 

corresponding to coincident transitions will be treated as separate sites 
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even though their resonance frequencies are equal. Then 

< goa > = Y f a b < g b > + (1 - I f b a ) < ia > W 
bpa b^a 

For convenience, - f^ is denoted by f^ which equals the probability 
b^a 

of a proton leaving site a and going to any other site. The sign of f 
a 

is negative since the proton leaves site a. Then, equation (3) becomes 

v - - ( 5 ) 

* S a > ( 1 + "a T ) = " 2 1 7 1 V * T + 1 f a b < «b > + ^ + fa> < «a > 
b^a 

o r f _ _ 
( T - ^ < « a > + 7 ( I fab < ?b > ) = ^ 1 ^ m ° 

bjca 

Equation (5) also can be derived from the McConnell equations. 

For no rt saturation, the McConnell equations are 

dM M f M - I T - ' 
, * x a a x a , 1 \ _ , s \ — — + Au) M = - -=— + + — > f M , (6) dt a ya T« T T 4 ab xb b^a 

and 
dM M f M -1 r-> 

b5=a 

All terms are defined as before except for M , M , and Mn which are 
^ xa 7 ya 0 

components of the total magnetization at site a along the x, y, and z 
.* 

axes of the rotating coordinate system, respectively. Define < > 

equal to the total complex magnetization at site a and set it equal to 

M + i M . Adding (6) to i X (7)> the following equation is obtained, xa ya 
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d < G > _ f < G > 1 v . 
+ < G > Oi = - 2tt i V X Mq + — — + - ) f < G^ > (8) 

b^a 

At the steady state, equation (8) becomes 

f 

( T " «a) * \ > + 7 I fab < % > • 2" 1 V i ™° (9) 
b^a 

If n' is defined as the number of molecules per cc, then < g > is equal _ a < G a > 
to — — . Therefore, when equation (9) is divided by n', it becomes 

T - V < g a > + r I fab < «b > = 2 " 1 V> m° ( 1 0 > 
b^a 

Equation (10) is exactly the same as equation (5)« Hence, there 

exist n linear equations for n unknown complex magnetizations. After 

these n unknowns are solved for the total complex magnetization per mole-
n 

cule over n sites, g is set equal to ^ < g a >. The detected NMR signal 
a 

is proportional to the imaginary part of g. 

Equations (5) or (10) will now be used to calculate the spectra 

for an AX 2 and an AX3 spin system where A is undergoing chemical exchange. 

First, consider an AX 2 system. A schematic energy level diagram 

and spectrum for an AX 2 spin system are shown in Figure 1. The magnetic 

quantum number for the A proton is denoted by M(A), and the total mag

netic quantum number for the two X protons is denoted by M(X). The value 

of M(A) and M(x) for each state is given on the right hand side of the 

figure. The A proton states are denoted by a and f3, where M(A) equals 



Figure 1. Energy Level Diagram for AX 2 System 
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^ for a and for |3. The states for the two X protons are denoted by 

a, b, c, and d, where M(X) equals 1 for a, etc. The combined spin func

tion for the state of the A and X protons equals the product of the A 

and X spin functions. The set of arrows by the symbol for each state 

represents the X spin function for that state. 

There are four A transitions corresponding to the selection rule 1 

AM(A) = ± 1, and AM(X) = 0. They are labeled Al, A2, A3, and A h in the 

spectrum and correspond to M(X) = -1, 0, 0, and 1, respectively. The A2 

and A3 transitions are coincident. 

There are eight X transitions corresponding to the selection rule 1 

AM(A) = 0 and AM(X) = ± 1. They are labeled by XI through X8 on the 

energy level diagram and spectrum. The transitions XI through Xk are 

coincident, and the transitions X5 through X8 are coincident. 

The lines Al, A2, A3, and A h correspond to four exchange sites for 

the A proton. The A lines correspond to the following transitions: 

Line Transition 

Al o/a - pa 

A2 ab - 3b 

A3 eve - pc 

Ah ad - gd 

These four sites will be denoted by a, b, c, and d, respectively, in 

the following. The corresponding complex magnetizations will be denoted 

b y ga> gb> gc> a n d gd* 
Using equations (5) and (10) 
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f 
(— - a ) < g > + - ( f < g ~ > + f < J > + f < g . > (ll) \ t a/ a t \ ab b ac &c ad & d v 1 

= 2n i Vl m 0 

By definition, f is equal to the probability of a proton leaving site 

b times the probability of this proton arriving at site a. The prob

ability of a proton leaving site b during an exchange is equal to three-

fourths. This result is obtained from the following reasoning. The pro

ton which leaves site b in molecule 1 can go to four sites in molecule 2: 

a, b, c, and d. If the proton goes to site b in molecule 2, there has 

been no net transfer of protons out of site b. If the proton goes to 

sites a, c, or d in molecule 2, there has been a net transfer of protons 

out of site b. The probability of a proton which has definitely left 

site b arriving at site a is equal to one-third. This is because there 

are three sites a, c, and d to which the proton can go. Therefore, f 

is equal to f X § = -J . In the same way, f = f = \. Since f is 
ac ad a 

equal to - ) f , f = - \ . - J -jjg - -;§. Equation (11) becomes 
L-fi d a a b^a 

or — ^ — 

(" " < 0 < s a > + 7 ( - r - + IT / = 2 " 1 v » *» ( 1 3 ) 

In (12), < g c > is equal to < g^ > because the sites c and d correspond 

to coincident transitions. Using the same method, the complex magneti

zation equations at sites b and d are 
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< g > 
and 

r ^ - ^ ( i ^ ) < g b > ^ < g d > = 2 n i V i m o (14) 

< g a > 1 - ^ 
+ 2? < gb > " ^ + a d } < g d > = 2 n 1 v i m ° 

The complex magnetizations, < g >, < g >, and < g > can be obtained 

cL D CL 
from equations (13), (14), and (15). The NMR signal for the triplet is 
proportional to the imaginary part of g, where g is equal to < g > + 

a 

2 < g^ > + < g^ >. The explicit expression for g is equal to numerator 
(16) denominator 

where numerator = 2tt V : hiq X 64t X it (l + ~) (3AtD + 2cu + 3cu ) 

L. 1q cl D CL .a 
La '-L'a 

and 

denominator = - - 1 2 ^J + 48t2 Acu,_ ( Acu + AoO + 32t2 Acu Ago-, 
T 2 T 2

2 b a d a d 

64t3 64t*̂  

" T ? ~ + " t ^ (Au)aAu)b + AujaAood + HlH^ ' [ T (?A(Jua + 3 H + 7 A V 
2 j . i 3 - — (80Acu + 80AOU, + 96Acu. ) - Hz^-. (acu + A'cu, + Acu,) 

T 2 a d y
 b y

 t 2 a b dy 

+ 64T 3 Au^Au^Au^] i 

The AX 3 system can be treated in a similar way. In Figure 2, all 



Figure 2. Energy Level Diagram for AX 3 System 
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of the symbols are defined in a similar way as Figure 1. There are 

eight transitions: Al, A2, A3, Ah, A5, A6, A7, and A8 for proton A and 

hence eight sites. The symbols for the eight sites are a, b, c, d, e, 

f, g, and h, and the complex magnetizations at these sites are g , g^, 

g c ' gd' g e ' g f gg' a n d gh' r e s P e c t i v e l y - Using equations (5) or (10), 

there are the following four independent linear equations. 

- (8<*AT + 7 ) < g a > + 3 < g b > + 3 < g e > + < g h > = l 6 i T V 1 m 0 (17) 

< i a > - ( 8 0 ^ + 5) < g b > + 3 < g e > + < g h > = 16 i T V : m 0 (18) 

< g Q > + 3 < g h > - (8ofET + 5 ) < g p > + < g h > = l 6 i x V 1 mo (19) 

and 
< g > + 3 < g . > + 3 < g > - ( 8 O T + 7) < g. > = 16 i T V1 mg (20) 

The total complex magnetization for the quartet, g, is equal to 

< ga > + 3 < g b > + 3 < g~e > + < g h >, where < g~a >, < g~b >, < g~e >, and 

< g"h > can be obtained from equations (17), (18), (19)> and (20). The 

NMR signal for the quartet is proportional to the imaginary part of g. 

The explicit expression for g is equal to 

numerator 
denominator (21) 

where numerator = 2TT V1 m 0 X 512 |8T — X (A« a + Ay^ + Acue + Aoû ) 

+ -ig- X (Au)e + Au)b + 3Acoh + 3Aoua) - (Au^Au^Ac^ + AcueAa>hAa>b 

+ 3Au;aAu;eAu;h + 3 ^ * 1 ^ ) j + — X (88Acu + 72 Aw + 72AOJ + 8 8 A U ) ' 
i p a D e n 
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+ T S (l4Acu + 8ACJU, + 8Acu + 14AcuJ + 
a b e h 

32T + - ^ x ( 4 A c u Ac* 
T - 3 T - a b 

160 + 4Acu ACU + 6Acu Acu, + 2Acu, Acu + 4Acu,Acu, + 4Acu Acu, )+ T 3 (—§-
a e a h e b h e h T - 2 

- 26AcuaAcub - 32Au> Ao> - 30 Au> &i>h - I^AU^AJD - 32Acut)Acuh - 26AcueAcuh) 

128T 

a n d 

d e n o m i n a t o r = - 1024 - 0̂96T4 [ - ^ - X ( A c u ^ + AcuaAcue + A c u ^ 

+ AO)hAcua + A % A t u b + AtueAO)h) + ( A ^ A ^ A ^ A ^ ) ] - 64 x 8T3 - ± 

X (l2Au>eAu>h + 14AcueAcub + 12AcuhAcub + 12AcuaAcue + 10AcuaAcuh + 12AcuaAcob) 

- ^ 4 T 2 ( | ^ | - 35AcueAcuh - 49AcubAtue - 32AcuaAcue - 32AcuhAcub - 25 AcuaAcuh 

- 35Aco Aw. ) - — x ( 6 1 4 4 T ) + i J 4 0 9 6 T s - t - (ACU + Acu, + Acu + Acu, ) a b T . L L T « a b e h 

- — (Acu, Acu Acu, + Acu Acu Acu, + Acu, Acu Acu, )~| + - i - x (7Acu, + 5Acu 
T - h a b a e h b e h j 

7Acu + 5Acu ) - 7Acu Acu, Acu, - 5Acu Acu Acu, - 7Acu Acu, Acu - 5Acu, Acu, Au> 
e a ' e h b a e h a b e b h a j 

6 U t 2 

. x (i22Acu + 98Acuu + 122Acu, + 98A1U ) + 8T (190ACU + 266Acu, To e h b - ^ a
 x ^ a b 

+ 190Acuh + 266Ac|>e)| 
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CHAPTER III 

where V 1 and V 2 are the amplitudes of % and Hg in cps, respectively, u>i 

and OUg are the angular frequencies of Hj_ and Hg in radians per second, 
A A 

respectively, and i and j are unit vectors along the X and Y laboratory 

axes, respectively. The analysis will assume that the only effect of 

H 2 is to saturate the irradiated X transitions. Double resonance split-
13 

tings due to Hg will be neglected. 

Consider an AX^ system.1 The A spin states will be denoted by 

Greek letters, e.g. a, |3, etc. The X spin states will be denoted by 

Latin letters, e.g. a, b, etc. The spin state of the combined AX n sys

tem will be denoted by product of Latin and Greek letters, e.g. a a . 

The population of state a a equals the fraction of molecules in state o/a 

COMBINED EFFECT OF DOUBLE RESONANCE SATURATION 

AND CHEMICAL EXCHANGE ON MULTIPLET STRUCTURE 

In this chapter, expressions "will be derived for frequency sweep 

nuclear magnetic double resonance experiments on AX 2 and AX 3 spin systems 

in which A is undergoing chemical exchange. It will be assumed that one 

of the X lines is irradiated by the strong rf field H 2 while the spectrum 

is scanned with a weak observing rf field Hj_ . In the laboratory frame 

A A 

H x = 2rr (i cos UJI t - j sin t) 
and 

A A 

Hg = 2rr V 2 (i cos UJ 2 t - j sin ou2 t) 
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and will be denoted by P . At thermal equilibrium, the population of 
aa 

14 
state aa is given by the Boltzmann distribution 

fi 1 era 
aa " N " N k T 

where N = number of spin states 

cu = energy of state aa in units of radians per second aa * 
k = Boltzmann constant 

T = temperature in °K-

The energy1 of state aa is given by 

where CUq^ is the Larmor frequency of the A proton 

cu ̂  is the Larmor frequency of the X protons 

M(A) is the magnetic quantum number of the A proton in state a 

M(x) is the total magnetic quantum number of the X protons in a 
state a 

J is the coupling constant in cps. 

For an A transition, AM(A) = - 1, and AM(x) = 0. For an X transition, 

AM(X) = 0, and AM(x) = - 1. 
Let us introduce some notation. Consider an A line labeled by Al. 

Suppose this corresponds to the transition aa Pa in Figure 1. Then, 

the intensity of the line Al will be proportional to MAI, the Z component 

of magnetization in units of n'rn for site Al, where 
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MAI = ft (P - P Q ) 
* v oa pa' 

n' = number of molecules per cc 

r = magnetogyric ratio. 

At thermal equilibrium 

MAI 0 = ft (P° - P° ) 
* oa pa' 

In a similar manner, the line XI, corresponding to an X transition 

oa -• ob in Figure 1, is proportional to MX1, where 

MX1 = ft (P - P , ) 
* v oa ob' 

At thermal equilibrium MX1° = ft (P° - P° ) B v oa ob' 
It will be convenient for our purposes to work with the difference quan

tities, AMA1, etc., where 

AMA1 = MAI - MAI 0 

In the following, equations of motion for AMA1, etc. will be de

rived assuming that 

d(AMAl) _ /dAMAIN ZdAMAlN /dAMAIN 
dt \ dt / + V dt A + V dt / ex irr relx 

where 

^dAMAlN i s contribution due to chemical exchange 
ex 

^dAMAlN ^ g ^_ ê con^-ritiution due to irradiation by Hg 
irr ~ 

/ dAMAIN ^ g ^. ê contribution due to relaxation \ dt / _ relx 

First, the contribution due to chemical exchange is considered. 

The rate of change of population of state oa due to chemical exchange is 
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;iven by 

ex c^l a=l 

where 
N g = number of states of A proton 

N = number of states of X proton n r 

,T N = number of states of AX spin system = N N 
L\ n * J e n 
) P = probability that a proton enters molecule 1 with the X 
L— a a 
Of=l 

T proton in spin state a 
^ P^ a = probability that an A proton leaves molecule 2 in spin 
a=l 

state a 

P = probability of molecules having A proton in state a and a a 

X protons in state a 

T = average time interval between chemical exchange 

If the populations are not in thermal equilibrium, P can be replaced ~ a a 
^ ID T N by (= - ^—^—= + v ) in equation (22) where v is the deviation of the J \N N k T Aaa/ ^ v ' Aaa 

population from the Boltzmann distribution. 

Expanding 
1 ^AA, * N 

/ d ( N - m +
 x a a } \ r f ,1 % a ^ + .1 y ,1. 

\ dt / " L /- lN " N k T X a a ; J X V 
ex Q-i 

1 " a + X 
CO.. * /1\ A a a \ 

K N k T ' " a a J " V 1 ' N k T x a a ; 

a=. 

Neglecting terms which are second order in ^ and Y & & T A a a 
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N n 

oa dt ex JX + N Z Xoa + N Z Xoa 
c*=l a=l 

NP 

N k T (if I % a + r I O ~ T\T ~ X-,0 oa 
N
 Aoa N k Tj 

N, 
i_ v l 

LN Z- Xoa + N 
e Qfel 

Z xoa " xoa_ 
n a=l 

Nf Nv 

N k T JT I toaa + IT I 
Q=l n 0_ 

UJ - O) 

oa oaJ a=l 

where 

I 
0=1 

0) oa - ) U) . M(A) - N U) v M(X) = - N yj v M(X) Z_ oA v 'o e woX v 'a ewoX v ya 
o=l 

I 
a=l oa 

N n 
CJU = - N (l) . M n woA [(A) - ) a) v M(X) = - N yj . M(A) v ;o Z_ oX v

 ;a n oA
 ;o 

a=l 

Therefore 

oa dt ex 
LN Z Xoa + N Z Xoa " XoaJ 

0=1 
n a=l 

(23) 

Equation (23) is the general formula for evaluating the population changes 

due to chemical exchange. This equation may also be obtained from Alex-
8 Q 

ander's density matrix formulation of chemical exchange by assuming 

weakly coupled systems. 

Now, consider the AX 2 system.1 The energy level diagram is given 

in Figure 1. Using equation (23), the population changes at different 
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levels are 

aa 
dt ex i r 

T 

* ( xaa + x3a } + * ( xaa + xab + xac + xad } ' xaaJ ^ 2 k ) 

* ( xPa " Xaa } + * ( xaa + X ab + X ag + X a d } . 

dt 

ab 
dt 

ex 

ex 

dX 
ac 

dt 

ex 

ex 

dX ad 

and 
dt 

ex 

ex 

-

_4 (xaa - xpa) + i (xpa + Xp c + Xp b + xpd)_ 
4 (xpb - xab) + J (xaa + xab + xad + xac)j 

_4 (xab - xpb) + J (xpa + xpb + xpc + xpd)] 
4 (xQ„ - x̂) + i (x̂  + x̂-u

 + x̂  + x̂) "Pc Aac aa A ab A a c A ad J 

dX 

( " d ^ ) . . . = T [* (xac " Xpc) + ^ ( X p a + X p b + X p c + X p d ) 

4 ( X c m - X ^ ) + I (xaa + xab
 + xac + X a d ) j 

k£d A od 

ex _4 (XAD - xpd) + i (xpa + xpb + xpc + xpd)_ 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

The A signals correspond to AM(A) = - 1 and AM(X) = 0. The X sig

nals correspond to AM(A) = 0 and AM(X) = - 1. Therefore, for the transi

tion between aa and fSa 

4x 
ex 

dX d ^ X a a " X 3 a \ = /dAMAl\ DT J \ dt / \ dt / ex ex ex 
Ba (32) 

= 7 {* ( x0a " xaa) + * _4 (xaa - xpa) + 4 (xab - xpb) 
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* (x O b Xp b ) + ft ( x a c - X p c ) 

* ^ x a d " x B d ^ ] } 

(AMA2) + (AMA3) + (AMA4) 
ex ex ex. 

where 

= ? [" I (AMA1)+ ft (AMA2) e x + J ( A M A U ) ^ 

* ( X ^ - X p a ) = (fiMAl)ex, ft ( x ^ , - X p b ) = (AMA2) e x, ft ( X & / c - X p c ) 

= (AMA3) e x, and ft ( x a d - X ^ ) = U M A U ) e x . A l s o > ( W 2 ) e x i s e q u a l 

to (AMA3)^ because the A 2 and Aq transitions are coincident. 
ex 

In the same way^ the following equations are derived 

(lIF) - ? [" * (iMA2)ex + * (iMAl)ex + i ̂ êx] (33) 
ex 

/dAMA4\, 1 V dt ) = ^ [~ I (AMA4) e x + J (AMA1) e x + ft (AMA2)] (34) 
ex 

( dt ) " 2T [" * ^Xo/a " Xab^ + * ^ xpa " x3b^ ex 
( 3 5 ) 

and 
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/dAMX5\ _ _1_ 
V dt / 2T ex * (xaa " * » > " * ( x g a " VJ (36) 

= 3F [ ( ^ e x " ( i M X 5 ) e x ! 

where 

* ( X a a - X q c ) = ( i M X D e x , * ( X ^ - X a d ) - ( A M X 2 ) e x , ft ( x a a - X q c ) 

- ( 4 M X 3 ) e x , * ( X q c - . X a a ) = ( A M X l O e x , * ( X g a - X g b ) = ( i M X 5 ) e x , 

* <V - X p d ) = ( A M X U ) ^ , a n d ft ( X p a - X g c ) = (AMX7) ex' 

* (xfBh " Xj3f} = ( A M X 8 ) e x * A l s ° > ( A M X l ) e x > ( A M X 2 ) e x > ( A M X 3 ) e x > 

and (AMX4) e x are equal because they correspond to coincident tran

sitions, and (AMX5) , (AMX6) , (AMX7) , and (AMX8) are equal 

ex ex ex ex 

because they correspond to coincident transitions. 

The population changes due to chemical exchange have been dis

cussed above. Now, the population changes due to irradiation and relaxa

tion are considered. In the AX 2 system, XI, X2, X3, and X4 are irradiated 

by Hg. The population changes at aa due to irradiation induced XI tran

sitions are assumed to be~^ 
d X N 

-gf*) = ^ V 2
S|< oa| i+(x) + I_(x)|eft> >|2 - P° a b (37) 

irr 
+ Xaa " X * ) X g ( v " v

a b ) " - i a b 

where V 2 = amplitude of Hg 

p O _ p O _ (iiff e r e n c e of population between oia and ob states at aa ab * * 
thermal equilibrium 
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X ^ a - X ^ = difference of population deviation from thermal equi

librium between a a and ob states 

g(v - ^ a b ) = line shape function normalized to 1 on the cps scale 

- I ^ = the population changes in the a a state due to Hg 

In the following it will be assumed that the relaxation of the A 

and X protons is due to uncorrelated randomly fluctuating magnetic fields 

17 
caused by the molecular motions of the molecules. Assuming this re

laxation mechanism, the selection rules for relaxation are identical to 

17 
the selection rules for rf induced transitions. The thermal transition 

probability per unit time for A relaxation transitions [AM(A) = ± 1, 
AM(x) = 0] will be denoted by W^. The thermal transition probability 

per unit time for X relaxation transitions [AM(A) = 0, AM(x) = ± 1] will 
be denoted by W . It can be shown that W = and W = , where T 

X A A X 
is the longitudinal relaxation time and T v is the longitudinal relaxa-

17 
tion time of the X protons. Then, the population changes due to re

laxation and rf irradiation are easily written down by inspection from 
18 

Figure 1. They are described by the following equations. 

tar , + tar). - V** + v>+
 + V xaa - ^ 08) 

relx irr 

hf) n
 + (-df). = V*aa + *ad} + W A x

P b ^ 2 W X + V *ab + ^ b ^ b d relx irr 

" wx(V + V + Vgb'̂x + V xab 
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— t t - ) + ( — 7 7 — ) = W V ( X + X .) + W r t x Q -(2WV + W j x +1 -I .(^0) , dt / _ \ dt /. XVAaa Aad A A£c X A' Acvc ac cd ' relx irr 

d x d x 

f - t t ~ > ) + f—r?^ = W v ( x ̂  + X ) + W f l x O J - ( 2 W v + W j x ̂ +21 ̂  (41) \ dt / _ \ dt /. X V Aab Aac' A ABd v X k' Aad ab v ' relx irr 

where I n = L , , = I = I . 
ab bd ac cd 

d x 

tat%elx = V*̂  +
 x P c ) + « A x a a - (2w x + V x P a 

r̂) n " WX(Xga + Xpd) + «AXab " < 2 WX + V Xpb (̂ 3) relx 

fir) n = V*pa + Xgd) + - (2WX + wA) x m 
relx 

and 

(-5r)relx = V f c , - x p c ) + w A X a d - (2WX + w A ) x 6 d (U5) 

The A signals correspond to AM(A) = - 1 and AM(x) = 0, and the X 

signals correspond to AM(A) = 0 and AM(x) = - 1. Thus, the relaxation 

and irradiation contributions to the equation of motion of AMA1 are found 

to be 

d^ Xcxa " X$a)\ ^ ̂ X q a " ̂ s) \ /dAMAl\ ^ /dAMAlN n,s 
— d t — ; . + \ — d t — ) . = kit-) , + l-dt~J. { h e ) 

relx irr relx irr 

= * [Wx(Xttb - Xga) + W x ( X a o - Xpc) - (2WX + 2 W A ) ( X a a - Xga) - 21^] 
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V ^ r e l x + V ^ r e l * - (2WX + 2^) (AMAl) r e l x - 1 ^ 

2W x(iMA2) r e l x - 2 (W X + W A ) ( A M A l ) r e l x - I 

where & ( X - X B A ) n = (AMAl) , £ ( X - X - ). = (AMAl) , 
aa pa r e l x relx A A P A irr irr 

and 
* ( V • X 6 c ) n = ( A M 3 ) i > * ( V " XBC }. = ( A M 3 ) . ' 

AR(- P C relx relx P° irr irr 

* ( x*d " XBd } n = ( A M A i + ) i > * ( xad " X6d }. = ( A M A U ) -
aa pa relx relx oa. pa- irr irr 

Again, (AMA2) is equal to (AMA3) because they correspond to coin-r e _ lx r e j _ x 

cident transitions. In the same way, the following equations are derived 

(1+7) 
( " ) n

 + ( ™ ) . • V ^ r e l x + W X ^ W ( 2 V 2 WA> ̂ 2 W 
relx irr 

( ^ ) + ( ^ ) . - 2 W x ( ^ W 2 ( V V ( ^ ) r e l x ^ a . W relx irr 

n
 + PSP). " V « « > W ( V A ' ^ U " *ah ("9) 

relx irr 

(̂ ) , + (IF). - V ^ W ( 2 W ^ ) r e l x ( 5 0 ) 
relx irr 

where * (Xaa - + * - xj.^ = ( ^ > r e l x

 + ^ \ T r > 

* V " Vrelx + * <*pa - X P B ) I R R - ( A M X 5 ) R £ I X + ( A M X ? ) ^ , and 
(AMXl)^^-,^, ( ^ 2 ) ^ ^ , (AMXS)^-,^ and ( A M X 4 ) _ W are equal be-
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cause they correspond to the coincident transitions, and (AMX5)re-^x, 

(AMX6) , (AMX7) n , and (AMX8) are equal for the same reason. 

The population changes due to chemical exchange have been de

scribed by equations (32) to (36), and the population changes due to 

relaxation and irradiation are expressed by equations (46) to (50). The 

three effects are combined together as follows 

(32) plus (46) 

d(AMAl) /dAMAlN /dAMAl\ /dMAl\ , x 
dt " U t / dt , dt . ° ; 

ex relx irr 

(- _ 2WX - 2WA)(AMA1) + (̂ p + 2WX)(AMA2) + ^ (AMA4) - I ab 

(33) plus (1+7) 

d(AMA2) /dAMA2\ L /dAMA2\ ^ /dAMA2\ ,__v 

" d t — = v"dt-; U ~ d t — 7 . + Ut-J. ( 5 2 ) 

ex relx irr 

= G+7 + W

X ) ( A M A 1 ) " ( 2 W x + 2 W A + 2 T ) ( A M A 2 ) + (w + W x ) ( A M A U ) 

(34) plus (48) 
d(AMA4) /dAMA4\ + /dAMA4\ + /dAMA4\ " 

dt \ dt / \ dt / _ \ dt /. 
ex relx irr = -jip (AMAl) + (i- + 2WX)(AMA2) - + 2W X + 2 wJ(AMA4) + I ab 

(35) Plus (49) 

d(AMXl) /dAMXlN , /dAMXl\ ^ /dAMXlN / , M 

ex relx irr 

• - ( 2 WX + WA + h)^1^ + (WA + ^ ^ 5 ) - I a b 
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(36) plus (50) 

d(AMX5) /dAMX5\ /dAMX5\ ^ /dAMX5\ , . 
~~dt \~1T~) + V~aT-J 1

 + V~dt ). ( 5 5 ) 

ex relx irr 

( WA + 2 7 ) ( A M X 1 ) " ( 2 WX + W A + ^ ) ( A M X 5 ' 

At the steady state, equations (51) to (55) become 

(" dr - 2 W X ~ 2 W

A ) ( A M A 1 ) + ( i f + 2 W
X ) ( A M A 2 ) + Î r (AMA4) = I a b (56) 

Or + ^x)^1) ' ( 2 W
X
 + 2 W

A
 + ^ p ) ( A M A 2 ) " + WX)(AMA4) = 0 (57) 

^ (AMAl) + ( A + 2WX)(AMA2) - + 2W X + 2wJ(AMA4) = - 1 ^ (58) 

and 

- (2WX + W A + ~)(AMX1) + ( w A + ^:)(AMX5) = I 

d 

( WA + 2 l : ) ( A M K l ) ' ( 2 WX + W A + ^ ) ( A M K 5 ) = 0 

ab ( 5 9 ) 

(60) 

Then, the changes in the A proton signal intensity corresponding 

to (AMAl), (AMA2), and (AMA4) are obtained from three linear equations: 

(56), (57), and (58). 

"ab 

(AMAl) = * 

1 2T + 2 W x 
1 

I F 
1 

0 " 2 W x - 2 W A " 2T W + w x 

- 1 2? + 2 W X t ^ - - 2W - 2W IPr X A 

- 2W„r - 2W, 47 • " w x 

4T X 
1 

57 

2 T + 2 w x 1 
57 

- 2 W x - 2 W A - 2T * F + w x 

57 + 2 W x 

—T(61) 

^ " 2 W X " 2 WA! 

file:///~1T~
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where (TAl) is the ratio of two determinants. In the same way 

and 

(AMA2) = I (TA2) ab 

(AMA4) = I (TA4) ao 

( 6 2 ) 

( 6 3 ) 

The intensity changes in X proton doublet corresponding to (AMXl) 

and (AMX5) are obtained from equations ( 5 9 ) and ( 6 0 ) . 

Then 

(AMXl) = 

and 

(AMX5) = 

1 A 2T 
J 
ab 0 - 2 W X - W A - 1 

2T 

_2W - W -
X A 

1 
2T w A + 

1 
2T 

WA 2T - 2W - W 
X A 

1 
" 2T 

J 
- 2 W X - WA " 

1 
2T 

1 

ab w A + 

1 
2T 0 

- 2 W X - WA " 
1 
2T w A + 

1 
2T 

WA 
1 

+ 2T -2WX - WA " 
1 
2T 

I (TX 5) 

(6U) 

( 6 5 ) 

where (TXl) and (TX5) are the ratios of determinants. It is important 

to realize that (TXl) and (TX5) are negative. 

From equations ( 3 7 ) and ( 6 4 ) , I can be calculated as follows 
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I ab 
TS(MA1)° V g

8 T t 3 

1 + 1m2 Tg 2 (v - V .J 2 - Tg(TXl) Vg 2 TT2 

ab 

At resonance, v - v , = 0 . Hence 
ab 

I = T 2 (MA1°) V a
2 T f 3

 ( 6 6 ) 

a b 1 - Tg(TXl) Vg 2 TT2 

The quantity R(Al) for line Al -will be defined as the fractional 

intensity deviation from thermal equilibrium. Then 

^ - S $ ( 6 7 ) 

From equations (6l), (66), and (67) 

/.... _ \ I , (TAl) 

= T a V g
2 TT2 (MA1°) x (TAl) 

1 - TT2 Tg Vg 2 (TX1) (MAI0) 

_ T a V a
a TT2 (TAl) 

1 - Tg TT2 Vg 2 (TXl) 

Then, T can be determined by comparing the experimental value of 

R(Al) with the theoretical value of R(Al) calculated from equation (68). 

This provides a method to determine T . 

Equation (68) is also valid for an AX3 system. However, (TAl) 

and (TXl) will be different. In order to evaluate (TAl) and (TXl), the 

following equations are used 
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3W X + 2Wfl + ? 1 
A " H ? . (AMAl) + (3WX + ^ P ) (AMA2) + ^ (AMA5) (69) 

+ ̂  (AMA.8) = I I ab 

W. X + ^r) (AMAl) - L 3 W X + 2 W A + B T J (AMA2) + ( 2 W X + J P ) ( 7 0 ) 

X (AMA5) + ^ (AMA8) = 

(AMAl) + ( 2 ¥ X + (AMA2) - (3WX + 2W A + ^ (AMA5) ( 7 1 ) 

+ (Wx + ^ ) (AMA8) - - -f 

^ ) (AMAl) + Q^y (AMA2) + (3WX + G ^ ) (AMA5) 

- ^3WX + 2W A + ̂  (AMA8) = I I ab 

( 7 2 ) 

and 
(" 6 W X " W A " 2 T ) ( M X 1 ) + ( WA + 2 T ) ^ 1 3 > = 

( WA + I ? ) ( A M X 1 ) + (" 6 W X " W A " 2 T ) ( A M X 1 3 ) = 

"ab ( 7 3 ) 

Using methods similar to those given for the AX 2 system 

(TAl) 
1.5 X (6WX + 2W A + i) 

(3W X + 2 W A + i) (5W X + 2 W A + i) - 3W X
S 

( 7 5 ) 
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and 

(TXl) = 
( 6 W X + WA + £>' - <WA + 

(76) 

All of the equations derived are applicable to weakly coupled 

spin systems. If strongly coupled spin systems are considered, they 

must be described by the density matrix formalism. 
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CHAPTER IV 

NUCLEAR MAGNETIC DOUBLE RESONANCE EXPERIMENTS 

ON 2,2,2-TRICHLOROETHANOL AND METHANOL 

Experimental Methods 

Double Resonance 

A standard Varian V-4300 NMR spectrometer was used to record 

frequency sweep double resonance spectra of C C I 3 C H 2 O H and CH 30H. Phase 

sensitive detection of audio sidebands was accomplished using a field-

19 

frequency lock system modeled after that described by Noggle. A 

General Radio 1107-A interpolation oscillator driven by a synchronous 

motor was used to provide audio frequency modulation for E1, the ob

serving field. The modulation for Eg was provided by a Hewlett-Packard 

204-B oscillator. The output of the 204-B was amplified by a General 

Radio 1201-B unit amplifier and then attenuated by a Hewlett-Packard 

350-D attenuator. The low field sidebands were used for the field-

frequency lock, observing, and double resonance signals. 

Variable Temperature Addition to Probe 

A Varian Model V-4340 Variable Temperature NMR Probe Accessory 

was used. The temperature was controlled by first passing dry nitrogen 

gas through a copper tube coil immersed in liquid nitrogen and then 

through the Probe Accessory. A copper-constantan thermocouple was used 

to measure the temperature. The thermocouple EMF was read on an L & N 

Galvanometer. The sample spinning and magnetic field homogeneity were 
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greatly affected by the changes in temperature. 

Sample Preparation 

All reagents were stock material. The methanol was 12 percent 

by volume in C C I 4 . Tetramethylsilane (TMS) was five percent by volume 

in the methanol sample and was used for the field-frequency locking 

loop. The 2,2,2-trichloroethanol samples were prepared with 70 percent, 

40 percent, 20 percent, and seven percent by volume of CC1 3CH 20H in 

dimethylsulfoxide (DMSO). Although the amount of TMS which dissolved in 

the DMSO was quite small, it was enough for the lock loop. The multip

let structure in CCl^CHgOH and CH3OH gradually disappeared after the 

sample stood for a few days. This is probably due to the dissolving of 

impurities from the sample tube glass. Therefore, the samples were 

freshly prepared and kept in dry ice during the experimental period. 

The variation of temperature for the methanol sample was limited by the 

freezing point of CC1 4, -23°C. 

Experimental Results 

Single Resonance Experiments 

The compound, CCl^CHgOH, was chosen as an example of an AX 2 

system. 

The triplet and doublet in the spectra correspond to the hydroxyl 

group and methylene group, respectively. Dimethylsulfoxide strongly 

complexes with this alcohol because of the three beta chlorine atoms. 

This provides a convenient way for varying T for proton exchange in 

CClgCHgOH at room temperature. One simply adjusts the ratio of CCLjCHgOH 

to DMSO. The samples contain two percent TMS by volume for the lock loop. 
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Thus, a series of samples of CClgCHgOH was made with different concen

trations in DMSO. 

The coupling constant for this compound is 7*2 cps. The chemical 

shift for 70 percent CClg CHgOH by volume in DMSO is 148 cps. The chemi

cal shift is changed to about 160 cps when the concentration of CClgCHgOH 

is 20 percent by volume in DMSO. 

Equation (l6) was used to predict the theoretical spectra of the 

triplet for different values of T . The calculation was programmed in 

ALGOL for the Burroughs B5500 of the Georgia Institute of Technology's 

Rich Electronic Computer Center. In Figure 3, the theoretical spectra 

of the hydroxyl triplet are on the left and the experimental spectra are 

on the right. The frequency decreases from left to right in the spectra. 

The value of T was determined by matching the theoretical and experimental 

spectra. The reciprocal half width, T 3, was assumed to be 1.9 seconds 

for the theoretical calculations. This value was obtained by measuring 

the half width of the nonexchanging TMS. The values of T for CC13CHgOH 

in different concentrations are listed in Table 1. The value of T for 

seven percent CC13CHgOH could not be determined by this technique be

cause the dominant contribution to the line shape is due to magnetic 

field inhomogeneity. The value of two seconds for T was obtained by the 

double resonance technique to be described later. 

The compound methanol was chosen as an example of an AX 3 system. 

The quartet and doublet in the spectra are the hydroxyl group and methyl 

group signals, respectively. The compound was dissolved in CC1 4 in 

order to slow down the proton exchange enough for the multiplet splitting 

to appear. A sample which was 12 percent by volume in CC1 4 was prepared. 



Figure 3« Experimental and Theoretical Spectra of CC1 3 CHgOH for Different T . 
The spectra on the left are theoretical spectra. The spectra on 
the right are experimental spectra. The value of T for traces a 
and d is 1.0 second. The value of T for traces b and e is 0.40 
second. The value of T for traces c and f is 0.12 second. - f 
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Table 1. The Values of T for CClgCHgOH for Different 
Concentrations in DMSO 

Concentration 7$ V 20$ V 40$ V 70$ V 

T (sec) 2.0* 1.0 0.4 0.12 

The value of T equal to two seconds was obtained from double 
resonance technique, and the others were obtained from line shape method. 
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The sample also contained five percent by volume of TMS for the lock 

loop. The value of T was varied by changing the sample temperature. 

The coupling constant for CH3OH is 5*2 cps. The chemical shift 

at 25°C is 72 cps and about 9° cps at -20°C. Equation ( 2 l ) was used to 

predict the theoretical spectra of the hydroxyl quartet for different 

values of T . The calculation was programmed in ALGOL for the Burroughs 

B5500. In Figure h, the theoretical spectra of the hydroxyl quartet 

are on the left, and the experimental spectra are on the right. The 

frequency decreases from left to right in the spectra. The value of T 

was determined by comparison of the theoretical and experimental spectra. 

The values of T for the CH 30H sample at different temperatures are 

listed in Table 2. 

Double Resonance Experiments 

Frequency sweep double resonance experiments for AX 2 and AX3 sys

tems were carried out in this thesis. First, consider the AX 2 system, 

CC1 3CH 30H. Refer to Figure 1. If H 3 irradiates XI to X4, the differ

ence in populations between aa and Pa will be decreased. This is be

cause the population in the aa state is reduced by irradiation of Hg. 

Therefore, the Al peak corresponding to the transition between aa and 

Pa is decreased. On the other hand, the difference of populations be

tween ad and |3d will be increased. This is because the population in ad 

is increased by the irradiation of Hg. Therefore, the intensity of the 

Ah peak corresponding to the transition between ad and 3d will be in

creased. If H 2 is set on X5 to X8, the intensity changes should be 

reversed. These intensity changes are known as the nuclear Overhauser 
20 

effect. The intensity changes in the triplet caused by irradiating 



Figure h. Experimental and Theoretical Spectra of CH3OH for Different T . 
The spectra on the left are theoretical spectra. The spectra 
on the right are experimental spectra. The value of T for traces 
a and d is 0.23 second. The value of T for traces b and e is 0.20 
second. The value of T for traces c and f is 0.14 second. °̂ 
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Table 2 . The Values of T for 12 Percent CH 30H by Volume 
in CCT 4 at Different Temperatures 

Temperature -20°C 0°C 24°C 
-x-T (sec) 0 . 2 3 0 . 2 0 0.14 

-x-
The values of T were obtained from line shape method* 
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XI to Xh and X5 to X8 are compared in Figure 9* I n the left hand traces, 

XI to Xh are irradiated by H 2 . In the right hand traces, X5 to X8 are 

irradiated. When chemical exchange becomes faster, the Overhauser ef

fect "will be decreased* This is predicted by equation (23) and occurs 

because protons can transfer among the A A , A B , A C , and A D states directly. 

Thus, when T becomes shorter, the deviations of the populations of A A 

and A D from thermal equilibrium decrease. Therefore, chemical exchange 

causes the intensity changes for Al and Ak to be reduced. This causes 

the experimental spectra of the hydroxyl triplet to become more symme

trical. This result is shown in Figure 1. 

If relaxations of A and X protons are considered, the Overhauser 

effect will become smaller when T. and T v become shorter. The reason 
A X 

is that A A can relax with P A , A B , and A C . Hence, when T A and T become 
A X 

shorter, they relax faster and the deviations of populations of A A and 

A D decrease. Therefore, the relaxations of A and X protons cause the 

intensity changes for Al and Ah to be reduced. This makes the experi

mental spectra of the hydroxyl triplet become more symmetrical. Unfor

tunately, T. and T v were not measured in this experiment; therefore, 

A X 

this prediction is not proved experimentally* 

The same argument can be applied to the AX 3 system, CH 30H. In 

Figure 2, if XI to X12 are irradiated by Hg, the intensities of the Al, 

A2, A3, and Ah peaks will be decreased because the differences of popu

lations between A A and |3c, A B and |3b, A C and P E , and A D and P D , respec

tively, are decreased. Meanwhile, the A5, A6, A 7 , and A8 peaks will be 

increased because the differences of populations between A E and P E , of 

and pf, A G and P G , and A H and P H will be increased= On the other hand, 
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if X13 to X24 are irradiated by Hg, the intensity changes will be re

versed. The Overhauser effect is affected by chemical exchange and re

laxation in the same way as discussed for the CC1 3CH 20H sample. 

The experimental spectra for CH 30H are shown in Figure 8. In 

these experiments, X13 to X24 are irradiated by Hg, and the temperatures 

are varied. Since the lower limit for the temperature is determined by 

the freezing point of CC1 4, -23°C, the chemical exchange could not be 
slowed down very much. Therefore, the change in the Overhauser effect 

is not very obvious„ 

The theoretical values of R for CC1 3CH 30H were calculated from 

equation (68) by assuming T 2, T^, and T̂ . equal to 2.5 seconds. The 

values of T 2, T^, and T^ chosen here give the best fit of the theory with 

the experimental values of R. This assumption is reasonable for these 

samples. The experimental values of R were determined by computing the 

fractional intensity deviation of the Al signal. The signal area was 

measured by an integrating rotor. These experimental values of R are 

listed in Table 3- In Figure 5; "the experimental and theoretical values 

of R versus V 2 for CCiLjCHgOH are shown. The value of T for seven percent 

CCLjCHgOH was chosen as two seconds by comparison of theoretical and. ex

perimental values of R in Figure 5* This value is chosen in order to 

obtain consistency in the theoretical values of R being smaller than ex

perimental values of R. 

The theoretical values of R for CH 3OH were calculated by equation 

(68). By the same reason mentioned before, T 2, T , and T̂ . are assumed 

equal to four seconds when T equals 0.23 second and equal to five seconds 

when T equals 0.2 and 0.14 second. The experimental values of R were 
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Table 3. Overhauser Effect on CCI3 CHgOH for Different 
Concentrations in DMSO with Low Frequency Peak 
of Methylene Doublet Irradiated by Second 
Strong rf 

7$ v 20$ V 40$ V 70$ V 

T = 2.0 sec T - 1.0 sec T = 0.40 sec T = 0.12 sec 
v 2 

R v 2 
R v 2 

R v 2 
R 

(cps) (cps) (cps) (cps) 

0 0 0 0 0 0 0 0 
0.11 0.29 0.06 0.14 0.06 0.05 0.06 0.03 
0.19 O.36 0,086 0.23 0.27 0.19 0.086 0.05 
0.27 0.41 0.11 0.25 0.37 0.23 0.19 0.12 
0.37 0.46 0.37 0.40 0.60 0.29 0.37 0.16 
0.6 0.51 0.60 0.45 1.10 0,37 0.6 0.18 
O.76 0.54 O.96 0.48 1.1 0.2 

0.96 0.58 



.5 

Figure 5. Experimental and Theoretical Values of R versus Vg for C C I 3 C H 2 O H . The experimental 
points for 7 , 20, 40, and 70 volume % alcohol are represented hy A, +, and o, 
respectively. The experimental points for one concentration are connected hy dashed 
curves. The theoretical dependence of R on Vg is represented hy solid curves. The 
solid curves were computed with Tg, T^, and T̂ - equal to 2 ,5 seconds and with x equal 
to 2.0, 1.0, 0.4, and 0.12 seconds for the 7 , 20, 40, and 70 volume % solution, re
spectively. 

ro 
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determined by computing the fractional intensity deviation of Al signal. 

The signal area was measured by an integrating rotor. Equation (69) and 

equation ( 7 0 ) predict that R(Al) is equal to the sum of R(A2), R ( A 3 ) , and 

R(A4). The experimental values of R(A2), R(A3), and R(A4) could not be 

measured accurately, however, due to the overlapping of peaks. Therefore, 

this prediction could not be satisfactorily compared with theory. The 

experimental values of R(Al) are listed in Table 4. The theoretical and 

experimental values of R(Al) versus V 2 are shown in Figure 6. 

In Figure 9> each peak of the hydroxyl triplet in traces d and h 
13 

is split into a triplet due to the large value of V 2. The reason is 
that there are two more allowed transitions for each peak of original 

triplet. The spacing between two adjacent peaks of split triplet is 
13 

equal to V s. Therefore, the measurement of this splitting enabled 

the value of V s to be obtained. A precision attenuator was used to obtain 

smaller known values of V s. As for the methanol sample, each peak of the 
13 

hydroxyl quartet will be theoretically split into a quartet. It was 

not split- clearly, however, in the experimental spectra. The reason is 

that the line width of each peak in the quartet was so large that there 

was considerable overlap, because the coupling constant is only 5»2 cps. 

Hence, the split quartet was not clearly resolved. Because of this, the 

values of V 2 used in the CH3OH experiments were obtained from the CC1 3-

CHg OH experiments. 

The double resonance experiments presented several difficulties. 

First, when V 2 became large, the receiver saturated and the detector am

plification decreased. Second, as V 2 became large, the lock loop became 



Table 4. Overhauser Effect on 12 Percent CH 30H by Volume in CC1 4 

for Different Temperatures with Low Frequency Peak of 
Methyl Doublet Irradiated by Second Strong rf 

20° C o°c 24° C 
T = 0 . 23 sec T = 0 . 20 sec T = 0 . 14 sec 

R v2 
R v2 

R 
(cps) (cps) (cps) 

0 0 0 0 0 0 

0 . 0 7 6 0 .12 0 . 3 7 0 .16 0 .19 0 . 0 9 

0 .12 0 .19 0 .6 0 .2 0 . 3 7 0.14 

0 .19 0.24 1.1 0 . 2 7 1.1 0 .2 

0 . 3 7 0 . 3 2 

O . 76 0.4 



Figure 6 . Experimental and Theoretical Values of R versus V2 for CH3OH. The experimental points 
for samples with a temperature of -20°c, 0°c, and 24°c are represented by o } and A, 
respectively. The experimental points for one temperature are connected by dashed 
curves. The theoretical dependence of R on V2 is represented by solid curves. The 
solid curves for -20°c were computed with T 2, T^, and T-̂  equal to 4 seconds, and with 
x equal to 0.23 second. The solid curves for temperatures of 0°c and 24°c were com
puted with ^ d I x eQ. u al to 5 seconds, and with x equal to 0.20 and 0.14 second, 
respectively. 
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unstable. Third, when the Overhauser effect was small, the measurement 

of R had a large experimental error. Fourth, when the variable tempera

ture was used, the poor sample spinning aggravated the above difficulties. 



Figure J. Overhauser Effect on CCl^CHgOH for Different Concentration 
in DMSO. The value of T is 1.0 second in traces a, b, and c. 
The value of T is 0.4 second in traces d, e, and f. The value 
of T is 0.12 second in traces g, h, and i. The value of V 2 is 
0 cps in traces a, d, and g. The value of V 2 is 0 . 37 cps in 
traces b, e, and h. The value of V 2 is 0 .6 cps in traces c, F, 
and i. The frequency decreases from left to right. The low 
frequency peak of the methylene doublet is irradiated by second X=-
strong rf. 



Figure 8. Overhauser Effect on CH3OH at Different Temperatures. The 
value of T is 0 . 2 3 second in traces a, b, and c. The value of 
T is 0 . 2 0 second in traces d, e, and f. The value of T is 0.14 
second in traces g, h, and i. The value of V 2 is 0 cps in traces 
a, d, and g. The value of V 2 for traces b, e, and h is 0 . 1 9 , 
0 . 6 , and 0 . 3 7 cps, respectively. The value of V 2 for traces c, 
f, and i is 0 . 3 7 , 1 .1 , and 1.1 cps, respectively. The frequency 
decreases from left to right. The low frequency peak of methyl 
doublet is irradiated by second strong rf. 

00 
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WW. 
Figure 9. Comparison of Overhauser Effect on CC13CHgOH When T Equals 2.0 

Seconds. The high frequency peak of the methylene doublet 
is irradiated by second strong rf in traces a, b, c, and d. 
The low frequency peak of the methylene doublet is irradiated 
by second strong rf in traces e, f, g, and h. In traces a and 
ef v 2 equals 0 cps. In traces b and f, V 2 equals 0.11 cps. 
In traces c and g, V 3 equals 0.6 cps. 
equals 1.2 cps, 

In traces d and h, V 2 - t = -
v o 
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CHAPTER V 

DISCUSSION 

Using equations (l6) and (21), the theoretically predicted line 

shapes are consistent with the experimental spectra. Hence, by the com

parison of line shapes between theoretical and experimental spectra, the 

average time interval between chemical exchange can be determined. How

ever, this method is suitable only if T is less than one second. The 

reason is that the line width is determined by field inhomogeneity if T 

is longer than one second. 

One of the motivations of this thesis was to provide a double 

resonance experiment to determine T when it is longer than one second. 

In Figures 5 and 6, however, the quantitative agreement between the theo

retical and experimental values of R is not satisfactory. This is prob

ably because of the experimental difficulties mentioned in the last 

chapter. 

However, these double resonance experiments have indicated the 

general aspects of the combined effect of chemical exchange and double 

resonance saturation. In Figures 5 and 6, as T becomes shorter, the 

Overhauser effect decreases. This implies that the chemical exchange 

does play the role of driving the spin system toward the Boltzmann dis

tribution. Hence, as the chemical exchange becomes faster, the Over

hauser effect decreases. In Figure 7, the experimental spectra for 

CC13CHgOH show this phenomenon. As T becomes shorter, the unsymmetrical 
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hydroxyl triplet becomes more symmetrical since the chemical exchange has 

decreased the deviation of populations from Boltzmann distribution. In 

Figure 8, the same effect is shown for the hydroxyl quartet of CH3OH. 

Since the chemical exchanges are always fast within the limited tempera

ture range used for CHgOH, the Overhauser effect in CHgOH is not so ob

vious as that for CC1 3CH 30H. 

The following method is suggested as an alternative method of 

measuring T^, T̂ ., and T. If XI is saturated by Eq , equation (55) becomes 

.. . (wA • ( M x l 0 ) . ( 2 W x + w A + i ) ( i M x 5 ) 

This can be rewritten as 

d M£5 i = - c - K R(X5) (77) 

or 

where K = 2 W
X
 + W

A
 + ^ = ^ + 2!" + 27 ( ? 8 ) 

C - W A + 27 " 2 * 7 + 2? ( 7 9 ) 

MX1° = R X 5 0 , and R(X5) = ^ | ' MX 5° 

Equation (77) can be integrated as follows, using the fact that R.(X5) = 0 

when t = 0. Then 
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rKR(X5)+C M + c ] = - f K dt 
0 + c [K R(X5) + C] - 0 

In [K R(X5) + C] = - K t + In C 

In [R(X5) + |] = - K t + In | 

and 

In [R(X5) - R(X5)(»)] = - K t + In [- R(X5)(»)] ( 8 0 ) 

where R(X5)(°°) is R(X5) at the steady state and is equal to - —. The 

c 
value of K can be obtained from the slope of In [R(X5) + 7 / ] versus the 

IS. 

time elapsed after application of the saturating rf. Thus, after XI is 

saturated, R(X5) decays to the steady state value of - =. The value of 
IY — is obtained from a steady state measurement of R(X5). K 

If A2 and Ah are saturated by Hg, equation ( 5 1 ) becomes 

- (- ,1 - 2W X - 2W A)(AMA1) - + 2^ ) ( M * * ) - £ ( M ^ ) 

This can be rewritten as ' ^ - - (i -wx + a,A) HUD - • -J 
or 

dR(All = _ K, R ( A 1 ) _ c, ( 8 l ) 

dt 

w h e r e K» = £ + 2WX + 2W A = ^ + i + ^ ( 8 2 ) 
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C ' = I 7 + 2 W X = W + 4 ( 8 3 ) 

X 

MA1° = MA2° = MA4°, and R(Al) = 
' v MAI 

Equation (8l) can be integrated as follows, using the fact that R(Al) = 0 

when t = 0. 

Then 
d[K> R(A1) + C ] _ [\, d t 

0 + C» [K* R(A1) + C* 0 

and 

In [K1 R(A1) + C ] = - K' t + lnC 

In [R(A1) + 5 _ ] = - K* t + In C* K 

In [R(A1) - R(Al)(»)] = - K' t + In [- R(Al)(»)] (81+) 

C 1 

where R(Al)(») is R(Al) at the steady state and is equal to - — . The 

value of K' can be obtained from the slope of In [R(Al) - R(Al)(»)] 

versus the time elapsed after application of the saturating rf. Thus, 
after A2 and Ah are saturated, R(Al) decays to the steady state value 

C 1 C ' of - —r. The value of — r is obtained from a steady state measurement K' K' 
of R(A1). 

C C' Since K, 77, K , and — r can be measured, T A, TAr, and T can be ex-' K' ' K A' X' 

pressed in terms of K, C, K', and C ? from equations (78), (79), (82), 

and (83). The explicit formulas are as follows. 
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and 

Therefore, T^, T x, and T can be obtained from equations ( 8 5 ) , ( 8 6 ) , and 

( 8 7 ) . 

This technique would allow all of the parameters used in this 

thesis to be independently measured. This would enable the theory de

veloped in this thesis to be tested without using adjustable parameters. 
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