In presenting the dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Institute shall make it available for irspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to sopy from, or to publish from, this dissertation may be granted by the professor under whose direction it was written, or, In his absence, by the Dean of the Graduate Divisior, when such copying or publicatior is solely for scholarly purposes and does not involve potential financial gain. It is urderstood that any copying from, or publication of, this dissertation which invoives potential financial gain will not be allowed without written permission.

NUCLEAR MAGNETIC DOUBLE RESONANCE EXPERIMENTS ON CHEMICALLY EXCHANGING MOLECULES

A THESIS
Presented to
The Faculty of the Graduate Division
by
Ping Pin Yang

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Chemistry

Georgia Institute of Technology
July, 1968

NUCLEAR MAGNETIC DOUBLE RESONANCE EXPERIMENTS

ON CHEMICALLY EXChANGING MOLECULES

ACKNOWLEDGMENTS

Acknowledgment is made of enlightening discussions with Dr. S. L. Gordon, in which the basic ideas of this thesis evolved, and to his supervision of the investigation.

The author wishes to thank Dr. W. M. Spicer for the financial support of teaching assistantships. The author also wishes to thank the National Science Foundation for the assistance received from research assistantships.

The author is indebted to Dr. J. R. Dyer for suggesting dimethylsulfoxide to slow down the exchange rate of $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$, and to Dr . W. H. Eberhardt and Dr. C. L. Liotta for serving on the thesis committee.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS ii
LIST OF TABLES iv
LIST OF ILLUSTRATIONS. v
SUMMARY. vi
Chapter
I. INTRODUCTION. 1
II. DEPENDENCE OF LINE SHAPES ON CHEMICAL EXCHANGE. 3
III. COMBINED EFFECT OF DOUBLE RESONANCE SATURATION AND CHEMICAL EXCHANGE ON MULTIPLET STRUCTURE. 14
IV. NUCLEAR MAGNETIC DOUBLE RESONANCE EXPERIMENTS ON 2,2,2-TRICHLOROETHANOL AND METHANOL. 31
Experimental Methods. 31
Double ResonanceVariable Temperature Addition to ProbeSample Preparation
Experimental Results. 32
Single Resonance Experiments Double Resonance Experiments
V. DISCUSSION. 50
IITERATURE CITED 55

LIST OF TABLES

Table Page1. The Values of τ for $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ for Different
Concentrations in DMSO. 35
2. The Values of T for 12 Percent $\mathrm{CH}_{3} \mathrm{OH}$ by Volume in CCl_{4} at Different Temperatures 383. Overhauser Effect on $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ for Different Con-centrations in DMSO with Low Frequency Peak ofMethylene Doublet Irradiated by Second Strong rf. 41
4. Overhauser Effect on 12 Percent $\mathrm{CH}_{3} \mathrm{OH}$ by Volumein CCl_{4} for Different Temperatures with Low Fre-quency Peak of Methyl Doublet Irradiation bySecond Strong rf. 44

LIST OF ILLUSTRATIONS

Figure Page

1. Energy Level Diagram for AX_{2} System 7
2. Energy Level Diagram for AX_{3} System 11
3. Experimental and Theoretical Spectra of $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ for Different 34
4. Experimental and Theoretical Spectra of $\mathrm{CH}_{3} \mathrm{OH}$ for Different 37
5. Experimental and Theoretical Values of R versus $\mathrm{V}_{\mathbf{2}}$ for $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ 42
6. Experimental and Theoretical Values of R versus $V_{\mathbf{2}}$ for $\mathrm{CH}_{\mathrm{g}} \mathrm{OH}$ 45
7. Overhauser Effect on $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ for Different Concentrations in DMSO. 47
8. Overhauser Effect on $\mathrm{CH}_{3} \mathrm{OH}$ at Different Temperatures. 48
9. Comparison of Overhauser Effect on $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ When τ Equals 2.0 Seconds. 49

A theoretical and experimental study of nuclear magnetic double resonance experiments on chemically exchanging molecules is carried out in this thesis. The compounds $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{OH}$ are used to illustrate the results. The $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ compound is treated as an AX_{2} spin system, and the $\mathrm{CH}_{3} \mathrm{OH}$ compound as an AX_{3} system.

The Gutowsky, McCall, and Slichter, as well as the McConnel extension of the Bloch equations are compared and cast in a convenient probability formulation. Explicit line shape formulas are obtained for AX_{2} and AX_{3} systems in which the A nucleus undergoes chemical exchange.

Theoretical intensity expressions are derived for frequency sweep double resonance experiments in which an X transition is irradiated by the strong rf field, ${\underset{\sim}{2}}^{2}$. The expressions are derived using a model based upon energy level populations. This double resonance technique provides a method for investigating slow self-exchange processes between the same molecules. The line shape technique is valid only if the exchange rate is fast compared with the experimental line width. The analysis takes into account possibilities of multiplet structure and arbitrary amplitudes of the strong rf field. The above results are illustrated with the compound $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ for an AX_{2} spin system. The exchange rate of $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ is varied by complexing with dimethylsulfoxide. The exchange rate of $\mathrm{CH}_{3} \mathrm{OH}$ is changed by temperature variation.

Experiment and theory are in qualitative agreement, but not in
satisfactory quantitative agreement. This is believed due to experimental difficulties associated with the strong rf field used in the double resonance experiments. The large signal produced by the strong rf tended to overload the detector and distort the NMR spectra. The results indicate that the chemical exchange has the same effect as the spin-lattice relaxation in driving the perturbed spin system toward the Boltzmann distribution.

CHAPTER I

INTRODUCTION

In a weakly coupled spin system, ${ }^{1}$ several modifications of the Bloch equations ${ }^{2}$ have been used to investigate proton exchange between different sites. One such set of equations, the GMS equations, was obtained from the modified Bloch equations solved by Gutowsky, McCall, and Slichter. ${ }^{3}$ The GMS approach was extended by Gutowsky and Saika, ${ }^{4}$ and Grunwald, Loewenstein, and Meiboom, ${ }^{5}$ and Luz, Gill, and Meiboom. ${ }^{6}$ Starting from a different point of view, McConnel1 ${ }^{7}$ introduced a modification of the Bloch equations known as the McConnell equations by assuming that the magnetization could be transferred between different sites in a manner analogous to that of ordinary chemical exchange. If there is a steady state and no saturation, the McConnell equations reduce to the GMS equations.

In strongly coupled systems the nuclear spin density matrix master equation was used by Alexander ${ }^{8,9}$ to investigate chemical exchange.

In addition to the above steady state line shape methods, other techniques were introduced. McConnell and Thompson ${ }^{10}$ used adiabatic fast passage to measure exchange rates. Nonequilibrium nuclear spin magnetization equations were derived to calculate exchange rate constants. Forsen and Hoffman ${ }^{11,12}$ have determined the rate constants and spin-lattice relaxation times at chemically shifted sites by double resonance experiments.

The purpose of this thesis is to study nuclear magnetic double resonance experiments on chemically exchanging molecules. The double resonance experiments discussed in this thesis are related to those of Forsén and Hoffman. 11,12 Forsén and Hoffman consider only chemically shifted peaks, and therefore studied exchange between different compounds. They also confined their studies to complete saturation by the strong rf field. In this thesis, multiplet structure is considered and self-exchange involving one compound is investigated. Also, expressions are derived for intermediate saturation strengths for the strong rf field.

In Chapter II, an explicit probability notation is introduced to compare the GMS and McConnell extensions of the Bloch equations to chemical exchange. Explicit line shape formulas are derived for $A X_{2}$ and $A X_{3}$ spin systems ${ }^{1}$ in which the A nucleus undergoes chemical exchange. The AX_{2} formulas are applied to $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$, and the AX_{3} formulas to $\mathrm{CH}_{3} \mathrm{OH}$.

A theoretical description of the combined effect of double resonance saturation and chemical exchange on the multiplet structure of $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{OH}$ is presented in Chapter III. This provides a method for determining the average time interval between chemical exchange when the exchange is too slow to affect the line shapes. The strong $r f$ is used to perturb the weakly coupled spin system from the Boltzmann distribution, but the chemical exchange and spin-lattice relaxation decrease this deviation. This has been investigated in $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{OH}$ as a function of proton exchange rate. The experimental results are compared with theoretical predictions in Chapter IV.

CHAPTER II

DEPENDENCE OF LINE SHAPES ON CHEMICAL EXCHANGE

The GMS ${ }^{3}$ and McConnell ${ }^{7}$ extensions of the Bloch equations to chemical exchange are compared in this chapter. An explicit probability notation is introduced in making the comparison. Explicit line shape formulas are derived for AX_{2} and AX_{3} spin systems ${ }^{1}$ in which the A nucleus undergoes chemical exchange. The AX_{2} formulas will be applied to $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$, and the AX_{3} formulas to $\mathrm{CH}_{3} \mathrm{OH}$.

Let τ be defined as the average time interval between chemical exchange. The probability factor, $f_{a b}$, is defined as the probability of a proton transferring from site b to site a during a chemical exchange. Actually, $f_{a b}$ is equal to the probability of a proton leaving site b times the probability of this proton arriving at site a. The GMS equations assume a steady state and no rf saturation. They are derived as follows.

The Bloch equations ${ }^{\text {l }}$ for the transverse magnetization at site a in a coordinate system rotating with an angular velocity of $-w_{1}$ are
and

$$
\begin{align*}
& \frac{d m_{x a}}{d t}+\Delta \omega_{a} m_{y a}=-\frac{m_{x a}}{T_{2}} \tag{1}\\
& \frac{d m_{y a}}{d t}-\Delta w_{a} m_{x a}=-\frac{m_{\mathrm{ya}}}{\mathrm{~T}_{2}}-2 \pi v_{1} m_{0} \tag{2}
\end{align*}
$$

In equations (1) and (2), T_{2} is the transverse relaxation time, $m_{x a}$ and m_{ya} are the components of magnetization per molecule along the x and y axes of the rotating coordinate system, and m_{0} is the thermal equilibrium magnetization per molecule at site a. If there is no rf saturation, the magnetization per molecule along the z axis at site a is equal to mo. The observing rf field ${\underset{\sim}{1}}^{\mathrm{H}_{1}}$ is given in the laboratory frame by

$$
{\underset{\sim}{H}}_{1}=2 \pi V_{1} \cos \omega_{1} t \hat{i}-2 \pi V_{1} \sin \omega_{1} t \hat{j}
$$

where V_{1} is the amplitude of ${\underset{\sim}{1}}_{\mathrm{H}_{2}}$ in cps, ω_{1} is the angular frequency in radians per second, and i and \hat{j} are unit vectors along the laboratory x and y axes, respectively. The frequency deviation $d w_{a}$ is defined by $\Delta \omega_{a}=\omega_{a}-\omega_{1}$, where ω_{a} is the resonance frequency of site a in radians per second.

Now, g_{a} is defined as the complex magnetization per molecule at site a and equals $m_{x a}+i m_{y a}$. The steady state magnetization ${ }^{1}$ per molecule at site $a,\left\langle\bar{g}_{a}\right\rangle$, due to chemical exchange is obtained from (I) and (2) by first time averaging with a weight factor of $\frac{1}{\tau} e^{-t / \tau}$, and then averaging over initial conditions. It is given by

$$
\begin{equation*}
\left\langle\bar{g}_{a}\right\rangle=\frac{-2 \pi i^{V_{2} m_{0 a} \tau}}{1+\alpha_{a}^{\top}}+\frac{\left\langle g_{0 a}\right\rangle}{1+\alpha_{a}^{\top}} \tag{3}
\end{equation*}
$$

In equation (3), $<g_{o_{a}}>=$ average initial value and $\alpha_{a}=\frac{l}{\mathrm{~T}_{\boldsymbol{z}}}-$ i Δw_{a}. Set n equal to the number of exchange sites. In this thesis, sites corresponding to coincident transitions will be treated as separate sites
even though their resonance frequencies are equal. Then

$$
\begin{equation*}
<\mathrm{g}_{0 \mathrm{a}}>=\sum_{\mathrm{b} \neq \mathrm{a}} \mathrm{f}_{\mathrm{ab}}<\overline{\mathrm{g}}_{\mathrm{b}}>+\left(1-\sum_{\mathrm{b} \neq \mathrm{a}} \mathrm{f}_{\mathrm{ba}}\right)<\overline{\mathrm{g}}_{\mathrm{a}}> \tag{4}
\end{equation*}
$$

For convenience, $-\sum_{b \neq a} f_{b a}$ is denoted by f_{a} which equals the probability of a proton leaving site a and going to any other site. The sign of f_{a} is negative since the proton leaves site a. Then, equation (3) becomes

$$
\left.\left\langle\bar{g}_{a}\right\rangle\left(1+\alpha_{a} \tau\right)=-2 \pi i V_{2} m_{0} \tau+\sum_{b \neq a} f_{a b}\left\langle\bar{g}_{b}\right\rangle+\left(1+f_{a}\right)<\bar{g}_{a}\right\rangle
$$ or

$$
\left(\frac{f_{a}}{\tau}-\alpha_{a}\right)<\bar{g}_{a}>+\frac{1}{\tau}\left(\sum_{b \neq a} f_{a b}<\bar{g}_{b}>\right)=2 \pi i V_{1} m_{c}
$$

Equation (5) also can be derived from the McConnell equations. ${ }^{7}$ For no rt saturation, the McConnell equations are

$$
\begin{equation*}
\frac{d M_{x a}}{d t}+\Delta w_{a} M_{y a}=-\frac{M_{x a}}{T_{2}}+\frac{f_{a} M_{x a}}{\tau}+\frac{1}{\tau} \sum_{b \neq a} f_{a b} M_{x b} \tag{6}
\end{equation*}
$$

and

$$
\frac{d M_{y a}}{d t}-\Delta \omega_{a} M_{x a}=-\frac{M_{y a}}{T_{2}}+\frac{f_{a} M_{y a}}{\tau}+\frac{1}{\tau} \sum_{b \neq a} f_{a b} M_{y b}-2 \pi V_{2} M_{0}(7)
$$

All terms are defined as before except for $M_{x a}, M_{y a}$, and M_{0} which are components of the total magnetization at site a along the x, y, and z axes of the rotating coordinate system, respectively. Define $\left\langle\bar{G}_{a}\right\rangle$ equal to the total complex magnetization at site a and set it equal to $M_{x a}+i M_{y a}$. Adding (6) to i $x(7)$, the following equation is obtained.

At the steady state, equation (8) becomes

$$
\begin{equation*}
\left(\frac{f_{a}}{T}-\alpha_{a}\right)<\bar{G}_{a}>+\frac{1}{\tau} \sum_{b \neq a} f_{a b}<\bar{G}_{b}>=2 \pi i V_{2} m_{0} \tag{9}
\end{equation*}
$$

If n^{\prime} is defined as the number of molecules per $c c$, then $<\bar{g}_{\mathrm{a}}>$ is equal to $\frac{\left\langle\bar{G}_{a}\right\rangle}{n^{\prime}}$. Therefore, when equation (9) is divided by n^{\prime}, it becomes

$$
\begin{equation*}
\left(\frac{f_{a}}{\tau}-\alpha_{a}\right)<\bar{g}_{a}>+\frac{1}{\tau} \sum_{b \neq a} f_{a b}<\bar{g}_{b}>=2 \pi i v_{1} m_{0} \tag{10}
\end{equation*}
$$

Equation (10) is exactly the same as equation (5). Hence, there exist n linear equations for n unknown complex magnetizations. After these n unknowns are solved for the total complex magnetization per molecule over n sites, g is set equal to $\sum_{a}^{n}\left\langle\bar{g}_{a}\right\rangle$. The detected NMR signal is proportional to the imaginary part of g.

Equations (5) or (10) will now be used to calculate the spectra for an $A X_{2}$ and an AX_{3} spin system where A is undergoing chemical exchange.

First, consider an $\mathrm{AX}_{\mathbf{2}}$ system. A schematic energy level diagram and spectrum for an $\mathrm{AX}_{\mathbf{z}}$ spin system are shown in Figure 1. The magnetic quantum number for the A proton is denoted by $M(A)$, and the total magnetic quantum number for the two X protons is denoted by $M(X)$. The value of $M(A)$ and $M(X)$ for each state is given on the right hand side of the figure. The A proton states are denoted by α and β, where $M(A)$ equals

Figure 1. Energy Level Diagram for AX_{2} System
$\frac{\frac{1}{2}}{}$ for α and $-\frac{1}{2}$ for β. The states for the two X protons are denoted by a, b, c, and d, where $M(X)$ equals 1 for a, etc. The combined spin function for the state of the A and X protons equals the product of the A and X spin functions. The set of arrows by the symbol for each state represents the X spin function for that state.

There are four A transitions corresponding to the selection rule ${ }^{l}$ $\Delta M(A)= \pm 1$, and $\Delta M(X)=0$. They are labeled $A 1, A 2, A 3$, and $A 4$ in the spectrum and correspond to $M(X)=-1,0,0$, and 1 , respectively. The A2 and A3 transitions are coincident.

There are eight X transitions corresponding to the selection rule ${ }^{l}$ $\Delta M(A)=0$ and $\Delta M(X)= \pm 1$. They are labeled by Xl through $X 8$ on the energy level diagram and spectrum. The transitions Xl through X4 are coincident, and the transitions X 5 through X 8 are coincident.

The lines A1, A2, A3, and A4 correspond to four exchange sites for the A proton. The A lines correspond to the following transitions:

Line	Transition
A1	$\alpha a-\beta a$
A2	$\alpha b-\beta b$
$A 3$	$\alpha c-\beta c$
$A 4$	$\alpha d-\beta d$

These four sites will be denoted by a, b, c, and d, respectively, in the following. The corresponding complex magnetizations will be denoted by g_{a}, g_{b}, g_{c}, and g_{d}. Using equations (5) and (10)

$$
\begin{equation*}
\left(\frac{f_{a}}{\tau}-\alpha_{a}\right)<\bar{g}_{a}>+\frac{1}{\tau}\left(f_{a b}<\bar{g}_{b}>+f_{a c}<\bar{g}_{c}>+f_{a d}<\bar{g}_{d}>\right. \tag{11}
\end{equation*}
$$

```
=2\pii V ( mo
```

By definition, $f_{a b}$ is equal to the probability of a proton leaving site b times the probability of this proton arriving at site a. The probability of a proton leaving site b during an exchange is equal to threefourths. This result is obtained from the following reasoning. The proton which leaves site b in molecule l can go to four sites in molecule 2: a, b, c, and d. If the proton goes to site b in molecule 2 , there has been no net transfer of protons out of site b. If the proton goes to sites a, c, or d in molecule 2, there has been a net transfer of protons out of site b. The probability of a proton which has definitely left site b arriving at site a is equal to one-third. This is because there are three sites a, c, and d to which the proton can go. Therefore, $f_{a b}$ is equal to $\frac{3}{4} \times \frac{1}{3}=\frac{1}{4}$. In the same way, $f_{a c}=f_{a d}=\frac{1}{4}$. Since f_{a} is equal to $-\sum_{b \neq a} f_{b a}, f_{a}=-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}=-\frac{3}{4}$. Equation (1l) becomes

$$
\begin{equation*}
\left.\left(\frac{-3}{4 \tau}-\alpha\right)<\bar{g}_{a}\right\rangle+\frac{1}{\tau}\left(\frac{\left\langle\bar{g}_{b}\right\rangle}{4}+\frac{\left\langle\bar{g}_{c}\right\rangle}{4}+\frac{\left\langle\bar{g}_{d}\right\rangle}{4}\right)=2 \pi \text { i } V_{2} m_{0} \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(-\frac{3}{4 \tau}-\alpha_{a}\right)<\bar{g}_{a}>+\frac{1}{\tau}\left(\frac{\left\langle\bar{g}_{b}>\right.}{2}+\frac{\left\langle\bar{g}_{d}>\right.}{4}\right)=2 \pi i v_{2} m_{0} \tag{13}
\end{equation*}
$$

In (12), $\left\langle\bar{g}_{c}>\right.$ is equal to $<\overline{\mathrm{g}}_{\mathrm{b}}>$ because the sites c and d correspond to coincident transitions. Using the same method, the complex magnetization equations at sites b and d are

$$
\begin{equation*}
\frac{\left\langle\bar{g}_{a}>\right.}{4 \tau}-\frac{1}{\tau}\left(\frac{1}{2}+\alpha_{b}\right)<\bar{g}_{b}>+\frac{1}{4 \tau}<\bar{g}_{d}>=2 \pi i V_{1} m_{0} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left\langle\bar{g}_{a}>\right.}{4 \tau}+\frac{1}{2 \tau}<\bar{g}_{b}>-\left(\frac{3}{4 \tau}+\alpha_{d}\right)<\bar{g}_{d}>=2 \pi i V_{2} m_{0} \tag{15}
\end{equation*}
$$

The complex magnetizations, $\left\langle\overline{\mathrm{g}}_{\mathrm{a}}\right\rangle,\left\langle\overline{\mathrm{g}}_{\mathrm{b}}\right\rangle$, and $\left\langle\overline{\mathrm{g}}_{\mathrm{d}}\right\rangle$ can be obtained from equations (13), (14), and (15). The NMR signal for the triplet is proportional to the imaginary part of g, where g is equal to $<\bar{g}_{a}>+$ $2<\bar{g}_{\mathrm{b}}>+\left\langle\overline{\mathrm{g}}_{\mathrm{d}}>\right.$. The explicit expression for g is equal to

$$
\begin{equation*}
\frac{\text { numerator }}{\text { denominator }} \tag{16}
\end{equation*}
$$

where numerator $=2 \pi V_{2} m_{0} \times 64 \tau \times\left\{\tau\left(1+\frac{\tau}{T_{2}}\right)\left(3 \Delta \omega_{a}+2 \omega_{b}+3 \omega_{d}\right)\right.$

$$
\left.+\left[4\left(1+\frac{2 \tau}{T_{2}}+\frac{\tau^{2}}{T_{2}^{2}}\right)-\tau^{2}\left(\Delta \omega_{b} \Delta \omega_{d}+2 \Delta \omega_{a} \Delta \omega_{d}+\Delta \omega_{a} \Delta \omega_{b}\right)\right] i\right\}
$$

and

$$
\begin{aligned}
& \text { denominator }=-\frac{64 \tau}{T_{z}}-\frac{128 \tau^{2}}{T_{2}^{2}}+48 \tau^{2} \Delta \omega_{b}\left(\Delta \omega_{a}+\Delta \omega_{d}\right)+32 \tau^{2} \Delta \omega_{a} \Delta \omega_{d} \\
& \quad-\frac{64 \tau^{3}}{T_{z}^{3}}+\frac{64 \tau^{3}}{T_{2}}\left(\Delta \omega_{a} \Delta \omega_{b}+\Delta \omega_{a} \Delta \omega_{d}+\Delta \omega_{d} \Delta \omega_{b}\right)-\left[\tau\left(7 \Delta \omega_{a}+3 \Delta \omega_{b}+7 \Delta \omega_{d}\right)\right. \\
& \quad-\frac{\tau^{2}}{T_{z}}\left(80 \Delta \omega_{a}+80 \Delta \omega_{d}+96 \Delta \omega_{b}\right)-\frac{64 \tau^{3}}{T_{2}^{2}}\left(\Delta \omega_{a}+\Delta \omega_{b}+\Delta \omega_{d}\right) \\
& \left.\quad+64 \tau^{3} \Delta \omega_{a} \Delta \omega_{b} \Delta \omega_{d}\right] i
\end{aligned}
$$

The AX_{3} system can be treated in a similar way. In Figure 2, all

$$
\sum_{\substack{x+\uparrow \\ \beta a}}^{\substack{x \mid 4 \\ x}} \int_{x / 5}^{0}
$$

$$
\begin{array}{cc}
M(X) & M(A) \\
-\frac{3}{2} & -\frac{1}{2}
\end{array}
$$

$$
-\frac{1}{2}
$$

$$
-\frac{1}{2}
$$

$$
\frac{1}{2}
$$

$$
-\frac{1}{2}
$$

$-\frac{3}{2}$
$\frac{1}{2}$
$\frac{3}{2}$
$-\frac{1}{2}$

$-\frac{1}{2} \quad \frac{1}{2}$
$\frac{1}{2}$
$\frac{1}{2}$
$-\frac{3}{2}$

$$
\frac{1}{2}
$$

Figure 2. Energy Level Diagram for AX_{3} System
of the symbols are defined in a similar way as Figure 1 . There are eight transitions: A1, A2, A3, A4, A5, A6, A7, and A8 for proton A and hence eight sites. The symbols for the eight sites are a, b, c, d, e, f, g, and h, and the complex magnetizations at these sites are g_{a}, g_{b}, $g_{c}, g_{d}, g_{e}, g_{f}, g_{g}$, and g_{h}, respectively. Using equations (5) or (10), there are the following four independent linear equations.

$$
\begin{align*}
& -\left(8 \alpha_{a} \tau+7\right)<\bar{g}_{a}>+3<\bar{g}_{b}>+3<\bar{g}_{e}>+\left\langle\bar{g}_{h}>=16 \text { i } \tau \mathrm{V}_{1} \mathrm{~m}_{0}\right. \tag{17}\\
& <\overline{\mathrm{g}}_{\mathrm{a}}>-\left(8 \alpha_{\mathrm{b}} \tau+5\right)<\overline{\mathrm{g}}_{\mathrm{b}}>+3<\overline{\mathrm{g}}_{\mathrm{e}}>+<\overline{\mathrm{g}}_{\mathrm{h}}>=16 \text { i } \tau \mathrm{V}_{1} \mathrm{~m}_{0} \tag{18}\\
& <\overline{\mathrm{g}}_{\mathrm{a}}>+3<\overline{\mathrm{g}}_{\mathrm{b}}>-\left(8 \alpha \alpha_{e} \tau+5\right)<\overline{\mathrm{g}}_{\mathrm{e}}>+<\overline{\mathrm{g}}_{\mathrm{h}}>=16 \text { i } \tau \mathrm{V}_{1} \mathrm{mo}_{0} \tag{19}
\end{align*}
$$

and

$$
\begin{equation*}
\left\langle\bar{g}_{a}\right\rangle+3<\bar{g}_{b}>+3<\bar{g}_{e}>-\left(8 \alpha_{h} \tau+7\right)<\bar{g}_{h}>=16 \text { i } \tau V_{\mathrm{I}} m_{0} \tag{20}
\end{equation*}
$$

The total complex magnetization for the quartet, g, is equal to $\left\langle\overline{\mathrm{g}}_{\mathrm{a}}\right\rangle+3<\overline{\mathrm{g}}_{\mathrm{b}}>+3<\overline{\mathrm{g}}_{\mathrm{e}}>+\left\langle\overline{\mathrm{g}}_{\mathrm{h}}>\right.$, where $\left\langle\overline{\mathrm{g}}_{\mathrm{a}}\right\rangle,<\overline{\mathrm{g}}_{\mathrm{b}}>,<\overline{\mathrm{g}}_{\mathrm{e}}>$, and $\left\langle\bar{g}_{h}>\right.$ can be obtained from equations (17), (18), (19), and (20). The NMR signal for the quartet is proportional to the imaginary part of g. The explicit expression for g is equal to

$$
\begin{equation*}
\frac{\text { numerator }}{\text { denominator }} \tag{21}
\end{equation*}
$$

where numerator $=2 \pi V_{1} m_{0} \times 512\left\{8 \tau^{4}\left[\frac{4}{T_{2}} \times\left(\Delta \omega_{a}+\Delta \omega_{b}+\Delta \omega_{e}+\Delta \omega_{k}\right)\right.\right.$

$$
\begin{aligned}
& +\frac{1}{\mathrm{~T}_{2}} \times\left(\Delta \omega_{e}+\Delta \omega_{b}+3 \Delta \omega_{h}+3 \Delta \omega_{a}\right)-\left(\Delta \omega_{a} \Delta \omega_{b} \Delta \omega_{e}+\Delta \omega_{e} \Delta \omega_{h} \Delta_{\omega_{b}}\right. \\
& \left.\left.+3 \Delta \omega_{a} \Delta \omega_{e} \Delta \omega_{h}+3 \Delta \omega_{a} \Delta \omega_{b} \Delta \omega_{h}\right)\right]+\frac{\tau^{3}}{T_{2}} \times\left(88 \Delta \omega_{a}+72 \Delta \omega_{b}+72 \Delta \omega_{e}+88 \Delta \omega_{h}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\tau^{2}\left(14 \Delta \omega_{a}+8 \Delta \omega_{b}+8 \Delta \omega_{e}+14 \Delta \omega_{h}\right)+\left[32 \tau+\frac{64 \tau^{4}}{T_{z}^{3}}-\frac{8 \tau^{4}}{T_{2}} \times\left(4 \Delta \omega_{a} \Delta \omega_{b}\right.\right. \\
& \left.+4 \Delta \omega_{a} \Delta \omega_{e}+6 \Delta \omega_{a} \Delta \omega_{h}+2 \Delta \omega_{b} \Delta \omega_{e}+4 \Delta \omega_{b} \Delta \omega_{h}+4 \Delta \omega_{e} \Delta \omega_{h}\right)+T^{3}\left(\frac{160}{T_{z}^{2}}\right. \\
& \left.-26 \Delta \omega_{a} \Delta \omega_{b}-32 \Delta \omega_{a} \Delta \omega_{e}-30 \Delta \omega_{a} \Delta \omega_{h}-14 \Delta \omega_{b} \Delta \omega_{e}-32 \Delta \omega_{b} \Delta \omega_{h}-26 \Delta \omega_{e} \Delta \omega_{h}\right) \\
& \left.\left.+\frac{128 \tau^{2}}{T_{z}}\right] i\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { denominator }=-1024-4096 T^{4}\left[\frac{1}{T_{z}^{4}}-\frac{1}{T_{a}^{2}} \times\left(\Delta \omega_{a} \Delta \omega_{b}+\Delta \omega_{a} \Delta \omega_{e}+\Delta \omega_{b} \Delta \omega_{e}\right.\right. \\
& \left.\left.\quad+\Delta \omega_{h} \Delta \omega_{a}+\Delta \omega_{h} \Delta \omega_{b}+\Delta \omega_{e} \Delta \omega_{h}\right)+\left(\Delta \omega_{a} \Delta \omega_{b} \Delta \omega_{e} \Delta \omega_{h}\right)\right]-64 \times 8 T^{3}\left[\frac{24}{T_{z}^{3}}-\frac{1}{T_{z}}\right. \\
& \left.\quad \times\left(12 \Delta \omega_{e} \Delta \omega_{h}+14 \Delta \omega_{e} \Delta \omega_{b}+12 \Delta \omega_{h} \Delta \omega_{b}+12 \Delta \omega_{a} \Delta \omega_{e}+10 \Delta \omega_{a} \Delta \omega_{h}+12 \Delta \omega_{a} \Delta \omega_{b}\right)\right]
\end{aligned}
$$

$$
-64 \tau^{2}\left(\frac{208}{T_{\mathrm{a}}{ }^{2}}-35 \Delta \omega_{\mathrm{e}} \Delta \omega_{\mathrm{h}}-49 \Delta \omega_{\mathrm{b}} \Delta \omega_{\mathrm{e}}-32 \Delta \omega_{a} \Delta \omega_{\mathrm{e}}-32 \Delta \omega_{\mathrm{h}} \Delta \omega_{\mathrm{b}}-25 \Delta \omega_{\mathrm{a}} \Delta \omega_{\mathrm{h}}\right.
$$

$$
\left.-35 \Delta \omega_{a} \Delta w_{b}\right)-\frac{1}{T_{2}} \times(6144 \tau)+i\left\{4 0 9 6 \tau ^ { 2 } \left[\frac{1}{T_{2}{ }^{3}}\left(\Delta \omega_{a}+\Delta \omega_{b}+\Delta \omega_{e}+\Delta \omega_{h}\right)\right.\right.
$$

$$
\left.-\frac{1}{T_{2}}\left(\Delta \omega_{h} \Delta \omega_{a} \Delta \omega_{b}+\Delta \omega_{a} \Delta \omega_{e} \Delta \omega_{h}+\Delta \omega_{b} \Delta \omega_{e} \Delta \omega_{h}\right)\right]+\frac{1}{T_{z}^{2}} \times\left(7 \Delta \omega_{b}+5 \Delta \omega_{h}\right.
$$

$$
\left.\left.+7 \Delta \omega_{e}+5 \Delta \omega_{a}\right)-7 \Delta \omega_{e} \Delta \omega_{h} \Delta \omega_{b}-5 \Delta \omega_{a} \Delta \omega_{e} \Delta \omega_{h}-7 \Delta \omega_{a} \Delta \omega_{b} \Delta \omega_{e}-5 \Delta \omega_{b} \Delta \omega_{h} \Delta \omega_{a}\right]
$$

$$
+\frac{64 \tau^{2}}{T_{z}} \times\left(122 \Delta w_{e}+98 \Delta \omega_{h}+122 \Delta \omega_{b}+98 \Delta \omega_{a}\right)+8 T\left(190 \Delta \omega_{a}+266 \Delta \omega_{b}\right.
$$

$$
\left.\left.+190 \Delta w_{h}+266 \Delta d_{e}\right)\right\}
$$

In this chapter, expressions will be derived for frequency sweep nuclear magnetic double resonance experiments on $A X_{2}$ and $A X_{3}$ spin systems in which A is undergoing chemical exchange. It will be assumed that one of the X lines is irradiated by the strong rf field ${\underset{\sim}{~}}_{2}$ while the spectrum is scanned with a weak observing rf field $\underset{\sim}{\underset{\sim}{\underset{1}{1}}}$. In the laboratory frame

$$
\underset{\sim}{\mathrm{H}_{1}}=2 \pi \mathrm{~V}_{1}\left(\hat{i} \cos \omega_{1} t-\hat{j} \sin \omega_{1} t\right)
$$

and

$$
\underset{\sim}{{\underset{\sim}{2}}_{2}}=2 \pi V_{2}\left(\hat{i} \cos \omega_{2} t-\hat{j} \sin \omega_{z} t\right)
$$

where V_{1} and V_{2} are the amplitudes of ${\underset{\sim}{H}}_{1}$ and $\underset{\sim}{H_{2}}$ in cps, respectively, w_{1} and ω_{2} are the angular frequencies of $\underset{\sim}{\underset{\sim}{H}} \underset{1}{ }$ and $\underset{\sim}{{\underset{\sim}{2}}_{2}}$ in radians per second, respectively, and i and \hat{j} are unit vectors along the X and Y laboratory axes, respectively. The analysis will assume that the only effect of $\underset{\sim}{\mathrm{H}_{2}}$ is to saturate the irradiated X transitions. Double resonance splittings ${ }^{13}$ due to $\underset{\sim}{{\underset{\sim}{2}}_{2}}$ will be neglected.

Consider an $A X_{n}$ system. ${ }^{1}$ The A spin states will be denoted by Greek letters, e.g. α, β, etc. The X spin states will be denoted by Latin letters, e.g. a, b, etc. The spin state of the combined $A X{ }_{n}$ system will be denoted by product of Latin and Greek letters, e.g. αa. The population of state αa equals the fraction of molecules in state αa
and will be denoted by $P_{\alpha a}$. At thermal equilibrium, the population of state α is given by the Boltzmann distribution ${ }^{14}$

$$
P_{\alpha a}^{0}=\frac{I}{N}-\frac{\omega_{\alpha a} \hbar}{N \mathrm{k} T}
$$

where $\quad N=$ number of spin states

$$
\begin{aligned}
\omega_{\alpha a} & =\text { energy of state } \alpha a \text { in units of radians per second } \\
k & =\text { Boltzmann constant } \\
T & =\text { temperature } \text { in }^{\circ} \mathrm{K} .
\end{aligned}
$$

The energy ${ }^{l}$ of state αa is given by

$$
\omega_{\alpha a}=-\omega_{o A} M(A)_{\alpha}-\omega_{o X} M(X)_{a}+2 \pi J M(A)_{\alpha} M(X)_{a}
$$

where $\omega_{O A}$ is the Larmor frequency of the A proton
$\omega_{\text {OX }}$ is the Larmor frequency of the X protons ${ }^{M}(\mathrm{~A}){ }_{\alpha}$ is the magnetic quantum number of the A proton in state α $M(X)_{a}$ is the total magnetic quantum number of the X protons in state a
J is the coupling constant in cps.
For an A transition, $\Delta M(A)=-1$, and $\Delta M(X)=0$. For an X transition, $\Delta M(X)=0$, and $\Delta M(X)=-1$.

Let us introduce some notation. Consider an A line labeled by Al. Suppose this corresponds to the transition $\alpha a \rightarrow \beta a$ in Figure l. Then, the intensity of the line Al will be proportional to MAl, the Z component of magnetization in units of n 'rif for site Al , where

$$
\begin{aligned}
\text { MAI } & =\frac{1}{2}\left(P_{\alpha a}-P_{\beta a}\right) \\
n^{\prime} & =\text { number of molecules per cc } \\
r & =\text { magnetogyric ratio. }
\end{aligned}
$$

At thermal equilibrium

$$
M A I^{\circ}=\frac{1}{2}\left(P_{\alpha a}^{0}-P_{\beta a}^{0}\right)
$$

In a similar manner, the line Xl , corresponding to an X transition
$\alpha a \rightarrow \alpha b$ in Figure l, is proportional to MX1, where
MXI $=\frac{k}{d}\left(P_{\alpha a}-P_{\alpha b}\right)$
At thermal equilibrium

$$
\mathrm{MXI}^{\mathrm{D}}=\frac{1}{2}\left(\mathrm{P}_{\alpha \mathrm{a}}^{0}-\mathrm{P}_{\alpha b}^{0}\right)
$$

It will be convenient for our purposes to work with the difference quantities, $\Delta M A l$, etc., where

$$
\triangle M A I=M A I-M A I^{\circ}
$$

In the following, equations of motion for $\triangle M A l$, etc. will be derived assuming that

$$
\frac{d(\Delta M A I)}{d t}=\left(\frac{d \Delta M A I}{d t}\right)_{e x}+\left(\frac{d \Delta M A I}{d t}\right)_{i r r}+\left(\frac{d \Delta M A I}{d t}\right)_{r e l x}
$$

where

$$
\begin{aligned}
& \left(\frac{d \Delta M A l}{d t}\right)_{\text {ex }} \text { is the contribution due to chemical exchange } \\
& \left(\frac{\partial \Delta M A l}{d t}\right)_{\text {irr }} \text { is the contribution due to irradiation by } \underset{\sim}{\sim_{2}} \\
& \left(\frac{d \Delta M A I}{d t}\right)_{r e l x} \text { is the contribution due to relaxation }
\end{aligned}
$$

First, the contribution due to chemical exchange is considered. The rate of change of population of state αa due to chemical exchange is
given by

$$
\begin{equation*}
\left(\frac{\mathrm{dP}_{\alpha a}}{\mathrm{dt}}\right)_{e x}=\left(\sum_{\alpha=1}^{N_{e}} P_{\alpha a}\right)\left(\frac{1}{\tau}\right)\left(\sum_{a=1}^{N_{\mathrm{h}}} \mathrm{P}_{\alpha a}\right)-\frac{1}{\tau} \mathrm{P}_{\alpha a} \tag{22}
\end{equation*}
$$

where

$$
\begin{aligned}
N_{e}= & \text { number of states of } A \text { proton } \\
N_{n}= & \text { number of states of } X \text { proton } \\
\sum_{\alpha=1}^{N_{e}} P_{\alpha a}= & \text { probability that a proton enters molecule } 1 \text { with the } X \\
& \text { proton in spin state a } \\
\sum_{a=1}^{N_{n}} P_{\alpha a}= & \text { probability that an } A \text { proton leaves molecule } 2 \text { in spin } \\
& \text { state } \alpha \\
P_{\alpha a}= & \text { probability of molecules having } A \text { proton in state } \alpha \text { and } \\
& X \text { protons in state a } \\
\tau= & \text { average time interval between chemical exchange }
\end{aligned}
$$

If the populations are not in thermal equilibrium, $\mathrm{P}_{\alpha a}$ can be replaced by $\left(\frac{1}{N}-\frac{\omega_{\alpha a}}{\mathrm{~N} k T}+x_{\alpha a}\right)$ in equation (22) where $x_{\alpha a}$ is the deviation of the population from the Boltzmann distribution.

Expanding

$$
\begin{aligned}
& \left(\frac{d\left(\frac{1}{N}-\frac{\omega_{\alpha a} \hbar}{N k T}+x_{\alpha a}\right)}{d t}\right)_{e x}=\left[\sum_{\alpha=1}^{N_{e}}\left(\frac{1}{N}-\frac{\omega_{\alpha a}}{N k T}+x_{\alpha a}\right)\right] \times\left(\frac{1}{\tau}\right) \\
& \times\left[\sum_{a=1}^{N_{n}} \frac{1}{N}-\frac{\omega_{\alpha a} \frac{x}{N}}{N T T}+x_{\alpha a}\right]-\left(\frac{1}{T}\right)\left(\frac{1}{N}-\frac{\omega_{\alpha a} \not{ }_{1}}{N k T}+x_{\alpha a}\right)
\end{aligned}
$$

Neglecting terms which are second order in $\frac{1}{T}$ and $X_{\alpha a}$

$$
\begin{gathered}
\left(\frac{d x_{\alpha a}}{d t}\right)_{e x}=\frac{1}{\tau}\left[\frac{1}{N}+\frac{1}{N_{e}} \sum_{\alpha=1}^{N_{e}} x_{\alpha a}+\frac{1}{N_{n}} \sum_{a=1}^{N_{n}} x_{\alpha a}\right. \\
\left.-\frac{\hbar}{N k T}\left(\frac{1}{N_{e}} \sum_{\alpha=1}^{N_{e}} \omega_{\alpha a}+\frac{1}{N_{n}} \sum_{\alpha}^{N_{n}} \omega_{\alpha a}\right)-\frac{1}{N}-x_{\alpha a}+\frac{\hbar_{1} \omega_{\alpha a}}{N k T}\right] \\
=\frac{1}{\tau}\left[\frac{1}{N_{e}} \sum_{\alpha=1}^{N_{e}} x_{\alpha a}+\frac{1}{N_{n}} \sum_{a=1}^{N_{n}} x_{\alpha a}-x_{\alpha a}\right] \\
-\frac{\nmid 1}{N k T}\left[\frac{1}{N_{e}} \sum_{\alpha=1}^{N_{e}} \omega_{\alpha a}+\frac{1}{N_{n}} \sum_{a=1}^{N_{n}} \omega_{\alpha a}-\omega_{\alpha a}\right]
\end{gathered}
$$

where

$$
\begin{aligned}
& \sum_{\alpha=1}^{N_{e}} \omega_{\alpha a}=-\sum_{\alpha=1}^{N_{e}} \omega_{O A} M(A)_{\alpha}-N_{e} w_{o X} M(X)_{a}=-N_{e} \omega_{o X} M(X)_{a} \\
& \sum_{a=1}^{N_{n}} \omega_{\alpha a}=-N_{n} \omega_{O A} M(A)_{\alpha}-\sum_{a=1}^{N_{n}} \omega_{o X} M(X)_{a}=-N_{n} \omega_{O A} M(A)_{\alpha}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left(\frac{d x_{\alpha a}}{d t}\right)_{e x}=\frac{1}{\tau}\left[\frac{1}{N_{e}} \sum_{\alpha=1}^{N_{e}} x_{\alpha a}+\frac{1}{N_{n}} \sum_{a=1}^{N_{n}} x_{\alpha a}-x_{\alpha a}\right] \tag{23}
\end{equation*}
$$

Equation (23) is the general formula for evaluating the population changes due to chemical exchange. This equation may also be obtained from Alexander's 8,9 density matrix formulation of chemical exchange by assuming weakly coupled systems.

Now, consider the AX_{2} system. ${ }^{\text {l. The energy level diagram is given }}$ in Figure 1. Using equation (23), the population changes at different
levels are

$$
\begin{align*}
&\left(\frac{d x_{\alpha a}}{d t}\right)_{e x}=\frac{1}{\tau}\left[\frac{1}{2}\left(x_{\alpha a}+x_{\beta a}\right)+\frac{1}{4}\left(x_{\alpha a}+x_{\alpha b}+x_{\alpha c}+x_{\alpha d}\right)-x_{\alpha a}\right] \tag{24}\\
&=\frac{1}{\tau}\left[\frac{1}{2}\left(x_{\beta a}-x_{\alpha a}\right)+\frac{1}{4}\left(x_{\alpha a}+x_{\alpha b}+x_{\alpha g}+x_{\alpha d}\right)\right] \\
&\left(\frac{d x_{\beta a}}{d t}\right)_{e x}=\frac{1}{\tau}\left[\frac{1}{2}\left(x_{\alpha a}-x_{\beta a}\right)+\frac{1}{4}\left(x_{\beta a}+x_{\beta c}+x_{\beta b}+x_{\beta d}\right)\right] \tag{25}\\
&\left(\frac{d x_{\alpha b}}{d t}\right)_{e x}=\frac{1}{\tau}\left[\frac{1}{2}\left(x_{\beta b}-x_{\alpha b}\right)+\frac{1}{4}\left(x_{\alpha a}+x_{\alpha b}+x_{\alpha d}+x_{\alpha c}\right)\right] \tag{26}\\
&\left(\frac{d x_{\beta b}}{d t}\right)_{e x}=\frac{1}{\tau}\left[\frac{1}{2}\left(x_{\alpha b}-x_{\beta b}\right)+\frac{1}{4}\left(x_{\beta a}+x_{\beta b}+x_{\beta c}+x_{\beta d}\right)\right] \tag{27}\\
&\left(\frac{d x_{\alpha c}}{d t}\right)_{e x}=\frac{1}{\tau}\left[\frac{1}{2}\left(x_{\beta c}-x_{\alpha c}\right)+\frac{1}{4}\left(x_{\alpha a}+x_{\alpha b}+x_{\alpha c}+x_{\alpha d}\right)\right] \tag{28}\\
&\left(\frac{d x_{\beta c}}{d t}\right)_{e x}=\frac{1}{\tau}\left[\frac{1}{2}\left(x_{\alpha c}-x_{\beta c}\right)+\frac{1}{4}\left(x_{\beta a}+x_{\beta b}+x_{\beta c}+x_{\beta d}\right)\right] \tag{29}\\
&\left(\frac{d x_{\alpha d}}{d t}\right)_{e x}=\frac{1}{\tau}\left[\frac{1}{2}\left(x_{\beta d}-x_{\alpha d}\right)+\frac{1}{4}\left(x_{\alpha a}+x_{\alpha b}+x_{\alpha c}+x_{\alpha d}\right)\right] \tag{30}\\
& \text { and } \\
&\left(\frac{d x_{\beta d}}{d t}\right)_{e x}=\frac{1}{\tau}\left[\frac{1}{2}\left(x_{\alpha d}-x_{\beta a}\right)+\frac{1}{4}\left(x_{\beta a}+x_{\beta b}+x_{\beta c}+x_{\beta d}\right)\right] \tag{31}
\end{align*}
$$

The A signals correspond to $\Delta M(A)=-1$ and $\Delta M(X)=0$. The X sig~ nals correspond to $\Delta M(A)=0$ and $\Delta M(X)=-1$. Therefore, for the transition between αa and βa

$$
\begin{align*}
& \frac{1}{2}\left(\frac{d x_{\alpha a}}{d t}\right)_{e x}-\frac{1}{2}\left(\frac{d x_{\beta a}}{d t}\right)_{e x}=\left(\frac{d \frac{1}{2}\left(x_{\alpha a}-x_{\beta a}\right)}{d t}\right)_{e x}=\left(\frac{\alpha \Delta M A l}{d t}\right)_{e x} \tag{32}\\
& =\frac{1}{\tau}\left\{\frac{1}{2}\left(x_{\beta a}-x_{\alpha a}\right)+\frac{1}{4}\left[\frac{1}{2}\left(x_{\alpha a}-x_{\beta a}\right)+\frac{1}{2}\left(x_{\alpha b}-x_{\beta b}\right)\right.\right.
\end{align*}
$$

$$
\begin{aligned}
& \left.\left.+\frac{1}{2}\left(x_{\alpha c}-x_{\beta c}\right)+\frac{1}{2}\left(x_{\alpha d}-x_{\beta d}\right)\right]\right\} \\
& =\frac{1}{\tau}\left\{-\frac{3}{4}\left(x_{\alpha a}-x_{\beta a}\right) x \frac{1}{2}+\frac{1}{4}\left[\frac{1}{2}\left(x_{\alpha b}-x_{\beta b}\right)+\frac{1}{2}\left(x_{\alpha c}-x_{\beta c}\right)\right.\right. \\
& \left.\left.+\frac{1}{2}\left(x_{\alpha d}-x_{\beta d}\right)\right]\right\} \\
& =\frac{1}{\tau}\left\{-\frac{3}{4}(\Delta M A 1)_{e x}+\frac{1}{4}\left[(\Delta M A 2)_{e x}+(\Delta M A 3)_{e x}+(\Delta M A 4) e_{e x}\right]\right\} \\
& =\frac{1}{\tau}\left[-\frac{3}{4}(\Delta M A I)_{e x}+\frac{1}{2}(\Delta M A 2)_{e x}+\frac{1}{4}(\Delta M A 4)_{e x}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \frac{1}{2}\left(x_{\alpha a}-x_{\beta a}\right)=(\Delta M A I)_{e x}, \frac{1}{2}\left(x_{\alpha b}-x_{\beta b}\right)=(\Delta M A 2)_{e x}, \frac{1}{2}\left(x_{\alpha c}-x_{\beta c}\right) \\
& =(\Delta M A 3)_{e x} \text {, and } \frac{1}{2}\left(x_{\alpha d}-x_{\beta d}\right)=(\Delta M A 4)_{e x} . \text { Also, }(\Delta M A 2)_{e x} \text { is equal } \\
& \text { to }(\Delta M A 3)_{\text {ex }} \text { because the } A_{2} \text { and } A_{3} \text { transitions are coincident. }
\end{aligned}
$$

In the same way, the following equations are derived

$$
\begin{align*}
\left(\frac{d \Delta M A 2}{d t}\right)_{e x} & =\frac{1}{\tau}\left[-\frac{1}{2}(\Delta M A 2)_{e x}+\frac{1}{4}(\Delta M A I)_{e x}+\frac{1}{4}(\Delta M A 4)_{e x}\right] \tag{33}\\
\left(\frac{d \Delta M A 4}{d t}\right)_{e x} & =\frac{1}{\tau}\left[-\frac{3}{4}(\Delta M A 4)_{e x}+\frac{1}{4}(\Delta M A I)_{e x}+\frac{1}{2}(\Delta M A 2)_{e x}\right] \tag{34}\\
\left(\frac{d \Delta M X I}{d t}\right)_{e x} & =\frac{1}{2 \tau}\left[-\frac{1}{2}\left(x_{\alpha a}-x_{\alpha b}\right)+\frac{1}{2}\left(x_{\beta a}-x_{\beta b}\right)\right] \tag{35}\\
& =\frac{1}{2 \tau}\left[-(\Delta M X I)_{e x}+(\Delta M X 5)_{e x}\right]
\end{align*}
$$

and

$$
\begin{align*}
\left(\frac{d \Delta M X 5}{d t}\right)_{e x} & =\frac{1}{2 T}\left[\frac{1}{2}\left(x_{\alpha a}-x_{\alpha b}\right)-\frac{1}{2}\left(x_{\beta a}-x_{\beta b}\right)\right] \tag{36}\\
& =\frac{1}{2 T}\left[(\Delta M X 1)_{e x}-(\Delta M X 5)_{e x}\right]
\end{align*}
$$

where

$$
\begin{aligned}
& \frac{1}{2}\left(x_{\alpha a}-x_{\alpha c}\right)=(\Delta M X 1)_{e x}, \frac{1}{2}\left(x_{\alpha b}-x_{\alpha d}\right)=(\Delta M X 2)_{e x}, \frac{1}{2}\left(x_{\alpha a}-x_{\alpha c}\right) \\
& =(\Delta M X 3)_{e x}, \frac{1}{2}\left(x_{\alpha c}-x_{\alpha \mathrm{a}}\right)=(\Delta M X 4)_{e x}, \frac{1}{2}\left(x_{\beta a}-x_{\beta b}\right)=(\Delta M X 5)_{e x}, \\
& \frac{1}{2}\left(x_{\beta b}-x_{\beta d}\right)=(\Delta M X 4)_{e x}, \text { and } \frac{1}{2}\left(x_{\beta a}-x_{\beta c}\right)=(\Delta M X 7)_{e x}, \\
& \frac{1}{2}\left(x_{\beta h}-x_{\beta f}\right)=(\Delta M X 8)_{e x} . \text { Also, }(\Delta M X 1)_{e x},(\Delta M X 2)_{e x},(\Delta M X 3)_{e x},
\end{aligned}
$$

$$
\text { and }(\Delta M \times 4) \text { ex are equal because they correspond to coincident tran- }
$$

$$
\text { sitions, and }(\Delta M X 5)_{\text {ex }},(\Delta M X 6)_{\text {ex }},(\Delta M X 7)_{\text {ex }} \text {, and }(\Delta M X 8)_{\text {ex }} \text { are equal }
$$

because they correspond to coincident transitions.

The population changes due to chemical exchange have been discussed above. Now, the population changes due to irradiation and relaxation are considered. In the $\mathrm{AX}_{\mathbf{2}}$ system, $\mathrm{XI}, \mathrm{X} 2, \mathrm{X} 3$, and X 4 are irradiated by $\underset{\sim}{H_{2}}$. The population changes at α a due to irradiation induced XI transitions are assumed to be ${ }^{16}$

$$
\begin{align*}
\left(\frac{d x_{\alpha a}}{d t}\right)_{i r r} & =\pi^{a} v_{a}^{a}|<\alpha a| I_{+}(x)+I_{-}(x)|\alpha b>|^{2}\left(P_{\alpha a}^{0}-p_{\alpha b}^{0}\right. \tag{37}\\
& \left.+x_{\alpha a}-x_{\alpha b}\right) \times g\left(\nu-v_{a b}\right)=-I_{a b}
\end{align*}
$$

where

$$
\begin{aligned}
V_{\mathbf{2}}= & \text { amplitude of } \underset{\sim}{{\underset{N}{z}}^{2}} \\
P_{\alpha a}^{0}-P_{\alpha b}^{0}= & \text { difference of population between } \alpha a \text { and } \alpha b \text { states at } \\
& \text { thermal equilibrium }
\end{aligned}
$$

$$
\begin{aligned}
& x_{\alpha a}-x_{\alpha b}= \text { difference of population deviation from thermal equi- } \\
& \text { librium between } \alpha a \text { and } \alpha b \text { states } \\
& g\left(\nu-v_{a b}\right)= \text { line shape function normalized to } 1 \text { on the cps scale } \\
&- I_{a b}= \\
& \text { the population changes in the } \alpha a \text { state due to } \underset{\sim}{H_{2}}
\end{aligned}
$$

In the following it will be assumed that the relaxation of the A and X protons is due to uncorrelated randomly fluctuating magnetic fields caused by the molecular motions of the molecules. ${ }^{17}$ Assuming this relaxation mechanism, the selection rules for relaxation are identical to the selection rules for rf induced transitions. ${ }^{17}$ The thermal transition probability per unit time for A relaxation transitions $[\Delta M(A)= \pm 1$, $\Delta \mathrm{M}(\mathrm{X})=0$] will be denoted by W_{A}. The thermal transition probability per unit time for X relaxation transitions $[\Delta M(A)=0, \Delta M(X)= \pm 1]$ will be denoted by W_{X}. It can be shown that $W_{A}=\frac{1}{2 T_{A}}$ and $W_{X}=\frac{1}{2 T_{X}}$, where T_{A} is the longitudinal relaxation time and T_{X} is the longitudinal relaxation time of the X protons. ${ }^{17}$ Then, the population changes due to relaxation and rf irradiation are easily written down by inspection from Figure 1. They are described by the following equations. ${ }^{18}$

$$
\begin{align*}
\left(\frac{d x_{\alpha a}}{d t}\right)_{r e l x}+\left(\frac{d x_{\alpha a}}{d t}\right)_{i r r} & =W_{X}\left(x_{\alpha b}+x_{\alpha c}\right)+W_{A} x_{\beta a}-\left(2 W_{X}+W_{A}\right) x_{\alpha a}-2 I_{a b} \tag{38}\\
\left(\frac{d x_{\alpha b}}{d t}\right)_{r e l x}+\left(\frac{d x_{\alpha b}}{d t}\right)_{i r r} & =W_{X}\left(x_{\alpha a}+x_{\alpha d}\right)+W_{A} x_{\beta b}-\left(2 W_{X}+W_{A}\right) x_{\alpha b}+I_{a b}-I_{b d} \tag{39}\\
& =W_{X}\left(x_{\alpha a}+x_{\alpha d}\right)+W_{A} x_{\beta b}-\left(2 W_{X}+W_{A}\right) x_{\alpha b}
\end{align*}
$$

$$
\begin{align*}
\left(\frac{d x_{\alpha c}}{d t}\right)_{r e l x}+\left(\frac{d x_{\alpha c}}{d t}\right)_{i r r} & =W_{X}\left(x_{\alpha a}+x_{\alpha d}\right)+W_{A} x_{\beta c}-\left(2 W_{X}+W_{A}\right) x_{\alpha c}+I_{a c}-I_{c d}(40) \\
& =W_{X}\left(x_{\alpha a}+x_{\alpha d}\right)+W_{A} x_{\beta c}-\left(2 W_{X}+W_{A}\right) x_{\alpha c} \\
\left(\frac{d x_{\alpha d}}{d t}\right)_{r e l x}+\left(\frac{d x_{\alpha d}}{d t}\right)_{i r r} & =W_{X}\left(x_{\alpha b}+x_{\alpha c}\right)+W_{A} x_{\beta d}-\left(2 W_{X}+W_{A}\right) x_{\alpha d}+2 I_{a b} \tag{41}
\end{align*}
$$

where $I_{a b}=I_{b d}=I_{a c}=I_{c d}$

$$
\begin{align*}
& \left(\frac{d x_{\beta a}}{d t}\right)_{r e l x}=W_{X}\left(x_{\beta b}+x_{\beta c}\right)+W_{A} x_{\alpha a}-\left(2 W_{X}+W_{A}\right) x_{\beta a} \tag{42}\\
& \left(\frac{d x_{\beta b}}{d t}\right)_{r e l x}=W_{X}\left(x_{\beta a}+x_{\beta d}\right)+W_{A} x_{\alpha b}-\left(2 W_{X}+w_{A}\right) x_{\beta b} \tag{43}\\
& \left(\frac{d x_{\beta c}}{d t}\right)_{r e l x}=W_{X}\left(x_{\beta a}+x_{\beta d}\right)+W_{A} x_{\alpha c}-\left(2 W_{X}+W_{A}\right) x_{\beta c} \tag{44}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\frac{d x_{B d}}{d t}\right)_{r e l x}=W_{X}\left(x_{B b}+x_{B c}\right)+W_{A} x_{\alpha d}-\left(2 W_{X}+W_{A}\right) x_{B d} \tag{45}
\end{equation*}
$$

The A signals correspond to $\Delta M(A)=-1$ and $\Delta M(X)=0$, and the X signals correspond to $\Delta M(A)=0$ and $\Delta M(X)=-1$. Thus, the relaxation and irradiation contributions to the equation of motion of $\triangle M A I$ are found to be

$$
\begin{align*}
& \left(\frac{d \frac{7}{2}\left(x_{\alpha a}-x_{\beta a}\right)}{d t}\right)_{r e l x}+\left(\frac{d \frac{7}{2}\left(x_{\alpha a}-x_{\beta a}\right)}{d t}\right)_{i r r}=\left(\frac{d \Delta M A l}{d t}\right)_{r e l x}+\left(\frac{d \Delta M A I}{d t}\right)_{i r r} \tag{46}\\
& \quad=\frac{1}{2}\left[W_{X}\left(x_{\alpha b}-x_{\beta a}\right)+W_{X}\left(x_{\alpha c}-x_{\beta c}\right)-\left(2 W_{X}+2 W_{A}\right)\left(x_{\alpha a}-x_{\beta a}\right)-2 I_{a b}\right]
\end{align*}
$$

$$
\begin{aligned}
& =W_{X}(\Delta \text { MA2 })_{\text {relx }}+W_{X}(\Delta M A 3)_{\text {relx }}-\left(2 W_{X}+2 W_{A}\right)(\Delta M A 1)_{r e l x}-I_{a b} \\
& =2 W_{X}(\Delta M A 2)_{r e l x}-2\left(W_{X}+W_{A}\right)(\Delta M A 1)_{r e l x}-I_{a b} \\
& \text { where } \\
& \frac{1}{2}\left(x_{\alpha a}-x_{\beta a}\right)_{r e l x}=(\Delta M A I)_{r e l x}, \frac{\frac{1}{2}\left(x_{\alpha a}-x_{\beta a}\right)_{i r r}=(\Delta M A 1)_{i r r}, ~}{\text {, }} \\
& \frac{1}{2}\left(x_{\alpha b}-x_{\beta b}\right)_{r e l x}=(\Delta M A 2)_{r e l x}, \frac{\frac{1}{2}\left(x_{\alpha b}-x_{\beta b}\right)_{i r r}=(\Delta M A 2)_{i r r}, ~}{\text {, }} \\
& \frac{1}{2}\left(x_{\alpha c}-x_{B c}\right)_{r e l x}=(\Delta M A 3)_{r e l x}, \frac{1}{2}\left(x_{\alpha c}-x_{\beta c}\right)_{i r r}=(\Delta M A 3)_{i r r}, \\
& \text { and } \\
& \frac{1}{2}\left(x_{\alpha d}-x_{\beta d}\right)_{r e l x}=(\Delta M A 4)_{r e l x}, \frac{1}{2}\left(x_{\alpha d}-x_{\beta d}\right)_{i r r}=(\Delta M A 4)_{\text {irr }}
\end{aligned}
$$

Again, ($\triangle M A 2)_{r e l x}$ is equal to ($\left.\triangle M A 3\right)_{\text {relx }}$ because they correspond to coincident transitions. In the same way, the following equations are derived

$$
\begin{align*}
& \left(\frac{d \Delta M A 2}{d t}\right)_{r e l x}+\left(\frac{d \Delta M A 2}{d t}\right)_{i r r}=W_{X}(\Delta M A 1)_{r e l x}+W_{X}(\Delta M A 4)_{r e l x}-\left(2 W_{X}+2 W_{A}\right)(\Delta M A 2)_{\text {relx }} \\
& \left(\frac{d \Delta M A 4}{d t}\right)_{r e l x}+\left(\frac{d \Delta M A 4}{d t}\right)_{i r r}=2 W_{X}(\Delta M A 2)_{r e l x}-2\left(W_{X}+W_{A}\right)(\Delta M A 4)_{r e l x}+I_{a b} \tag{48}\\
& \left(\frac{d \Delta M X 1}{d t}\right)_{r e l x}+\left(\frac{d \Delta M X 1}{d t}\right)_{\text {irr }}=W_{A}(\Delta M X 5)_{r e l x}-\left(2 W_{X}+W_{A}\right)(\Delta M X 1)_{\text {relx }}-I_{a b} \tag{49}\\
& \left(\frac{d \Delta M X 5}{d t}\right)_{r e l x}+\left(\frac{d \Delta M X 5}{d t}\right)_{i r r}=W_{A}(\Delta M X 1)_{r e l x}-\left(2 W_{X}+W_{A}\right)(\Delta M X 5)_{r e l x} \tag{50}
\end{align*}
$$

where $\frac{d}{b}\left(x_{\alpha a}-x_{\alpha b}\right)_{r e l x}+\frac{1}{2}\left(x_{\alpha a}-x_{\alpha b}\right)_{i r r}=(\Delta M X I)_{\text {relx }}+(\Delta M X I)_{i r r}$,

$$
\begin{aligned}
& \frac{1}{2}\left(x_{\beta a}-x_{\beta b}\right)_{r e l x}+\frac{1}{2}\left(X_{\beta a}-x_{\beta b}\right)_{\text {irr }}=(\Delta M X 5)_{\text {relx }}+(\Delta M X 5)_{\text {irr }} \text {, and } \\
& (\Delta M X 1)_{\text {relx }},(\Delta M X 2)_{\text {relx }},(\Delta M X 3)_{\text {relx }}, \text { and }(\Delta M X 4)_{\text {relx }} \text { are equal be- }
\end{aligned}
$$

cause they correspond to the coincident transitions, and ($\Delta M X 5$) relx, ($\Delta M X 6)_{\text {relx }},(\Delta M X 7)_{\text {rel }}$, and $(\Delta M X 8)_{\text {relx }}$ are equal for the same reason. The population changes due to chemical exchange have been described by equations (32) to (36), and the population changes due to relaxation and irradiation are expressed by equations (46) to (50). The three effects are combined together as follows
(32) plus (46)

$$
\begin{align*}
& \frac{d(\Delta M A I)}{d t}=\left(\frac{d \Delta M A I}{d t}\right)_{e x}+\left(\frac{d \Delta M A I}{d t}\right)_{r e l x}+\left(\frac{d M A I}{d t}\right)_{i r r} \tag{51}\\
& =\left(-\frac{3}{4 \tau}-2 W_{X}-2 W_{A}\right)(\Delta M A L)+\left(\frac{1}{2 \tau}+2 W_{X}\right)(\Delta M A 2)+\frac{1}{4 \tau}(\Delta M A 4)-I_{a b}
\end{align*}
$$

(33) plus (47)
$\frac{d(\Delta M A 2)}{d t}=\left(\frac{d \Delta M A 2}{d t}\right)_{\text {ex }}+\left(\frac{d \Delta M A 2}{d t}\right)_{r e l x}+\left(\frac{d \Delta M A 2}{d t}\right)_{i r r}$
$=\left(\frac{1}{4 \tau}+W_{X}\right)(\Delta M A I)-\left(2 W_{X}+2 W_{A}+\frac{1}{2 \tau}\right)(\Delta M A 2)+\left(\frac{1}{4 \tau}+W_{X}\right)(\Delta M A 4)$
(34) plus (48)
$\frac{d(\Delta \text { MA } 4)}{d t}=\left(\frac{d \Delta \text { MA } 4}{d t}\right)_{\text {ex }}+\left(\frac{d \Delta \text { MA } 4}{d t}\right)_{\text {relx }}+\left(\frac{d \Delta \text { MA } 4}{d t}\right)_{i r r}$
$=\frac{l}{4 \tau}(\Delta \mathrm{MAL})+\left(\frac{1}{2 \tau}+2 W_{X}\right)(\Delta \mathrm{MA} 2)-\left(\frac{3}{4 \tau}+2 W_{X}+2 W_{A}\right)\left(\Delta\right.$ MA $\left.^{2} 4\right)+I_{a b}$
(35) plus (49)

$$
\begin{align*}
& \frac{d(\Delta M X I)}{d t}=\left(\frac{d \Delta M X I}{d t}\right)_{e x}+\left(\frac{d \Delta M X I}{d t}\right)_{\text {relX }}+\left(\frac{d \Delta M X I}{d t}\right)_{i r r} \tag{54}\\
& =-\left(2 W_{X}+W_{A}+\frac{l}{2 \tau}\right)(\Delta M X I)+\left(W_{A}+\frac{1}{2 \tau}\right)(\Delta M X 5)-I_{a b}
\end{align*}
$$

(36) plus (50)

$$
\begin{aligned}
& \frac{d(\Delta M X 5)}{d t}=\left(\frac{d \Delta M X 5}{d t}\right)_{e x}+\left(\frac{d \Delta M X 5}{d t}\right)_{r e l x}+\left(\frac{d \Delta M X 5}{d t}\right)_{\text {irr }} \\
& =\left(W_{A}+\frac{1}{2 T}\right)(\Delta M X 1)-\left(2 W_{X}+W_{A}+\frac{1}{2 T}\right)(\Delta M X 5)
\end{aligned}
$$

At the steady state, equations (51) to (55) become

$$
\begin{align*}
& \left(-\frac{3}{4 \tau}-2 W_{X}-2 W_{A}\right)(\Delta M A I)+\left(\frac{1}{2 \tau}+2 W_{X}\right)(\Delta M A 2)+\frac{1}{4 \tau}(\Delta M A 4)=I_{a b} \tag{56}\\
& \left(\frac{1}{4 \tau}+W_{X}\right)(\Delta M A I)-\left(2 W_{X}+2 W_{A}+\frac{1}{2 \tau}\right)(\Delta M A 2)-\left(\frac{1}{4 \tau}+W_{X}\right)(\Delta M A 4)=0 \tag{57}
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{4 \tau}(\Delta M A 1)+\left(\frac{1}{2 \tau}+2 W_{X}\right)(\Delta M A 2)-\left(\frac{3}{4 \tau}+2 W_{X}+2 W_{A}\right)(\Delta M A 4)=-I_{a b} \tag{58}
\end{equation*}
$$

$$
\begin{equation*}
-\left(2 W_{X}+W_{A}+\frac{l}{2 \tau}\right)(\Delta M X 1)+\left(W_{A}+\frac{1}{2 \tau}\right)(\Delta M X 5)=I_{a b} \tag{59}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(W_{A}+\frac{1}{2 \tau}\right)(\Delta M X I)-\left(2 W_{X}+W_{A}+\frac{1}{2 \tau}\right)(\Delta M X 5)=0 \tag{60}
\end{equation*}
$$

Then, the changes in the A proton signal intensity corresponding to $(\triangle M A I),(\triangle M A 2)$, and $(\triangle M A 4)$ are obtained from three linear equations: (56), (57), and (58).

$$
=I_{a b}(T A l)
$$

where (TAl) is the ratio of two determinants. In the same way

$$
\begin{equation*}
(\triangle \text { MAZ })=I_{a b}(\text { TAZ }) \tag{62}
\end{equation*}
$$

and

$$
\begin{equation*}
(\Delta \mathrm{MA} 4)=I_{a b}(\text { TA4 }) \tag{63}
\end{equation*}
$$

The intensity changes in X proton doublet corresponding to (\triangle MXI)
and (\triangle MX5 5) are obtained from equations (59) and (60).
Then

$$
(\Delta M X 1)=\frac{I_{a b}\left|\begin{array}{ll}
l & W_{A}+\frac{1}{2 \tau} \tag{64}\\
0 & -2 W_{X}-W_{A}-\frac{1}{2 \tau}
\end{array}\right|}{\left|\begin{array}{cc}
-2 W_{X}-W_{A}-\frac{1}{2 \tau} & W_{A}+\frac{1}{2 \tau} \\
W_{A}+\frac{1}{2 \tau} & -2 W_{X}-W_{A}-\frac{1}{2 \tau}
\end{array}\right|}=I_{a b}(T X 1)
$$

and

$$
(\Delta \text { MX5 })=\frac{I_{a b}\left|\begin{array}{cc}
-2 W_{X}-W_{A}-\frac{l}{2 \tau} & 1 \tag{65}\\
W_{A}+\frac{1}{2 \tau} & 0
\end{array}\right|}{\left|\begin{array}{cc}
-2 W_{X}-W_{A}-\frac{1}{2 \tau} & W_{A}+\frac{1}{2 \tau} \\
W_{A}+\frac{1}{2 \tau} & -2 W_{X}-W_{A}-\frac{1}{2 \tau}
\end{array}\right|}=I_{a b} \text { (TX5) }
$$

where (TXI) and (TX5) are the ratios of determinants. It is important to realize that (TX1) and (TX5) are negative.

From equations (37) and (64), $I_{a b}$ can be calculated as follows

$$
I_{a b}=\frac{T_{2}(M A I)^{\circ} V_{2}^{2} \pi^{2}}{1+4 \pi^{2} T_{2}^{2}\left(\nu-\nu_{a b}\right)^{2}-T_{2}(T X I) V_{2}^{2} \pi^{a}}
$$

At resonance, $\nu-\nu_{a b}=0$. Hence

$$
\begin{equation*}
I_{a b}=\frac{T_{2}\left(M A I^{0}\right) V_{2}^{2} \pi^{a}}{I-T_{2}(\text { TXI }) V_{2}^{a} \pi^{2}} \tag{66}
\end{equation*}
$$

The quantity $R(A l)$ for line $A l$ will be defined as the fractional intensity deviation from thermal equilibrium. Then

$$
\begin{equation*}
R(A I)=\frac{(\triangle M A I)}{\left(M A I^{\circ}\right)} \tag{67}
\end{equation*}
$$

From equations (61), (66), and (67)

$$
\begin{align*}
R(\mathrm{Al}) & =\frac{(\Delta \mathrm{MAl})}{(\mathrm{MAl})}=\frac{I_{a b}(\mathrm{TAI})}{\left(\mathrm{MAI}^{0}\right)} \tag{68}\\
& =\frac{\mathrm{T}_{2} \mathrm{~V}_{2}^{2} \pi^{2}\left(\mathrm{MAl}^{0}\right)}{1-\pi^{2} \mathrm{~T}_{2} \mathrm{~V}_{2}^{a}(\mathrm{TXI})} \times \frac{(\mathrm{TAl})}{\left(\mathrm{MAl}^{0}\right)} \\
& =\frac{\mathrm{T}_{2} V_{2}^{a} \pi^{2}(\mathrm{TAI})}{1-\mathrm{T}_{2} \pi^{2} \mathrm{~V}_{2}^{2}(\mathrm{TXI})}
\end{align*}
$$

Then, τ can be determined by comparing the experimental value of $R(A l)$ with the theoretical value of $R(A l)$ calculated from equation (68). This provides a method to determine \boldsymbol{T}.

Equation (68) is also valid for an AX_{3} system. However, (TAl) and (TXI) will be different. In order to evaluate (TAl) and (TXI), the following equations are used

$$
\begin{aligned}
& -\left[3 W_{X}+2 W_{A}+\frac{7}{8 \tau}\right](\Delta M A I)+\left(3 W_{X}+\frac{3}{8 \tau}\right)(\Delta M A 2)+\frac{3}{8 \tau}(\Delta M A 5) \\
& +\frac{1}{8 \tau}(\Delta M A 8)=\frac{3}{2} I_{a b}
\end{aligned}
$$

$$
\begin{aligned}
& \left(W_{X}+\frac{1}{8 \tau}\right)(\Delta M A 1)-\left[3 W_{X}+2 W_{A}+\frac{5}{8 \tau}\right](\Delta M A 2)+\left(2 W_{X}+\frac{3}{8 \tau}\right) \\
& \times(\Delta M A 5)+\frac{1}{8 \tau}(\Delta M A 8)=\frac{I_{a b}}{2} \\
& \left(\frac{1}{8 \tau}\right)(\Delta M A 1)+\left(2 W_{X}+\frac{3}{8 \tau}\right)(\Delta M A 2)-\left(3 W_{X}+2 W_{A}+\frac{5}{8 \tau}\right)(\Delta M A 5) \\
& +\left(W_{X}+\frac{1}{8 \tau}\right)(\Delta M A 8)=-\frac{I_{a b}}{2}
\end{aligned}
$$

$$
\begin{align*}
& \left(\frac{1}{8 \tau}\right)(\Delta M A 1)+\left(\frac{3}{8 \tau}\right)(\Delta M A 2)+\left(3 W_{X}+\frac{3}{8 \tau}\right)(\Delta M A 5) \tag{72}\\
& -\left(3 W_{X}+2 W_{A}+\frac{7}{8 \tau}\right)(\Delta M A 8)=\frac{3}{2} I_{a b} \\
& \left(-6 W_{X}-W_{A}-\frac{1}{2 \tau}\right)(\Delta M X 1)+\left(W_{A}+\frac{1}{2 \tau}\right)\left(\Delta M_{X I} 13\right)=I_{a b} \tag{73}
\end{align*}
$$

and

$$
\begin{equation*}
\left(W_{A}+\frac{1}{2 \tau}\right)(\Delta M X 1)+\left(-6 W_{X}-W_{A}-\frac{1}{2 \tau}\right)(\Delta M X 13)=0 \tag{74}
\end{equation*}
$$

Using methods similar to those given for the $\mathrm{AX}_{\boldsymbol{z}}$ system

$$
\begin{equation*}
(T A l)=\frac{1.5 \times\left(6 W_{X}+2 W_{A}+\frac{1}{\tau}\right)}{\left(3 W_{X}+2 W_{A}+\frac{1}{\tau}\right)\left(5 W_{X}+2 W_{A}+\frac{1}{\tau}\right)-3 W_{X}^{2}} \tag{75}
\end{equation*}
$$

and

$$
\begin{equation*}
(\text { TXI })=\frac{-\left(6 W_{X}+W_{A}+\frac{l}{2 \tau}\right)}{\left(6 W_{X}+W_{A}+\frac{1}{2 \tau}\right)^{2}-\left(W_{A}+\frac{1}{2 \tau}\right)^{2}} \tag{76}
\end{equation*}
$$

All of the equations derived are applicable to weakly coupled spin systems. If strongly coupled spin systems are considered, they must be described by the density matrix formalism.

CHAPTER IV

NUCLEAR MAGNETIC DOUBLE RESONANCE EXPERIMENTS ON 2,2,2-TRICHLOROETHANOL AND METHANOL

Experimental Methods

Double Resonance

A standard Varian V-4300 NMR spectrometer was used to record frequency sweep double resonance spectra of $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{OH}$. Phase sensitive detection of audio sidebands was accomplished using a fieldfrequency lock system modeled after that described by Noggle. ${ }^{19} \mathrm{~A}$ General Radio llo7-A interpolation oscillator driven by a synchronous motor was used to provide audio frequency modulation for H_{1}, the observing field. The modulation for $\underset{\sim}{\mathrm{H}_{2}}$ was provided by a Hewlett-Packard 204-B oscillator. The output of the 204-B was amplified by a General Radio l20l-B unit amplifier and then attenuated by a Hewlett-Packard 350-D attenuator. The low field sidebands were used for the fieldfrequency lock, observing, and double resonance signals. Variable Temperature Addition to Probe

A Varian Model V-4340 Variable Temperature NMR Probe Accessory was used. The temperature was controlled by first passing dry nitrogen gas through a copper tube coil immersed in liquid nitrogen and then through the Probe Accessory. A copper-constantan thermocouple was used to measure the temperature. The thermocouple EMF was read on an $L \& \mathbb{N}$ Galvanometer. The sample spinning and magnetic field homogeneity were
greatly affected by the changes in temperature.
Sample Preparation
All reagents were stock material. The methanol was 12 percent by volume in CCl_{4}. Tetramethylsilane (TMS) was five percent by volume in the methanol sample and was used for the field-frequency locking loop. The 2,2,2-trichloroethanol samples were prepared with 70 percent, 40 percent, 20 percent, and seven percent by volume of $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ in dimethylsulfoxide (DMSO). Although the amount of TMS which dissolved in the DMSO was quite small, it was enough for the lock loop. The multiplet structure in $\mathrm{CCI}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{OH}$ gradually disappeared after the sample stood for a few days. This is probably due to the dissolving of impurities from the sample tube glass. Therefore, the samples were freshly prepared and kept in dry ice during the experimental period. The variation of temperature for the methanol sample was limited by the freezing point of $\mathrm{CCl}_{4},-23^{\circ} \mathrm{C}$.

Experimental Results

Single Resonance Experiments

The compound, $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$, was chosen as an example of an AX_{2} system.

The triplet and doublet in the spectra correspond to the hydroxyl group and methylene group, respectively. Dimethylsulfoxide strongly complexes with this alcohol because of the three beta chlorine atoms. This provides a convenient way for varying τ for proton exchange in $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ at room temperature. One simply adjusts the ratio of $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ to DMSO. The samples contain two percent TMS by volume for the lock loop.

Thus, a series of samples of $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ was made with different concentrations in DMSO.

The coupling constant for this compound is 7.2 cps. The chemical shift for 70 percent $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ by volume in DMSO is 148 cps . The chemical shift is changed to about 160 cps when the concentration of $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ is 20 percent by volume in DMSO .

Equation (16) was used to predict the theoretical spectra of the triplet for different values of τ. The calculation was programmed in ALGOL for the Burroughs B5500 of the Georgia Institute of Technology's Rich Electronic Computer Center. In Figure 3, the theoretical spectra of the hydroxyl triplet are on the left and the experimental spectra are on the right. The frequency decreases from left to right in the spectra. The value of τ was determined by matching the theoretical and experimental spectra. The reciprocal half width, T_{2}, was assumed to be 1.9 seconds for the theoretical calculations. This value was obtained by measuring the half width of the nonexchanging TMS. The values of τ for $C C l_{3} C H_{2} O H$ in different concentrations are listed in Table 1 . The value of τ for seven percent $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ could not be determined by this technique because the dominant contribution to the line shape is due to magnetic field inhomogeneity. The value of two seconds for τ was obtained by the double resonance technique to be described later.

The compound methanol was chosen as an example of an $A X_{3}$ system. The quartet and doublet in the spectra are the hydroxyl group and methyl group signals, respectively. The compound was dissolved in CCl_{4} in order to slow down the proton exchange enough for the multiplet splitting to appear. A sample which was 12 percent by volume in CCl_{4} was prepared.
a

b

d

e

Figure 3. Experimental and Theoretical Spectra of $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ for Different τ. The spectra on the left are theoretical spectra. The spectra on the right are experimental spectra. The value of τ for traces a and d is 1.0 second. The value of τ for traces b and e is 0.40 second. The value of τ for traces c and f is 0.12 second.

Table 1. The Values of T for $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ for Different Concentrations in DMSO

Concentration	$7 \% \mathrm{~V}$	$20 \% \mathrm{~V}$	$40 \% \mathrm{~V}$	$70 \% \mathrm{~V}$
$T(\mathrm{sec})$	2.0^{*}	1.0	0.4	0.12

*The value of T equal to two seconds was obtained from double resonance technique, and the others were obtained from line shape method.

The sample also contained five percent by volume of TMS for the lock loop. The value of τ was varied by changing the sample temperature.

The coupling constant for $\mathrm{CH}_{3} \mathrm{OH}$ is 5.2 cps . The chemical shift at $25^{\circ} \mathrm{C}$ is 72 cps and about 90 cps at $-20^{\circ} \mathrm{C}$. Equation (21) was used to predict the theoretical spectra of the hydroxyl quartet for different values of τ. The calculation was programmed in ALGOL for the Burroughs B5500. In Figure 4, the theoretical spectra of the hydroxyl quartet are on the left, and the experimental spectra are on the right. The frequency decreases from left to right in the spectra. The value of τ was determined by comparison of the theoretical and experimental spectra. The values of τ for the $\mathrm{CH}_{3} \mathrm{OH}$ sample at different temperatures are listed in Table 2 。

Double Resonance Experiments

Frequency sweep double resonance experiments for $A X_{2}$ and $A X_{3}$ systems were carried out in this thesis. First, consider the AX_{2} system, $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$. Refer to Figure l. If H_{2} irradiates Xl to X 4 , the difference in populations between αa and βa will be decreased. This is because the population in the α a state is reduced by irradiation of H_{2}. Therefore, the Al peak corresponding to the transition between αa and Ba is decreased. On the other hand, the difference of populations between αd and βd will be increased. This is because the population in αd is increased by the irradiation of ${\underset{\sim}{2}}_{2}$. Therefore, the intensity of the A4 peak corresponding to the transition between αd and β d will be increased. If ${\underset{\sim}{2}}^{\mathrm{H}_{2}}$ is set on X 5 to X 8 , the intensity changes should be reversed. These intensity changes are known as the nuclear Overhauser effect. 20 The intensity changes in the triplet caused by irradiating
a

b

c

e

Figure 4. Experimental and Theoretical Spectra of $\mathrm{CH}_{6} \mathrm{OH}$ for Different τ. The spectra on the left are theoretical spectra. The spectra on the right are experimental spectra. The value of τ for traces a and d is 0.23 second. The value of τ for traces b and e is 0.20 second. The value of τ for traces c and f is 0.14 second.

Table 2. The Values of τ for 12 Percent CH_{3} OH by Volume in CCl_{4} at Different Temperatures

Temperature	$-20^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$
$\tau(\mathrm{sec})^{*}$	0.23	0.20
${ }^{\text {* The values of } \tau \text { were obtained from line shape method. }}$		

X1 to X 4 and X 5 to X 8 are compared in Figure 9. In the left hand traces, XI to X 4 are irradiated by $\underset{\sim}{{\underset{\sim}{2}}^{2}}$. In the right hand traces, X5 to X8 are irradiated. When chemical exchange becomes faster, the overhauser effect will be decreased. This is predicted by equation (23) and occurs because protons can transfer among the $\alpha \mathrm{a}, \alpha \mathrm{b}, \alpha \mathrm{c}$, and $\alpha \mathrm{d}$ states directly. Thus, when τ becomes shorter, the deviations of the populations of α a and α from thermal equilibrium decrease. Therefore, chemical exchange causes the intensity changes for $A l$ and $A 4$ to be reduced. This causes the experimental spectra of the hydroxyl triplet to become more symmetrical. This result is shown in Figure 7.

If relaxations of A and X protons are considered, the Overhauser effect will become smaller when T_{A} and T_{X} become shorter. The reason is that αa can relax with $\beta a, \alpha b$, and αc. Hence, when T_{A} and T_{X} become shorter, they relax faster and the deviations of populations of α and αd decrease. Therefore, the relaxations of A and X protone cause the intensity changes for Al and A 4 to be reduced. This makes the experimental spectra of the hydroxyl triplet become more symmetrical. Unfortunately, T_{A} and T_{X} were not measured in this experiment; therefore, this prediction is not proved experimentally.

The same argument can be applied to the AX_{3} system, $\mathrm{CH}_{3} \mathrm{OH}$. In Figure 2, if Xl to Xl2 are irradiated by ${\underset{\sim}{2}}_{2}$, the intensities of the $A l$, A2, A3, and A4 peaks will be decreased because tre differences of popü lations between αa and $\beta c, \alpha b$ and $\beta b, \alpha c$ and βc, and αd and βd, respectively, are decreased. Meanwhile, the A5, A6, A7, and A8 peaks will be increased because the differences of populations between αe and $\beta e, \alpha f^{\circ}$ and $\beta f^{\circ}, \alpha g$ and βg, and α and βh will be increased. On the other hand,
if X13 to X24 are irradiated by $\underset{\sim}{{\underset{\sim}{2}}^{2}}$, the intensity changes will be reversed. The Overhauser effect is affected by chemical exchange and relaxation in the same way as discussed for the $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ sample.

The experimental spectra for $\mathrm{CH}_{3} \mathrm{OH}$ are shown in Figure 8. In these experiments, X13 to X24 are irradiated by $\underset{\sim}{{\underset{\sim}{2}}_{2}}$, and the temperatures are varied. Since the lower limit for the temperature is determined by the freezing point of $\mathrm{CCI}_{4},-23^{\circ} \mathrm{C}$, the chemical exchange could not be slowed down very much. Therefore, the change in the Overhauser effect is not very obvious.

The theoretical values of R for $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ were calculated from equation (68) by assuming $T_{\mathbf{2}}, T_{A}$, and T_{X} equal to 2.5 seconds. The values of $T_{\mathbf{z}}, T_{A}$, and T_{X} chosen here give the best fit of the theory with the experimental values of R. This assumption is reasonable for these samples. The experimental values of R were determined by computing the fractional intensity deviation of the Al signal. The signal area was measured by an integrating rotor. These experimental values of R are listed in Table 3. In Figure 5, the experimental and theoretical values of R versus V_{2} for $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ are shown. The value of τ for seven percent $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ was chosen as two seconds by comparison of theoretical and experimental values of R in Figure 5. This value is chosen in order to obtain consistency in the theoretical values of R being smaller than experimental values of R.

The theoretical values of R for $\mathrm{CH}_{3} \mathrm{OH}$ were calculated by equation (68). By the same reason mentioned before, T_{z}, T_{A}, and T_{X} are assumed equal to four seconds when τ equals 0.23 second and equal to five seconds when τ equals 0.2 and 0.14 second. The experimental values of R were

Table 3. Overhauser Effect on $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ for Different Concentrations in DMSO with Low Frequency Peak of Methylene Doublet Irradiated by Second Strong rf

7\% V		20\% V		40\% V		70\% V	
$\tau=2.0 \mathrm{sec}$		$\tau=1.0 \mathrm{sec}$		$\tau=0.40 \mathrm{sec}$		$\tau=0.12 \mathrm{sec}$	
V_{2}	R	V_{2}	R	V_{2}	R	V_{2}	R
(cps)		(cps)		(cps)		(cps)	
0	0	0	0	0	0	0	0
0.11	0.29	0.06	0.14	0.06	0.05	0.06	0.03
0.19	0.36	0.086	0.23	0.27	0.19	0.086	0.05
0.27	0.41	0.11	0.25	0.37	0.23	0.19	0.12
0.37	0.46	0.37	0.40	0.60	0.29	0.37	0.16
0.6	0.51	0.60	0.45	1.10	0.37	0.6	0.18
0.76	0.54	0.96	0.48			1.1	0.2
0.96	0.58						

Figure 5. Experimental and Theoretical Values of R versus V_{2} for $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$. The experimental points for $7,20,40$, and 70 volume $\%$ alcohol are represented by $\cdot, \Delta,+$, and 0 , respectively. The experimental points for one concentration are connected by dashed curves. The theoretical dependence of R on V_{2} is represented by solid curves. The solid curves were computed with $\mathrm{T}_{2}, \mathrm{~T}_{\mathrm{A}}$, and T_{X} equal to 2.5 seconds and with τ equal to $2.0,1.0,0.4$, and 0.12 seconds for the $7,20,40$, and 70 volume $\%$ solution, respectively.
determined by computing the fractional intensity deviation of Al signal. The signal area was measured by an integrating rotor. Equation (69) and equation (70) predict that $R(A 1)$ is equal to the sum of $R(A 2), R(A 3)$, and $R(A 4)$. The experimental values of $R(A 2), R(A 3)$, and $R(A 4)$ could not be measured accurately, however, due to the overlapping of peaks. Therefore, this prediction could not be satisfactorily compared with theory. The experimental values of $R(A l)$ are listed in Table 4. The theoretical and experimental values of $R(A l)$ versus V_{2} are shown in Figure 6 .

In Figure 9, each peak of the hydroxyl triplet in traces d and h is split into a triplet due to the large value of V_{2}. ${ }^{13}$ The reason is that there are two more allowed transitions for each peak of original triplet. The spacing between two adjacent peaks of split triplet is equal to $V_{2} \cdot 13$ Therefore, the measurement of this splitting enabled the value of V_{2} to be obtained. A precision attenuator was used to obtain smaller known values of $V_{\mathbf{2}}$. As for the methanol sample, each peak of the hydroxyl quartet will be theoretically split into a quartet. ${ }^{13}$ It was not split clearly, however, in the experimental spectra. The reason is that the line width of each peak in the quartet was so large that there was considerable overlap, because the coupling constant is only 5.2 cps . Hence, the split quartet was not clearly resolved. Because of this, the values of $\mathrm{V}_{\mathbf{2}}$ used in the $\mathrm{CH}_{3} \mathrm{OH}$ experiments were obtained from the $\mathrm{CCl}_{\mathbf{3}}-$ $\mathrm{CH}_{2} \mathrm{OH}$ experiments.

The double resonance experiments presented several difficulties. First, when V_{2} became large, the receiver saturated and the detector amplification decreased. Second, as V_{2} became large, the lock loop became

Table 4. Overhauser Effect on 12 Percent CH_{3} OH by Volume in CCl_{4} for Different Temperatures with Low Frequency Peak of Methyl Doublet Irradiated by Second Strong rf

$-20^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$24^{\circ} \mathrm{C}$	
$\tau=0.23 \mathrm{sec}$		$\tau=0.20 \mathrm{sec}$		$\tau=0.14 \mathrm{sec}$	
V_{2}	R		R	V_{2}	R
(cps)		(cps)		(cps)	
0	0	0	0	0	0
0.076	0.12	0.37	0.16	0.19	0.09
0.12	0.19	0.6	0.2	0.37	0.14
0.19	0.24	1.1	0.27	1.1	0.2
0.37	0.32				
0.76	0.4				

Figure 6. Experimental and Theoretical Values of R versus V_{2} for $\mathrm{CH}_{3} \mathrm{OH}$. The experimental points for samples with a temperature of $-20^{\circ} \mathrm{c}, 0^{\circ} \mathrm{C}$, and $24^{\circ} \mathrm{C}$ are represented by \cdot, \circ, and Δ, respectively. The experimental points for one temperature are connected by dashed curves. The theoretical dependence of R on V_{2} is represented by solid curves. The solid curves for -20° c were computed with T_{2}, T_{A}, and T_{X} equal to 4 seconds, and with τ equal to 0.23 second. The solid curves for temperatures of $0^{\circ} \mathrm{c}$ and $24^{\circ} \mathrm{c}$ were computed with T_{2}, T_{A}, and T_{X} equal to 5 seconds, and with τ equal to 0.20 and 0.14 second, respectively.
unstable. Third, when the Overhauser effect was small, the measurement of R had a large experimental error. Fourth, when the variable temperature was used, the poor sample spinning aggravated the above difficulties.

Figure 7. Overhauser Effect on $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ for Different Concentration in DMSO. The value of τ is 1.0 second in traces a, b, and c. The value of T is 0.4 second in traces d, e, and f. The value of T is 0.12 second in traces g, h, and i. The value of V_{2} is 0 cps in traces a, d, and g. The value of V_{2} is 0.37 cps in traces b, e, and h. The value of V_{2} is 0.6 cps in traces c, f, and i. The frequency decreases from left to right. The low frequency peak of the methylene doublet is irradiated by second strong rf.

d
 g

f
i

Figure 8. Overhauser Effect on $\mathrm{CH}_{9} \mathrm{OH}$ at Different Temperatures. The value of T is 0.23 second in traces a, b, and c. The value of τ is 0.20 second in traces d, e, and f. The value of τ is 0.14 second in traces g, h, and i. The value of V_{2} is 0 cps in traces a, d, and g. The value of V_{2} for traces b, e, and h is 0.19 , 0.6 , and 0.37 cps , respectively. The value of V_{2} for traces c, f, and i is $0.37,1.1$, and 1.1 cps , respectively. The frequency decreases from left to right. The low frequency peak of methyl doublet is irradiated by second strong rf.
a

h

Figure 9. Comparison of Overhauser Effect on $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ When τ Equals 2.0 Seconds. The high frequency peak of the methylene doublet is irradiated by second strong rf in traces a, b, c, and d. The low frequency peak of the methylene doublet is irradiated by second strong rf in traces e, f, g, and h. In traces a and e, V_{2} equals 0 cps. In traces b and f, V_{2} equals 0.11 cps . In traces c and g, V_{2} equals 0.6 cps . In traces d and h, V_{2} equals 1.2 cps .

CHAPTER V

DISCUSSION

Using equations (16) and (21), the theoretically predicted line shapes are consistent with the experimental spectra. Hence, by the comparison of line shapes between theoretical and experimental spectra, the average time interval between chemical exchange can be determined. However, this method is suitable only if τ is less than one second. The reason is that the line width is determined by field inhomogeneity if τ is longer than one second.

One of the motivations of this thesis was to provide a double resonance experiment to determine τ when it is longer than one second. In Figures 5 and 6, however, the quantitative agreement between the theoretical and experimental values of R is not satisfactory. This is probably because of the experimental difficulties mentioned in the last chapter.

However, these double resonance experiments have indicated the general aspects of the combined effect of chemical exchange and double resonance saturation. In Figures 5 and 6, as τ becomes shorter, the Overhauser effect decreases. This implies that the chemical exchange does play the role of driving the spin system toward the Boltzmann distribution. Hence, as the chemical exchange becomes faster, the Overhauser effect decreases. In Figure 7, the experimental spectra for $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$ show this phenomenon. As τ becomes shorter, the unsymmetrical
hydroxyl triplet becomes more symmetrical since the chemical exchange has decreased the deviation of populations from Boltzmann distribution. In Figure 8, the same effect is shown for the hydroxyl quartet of $\mathrm{CH}_{3} \mathrm{OH}$. Since the chemical exchanges are always fast within the limited temperature range used for $\mathrm{CH}_{3} \mathrm{OH}$, the Overhauser effect in $\mathrm{CH}_{3} \mathrm{OH}$ is not so obvious as that for $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$.

The following method is suggested as an alternative method of measuring $\mathrm{T}_{\mathrm{A}}, \mathrm{T}_{\mathrm{X}}$, and τ. If Xl is saturated by $\underset{\sim}{\mathrm{H}}$, equation (55) becomes

$$
\frac{d(\Delta M X 5)}{d t}=-\left(W_{A}+\frac{1}{2 \tau}\right)\left(M X 1^{\circ}\right)-\left(2 W_{X}+W_{A}+\frac{1}{2 \tau}\right)(\Delta M X 5)
$$

This can be rewritten as

$$
\frac{d R(X 5)}{d t}=-\left(W_{A}+\frac{1}{2 \tau}\right)-\left(2 W_{X}+W_{A}+\frac{1}{2 \tau}\right) R(X 5)
$$

or

$$
\begin{equation*}
\frac{d R(X 5)}{d t}=-C-K R(X 5) \tag{77}
\end{equation*}
$$

where

$$
\begin{align*}
K & =2 W_{X}+W_{A}+\frac{l}{2 \tau}=\frac{l}{T_{X}}+\frac{l}{2 T_{A}}+\frac{l}{2 \tau} \tag{78}\\
C & =W_{A}+\frac{l}{2 \tau}=\frac{1}{2 T_{A}}+\frac{l}{2 \tau} \tag{79}\\
M X 1^{\circ} & =M X 5^{\circ}, \text { and } R(X 5)=\frac{\Delta M X 5}{M X 5^{\circ}}
\end{align*}
$$

Equation (77) can be integrated as follows, using the fact that $R(X 5)=0$ when $t=0$. Then

$$
\begin{gathered}
\int_{0+C}^{K R(X 5)+C} \frac{d[K R(X 5)+C]}{[K R(X 5)+C]}=-\int_{0}^{t} K d t \\
\ln [K R(X 5)+C]=-K t+\ln C \\
\ln \left[R(X 5)+\frac{C}{K}\right]=-K t+\ln \frac{C}{K}
\end{gathered}
$$

and

$$
\begin{equation*}
\ln [R(X 5)-R(X 5)(\infty)]=-K t+\ln [-R(X 5)(\infty)] \tag{80}
\end{equation*}
$$

where $R(X 5)(\infty)$ is $R(X 5)$ at the steady state and is equal to $-\frac{C}{K}$. The value of K can be obtained from the slope of $\ln \left[R(X 5)+\frac{C}{K}\right]$ versus the time elapsed after application of the saturating rf. Thus, after Xl is saturated, $R(X 5)$ decays to the steady state value of $-\frac{C}{K}$. The value of $\frac{C}{K}$ is obtained from a steady state measurement of $R(X 5)$. If $A 2$ and $A 4$ are saturated by $\underset{\sim}{\mathrm{H}_{2}}$, equation (51) becomes

$$
\frac{d(\Delta M A I)}{d t}=\left(-\frac{3}{4 \tau}-2 W_{X}-2 W_{A}\right)(\Delta M A I)-\left(\frac{1}{2 \tau}+2 W_{X}\right)\left(M A 2^{\circ}\right)-\frac{1}{4 \tau}\left(M A 4^{\circ}\right)
$$

This can be rewritten as

$$
\frac{d R(A l)}{d t}=-\left(\frac{3}{4 \tau}+2 W_{X}+2 W_{A}\right) R(A l)-\left(\frac{3}{4 \tau}+2 W_{X}\right)
$$

or

$$
\begin{equation*}
\frac{d R(A l)}{d t}=-K^{\prime} R(A l)-C^{\prime} \tag{81}
\end{equation*}
$$

where $\quad K^{\prime}=\frac{3}{4 \tau}+2 W_{X}+2 W_{A}=\frac{3}{4 T}+\frac{1}{T_{X}}+\frac{1}{T_{A}}$

$$
\begin{align*}
C^{\prime} & =\frac{3}{4 \tau}+2 W_{X}=\frac{3}{4 \tau}+\frac{1}{T_{X}} \tag{83}\\
M A I^{\circ} & =M A Z^{\circ}=M A L^{\circ}, \text { and } R(A I)=\frac{\Delta M A I}{M A I}
\end{align*}
$$

Equation (81) can be integrated as follows, using the fact that $R(A 1)=0$ when $t=0$.

Then

$$
\int_{0+C^{\prime}}^{K^{\prime} R(A L)+C^{\prime}} \frac{d\left[K^{\prime} R(A 1)+C^{\prime}\right]}{\left[K^{\prime} R(A 1)+C^{\prime}\right.}=-\int_{0}^{t} K^{\prime} d t
$$

$$
\begin{gathered}
\ln \left[K^{\prime} R(A l)+C^{\prime}\right]=-K^{\prime} t+\ln C \\
\ln \left[R(A l)+\frac{C^{\prime}}{K^{\prime}}\right]=-K^{\prime} t+\ln C^{\prime}
\end{gathered}
$$

and

$$
\begin{equation*}
\ln [R(A 1)-R(A 1)(\infty)]=-K^{\prime} t+\ln [-R(A l)(\infty)] \tag{84}
\end{equation*}
$$

where $R(A l)(\infty)$ is $R(A l)$ at the steady state and is equal to $-\frac{C^{\prime}}{K^{\circ}}$. The value of K^{\prime} can be obtained from the slope of $\ln [R(A l)-R(A l)(\infty)]$ versus the time elapsed after application of the saturating rf. Thus, after A2 and A4 are saturated, R(A1) decays to the steady state value of $-\frac{C^{\prime}}{K^{\prime}}$. The value of $\frac{\mathrm{C}^{\prime}}{\mathrm{K}^{\prime}}$ is obtained from a steady state measurement of $R(A l)$.

Since $K, \frac{C}{K}, K^{\prime}$, and $\frac{C^{\prime}}{K^{\prime}}$ can be measured, T_{A}, T_{X}, and τ can be expressed in terms of K, C, K^{\prime}, and C^{\prime} from equations (78), (79), (82), and (83). The explicit formulas are as follows.

$$
\begin{align*}
& \mathrm{T}_{\mathrm{A}}=\frac{1}{\mathrm{~K}^{\prime}-\mathrm{C}^{\prime}} \tag{85}\\
& \mathrm{T}_{\mathrm{X}}=\frac{1}{\mathrm{~K}-\mathrm{C}} \tag{86}
\end{align*}
$$

and

$$
\begin{equation*}
\tau=\frac{1}{2 C-K^{\prime}+C^{\prime}} \tag{87}
\end{equation*}
$$

Therefore, T_{A}, T_{X}, and T can be obtained from equations (85), (86), and (87).

This technique would allow all of the parameters used in this thesis to be independently measured. This would enable the theory developed in this thesis to be tested without using adjustable parameters.

LITERATURE CITED*

1. J. A. Pople, W. G. Schneider, and H. J. Bernstein, High Resolution $\frac{\text { Nuclear }}{\text { 1956), Magnetic }}$ Chapter 6. Resonance (McGraw-Hill Book Co., Inc., New York, 1956), Chapter 6 .
2. Reference 1, Eq. (3-48), (3-49), and (3-50).
3. H. S. Gutowsky, D. W. McCall, and C. P. Slichter, J. Chem. Phys., 21, 279 (1953).
4. H. S. Gutowsky and A. Saika, J. Chem. Phys., 21, 1688 (1953).
5. Ernest Grunwald, A. Loenstein, and S. Meíboom, J. Chem. Phys., 27, 630 (1957).
6. Z. Luz, D. Gill, and S. Meiboom, J. Chem. Phys., 30, 1540 (1959).
7. H. M. McConnell, J. Chemo Phys., 28, 430 (1958).
8. S. Alexander, J. Chem. Phys., 37, 967 (1962).
9. S. Alexander, J. Chem. Phys., 37, 974 (1962).
10. H. M. McConnell and Don D. Thompson, J. Chem. Phys., 31, 85 (1959).
11. Sture Forsern and R. A. Hoffman, J. Chem. Phys., 39, 2892 (1963).
12. Sture Forsen and R. A. Hoffman, J. Chem. Phys., 40, 1189 (1964).
13. W. A. Anderson and R. Freeman, J. Chem. Phys., 37, 85 (1962).
14. Reference 1, Section 3-1.
15. Reference 1, Section 3-2.
16. Reference l, Equation (3-24).
17. S. L. Gordon, J. Chem. Phys., 48, 2129 (1968), Section F.
18. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961), Chapter VIII, Equation $26^{\prime \prime}$.
[^0]LITERATURE CITED (Concluded)
19. J. H. Noggle, Rev. Sci. Instr., 35, 1166 (1964).
20. Reference 17.

[^0]: *Abbreviations used herein follow the form of Chemical Abstracts, 50, 1 J (1956).

