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SUMMARY 

The purpose of this thesis is threefold. First, the 

proper definition for the mixture kinematic viscosity, v; » 

will be developed for stratified, horizontal flow systems. 

Secondly, using this definition for v , an appropriate 
m 

expression for the two-phase Reynolds number will be derived 

which is used as the similarity parameter for modeling the 

friction factor in two-phase, separated flow. And thirdly, 

a correlation is presented for predicting the volumetric 

concentration in separated, two-phase flow. 

The results of this analysis will show that the 

two-phase friction factor reduces to the well-known pressure 

drop correlation applicable to single-phase flow in terms of 

the Moody friction factor and the Reynolds number defined in 

this analysis. In addition, the author's void fraction 

correlation will show that Hewitt's "triangular" relation

ship for the volume flow rates, overall pressure drop, and 

the void fraction, does not hold for laminar, horizontal, 

stratified flows. 

The three separated flow systems analyzed are: (1) 

flow between wide, horizontal parallel plates; (2) flow 

through horizontal, rectangular ducts; and (3) flow through 

horizontal, circular pipes. In all three cases, the drift 

or diffusion flow model is used to establish the correct 
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expression for the mixture viscosity. Experimental data 

are used to test the validity of this analysis for predicting 

the frictional pressure drop and void fraction. Excellent 

agreement is shown between experimental and predicted 

results. 



CHAPTER I 

INTRODUCTION 

1.1 Significance of the Problem 

The frequent occurrence of two-phase, single- and/or 

two-component flow in pipelines is characteristic of many 

modern petroleum, chemical, and nuclear systems. Two current 

problem areas are the ability "to accurately predict the 

pressure losses and the volumetric concentration in these 

pipelines. One of the flow regimes frequently observed is 

stratified flow. This type of two-phase flow has been 

demonstrated experimentally by several investigators [4,5,28, 

33] and it is the subject of this work. 

1.2 Review of the Literature 

A literature search with respect to horizontal, two-

phase flow in conduits revealed that a logical and general 

method for accurately predicting the frictional pressure 

drop and volumetric concentration does not exist. Numerous 

good references [3,10,14,19,29,31] containing discussions of 

horizontal flow correlations point out that most of these 

correlations are empirical; therefore, they are subject to 

the limitations of their own data. 

Many investigators seem to rely on the work of 

Lockhart and Martinelli [21] and Martinelli et al. [23] as 
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the classical approach to this problem. The correlation of 

the latter was established by performing numerous experi

ments in horizontal, circular pipes covering a wide range of 

flow rates at atmospheric pressures, The experimental data 

were separated into four basic groups depending on whether 

each phase was flowing in the laminar or turbulent state. 

The parameters $, and <£> , defined in the Nomenclature, were 

determined and plotted against the Martinelli parameter, X, 

which is a function of input system quantities and fluid 

properties only. The Martinelli parameter for laminar-laminar 

flow, X , is also defined in the Nomenclature. Their corre-* vv 

lations for predicting the frictional pressure drop and the 

void fraction are shown in Figure 1. Although the Lockhart-

Martinelli correlation gives good agreement in a number of 

cases, it has been shown to be quite inaccurate in the case 

of stratified fluid flow [2,5,8,11], 

Another and more commonly used approach is to treat 

the two fluids as if they were a homogeneous mixture with 

appropriately defined mixture properties (i.e. mixture 

density and mixture viscosity). Herein lies the major 

problem. How does one define these mixture properties? 

Many investigators [1,2,7,9,12,16,18,22,24,25,26] 

have tried to establish a frictional pressure drop corre

lation similar to that obtained in single-phase flow (in 

terms of the Moody friction factor and the fluid Reynolds 

number) by choosing arbitrary and artificial definitions 
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Figure 1. Lockhart-Martinelli Correlation w 
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for the mixture viscosity to use in the definition of the 

Reynolds number. Numerous definitions for this two-phase 

viscosity are found in the literature and the researchers 

all claim that their expressions are the proper definition 

to use. Seven of the most publicized definitions plus a 

Russian definition are presented below to illustrate the 

wide variety from which one has had to choose. They are: 

(Owens [26], 1962) 

(Isbin et al. [18], 1957 and 
McAddams et al. [24], 1962) 

(Cicchitti et al. [7], 1960) 

(Hagendorn [16], 19 65) 

(Bankoff [1], 1960) 

(Dukler et al. [12], 1954 and 
Ngyuen and Spedding [25], 1973) 

(Mamaev et al. [22], 1969) 

(Davidson [9], 1948) 

where the mass quality, x» t n e volumetric flux concentration, 

3, and the void fraction, a", are defined in the Nomenclature. 

The parameter C~ is defined in equation (16). 

Notice that in every expression but (8), the mixture 

viscosity reduces to the correct result at the extremes; 

that is, when 

(1) u = p 
m 1 

(2) ~ i-x + _jc 

m 

(3) iim = ( i - x ) y 1
+ x u 2 

(4) li = y i-x,, x 
m 

(5) Pm = ( l - a ) i i 1 + a u 2 , 

(6) uffl = ( l - g ) y 1 + e u 2 C 2 , 

(7) 
m 

(8) ym -
IB 

111 + £_ 
v l V2 

V - P 

M1 + ^ 
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X •»* ° 

a -> o = m 1 ( 9 ) 

a -> o 
1 ra 1J 

and when 

X -> 1 

3 -> 1 = 
% = l i 2 

a -> 1 
C W 

(10) 

Three of the previous expressions for the mixture viscosity 

are plotted versus the quality in Figure 2 to point out the 

large differences one could encounter during any analysis 

involving a definition for the viscosity depending on his 

choice of equations (1) through (8). It is easily seen in 

Figure 2 that the values can differ by a factor of 5 in the 

worst case.' 

An entirely different and novel approach to the problem 

of predicting the frictional pressure drop was undertaken by 

Dukler, Wicks, and Cleveland [12] in 1964 and rederived by 

Ngyuen and Spedding [25] in 1973. Dukler et al. introduced 

and developed a correlation through similarity analysis. 

Their resulting expressions for the Euler number and the 

mixture Reynolds number are 



Figure 2. Non-Dimensional Viscosity Ratio 
versus Quality for (y?/ii,) = 20.1 
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N E U T P ~= 2fM - ^rtl.p)ii+BP2Ci] ( I D 

gc* 

and 

(1-3)P1
+$P2C1 

NRe T p
 E A ^ ( 1 . 0 ) ] i i + 3y c2> • (12) 

As a consequence of this approach, the mixture density, 

Prpp, was defined as 

PTp = (1-6)P1
+BP2C1 (13) 

and the mixture viscosity, yTp, as 

yTp = (l-3)y1 + 0li2C2 , (14) 

where the constants C, and C2 are given by 

- dvG -
Y —̂ y R R 

ci = tr)2 ̂ H ^ ) [=^] CIS) 
v^ L G R^RT 
b — j — b L 

QZ 

and 



d 2 y G 
V L W d n 2 , r

R
G

RL C2 E (^-U-Y^) lzz^-1 • (16) 
G d vL RQRL 

dn 

Dukler et al. considered four special cases and made 

various assumptions in each case to evaluate C-, and C2« The 

two more important cases of interest are the case of flow 

without "slip" and the case of flow with "slip". In both 

cases, C-. and C~ were assumed to be equal to one. 

In Chapter II a brief discussion on the separated 

flow models (i.e. the two-fluid model and the diffusion or 

drift model) will show why Dukler*s et al. method, as well 

as the methods of many other investigators who used the 

homogeneous model approach, are not consistent with these 

mo de 1 s. 

In 1967, Yu [33] did analytical and experimental 

research on the two-phase frictional pressure drop in laminar, 

stratified flow in horizontal conduits of varying cross 

section. In his analysis he introduces the concept of an 

apparent mixture viscosity which is very similar to the 

author's expression for flow in rectangular ducts in Chapter 

IV. However, he did not use this definition to propose a 

correlation for predicting the frictional pressure drop, nor 

did he propose a method for predicting the void fraction. 
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1.3 Purpose 

The purpose of this thesis is threefold: (1) to 

develop the correct definition for the mixture kinematic 

viscosity, v , for stratified flow systems; (2) to derive 

an appropriate expression for the mixture Reynolds number 

which can be used as a similarity parameter for modeling 

the friction factor in two-phase flow; and (3) to present a 

correlation for predicting the void fraction in horizontal, 

separated flow. 

The results of this analysis will show that when the 

Reynolds number similarity group defined in this analysis 

is used, the two-phase friction factor reduces to the well-

known Moody friction factor applicable to single-phase flow 

systems. Thus, the Moody friction factor in both two-phase 

and single-phase flow can be correlated on the same diagram. 

This confirms that the Reynolds number, as defined in this 

analysis, is the correct similarity group to be used in 

frictional pressure drop models. 

Furthermore, the void fraction correlation as a 

result of this analysis will show that the "triangular" 

relationship claimed by Hewitt [17] does not hold for 

separated, two-phase flow. Hewitt bases his "triangular" 

relationship on three parameters: the individual volume 

flow rates, the overall pressure drop, and the void fraction. 

He claims that in order to calculate the void fraction, a 

knowledge of both the volume flow rates and the overall 



10 

pressure drop must be known. In other words, according to 

Hewitt, to predict any one of the three previously mentioned 

parameters, one must know the other two parameters. 

Experimental data are used to check the validity of 

both the pressure drop and void fraction correlations. 
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CHAPTER II 

FLOW MODEL FORMULATION 

2.1 General 

The numerous analyses based on the area-averaged 

separated flow model can be divided into two basic groups. 

One is the two-fluid model which is formulated by considering 

each phase separately, whereas the second is the diffusion 

or drift model which is formulated by considering the entire 

mixture. It is this latter flow model which will be the 

basis of the analyses in Chapters III, IV, and V to develop 

pressure drop and void fraction correlations for horizontal, 

separated flow. 

Before discussing the drift model, a brief discussion 

of the two-fluid model is included to point out the major 

differences in these two models, 

2.2 Two-Fluid Model 

The two-fluid model is formulated by considering each 

phase separately. Therefore, this formulation is expressed 

in terms of six field equations: two continuity equations, 

two momentum equations, and two energy equations. 

This model will yield satisfactory results whenever 

the two mixture components are weakly coupled, that is when 

equalization of velocities does not occur [20] . This can be 
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expected whenever there is a large difference between the 

densities and the velocities of the two components. 

Thus, the model will be applicable to problems con

cerned with the dynamics of the interface and other inter

actions between the two phases. Since any formulation based 

on this model is represented in terras of six field equations, 

a mathematical analysis may be quite difficult; thus, it is 

not an effective model for system dynamics analyses or for 

determining mixture properties. 

2.5 Diffusion or Drift Model 

In contrast to the two-fluid model, the diffusion or 

drift model is formulated by considering the entire mixture. 

Therefore, the resulting formulation is expressed in terms 

of four field equations: three for the mixture plus the 

void propagation equation for one of the phases [34]. As 

pointed out by [20] the drift model follows the similar well-

established approach used to analyze the dynamic behavior of 

chemically reacting binary mixtures. It is therefore 

applicable whenever the two mixture components are closely 

coupled, that is, whenever they interact so that their 

differences between the velocities and the other properties 

are small. Hence, attention is focused on the relative 

motion rather than the motion of the individual phases. And 

the field equations must be based on the baricenter,, or 

center of mass, of the mixture. 
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This last requirement that the conservation equations 

be expressed in terms of the baricenter is where so many 

investigators' formulations have been wrong. Although the 

many traditional formulations were based on the three conser

vation equations, they did not express these equations in 

terms of the baricenter, Thus, one important consequence 

from this is that the mixture properties were not properly 

defined! In fact, various authors were forced to introduce 

no less than four definitions for the mixture density [20]. 

And note that there are many more expressions for the mixture 

viscosity similar to the eight expressions in Chapter I. 

Therefore, in the following chapters, the author will 

show the correct and consistent approach to use in developing 

a pressure drop correlation based on this drift model. 
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CHAPTER III 

STRATIFIED, LAMINAR FLOW BETWEEN WIDE, 

HORIZONTAL PARALLEL PLATES 

5.1 Governing Equations 

The two-phase fractional pressure drop will be 

analyzed analytically for the case of stratified, laminar 

flow between wide, horizontal parallel plates. The flow 

model is depicted in Figure 3. The basic differential 

equation governing the laminar, horizontal, fully-developed 

flow of an incompressible Newtonian fluid is 

o « - & • v A CD 
dy 

Thus, for phase 1 and phase 2, respectively, one has 

A2 
j„ O. V 1 

dz l dyZ 

and 

or rearranging equations (2) and (3), one obtains 



\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ > v \ \ \ \ \ \ > 

v2 ® 

h. 
Vl® 

// /////?////////// / / / / / / / / / / / / / / / / / / 

Figure 3, Separated Flow Model 
Parallel Plates 

for Wide, Horizontal 
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d2v 

\ = f- k (4) 
dyz ul 

and 

d V2 2 

dy2 U2 

where 

k = |(|£) • (6) 

The solutions to equations (4) and (S) yield the 

velocity distribution for each phase, respectively [2,22,32]. 

Note that the velocity distribution for phase 1 in Whitaker 

[32] contains an error. The area-averaged velocity for each 

phase is obtained by integrating the solutions to equations 

(4) and (5) over their respective depths, h-. and h-. Thus, 

the average velocities for phase 1 and phase 2, respectively, 

become [2 2]: 

v = - £_k(i-o)[Ill°a + -2 — - ] (7) 
1 l 5|J1 (l-a)ti2+a|i1 

and 



v2 = - |!ka [ « + (1-°) _ ] 
M2 (l-a)y«+aim1 

where a is defined to be the area-averaged void fraction 

unit depth; i.e. 

- ^2 
a = TT » 

i - - h l l-o = 5- . 

3.2 Velocity for the Center of Volume, j 

The superficial velocity for phase 1 and phase 2, 

respectively, is defined as 

j 1 = (l-q)^, j 2 = a v"2 . 

Substitution of equation (9) into equation (10) gives 

2 — 2 . — — 
-; = h (1-a) kr(l-a) a 
3 1 2 L 3u 1 (l-a)p2+aiJ1 

and 

i = h2«2kr a . (1-a) -, 
2 2 L3p7 ri -. .- J 

p2 (l-q)iJ2+qp1 
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The velocity for the center of volume, j, is obtained 

by adding the superficial velocity for phase 1 and the 

superficial velocity for phase 2; thus, j becomes 

j=j.+j, * - jjifCl-")3 + «! + 3aU-a) } (13) 

1 2 (l-a)ti +a|i]L 

or substituting for k defined in equation (6), one gets 

j , . ̂ (|E) [C
1-")3

 + «! + 3«ci-cQ ] . (14) 
12 ^ "l ^2 (l-a)y2+aUl 

5.3 Relative Velocity, v 

The relative velocity, v , is defined as the differ 

ence between the average velocity for phase 2 and the 

average velocity for phase 1; i.e. 

v = v- - v, . (15) 
r 2 1 

Substitution for v? and v, defined in equations (7) and 

(8) into equation (15) gives 

vr = - t^d- - ^^-1 (16) 
r 0' p 2 ^i 

or substituting for k from equation (6) , v becomes 
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v r 
*£(*£) l^-a-^)2,] . (17) 

3.4 Velocity for the Center of Mass, v 
•—/ m 

Zuber and Dougherty [34] have shown that the velocity 

for the baricenter or the center of mass can be computed by 

- p l ' p 2 v = j - a ( l - a ) [ — — - ] v (18) 
m J K J L Q A r 

m 

Therefore, the defining equation for v becomes 

, 2 i n - J —3 3a(l-a)p 
p v E - * ( |R) [ I k ° L l _ + 2L. +

 m ] (19) 
wm m 12 S I P 1 v , v 0 M - . . ^ , J l J 

1 2 (l-a)p2+ay1 

after substituting equations (14) and (17) into equation (18). 

Notice that in equation (19) the expression inside the 

brackets must have the units of a kinematic viscosity. Hence, 

one can define the mixture kinematic viscosity based on the 

diffusion model, v , as 

I_ = Ci-q)3 + Hi +
 5a(1"a)pm 

m 1 2 (l-a)Uo + alii 

Equation (20) can be expressed as 

(20) 

1_ = i l l ^ l + 2L_ + i { a j properties) (21) 
v m v.. v~ 
m 1 I 
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where the function, I, which accounts for the interaction 

between the two phases, becomes 

I = - g(l-g)[ j n _ ]{Cl-°)C2-cO_aCl»oO} _ 
(l-cOy^+ay, 1 2 

(22) 

a(l-a) (2a-1) (P1~P2) 

(1 - a) y 2
 +ay i 

The absolute mixture viscosity, y , can then be 
m 

computed from 

y = p v (23) 
Km Mm m v J 

where the mixture density, p , is defined as 
J m 

pm = (l-a)p1+ap2 . (24) 

From an electrical analog, the kinematic mixture 

viscosity defined in equations (21) and (2 2) can be thought 

of as the sum of two "resistances" acting in parallel (i.e. 

— and — ) plus an interaction term, I, due to both 
Vl V2 

"resistances." It is important to note that in all other 

expressions for the mixture viscosity [1,2,7,9,12,16,18,22,24, 

2 5,26] this interaction term has not been included. It is 

readily seen in equation (2 2) that the interaction expression 

is negligible whenever the void fraction, a, is very close 
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to zero or one, and whenever the difference between the 

absolute viscosities of the two fluids is small. All other 

cases must be determined from experiment. 

5.5 Moody Friction Factor, fM 

By considering a force balance on the flow system, 

one can always write 

A Ap = T P L (2 
C ^ 0) U> v 

or 

01 

where P is the wetted perimeter. By definition, the wall 
(A) 

shear stress, T , can be expressed in terms of the Moody 

friction factor, fM, as 

- fM , 2 . (2 
T = —o-p V ^ 

to 8 m m 

Substitution of equation (27) into equation (26) 

gives 

fM = ̂ A T ^ H ^ ) • (2 
V V 0) 

m m 

Rewriting equation (19) as 
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w . - &-fe 5 &*& C29) 

and substituting equation (29) into equation (28), one gets 

a a) m 

Multiplication of the RHS of equation (30) by one 

(i.e. Drj/Du, where D„ is the hydraulic diameter defined to 

be equal four times the cross-sectional area divided by the 

wetted perimeter) results in the following expression: 

A 
r _ 384/ c%2 1 r-?ii 
fM " "T7 ( F; 3 R ^ • ( 3 1 ) 

h w H 

From Figure 3, one can write 

A = bh, P = 2b (32) 
c ' a) 

and substituting equation (32) into equation (31) gives the 

following expression for the two-phase Moody friction factor, 

£ 
XM' * 

£M = 96/ReH (33) 

where the mixture Reynolds number based on the hydraulic 

diameter, Re„, is defined as 
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v D 
ReH =- -S-S . (34) 

m 

Notice that equation (33) is identical to the equation 

used for the case of single-phase flow through wide, hori

zontal parallel plates when correlating the single-phase 

friction factor with the fluid Reynolds number. Thus, by 

appropriately defining the two-phase mixture kinematic 

viscosity as in equation (16), the two-phase flow problem 

reduces to a "pseudo-homogeneous".flow with constant 

properties. 

3.6 Void Fraction Correlation 

Recalling the definition of j1 and j~ in equations 

(11) and (12), respectively, one can form the ratio, 

a2 [ ° + a-°0 _ ] 
j 2 _ Q2/Ac _ Q2 _ ^ 2 (l-a)u2+ay1 

31" W^c = 5T =
 ( i - a ) 2 [ X ^ U — ^ _ ] ( 35 ) 

yl (l-a)y2+ay1 

or, in terms of the "slip", v̂ /v., , one obtains 
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-[ a + (1-a) _ j 

v 7 j?/a ^2 (l-a)u?+ay1 

S E -^ = 1—__ = , _, ± ± . . (36) 
vx Jx/(l-a) ( 1. a r ) [0 Io Li f J» _ ] 

5 U1 (l-a)u2+a]i1 

or, in terms of the "flowing" volumetric concentration, 3, 

one gets the following expression: 

—2 r a , f 1 - a) 1 

a [̂ -—+ L ^ — _ ] 
Q 2 j 2

 U2 (l-a)u2+ay1' 
Ql + Q2 h+h (l-a)5+a

5
 + a (1-a) 

3]J1 3]J2 (l-a)]i2+ap1 

After algebraically manipulating equations (35) , (36) , 

and (37), an expression of the following form can be obtained 

A0+A1a+A2a
2+A3a

3+A4a
4 = 0 (38) 

where the coefficients, A.'s, are given in equations (39), 

(40), and (41) corresponding to the previous three different 

ratios, jo/j-,, v?/v.. »
 an(^ *̂ They are: 

u? 7 .Q7 

(39) 
u7 u7 Q7 

Al " " 4 ^ [ ^ - 1 ] ( Q ^ ) 
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U | i v A9 = { 3 ( - ^ ) [ 2 ( - ± - ) ( ? ^ - ) - l ] - 9 ( - ^ ) ( 7 ^ ) } 

U 2 , , Q 2 1J2 Q, 
A- = - { 2 ( - ^ ) [ 2 ( - ^ ) ( 7 ^ - ) - l ] - 6 ( ^ ) ( ? ^ ) } (39) 

A, = (—^{(T^-HTA)^} 

A0 " t y f ) 8 

A2 = { S [ 4 - 3 ( - ^ ) ] + 3} 

A , = 2 = { S [ 3 ( - p ) - 5 ] + 2 } (40) 

y 2 y-, 
A- = { l + S [ l - ( — ) ] - — } 

3 L
 P X y 2 

A 4 = 0 

1 y ? 

An = 4ec—) 
0 3 M ^ V 

Al = " { l ^ ^ - 2 ^ 

A0 = ( 2 3 - 1 ) 

( 4 1 ) 

A, {23 (-^-) - ice+8)} 
| i 1 3 
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U 7 ^ 1 1 

A4 - {3(^) + Ce-l)(^-)4c2-B) 

It is clearly seen from equations (39), (40) , and 

(41) that the void fraction, a, can be computed solely from 

the input volumetric flow rates for each phase and their 

respective properties. The void fraction does not depend on 

a knowledge of the pressure drop. Therefore, the "triangular" 

relationship as claimed by Hewitt [17] does not exist I 
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CHAPTER IV 

STRATIFIED, LAMINAR FLOW THROUGH HORIZONTAL, 

RECTANGULAR DUCTS 

4.1 General 

The two-phase frictional pressure drop for stratified, 

laminar flow through horizontal, rectangular ducts will be 

analyzed analytically and then tested with the available 

experimental data. The flow model is depicted in Figure 4. 

The exact analytical solution for the velocity distribution 

for each phase and their subsequent volume flow rates have 

been derived by Charles and Lilleleht [5] and Yu [33]. It 

should be noted that the Fourier coefficients A* and B? in 
in in 

Yu's analysis are incorrectly printed. 

4.2 Velocity for the Center of Mass. v 
, 1 , , L. fli 

The theoretical volume flow rates for phase 1 and 

phase 2, respectively, have been derived by [5] and are 

presented in Appendix A, equations (35) and (36). They are: 

4 °° 
Q = i ^ - I ( 2 T i T ) 5 [ A « ( n ) { l - c h ( n b 1 ) } 4 - B { ( n ) s h ( n b 1 ) ] 

IT i = o 

CD 
- IkjAj 

and 



A B 

CL 

D 

phase 2 

phase 1 

b. 

Figure 4. Separated Flow Model for Horizontal, 
Rectangular Ducts 

tNi 
00 
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4 °° 
Q 2 = 128^. E (IIir)

5[A^(n){ch(nb2)-l}+B'(n)sh(nb2)3 
TT i = 0 

and 

wh 

(2) 

I k2 a b2 ' 

Equations (1) and (2) can be rewritten as 

Q1 = - ^1ah5{(^Z2(l-a)--f-J Z [ ^ - i — - ] } (3) 
a b n n 1 

oo •£ ("ll") 

Q2 - - fk2ab3{(f)22a - « Z [ ^ - | — ] } (4) 
a b n n 2 

ere the functions f -. (n) and f 2 (n) are defined to be 

fx(n) = Aj(n)iI-ch(nb1)}+B-j_(n)sh(nb1) (5) 

and 

£2(n) = A^(n)[ch(nb2)-l]+B^(n)sh(nb2) . (6) 

The functions A'(n), Ai(n), Bj(n), and Bl(n) are defined in 

Appendix A, equations (26), (27), (28), and (29), respectively 

From Figure 4, one can write 
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b± = -2b (1-a), b2 = 2 bet (7) 

and dividing the expressions defined in equations (1) and 

(2) by the cross-sectional area, A , which is equal to 4ab, 

one gets the superficial velocities for phase 1 and phase 2, 

respectively, as 

and 

Q oo 

h ~= A1 = - K b { ^ ^ ^ - 4 i z Vi^} < 8 > 
c a b n. n 

c a b n n 

The defining equation for the velocity for the center 

of mass can be obtained from 

G = pmvm = Gl + G2 = plh+p2h • (10) 

Thus, after substitution of equations (8) and (9) into 

equation (10) , one obtains 

<Vm = - | g C ^
b 2 ^ + ^ W 

where the functions VI and FI are defined to be 
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00 

F{ = Cf)2(l-^)—1~3 2 V l ( n ) ( 1 2 ) 

a b n n 

and 

w 

F 2 E cfo « - 4 ^ ^ V 2 ^ • <13) 

a b n n 

From equations (12) and (13) it is seen that the 

functions Fj and Fl depend on both the void fraction, a, and 

the aspect ratio, a/b. The author chooses to express the 

functions defined in equations (12) and (13) as 

Fj = F ¥± (14) 

and 

F̂  = F F2 (15) 

where the function F (see Appendix A, equation (31)) is 

defined to be 

F = 1 - i|2b z [l^tanh^)] . (16) 
IT a n=l, 3,5 . . . n 

Now, rewriting equation (11) as 
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p
m% • - k^Fb2t^4fj ^ 

one can choose to define the mixture kinematic viscosity for 

the two-phase flow through horizontal, rectangular ducts as 

h ~ s ^ • cis) 
m 1 2 

Equation (18) is in a deceivingly compact form, and 

it appears as though no interaction term results similar to 

that obtained in Chapter III for the case of flow through 

horizontal parallel plates. However, this is not the case. 

An expression for the mixture kinematic viscosity, v , can 

be obtained after some lengthy algebraic manipulations in a 

form similar to the one for parallel plates. The result is 

— — °° f f 

m 1 2 a b m n n 1 2 

As before, the mixture kinematic viscosity can be thought 

of as the sum of two "resistances" acting in parallel plus 

an interaction term. 

4.3 Moody Friction Factor, fM 

Recall, from Chapter III, equation (28) that the Moody 
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friction factor is defined as 

^A^'r' • (2°) 
p V 0) 
'm m 

Rewriting equation (17) as 

j 3D v v (-„ &-) = m m m = M f21) 
1 gc3lzj

 c , 2 - L lzlj 

F b 

and substituting equation (21) into equation (20) results in 

f = 24 c 1} ̂ ^ m C22) 
M F\2J vp vv b *w m 

Similarly, by multiplying the RHS of equation (22) by 

one (i.e. D„/DH) and simplifying, one obtains fM as 

0) b H 

where the mixture Reynolds number based on the hydraulic 

diameter, Re„, is 

v Du 
ReH . -B_H . (24) 

m 

Now, from Figure 4, one can write 
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A^ = 4ab, P = 4{a+b) (25) 
C (j} 

and substitution of equation (25) into equation (23) gives 

- a 
r 96 r V -,2 1 f~,\. 
fM = - F ^ l ^ W 

where a/b is the aspect ratio. Equation (26) will be checked 

with experimental data in Section 4.5. 

4.4 Void Fraction Correlation 

Due to the nature of the expressions defined in 

equations (1) and (2), one cannot explicitly solve for the 

void fraction, a, by forming any of the ratios (jo/Ji)* 

(v^/v",), or ft. Although the problem is complicated by the 

fact that the volume flow rates for each phase are dependent 

on the system geometry and the void fraction, the infinite 

series in equations (1) and (2) are in no way a deterrent to 

the practical use of these theoretical expressions. These 

series converge very rapidly; hence, only 4-10 terms were 

needed to obtain an answer accurate to within 1/10,0 00th 

absolute error. All machine computations were done on the 

UNIVAC 1108 at the Rich Computer Center on the Georgia Tech 

campus. 

One simple but effective method which was used by 

the author for predicting the void fraction is described here 
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The functions F, and F? are computed as a function of the 

void fraction, a, for a particular aspect ratio, a/b, and 

for constant fluid properties. The void fraction is incre

mented in steps of 0.05 covering the range from zero to one. 

Then, the ratio 3, which is the "flowing" volumetric 

concentration defined to be equal to Q7/(Q-|
+Q7), is formed 

for each void fraction from zero to one. Thus, 3 becomes 

Q2 _ F2//]J2 
3Ca) E VQ̂ " = F1/y1 + F2/ii2

 (27} 

or rearranging, one gets 

F?(a) 
3(a) = — - ^ . (28) 

y2-(^±-)F1(a)
+F2Ca) 

Therefore, for any selected aspect ratio, a/b, and 

constant viscosity ratio, (y^/y-), the void fraction, a, can 

be determined from equation (2 8) by knowing the input 

volume flow rates for each phase and then computing the 

"flowing" volumetric concentration, g. It does not require 

a knowledge of the pressure drop; therefore, as before, the 

"triangular" relationship claimed by Hewitt does not exist! 

The author has chosen to correlate a" versus 3 because 

upon inspection of the ratio F2/F1 (or F,/F2), one can easily 
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see that its value ranges from zero to infinity (or infinity 

to zero). This is not a physically appealing nor a 

convenient range over which to interpolate any function. 

The increment on the void fraction of 0.05 is small enough 

so that interpolation using equation (28) is good to four 

decimal places. 

4.5 Experimental Verification 

A search through the two-phase literature for complete 

sets of experimental data subject to the earlier assumptions 

of Section 4.1 yielded only the one data set of Hao-Sheng Yu 

[33] with which to test the validity of this analysis. 

Yu performed experiments with a light paraffin oil 

and water in a 25 foot long rectangular duct of a/b = 2,0. 

Measurements were made on the local pressure, interface 

shape, flow rates, and fluid temperatures. With this data, 

the Moody friction factor defined in equation (20) was 

plotted versus the two-phase mixture Reynolds number defined 

in equation (24). The result is shown in Figure 5. The 

solid line in this figure is the theoretical result predicted 

by equation (23); that is, 

-1 
f„ = 62.19213 Reu (29) 
M H 

where the function F is equal to 0.68605 for an a/b = 2.0. 

As before, notice that equation (29) is identical to 
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•M 

theory (f M= 62.2Re ) 

0 5 

04-

o experimental data 

• • • ' T I I R e x 1 0 

3 4 5 6 7 8 9 10 

Figure 5. Two-Phase Moody Friction Factor 
versus Mixture Reynolds Number 
for Horizontal, Rectangular Ducts 
of a/b = 2.0 
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the single-phase expression for predicting the friction 

factor as a function of the Reynolds number. Thus, by 

appropriately defining the two-phase mixture kinematic 

viscosity in equation (18), the two-phase flow problem 

reduces to a "pseudo-homogeneous" single-phase flow one. 

Figure 6 is a plot of the predicted void fraction, a, 

versus the "flowing" volumetric concentration, $, defined in 

equation (28) for an a/b = 2.0 by the author's theory 

(solid line) and by the Lockhart-Martinelli correlation 

(dotted line). Notice that the experimental data are in 

excellent agreement with the author's theory. 

Figure 7 is a plot of the two-phase Moody friction 

factor, fM, versus the mixture Reynolds number using the 

author's theoretical value for a from Figure 6 to evaluate the 

kinematic mixture viscosity, v , instead of Yu's experi

mentally determined value. Notice that the resulting pressure 

drop correlation in Figure 7 is better than the one in 

Figure 6. 
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Figure 6. Void Fraction versus "Flowing" 
Volumetric Concentration for 
Horizontal,, Rectangular Ducts 
of a/b =2.0 and (y2/y1) = 28.8 
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theory (£ ^62.2Re ) 

experimental data 

i t ,,i 

7 8 9 10 
Re xlO 

Figure 7. Two-Phase Moody Friction Factor 
versus Mixture Reynolds Number 
for Horizontal, Rectangular Ducts 
of a/b = 2^0 with a Theoretical 
Value for a 
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CHAPTER V 

STRATIFIED, LAMINAR FLOW THROUGH HORIZONTAL, 

CIRCULAR PIPES 

5.1 General 

The two-phase frictional pressure drop for stratified, 

laminar flow through horizontal, circular pipes will be 

analyzed analytically and then tested with the available 

experimental data. The flow model is shown in Figure 8. The 

exact analytical solution for the velocity distribution for 

the two phases and their corresponding volume flow rates has 

been derived by Mamaev et al. [22]. Their analysis is 

presented in Appendix B for reference. 

5.2 Velocity for the Center of Volume, j 

The theoretical volume flow rates for the two phases 

have been derived by [22] and are presented in Appendix In

equations (54) and (55). They are 

Q = _ I^(^P)Fl (1) 
vl 8un

 ldzJ 1 v J ,pl 

and 

Q2 " - g^CgjF 2 (2) 
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Figure 8. Separated Flow Model for 
Horizontal, Circular Pipes 



where the functions F, and F2, defined in Appendix B, 

equations (56) and (57), are 

and 

F-. = - -{G - i ( 3 + 2 s i n 2 0 o ) s i n 2 G o l - 2 s i n 4 0 o x 
1 7T I U Z Z Z 

°° mA- (m) 
x I [e tg9- | sh(m0 ) -mch(m0 ) j , / .dm 

o 1 1 1 S n (IB I" j 

1 1 2 4 
F„ - —{0o--r(3 + 2 s i n 0O) s i n 2 0 o }+2sin Qn x 

Z T T Z D Z Z Z 

°° mA? (m) 
x J [ c t g Q 2 c h ( m e 2 ) - n i s h ( m Q 2 ) ] s h , m i f f , d m 

The functions A (m) and A?(m), also defined in Appendix 

equations (36) and (37), are 

s mch(ii0 ) (y -k ) -ctg09sh(m0 ') (l-k0) 
A (m) = >8 [- L ± ± ± - £ _ L-] 

I s lum* j ( i - { l 2 ) s h [ m ( w - 2 G 2 : ) ] - ( l + y 2 ) s h ( m T r ) 

and 

g mch(mG ) ( j ^ - v ^ ) - c t g G 2 s h ( m G ) (k-,-1) 
A~ (m) = , ( •> [ '• • ' . ] 

s n i J (y - l ) s h ( m ( T r - 2 G 2 ) ] - ( l + u 1 ) s h ( m 7 T ) 
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Adding equations (1) and (2) and then dividing by the 

cross-sectional area, A , gives an expression for the 

velocity for the center of volume, j, as 

. . +. . V<*2 R 2 ^ r l - q , ^3in2e2sin2e , 

(7) 
l l l2 

Pj u2 

wh ere the integral terms, I- and I2, are defined to be 

. °° mA1 (m) 
I1 E - 2sin B2J [ctg013h(m91)-mch(me1)]sh^mir^dm (8) 

and 

4 °° mA (m) 
I2 = 2sin 92 / [ctg92ch(m02)-msh(m02)] ̂ > , dm . (9) 

Rewriting j in terms of the functions F- and F2> one obtains 

R2(fe) F, F9 
j = - — o ^ - [ — + — ] • CIO) 
J » V^1 \^2 

5.3 Relative Velocity, v 
, , _*—— r 

The average velocity for each phase can be computed as 
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Q R2 (If-) s i n 2 e s i n 2 Q I 
v = jl• - - - g -^H- ~ - + ~V] (ID 

1 A l 8 ^ 1 3fT(l-a) ( 1 - a ) 

and 

% R 2 (4£ ) s i n 2 e ? s i n 2 e ? I ? 

v2 s
 2 = -T#- [ 1 7^ +^] (12) 

2 2 3Tra a 

or expressing the average velocities in terms of F-, and F2> 

one can obtain 

1 (l-ot) 

and 

R tfa) F
2 . (14) 

2 8u9 
2 a 

Thus, the relative velocity, v , is obtained by 

subtracting equation (12) from equation (11); i.e. 

- T, - R 2 ( 3 z > r l 1 S i n 2 9 2 s i n 2 9 2 f 1 1 , + 
v r = v 2 " v l = - —g [uT-iTT Si C

f 1 - , + — } + 

2 1 ( l - a j v i j a u 2 

I T 
(15) 

a y 2 ( l - a ) p 1 
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or using the definitions in equations (13) and (14), one gets 

R2df) F F 
vr = g^[— 1" h—l • (16) 

au2 (l-a)ji 

5.4 Velocity for the Center of Mass, v 
1 , i. m 

As in Chapter III, the defining equation for the 

velocity for the center of mass, v , is 
7 ' m' 

- - p l ' p? v = j - a ( l - a ) ( - ± — - ) v . (17) 
m J V ^ v p r 

m 

S u b s t i t u t i o n of e q u a t i o n s (7) and (15) i n t o e q u a t i o n (17) 

r e s u l t s i n 

2 , dp . . 2, 
R ' £ a f > , l w l - a . a S i n e 2 s i n 2 G 2 , 1 1 

) + 

(18) 

vm 8 l p n v . v * Sir ^v. v 9
J 

m 1 2 1 2 

X l l2 + r_i+_i- l 1 

W V 

or 

^2(M) I F F 
V = - — o ^ - C — ) [—+ — ] ( 1 9 ) 

m 1 2 
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after substituting equations (10) and (16) into equation (17) 

It is readily seen from equations (18) and (19) that 

the expression inside the brackets has the units of a kine

matic viscosity. Therefore, one can define the two-phase 

mixture kinematic viscosity, v > as 

2 
-, i — — sin eosin2 0o , . L L 

JL E lia+-a+ 2 ^ J ^ . J ^ J ^ ^ (20) 
vm v l ^2 3ir Vl V Vl V 

o r , in terms of the func t ions Fn and F 0 , as 
1 2 

1 Fl F2 _L = _A+_£ . (21) 
m 1 2 

As with the other two stratified flow cases, the 

kinematic mixture viscosity can be thought of as the sum of 

two "resistances" acting in parallel plus an interaction 

term, I, where this interaction term for horizontal, circular 

pipes becomes 

2 sin 09sin209 -, 1 I, I 9 

_ ^ £(_JL-_A)+ (_£+_£.) . (2 2) 
3TT ^V V J lv v J K J 

5.5 Moody Friction Factor, fM 

Recall that the Moody friction factor can be defined 

as 
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0 » 
Tit m 

or (expressing it in terms of the hydraulic diameter) as 

"M p y 2
l 1/ H l J 

m Hi 

Rewriting equation (19) as 

8o v 
dp = °

pm iivm _ _AP (IS") 
d z -n 2 L 

and substituting equation (24) into equation (23) yields the 

following expression for f'. 

16v Du 16v Du f - jUi =
 vm H f261 

M " D2 n2 * lZDJ 

m v (—T) 
my 4 

But, the hydraulic diameter for a circular pipe is 

identical to the pipe diameter; thus, equation (2 6) becomes 

64v -1 
£ M = -n = 64ReD • f") 

m 
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This resulting equation is seen to be identical to the 

equation used in single-phase flow. Therefore, by appro

priately defining the two-phase mixture kinematic viscosity, 

v , once again, the two-phase flow problem reduces to a 

"pseudo-homogeneous" single-phase problem. The validity of 

this analysis and equation (27) is checked with experimental 

data in Section 5.7. 

5.6 Void Fraction Correlation 

The procedure for predicting the void fraction, a, 

in stratified flow through horizontal, circular pipes is the 

same that was used in Chapter IV. It is not repeated here. 

This method for predicting the void fraction is tested with 

experimental data in Section 5.7. 

5.7 Experimental Verification 

The only available set of experimental data subject 

to the author's previous assumptions is that of Russell, 

Hodson, and Govier [28]. Russell et al. performed experi

ments with a fairly viscous oil and water in a 0.306 inch 

I.D. horizontal, circular pipe. The Moody friction factor 

was plotted versus the two-phase mixture Reynolds number. 

The result is shown in Figure 9. The solid line in this 

figure is the theoretical result predicted by equation (27). 

The 1 imited experimental data are in fair agreement with the 

author's theory. 

Figure 10 is a plot of the predicted void fraction 
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Figure 9. Two-Phase Moody Friction Factor 
versus Mixture Reynolds Number 
for Horizontal, Circular Pipes 
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a 
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Figure 10. Void Fraction versus "Flowing" 
Volumetric Concentration for 
Horizontal,, Circular Pipes with 
Cu2/p1) = 20.1 
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versus the "flowing" volumetric concentration by the author's 

theory (solid line) and by the Lockhart-Martinelli corre

lation (dotted line). Notice again that the experimental 

are in better agreement with the author's correlation. Using 

the author's correlation for a in the expression for the 

mixture kinematic viscosity defined in equation (21) , a 

plot of fM versus the Re was obtained. The result is shown 

in Figure 11. 

Figure 12 shows the effect of this interaction term, 

I, in the expression for v. . Notice the significant differ-
m 

ences between the curves for the second and third definitions 

in this figure. In the worst case, they can differ by as 

much as a factor of 5! 

Figure 13 is a plot of the average void fraction, a, 

versus $ for various viscosity ratios (y?/y-) ranging from 

0.001 to 1000. This plot clearly shows that a can be 

determined solely from a knowledge of input system quantities 

and fluid properties. 
Figure 14 is a plot of the functions used in computing 

v , F,(a) and F~fa) versus the void fraction for selected 
m * 1 v 2V J 

constant viscosity ratios, \i?. These functions are defined 

in equations (3) and (4) of Section 5.2. The experimental 

data used correspond to a y? ^ 20.1. 
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Figure 11. Two-Phase Moody Friction Factor 
versus Mixture Reynolds Number 
for Horizontal, Circular Pipes 
with Theoretical Value for a 



5 

Figure 12. Non-Dimensional Kinematic Mixture 
Viscosity versus Void Fraction 
for Horizontal, Circular Pipes with 
(X/l^) = 20.1 and (P 2/P 1) = .834 
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Figure 13. Average Void Fraction versus 
"Flowing" Volumetric Concentration 
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Figure 14. Functions F1 and F? versus the Void 
Fraction for Selected Constant Vi 
Ratios, ii~ 
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CHAPTER VI 

CONCLUSIONS 

The following conclusions are made by the author as 

a result, of the previous analyses: 

(1) The diffusion or drift flow model is the proper 

model to use for predicting the two-phase, 

frictional pressure drop for the horizontal, 

stratified flow of two Newtonian fluids with a 

flat, interface. 

(2) As a direct consequence from using the drift 

model, the velocity for the two-phase mixture 

must be defined in terms of the baricenter 

instead of the center of volume; this results in 

the proper definition for the mixture kinematic 

viscosity. 

(3) The mixture kinematic viscosity, v , can be 

thought of as the sum of two "resistances" 

acting in parallel plus an interaction term 

which can be neglected under special conditions. 

(4) The mixture kinematic viscosity together with the 

baricenter velocity and the hydraulic diameter 

define the Reynolds number for separated, two-

phase flow. 
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(5) Using this Reynolds number as a similarity 

parameters the frictional pressure drop for 

separated, two-phase flow can be correlated in 

terms of the standard Moody friction factor. 

(6) Thus, the results of this analysis show that the 

correlation for frictional pressure drop in 

single- and two-phase flow are identical if the 

two-phase Reynolds number, defined in this 

analysis, is used as the similarity parameter. 

(7) In addition to the frictional pressure drop 

correlation, the analysis developed in this 

thesis yields an expression for the void fraction 

in terms of known input parameters, that is, 

flow rates, duct geometry, and fluid properties. 

(8) And finally, as a result of the author's analysis, 

it can he concluded that the "triangular" 

relationship claimed by Hewitt [17] does not hold 

since both the frictional pressure drop and the 

void fraction can be computed simultaneously 

given the input parameters (i.e., flow rates, 

duct geometry, and fluid properties of the 

individual phases or components. 
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APPENDIX A 

SEPARATED FLOW IN A RECTANGULAR CONDUIT [5] 

Charles and Lilleleht [5] have derived expressions 

for both the velocity distribution and the volumetric flow 

rates for the co-current laminar, stratified flow of two 

immiscible, Newtonian fluids in horizontal, rectangular 

conduits. Their analysis is presented in this Appendix. 

The flow model is depicted in Figure 4. The flow is 

assumed to be fully developed and the interface between the 

fluid layers is assumed to be smooth and horizontal. The 

conduit is represented by ABCD and the interface by EF. 

Fluid 2 flows above fluid 1, the depth being b-. and bo, 

respectively. The width of the duct is 2a. The (x,y,z) 

coordinate system has the origin at 0 with the x-axis 

coincident with the interface and the flow in the z-direction. 

The basic differential equation governing the flow of 

both phases is 

V v + 3̂ v = ^c.Sp. m 

2 2 u l 3 z J l J 

9x 3yz p dZ 

which may be written for each phase as 



J_ + 1 = -£(±P C^)> j-1,2 .2 . 2 y. 3 z ax 3y 3 

where v is the local velocity which is a function of both 

and y. The boundary conditions, which are similar to tho 

used in the previous studies [6,8] of stratified flow in 

circular pipe, are: 

v.,-0 when x=+a, -b1<y<0 1 i — 

v1; = 0 when -a<x<a, y=-bn 
1 — — J 1 

v?=0 when x=^a, 0<y<b~ 

v? = 0 when -a<x<_a, y=b? 

v^-Y7 when -a<x<a 

3v, 9v2 

^w^^w* y=0 

i g c l 3 z J 

Let k 
j pj 

^2 
and m = — 

P 

If a variable V. is defined by the relationship 
3 
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v. = Vj + -^(x2-a2) (11) 

then substitution for v. into the differential equation (2) 

gives 

32V. 32V 
1 + — J L E o . (12) 2 2 3x 9y 

The boundary conditions defined in equations (3) through (8) 

now become 

V =0 when x= + a, -b-^y^O (13) 

1 2 2 
V =--y(x -a ) when --a<x<_a, y~-b, (14) 

V? = 0 when x=+_a, 0<y<b2 (15) 

2 22 
V =--y(x -a ) when -a£x<_a, y=b~ (16) 

V2-V1 = i(k1-k2)Cx
2-a2) -a<x<a (17) 

3V 3V? 
^i-m^ 2 - 0 y=0 (18) 

Boundary conditions (13) and (15) give V- = 0 when 
J 

x = +a and are satisfied by terms of the form 
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*3 " S 1 * ^ 1 (19) 

where Y. is a function of y only and i is an integer. Let 
J 

_ ( 2 I + 1 ) T T 

n = - T7T~~ 
2a 

(20) 

and s u b s t i t u t e 

V. = Y. cos(nx) 
1 1 

(21) 

into equation (12); thus one gets 

2 
9 Y. 7 
—J- - nZY. = 0 
3y J 

(22) 

from which it follows that 

Y. = A.(n)sh(ny)+B.(n)ch(ny) 
3 1 1 

(23) 

in which A.(n) and B.(n) are functions of n and, therefore 
J J 

of i but not of x and y. The solution may therefore be 

written in the form 

V. = £ [A.(n)sh(ny)+B.(n)ch(ny)]cos(nx) (24) 
1 i==0 1 1 
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which may be considered as a cosine Fourier series, the two 

coefficients being functions of y. Two of the six boundary 

conditions have been used. Four remain, therefore, for the 

evaluation of A.(n) and B.(n), j = 1,2. 
J J 

Hence, by using the boundary conditions defined in 

equations (14), (16), (17) and (18) in conjunction with 

equation (24) , the velocity distribution is obtained as 

2 co ]_ 

v = M|_ i A l l l ^ [A! (n)sh(ny)+B! (n)ch(ny) ] cos (nx) 
^ TT i = o (2 i +1) ^ 1 

+ 4( x
2-a 2) (25) 

where the coefficients A.f(n) and B.'(n) for j = 1,2 become 
J ' 3 

A-j(n) = mA^(n) (26) 

k2ch(nb-, ) -k-.ch(nb2) + (k, ~k2)ch(nb-, )ch(nb2) 
A 2 ^ = ch (nb1) sh (nb2) +msh (nb1) ch(nb2)

 !^27) 

k-, sh (nb7)+mk?sh (nb-. )+m(k-. -k~) sh(nb-. )ch(nb?) 
B^(n) = ch(nb )sh(nb2)+msh(nb1)ch(nb2) ~~ ^28) 

and 

mk2sh(nb-. )+k-. sh(nb2) - (k-. -k2)sh(nb2)ch (nb-. ) 
,^(n) = cTT(hT~Ts>L(nb2)+msh(nb1)ch(nb2) ~ ^29^ 
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A limiting case is of interest: if m = 1 and, 

therefore, k1 = k~, then the fluids 1 and 2 are identical as 

far as the problem is concerned. If, in addition, b, = b? = 

b, then the x-axis lies equidistant between the top and bottom 

of the conduit. With these substitutions, equation (2 5) 

reduces to the expression derived by Cornish (8) for the 

velocity distribution in single-phase flow given below as 

16b g a_ °° C"1)*~T~ cn(—orr) ™^v 
C(H) 2 [ V (̂ -1̂ 1)] cos (£g) -V = ~~3 " 3z , _ 3 *• , ,nwa^ J 2b ir u n=l,3... n ch(—ST-) 

gc,9pir,2 2 2^f£Hb*-y ) (30) 
y 

and for the volumetric flux, Q, as 

3 
4 a b g c r 3p. fl 192b ™ r l , , fni\3i,lX r , - , ^ 

_ ( ^ ) { 1 - — _ £ [ —tanhC-^) ]} (31) 
H TT a n= 1, 3. . . n 

or 

3K A a b g ~ 
Q = - | n-S-cf^F • (32) 

Cornish considered a conduit of width 2a and depth 2b and he 

located the origin of his coordinates at the axis of the 

conduit, with the x-axis horizontal, the y~axis vertical, 

and the flow in the z-direction. 

The volumetric flow rates, Q,, and Q«, are obtained 
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o +a 
QT E / / v..dxdy 1 -b. -a l 

1 

(33) 

and 

2 +a 
Q9 E / / v.dxdy 

1 ° -a Z 
(34) 

Substitution for v1 and v? from equation (25) into equations 

(33) and (34), respectively, gives 

Ql * ^^P"" Z (yI|T)
5[A|(n)(l-ch(nb1))+B'(n)sh(nb1)] 

ir i-o 

3kia bl 
(35) 

and 

Q2 = ^T~ E C^Tl) 5f A2 ( l l )^ c h ( n b2 )" 1 ) + B2 ( n ) s h [ l l b2 ) ] 

¥ i = o 

-̂ •k̂ a b« (36) 

with A'(n), A'(n), B'(n), and B'(n) given by equations (26) 

through (29). 
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Expressions have been derived in open form for the 

velocity distribution and the volumetric flow rates for the 

stratified, laminar flow of two immiscible fluids in a 

closed rectangular conduit. It is seen from the analysis 

that the velocity distribution and flow rates can, there

fore, be calculated from a knowledge of the physical dimen

sions of the conduit, the fluid properties, the pressure 

gradient, and the position of the interface. 
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APPENDIX B 

SEPARATED FLOW IN THE LAMINAR REGIME 

THROUGH A HORIZONTAL, CIRCULAR PIPE* [22] 

The system for the separated flow of two immiscible 

fluids with a flat interface is shown in Figure 8. Fluid 1 

forms the upper layer and has a density less than that of 

fluid 2. The flow is also assumed to be isothermal, fully 

developed, with incompressible, Newtonian fluids of constant 

viscosities flowing in a constant cross-sectional pipe. 

The basic differential equation governing this type of flow 

has the same form in both phases; thus, for phase 1 and phase 

2, respectively, in rectangular Cartesian coordinates, it 

becomes 

9 v., 3 v, 2k„ 
i . i _ i ( 1 ) 

+ 
ix 8y2 H 

and 

32v? 9 v7 2k7 
5- + i = — ^ . (2) 

dx£ 3y P2 

* 

It was discovered while examining the original work 
that many typographical errors were present in the equations. 
The author, together with his advisor, Dr. Novak Zuber, trans 
lated and verified their analysis, and corrected the 
expressions containing the errors. Their analysis with 
corrected equations is presented in this Appendix for refer
ence . 
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The quantities k„ and k0 are defined as 
1 2 

kl E l(||"«PlcosY) W 

and 

k2 = -2^~^2COSy^ ( 4 ) 

where the angle y is the pipe inclination angle as measured 

from the vertical axis. Hence, for horizontal flow, 

IT 

(Y = y)? the effects due to gravity forces on the flow are 

z e r o. 

Since the rectangular coordinate system is not a very 

convenient system to use with this type of flow system 

geometry, equations (1) and (2) are transformed to the bi

polar coordinate system, (e,0). Referring to Figure 8, 

the bi-polar coordinate e is defined to be e = ln(r-./r2), 

and thus, (x,y) can be expressed in terms of (e,0) as 

a sh(e) = a sin9 {J.^ 
x ch(e)+cos0* y ch(e)+cos0 * l j 

Using these relationships in equation (5), for example: 

r££) (*L) - rlZ) ( ^ 
3v =

 l 3 6 J l 3 e J K d e J l d Q J 

3x r9x. (9y. _ r 9x ^y. > (6) 
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, 3x. JVx r3Xv ,3Vv 
3v _ t̂ -) (59) - % ) % ) 
3y r̂ îriZi-r̂ ir̂ i ' (IF W W l373 

equations (1) and (2) can be expressed in terms of (e,0) as 

32v1 92v1 2k1a
2 

3e2 392 u1[ch(e)+cos93
2 

(8) 

and 

? 2 2 
9^v. 3 vn 2kn& 

2 2 _ 2 3e 39 p2[ch(e)+cose]
2 

(9) 

The solutions to equations (8) and (9) yield the 

local velocity distribution for each phase, respectively. 

Thus, one obtains 

k i a rr r ^ . 2 C 0 S 9 
V e > e ) = " T^M£>0) + chtoicoseJ (10) 

and 

2 

V £ > Q > " " ^ 7 ^ 2 ^ 1 6 > + ch (0+cos 9 l C 1 1 ) 
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2 2 
-k,a''cosG -k?a cos0 

where the terms — r « , s . ^ and 
y,[ch(e)+cos0] y2[ch(e)+cos0] 

are the particular solutions to equations (8) and (9) , 

respectively, and the functions' £. (e ,0) and £o(c,0) are 
i z 

the complementary solutions to the following set of homo

geneous equations: 

2 2 

i- + i- E 0 (12) 
de 80 

and 

2 2 
3 €7 3 % 

1 + 1 = 0 . (13) 
3e 30Z 

The functions £.. and £? can be expressed in terms of 

Fourier Integrals as 

oo 

£-(£,0) = / {A1(m)sh[m(0-01)]+B1(m)sh(m0)}cos(me)dm (14) 
JL o -L XI 

and 

?2(e10) = / {A2(m)sh[m(0-02)]+B2(m)sh(m0)}cos(m£)dm (15) 

where A1, B1, A?, and B? are functions of m and are evaluated 

from the following four boundary conditions: 
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(i) on the boundary wetted by phase 1, the velocity 
of phase 1 must be zero; v,(e,9) = 0 ; 

(ii) on the boundary (0 = 0~ = constant) wetted by 
phase 2, the velocity of phase 2 must be zero; 
v2(e,G) = 0; 

(iii) on the interface (0 = 0), there must be 
equality of velocities; thus, v.,(e,0) = v»(e,0); 

(iv) on the interface, there must also be equality 
of shear stress; thus, Bv.. 3v2 

yl%)He=0 = U2%jT^0=O 

Applying the first two boundary conditions to equations 

(10) and (11) and (14) and (15), one can obtain 

oo 2COS0-. 

/ B̂  (m)sh(m0- )cos (me)dm = - • U r VJ.— w (16) 
r ^ v 1 J K J ch(e)+cos02 

and 

00 2cos0? 
/ B2(m)sh(me2)cos(me)dm = - zh{c)+cosQ^ (17) 

where the right hand side (RHS) of equations (16) and (17), 

respectively, can be expressed as 

2co5 0-, °° sh(m0,)cos(me)dm 

ch(e)+cos9.
 = • 4 c t S Q l / sKfiiFj (18) 

I 

and 

2cos0« °° sh (m0o)cos (me) dm 

c h ( e ) + c o s 0 = ~ 4 c t S 0 2 / sh(mir) • ( 1 9 3 
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Substituting equations (18) and (19) into equations (16) and 

(17), respectively, one obtains 

00 °° sh(m01 )cos (me) dm 
J B1(ra)sh(mei)cos(me)dm = - Actg^J sh(m7r) (2 

and 

00 °° sh(m0?) cos (me) dm 
/ B0 (m)sh(m0o)cos(me)dm = - 4ctg0~ / -^4 c-—• (2 

2 J 2 • J & 2 0 sh(m,TTj v 

and from equations (20) and (21), the functions B-. (m) and 

B~(m) are determined to be 

4ctg91 

and 

4ctg02 

B2(ffl) = " sh(mir) • C2 

From the third boundary condition requiring equality 

of velocities on the interface, one can obtain 

]£ oo 

U^I+cKTeT " </ AiWshCmej^jcosCmejdjn] 

k o °° 
i r [ l + c h ( £ ) " </ A 2 (m)sh (me 2 ) cos (me)dm] . (2 



Rew r i t i n g t h e f i r s t t e nn i ns i de t he h r a c k c t s on t he Li IS o 1" 

cciuat.i on f 24") ns 

! +r' l C h ( ••. 1 

. . m cos i Rir: } . 
4 ; —., . .—-dm 

o s i nm- i - : " > 

and subs t i tut i.ng the K1LS of equation t 2 5 j back into equation 

( 2 1 ) » one c;in obt a i n t he f o 1 1 ow i n g : 

k 
1 , 

— * j C O S I III 

M ° 

4l! 
) \ 7 J ~ : : Y - Airm1syiCm--1)JJi!. 

Til " " ) 1 

—"-•• / cos (':;r: ) [-^4 A n ("m')sh i'J'1- ? ) Jibi] ( 2 fO 

T h u s , from e q u a t i o n l2(Sj, t h e f o l l o w i n g r e l a t i o n s h i p between 

A.(nij and A ? fmj becomes 

k l f 4m 
u j kshiJirr')" 

A, im') shl'm^,) ] 
K 2 , 4m 
\i\ sh (inn ) 

A-jfrclshOnCMl . i 

To explicitly solve for A. (in) and A^('ml, one must apply the 

remaining boundary condition requiring equality of shear 

stress on the interface \ thus, transforming this boundary 

condition from rectangular -artesian coordinates to the 

bi-polar coordinates resuits in 



3v. 3v. 
U1^0-O = ^ H S ^ O = ° C28> 

where from equation (5) it is seen that 

(—} = o rAZi = i r?Q"> 
l99 J9=0 > L39'Q=0 " v-"' 

Performing the partial differentiation indicated in 

equation (28) on equations (10) and (11) and evaluating 

at the interface, one finds that 

and 

2 
3 v , a k., oc,1 

r r ^ = _ t_r £-* f\\\\ 
• 1 L 3 9 J 3 = 0 2 L 3 9 J 3 = 0 v- J 

9 
d v 2 a K 9 VL,? 

" 2 ^ 3 0 ^ 0 = 0 = " ~2 ^~90"'0=O ' ^ 1 ) 

Now, substituting equations (30) and (31) into equation (28j 

yields 

\K 33J3=0 2V 33J9=0 ' 

Similarly, performing the partial differentiation 

indicated in equation (32) on the functions £- and i? 

defined in equations (14) and (15), respectively, and then 
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evaluating at the interface, one can obtain 

H i °° 
(~~30")e~O = $ [A. (m)ch(m01)+B1 (m) ]mcos (me)dm (33) 

and 

9 £ 9 °° 
(—^-)Q=0 = I [A2(m)ch(ni92)+B2(m) ]mcos (me)dm . (34) 

Substituting for the integrals involving B1(m) and B?(m) 

from equations (20) and (21), respectively, into equations 

(33) and (34), and then substituting this result into 

equation (32), one gets 

M A l W c h ( * l ' - i¥C=T] = k2[A2(m)ch(m92) - ̂ Lfi] . (35) 

By so lv ing equa t ions (27) and (35) s imu l t aneous ly , 

the fol lowing expres s ions for the c o e f f i c i e n t s A1(m) and 

A2(m) a re ob ta ined : 

fl mch(m97) ( p 9 - k 9 ) - c t g 9 9 s h ( m e 9 ) ( l - £ 9 ) 
A., (m) = - r | yl —i ± i —L —±-. JLJ\ (36) 

i sntimrj ( i - p )sh[m(iT-2G2)]-(l+u )sh(mw) 

and 

Q mch(m0-) (k1.-{i ) -c tg0 9 sh(mG,) (1L -1) 
A (m) = ®—T[ i — - — i ] . (37) 

l sncmirj ( ^ - i ) sfi [m(iT-292) ] - ( l+p 1 ) sh (mir) 



where, for convenience, one can define 

yl • _ u2 
Ui " u7' d2 " y^ 

and 

kl • k2 
kl - FT' k2 " k7' (''i5) 

Notice for horizontal flow that k.. = k9 = 1.0. 

Substituting for A, (m) , A-, (m) , 3, (m) , and B0 (in) fro.n 
1 L, 1 ill 

equations (36), (37), (20), and (21), respectively, the 

local velocity distribution for phase 1 and. phase 2 can be-

express ed as 

a2k1 sin(S9-e) 
v, (e,3) = - — — { -U1 [chCe)+cosO]sin02 

-[mch(m89) (u0-kJ-ctgQ sh(m99) (l-^?)]cos(mc)sh[m(K-:.:01din 
4 / 1 1 ± e_ ± 

f(l-p2)sh[m(T7-202JJ-(lni2)sh(j;iTTj]sh(:ii;Tj 

and 

a2k9 sin(09-e) 
v0(e,3) = - -1 r , ,- ••- -—-,—=—— 

2K ' J u? [ch(.cj+cos0]sin'o7 

m; 
° ° [ m c h ( m e ) ( k , - u , ) - c t g Q , s h ( m 0 1 ) (k.. - 1 ) ] c o s (HIE) shj>(..•;•-•;•.,} jvin 

4 r 1 1 1 ± ± ± ! L_ _r_' 
[ ( M 1 - l ) s h [ m ( T r - 2 0 2 ) ] - ( l + u1)shrm7y)]sh(TT]7 ( ; ] 
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Equations (40) and (41) are valid for all |©|<TT. 

From the local velocity distributions defined in 

equations (40) and (41), one can derive the volumetric 

fluxes for each phase by integrating over an elementary 

area. The elementary area in bi-polar coordinates is defined 

as 

dA E (d£)n (d£) (42) 
C 0 £ 

where (d£)„ and (dit) can be written in terms of (x,y) and 

(e,0) as 

C«HDe - [ ( | f ) 2 * C|f)2]1/2d£ (43) 

and 

(<H)E = [(f§)2 + ( | | ) 2 ] 1 / 2 d 0 . (44) 

Thus, subs t i tu t ing for the elementary, dA , from 
c 

equation (42) and performing the indicated differentiation 

in equations (43) and (44) , one obtains Q.. and Q? as 

7 o °° v-, (0,e) de 
Q = a^ / d0 / — - — ; — (45) 
1 0, • -°° [ch(e)+cos0] * 
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7 2 «> v7(0,e)de 
Q ? = a z •/ dG •/ = .• (46) 

-co [ch(£)+cos9]z 

After substituting for the local velocity distributions 

defined in equations (40) and (41), one obtains the followin; 

expressions: 

a 4 k . e i °° , p 

Q = _ A { / cosOdG / a e 
1 P l ° -» [ c h ( £ ) + c o s e ] 2 

DO W 

- c t g 9 1 I sinGdG / -. j + (47) 
0 -oo [ch (e) +cos0] 

00 CO CO 

•+ i • ' / A1(m)dm / s h [ m ( 0 - e , ) ] d 0 / — c o s ( m g ) d £ 
z ° L ° -1 -oo [ch(e - )+cose] 

and 

4 Q 
a kJ 2 °° He 

Q7 * - — ^ { / cosGdG / a e 
2 u 2 ° -oo [ c h ( e ) + c o s 9 ] 2 

0 ~ • • 

2 °° j 
c t g 0 ? / sinGdG / —• =^— ~ + (48) 

° -« [ c h ( e ) + c o s G ] 6 

+ I j A 2 W d m o / s h [ m ( 0 - e 2 ) ] d e / t c ^ | S ^ ^ | ] } 
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Now, integrating equations (47) and (48) with respect 

to the variable e gives 

4 

Q1 = — - i { / 1 [ 0 C 3 - 2 s i n 2 e ) - 3 s i n e c o s 0 ] ^ i | _ d 0 -
1 ul o s i n 9 

e1 

- ctgG.. / [ 0 ( 3 - 2 s i n 2 0 ) - 3 s i n 0 c o s 0 ] — ^ 2 - + (49) 
1 o • 4 A 

s i n 0 

«> A1 (m) G l shfmCG-O.)] 
+ TT f -4-r-r^-dm f ~ — = — [ m c h ( m 0 ) s i n 0 - s h ( m 0 ) c o s 9 ] d 0 } 

o sn^mTTj o s i n 0 

and 

a 4 k 0 2 
Q7 = - — ~ { f [ G ( 3 - 2 s i n 2 9 ) - 5 s i n 9 c o s 9 3 C Q 5 0 d0 

4 p 2 o s in 5 © 

8 2 
-. c t g 0 £ / [ 9 ( 5 - 2 s i n 2 e - 3 s i n e c o s 0 3 d e

4 + (50) 
o s i n 0 

oo A2(m)dm 0 2 s h [ m ( G - 0 2 ) ] 
+ T$ f I w / m \ / — ^ — - — [ m c h ( m 0 ) s i n 0 - s h ( m 0 ) c o s 0 ] d 0 } 

sntmirj-o s i n 3 G 

Integrating these equations with respect to the variable 0 

yields the following expressions for the volumetric fluxes, 

'Q', and Q~, respectively, as 
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a 4 k. -, 0, f l - 3 c t g 2 0 1 ) 

•1 i-h l 4 l • 2n 

• 1 s i n 0 , 

+ ctgG1(l+3ctg
Z91)J -

ctgG1 

sin 0 
2^-Cl-GjCtge^) + ̂ ctgOj + (51) 

and 

00 A-, (m) J 
+ 2Q

f i R i i j [ m s h ^ Q i ) c t g 0 r m c h ( m 0 i ) ] d m } 

a4k.? 1 G ? ( l - 3 c t g G?) ? 

{^.[-i—^ £_ + c t g e 2 f i + 3 c t g z 0 2 ) ] 
u s i n 0. 

ctgG , 
.—T±-(i-e2ctge2) + ic t g e ? + 
s i n G-

2 
00 A« (11) 

+ 2 0
J i H I ^ y [ m s h C m e 2 J c t g e 2 - m - ' c h ( H i e 2 ) ] d m } 

(52) 

From Figure 8, one can write 

a = RsinG (53) 

and substituting for k-]i and k~ from equations (3) and (4) 

into equations (51) and (52), respectively, one can express 

the volumetric fluxes, Q1 and Q2,
 as 
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Q'n = - o — {:r7 " ^pcosylF-. xl 8 p., dx .1 ' 1 (54) 

and 

«2 " - W~2
 { ^ ' 8P2cosy}F2 

(55) 

where the functions F1 and F« are expressed as follows: 

and 

F, = - — [9-. -i{3 + 2sin' 9~}sin20o] -2sin Q~ x 

00 ' mA-j (m) 
x / •[ c tgO, sh f mQ 1) - mch (m01 ) ] -T-T—v-dm 1 & 1 v l J K 1 ; J sh(mTr) 

(56) 

F 2 ~ i [ l ( 3 2 - ^ { ^ + 2 s i n 2 e 2 } s i n 2 0 2 + 2 s i n 4 0 2 x 

mA0(m) 
x / T c t g G 2 s h C m 0 2 ) - m c h ( m 9 2 ) ] i ^ ^ y dm 

( 5 7 ) 

From the system geometry, the ratio of the area 

occupied by phase 1 to the total area of the pipe and the 

ratio of the area occupied by phase 2 to the total area of 

the pipe can be written as 



8 3 

A 
_ 1 E (l-«) = - ̂ ¥ [ 2 0 1 - s i n 2 0 1 ] • • ' '(58, 

and 

A 
^- = a - ^[202-5^2021 (59) 

Consider the following special cases 

(i) When a = 0, 0-, = - TT , Q' - 0; then 

F1 = 1.0, F2 = 0 (60) 

(ii) When a = 1, 01 = 0, G2 = TT ; th en 

F1 - 0, F2 = 1.0 (61) 

(iii) When a -.0.5, 0, = ©2 = - TT/2; then 

-. 32(fc9-ij7) - m 3ch 2(S^)dm 
C F . ) _ * i[l + l l f . ,-i- ] (62) 

1 -a*. 5 l+£u ° sli (mrr) 

and 

7 O yf,,_ 

-j 32(k9-vu) °° m ch (— )dm 
(F?)_ - i[l 1—£- / ~_^_i ] . (63) 
* a=.5 l k 2(l + y 2) ° s!i (mm) 
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Evaluating the integral terms in equations (62) and 

(63), one obtains 

and 

f k. - u 1 2 
(F1)_ • |[1 *."2/2 (i^-U (64) 

a=.. 5 1 + VU ^ 

1 (tc?-£u) -, ,_ 2 
(F7)__ = i[l - Z Z [M^L.)] . (65) 

a*.5 z £~(l+p9) * 

Therefore^ when the flow is horizontal (k, = ' &«' - . 1. 0) ,. one 

gets the following result which is valid for all viscosity 

ratios , y • 

(F1)_ + (F2)__ = 1 (66) 
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