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SUMMARY

While Artificial Intelligence (AI) has tremendous potential as a defense against real-

world cybersecurity threats, understanding the capabilities and robustness of AI remains a

fundamental challenge. This dissertation tackles problems essential to successful deployment

of AI in security settings and is comprised of the following three interrelated research thrusts.

(1) Adversarial Attack and Defense of Deep Neural Networks: We discover vulner-

abilities of deep neural networks in real-world settings and the countermeasures to mitigate

the threat. We develop ShapeShifter, the first targeted physical adversarial attack that fools

state-of-the-art object detectors. For defenses, we develop SHIELD, an efficient defense

leveraging stochastic image compression, and UnMask, a knowledge-based adversarial

detection and defense framework.

(2) Theoretically-Principled Defense via Game Theory and ML: We develop new

theories that guide defense resources allocation to guard against unexpected attacks and

catastrophic events, using a novel online decision-making framework that compels players

to employ “diversified” mixed strategies. Furthermore, by leveraging the deep connection

between game theory and boosting, we develop a communication-efficient distributed

boosting algorithm with strong theoretical guarantees in the agnostic learning setting.

(3) Using AI to Protect Enterprise and Society: We show how AI can be used in real

enterprise environment with a novel framework called Virtual Product that predicts potential

enterprise cyber threats. Beyond cybersecurity, we also develop the Firebird framework to

help municipal fire departments prioritize fire inspections.

Our work has made multiple important contributions to both theory and practice: our

distributed boosting algorithm solved an open problem of distributed learning; ShaperShifter

motivated a new DARPA program (GARD); Virtual Product led to two patents; and Firebird

was highlighted by National Fire Protection Association as a best practice for using data to

inform fire inspections.
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CHAPTER 1

INTRODUCTION

Internet-connected devices, such as mobile phones and smart home systems, have become

ubiquitous in our everyday lives. The increased connectivity also presents new cybersecurity

challenges and creates significant national risks. The number of cyber incidents on federal

systems reported to the U.S. Department oF Homeland Security increased more than ten-fold

between 2006 and 2015 [1].

To defend against these daunting and ever-increasing attacks, artificial intelligence (AI)

and machine learning (ML) have been explored and employed by cybersecurity researchers

and practitioners. However, even today, researchers have not yet fully understood the

complex ML models and their capabilities in solving various real-world tasks. The goal

of this thesis is to gain a deeper understanding of the capabilities and limitations of AI

in security-critical tasks, so that we can develop resilient AI-powered next-generation

cybersecurity defenses.

1.1 Thesis Overview and Main Ideas

Many cybersecurity scenarios can be modeled as a

game between the defender and the attacker. To de-

sign the best security solution, we need to fully un-

derstand the capabilities and limitations from both the

defense and attack point of views, and how they in-

teract with each other. Recent advances in AI provide

great opportunities to fortify security-critical applications. However, AI may also pose new

threats and challenges. To solve these challenges, my research innovates at the intersection

of AI, cybersecurity, and algorithmic game theory. My thesis includes three parts of research,

1



spanning the theory and application parts of cybersecurity. I make contributions to both the

defensive and attacking sides of cybersecurity. Table 1.1 provides a brief overview of my

dissertation.

Table 1.1: Thesis outline, and publications contributing to each part.

Part I: Adversarial Attack and Defense of Deep Neural Networks (Chapter 3, 4, 5)
§ ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object Detector.

Shang-Tse Chen, Cory Cornelius, Jason Martin, Duen Horng Chau. In Proceedings of the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD), 2018.

§ Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression.
Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred Hohman, Siwei Li, Li Chen, Michael
E. Kounavis, Duen Horng Chau. In Proceedings of the ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD), 2018.

§ Extracting Knowledge For Adversarial Detection and Defense in Deep Learning.
Scott Freitas, Shang-Tse Chen, Duen Horng Chau. In KDD 2019 Workshop on Learning and Mining
for Cybersecurity (LEMINCS), 2019.

Part II: Theoretically-Principled Defense via Game Theory and ML (Chapter 6, 7)
§ Diversified Strategies for Mitigating Adversarial Attacks in Multiagent Systems.

Maria-Florina Balcan, Avrim Blum, Shang-Tse Chen. In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2018.

§ Communication Efficient Distributed Agnostic Boosting.
Shang-Tse Chen, Maria-Florina Balcan, Duen Horng Chau. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), 2016.

Part IV: Applying AI to Protect Enterprise and Society (Chapter 8, 9)
§ Predicting Cyber Threats with Virtual Security Products.

Shang-Tse Chen, Yufei Han, Duen Horng Chau, Christopher Gates, Michael Hart, Kevin Roundy. In
Proceedings of the Annual Computer Security Applications Conference (ACSAC), 2017.

§ Firebird: Predicting Fire Risk and Prioritizing Fire Inspections in Atlanta.
Michael Madaio, Shang-Tse Chen, Oliver Haimson, Wenwen Zhang, Xiang Cheng, Matthew Hinds-
Aldrich, Duen Horng Chau, and Bistra Dilkina. In Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD), 2016.
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Figure 1.1: My work on physical adversarial attack discovers a serious vulnerability of
DNNs in a more realistic threat model where the attacker does not need to have control over
the internal computer vision system pipeline. The crafted physical adversarial objects (e.g.,
fake stop signs) can fool the state-of-the-art object detectors.

1.1.1 Part I: Adversarial Attack and Defense of Deep Neural Networks

Recent advances in deep neural networks (DNNs) have generated much optimism about

deploying AI in safety-critical applications, such as self-driving cars. However, it has

recently been discovered that given the ability to directly manipulate image pixels in the

digital input space, an adversary can easily generate imperceptible perturbations to fool a

DNN image classifier [2].

Although many adversarial attack algorithms have been proposed [3, 4], attacking

a real-world computer vision system is difficult, because attackers usually do not have

the ability to directly manipulate data inside such systems (Figure 1.1). To understand

the vulnerabilities of DNN-based computer vision systems, I collaborated with Intel and

developed ShapeShifter [5], the first targeted physical adversarial attack on the state-

of-the-art Faster R-CNN object detectors.

Attacking an object detector is more difficult than attacking an image classifier, as the

attack needs to mislead the classifications of multiple bounding boxes at different scales.

Extending a digital attack to the physical world adds another layer of difficulty; this requires

the perturbation to be sufficiently robust to survive real-world distortions due to different
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Figure 1.2: Snapshots of a drive-by test result. The real stop sign is correctly predicted by
Faster R-CNN with high confidence. The adversarial stop sign crafted by ShapeShifter is
detected as the target class “person.”

viewing distances and angles, lighting conditions, and camera limitations.

ShapeShifter generates adversarial stop signs that were consistently mis-detected by

Faster R-CNN as the target objects in real drive-by tests (Figure 1.2), posing a potential

threat to autonomous vehicles and other safety-critical computer vision systems. Our code

is open-sourced and the drive-by test videos are publicly available1. ShapeShifter was

highlighted as the state-of-the-art physical adversarial attack in the recent DARPA

program “Guaranteeing AI Robustness against Deception” (GARD) that focuses on

defending against such kind of attacks.

there have been many attempts to mitigate the threat.

Although there have been many attempts to mitigate adversarial attacks, completely

protecting a DNN model from adversarial attacks remains an open problem. Most methods

suffer from significant computational overhead or sacrifice accuracy on benign data. In

collaboration with Intel, we developed SHIELD [6], a practical defense leveraging stochastic

compression that removes adversarial perturbations. SHIELD makes multiple positive

impacts on Intel’s research and product development plans. Utilizing Intel’s Quick Sync

Video (QSV) technology with dedicated hardware for high-speed video processing, we

pave the way for real-time defense in safety-critical applications, such as autonomous

vehicles. Our research sparked insightful discussion at Intel about secure deep learning

that necessitates tight integration of practical defense strategies, software platforms, and

1https://github.com/shangtse/robust-physical-attack
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Figure 1.3: UnMask combats adversarial attacks (in red) by extracting building-block
knowledge (e.g., wheel) from the image (top, in green), and comparing them to expected
features of the classification (“Bird” at bottom) from the unprotected model. Low feature
overlap signals attack. UnMask rectifies misclassification using the image’s extracted
features. Our approach detects 92.9% of gray-box attacks (at 9.67% false positive rate) and
defends the model by correctly classifying up to 92.24% of adversarial images crafted by
the strongest attack, Projected Gradient Descent.

hardware accelerators. Our work will accelerate the industry’s emphasis on this important

topic. Both ShapeShifter and SHIELD have been incorporated into MLsploit [7], an open-

sourced ML evaluation and fortification framework designed for education and research.

These two works are also part of the Intel AI Academy course.

Shield is best suited for defending against imperceptible perturbations. To defend against

ShapeShifter-style attacks, we developed UnMask, a knowledge-based adversarial detection

and defense framework. UnMask protects models by verifying that an image’s predicted

class (e.g., “bird”) contains the expected building blocks (e.g., beak, wings, eyes). For

example, if an image is classified as “bird”, but the extracted building blocks are wheel,

seat and frame, the model may be under attack. When UnMask detects such attacks, it

can rectify the misclassification by re-classifying the image based on its extracted building

blocks (Figure 1.3).
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Figure 1.4: For ε ∈ [ 1
n
, 1], we define a probability distribution P to be ε-diversified if

P (i) ≤ 1
εn

for all i. A distribution can be diversified through a Bregman projection onto the
set of all ε-diversified distributions. A mixed strategy determined by a diversified distribution
is called a diversified (mixed) strategy. We explore properties of such diversified strategies
in both zero-sum and general-sum games as well as give algorithmic guarantees.

1.1.2 Part II: Theoretically-Principled Defense via Game Theory and ML

Defense resource allocation is a well-known and critical task in security. For example, a

company that wants to implement security controls with a limited budget needs to make

trade-offs in its deployment. I modeled this problem as a two-player zero-sum game between

a defender and an attacker, and introduced a novel solution concept called diversified mixed

strategy [8].

Inspired by the proverb “don’t put all your eggs in one basket,” my new solution concept

compels players to employ a “diversified” strategy that does not place too much weight

on any one action. I systematically studied properties of diversified strategies in multiple

games, and designed efficient algorithms that asymptotically achieve the optimum reward

within the family of diversified strategies. As a result, these algorithms limit the exposure to

adversarial or catastrophic events while still performing successfully in typical cases.

Leveraging the deep connection between game theory, online learning, and boosting, I

proved that the proposed diversified strategy concept can also be used to help learn robust

and efficient ML models. Specifically, I solved an open problem listed in [9] by developing

a boosting-based approach [10] in one of the hardest and most general settings in distributed
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Figure 1.5: Our distributed SmoothBoost algorithm. In each iteration, (1) each machine
samples its own data based on the current data distribution and sends it to the Center;
(2) Center trains an ML model by using some weak learning algorithm and broadcasts
the trained model to all the machines; (3) each machine updates its data distribution (i.e.,
example weights) based on received model, and performs distributed Bregman projection to
ensure the distribution is diversified. All the weak models are combined at the end to obtain
a strong model.

learning, where data is adversarially partitioned and distributed across multiple locations,

and can have arbitrary forms of noise (Figure 1.5). Succinctly, since boosting algorithms

tend to place too much weight on outliers, we can project the weights back to the set of

diversified distributions at the end of each boosting iteration. Our algorithm is simultaneously

noise tolerant, communication efficient, and computationally efficient. This is a significant

improvement over prior works that either were only communication efficient in noise-free

scenarios or were computationally prohibitive. Our distributed boosting algorithm is not

only theoretically principled but also demonstrates excellent accuracy on real-world datasets.

1.1.3 Part III: Applying AI to Protect Enterprise and Society

Part I and II provide theories, algorithms, and insight of the capabilities and limitations

of AI. But how can we put AI into practice and utilize it to provide solutions that solve

real enterprise security problems and create positive societal impacts? In collaboration
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Figure 1.6: Virtual Product helps our user Sam discover and understand cyber-threats, and
informs deployment decisions (e.g., add firewall?) through semi-supervised non-negative
matrix factorization on telemetry data from other users (with firewalls deployed). In the data
matrix, each row represents a machine-day, and each column a security event’s occurrences.
Missing events from undeployed products are shown as gray blocks. The last column
indicates whether the firewall has detected an incident. Our virtual firewall serves as a proxy
to the actual firewall and predicts the occurrence of security events and incidents Sam might
observe (dark green block) if he deploys the firewall.

with Symantec, we develop the patented Virtual Product framework, the first method to

predict security events and high-severity incidents that would have been identified by a

security product if it had been deployed. This is made possible by learning from the vast

amounts of telemetry data produced by the prevalent defense-in-depth approach to computer

security, wherein multiple security products are deployed alongside each other, producing

highly correlated alert data. By studying this data, we are able to accurately predict which

security alerts a product would have triggered in a particular situation, even though it was

not deployed. See Figure 1.6 for the overview of our approach.

Beyond cybersecurity, I further explored novel applications of AI in various domains that

create positive societal impacts. In collaboration with the Atlanta Fire Rescue Department,
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Figure 1.7: Firebird Framework Overview. By combining 8 datasets, Firebird identifies
new commercial properties for fire inspections. Its fire risk predictive models (SVM, random
forest) and interactive map help AFRD prioritize fire inspections and personnel allocation.

we developed the Firebird framework [11] (Figure 1.7) that helps municipal fire departments

identify and prioritize commercial property fire inspections. Firebird computes fire risk

scores for over 5, 000 buildings in Atlanta, and correctly predicts 71% of fires. Firebird won

the Best Student Paper Award Runner-up at KDD 2016 and was highlighted by National

Fire Protection Association as a best practice for using data to inform fire inspections.

1.2 Thesis Statement

Uniquely combining techniques from AI, cybersecurity, and algorithmic game theory,

enables the development of next-generation strong cybersecurity defenses, contributing to:

1. New theory that guide defense resources allocation to guard against surprise attacks

and catastrophic events;

2. New scalable and robust machine learning algorithms for a variety of threat models;

3. New application of AI on predicting enterprise cyber threats and prioritizing fire

inspections.
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1.3 Research Contributions

The goal of this thesis is to develop robust AI, and apply AI to solve security-critical and

high-stakes problems. Our research contributes in multiple facets of AI and cybersecurity.

New Algorithms:

• Our ShapeShifter attack is the first robust targeted attack that can fool a state-of-the-art

Faster R-CNN object detector. (Chapter 3)

• Our SHIELD defense combines image compression and randomization to protect

neural networks from adversarial attacks in real-time. (Chapter 4)

• Our distributed boosting algorithm is simultaneously noise tolerant, communication

efficient, and computationally efficient. (Chapter 7)

New Theories:

• We introduce a new online decision-making setting in game theory where players

are compelled to play “diversified” strategies, and give strong guarantees on both the

price of anarchy and the social welfare in this setting. (Chapter 6)

• Our distributed boosting algorithm requires exponentially less communication com-

plexity in the agnostic setting, solving an open problem in distributed learning [9].

(Chapter 7)

New Applications:

• Our Virtual Product framework (Chapter 8) is the first method to predict security

events and high-severity incidents identifiable by a security product as if it had been

deployed.

• Our Firebird framework (Chapter 9) computes fire risk scores for over 5, 000 buildings

in the city, with true positive rates of up to 71% in predicting fires.
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1.4 Impact

This thesis work has made significant impact to society:

• My thesis ideas in developing theoretically principled, practical techniques to defend

ML-based systems directly contributed to two funded competitive grant awards:

– Our theory-guided decision making framework (Chapter 6) laid the foundation of

the $1.2M medium NSF grant Understanding and Fortifying Machine Learning

Based Security Analytics (NSF CNS 1704701);

– ShapeShifter and SHIELD (Chapter 3) were two highlights of the $1.5M In-

tel “gift” grant for Intel Science & Technology Center for Adversary-Resilient

Security Analytics (ISTC-ARSA);

• Our ShapeShifter attack, developed with Intel, reveals serious vulnerabilities for

autonomous vehicles that use pure vision-based input, and was highlighted as the state-

of-the-art physical adversarial attack in the recent DARPA program “Guaranteeing

AI Robustness against Deception” (GARD). Our work appeared in the media 2 and

is open-sourced at https://github.com/shangtse/robust-physical-

attack.

• ShapeShifter and SHIELD have been integrated into the Intel AI Academy course.

• Our Virtual Product framework, developed with Symantec, has led to two patents.

• Our Firebird project is open-sourced3 and has been used by the Atlanta Fire Rescue

Department to prioritize fire inspections. Firebird won the Best Student Paper Award

Runner-up at KDD 2016 and was highlighted by National Fire Protection Association

as a best practice for using data to inform fire inspections.
2https://techhq.com/2018/10/study-reveals-new-vulnerability-in-self-

driving-cars/
3http://firebird.gatech.edu
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• My thesis research on AI-infused security has been recognized by the 2018 IBM PhD

Fellowship.
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CHAPTER 2

SURVEY

Our survey focuses on two important areas of research related to this thesis: security of ML

and applications of ML in cybersecurity.

2.1 Security of Machine Learning

We briefly survey robust machine learning algorithms under various threat models.

Random Classification Noise. This is one of the most basic threat models studied in

classic learning theory [12]. In this setting, the training and testing data come from the same

fixed but unknown distribution. However, the label of each training example presented to the

learning algorithm is randomly flipped with probability 0 ≤ η < 1/2. Here we only consider

the binary classification case, and η is a parameter called the classification error rate. It is

known that if a training algorithm is in the family of Statistical query (SQ) learning, it can

be converted into a noise-tolerant algorithm in the random classification noise setting [13].

Malicious Noise. This setting is similar to the random classification noise model, where

η fraction of the training examples are changed by the adversary. The only difference is

that the adversary can arbitrarily change not only the label but also the features of the

training examples, making it a notoriously difficult setting [14]. It has been proved that it is

information-theoretically impossible to learn to accuracy 1− ε if η > ε/(1 + ε) [15]. Most

of the positive results require strong assumptions on the underlying data distribution or the

target function [16, 17]. For learning linear separators, the current state-of-the-art method is

developed by Awasthi et al. [18].
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Agnostic Learning. This is the setting that we will study in Chapter 7. In the two

aforementioned settings, with probability 1− η the examples are labeled by an unknown

target function from a known hypothesis set. For example, in the case of learning a linear

classifier, 1− η fraction of the examples are linearly separable, and the remaining examples

are contaminated by random classification noise or malicious noise, respectively. In contrast,

in the agnostic learning setting, we do not make any assumptions on the data distribution nor

the target function [19]. Since the target function may not be from the hypothesis set that

the training algorithm uses, the goal is to achieve accuracy as close to the best hypothesis in

our hypothesis set as possible.

Adversarial Machine Learning. This line of research was first studied by cybersecurity

researchers in applications such as spam filtering [20], network intrusion detection [21],

and malware detection [22]. Depending on the stage at which an attacker can manipulate

data, adversarial attacks can be further categorized into causative attacks and exploratory

attacks [23].

Causative attack, also known as poisoning attack, refers to the setting where the attacker

can manipulate the training data in order to decrease the accuracy on all or a subset of

the test examples. For example, the attacker can add backdoors to a maliciously trained

traffic sign image classifier such that it achieves high overall test accuracy but classifies stop

signs as speed limit signs when a special sticker is attached to the stop sign [24]. Similarly,

one can also train networks for face recognition and speech recognition that only perform

malicious behaviors when a specific “trojan” trigger is presented [25].

In an exploratory attack, also called an evasion attack, the attacker can only change the

test examples to fool a trained ML model. The success of Deep Neural Networks (DNNs)

in computer vision does not exempt them from this threat. It is possible to reduce the

accuracy of a state-of-the-art DNN image classifier to zero percent by adding imperceptible

adversarial perturbations [2, 26]. Many new attack algorithms have been proposed [27,
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28, 29, 30] and applied to other domains such as malware detection [31, 32], sentiment

analysis [33], and reinforcement learning [34, 35]. In Chapter 3, we demonstrate a new

attack in a slightly different setting called physical adversarial attacks. There have been

various attempts to mitigate the threat of adversarial attacks [4, 36], but immunizing a

DNN model to adversarial attacks remains an open problem and an active research area. In

Chapter 4 and 5, we propose new methods toward this goal.

2.2 Applications of Machine Learning to Cybersecurity

Malware Detection. Traditional anti-malware software depends heavily on signature-

based methods, which use static fingerprints of known malware to detect future malicious

files [37]. However, it can only identify “known” malware for which the signatures have

been created, and hence can be easily evaded by more advanced attacking techniques like

polymorphism and obfuscation [38, 39]. Many machine learning based approaches, using

various feature extraction techniques and learning algorithms, have thus been explored [40,

41, 42, 43]. Reputation-based approaches using graph mining is another popular line of

research [44, 45].

Intrusion Detection System. The main task of an intrusion detection system (IDS) is to

monitor a system’s vulnerability exploits and attacks. Similar to malware detection, early

work on IDS used signature-based approaches [46], which has limited ability to detect

zero-day attacks. Anomaly-based detection models the normal internet traffic or system

behavior using machine learning and data mining methods, and detects deviations from the

baseline behavior [47, 48].

Online Fraudulent Behavior Detection. AI helps many websites provide better services,

but it also creates new vulnerabilities. For example, an adversary can create fake accounts

and write fraudulent reviews to manipulate reputation-based recommendation system. Re-

searchers have used data mining and machine learning techniques to detect fake reviews [49,
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50], internet bots [51], auction fraud [52], insider trading [53], and credit card fraud [54].

A good defense requires a combination of several techniques such as natural language

processing, graph mining, and time series analysis.
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Part I

Adversarial Attack and Defense of Deep

Neural Networks
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OVERVIEW

Deep neural networks (DNNs), although very powerful, are known to be vulnerable to

adversarial attacks. In computer vision applications, such attack can be achieved by adding

carefully crafted but visually imperceptible perturbations to input images.

The threat of adversarial attack casts a shadow over deploying DNNs in security- and

safety-critical applications, such as self-driving cars. To better understand and fix the

vulnerabilities, there is a growing body of research on both designing stronger attacks and

making DNN models more robust. However, many existing works are “impractical” either

because they assume an unrealistic threat model, or the defense is too computationally

expensive to be used in practice. In Part I of my thesis, we present the following practical

attack and defenses.

• ShapeShifter (Chapter 3) is the first “physical” adversarial attack that fools the

state-of-the-art object detector.

• SHIELD (Chapter 4) is an efficient defense leveraging stochastic image compression

• UnMask (Chapter 5) is a knowledge-based adversarial detection and defense frame-

work.
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CHAPTER 3

SHAPESHIFTER: ROBUST PHYSICAL ADVERSARIAL ATTACK ON OBJECT

DETECTOR

Given the ability to directly manipulate image pixels in the digital input space, an adversary

can easily generate imperceptible perturbations to fool a Deep Neural Network (DNN) image

classifier, as demonstrated in prior work. In this work, we propose ShapeShifter, an attack

that tackles the more challenging problem of crafting physical adversarial perturbations to

fool image-based object detectors like Faster R-CNN. Attacking an object detector is more

difficult than attacking an image classifier, as it needs to mislead the classification results in

multiple bounding boxes at different scales. Extending a digital attack to the physical world

adds another layer of difficulty, because it requires the perturbation to be robust enough to

survive real-world distortions like different viewing distances and angles, lighting conditions,

and camera limitations. We show that the Expectation over Transformation technique, which

was originally proposed to enhance the robustness of adversarial perturbations in image

classification, can be adapted to the object detection setting. ShapeShifter can generate

adversarially perturbed stop signs that Faster R-CNN consistently mis-detects as other

objects, posing a potential threat to autonomous vehicles and other safety-critical computer

vision systems.

3.1 Introduction

Adversarial examples are input instances that are intentionally designed to fool a machine

learning model into producing a chosen prediction. The success of DNNs in computer vision

does not exempt it from this threat. It is possible to bring the accuracy of a state-of-the-art

DNN image classifier down to zero percent by adding imperceptible adversarial perturba-

tions [2, 26]. The existence of adversarial examples not only reveals intriguing theoretical
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Figure 3.1: Illustration motivating the need of physical adversarial attack, because attackers
typically do not have full control over the computer vision system pipeline.

properties of DNN, but also raises serious practical concerns about their deployment in

security- and safety-critical systems. Autonomous vehicle is an example application that

cannot be fully trusted until DNNs are robust to adversarial attacks. The need to understand

robustness of DNNs attracts tremendous interest among machine learning, computer vision,

and security researchers.

Although many adversarial attack algorithms have been proposed, using them to attack

a real-world computer vision systems is difficult. First of all, many of these existing attack

algorithms focus on the image classification task, yet for many real-world use cases there

will be more than one object in an image. Object detection, which recognizes and localizes

multiple objects in an image, is a more suitable model for many vision-based real-world use

cases. Attacking an object detector is more difficult than attacking an image classifier, as it

needs to mislead the classification results in multiple bounding boxes at different scales [55].

Further difficulty comes from the fact that a DNN is usually only one component in

a complete computer vision system pipeline. For many applications, attackers do not

have the ability to directly manipulate data inside the pipeline. Instead, they can only

manipulate the things outside of the system, i.e., those things in the physical environment.

Figure 3.1 illustrates the intuition behind physical adversarial attacks. To be successful

attacks, physical adversarial attacks must be robust enough to survive real-world distortions
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like different viewing distances and angles, lighting conditions, and camera limitations.

Prior work can either attack object detectors digitally [56], or attack image classifiers

physically [3, 57, 58]. However, existing attempts to physically attack object detectors

remain unsatisfactory. The perturbed stop sign shown in [59] cannot be detected by the

Faster R-CNN object detector [60]. However, the perturbation is very noticeable. The

authors tested it against a background with poor texture contrast, making the perturbed stop

sign difficult to see even by humans. A concurrent work [61] claims to be able to generate

some adversarial stickers that, when attached to a stop sign, can fool the YOLO object

detector [62] and Faster R-CNN.

In this work, we propose ShapeShifter, the first robust targeted attack that can fool a state-

of-the-art Faster R-CNN object detector. To make the attack robust, we adopt the Expectation

over Transformation technique [63, 64], and adapt it from the image classification task to the

object detection task. As a case study, we created adversarial stop signs that are mis-detected

by Faster R-CNN in real drive-by tests. Our contributions are summarized below.

3.1.1 Our Contributions

• To the best of knowledge, our work presents the first reproducible and robust targeted

attack against Faster R-CNN [55]. We have open-sourced our code on GitHub1.

• We show that the Expectation over Transformation technique [63], originally pro-

posed for image classification, can be adapted to the object detection task and can

significantly enhance the robustness of the resulting perturbation.

• By carefully studying the Faster R-CNN object detector algorithm, we overcome non-

differentiable components in the model, and successfully perform optimization-based

attacks using gradient descent and backpropogation.

• We generate perturbed stop signs that can consistently fool Faster R-CNN in real

1https://github.com/shangtse/robust-physical-attack
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drive-by tests (videos available on the GitHub repository), demonstrating for the need

to improve and fortify vision-based object detectors.

3.2 Background

This section provides background information of adversarial attacks and briefly describes

the Faster R-CNN object detector that we attack in this work.

3.2.1 Adversarial Attacks

Given a trained machine learning model C and a benign instance x ∈ X that is correctly

classified by C, the goal of the untargeted adversarial attack is to find another instance

x′ ∈ X , such that C(x′) 6= C(x) and d(x, x′) ≤ ε for some distance metric d(·, ·) and

perturbation budget ε > 0. For targeted attacks, we further require C(x′) = y′ where

y′ 6= C(x) is the target class. Common distance metrics d(·, ·) in the computer vision

domain are `2 distance d(x, x′) = ||x− x′||22 and `∞ distance d(x, x′) = ||x− x′||∞.

The work of [2] was the first to discover the existence of adversarial examples for DNNs.

Several subsequent works have improved the computational cost of creating adversarial

examples and made the perturbations highly imperceptible to humans [27, 28]. Many

adversarial attack algorithms assume that the model is differentiable, and use the gradient of

the model to change the input towards the desired model output [26]. Sharif et al. [57] first

demonstrated a physically realizable attack to fool a face recognition model by wearing an

adversarially crafted pair of glasses.

3.2.2 Faster R-CNN

Faster R-CNN [60] is a state-of-the-art general object detector. It adopts a two-stage

detection strategy. In the first stage, a region proposal network generates several class-

agnostic bounding boxes, called region proposals, that may contain objects. In the second

stage, a classifier and a regressor output a classification result and refined bounding box

22



coordinate for each region proposal, respectively. The computation cost is reduced by

sharing the convolutional layers between the two stages. Faster R-CNN is difficult to attack,

because a single object can be covered by multiple region proposals of different sizes and

aspect ratios, and one needs to mislead the classification results in all overlapping region

proposals to fool the detection.

3.3 Threat Model

Existing methods that generate adversarial examples typically yield imperceptible pertur-

bations that fool a given machine learning model. Our work, following [57], generates

perturbations that are perceptible but constrained such that a human would not be easily

fooled by such a perturbation. We examine this kind of perturbation in the context of object

detection. We chose this use case because of object detector’s possible uses in security-

related and safety-related settings (e.g., autonomous vehicles). For example, attacks on

traffic sign recognition could cause a car to miss a stop sign or travel faster than legally

allowed.

We assume the adversary has white-box level access to the machine learning model. This

means the adversary has access to the model structure and weights such that the adversary

can compute both outputs (i.e., the forward pass) and gradients (i.e., the backward pass). It

also means that the adversary does not have to construct a perturbation in real-time. Rather,

the adversary can study the model and craft an attack for that model using methods like

Carlini-Wagner attack [26]. This kind of adversary is distinguished from one with black-box

level of access which is defined as having no access to the model architecture or weights.

While our choice of adversary is the most knowledgeable one, existing research has shown

it is possible to construct imperceptible perturbations without white-box level access [65].

Whether our method is capable of generating perceptible perturbations with only black-box

access remains an open question. Results from Liu et al. [66] suggest that iterative attacks

(like ours) tend not to transfer well to other models.
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Unlike previous work, we restrict the adversary such that they cannot manipulate the

digital values of pixels gathered by the camera used to sense the world. This is an important

distinction from existing imperceptible perturbation methods. Because those methods create

imperceptible perturbations, there is a high likelihood such imperceptible perturbations

would not fool our use cases when physically realized. That is, when printed and then

presented to the systems in our use cases, those imperceptible perturbations would have to

survive both the printing process and camera sensing pipeline in order to fool the system.

This is not an insurmountable task as Kurakin et al. [3] have constructed such imperceptible

yet physically realizable adversarial perturbations for image classification systems.

Finally, we also restrict our adversary by limiting the shape of the perturbation the

adversary can generate. This is important distinction for our use cases because one could

easily craft an oddly-shaped “stop sign” that does not exist in the real world. We also do not

give the adversary the latitude of modifying all pixels in an image like Kurakin et al. [3],

but rather restrict them to certain pixels that we believe are physically realistic, and whose

change is inconspicuous.

3.4 Attack Method

Our attack method, ShapeShifter, is inspired by the iterative, change-of-variable attack

described in [26] and the Expectation over Transformation technique [63, 64]. Both methods

were originally proposed for the task of image classification. We describe these two methods

in the image classification setting before showing how to extend them to attack the Faster

R-CNN object detector.

3.4.1 Attacking an Image Classifier

Let F : [−1, 1]h×w×3 → RK be an image classifier that takes an image of height h and

width w as input, and outputs a probability distribution over K classes. The goal of the

attacker is to create an image x′ that looks like an object x of class y, but will be classified
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as another target class y′.

Change-of-variable Attack

Denote LF (x, y) = L(F (x), y) as the loss function that calculates the distance between the

model output F (x) and the target label y. Given an original input image x and a target class

y′, the change-of-variable attack [26] propose the following optimization formulation.

arg min
x′∈Rh×w×3

LF (tanh(x′), y′) + c · || tanh(x′)− x||22. (3.1)

The use of tanh ensures that each pixel is between [−1, 1]. The constant c controls the

similarity between the modified object x′ and the original image x. In practice, c can be

determined by binary search [26].

Expectation over Transformation

The Expectation over Transformation [63, 64] idea is simple: adding random distortions

in each iteration of the optimization makes the resulting perturbation more robust to these

distortions. Given a transformation t like translation, rotation, or scaling, Mt(xb, xo) is an

operation that transforms an object image xo using t and then overlays it onto a background

image xb. Mt(xb, xo) can also include a masking operation that only keeps a certain area of

xo. Masking is necessary when one wants to restrict the shape of the perturbation. After

incorporating the random distortions, equation (3.1) becomes

arg min
x′∈Rh×w×3

Ex∼X,t∼T [LF (Mt(x, tanh(x′)), y′)] + c · || tanh(x′)− xo||22, (3.2)

where X is the training set of background images. When the model F is differentiable,

this optimization problem can be solved by gradient descent and back-propagation. The

expectation can be approximated by the empirical mean.
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3.4.2 Extension to Attacking Faster R-CNN

An object detector F : [−1, 1]h×w×3 → (RN×K ,RN×4) takes an image as input and outputs

N detected objects. Each detection includes a probability distribution over K pre-defined

classification classes as well as the location of the detected object, represented by its 4

coordinates. Note that it is possible for an object detector to output more or fewer detected

objects, depending on the input image, but for simplicity we select top-N detected objects

ranked by confidence.

As described in subsection 3.2.2, Faster R-CNN adopts a 2-stage approach. The re-

gion proposal network in the first stage outputs several region proposals, and the sec-

ond stage classifier performs classification within each of the region proposals. Let

rpn(x) = {r1, . . . , rm}, where each ri is a region proposal represented as its four co-

ordinates, and let xr be a sub-image covered by region r. Denote LFi(x, y) = L(F (xri), y),

i.e., the loss of the classification in the i-th region proposal. We can simultaneously attack

all the classifications in each region proposal by optimizing the following:

arg min
x′∈Rh×w×3

Ex∼X,t∼T

 1

m

∑
ri∈rpn(Mt(x′))

LFi(Mt(x
′), y′)

+ c · || tanh(x′)− xo||22, (3.3)

where we abuse the notation Mt(x
′) = Mt(x, tanh(x′)) for simplicity. However, for

computational reasons, Faster R-CNN prunes the region proposals by using non-maximum

suppression [60]. The pruning operations are usually non-differentiable, making it hard to

optimize equation (3.3) end to end. Therefore, we approximately solve this optimization

problem by first running a forward pass of the region proposal network, and then fixing

the pruned region proposals as constants to the second stage classification problem in each

iteration. We empirically find this approximation sufficient to find a good solution.
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3.5 Evaluation

We evaluate our method by fooling a pre-trained Faster R-CNN model with Inception-

v2 [67] convolutional feature extraction component. The model was trained on the Microsoft

Common Objects in Context (MS-COCO) dataset [68] and is publicly available in the

Tensorflow Object Detection API [69] model zoo repository2.

The MS-COCO dataset contains 80 general object classes ranging from people and

animals, to trucks and cars, and other common objects. Although our method can potentially

be used to attack any class, we chose to focus on attacking the stop sign class due to its

importance and relevance to self-driving cars, where a vision-based object detector is used to

help make driving decisions. An additional benefit of choosing the stop sign is its flat shape

that can easily be printed on paper. Other classes, like dogs, are less likely to be perceived

as real objects by human when printed on a paper. While 3D printing adversarial examples

for image recognition is possible [63], we leave 3D-printed adversarial examples against

object detectors as future work.

3.5.1 Digitally Perturbed Stop Sign

We generate adversarial stop signs by performing the optimization process described in

Equation 3.3. The hyperparameter c is crucial in determining the perturbation strength. A

smaller value of c will result in a more conspicuous perturbation, but the perturbation will

also be more robust to real-world distortions when we do the physical attack later.

However, it is hard to choose an appropriate c when naively using the `2 distance to a

real stop sign as regularization. To obtain a robust enough perturbation, a very small c needs

to be used, which has the consequence of creating stop signs that are difficult for humans

to recognize. The `2 distance is not a perfect metric for human perception, which tends

to be more sensitive to color changes on lighter-colored objects. Due to this observation,

2http://download.tensorflow.org/models/object_detection/faster_rcnn_
inception_v2_coco_2017_11_08.tar.gz
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we only allowed the perturbation to change the red part of the stop sign, while leaving the

white text intact. This allows us to generate larger and more robust perturbation, while

providing enough contrast between the lettering and red parts so that a human can recognize

the perturbation as a stop sign. The adversarial stop sign generated in [59] does not consider

this and is visually more conspicuous. Automating this procedure for other objects we leave

as future work.

We performed two targeted attacks and one untargeted attack. We choose person

and sports ball as the two target classes because they are relatively similar in size and

shape to stop signs. Our method allows attackers to use any target classes, however the

perturbation needs to fool the object detector. For some target classes, this may mean

creating perturbations so large in deviation that they may appear radically different from

the victim class. We also noticed that some classes are easier to be detected at small scales,

such as kite, while other classes (e.g., truck) could not be detected when the object was too

small. This may be an artifact of the MS-COCO dataset that the object detector was trained

on. Nevertheless, the attacker has a choice in target class and, for many applications, can

find the target class that best fools the object detector according to their means.

For each attack, we generated a high confidence perturbation and a low confidence

perturbation. The high confidence perturbations were generated using a smaller value of c,

thus making them more conspicuous but also more robust. Depending upon the target class,

it may be difficult to generate an effective perturbation. We manually chose c for each target

class so that the digital attack achieves high success rate while keeping the perturbation not

too conspicuous, i.e., we tried to keep the color as red as possible. We used c = 0.002 for

the high confidence perturbations and c = 0.005 for the low confidence perturbations in the

“sports ball” targeted attack and the untargeted attack. We used c = 0.005 and c = 0.01 for

the high and low confidence perturbations in the “person” targeted attack, respectively. The

6 perturbations we created are shown in Figure 3.2.
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(a) Person (low) (b) Sports ball (low) (c) Untargeted (low)

(d) Person (high) (e) Sports ball (high) (f) Untargeted (high)

Figure 3.2: Digital perturbations we created using our method. Low confidence perturbations
on the top and high confidence perturbations on the bottom.

3.5.2 Physical Attack

We performed physical attacks on the object detector by printing out the perturbed stop

signs shown in Figure 3.2. We then took photos from a variety of distances and angles in

a controlled indoor setting. We also conducted drive-by tests by recording videos from a

moving vehicle that approached the signs from a distance. The lightning conditions varied

from recording to recording due to the weather at the time.

Equipment

We used a Canon Pixma Pro-100 photo printer to print out signs with high-confidence

perturbations, and an HP DesignJet to print out those with low-confidence perturbations3.

For static images, we used a Canon EOS Rebel T7i DSLR camera, equipped with a EF-S

18-55mm IS STM lens. The videos in our drive-by tests were shot using an iPhone 8 Plus

3We used two printers to speed up our sign production, since a sign can take more than 30 minutes to
produce.
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Figure 3.3: Indoor experiment setup. We take photos of the printed adversarial sign, from
multiple angles (0◦, 15◦, 30◦, 45◦, 60◦, from the sign’s tangent), and distances (5’ to 40’).
The camera locations are indicated by the red dots, and the camera always points at the sign.

mounted on the windshield of a car.

Indoor Experiments

Following the experimental setup of [58], we took photos of the printed adversarial stop

sign, at a variety of distances (5’ to 40’) and angles (0◦, 15◦, 30◦, 45◦, 60◦, from the sign’s

tangent). This setup is depicted in Figure 3.3 where camera locations are indicated by red

dots. The camera always pointed at the sign. We chose these distance-angle combinations

to mimic a vehicle’s points of view as it would approach the sign [59]. Table 3.1 and

Table 3.2 summarize the results for our high-confidence and low-confidence perturbations,

respectively. For each distance-angle combination, we show the detected class and the

detection’s confidence score. If more than one bounding box was detected, we report the

highest-scoring one. Confidence values lower than 30% were considered undetected; we

decided to use the threshold of 30%, instead of the default 50% in the Tensorflow Object

Detection API [69], to impose a stricter requirement on ourselves (the “attacker”). Since
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Table 3.1: Our high-confidence perturbations succeed at attacking at a variety of distances
and angles. For each distance-angle combination, we show the detected class and the
confidence score. If more than one bounding boxes are detected, we report the highest-
scoring one. Confidence values lower than 30% is considered undetected.

Distance Angle person (Conf.) sports ball (Conf.) untargeted (Conf.)

5’ 0◦ person (.77) sports ball (.61) clock (.35)
5’ 15◦ person (.91) cake (.73) clock (.41)
5’ 30◦ person (.93) cake (.66) cake (.39)
5’ 45◦ person (.69) cake (.61) stop sign (.62)
5’ 60◦ stop sign (.93) stop sign (.70) stop sign (.88)

10’ 0◦ person (.55) cake (.34) clock (.99)
10’ 15◦ person (.63) cake (.33) clock (.99)
10’ 30◦ person (.51) cake (.55) clock (.99)

15’ 0◦ undetected — cake (.49) clock (.99)
15’ 15◦ person (.57) cake (.53) clock (.99)

20’ 0◦ person (.49) sports ball (.98) clock (.99)
20’ 15◦ person (.41) sports ball (.96) clock (.99)

25’ 0◦ person (.47) sports ball (.99) stop sign (.91)
30’ 0◦ person (.49) sports ball (.92) undetected —
40’ 0◦ person (.56) sports ball (.30) stop sign (.30)

Targeted success rate 87% 40% N/A

Untargeted success rate 93% 93% 73%

an object can be detected as a stop sign and the target class simultaneously, we consider

our attack to be successful only when the confidence score of the target class is the highest

among all of the detected classes.

Table 3.1 shows that our high-confidence perturbations achieve a high attack success

rate at a variety of distances and angles. For example, we achieved a targeted success rate

87% in misleading the object detector into detecting the stop sign as a person, and an even

higher untargeted success rate of 93% when our attack goal is to cause the detector to either

fail to detect the stop sign (e.g., at 15’ 0◦) or to detect it as a class that is not a stop sign. The

sports ball targeted attack has a lower targeted success rate but achieves the same untargeted

success rate. Our untargeted attack consistently misleads the detection into the clock class

in medium distances, but is less robust for longer distances. Overall, the perturbation is less
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Table 3.2: As expected, low-confidence perturbations achieve lower success rates.

Distance Angle person (Conf.) sports ball (Conf.) untargeted (Conf.)

5’ 0◦ stop sign (.87) cake (.90) cake (.41)
5’ 15◦ stop sign (.63) cake (.93) cake (.34)
5’ 30◦ person (.83) cake (.84) stop sign (.48)
5’ 45◦ stop sign (.97) stop sign (.94) stop sign (.82)
5’ 60◦ stop sign (.99) stop sign (.99) stop sign (.89)

10’ 0◦ stop sign (.83) stop sign (.99) undetected —
10’ 15◦ stop sign (.79) stop sign (.94) undetected —
10’ 30◦ stop sign (.60) stop sign (.98) stop sign (.78)

15’ 0◦ stop sign (.52) stop sign (.94) stop sign (.31)
15’ 15◦ stop sign (.33) stop sign (.93) undetected —

20’ 0◦ stop sign (.42) sports ball (.73) undetected —
20’ 15◦ person (.51) sports ball (.83) cell phone (.62)

25’ 0◦ stop sign (.94) sports ball (.87) undetected —
30’ 0◦ stop sign (.94) sports ball (.95) stop sign (.79)
40’ 0◦ stop sign (.95) undetected — stop sign (.52)

Targeted success rate 13% 27% N/A

Untargeted success rate 13% 53% 53%

robust to very high viewing angle (60◦ from the sign’s tangent), because we did not simulate

this high viewing angle distortion in the optimization.

The low-confidence perturbations (Table 3.2), as expected, achieve a much lower attack

success rate, which informed our use of higher-confidence perturbations when we conducted

the more challenging drive-by tests. Table 3.3 shows some high-confidence perturbations

from our indoor experiments.

Drive-by Tests

We performed drive-by tests at a parking lot so as not to disrupt other vehicles with our

stop signs. We used a real stop sign as a control and put our printed, perturbed stop sign by

its side. Starting from about 200 feet away, we slowly drove (between 5 mph to 15 mph)

towards the signs while simultaneously recording video from the vehicle’s dashboard at

4K resolution and 24 FPS using an iPhone 8 Plus. We extracted all video frames, and for
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Table 3.3: Sample high-confidence perturbations from indoor experiments. For complete
experiment results, please refer to Table 3.1.

Dist. Angle Target: person Target: sports
ball Untargeted

40’ 0◦

10’ 0◦

10’ 30◦

5’ 60◦

each frame, we obtained the detection results from Faster R-CNN object detection model.

Because our low confidence attacks showed relatively little robustness indoors, we only

include the results from our high-confidence attack. Similar to our indoor experiments, we

only consider detections that had a confidence score of at least 30%.

In Figure 3.4, we show sample video frames (rectangular images) to show the size of the

signs relative to the full video frame; we also show zoomed-in views (square images) that

more clearly show the Faster R-CNN detection results.

The person-perturbation in Figure 3.4a drive-by totaled 405 frames. The real stop sign

in the video was correctly detected in every frame with high confidence. On the other hand,

the perturbed stop sign was only correctly detected once, while 190 of the frames identified

the perturbed stop sign as a person with medium confidence. For the rest of the 214 frames

the object detector failed to detect anything around the perturbed stop sign.

The video we took with the sports-ball-perturbation shown in Figure 3.4b had 445
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frames. The real stop sign was correctly identified all of the time, while the perturbed

stop sign was never detected as a stop sign. As the vehicle (video camera) moved closer

to the perturbed stop sign, 160 of the frames were detected as a sports ball with medium

confidence. One frame was detected as apple and sports ball and the remaining 284 frames

had no detection around the perturbed stop sign.

Finally, the video of the untargeted perturbation (Figure 3.4c) totaled 367 frames. While

the unperturbed stop sign was correctly detected all of the time, the perturbed stop sign was

detected as bird 6 times and never detected in the remaining 361 frames.

Exploring Black-box Transferability

We also sought to understand how well our high-confidence perturbations could fool other

object detection models. For image recognition, it is known that high-confidence targeted

attacks fail to transfer to other models [66].

To this end, we fed our high-confidence perturbations into 8 other MS-COCO-trained

models from the Tensorflow detection model zoo4. Table 3.4 shows how well our pertur-

bation generated from the Faster R-CNN Inception-V2 transfer to other models. To better

understand transferability, we examined the worse case. That is, if a model successfully

detects a stop sign in the image, we say the perturbation has failed to transfer or attack that

model. We report the number of images (of the 15 angle-distance images in our indoor

experiments) where a model successfully detected a stop sign with at least 30% confidence.

We also report the maximum confidence of all of those detected stop sign.

Table 3.4 shows the lack of transferability of our generated perturbations. The untargeted

perturbation fails to transfer most of the time, followed by the sports ball perturbation, and

finally the person perturbation. The models most susceptible to transferability were the

Faster R-CNN Inception-ResNet-V2 model, followed by the SSD MobileNet-V2 model.

Iterative attacks on image recognition also usually fail to transfer [66], so it is not surprising

4https://github.com/tensorflow/models/blob/master/research/object_
detection/g3doc/detection_model_zoo.md
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Figure 3.4: Snapshots of the drive-by test results. In (a), the person perturbation was
detected 47% of the frames as a person and only once as a stop sign. The perturbation in
(b) was detected 36% of the time as a sports ball and never as a stop sign. The untargeted
perturbation in (c) was detected as bird 6 times and never detected as a stop sign or anything
else for the remaining frames.
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Table 3.4: Black-box transferability of our 3 perturbations. We report the number of images
(of the 15 angle-distance images) that failed to transfer to the specified model. We consider
the detection of any stop sign a “failure to transfer.” Our perturbations fail to transfer for
most models, most likely due to the iterative nature of our attack.

Model person (conf.) sports ball (conf.) untargeted (conf.)

Faster R-CNN Inception-V2 3 (.93) 1 (.70) 5 (0.91)

SSD MobileNet-V2 2 (.69) 8 (.96) 15 (1.00)
SSD Inception-V2 11 (1.00) 14 (.99) 15 (1.00)
R-FCN ResNet-101 4 (.82) 10 (.85) 15 (1.00)
Faster R-CNN ResNet-50 13 (.00) 15 (1.00) 15 (1.00)
Faster R-CNN ResNet-101 15 (.99) 13 (.97) 15 (1.00)
Faster R-CNN Inc-Res-V2 1 (.70) 0 (.00) 12 (1.00)
Faster R-CNN NASNet 14 (1.00) 15 (1.00) 15 (1.00)

that our attacks fail to transfer as well. We leave the thorough exploration of transferability

as future work.

3.6 Discussion & Future Work

Figure 3.5: Example stop signs from the MS-COCO dataset. Stop signs can vary by
language, by degree of occlusion by stickers or modification by graffiti, or just elements of
the weather. Each stop sign in the images is correctly detected by the object detector with
high confidence (99%, 99%, 99%, and 64%, respectively).

There is considerable variation in the physical world that real systems will have to

deal with. Figure 3.5 shows a curated set of non-standard examples of stop signs from the

MS-COCO dataset5. The examples show stop signs in a different language, or that have

graffiti or stickers applied to them, or that have been occluded by the elements. In each of

5Full resolution images of the examples in Figure 3.5 can be found at: http://cocodataset.
org/#explore?id=315605, http://cocodataset.org/#explore?id=214450,
http://cocodataset.org/#explore?id=547465, and http://cocodataset.org/
#explore?id=559484
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these cases, it is very unlikely a human would misinterpret the sign as anything else but

a stop sign. They each have the characteristic octagonal shape and are predominantly red

in color. Yet, against our stop signs with similar perturbations, the object detector sees

something else.

Unlike previous work on adversarial examples for image recognition, our adversarial

perturbations are overt. They, like the examples in Figure 3.5, exhibit large deviations

from the standard stop sign. A human would probably notice these large deviations, and a

trained human might even guess they were constructed to be adversarial. But they would

not be fooled by our perturbations. However an automated-system using an off-the-shelf

object detector would be fooled, as our results show. Our perturbation shown in Figure 3.2e

does look like a baseball or tennis ball has been painted on the upper right hand corner.

Figure 3.4b shows how the object detector detects this part of the image as a sports ball with

high confidence. This might seem unfair, but attackers have much more latitude to change

the environment when these kind of models are deployed in automated systems. Even in

non-automated systems, a human might not think anything of Figure 3.2d because it does

not exhibit any recognizable person-like features.

Attackers might also generate perturbations without restricting the shape and color, and

attach them to some arbitrary objects, like a street light or a trash bin. An untrained eye

might see these perturbations as some kind of artwork, but the autonomous system might

see something completely different. This attack, as described in [70], could be extended to

object detectors using our method.

Defending against these adversarial examples has proven difficult. Many defenses fall

prey to the so-called “gradient masking” or “gradient obfuscating” problem [71]. The most

promising defense, adversarial training, has yet to scale up to models with good performance

on the ImageNet dataset. Whether adversarial training can mitigate our style of overt,

large-deviation (e.g., large `p distance) perturbations is left as future work.
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3.7 Conclusion

We show that a state-of-the-art Faster R-CNN object detector, while previously considered

more robust to physical adversarial attacks, can actually be attacked with high confidence.

Our work demonstrates vulnerability in MS-COCO-learned object detectors and posits that

security- and safety-critical systems need to account for the potential threat of adversarial

inputs to object detection systems.

Many real-world systems probably do not use an off-the-shelf pre-trained object detector

as we do in our work. Why would a system with safety or security implications care to

detecting sports balls? Most probably do not. Although it remains to be shown whether

our style of attack can be applied to safety or security critical systems that leverage object

detectors, our attack provides the means to test for this new class of vulnerability.
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CHAPTER 4

SHIELD: FAST, PRACTICAL DEFENSE AND VACCINATION FOR DEEP

LEARNING USING JPEG COMPRESSION

In the previous chapter, we showed that deep neural networks (DNNs) are highly vulnerable

to adversarially generated images. This underscores the urgent need for practical defense

techniques that can be readily deployed to combat attacks in real-time. Observing that many

attack strategies aim to perturb image pixels in ways that are visually imperceptible, we

use JPEG compression at the core of our proposed SHIELD defense framework, utilizing

its capability to effectively “compress away” such pixel manipulation. To immunize a

DNN model from artifacts introduced by compression, SHIELD “vaccinates” the model by

retraining it with compressed images, where different compression levels are applied to

generate multiple vaccinated models that are ultimately used together in an ensemble defense.

On top of that, SHIELD adds an additional layer of protection by employing randomization

at test time that compresses different regions of an image using random compression levels,

making it harder for an adversary to estimate the transformation performed. This novel

combination of vaccination, ensembling, and randomization makes SHIELD a fortified multi-

pronged defense. We conducted extensive, large-scale experiments using the ImageNet

dataset, and show that our approaches eliminate up to 98% of gray-box attacks delivered

by strong adversarial techniques such as Carlini-Wagner’s L2 attack and DeepFool. Our

approaches are fast and work without requiring knowledge about the model.

4.1 Introduction

In computer vision applications, an attacker can add visually imperceptible perturbations to

an image and mislead a DNN model into making arbitrary predictions. When the attacker

has complete knowledge of a DNN model, these perturbations can be computed by using
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Figure 4.1: SHIELD Framework Overview. SHIELD combats adversarial images (in red)
by removing perturbation in real-time using Stochastic Local Quantization (SLQ) and
an ensemble of vaccinated models which are robust to the compression transformation.
Our approach eliminates up to 98% of gray-box attacks delivered by strong adversarial
techniques such as Carlini-Wagner’s L2 attack and DeepFool.

the gradient information of the model. This guides the adversary toward vulnerable regions

of the input space that would most drastically affect the model output [27, 30]. But even

in a black-box scenario, where the attacker does not know the exact network architecture,

one can use a substitute model to craft adversarial perturbations that are transferable to the

target model [65].

To better understand and fix these vulnerabilities, there is a growing body of research

on defending against various attacks and making DNN models more robust [72, 73, 74].

However, the progress of defense research lags behind the attack side. Moreover, research

on defenses rarely focuses on practicality and scalability, both essential for real-world

deployment. For example, total variation denoising and image quilting are image prepro-

cessing techniques that have potential in mitigating adversarial perturbations [75], but they

incur significant computational overhead, calling into question whether they can be used in

practical applications, which often require a fast, real-time defense [58, 76].
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4.1.1 Our Contributions and Impact

1. Compression as Fast, Practical, Effective Defense. We leverage the idea that compres-

sion — a central concept that underpins numerous successful data mining techniques —

can offer a powerful, scalable, practical, and real-time protection for deep learning models

against adversarial image perturbations. Motivated by the observation that many attack

strategies aim to perturb images in ways that are visually imperceptible to the naked eye,

we show that systematic adaptation of the widely available JPEG compression technique

can effectively compress away such pixel “noise”, especially since JPEG was designed to

remove image details that are imperceptible to humans. (Section 4.3.1)

2. SHIELD: Multifaceted Defense Framework. Building on our principal idea of com-

pression, we contribute the novel SHIELD defense framework that combines randomization,

vaccination and ensembling into a fortified multi-pronged defense:

1. We exploit JPEG’s flexibility in supporting varying compression levels to develop

strong ensemble models that span the spectrum of compression levels;

2. We “vaccinate” a model by training it on compressed images, increasing its robustness

towards compression transformation for both adversarial and benign images;

3. SHIELD employs stochastic quantization that compresses different regions of an image

using randomly sampled compression levels, making it harder for the adversary to

estimate the transformation performed.

SHIELD does not require any change in the model architecture, and can recover a significant

amount of model accuracy lost to adversarial instances, with little effect on the accuracy for

benign inputs. SHIELD stands for Secure Heterogeneous Image Ensemble with Localized

Denoising. (Sections 4.3.2 & 4.3.3)

3. Extensive Evaluation Against Major Attacks. We perform extensive experiments using

the full ImageNet benchmark dataset with 50K images, demonstrating that our approach
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is fast, effective and scalable. Our approaches eliminate up to 98% of gray-box attacks

delivered by some of the most recent, strongest attacks, such as Carlini-Wagner’s L2 attack

[26] and DeepFool [28]. (Section 4.4)

4. Impact to Intel and Beyond. This work is making multiple positive impacts on Intel’s

research and product development plans. Introduced with the Sandy Bridge CPU microar-

chitecture, Intel’s Quick Sync Video (QSV) technology dedicates a hardware core for

high-speed video processing, performs JPEG compression up to 24X faster than TensorFlow

implementations, paving the way for real-time defense in safety-critical applications, such

as autonomous vehicles. This research has sparked insightful discussion among research

and development teams at Intel, on the priority of secure deep learning that necessitates

tight integration of practical defense strategies, software platforms and hardware accel-

erators. We believe our work will accelerate the industry’s emphasis on this important

topic. To ensure reproducibility of our results, we have open-sourced our code on GitHub

(https://github.com/poloclub/jpeg-defense). (Section 4.5)

4.2 Background: Adversarial Attacks

In this section, we describe the major, well-studied attacks in the literature, against which

we will evaluate our approach.

Carlini-Wagner’s L2 (CW-L2) [26] is an optimization-based attack that adds a relaxation

term to the perturbation minimization problem based on a differentiable surrogate of the

model. They pose the optimization as minimizing:

‖x− x′‖2 + λmax
(
− κ, Z(x′)k −max{Z(x′)k′ : k′ 6= k}

)
(4.1)

where κ controls the confidence with which an image is misclassified by the DNN, and Z(·)

is the output from the logit layer (i.e., last layer before the softmax function is applied for

prediction) of C.
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DeepFool (DF) [28] constructs an adversarial instance under an L2 constraint by assuming

the decision boundary to be hyperplanar. The authors leverage this simplification to compute

a minimal adversarial perturbation that results in a sample that is close to the original

instance but orthogonally cuts across the nearest decision boundary. In this respect, DF is

an untargeted attack. Since the underlying assumption about the decision boundary being

completely linear in higher dimensions is an oversimplification of the actual case, DF keeps

reiterating until a true adversarial instance is found. The resulting perturbations are harder

for humans to detect compared to perturbations introduced by other attacks.

Iterative Fast Gradient Sign Method (I-FGSM) [3] is the iterative version of the Fast

Gradient Sign Method (FGSM) [27], which is a fast algorithm that computes perturbations

subject to an L∞ constraint. FGSM simply takes the sign of the gradient of loss function J

w.r.t. the input x,

x′ = x+ ε · sign(∇Jx(θ, x, y)) (4.2)

where θ is the set of parameters of the model and y is the true label of the instance. The

parameter ε controls the magnitude of per-pixel perturbation. I-FGSM iteratively applies

FGSM in each iteration i after clipping the values appropriately at each step:

x(i) = x(i−1) + ε · sign(∇Jx(i−1)(θ, x(i−1), y)) (4.3)

4.3 Proposed Method: Compression as Defense

We present our compression-based approach for combating adversarial attacks. In Section

4.3.1, we begin by describing the technical reasons why compression can remove pertur-

bations. As compression modifies the distribution of the input space by introducing some

artifacts, in Section 4.3.2, we propose to “vaccinate” the model by training it with com-

pressed images. This increases its robustness towards the compression transformation for
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both adversarial and benign images. Finally, in Section 4.3.3, we present our multifaceted

SHIELD defense framework that combines random quantization, vaccination and ensembling

into a fortified multi-pronged defense.

4.3.1 Preprocessing Images using Compression

Our main idea on rectifying the prediction of a trained model C, with respect to a perturbed

input x′, is to apply a preprocessing operation g(·) that brings back x′ closer to the original

benign instance x, which implicitly aims to make C(g(x′)) = C(x). Constructing such a

g(·) is application dependent. For the image classification problem, we show that JPEG

compression is a powerful preprocessing defense technique. JPEG compression mainly

consists of the following steps:

1. Convert the given image from RGB color space to Y CbCr (chrominance + luminance)

color space.

2. Perform spatial subsampling of the chrominance channels, since the human eye is less

susceptible to these changes and relies more on the luminance information.

3. Transform 8× 8 blocks of the Y CbCr channels to a frequency domain representation

using Discrete Cosine Transform (DCT).

4. Quantize the blocks in the frequency domain representation according to a quantization

table which corresponds to a user-defined quality factor for the image.

The last step is where the JPEG algorithm achieves the majority of compression at the

expense of image quality. This step suppresses higher frequencies since these frequencies

contribute less to the human perception of the image. Adversarial attacks do not maintain the

spectral signature of the image, and they tend to introduce more high frequency components

which can be removed via compression. This step also renders the JPEG compression

non-differentiable, which makes it non-trivial for an adversary to optimize against, allowing
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Figure 4.2: SHIELD uses Stochastic Local Quantization (SLQ) to remove adversarial
perturbations from input images. SLQ divides an image into 8 × 8 blocks and applies a
randomly selected JPEG compression quality (20, 40, 60 or 80) to each block to mitigate
the attack.

only estimations to be made of the transformation [77]. We show in our evaluation (Section

4.4.2) that JPEG compression effectively removes adversarial perturbation across a range of

compression levels.

4.3.2 Vaccinating Models with Compressed Images

Applying too much compression reduces the model’s accuracy on benign images, due to the

artifacts introduced by JPEG compression. We propose to “vaccinate” the model by training

it with compressed images, especially at lower JPEG qualities, to increase the model’s

robustness towards the compression transformation for both adversarial and benign images.

With vaccination, we can apply more aggressive compression to remove more adversarial

perturbation. In our evaluation (Section 4.4.3), we show the advantage that our vaccination

strategy provides, as it recovers more than 7 absolute percentage points in model accuracy

for high-perturbation attacks.
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4.3.3 SHIELD: Multifaceted Defense Framework

To leverage the effectiveness of JPEG compression as a preprocessing technique along with

the benefit of vaccinating with JPEG images, we propose a stochastic variant of the JPEG

algorithm that introduces randomization to the quantization step. This makes it difficult for

the adversary to estimate the preprocessing transformation.

Figure 4.2 illustrates our proposed strategy, where we vary the quantization table for

each 8× 8 block in the frequency domain to correspond to a random quality factor from a

provided set of qualities, such that the compression level does not remain uniform across the

image. This is equivalent to breaking up the image into disjoint 8× 8 blocks, compressing

each block with a random quality factor, and putting the blocks together to re-create the

final image. We call this method Stochastic Local Quantization (SLQ). As the adversary

is free to craft images with varying amounts of perturbation, our defense should offer

protection across a wide spectrum. We selected the set of qualities {20, 40, 60, 80} as our

randomization candidates, uniformly spanning the range of JPEG qualities from 1 (most

compressed) to 100 (least compressed).

Comparing our stochastic approach to taking an average over JPEG compressed images,

our method maintains the original semantics of the image in the blocks compressed to higher

qualities, while performing localized denoising in the blocks compressed to lower qualities.

In the case of an average, perturbations may not be removed at higher qualities and so they

could shift the average, and remain adversarial. Introducing localized stochasticity reduces

this expectation.

In our evaluation (Section 4.4.3), we show that by using a variety of JPEG compression

levels as in SLQ, our model can simultaneously attain a high accuracy on benign images,

while being more robust to adversarial perturbations than using a single JPEG quality. Our

method is further fortified by using an ensemble of vaccinated models individually trained

on the set of qualities picked for SLQ. We show in Section 4.4.3 that our method achieves

accuracies comparable to those of much larger ensembles while being significantly faster.

46



80
60
40
20

JPEG
Qualities

No Defense
.0 .1 .2 .3 .4 .5 .6 .7 .8

.7188.7188

.7185.7185

SHIELD and JPEG Removes
Carlini-Wagner-L2 & DeepFool Perturbation

No Attack: .7559

SHIELD

Model Accuracy
Figure 4.3: Carlini-Wagner-L2 (CW-L2) and DeepFool, two recent strong attacks, introduce
perturbations that lowers model accuracy to around 10% (∅). JPEG compression recov-
ers up to 98% of the original accuracy (with DeepFool), while SHIELD achieves similar
performance, recovering up to 95% of the original accuracy (with DeepFool).

4.4 Evaluation

In this section, we show that our approach is scalable, effective, and practical at removing

adversarial image perturbations. In our experiments, we consider the following scenarios:

• The adversary has access to the full model, including its architecture and parameters.

(Section 4.4.2)

• The adversary has access to the model architecture, but not the exact parameters.

(Section 4.4.3)

• The adversary does not have access to the model architecture. (Section 4.4.4)

4.4.1 Experiment Setup

We performed experiments on the full validation set of the ImageNet benchmark image

classification dataset [78], which consists of 1,000 classes, totaling 50,000 images. We show
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the performance of each defense on the ResNet-v2 50 model obtained from the TF-Slim

module in TensorFlow. We construct the attacks using the popular CleverHans package1,

which contains implementations from the authors of the attacks.

• For Carlini-Wagner-L2 (CW-L2), we set its parameter κ = 0, a common value used in

studies [75], as larger values (higher confidence) incur prohibitively high computation

cost.

• DeepFool (DF) is a non-parametric attack that optimizes the amount of perturbation

required to misclassify an image.

• For FGSM and I-FGSM, we vary ε from 0 to 8 in steps of 2.

We compare JPEG compression and SHIELD with two popular denoising techniques that

have potential in defending against adversarial attacks [79, 75]. Median filter (MF) collapses

a small window of pixels into a single value, and may drop some of the adversarial pixels in

the process. Total variation denoising (TVD) aims to reduce the total variation in an image,

and may undo the artificial noise injected by the attacks. We varied the parameters of each

method to evaluate how their values affect defense performance.

• For JPEG compression, we varied the compression level from quality 100 (least

compressed) to 20 (greatly compressed), in decrements of 10.

• For median filter, we used window sizes of 3 (smallest possible) and 5. We tested

larger window sizes (e.g., 7), which led to extremely poor model accuracies, thus we

ruled them out as parameter candidates.

• For total variation denoising, we varied its weight parameter from 10 through 40, in

increments of 10. Reducing the weight of TVD further produces blurry images that

lead to poor model accuracy.

1https://github.com/tensorflow/cleverhans
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Figure 4.4: SHIELD recovers the accuracy of the model when attacked with I-FGSM (left)
and FGSM (right). Both charts show the accuracy of the model when undefended (gray
dotted curve). Applying varying JPEG compression qualities (purple curves) helps recover
accuracy significantly, and SHIELD (orange curve) is able to recover more than any single
JPEG-defended model.

4.4.2 Defending Gray-Box Attacks with Image Preprocessing

In this section, we investigate the setting where an adversary gains access to all parameters

and weights of a model that is trained on benign images but is unaware of the defense

strategy. This constitutes a gray-box attack on the overall classification pipeline.

We show the results of applying JPEG compression at various qualities on images

attacked with Carlini-Wagner-L2 (CW-L2) and DeepFool (DF) in Figure 4.3, and on images

attacked with I-FGSM and FGSM in Figure 4.4.

Combating Carlini-Wagner-L2 (CW-L2) & DeepFool (DF). Although CW-L2 and DF,

both considered strong attacks, are highly effective at lowering model accuracies, Figure 4.3

shows that even applying mild JPEG compression (i.e., using higher JPEG qualities) can

recover much of the lost accuracy. Since both methods optimize for a lower perturbation to

fool the model, the noise introduced by these attacks is imperceptible to the human eye and
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lies in the high frequency spectrum, which is destroyed in the quantization step of the JPEG

algorithm. SHIELD performs well, and comparably, for both attacks. We do not arbitrarily

scale the perturbation magnitude of either attack as in [75], as doing so would violate the

attacks’ optimization criteria.

Combating I-FSGM & FGSM. As shown in Figure 4.4, JPEG compression also achieves

success in countering I-FGSM and FGSM attacks, which introduce higher magnitudes of

perturbation than CW-L2 and DeepFool attacks.

As the amount of perturbation increases, the accuracies of models without any protection

(gray dotted curves in Figure 4.4) rapidly falls beneath 19%. JPEG recovers significant por-

tions of the lost accuracies (purple curves); its effectiveness also gradually and expectantly

declines as perturbation becomes severe. Applying more compression generally recovers

more accuracy (e.g., dark purple curve, for JPEG quality 20), but at the cost of losing some

accuracy for benign images. SHIELD (orange curve) offers a desirable trade-off, achieving

good performance under severe perturbation while retaining accuracies comparable to the

original models. Applying less compression (light purple curves) performs well with benign

images but is not as effective when perturbation increases.

Effectiveness and Runtime Comparison against Median Filter (MF) and Total Varia-

tion Denoising (TVD). We compare JPEG compression and SHIELD with MF and TVD,

two popular denoising techniques, because they too have potential in defending against

adversarial attacks [79, 75]. Like JPEG, both MF and TVD are parameterized. Table 4.1

summarizes the performance of all the image preprocessing techniques under consideration.

While all techniques are able to recover accuracies from CW-L2 and DF, both strongly

optimized attacks with lower perturbation strength, the best performing settings are from

JPEG (bold font in Table 4.1). When faced with large amount of perturbation generated by

the I-FGSM and FSGM attacks, SHIELD benefits from the combination of Stochastic Local

Quantization, vaccination, and ensembling, outperforming all other techniques.

As developing practical defense is our primary goal, effectiveness, while important, is
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No Attack CW-L2 DF I-FGSM FGSM
Defense |L2| = 0 |L2| = .0025 |L2| = .0020 |L2| = .0533 |L2| = .0597

No Defense 75.59 10.29 9.78 7.49 18.40

SHIELD 72.11 71.85 71.88 65.63 59.29

JPEG [quality=100] 74.95 74.37 74.41 52.52 44.00
JPEG [quality=90] 74.83 74.43 74.36 55.18 45.12
JPEG [quality=80] 74.23 73.92 73.88 57.86 46.66
JPEG [quality=70] 73.61 73.11 73.17 59.53 47.96
JPEG [quality=60] 72.97 72.46 72.52 60.74 49.33
JPEG [quality=50] 72.32 71.86 71.91 61.47 50.53
JPEG [quality=40] 71.48 71.03 71.05 62.14 51.81
JPEG [quality=30] 70.08 69.63 69.67 62.52 53.51
JPEG [quality=20] 67.72 67.32 67.34 62.43 55.81

MF [window=3] 71.05 70.44 70.42 60.09 51.06
MF [window=5] 58.48 58.19 58.06 53.59 49.71

TVD [weight=10] 69.14 68.69 68.74 62.40 53.56
TVD [weight=20] 71.87 71.44 71.45 61.90 50.26
TVD [weight=30] 72.82 72.34 72.37 60.70 48.18
TVD [weight=40] 73.31 72.90 72.91 59.60 47.07

Table 4.1: Summary of model accuracies (in %) for all defenses: SHIELD [20, 40, 60, 80],
JPEG, median filter (MF), and total variation denoising (TVD); v/s all attacks: Carlini-
Wagner L2 (CW-L2), DeepFool (DF), I-FGSM and FGSM. While all techniques are able to
recover accuracies from CW-L2 and DF attacks with lower perturbation strength, the best
performing settings are from JPEG (in bold font). SHIELD benefits from the combination
of SLQ, vaccination and ensembling, and outperforms all other techniques when facing
high perturbation delivered by I-FGSM and FGSM. We use κ = 0 in CW-L2 and ε = 4 in
FGSM and I-FGSM.

only one part of our desirable solution. Another critical requirement is that our solution be

fast and scalable. Thus, we also compare the runtimes of the image processing techniques.

Our comparison focuses on the most computationally intensive parts of each technique,

ignoring irrelevant overheads (e.g., disk I/O) common to all techniques. All runtimes are

averaged over 3 runs, using the full 50k ImageNet validation images, on a dedicated desktop

computer equipped with an Intel i7-4770K quad-core CPU clocked at 3.50GHz, 4x8GB

RAM, 1TB SSD of Samsung 840 EVO-Series and 2x3TB WD 7200RPM hard disk, running

Ubuntu 14.04.5 LTS and Python 2.7. We used the most popular Python implementations of
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the image processing techniques. We used JPEG and MF from Pillow 5.0, and TVD from

scikit-image.

As shown in Figure 4.5, JPEG is the fastest, spending no more than 107 seconds to

compress 50k images (at JPEG quality 80). It is at least 22x faster than TVD, and 14x faster

than median filter. We tested the speed of the TensorFlow implementation of SHIELD, which

also compresses all images at high speed, taking only 150s.

4.4.3 Black-Box Attack with Vaccination and Ensembling

We now turn our attention to the setting where an adversary has knowledge of the model

being used but does not have access to the model parameters or weights. More concretely,

we vaccinate the ResNet-v2 50 model by retraining on the ImageNet training set and

preprocessing the images with JPEG compression while training. This setup constitutes a

black-box attack, as the attacker only has access to the original model but not the vaccinated

model being used.
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Figure 4.5: Runtime comparison for three defenses: (1) total variation denoising (TVD), (2)
median filter (MF), and (3) JPEG compression, timed using the full 50k ImageNet validation
images, averaged over 3 runs. JPEG is at least 22x faster than TVD, and 14x faster than MF.
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We denote the original ResNet-v2 50 model asM, which the adversary has access to. By

retraining on images of a particular JPEG compression quality q, we transformM toMq,

e.g., for JPEG-20 vaccination, we retrainM on JPEG-compressed images at quality 20 and

obtainM20. When retraining the ResNet-v2 50 models, we used stochastic gradient descent

(SGD) with a learning rate of 5× 10−3, with a decay of 94% over 25× 104 iterations. We

conducted the retraining on a GPU cluster with 12 NVIDIA Tesla K80 GPUs. We trained 8

models from quality 20 through quality 90 in increments of 10 (M20,M30,M40...M90) to

cover a wide spectrum of JPEG qualities. Figure 4.6 shows the results of model vaccination

against FGSM attacks, whose parameter ε ranges from 0 (no perturbation) to 8 (severe

perturbation), in steps of 2. The plots show that retraining the model helps recover more

model accuracy than using JPEG preprocessing alone (compare the unvaccinated gray

dotted curve vs. the vaccinated orange and purple curves in Figure 4.6). We found that a

given modelMq performed best when tested with JPEG-compressed images of the same

quality q.

We tested these models in an ensemble with two different voting schemes. The first

ensemble scheme, denoted asMq × q, corresponds to each modelMq casting a vote on

every JPEG quality q from q ∈ {20, 30, 40, ..., 90}. This has a total cost of 64 votes from

which we select the majority vote. In the second scheme, denoted byMq − q, each model

Mq votes only on q, the JPEG quality it was trained on. This incurs a cost of 8 votes.

Table 4.2 compares the accuracies (against FGSM) and computation costs of these two

schemes with those of SHIELD, which also utilizes an ensemble (M20,M40,M60,M80)

with a total of 4 votes. SHIELD achieves very similar performance as compared to the

vaccinated models, at half the cost when compared toMq − q. Hence, SHIELD offers a

favorable trade-off in terms of scalability with minimal effect on accuracy.
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Figure 4.6: Vaccinating a model by retraining it with compressed images helps recover its
accuracy. Each plot shows the model accuracies when preprocessing with different JPEG
qualities with the FGSM attack. Each curve in the plot corresponds to a different model.
The gray dotted curve corresponds to the original unvaccinated ResNet-v2 50 model. The
orange and purple curves correspond to the models retrained on JPEG qualities 80 and 20
respectively. Retraining on JPEG compressed images and applying JPEG preprocessing
helps recover accuracy in a gray-box attack.

4.4.4 Transferability in Black-Box Setting

In this setup, we evaluated the transferability of attacked images generated using ResNet-v2

50 on ResNet-v2 101 and Inception-v4. The attacked images were preprocessed using

JPEG compression and Stochastic Local Quantization. In Table 4.3, we show that JPEG

compression as a defense does not significantly reduce model accuracies on low perturbation

attacks like DF and CW-L2. For higher-perturbation attacks, the accuracy of Inception-v4

lowers by a maximum of 10%.

Ensemble Cost ε = 0 ε = 2 ε = 4 ε = 6 ε = 8

Mq × q 64 73.90 67.72 60.13 54.44 49.84
Mq − q 8 73.54 67.06 59.86 53.91 49.40
SHIELD 4 72.11 66.30 59.29 53.60 48.63

Table 4.2: Comparison of two ensemble schemes with SHIELD, when defending against
FGSM. Mq × q corresponds to each model Mq voting on each JPEG quality q from
q ∈ {20, 30, 40, ..., 90}. InMq − q, each modelMq votes only on q, the JPEG quality
it was trained on. SHIELD offers a favorable trade-off, providing at least 2x speed-up as
compared to larger ensembles, while delivering comparable accuracies.
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Inc-v4 (80.2%) RN-v2 101 (77.0%)
Attack Defense Accuracy (Qual.) Accuracy (Qual.)

None JPEG 79.05 (100) 76.48 (100)
SLQ 75.90 - 73.70 -

CW-L2 JPEG 79.00 (100) 76.20 (100)
SLQ 75.80 - 73.60 -

DF JPEG 78.91 (100) 76.19 (100)
SLQ 76.29 - 73.70 -

I-FGSM JPEG 74.84 (100) 70.06 (70)
SLQ 73.20 - 69.40 -

FGSM JPEG 71.00 (100) 64.18 (40)
SLQ 70.01 - 64.64 -

Table 4.3: JPEG compression as defense does not reduce model accuracy significantly on
transferred attacks with low perturbation. Adversarial images crafted using the ResNet-v2
50 model are protected using JPEG alone and Stochastic Local Quantization (SLQ), before
being fed into two other models: Inception-v4 (Inc-v4) and ResNet-v2 101 (RN-v2 101).

4.4.5 NIPS 2017 Competition Results

In addition to the experiment results shown above, we also participated in the NIPS 2017

competition on Defense Against Adversarial Attack using a version of our approach that

included JPEG compression and vaccination to defend against attacks “in the wild.” With

only an ensemble of three JPEG compression qualities (90, 80, 70), our entry received a

silver badge in the competition, ranking 16th out of more than 100 submissions.

4.5 Significance and Impact

This work has been making multiple positive impacts on Intel’s research and product

development plans. In this section, we describe such impacts in detail, and also describe

how they may more broadly influence deep learning and cybersecurity. We then discuss our

work’s scope, limitations, and additional practical considerations.
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4.5.1 Software and Hardware Integration Milestones

As seen in Section 4.4, JPEG compression is much faster than other popular preprocessing

techniques; even commodity implementations from Pillow are fast. However, in order to

be deployed into a real defense pipeline, we need to evaluate its computational efficiency

with tighter software and hardware integration. Fortunately, JPEG compression is a widely-

used and mature technique that can be easily deployed in various platforms, and due to its

widespread usage, we can use off-the-shelf optimized software and hardware for such testing.

One promising milestone we reached, utilized Intel’s hardware Quick Sync Video (QSV)

technology: a hardware core dedicated and optimized for video encoding and decoding. It

was introduced with Sandy Bridge CPU microarchitecture and exists currently in various

Intel platforms. From our experiments, JPEG compression by Intel QSV is up to 24

times faster than the Pillow and TensorFlow implementations when evaluated on the same

ImageNet validation set of 50,000 images. This computational efficiency is desirable for

applications that need real-time defense, such as autonomous vehicles. In the future, we

plan to explore the feasibility of our approach on more hardware platforms, such as the Intel

Movidius Compute Stick2, which is a low power USB-based deep learning inference kit.

4.5.2 New Computational Paradigm: Secure Deep Learning

This research has sparked insightful discussion with teams of Intel QSV, Intel Deep Learning

SDK, and Intel Movidius Compute Stick. This work provides opportunities to advance deep

learning software and hardware development to incorporate adversarial machine learning

defenses. For example, almost all defenses incur certain levels of computational overhead.

This may be due to image preprocessing techniques [75, 80], using multiple models for

model ensembles [81], the introduction of adversarial perturbation detectors [74, 79], or

the increase in training time for adversarial training [27]. However, while hardware and

system improvement for fast deep learning training and inference remains an active area of

2https://developer.movidius.com
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research, secure machine learning workloads still receive relatively less attention, suggesting

room for improvement. We believe this will accelerate the positive shift of thinking in the

industry in the near future, from addressing problems like “How do we build deep learning

accelerators?” to problems such as “How do we build deep learning accelerators that are

not only fast but also secure?”. Understanding such hardware implications are important for

microprocessor manufacturers, equipment vendors and companies offering cloud computing

services.

4.5.3 Scope and Limitations

In this work, we focus on systematically studying the benefit of compression on its own. As

myriads of newer and stronger attack strategies are continuously discovered, limitations in

existing, single defenses are revealed. Our approach is not a panacea to defend all possible

(future) attacks. For example, because JPEG compression mainly removes imperceptible

noises, SHIELD is not the best defense against ShapeShifter attack introduced in the previous

chapter, which uses large and noticeable perturbations. We do not expect or intend for

SHIELD to be used in isolation of other techniques. Rather, our methods should be used

together with other defense techniques, to potentially develop an even stronger defense.

Using multi-layered protection is a proven, long-standing defense strategy that has been

pervasive in security research and in practice [45, 82]. Fortunately, since our approach

primarily involves preprocessing, it is easy to integrate it into many other defense techniques

such as adversarial retraining.

4.6 Related Work

Due to intriguing theoretical properties and practical importance, there has been a surge

in the number of papers in the past few years attempting to find countermeasures against

adversarial attacks. These include detecting adversarial examples before performing classifi-

cation [74, 36], modifying network architecture and the underlying primitives used [83, 84,
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85], modifying the training process [27, 72], and using preprocessing techniques to remove

adversarial perturbations [86, 73, 80, 75]. The preprocessing approach is most relevant

to our work. Below, we describe two methods in this category—median filter and total

variation denoising, which we compared against in Section 4.4. We then discuss some recent

attacks that claim to break preprocessing defenses.

4.6.1 Image Preprocessing as Defense

Median Filter. This method uses a sliding window over the image and replaces each pixel

with the median value of its neighboring pixels to spatially smooth the image. The size of

the sliding window controls the smoothness, for example, a larger window size produces

blurrier images. This technique has been used in multiple prior defense works [75, 79].

Total Variation Denoising. The method is based on the principle that images with higher

levels of (adversarial) noise tend to have larger total variations: the sum of the absolute

difference between adjacent pixel values. Denoising is performed by reducing the total

variation while keeping the denoised image close to the original one. A weighting parameter

is used as a trade-off between the level of total variation and the distance from the original

image. Compared with median filter, this method is more effective at removing adversarial

noise while preserving image details [75].

4.6.2 Attacks against Preprocessing Techniques

One reason why adding preprocessing steps increases attack difficulty is that many prepro-

cessing operations are non-differentiable, thus restricting the feasibility of gradient-based at-

tacks. In JPEG compression, the quantization in the frequency domain is a non-differentiable

operation.

Shin and Song [77] propose a method that approximates the quantization in JPEG with

a differentiable function. They also optimize the perturbation over multiple compression

qualities to ensure an adversarial image is robust at test time. We evaluated their attacking
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strategy against SHIELD under different threat models [87]. We found that SHIELD performs

best for defending against targeted attacks in the gray-box setting where the attacker does

not know all the models used in the ensemble.

Backward Pass Differentiable Approximation [71] is another potential approach to

bypass non-differentiable preprocessing techniques. To attack JPEG preprocessing, it

performs forward propagation through the preprocessing and DNN combination but in the

backward pass, the method differentiates with respect to the JPEG compressed image. This

is based on the intuition that the compressed image should look similar to the original one,

so the operation can be approximated by the identity function. However, we believe this

assumption only holds for higher compression qualities. Since the work did not report the

compression quality used in the experiments, the conclusion remains open for debate.

4.7 Conclusion

In this work, we highlighted the urgent need for practical defense for deep learning models

that can be readily deployed. We drew inspiration from JPEG image compression, a well-

known and ubiquitous image processing technique, and placed it at the core of our new deep

learning model defense framework: SHIELD. Since many attack strategies aim to perturb

image pixels in ways that are visually imperceptible, the SHIELD defense framework utilizes

JPEG compression to effectively “compress away” such pixel manipulation. SHIELD immu-

nizes DNN models from being confused by compression artifacts by “vaccinating” a model:

re-training it with compressed images, where different compression levels are applied to gen-

erate multiple vaccinated models that are ultimately used together in an ensemble defense.

Furthermore, SHIELD adds an additional layer of protection by employing randomization at

test time by compressing different regions of an image using random compression levels,

making it harder for an adversary to estimate the transformation performed. This novel

combination of vaccination, ensembling and randomization makes SHIELD a fortified multi-

pronged defense, while remaining fast and successful without requiring knowledge about
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the model. We conducted extensive, large-scale experiments using the ImageNet dataset,

and showed that our approaches eliminate up to 98% of gray-box attacks delivered by the

recent, strongest attacks. To ensure reproducibility of our results, we have open-sourced our

code on GitHub3.

Although we only tested SHIELD for the image classification task, it is possible to use

SHIELD for other computer vision tasks, such as object detection. However, as mentioned

in section 4.5.3, SHIELD works best in defending against perturbations that are visually

imperceptible. When defending against large and noticeable perturbations generated by

ShapeShifter, SHIELD needs to use aggressive compression, which can hurt the benign

accuracy. In the next chapter, we propose a different defense called UNMASK that uses

additional domain knowledge to protect DNNs.

3https://github.com/poloclub/jpeg-defense
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CHAPTER 5

UNMASK: ADVERSARIAL DETECTION AND DEFENSE IN DEEP LEARNING

THROUGH BUILDING-BLOCK KNOWLEDGE EXTRACTION

Shield (Chapter 4) is best suited for defending against imperceptible perturbations. To

better defend against ShapeShifter-style attacks (Chapter 3), we further develop UNMASK,

a knowledge-based adversarial detection and defense framework. The core idea behind

UNMASK is to protect models by verifying that an image’s predicted class (e.g., “bird”)

contains the expected building blocks (e.g., beak, wings, eyes). For example, if an image is

classified as “bird”, but the extracted building blocks are wheel, seat and frame, the model

may be under attack. UNMASK detects such attacks and defends the model by rectifying

the misclassification, re-classifying the image based on its extracted building blocks. Our

extensive evaluation shows that UNMASK (1) detects up to 92.9% of attacks, with a false

positive rate of 9.67% and (2) defends the model by correctly classifying up to 92.24% of

adversarial images produced by the state-of-the-art Projected Gradient Descent attack in the

gray-box setting. UNMASK is architecture agnostic and fast.

5.1 Introduction

Adversarial attacks on deep neural networks highlight a critical issue with modern computer

vision systems: these deep learning systems do not distinguish objects in ways that humans

would [88, 89]. For example, when humans see a bicycle, we see its handlebar, frame,

wheels, chains, and pedals (Fig. 5.1, top). Through our visual perception and cognition,

we synthesize these detection results with our knowledge to determine that we are actually

seeing a bicycle. However, when an image of a bicycle is adversarially perturbed to fool

the model into misclassifying it as a bird (by manipulating pixels, as in Fig. 5.1, bottom),

to humans, we still see the bicycle’s building-block features (e.g., handlebar). On the
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Figure 5.1: UNMASK framework overview. UNMASK combats adversarial attacks (in
red) by extracting building-block knowledge (e.g., wheel) from the image (top, in green),
and comparing them to expected features of the classification (“Bird” at bottom) from the
unprotected model. Low feature overlap signals attack. UNMASK rectifies misclassification
using the image’s extracted features. Our approach detects 92.9% of gray-box attacks (at
9.67% false positive rate) and defends the model by correctly classifying up to 92.24% of
adversarial images crafted by the state-of-the-art Projected Gradient Descent attack.

other hand, the attacked model fails to perceive these building blocks, and is tricked into

misclassifying the image. How do we incorporate this intuitive detection capability natural

to human beings, into deep learning models to protect them from harm?

There has been a rich body of research studying detection and defense for deep learning,

including adversarial training [3, 90], distillation [72] and image pre-processing [6, 73].

However, these approaches have not explicitly considered incorporating the extraction of

building-block knowledge from images to protect deep learning models. Furthermore, re-

search has shown that optimization based learning methods often fail to learn representations

of objects that strongly align with humans’ intuitive perception of those objects [27]. To fill

this critical research gap in adversarial machine learning, we propose UNMASK (Figure 5.1),

a novel method to protect deep learning models from adversarial perturbations by extracting
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building-block knowledge from images.

5.1.1 Contributions

1. Building-Block Knowledge Extraction. We contribute the major idea that building-

block knowledge extraction offers a powerful, explainable and practical method of detecting

and defending against adversarial perturbations in deep learning models. Building-block

knowledge extraction extracts higher-level information out of images—extending the core

concept of feature extraction that is central to numerous successful data mining techniques.

A significant advantage of our proposed knowledge extraction concept is that while an

attacker may be able to manipulate the class label by subtly changing pixel values, it is

much more challenging for such perturbation to simultaneously manipulate all the individual

features that jointly compose the image. We demonstrate that by adapting the Mask R-CNN

architecture [91], we can effectively extract higher-level building-block knowledge feature

contained in images to detect and defend against adversarial attacks.

2. UNMASK: Detection & Defense Framework. Building on our core concept of building-

block knowledge extraction, we propose UNMASK as a framework to detect and defeat

adversarial image perturbation by quantifying the similarity between the image’s extracted

features with the expected features of its predicted class. To the best of our knowledge,

UNMASK is the first framework that utilizes the concept of building-block knowledge

extraction to combat adversarial perturbations.

We illustrate how UNMASK works in Figure 5.1, where a bicycle image has been

perturbed such that it would fool an unprotected model into misclassifying it as a bird. For a

real “bird” image, we would expect to see features such as beak, wing and tail. However,

UNMASK would (correctly) extract bike features: wheel, frame, and pedals. UNMASK

quantifies the similarity between the extracted features (of a bike) with the expected features

(of a bird), in this case zero. This comparison gives us the dual ability to both detect
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adversarial perturbations by selecting a similarity threshold for which we classify an image

as adversarial, and to defend the model by predicting a corrected class that best matches

the extracted features. Since we are presenting a new category of detection and defense

research, our results are the first presented in this line of research.

3. Extensive Evaluation. We evaluate UNMASK’s effectiveness using the large UN-

MASK DATASET that we curated, with over 18k images in total. We test multiple factors,

including: 3 attacks, including the state-of-the-art Projected Gradient Descent (PGD) attack;

2 popular CNN architectures, VGG16 [92] and ResNet50 [93]; and multiple combinations

of varying numbers of classes and feature overlaps. Experiments demonstrate that our

approach detects up to 92.9% of gray-box attacks with a false positive rate of 9.67% and (2)

defends the model by correctly classifying up to 92.24% of adversarial images crafted by

PGD. (Section 5.3)

To enhance readability of this chapter, we list and define the terminology used throughout

the chapter in Table 5.1. We use the terms “adversarial attack” and “adversarial perturbation”

interchangeably to refer to attacks on images. We abbreviate “building-block features” as

“features”, and “building-block knowledge extraction model” (K) as “building-block model,”

when their meanings are clear from context.

5.2 UNMASK: Detection and Defense Framework

In this section, we present our building-block knowledge extraction based approach to

combating adversarial perturbations (Figure 5.1). The objective is to defend a vulnerable

deep learning model M (Figure 5.1, bottom) using our UNMASK defense framework D,

where the adversary has full access to M but is unaware of the defense strategy D. This

constitutes a gray-box attack on the overall classification pipeline [6].

In Section 5.2.1, we provide the intuition of why building-block knowledge extraction

may be well suited for combating adversarial perturbations. Then in Section 5.2.2, we
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Symbol Definition

X Training images
Y Training classification labels
S Training building-block segmentation masks
C Set of possible classes
V Class-feature matrix
x Test image
ŷ class prediction from model M

K Building-block knowledge extraction model
M Unprotected model
D UNMASK Defense framework
fe Extracted building-block features from image, by K
fa Expected features of image classified by M
J(fe, fa) Jaccard similarity between fe and fa
s similarity score
d distance score (1-s)
t Adversarial-benign classification threshold
z Determination of adversarial or benign
p Class prediction, by UNMASK

Table 5.1: Symbols and Definition

describe how our UNMASK framework leverages this knowledge extraction concept as a

new way for detection and defense. We formally define the UNMASK detection & defense

problem as:

Given:

• Training imagesX , which contains corresponding classification labels Y and building-

block segmentation masks S.

• Set of classes C (e.g., bike,...) and class feature matrix V (see Table. 5.2). Each class

c ∈ C is associated with features V [c] (e.g., wheel,...).

Output:

• Detection: adversarial or benign determination z ∈ {0, 1}

• Defense: predicted class label p ∈ C
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5.2.1 Intuition: Protection via Building-Block Knowledge Extraction

Our main idea to combat adversarial image perturbations with respect to an input image

x, is to extract building-block features fe using a building-block knowledge extraction

model K, fe = K(x) (see Figure 5.2 for an example). These extracted building blocks, and

their collective composition, forges a layer of protection around the model by disrupting

the traditional pixel-centric attacks [4, 94, 95]. Our building-block defensive layer forces

the adversary to now solve a more complex problem of manipulating both the class label

and all of the image’s constituent parts. For example, in Figure 5.2 the attacker needs to

fool the defensive layer into misclassifying the bike as a bird by changing the class label

and manipulating the bike building-block features (e.g., wheel, seat, handlebar) into bird

features (e.g., beak, wing, tail).

5.2.2 Overview of UNMASK

Leveraging the concept of building-block knowledge extraction, we introduce UNMASK as

a detection and defense framework (D). Figure 5.1 summarizes how our method works at

the high level, for an unprotected model M (Figure 5.1, bottom). The adversary crafts an

attacked image by carefully manipulating its pixel values using an adversarial technique

(e.g., Projected Gradient Descent [4]). This attacked image then fools model M into

misclassifying the image, as shown in Figure 5.1. To guard against this kind of attack on

M , we use our UNMASK framework D in conjunction with the building-block knowledge

extraction model K (Figure 5.1, top). Model K processes the same image, which may be

benign or attacked, and extracts the building-block features from the image to compare to the

images’ expected features. Figure 5.2 shows an example, where an attacked bike image has

fooled the unprotected model M to classify it as a bird. We would expect the building-block

features to include head, claw, wing, and tail. However, from the same (attacked) image,

UNMASK’s building-block model K extracts wheels, handle and seat. Comparing the set of

expected features and the actual extracted features (which do not overlap in this example),
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Figure 5.2: UNMASK guards against adversarial image perturbation by extracting building-
block features from an image and comparing them to its expected features using Jaccard
similarity. If the similarity is below a threshold, UNMASK deems the image adversarial and
predicts its class by matching the extracted features with the most similar class.

UNMASK determines the image was attacked, and predicts its class to be bike based on the

extracted features.

5.2.3 Technical Walk-Through of UNMASK

Now, we detail UNMASK’s technical operations and algorithm for detection and defense

(Algorithm 1). Its major steps are:

1. Classify input. Given an input image x, UNMASK obtains its class prediction ŷ from

(unprotected) model M , i.e., ŷ = M(x). At this point, UNMASK does not know if image x

is adversarial or not.

2. Extract building-block features. UNMASK extracts x’s features fe using building-block

knowledge extraction model K, i.e., fe = K(x). Armed with these features fe, UNMASK

can utilize them to both detect if model M is under attack, and to rectify misclassification

caused by the attack. We considered multiple approaches for K, and decided to adopt

Mask R-CNN for its ability to leverage image segmentation masks to learn and identify
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coherent image regions that closely resemble building-blocks that would appear semantically

and visually meaningful to humans [91]. Different from conventional image classification

models or object detectors, the annotations used to train our building-block extractor K are

segmented object parts instead of the whole objects. For example, for the wheel feature, an

instance of training data would consist of a bike image and a segmentation mask indicating

which region of that image represents a wheel. Technically, this means K uses only a part of

an image, and not the whole image, for training. Furthermore, while an image may consist

of multiple image parts, K treats them independently.

3. Detect attack. UNMASK measures the similarity between the set of extracted features

fe and the set of expected features of ŷ (obtained through matrix V [ŷ]), by calculating the

Jaccard similarity score s = J(fe, fa). If similarity score s is greater than the threshold

parameter t, input image x is deemed benign, otherwise adversarial. Adjusting t would

allow us to assess the trade-off between sensitivity and specificity, which we describe in

detail in Section 5.3.

4. Defend and rectify. Determining an image to be adversarial also means that model M

is under attack and is giving unreliable classification output. Thus, we need to rectify the

misclassification. UNMASK accomplishes this by comparing the extracted features fe to

every set of class features in V , outputting class ŷ that contains the highest feature similarity

s, 0 ≤ s ≤ 1.

5.3 Evaluation

We extensively evaluate UNMASK’s effectiveness in defending and detecting adversarial

perturbations, using:

• 3 attacks, including the state-of-the-art Projected Gradient Descent (PGD) attack;

• 2 popular CNN architectures, VGG16 [92] and ResNet50 [93], as unprotected models

M ; and
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• multiple combinations of varying numbers of classes and feature overlaps.

To the best of our knowledge, this work proposes the first building-block knowledge

extraction to detect and defend against adversarial perturbation for deep learning. We present

the first results in this new line of work.

5.3.1 Experiment Setup

Software and Hardware

We develop all experiment code in Python 3.6 on Linux. We use open-source libraries Keras,

Tensorflow, Foolbox [96] and Matterport [97]; and GPUs that include two Nvidia Titan X’s,

a Titan RTX and a cluster of 24 K40s.

Adversarial Attacks

We evaluated UNMASK against three attacks, where we detail the parameter selection below:

• DeepFool (DF) L2: a non-parametric attack that optimizes the amount of perturbation

required to misclassify an image[98]; we set the update steps to 100.

• Fast Gradient Sign (FGSM): we set ε = 8, 16—two common parameters for this

attack [3].

• Projected Gradient Descent with Random Start (PGD): PGD is the current strongest

first-order attack [4]. Its key parameter ε represents how much each pixel may be changed

by PGD in intensity, e.g., ε = 4 means changing up to 4 units of intensity (out of 255). It

is common to evaluate up to a value of 16 [3, 6] (as perturbation becomes visible) with a

stepsize of 0.01 and 40 iterations.

UNMASK DATASET

We curated the UNMASK DATASET for our evaluation, which consists of three component

datasets—PASCAL-Part, PASCAL VOC 2010 and a subset of ImageNet—as seen in Tables
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5.3 and 5.4. The impetus for our curation is to (i) collect all of the data used in our evaluation

as a single source to promote ease of reproducibility by our research community, and (ii) to

increase the number of images available for evaluating the performance of the deep learning

models and the UNMASK defense framework. We designed multiple class sets with varying

number of classes and feature overlap (e.g., CS3a, in Table 5.2, bottom; and Table 5.5), to

study how they would affect detection and defense effectiveness. We further discuss the

utilization of the data in Sections 5.3.1 and 5.3.1 below.

Training Building-Block Model K

As illustrated in Figure 5.2 and Section 5.2.3, the building-block knowledge extraction

model K takes an image as input (e.g., bike) and outputs a set of building-block features

(e.g., wheel,...). To trainK, we use the PASCAL-Part dataset [99], which consists of 180,423

feature segmentation masks over 9,323 images across the 44 building-block features. The

original dataset contains very fine-grained features, such as 18 types of “legs” (e.g., right

front lower leg, left back upper leg), while for our purposes we only need the abstraction

of “leg”. Therefore, we combined these fine-grained features into more generalized ones

(shown as rows in Table 5.2).

We followed a similar procedure described in [97], training K for 40 epochs. We use a

ratio of 80/10/10 for training, validating and testing the model respectively (see Table 5.3).

Our work is the first adaptation of Mask R-CNN model for the PASCAL-Part dataset. As

such, there are no prior results for comparison. We computed model K’s mAP (mean

Average Precision), which estimates K’s ability to extract features. The model attains an

mAP of 0.56, in line with Mask R-CNN on other datasets [99]. Model K processes up to

4 images per second with a single Nvidia Titan X, matching the speeds reported in [97].

This speed can be easily raised through parallelism by using more GPUs. As building-block

extraction is the most time-intensive process of the UNMASK framework, its speed is

representative of the overall speed of the framework.
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Figure 5.3: UNMASK’s effectiveness in detecting detecting three attacks: DeepFool, FGSM
(ε=8,16), and PGD (ε=8,16). UNMASK’s protection may not be affected strictly based on
the number of classes. Rather, an important factor is the feature overlap among classes.
UNMASK provides better detection when there are 5 classes (dark orange; 23.53% overlap)
than when there are 3 (light blue; 50% overlap). Keeping the number of classes constant and
varying their feature overlap also supports our observation about the role of feature overlap
(e.g., CS3a at 6.89% vs. CS3b at 50%).

Training Unprotected Model M

As described in Section 5.2, M is the model under attack, and is what UNMASK aims to

protect. Our evaluation studies two popular deep learning architectures — VGG16 [92] and

ResNet50 [93] — however, UNMASK supports other architectures. Training these models

from scratch is generally computationally expensive and requires large amount of data. To

reduce such need for computation and data, we adopt the approach described in [97], where

we leverage a model pre-trained on ImageNet images, and replace its dense layers (i.e., the

fully connected layers) to enable us to work with various class sets (e.g., CS3a) In detail,

the training process for M is as follows:

1. Load weights from model pre-trained on ImageNet data.

2. Replace dense layers of the model with new dense layers, allowing us to specify a

variable number of classes.

3. Freeze all of the model weights except for the newly-added dense layers, allowing us

to preserve the ImageNet features contained in the early layers while training the new

dense layers on our data.
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We chose to train the new dense layers using the PASCAL VOC 2010 dataset [100] for

its desirable connection to the Pascal-Part dataset — PASCAL-Part uses the images from

PASCAL VOC and adds segmentation masks for those images to describe image parts. Thus,

we can readily ensure that the classes of model M and model K are at parity. In practice,

other datasets containing the classes from Table 5.2 may also be used. Refer to Table 5.3,

for a full breakdown of the data used for training and evaluation.

5.3.2 Evaluating UNMASK Defense and Detection

The key research questions that our evaluation aims to address is how effectively UNMASK

can detect adversarial images, and defend against attacks by rectifying misclassification

through inferring the actual class label. Most image datasets containing the classes from

Table 5.2 may be used. However, we use ImageNet data (see Table 5.4) as it matches our

class sets and has a large number of available images. We note that the evaluation is focused

on images containing a single-class (i.e., no “person” and “car” in same image) as this

allows for a more controlled environment.

Evaluating Detection of Attacks

To evaluate UNMASK’s effectiveness in detecting adversarial images against attacks (DF,

FGSM, PGD), we use a contamination level of 0.5—meaning half of the images are benign

and the other half are adversarial. Figure 5.3 summarizes UNMASK’s detection effectiveness,

using receiver operating characteristics (ROC) curves constructed by varying the adversarial-

benign threshold t. The curves show UNMASK’s performances across operating points as

measured by the tradeoff between true positive (TP) and false positive (FP) rates.

An interesting characteristic of UNMASK’s protection is that its effectiveness may

not be affected strictly based on the number of classes in the dataset as in conventional

classification tasks. Rather, an important factor is how much feature overlap there is among

the classes. The ROC curves in Figure 5.3 illustrate this phenomenon, where UNMASK
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provides better detection when there are 5 classes (Figure 5.3, dark orange) than when there

are 3 classes (light blue). As shown in Table 5.5, the 5-class setup (CS5a—dark orange)

has a feature overlap of 23.53% across the 5 classes’ 34 unique features, while the 3-class

setup (CS3b—light blue) has 50% overlap. Keeping the number of classes constant and

varying their feature overlap also supports this observation about the role of feature overlap

(e.g., CS3a vs. CS3b in Figure 5.3). We call each combination of class count and feature

overlap a “class set,” abbreviated as “CS.” CS3 thus means a class set with 3 classes. CS3a

and CS3b have the same number of classes, with different feature overlap. Table 5.4 details

the number of images used across the four class sets we investigated.

For a given feature overlap level, UNMASK performs similarly across attack methods.

When examining feature overlap 6.89% (CS3a) on VGG16, UNMASK attains an AUC

scores of 0.952, 0.96, 0.959, 0.951 and 0.949 on attacks DF, FGSM (ε=8,16) and PGD

(ε=8,16), respectively. This result is significant because it highlights the ability of UNMASK

to operate against multiple strong attack strategies to achieve high detection success rate. As

a representative ROC operating point for the attack vectors, we use PGD (ε=8), on feature

overlap 6.89%. In this scenario, UNMASK is able to detect up to 92.67% of attacks with

a false positive rate of 9.67%. We believe that performing well in a low feature overlap

environment is all that is required. This is because in many circumstances it is not important

to distinguish the exact true class (e.g., dog or cat) of the image, but whether the image is

being completely misclassified (e.g., car vs. person). Therefore, in practice, classes can be

selected such that feature overlap is minimized.

Evaluating Defense and Rectification

Detecting an attack is only the first step of UNMASK’s protection. It also rectifies the

misclassification by comparing the extracted features fe to every set of class features in V ,

and outputting class c that contains the highest feature similarity. As the evaluation focus is

on rectifying misclassification, our test images have a contamination level of 1—meaning
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all of the images are adversarial. We evaluate UNMASK’s rectification capability on:

• 2 neural network models (VGG16, ResNet50)

• 3 attacks (DF, FGSM, PGD)

• 4 class sets (CS3a, CS3b, CS5a, CS5b)

Table 5.6 shows that UNMASK is agnostic to the deep learning model being protected,

as measured by the ability of UNMASK to infer an adversarial images’ actual class. This

can be seen when comparing the results across each attack on VGG16 and ResNet50.

In addition, we find that the results from Table 5.6 support our observation that feature

overlap is the dominant factor in determining the effectiveness of UNMASK, as opposed

to the number of classes. When examining DeepFool on class set CS3b (3 classes; feature

overlap 50%), UNMASK is able to determine the underlying class 85.62% of the time.

At class set CS5a (5 classes; feature overlap 23.53%) we obtain an accuracy of 91.11%,

highlighting the important role that feature overlap plays in UNMASK’s defense ability.

It is interesting to note that FGSM is more effective at attacking our UNMASK defense

than the other two attacks. We believe this is due to the single-step attacks’ better transfer-

ability, which has been reported in prior work [3]. Given this transferability property of

FGSM, we believe UNMASK provides a significant defense.

We also mention the fact that UNMASK’s accuracy can be higher than the un-attacked

model M due to the fact that, in some instances, model K learned a better representation of

the data through the feature masks as opposed to model M , which trained on the images

directly. This occurs on multiple occasions in Table 5.6.

5.4 Conclusion & Discussion

In this work, we have introduced a new fundamental concept of building-block knowledge

extraction, and showed how it protects deep learning models against adversarial attacks

through the UNMASK detection and defense framework. We draw inspiration from humans’
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natural ability to make robust classification decisions through the detection and synthesis of

contextual building-block knowledge contained in images. We designed and developed our

UNMASK framework to simulate such capability, so it can detect adversarial pixel-centric

manipulations targeting a deep learning model, and defend the model against attacks by

rectifying the classification. Through extensive evaluation on large-scale real-world image

data, we showcase the merits of our ideas through UNMASK’s ability to detect up to 92.9%

of attacks with a false positive rate of 9.67% and defend deep learning models by correctly

classifying up to 92.24% of adversarial images in the gray-box scenario. Our proposed

method is fast and architecture-agnostic.

In this work, we direct our efforts to studying the efficacy of UNMASK and the concept

of building-block knowledge extraction on their own. As myriads of newer and stronger

attack strategies are continuously discovered, our approach is not a panacea to defend

all possible (future) attacks, and we do not intend for it to be used in isolation of other

techniques. Rather, we believe that detection and defense strategies should be combined.

We expect our approach to be one of multiple techniques that are used in concert to provide

comprehensive protection. Multi-pronged protection is a proven, long-standing defense

strategy pervasive in security research and in practice [82, 45]. Fortunately, our proposed

technique can be readily integrated with many existing techniques, as it operates in parallel

to the deep learning model that it aims to protect (see Figure 5.1).

We note that UNMASK has the potential vulnerability to attacks that simultaneously

target and manipulate all building-block features, e.g., changing every “bike” parts in a

bike image, into “bird” parts (bike wheel→bird wing; bike handlebar→bird tail). Such

simultaneous, multi-part attack could be challenging to formulate and execute. To the best

of our knowledge, we have not yet encountered it in research or practice.

Future research directions include extending UNMASK to the object detection task. That

is, we protect an object detector with an auxiliary detector that detects object parts. Such

defense has the potential to mitigate ShapeShifter-style attacks in the black-box or gray-box
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settings. We did not evaluate UNMASK directly against ShapeShifter because ShapeShifter

currently only works in the white-box setting and has limited black-box transferability. We

also want to improve UNMASK by reducing the dependency on object part labeling.
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Algorithm 1: UNMASK

Input: Training images X , labels Y , segmentation masks S, set of possible classes C,
attribute matrix V , threshold t, test image x

Result: adversarial prediction z ∈ {0, 1}, predicted class p

Train unprotected classification model M :
M = NeuralNet(X , Y );
ŷ = M(x);

Train building-block extraction model K:
K = Mask-RCNN(X , S);
fe = K(x); (extracted building blocks)
fa = V [ŷ]; (expected building blocks)

Detection:
s = J(fe, fa); d = 1− s;

z =

{
0 (benign), if d < t
1 (adversarial), if d ≥ t

Defense:

p =

{
ŷ, if z = 0
argmin
c∈C

J(fe, V [c]), if z = 1

return z, p;
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with varying levels of feature overlap. 78



Setup PASCAL-Part PASCAL VOC 2010

Model Classes Train Val Test Train Val Test

K 44 7,457 930 936 - - -

M
CS3a - - - 1,750 350 1,400
CS3b - - - 2,104 421 1,684
CS5a - - - 2,264 452 1,812
CS5b - - - 2,501 500 2,001

Table 5.3: Number of images used in training models K and M .

Defense Detection

Class Set DF FGSM PGD All Attacks

CS3a 3,485 2,823 3,494 3,494
CS3b 4,749 4,161 4,764 4,764
CS5a 5,827 5,252 5,849 5,849
CS5b 6,728 5,883 6,747 6,747

Table 5.4: Number of ImageNet images used to evaluate UNMASK. Only the images that
can be successfully perturbed by the attack are used, thus the variations in numbers. We
report values for PGD and FGSM with ε=16. The numbers for ε=8 are similar.

Class Set Classes Unique Parts Overlap

CS3a 3 29 6.89%
CS3b 3 18 50.00%
CS5a 5 34 23.53%
CS5b 5 34 29.41%

Table 5.5: Four class sets investigated in our evaluation, with varying number of classes and
feature overlap.
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Model M Class Set Overlap No Attk DeepFool (No Def) DeepFool FGSM PGD

VGG16
CS3a 6.89% 87.00 5.13 94.33 73.44 89.89
CS3b 50.00% 89.13 3.47 85.62 60.11 75.19
CS5a 23.53% 80.35 3.91 91.11 65.86 82.65
CS5b 29.41% 81.36 3.04 87.17 62.88 77.02

ResNet50
CS3a 6.89 86.64 4.51 95.04 74.42 90.81
CS3b 50.00 85.75 3.28 86.12 66.71 78.55
CS5a 23.53 80.35 3.91 91.11 65.86 82.65
CS5b 29.41 79.91 3.33 87.57 65.19 80.01

Table 5.6: UNMASK’s accuracies (in %) in countering three attacks: DeepFool, FGSM, and
Projected Gradient Descent (PGD). We test two popular CNN architectures, VGG16 and
ResNet50, as unprotected model M , with four class sets with varying numbers of classes
and feature overlap. We use ε = 16 for FGSM and PGD in this experiment. We show the
models’ accuracies (1) when not under attack (“No Attk” column); (2) attacked without
defense (“DeepFool (No Def)”); for both FGSM and PGD, the accuracies drop to 0 without
defense and are omitted in this table; and (3) attacked and defended by UNMASK (the last
three columns).
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Part II

Theoretically-Principled Defense via

Game Theory and ML
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OVERVIEW

Most non-trivial security problems require some kind of decision making and resource

allocation. For example, a company that wants to implement security controls with a limited

budget needs to make trade-offs in its deployment. I modeled this problem as a two-player

zero-sum game between a defender and an attacker, and introduced a novel solution concept

called diversified mixed strategy (Chapter 6).

Inspired by the proverb “Don’t put all your eggs in one basket,” my new solution concept

compels players to employ a “diversified” strategy that does not place too much weight

on any one action. Furthermore, by leveraging the deep connection between game theory

and boosting, we develop a communication-efficient distributed boosting algorithm with

strong theoretical guarantees (Chapter 7) in the agnostic learning setting where the data can

contain arbitrary noise. Our algorithm achieves exponential improvement in communication

complexity over prior work and solves an open problem in distributed learning.
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CHAPTER 6

DIVERSIFIED STRATEGIES FOR MITIGATING ADVERSARIAL ATTACKS IN

MULTIAGENT SYSTEMS

In this chapter we consider online decision-making in settings where players want to guard

against possible adversarial attacks or other catastrophic failures. To address this, we

propose a solution concept in which players have an additional constraint that at each time

step they must play a diversified mixed strategy: one that does not put too much weight

on any one action. This constraint is motivated by applications such as finance, routing,

and resource allocation, where one would like to limit one’s exposure to adversarial or

catastrophic events while still performing well in typical cases. We explore properties of

diversified strategies in both zero-sum and general-sum games, and provide algorithms for

minimizing regret within the family of diversified strategies as well as methods for using

taxes or fees to guide standard regret-minimizing players towards diversified strategies. We

also analyze equilibria produced by diversified strategies in general-sum games. We show

that surprisingly, requiring diversification can actually lead to higher-welfare equilibria,

and give strong guarantees on both price of anarchy and the social welfare produced by

regret-minimizing diversified agents. We additionally give algorithms for finding optimal

diversified strategies in distributed settings where one must limit communication overhead.

6.1 Introduction

A common piece of advice when one needs to make decisions in the face of unknown future

events is “Don’t put all your eggs in one basket.” This is especially important when there

can be an adversarial attack or catatrophic failure. We consider game-theoretic problems

from this perspective, design online learning algorithms with good performance subject to

such exposure-limiting constraints on behavior, and analyze the effects of these constraints
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Figure 6.1: For ε ∈ [ 1
n
, 1], we define a probability distribution P to be ε-diversified if

P (i) ≤ 1
εn

for all i. A distribution can be diversified through Bregman projection into the set
of all ε-diversified distributions. A mixed strategy determined by a diversified distribution is
called a diversified (mixed) strategy. We explore properties of such diversified strategies in
both zero-sum and general-sum games as well as give algorithmic guarantees.

on the expected value obtained (in zero-sum games) and the overall social welfare produced

(in general-sum games).

As an example, consider a standard game-theoretic scenario: an agent must drive from

point A to point B and has n different routes it can take. We could model this as a game M

where rows correspond to the n routes, columns correspond to m possible traffic patterns,

and entry M(i, j) is the cost for using route i under traffic pattern j. However, suppose the

agent is carrying valuable documents and is concerned an adversary might try to steal them.

In this case, to reduce the chance of this happening, we might require that no route have

more than (say) 10% probability. The agent then wants to minimize expected travel time

subject to this requirement. Or in an investment scenario, if rows correspond to different

investments and columns to possible market conditions, we might have an additional worry

that perhaps one of the investment choices is run by a crook. In this case, we may wish to

restrict the strategy space to allocations of funds that are not too concentrated.

To address such scenarios, for ε ∈ [ 1
n
, 1] let us define a probability distribution (or

allocation) P to be ε-diversified if P (i) ≤ 1
εn

for all i. For example, for ε = 1
n

this is no

restriction at all, for ε = 1 this requires the uniform distribution, and for intermediate values

of ε this requires an intermediate level of diversification. We then explore properties of such
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diversified strategies in both zero-sum and general-sum games as well as give algorithmic

guarantees.

For zero-sum games, define vε to be the minimax-optimal value of the game in which

the row player is restricted to playing ε-diversified mixed strategies. Natural questions

we address are: Can one design adaptive learning algorithms that maintain ε-diversified

distributions and minimize regret within this class so they never perform much worse than

vε? Can a central authority “nudge” a generic non-diversified regret-minimizer into using

diversified strategies via fines or taxes (extra loss vectors strategically placed into the event

stream) such that it maintains low-regret over the original sequence? And for reasonable

games, how much worse is vε compared to the non-diversified minimax value v? We also

consider a dual problem of producing a strategy Q for the column player that achieves value

vε against all but an ε fraction of the rows (which an adversary can then aim to attack).

One might ask why not model such an adversary directly within the game, via additional

columns that each give a large loss to one of the rows. The main reason is that these would

then dominate the minimax value of the game. (And they either would not have values

within the usual [0, 1] range assumed by regret-minimizing learners, or, if they were scaled

to lie in this range, they would cause all other events to seem roughly the same). Instead, we

want to consider learning algorithms that optimize for more common events, while keeping

to the constraint of maintaining diversified strategies. We also remark that one could also

make diversification a soft constraint by adding a loss term for not diversifying.

We next consider general-sum games, such as routing games and atomic congestion

games, in which k players interact in ways that lead to various costs being incurred by

each player. We show that surprisingly, requiring a player to use diversified strategies can

actually improve its performance in equilibria in such games. We then study the ε-diversified

price of anarchy: the ratio of the social cost of the worst equilibrium subject to all players

being ε-diversified to the social cost of the socially-best set of ε-diversified strategies. We

show that in some natural games, even requiring a small amount of diversification can
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dramatically improve the price of anarchy of the game, though we show there also exist

games where diversification can make the price of anarchy worse. We also bring several

threads of this investigation together by showing that for the class of smooth games defined

by Roughgarden [101], for any diversification parameter ε ∈ [ 1
n
, 1], the ε-diversified price

of anarchy is no worse than the smoothness of the game, and moreover, players using

diversified regret-minimizing strategies will indeed approach this bound. Thus, we get

strong guarantees on the quality of interactions produced by self-interested diversified play.

Finally, we consider how much diversification can hurt optimal play, showing that in random

unit-demand congestion games, diversification indeed incurs a low penalty.

Lastly, we consider an information-limited, distributed, “big-data” setting in which the

number of rows and columns of the matrix M is very large and we do not have it explicitly.

Specifically, we assume the n rows are distributed among r processors, and the only access

to the matrix M we have is via an oracle for the column player that takes in a sample of

rows and outputs the column player’s best response. What we show is how in such a setting

to produce near optimal strategies for each player in the sense described above, from very

limited communication among processors.

In addition to our theoretical results, we also present experimental simulations for both

zero-sum and general-sum games.

6.1.1 Related Work

There has been substantial work on design of “no-regret” learning algorithms for repeated

play of zero-sum games [102, 103, 104]. Multiplicative Weight Update methods [105, 106]

are a specific type of no-regret algorithm that have received considerable attention in game

theory [102, 107], machine learning [102, 108], and many other research areas [109, 110],

due to their simplicity and elegance.

We consider the additional constraint that players play diversified mixed strategies,

motivated by the goal of reducing exposure to adversarial attacks. The concept of diversified
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strategies, sometimes called “smooth distributions”, appears in a range of different areas

[109, 111, 112]. [113] considers a somewhat related notion where there is a penalty for

deviation from a given fixed strategy, and shows existence of equilibria in such games. Also

related is work on adversarial machine learning, e.g., [114, 115, 116]; however, in this work

we are instead focused on decision-making scenarios.

Our distributed algorithm is inspired by prior work in distributed machine learning [117,

118, 108], where the key idea is to perform weight updates in a communication efficient way.

Other work on the impact of adversaries in general-sum games appears in [119, 120, 121].

6.2 Zero-Sum Games

We begin by studying two-player zero-sum games. Recall that a two-player zero-sum game

is defined by a n × m matrix M . In each round of the game, the row player chooses a

distribution P over the rows of M , and the column player chooses a distribution Q over the

columns of M . The expected loss of the row player is

M(P,Q) = P TMQ =
∑
i,j

P (i)M(i, j)Q(j),

where M(i, j) ∈ [0, 1] is the loss suffered by the row player if the row player plays row i

and the column player plays column j. The goal of the row player is to minimize its loss,

and the goal of the column player is to maximize this loss. The minimax value v of the

game is:

v = min
P

max
Q

M(P,Q) = max
Q

min
P
M(P,Q).

6.2.1 Multiplicative Weights and Diversified Strategies

We now consider row players restricted to only playing diversified distributions, defined as

follows.
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Definition 1. A distribution p ∈ ∆n is called ε-diversified if maxi pi ≤ 1
εn

.

Let Pε be the set of all ε-diversified distributions, and let vε be the minimax value of

the game subject to the row player restricted to playing in Pε. Note that the range of ε is

between 1/n and 1. It is easy to verify that Pε is a convex set. As a result, the minimax

theorem applies to Pε [122], and we call the minimax value vε:

vε = min
P∈Pε

max
Q

M(P,Q) = max
Q

min
P∈Pε

M(P,Q).

The multiplicative weights update algorithm [105, 123] can be naturally adapted to

maintain diversified strategies by projecting its distributions into the class Pε if they ever

step outside of it. This is shown in Algorithm 2. By adapting the analysis of [123] to this

case, we arrive at the following regret bound.

Theorem 1. For any 0 < γ ≤ 1/2 and any positive integer T , Algorithm 2 generates

distributions P (1), . . . , P (T ) ∈ Pε to responses j1, . . . , jT , such that for any P ∈ Pε,

∑T
t=1M(P (t), jt) ≤ (1 + γ)

∑T
t=1M(P, jt) + RE(P‖P (1))

γ
,

where RE(p ‖ q) =
∑

i pi ln(pi/qi) is relative entropy.

By combining Algorithm 2 with a best-response oracle for the column player, and

applying Theorem 1 and a standard argument [107, 106] we have:

Theorem 2. Running Algorithm 2 for T steps against a best-response oracle, one can

construct mixed strategies P̄ and Q̄ s.t.

max
Q

M(P̄ , Q) ≤ vε + ∆T and min
P∈Pε

M(P, Q̄) ≥ vε −∆T ,

for ∆T = 2
√

ln(1/ε)
T

, where P̄ = 1
T

∑T
t=1 P

(t) and Q̄ = 1
T

∑T
t=1 jt.
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Algorithm 2 Multiplicative Weights Update algorithm with Restricted Distributions

Initialization: Fix a γ ≤ 1
2
. Set P (1) to be the uniform distribution.

For t = 1, 2, . . . , T :

1. Choose distribution P (t)

2. Receive the pure strategy jt for the column player

3. Compute the multiplicative update rule

P̂
(t+1)
i = P

(t)
i (1− γ)M(i,jt)/Z(t)

where Z(t) =
∑

i P
(t)
i (1− γ)M(i,jt) is the normalization factor.

4. Project P̂ (t+1) into Pε

P (t+1) = arg min
P∈Pε

RE(P ‖ P̂ (t+1))

Proof. We can sandwich the desired inequalities inside a proof of the minimax theorem as

follows:

min
P∈Pε

max
Q

M(P,Q) ≤ max
Q

M(P̄ , Q) = max
Q

1

T

T∑
t=1

M(P (t), Q)

≤ 1

T

T∑
t=1

max
Q

M(P (t), Q) =
1

T

T∑
t=1

M(P (t), jt)

≤ min
P∈Pε

1 + γ

T

T∑
t=1

M(P, jt) +
ln(1/ε)

γT

≤ min
P∈Pε

M(P, Q̄) + γ +
ln(1/ε)

γT

≤ max
Q

min
P∈Pε

M(P,Q) + γ +
ln(1/ε)

γT

If we set γ =
√

ln(1/ε)
T

, then ∆T = γ + ln(1/ε)
γT

= 2
√

ln(1/ε)
T

. The two inequalities in

the theorem follow by skipping the first and the last inequalities from the proof above,

respectively.

The next theorem shows that the distribution Q̄ in Theorem 2 is also a good mixed

strategy for the column player against any row-player strategy if we remove a small fraction

of the rows.
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Theorem 3. By running Algorithm 2 for T steps against a best-response oracle, we can

construct a mixed strategy Q̄ such that for all but an ε fraction of the rows i,M(i, Q̄) ≥ vε−γ.

Moreover we can do this with at most T = O
(

log(1/ε)
γ2(1+γ−vε)

)
oracle calls.

Proof. We generate distributions P (1), . . . , P (T ) ∈ Pε by using Algorithm 2. Let jt be the

column returned by the oracle with the input P (t). After T =
⌈

log(1/ε)
γ2(1+γ−vε)

⌉
+ 1 rounds,

we set the mixed strategy Q̄ = 1
T

∑T
t=1 jt. Set E = {i|M(i, Q̄) < vε − γ}. Suppose for

contradiction that |E| ≥ εn. Let P = uE , the uniform distribution on E and 0 elsewhere. It

is easy to see that uE ∈ Pε, since |E| ≥ εn.

By the assumption of the oracle, we have vεT ≤
∑T

t=1M(P (t), jt). In addition, by

Theorem 1, we have

T∑
t=1

M(P (t), jt) ≤ (1 + γ)
T∑
t=1

M(P, jt) +
RE(P ‖ P (1))

γ
.

For any i ∈ E,
∑T

t=1M(i, jt) = T · M(i, Q̄) < (vε − γ)T . Since P is the uniform

distribution on E, we have
∑T

t=1M(P, jt) < (vε − γ)T . Furthermore, since |E| ≥ εn, we

have

RE(P ‖ P (1)) = RE(uE ‖ u) ≤ ln(1/ε).

Putting these facts together, we get vεT ≤ (1 + γ)(vε − γ)T + ln(1/ε)
γ

, which implies

T ≤ ln(1/ε)
γ2(1+γ−vε) , a contradiction.

6.2.2 Diversifying Dynamics

Theorem 1 shows that it is possible for a player to maintain an ε-diversified distribution

at all times while achieving low regret with respect to the entire family Pε of ε-diversified

distributions. However, suppose a player, who is allocating an investment portfolio among n

investments, does not recognize the need for maintaining a diversified distribution and simply

uses the standard multiplicative-weights algorithm to minimize regret. For example, the

player might not realize that the matrix M only represents “typical” behavior of investments,
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Algorithm 3 Multiplicative Weights Update algorithm with Interventions

Initialization: Fix a γ ≤ 1
2
. Set P (1) to be the uniform distribution.

For t = 1, 2, . . . , T :

1. Choose distribution P (t)

2. Receive the pure strategy jt for the column player

3. Compute the multiplicative update rule

P
(t+1)
i = P

(t)
i (1− γ)M(i,jt)/Z(t)

where Z(t) =
∑

i P
(t)
i (1− γ)M(i,jt) is the normalization factor.

4. While P (t+1) is not (1− γ)ε-diversified, run multiplicative update (Step 3) on fake
loss vector ` defined as:

`i =

{
1 if P (t+1)

i > 1
(1−γ)εn

0 if P (t+1)
i ≤ 1

(1−γ)εn

and that a crooked portfolio manager or clever hacker could cause an entire investment to be

wiped out. This player might quickly reach a dangerous non-diversified portfolio in which

nearly all of its weight is just on one row.

Suppose, however, that an investment advisor or helpful authority has the ability to

charge fees on actions whose weights are too high, that can be viewed as inserting fake

loss vectors into the stream of loss vectors observed by the player’s algorithm. We show

here that by doing so in an appropriate manner, this advisor or authority can ensure that the

player both (a) maintains diversified distributions, and (b) incurs low regret with respect

to the family Pε over the sequence of real loss vectors. Viewed another way, this can be

thought of as an alternative to Algorithm 2 with slightly weaker guarantees but that does not

require the projection. The algorithm remains efficient.

Theorem 4. Algorithm 3 generates distributions P (1), . . . , P (T ) such that

(a) P (t) ∈ P(1−γ)ε for all t, and
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(b) for any P ∈ Pε we have

T∑
t=1

M(P (t), jt) ≤ (1 + γ)
T∑
t=1

M(P, jt) +
RE(P ‖ P (1))

γ
.

Proof. For part (a) we just need to show that the while loop in Step 4 of the algorithm halts

after a finite number of loops. To show this, we show that each time a fake loss vector is

applied, the gap between the maximum and minimum total losses (including both actual

losses and fake losses) over the rows i is reduced. In particular, the multiplicative-weights

algorithm has the property that the probability on an action i is proportional to (1− γ)L
i
total

where Litotal is the total loss (actual plus fake) on action i so far; so, the actions of highest

probability are also the actions of lowest total loss. This means that in Step 4, there exists

some threshold τ such that `i = 1 for all i of total loss at most τ and `i = 0 for all i of

total loss greater than τ . Since we are adding 1 to those actions of total loss at most τ ,

this means that the gap between the maximum and minimum total loss over all the actions

is decreasing, so long as that gap was greater than 1. However, note that if P (t+1) is not

(1− γ)ε-diversified then the gap between maximum and minimum total loss must be greater

than 1, by definition of the update rule and using the fact that ε ≤ 1. Therefore, the gap

between maximum and minimum total loss is strictly reduced on each iteration (and reduced

by at least 1 if any row is ever updated twice) until P (t+1) becomes (1− γ)ε-diversified.

For part (b), define Lalgactual =
∑T

t=1M(P (t), jt) to be the actual loss of the algorithm

and define LPactual =
∑T

t=1M(P, jt) to be the actual loss of some ε-diversified distribution

P . We wish to show that Lalgactual is not too much larger than LPactual. To do so, we begin

with the fact that, by the usual multiplicative weights analysis, the algorithm has low regret

with respect to any fixed strategy over the entire sequence of loss vectors (actual and

fake). Say the algorithm’s total loss is Lalgtotal = Lalgactual + Lalgfake and the total loss of P is

LPtotal = LPactual + LPfake. We know that

Lalgtotal ≤ (1 + γ)LPtotal + RE(P‖P (1))
γ

,
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which we can rewrite as:

Lalgactual + Lalgfake ≤ (1 + γ)LPactual + (1 + γ)LPfake + RE(P‖P (1))
γ

.

Thus, to prove part (b) it suffices to show that Lalgfake ≥ (1 + γ)LPfake. But notice that on

each fake loss vector, for each index i such that `i = 1, the algorithm has strictly more

than 1
(1−γ)εn >

1+γ
εn

probability mass on row i. In contrast, P has at most 1
εn

probability

mass on row i, since P is ε-diversified. Therefore Lalgfake ≥ (1 + γ)LPfake and the proof is

complete.

This analysis can be extended to the case of an advisor who only periodically monitors

the player’s strategy. If the advisor monitors the strategy every k steps, then in the meantime

the maximum probability that any row i can reach is 1
(1−γ)kεn . So, part (a) of Theorem 4

would need to be relaxed to P (t) ∈ P(1−γ)kε . However, part (b) of Theorem 4 holds as is.

6.2.3 How Close Is vε to v?

Restricting the row player to play ε-diversified strategies can of course increase its minimax

loss, i.e., vε ≥ v. In fact, it is not hard to give examples of games where the gap is quite

large. For example, suppose the row player has one action that always incurs loss 0, and the

remaining n− 1 actions always incur loss 1 (whatever the column player does). Then v = 0

but for ε ∈ [ 1
n
, 1], vε = 1− 1

εn
.

However, we show here that for random matrices M , the gap between the two is quite

small. I.e., the additional loss incurred due to requiring diversification is low. A related

result, in a somewhat different model, appears in [124].

Theorem 5. Consider a random n×n gameM where each entryM(i, j) is drawn i.i.d. from

some distribution D over [0, 1]. With probability ≥ 1 − 1
n

, for any ε ≤ 1, we have

vε − v = O
(√

logn
n

)
.
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Proof. Let µ = Ex∼D[x] be the mean of distribution D. We will show that v and vε are both

close to µ. To argue this, we will examine the value of the uniform distribution Punif for

the row player, and the value of the uniform distribution Qunif for the column player. In

particular, notice that v ≥ miniM(i, Qunif) because Qunif is just one possible strategy for

the column player, and by definition, v = miniM(i, Q∗) where Q∗ is the minimax optimal

strategy for the column player, and the row player’s loss under Q∗ is greater than or equal

to the row player’s loss under Qunif since the column player is trying to maximize the row

player’s loss. Similarly, vε ≤ maxjM(Punif , j) since Punif is just one possible diversified

strategy for the row player, and by definition vε = maxjM(P ∗, j) where P ∗ is the minimax

optimal diversified strategy for the row player and the row player is trying to minimize loss.

So, we have

min
i
M(i, Qunif) ≤ v ≤ vε ≤ max

j
M(Punif , j).

Thus, if we can show that with high probability miniM(i, Qunif) and maxjM(Punif , j) are

both close to µ, then this will imply that v and vε are close to each other.

Let us begin with Punif . Notice that M(Punif , j) is just the average of the entries in the

jth column. So, by Hoeffding bounds, there exists a constant c such that for any given

column j,

Pr

[
M(Punif , j) > µ+ c

√
logn
n

]
≤ 1

2n2 ,

where the probability is over the random draw of M . By the union bound, with probability

at least 1 − 1
2n

, this inequality holds simultaneously for all columns j. Since Punif is ε-

diversified, as noted above this implies that vε ≤ µ+ c
√

(log n)/n with probability at least

1− 1
2n

.

On the other hand, by the same reasoning, with probability at least 1− 1
2n

the uniform

distribution Qunif for the column player has the property that for all rows i, M(i, Qunif) ≥

µ− c
√

logn
n

. This implies as noted above that v ≥ µ− c
√

logn
n

. Therefore, with probability

at least 1− 1
n

, vε − v ≤ 2c
√

logn
n

as desired.

94



6.3 General-Sum Games

We now consider k-player general-sum games. Instead of minimax optimality, the natural

solution concept now is a Nash equilibrium. We begin by showing that unlike zero-sum

games, it is now possible for the payoff of a player at equilibrium to actually be improved

by requiring it to play a diversified strategy. This is a bit peculiar because constraining a

player is actually helping it.

We then consider the relationship between the social cost at equilibrium and the optimal

social cost, when all players are required to use diversified strategies. We call the ratio of

these two quantities the diversified price of anarchy of the game, in analogy to the usual

price of anarchy notion when there is no diversification constraint. We show that in some

natural games, even requiring a small amount of diversification can significantly improve

the price of anarchy of the game, though there also exist games where diversification can

make the price of anarchy worse. Finally, we bring several threads of this investigation

together by showing that for the class of smooth games defined by Roughgarden [101], for

any diversification parameter ε ∈ [ 1
n
, 1], the ε-diversified price of anarchy is no worse than

the smoothness of the game, and moreover that players using diversified regret-minimizing

strategies (such as those in Sections 6.2.1 and 6.2.2) will indeed approach this bound.

6.3.1 The Benefits of Diversification

First, let us formally define the notion of a Nash equilibrium subject to a (convex) constraint

C, where C could be a constraint such as “the row player must use an ε-diversified strategy”.

Definition 2. A set of mixed strategies (P1, . . . , Pk) is a Nash equilibrium subject to con-

straint C if no player can unilaterally deviate to improve its payoff without violating con-

straint C. We will just call this a Nash equilibrium when C is clear from context.

We now consider the case of k = 2 players, and examine how requiring the row player to

diversify can affect its payoff at equilibrium. For zero-sum games, the value vε was always
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no better than the minimax value v of the game, since constraining the row player can never

help it. We show here that this is not the case for general-sum games: requiring a player to

use a diversified strategy can in some games improve its payoff at equilibrium.

Theorem 6. There exist 2-player general-sum games for which a diversification constraint

on the row player lowers the row player’s payoff at equilibrium, and games for which such

a constraint increases the row player’s payoff at equilibrium.

Proof. Consider the following two bimatrix games (entries here represent payoffs rather

than losses):

Game A :
2, 2 1, 1

1, 1 0, 0
Game B :

1, 1 3, 0

0, 0 1, 3

In Game A, the unique Nash equilibrium has payoff of 2 to each player, and requiring

the row player to be diversified strictly lowers both player’s payoffs. On the other hand,

diversification helps the row player in Game B. Without a diversification constraint, in

Game B the row player will play the top row and the column player will therefore play the

left column, giving both players a payoff of 1. However, requiring the row-player to put

probability 1
2

on each row will cause the column player to choose the right column, giving

the row player a payoff of 2 and the column player a payoff of 1.5.

Routing games [125] are an interesting class of many-player games where requiring

all players to diversify can actually improve the quality of the equilibrium for everyone.

An example is Braess’ paradox [126] shown in Figure 6.2. In this example, k players

need to travel from s to t and wish to take the cheapest route. Edge costs are given in the

figure, where ke is the number of players using edge e. At Nash equilibrium, all players

choose the route s-a-b-t and incur a cost of 2. However, if they must put equal probability

on the three routes they can choose from, the expected cost of each player approaches

only 1
3
(2
3

+ 1) + 1
3
(2
3

+ 2
3
) + 1

3
(1 + 2

3
) = 1 + 5

9
. Thus, even though from an individual

player’s perspective, diversification is a restriction that increases robustness at the expense of
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Figure 6.2: Braess’ paradox. Here, k players wish to travel from s to t, and requiring all
players to use diversified strategies improves the quality of the equilibrium for everyone.

higher average loss, overall, diversification can actually improve the quality of the resulting

equilibrium state. In the next section, we discuss the social cost of diversified equilibria in

many-player games in more detail, analyzing what we call the diversified price of anarchy

as well as the social cost that results from all players using diversified regret-minimizing

strategies.

6.3.2 The Diversified Price of Anarchy

We now consider structured general-sum games with k ≥ 2 players. In these games, each

player i chooses some strategy si from a strategy space Si. The combined choice of the

players s = (s1, . . . , sk), which we call the outcome, determines the cost that each player

incurs. Specifically, let costi(s) denote the cost incurred by player i under outcome s, and

let cost(s) =
∑k

i=1 costi(s) denote the overall social cost of s. Let s∗ = argminscost(s),

i.e., the outcome of optimum social cost. The price of anarchy of a game is defined as the

maximum ratio cost(s)/cost(s∗) over all Nash equilibria s. A low price of anarchy in a

game means that all Nash equilibria have social cost that is not too much worse than the

optimum. We can analogously define the ε-diversified price of anarchy:

Definition 3. Let s∗ε denote the outcome of optimum social cost subject to each player

choosing an ε-diversified strategy. The ε-diversified price of anarchy is the maximum ratio

cost(sε)/cost(s
∗
ε) over all outcomes sε that are Nash equilibria subject to all players playing
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ε-diversified strategies.

Note that for any game, the 1-diversified price of anarchy equals 1, because players

are all required to play the uniform distribution. This suggests that as we increase ε, the

ε-diversified price of anarchy should drop, though as we show, in some games it is not

monotone.

Examples. In consensus games, each player i is a distinct node in a k-node graph G.

Players each choose one of two colors, red or blue, and the cost of player i is the number of

neighbors it has of color different from its own. The social cost is the sum of the players’

costs, and to keep ratios finite we add 1 to the total. The optimal s∗ is either “all blue” or

“all red” in which each player has a cost of 0, so the social cost is 1. However, if the graph is

a complete graph minus a matching, then there exists an equilibrium in which half of the

players choose red and half the players choose blue. Each player has k
2
− 1 red neighbors

and k
2
− 1 blue neighbors, so the social cost of this equilibrium is Θ(k2). This means the

price of anarchy is Θ(k2). However, if we require players to play ε-diversified strategies for

any constant ε > 1
2

(i.e., they cannot play pure strategies), then for any m-edge graph G,

even the optimum outcome has cost Ω(m) since every edge has a constant probability of

contributing to the cost. So the diversified price of anarchy is O(1).

As another example, consider atomic congestion games [127]. Here, we have a set R of

resources (e.g., edges in a graph G) and each player i has a strategy set Si ⊆ 2R (e.g., all

ways to select a path between two specified vertices in G). The cost incurred by a player

is the sum of the costs of the resources it uses (the cost of its path). Each resource j has

a cost function cj(kj) where kj is the number of players who are using resource j. The

cost functions cj could be increasing, such as in packet routing where latency increases

with the number of users of an edge, or decreasing, such as players splitting the cost of

a shared printer. When examining diversified strategies, we sometimes view players as

making fractional choices, such as sending half their packets down one path and half of

them down another. The quantity kj then denotes the total fractional usage of resource j (or
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equivalently, the expected number of users of that resource).

Non-monotonicity. An example of an atomic congestion game where some diversifi-

cation can initially increase the price of anarchy is the following. Suppose there are four

resources, and each player just needs to choose one of them. The costs of the resources

behave as follows:

c1(k1) = 1, c2(k2) = 5, c3(k3) = 6/k3, c4(k4) = 6/k4.

Assume the total number of players k is at least 13. The optimal outcome s∗ is for all players

to choose resource 3 (or all choose resource 4) for a total social cost of 6. The optimal

ε-diversified outcome for ε = 1
2

(i.e., each player can put weight at most 1
2

on any given

resource) is for all players to put half their weight on strategy 3 and half their weight on

strategy 4, for a total cost of 12. The worst Nash equilibrium is for all players to choose

strategy 1, for a total cost of k, giving a price of anarchy of k/6. However if we require

players to be ε-diversified for ε = 1
2
, there is now a worse equilibrium where each player

puts half its weight on strategy 1 and half its weight on strategy 2, for a total cost of 3k and

a diversified price of anarchy of 3k/12 = k/4. So, increasing ε from 1
4

up to 1
2

increases the

price of anarchy, and then increasing ε further to 1 will then decrease the price of anarchy to

1.

General Bounds

We now present a general bound on the diversified price of anarchy for games, as well as

for the social welfare when all players use diversified regret-minimizing strategies such as

given in Sections 6.2.1 and 6.2.2, using the smoothness framework of Roughgarden [101].

Definition 4. [101] A general-sum game is (λ, µ)-smooth if for any two outcomes s and s∗,

k∑
i=1

costi(s
∗
i , s−i) ≤ λ cost(s∗) + µ cost(s).
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Here, (s∗i , s−i) means the outcome in which player i plays its action in s∗ but all other

players play their action in s.

Theorem 7. If a game is (λ, µ)-smooth, then for any ε, the ε-diversified price of anarchy is

at most λ
1−µ .

Proof. Let s = sε be some Nash equilibrium subject to all players playing ε-diversified

strategies, and let s∗ = s∗ε be an outcome of optimum social cost subject to all players

choosing ε-diversified strategies. Since s is an equilibrium, no player wishes to deviate to

their action in s∗; here we are using the fact that s∗ includes only ε-diversified strategies, so

such a deviation would be legal. Therefore cost(s) ≤
∑k

i=1 costi(s
∗
i , s−i) ≤ λ cost(s∗) +

µ cost(s). Rearranging, we have (1 − µ)cost(s) ≤ λ cost(s∗), so cost(s)/cost(s∗) ≤
λ

1−µ .

Roughgarden [101] shows that atomic congestion games with affine cost functions, i.e.,

cost functions of the form cj(kj) = ajkj + bj , are (5
3
, 1
3
)-smooth. So, their ε-diversified

price of anarchy is at most 2.5. We now adapt the proof in [101] to show that players

with vanishing regret with respect to diversified strategies will also approach the bound of

Theorem 7.

Theorem 8. Suppose that in repeated play of a (λ, µ)-smooth game, each player i uses

a sequence of mixed strategies s(1)i , . . . , s
(T )
i such that for any ε-diversified strategy s∗i we

have:
1

T

T∑
t=1

costi(s
(t)) ≤ 1

T

T∑
t=1

costi(s
∗
i , s

(t)
−i) + ∆T .

Then the average social cost over the T steps satisfies

1

T

T∑
t=1

cost(s(t)) ≤ λ

1− µ
cost(s∗) +

k∆T

1− µ
.

In particular, if ∆T → 0 then the average social cost approaches the bound of Theorem 7.
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Proof. Combining the assumption of the theorem, the definition of social cost, and the

smoothness definition we have:

1

T

T∑
t=1

cost(s(t)) =
1

T

T∑
t=1

k∑
i=1

costi(s
(t))

(definition of social cost)

≤
k∑
i=1

[
1

T

T∑
t=1

costi(s
∗
i , s

(t)
−i) + ∆T

]
(assumption of theorem)

=
1

T

T∑
t=1

[
k∑
i=1

costi(s
∗
i , s

(t)
−i)

]
+ k∆T

(rearranging)

≤ 1

T

T∑
t=1

[
λ cost(s∗) + µ cost(s(t))

]
+ k∆T .

(applying smoothness)

Rearranging, we have:

(1− µ)
1

T

T∑
t=1

cost(s(t)) ≤ λ cost(s∗) + k∆T ,

which immediately yields the result of the theorem.

6.3.3 The Cost of Diversification

We now complement the above results by considering how much worse cost(s∗ε) can be

compared to cost(s∗) in natural games. We focus here on unit-demand congestion games

where each strategy set Si ⊆ R; that is, each player i selects a single resource in Si. In

particular, we focus on two important special cases: (a) cj(kj) = 1/kj ∀j (players share

the cost of their resource equally with all others who make the same choice; this can be

viewed as a game-theoretic distributed hitting-set problem), and (b) cj(kj) = kj ∀j, i.e.,

linear congestion games. To avoid unnecessary complication, we assume all Si have the
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same size n, i.e., every player has n choices. We will also think of the number of choices

per player n as O(1), whereas the number of players k and the total number of resources R

may be large.

Unfortunately, in both cases (a) and (b), the cost of diversification can be very high in

the worst case. For case (a) (cost sharing), a bad scenario is if there is a single element j∗

such that Si ∩ Si′ = j∗ for all pairs i 6= i′. Here, cost(s∗) = 1 since all players can choose

j∗, but for any ε ∈ [ 2
n
, 1], we have E[cost(s∗ε)] = Ω(k), since even in the best solution

each player has a 50% chance of choosing a resource that no other player chose. For case

(b) (linear congestion), a bad scenario is if there are n− 1 elements j∗1 , . . . , j
∗
n−1 such that

Si ∩ Si′ = {j∗1 , . . . , j∗n−1} for all pairs i 6= i′. Here, cost(s∗) = k since each player can

choose a distinct resource, but for any ε ∈ [ 2
n
, 1], we have E[cost(s∗ε)] = Ω(k2/(n − 1)),

which is Ω(k2) for n = O(1). So, in both cases, the ratio cost(s∗ε)/cost(s
∗) = Ω(k).

However, in the average case (each Si consists of n random elements from R) the cost

of diversification is only O(1).

Theorem 9. For both (a) unit-demand cost-sharing and (b) unit-demand linear congestion

games, with n = O(1) strategies per player and random strategy sets Si, E[cost(s∗ε)] =

O(E[cost(s∗)]).

Proof. Let us first consider (a) unit-demand cost-sharing. One lower bound on cost(s∗)

is that it is at least the cardinality of the largest collection of disjoint strategy sets Si; for

n = 2 this is the statement that the smallest vertex cover in a graph is at least the size

of the maximum matching. Now consider selecting the random sets Si one at a time.

For i ≤ R/n2, the first i sets cover at most R/n resources, so set Si+1 has at least a

constant probability of being disjoint from the first i. This means that the expected size

of the largest collection of disjoint strategy sets is at least Ω(min{k,R/n2}). On the other

hand, a trivial upper bound on cost(s∗ε), even for ε = 1, is min{k,R}, since at worst each

player takes a separate resource until all resources are used. Thus, for n = O(1), we have

E[cost(s∗ε)] = O(E[cost(s∗)]).

102



Now let us consider (b) unit-demand linear congestion. In this case, a lower bound on

cost(s∗) is the best-case allocation of all resources equally divided. In this case we have

k/R usage per resource for a total cost of R × (k/R)2 = k2/R. Another lower bound is

simply k, so we have cost(s∗) ≥ max{k, k2/R}. On the other hand, we can notice that s∗ε

for a fully-diversified ε = 1 and random sets Si is equivalent to players choosing resources

independently at random. In this case, the social cost is identical to the analysis of random

hashing: E[cost(s∗1)] = E[
∑

j k
2
j ] = k+ k(k− 1)/R. Thus, E[cost(s∗ε)] = O(E[cost(s∗)])

as desired.

6.4 Distributed Setting

We now consider a distributed setting where the actions of the row player are partitioned

among k entities, such as subdivisions within a company or machines in a distributed system.

At each time step, the row player asks for a number of actions from each entity, and plays a

mixed strategy over them. However, asking for actions requires communication, which we

would like to minimize.

Our aim is to obtain results similar to Theorem 3 with low communication complexity,

measured by the number of actions requested and any additional constant-sized words

communicated. Let d ≤ logm denote the VC-dimension or pseudo-dimension of the set of

columns H , viewing each row as an example and each column as a hypothesis. A baseline

approach is that the row player samples O( d
ε2

log 1
ε
) times, from the uniform multinomial

distribution over {1, . . . , k} and asks each entity to send the corresponding number of

actions to the row player. The row player can then use Algorithm 2 as in the centralized

setting over the sampled actions, and will lose only an additional ε in the value of its strategy.

The communication complexity of this method is O( d
ε2

log 1
ε
) actions plus O(k) additional

words. Here, we provide an algorithm that reduces communication to O(d log(1/ε)). The

idea is to show that in Algorithm 2, each iteration of the multiplicative weight update can be

simulated in the distributed setting with O(d) communication. Then, since there are at most
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O(log(1/ε)) iterations, the desired result follows. More specifically, we show that in each

iteration, we can do the following two actions communication efficiently:

1. For any distribution P over the rows partitioned across k entities, obtain a column j

such that M(P, j) ≥ vε.

2. Update the distribution using the received column j.

To achieve the first statement, assume there is a centralized oracle, which for any ε-

diversified distribution P returns a column j such that M(P, j) ≥ vε. For any distribution P

partitioned across k entities, each agent first sends its sum of weights to the row player. Then,

the row player samples O( d
(1−α)2v2ε

) actions (0 < α < 1) across the k agents proportional

to their sum of weights, where d is the VC-dimension of H . By the standard VC-theory,

a mixed strategy P ′ of choosing a uniform distribution over the sampled actions is a

(1 − α)vε-approximation for H , i.e. M(P ′, j) ≥ M(P, j) − (1 − α)vε ≥ αvε for all

column j ∈ H . The communication complexity of this step is O( d
(1−α)2v2ε

) actions plus

O(k) additional words. For (2), we show steps 3 and 4 in Algorithm 2 can be simulated

with low communication. Step 3 is easy: just send column j to all entities, and each entity

then updates its own weights. What is left is to show that the projection step in Algorithm 2

can be simulated in the distributed setting. Fortunately, this projection step has been studied

before in the distributed machine learning literature [108], where an efficient algorithm

with O(k log2(d/ε)) words of comunication is proposed. We summarize our results for the

distributed setting with the following theorem.

Theorem 10. Given a centralized oracle, which for any ε-diversified distribution P returns

a column j such that M(P, j) ≥ vε. If the actions of the row players are distributed across

k entities, there is an algorithm that constructs a mixed strategy Q such that for all but an

ε fraction of the rows i, M(i, Q) ≥ αvε − γ, 0 < α < 1. The algorithm requests at most

O( log(1/ε)
γ2(1+γ−αvε) ·

d
(1−α)2v2ε

) actions and uses an additional O( log(1/ε)
γ2(1+γ−αvε) · k log2(d/ε)) words

of communication.
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6.5 Experiments

To better understand the benefit of diversified strategies, we give some empirical simulations

for both two-player zero-sum games and general-sum games. For all the experiments, we

fix γ = 0.2 and show the results of using different values of ε.

Two-player zero-sum games. The row player has n = 10 actions to choose from,

where each round, each action ai returns a uniformly random reward ri ∈ [i/n, 1]. The game

is played for T = 10, 000 rounds. Note that the n-th action has the highest expected reward.

We consider two scenarios in which a rare but catastrophic event occurs. The first

scenario is that at time T , the cumulative reward gained from choosing the n-th action

becomes zero. The second scenario is that the n-th action incurs a large negative reward

of −T in time step T . Both of these can be viewed as different ways of simulating a bad

event where, for instance, the shares of a company become worthless when the company

goes bankrupt.

The results for both scenarios, averaged over 10 independent trials, are shown in Fig-

ure 6.4. One can see that as expected, in the normal situation, the diversified strategy gains

less reward. However, when the rare event happens, the non-diversified strategy gains very

low reward. In both cases, a modest value of ε = 0.4 achieves a high reward whether the

bad event happens or not.

General-sum games. We play the routing game defined in Braess’ paradox (see Fig-

ure 6.2). Each player has three routes to choose from (s-a-b-t, s-a-t, and s-b-t) in each

round, so ε ∈ [1/3, 1]. As anlyzed in Section 6.3.1, without the diversified constraint (i.e.,

ε = 1/3), the game quickly converges to the Nash equilibrium where all players choose the

route s-a-b-t and incur a loss of 2. The best strategy in this case is to play the 1-diversified

strategy, which incur a lower loss of about 1.55. See Figure 6.3 for the results using other ε

values.
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Figure 6.3: Simulated resuls of Braess’ paradox after T = 10, 000 rounds. A more diversi-
fied strategy leads to lower loss.

0.6

0.4

0.2

0.1

-0.2

-0.4

-0.6

av
er
ag
e
re
wa

rd

0

0.2 0.3 0.4 0.5 0.6
ε

0.7 0.8 0.9 1.0

Non-diversified
normal situation

Non-diversified
rare event happens

Diversified
rare event happens

Diversified
normal situation

(a) Rare event removes all the reward gained
from the n-th action.

0.6

0.4

0.2

0.1

-0.2

-0.4

-0.6

av
er
ag
e
re
wa

rd

Diversified
rare event happens

Diversified
normal situation

Non-diversified
normal situation

Non-diversified
rare event happens

Devastating reward reduction
for non-diversified strategy
Devastating reward reduction
for non-diversified strategy

0

0.2 0.3 0.4 0.5 0.6
ε

0.7 0.8 0.9 1.0

(b) Rare event changes the reward of the n-th
action to −T in the last round.

Figure 6.4: Average reward over T = 10, 000 rounds with different values of ε. When the
rare event happens, the non-diversified strategy gains very low (even negative) reward.

106



6.6 Conclusion

We consider games in which one wants to play well without choosing a mixed strategy

that is too concentrated. We show that such a diversification restriction has a number of

benefits, and give adaptive algorithms to find diversified strategies that are near-optimal, also

showing how taxes or fines can be used to keep a standard algorithm diversified. Further, our

algorithms are simple and efficient, and can be implemented in a distributed setting. We also

analyze properties of diversified strategies in both zero-sum and general-sum games, and

give general bounds on the diversified price of anarchy as well as the social cost achieved by

diversified regret-minimizing players.
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CHAPTER 7

COMMUNICATION EFFICIENT DISTRIBUTED AGNOSTIC BOOSTING

In this chapter, we show how the online decision-making framework introduced in the previ-

ous chapter can also help train a robust and scalable machine learning model. Specifically,

we consider the problem of learning from distributed data in the agnostic setting, i.e., in

the presence of arbitrary forms of noise. Our main contribution is a general distributed

boosting-based procedure for learning an arbitrary concept space, that is simultaneously

noise tolerant, communication efficient, and computationally efficient. This improves signifi-

cantly over prior works that were either communication efficient only in noise-free scenarios

or computationally prohibitive. Empirical results on large synthetic and real-world datasets

demonstrate the effectiveness and scalability of the proposed approach.

7.1 Introduction

Distributed machine learning has received an increasing amount of attention in this “big data”

era [128]. The most common use case of distributed learning is when the data cannot fit into

a single machine, or when one wants to speed up the training process by utilizing parallel

computation of multiple machines [129, 130, 131]. In these cases, one can usually freely

distribute the data across entities, and an evenly distributed partition would be a natural

choice.

In this work, we consider a different setting where the data is inherently distributed

across different locations or entities. Examples of this scenario include scientific data

gathered by different teams, or customer information of a multinational corporation obtained

in different countries. The goal is to design an efficient learning algorithm with a low

generalization error over the union of the data. Note that the distribution of the data from

each source may be very different. Therefore, to deal with the worst-case situation, we
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assume the data can be adversarially partitioned. This scenario has been studied for different

tasks, such as supervised learning [118, 132, 117], unsupervised learning [133, 134], and

optimization [135, 136].

Traditional machine learning algorithms often only care about sample complexity and

computational complexity. However, since the bottleneck in the distributed setting is often

the communication between machines [118], the theoretical analysis in this work will focus

on communication complexity. A baseline approach in this setting would be to uniformly

sample examples from each entity and perform centralized learning at the center. By the

standard VC-theory, a sampling set of size O( d
ε2

log 1
ε
) is sufficient. The communication

complexity of this approach is thus O( d
ε2

log 1
ε
) examples.

More advanced algorithms with better communication complexities have been proposed

in recent works [118, 117]. For example, [118] proposes a generic distributed boosting

algorithm that achieves communication with only logarithmic dependence on 1/ε for any

concept class. Unfortunately, their method only works in the standard realizable PAC-

learning setting, where the data can be perfectly classified by a function in the hypothesis

set and is noiseless. This is because many boosting algorithms are vulnerable to noise [137,

138]. The realizable case is often unrealistic in real-world problems. Therefore, we consider

the more general agnostic learning setting [139], where there is no assumption on the target

function. Since it is impossible to achieve an arbitrary error rate ε, the goal in this setting

is to find a hypothesis with error rate close to opt(H), the minimum error rate achievable

within the hypothesis set H . The error bound is often in the form of O(opt(H)) + ε. Balcan

et al. [118] propose an algorithm based on the robust generalized halving algorithm with

communication complexity of Õ(k log(|H|) log(1/ε)) examples. However, the algorithm

works only for a finite hypothesis set H and is computationally inefficient.

We propose a new distributed boosting algorithm that works in the agnostic learning

setting. While our algorithm can handle this much more difficult and more realistic scenario,

it enjoys the same communication complexity as in [118] that is logarithmic in 1/ε and
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exponentially better than the natural baselines. The algorithm is computationally efficient

and works for any concept class with a finite VC-dimension. The key insight, inspired by

[118], is that a constant (independent of ε) number of examples suffice to learn a weak

hypothesis, and thus if the boosting algorithm only needs O(log 1
ε
) iterations, we obtain the

desired result.

A key challenge in this approach is that most agnostic boosting algorithms either have

poor error bound guarantees or require too many iterations. The first agnostic boosting

algorithm was proposed in [140]. Although the number of iterations is O(log 1
ε
) and is

asymptotically optimal, their bound on the final error rate is much weaker: instead of

O(opt(H)) + ε, the bound is O(opt(H)c(β)) + ε, where c(β) = 2(1/2− β)2/ ln(1/β − 1).

Some subsequent works [141, 111] significantly improve the bound on the error rate. How-

ever, their algorithms all require O(1/ε2) iterations, which can in turn result in O(1/ε2)

communication in the distributed setting. Fortunately, we identify a very special boosting

algorithm [142] that runs in O(log 1
ε
) iterations. This algorithm was analyzed in the realiz-

able case in the original paper, but has later been noted to be able to work in the agnostic

setting [143]. We show how to adapt it to the distributed setting and obtain a communication

efficient distributed learning algorithm with good agnostic learning error bound. Our main

contributions are summarized as follows.

• We identify a centralized agnostic boosting algorithm and show that it can be elegantly

adapted to the distributed setting. This results in the first algorithm that is both

computationally efficient and communication efficient to learn a general concept class

in the distributed agnostic learning setting.

• Our proposed algorithm, which is a boosting-based approach, is flexible in that it can

be used with various weak learners. Furthermore, the weak learner only needs to work

in the traditional centralized setting rather than in the more challenging distributed

setting. This makes it much easier to design new algorithms for different concept

classes in the distributed setting.
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• We confirm our theoretical results by empirically comparing our algorithm to the

existing distributed boosting algorithm [118]. It does much better on the synthetic

dataset and achieves promising results on real-world datasets as well.

7.2 Problem Setup

We first introduce agnostic learning as a special case of the general statistical learning

problem. Then, we discuss the extension of the problem to the distributed setting, where the

data is adversarially partitioned.

7.2.1 Statistical Learning Problem

In statistical learning, we have access to a sampling oracle according to some probability

distribution D over X × {−1, 1}. The goal of a learning algorithm is to output a hypothesis

h with a low error rate with respect to D, defined as errD(h) = E(x,y)∼D(h(x) 6= y). Often,

we compare the error rate to the minimum achievable value within a hypothesis set H ,

denoted by errD(H) = infh′∈H errD(h′). More precisely, a common error bound is in the

following form.

errD(h) ≤ c · errD(H) + ε, (7.1)

for some constant c ≥ 1 and an arbitrary error parameter ε > 0.

Many efficient learning algorithms have been proposed for the realizable case, where the

target function is in H and thus errD(H) = 0. In this work, we consider the more general

case where we do not have any assumption on the value of errD(H). This is often called

the agnostic learning setting [139] . Ideally, we want c in the bound to be as close to one as

possible. However, for some hypothesis set H , achieving such a bound with c = 1 is known

to be NP-hard [144].
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7.2.2 Extension to the Distributed Setting

In this work, we consider the agnostic learning problem in the distributed learning frame-

work proposed by [118]. In this framework, we have k entities. Each entity i ∈ [k] has

access to a sampling oracle according to a distribution Di over X × {−1, 1}. There is also

a center which can communicate with the k entities and acts as a coordinator. The goal is to

learn a good hypothesis with respect to the overall distribution D = 1
k

∑k
i=1Di without too

much communication among entities. It is convenient to calculate the communication by

words. For example, a d-dimensional vector counts as O(d) words.

Main goal. The problem we want to solve in this work is to design an algorithm that

achieves error bound (7.1) for a general concept class H . The communication complexity

should depend only logarithmically on 1/ε.

7.3 Distributed Agnostic Boosting

In this work, we show a distributed boosting algorithm for any concept class with a finite

VC-dimension d. In the realizable PAC setting, the boosting algorithm is assumed to have

access to a γ-weak learner that, under any distribution, finds a hypothesis with error rate

at most 1/2− γ. This assumption is unrealistic in the agnostic setting since even the best

hypothesis in the hypothesis set can perform poorly. Instead, following the setting of [140],

the boosting algorithm is assumed to have access to a β-weak agnostic learner defined as

follows.

Definition 5. A β-weak agnostic learner, given any probability distribution D, will return a

hypothesis h with error rate

errD(h) ≤ errD(H) + β.

Detailed discussion of the existence of such weak learners can be found in [140]. Since
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error of 1/2 can be trivially achieved, in order for the weak learner to convey meaningful

information, we assume errD(H) < 1/2− β. Some prior works use different definitions.

For example, [145] uses the definition of (α, γ)-weak learner. That definition is stronger

than ours, since an (α, γ)-weak learner in that paper implies a β-weak learner in our work

with β = α− γ. Therefore, our results still hold by using their definition. Below we show

an efficient agnostic boosting algorithm in the centralized setting.

7.3.1 Agnostic Boosting: Centralized Version

The main reason why many boosting algorithms (including AdaBoost [102] and weight-

based boosting [146, 147]) fail in the agnostic setting is that they tend to update the example

weights aggressively and may end up putting too much weight on noisy examples.

Inspired by the “diversified” distribution introduced in the previous chapter, we consider

a smoothed boosting algorithm [142], shown in Algorithm 4. This algorithm uses at most

O(log 1/ε) iterations and enjoys a nice “smoothness” property, which is shown to be helpful

in the agnostic setting [111]. The algorithm was originally analyzed in the realizable case but

has later been noted to be able to work in the agnostic setting [143]. Below, for completeness

we show the analyses of the algorithm in both the realizable and agnostic settings.

The boosting algorithm adjusts the example weights using the standard multiplicative

weight update rule. The main difference is that it performs an additional Bregman projection

step of the current example weight distribution into a convex set P after each boosting

iteration. The Bregman projection is a general projection technique that finds a point in

the feasible set with the smallest “distance” to the original point in terms of Bregman

divergence. Here we use a particular Bregman divergence called relative entropy RE(p ‖

q) =
∑

i pi ln(pi/qi) for two distributions p and q. To ensure that the boosting algorithm

always generates a “diversified” distribution, we set the feasible set P to be the set of all

ε-diversified distributions as defined in Definition 1.

The complete boosting algorithm is shown in Algorithm 4 and the theoretical guarantee
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Algorithm 4 Centralized Smooth Boosting algorithm [142]

Initialization: Fix a γ ≤ 1
2
. Let D(1) to be the uniform distribution over the dataset S.

For t = 1, 2, . . . , T :

1. Call the weak learner with distribution D(t) and obtain a hypothesis h(t)

2. Update the example weights

D̂(t+1)(i) = D(t)(i) · (1− γ)`
(t)
i /Z(t)

where `(t)i = 1[h(t)(xi) = yi] and Z(t) =
∑

iD
(t)(i) · (1−γ)`

(t)
i is the normalization

factor.

3. Project D̂(t+1) into the feasible set P of ε-diversified distributions

D(t+1) = arg min
D∈P

RE(D ‖ D̂(t+1))

Output: The hypothesis sign
(

1
T

∑T
t=1 h

(t)
)

in Theorem 11. The proof is similar to the one in [142], except that they use real-valued

weak learners, whereas here we only consider binary hypotheses for simplicity.

Theorem 11. Given a sample S and access to a γ-weak learner, Algorithm 4 makes at most

T = O( log(1/ε)
γ2

) calls to the weak learner with ε-diversified distributions and achieves error

rate ε on S.

Note that in Theorem 11, it is not explicitly assumed to be in the realizable case. In

other words, If we have a γ-weak learner in the agnostic setting, we can achieve the same

guarantee. However, in the agnostic setting, we only have access to a β-weak agnostic

learner, which is a much weaker and more realistic assumption. The next theorem shows the

error bound we get under this usual assumption in the agnostic setting.

Theorem 12. Given a sample S and access to a β-weak agnostic learner, Algorithm 4 uses

at most O( log(1/ε)
(1/2−β)2 ) iterations and achieves an error rate 2errS(H)

1/2−β + ε on S, where errS(H)

is the optimal error rate on S achievable using the hypothesis class H .

Proof. We show that as long as the boosting algorithm always generates some ε′-diversified

distributions, the β-weak agnostic learner is actually a γ-weak learner for some γ > 0, i.e.,
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it achieves error rate 1/2 − γ for any ε′-diversified distributions. In each iteration t, the

β-weak agnostic learner, given S with distribution D(t), returns a hypothesis h(t) such that

errD(t)(h(t)) ≤ errD(t)(H) + β

≤ 1

ε′
errS(H) + β.

The second inequality utilizes the ε′-diversifiedness property of D(t). The reason is that if h

is the optimal hypothesis on S, we have

errD(t)(H) ≤ errD(t)(h) ≤ #mistakes on S
ε′|S|

=
1

ε′
errS(h) =

1

ε′
errS(H).

Let 1
ε′
errS(H) + β = 1

2
− γ, or equivalently γ = (1

2
− β) − 1

ε′
errS(H). Then, if

ε′ ≥ 2errS(H)
1/2−β , we have γ ≥ 1

2
(1/2 − β) > 0. Therefore, we can use Theorem 11, and

achieves error rate ε′ on S by using O( log(1/ε′)
(1/2−β)2 ) iterations. Alternatively, it achieves error

rate 2errS(H)
1/2−β + ε by using O( log(1/ε)

(1/2−β)2 ) iterations.

Next, we show how to adapt this algorithm to the distributed setting.

7.3.2 Agnostic Boosting: Distributed Version

The technique of adapting a boosting algorithm to the distributed setting is inspired by

[118]. They claim that any weight-based boosting algorithm can be turned into a distributed

boosting algorithm with communication complexity that depends linearly on the number of

iterations in the original boosting algorithm. However, their result is not directly applicable

to our boosting algorithm due to the additional projection step. We will describe our

distributed boosting algorithm by showing how to simulate the three steps in each iteration

of Algorithm 4 in the distributed setting with O(d) words of communication. Then, since

there are at most O(log(1/ε)) iterations, the desired result follows.

In step 1, in order to obtain a 2β-weak hypothesis (we use 2β instead of β for conve-
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nience, which only affects the constant terms), the center calls the β-weak agnostic learner

on a dataset sampled from D(t) = 1
k

∑k
i=1D

(t)
i . The sampling procedure is as follows. Each

entity first sends its sum of weights to the center. Then, the center samples O( d
β2 log 1

β
)

examples in total across the k entities proportional to their sum of weights. By the standard

VC-theory, the error rate of any hypothesis on the sample is within β to the true error rate

with respect to the underlying distribution, with high probability. It is thus sufficient to find

a hypothesis with error within β to the best hypothesis, which can be done thanks to the

assumed β-weak learner.

Step 2 is relatively straightforward. The center broadcasts h(t) and each entity updates

its own internal weights independently. Each entity then sends the summation of internal

weights to the center for the calculation of the normalization factor. The communication

in this step is O(kd) for sending h(t) and some numbers. What is left is to show that the

projection in step 3 can be done in a communication efficient way. As shown in [123],

the projection using relative entropy as the distance into P , the set of all ε-diversified

distributions, can be done by the following simple algorithm.

For a fixed index m, we first clip the largest m coordinates of p to 1
εn

, and then rescale

the rest of the coordinates to sum up to 1 − m
εn

. We find the least index m such that the

resulting distribution is in P , i.e. all the coordinates are at most 1
εn

. A naive algorithm by

first sorting the coordinates takes O(n log n) time, but it is communicationally inefficient.

Fortunately, [123] also proposes a more advanced algorithm by recursively finding the

median. The idea is to use the median as the threshold, which corresponds to a potential

index m, i.e., m is the number of coordinates larger than the median. We then use a binary

search to find the least index m. The distributed version of the algorithm is shown in

Algorithm 5.

Theorem 13. Algorithm 5 projects a n-dimensional distribution into the set of all ε-

diversified distributions P with O(k log2(n)) words of total communication complexity.

Proof. Since Algorithm 5 is a direct adaptation of the centralized projection algorithm in
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Algorithm 5 Distributed Bregman projection algorithm
Input:

Center: n0 = n; C = 0; Cw = 0
Each entity i: a disjoint subsetWi ofW = {w1, . . . , wn}

While n0 6= 0:
Distributedly find the median θ of (W1, . . . ,Wk)

Each entity i:
Li = {w : w < θ,w ∈ Wi}; Lwi =

∑
w∈Li w

Mi = {w : w = θ, w ∈ Wi}; Mw
i =

∑
w∈Mi

w
Hi = {w : w > θ,w ∈ Wi}; Hw

i =
∑

w∈Hi w

Center:
L =

∑
i |Li|; Lw =

∑
i L

w
i

M =
∑

i |Mi|; Mw =
∑

iM
w
i

H =
∑

i |Hi|; Hw =
∑

iH
w
i

m0 =
1−(C+H) 1

εn

1−(Cw+Hw)
and broadcasts it

if θm0 >
1
εn

then
C = C +H +M ; Cw = Cw +Hw +Mw

if L = 0 then θ = max(w : w < θ, w ∈ W)
set n0 = L
notify each entity i to setWi = Li

else
set n0 = H
notify each entity i to setWi = Hi

Center: m0 =
1−C 1

εn

1−Cw and broadcasts it
Each entity i: set each coordinate as

w′i =

{
1
εn

if wi > θ
wim0 if wi ≤ θ

[123], we omit the proof of its correctness. Because we use a binary search over possible

thresholds, the algorithm runs at most O(log(n)) iteration. Therefore, it suffices to show

that the communication complexity of finding the median is at most O(k log n). This can be

done by the iterative procedure shown in Algorithm 6. Each entity first sends its own median

to the center. The center identifies the maximum and minimum local medians, denoted

as m and m, respectively. The global median must be between m and m, and removing

the same number of elements larger than or equal to m and less than m will not change

the median. Therefore, the center can notify the two corresponding entities and let them
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Algorithm 6 Distributedly finding the median
Input:

Each entity i: a disjoint subsetWi ofW = {w1, . . . , wn}
Each entity i: Send the median mi ofWi to the center
While |Wi| > 1 for some i ∈ [k]:

Center:
Find the maximum and minimum of the k medians, denoted by m and m and
notify the corresponding entities, denoted by A and B.

Entity A : Send n = |i : wi ∈ WA, wi ≥ m| to the center
Entity B : Send n = |i : wi ∈ WB, wi < m| to the center
Center: Send r = min{n, n} to entity A and B
Entity A: Remove the largest r elements inWA

Entity B: Remove the smallest r elements inWB

Entity A and B: Send the new median to the center

remove the same number of elements. At least one entity will reduce its size by half, so

the algorithm stops after O(k log n) iterations. Note that except for the first round, we only

need to communicate the updated medians of two entities at each round, so the overall

communication complexity is O(k log n) words.

In practice, it is often easier and more efficient to use a quickselect-based distributed

algorithm to find the median. The idea is to randomly select and broadcast a weight at each

iteration. This, in expectation, can remove half of the possible median candidates. This

approach achieves the same communication complexity in expectation.

The complete distributed agnostic boosting algorithm is shown in Algorithm 7. We

summarize our theoretical results in the next Theorem.

Theorem 14. Given access to a β-weak agnostic learner, Algorithm 7 achieves error

rate 2errD(H)
1/2−β + ε by using at most O( log(1/ε)

(1/2−β)2 ) rounds, each involving O((d/β2) log(1/β))

examples and an additional O(kd log2(d log(1/ε)
(1/2−β)ε )) words of communication per round.

Proof. The boosting algorithm starts by drawing fromD a sample S of size n = Õ( log(1/ε)d
(1/2−β)2ε2 )

across the k entities without communicating them. If S is a centralized dataset, then by The-

orem 12 we know that Algorithm 4 achieves error rate 2errS(H)
1/2−β + ε

2
on S using O( log(1/ε)

(1/2−β)2 )

iterations. We have shown that Algorithm 7 is a correct simulation of Algorithm 4 in
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Algorithm 7 Distributed agnostic boosting algorithm
Initialization:

Center: Access to a β-agnostic weak learner. Set γ = 1
2
(1
2
− β)

Each entity i:
Sample Si drawn from Di such that S = ∪iSi with size n = Õ( log(1/ε)d

(1/2−β)2ε2 ))

Set weights v(1)i,x = 1/|Si| for each (x, y) ∈ Si
For t = 1, 2, . . . , T :

Each entity i: Send w(t)
i =

∑
x∈Si v

(t)
i,x to the center

Center: Let W (t) =
∑

iw
t
i . Determine the number of examples n(t)

i to request from
each entity i by sampling O( d

β2 log 1
β
) times from the multinomial distribution

w
(t)
i /W

(t), and then send each number n(t)
i to entity i.

Each entity i: sample n(t)
i times from Si proportional to v(t)i,x; send them to center

Center: run the β-agnostic weak learner on the union of the received O( d
β2 log 1

β
)

examples, and then broadcast the returned hypothesis h(t)

Each entity i: update the weight of each example (x, y)

v̂
(t+1)
i,x =

{
v
(t)
i,x(1− γ) if h(t)(x) = y

v
(t)
i,x otherwise

Distributedly normalize and then project the weights by Algorithm 5

Output: The hypothesis sign
(

1
T

∑T
t=1 h

(t)
)

the distributed setting, and thus we achieve the same error bound on S. The number of

communication rounds is the same as the number of iterations of the boosting algorithm.

And in each round, the communication includes O(d/β2 log(1/β)) examples for finding the

β-weak hypothesis, O(kd) words for broadcasting the hypothesis and some numbers, and

O(k log2(n)) words for the distributed Bregman projection.

So far we only have the error bound of 2errS(H)
1/2−β + ε

2
on S. To obtain the generalization

error bound, note that with n = Õ( log(1/ε)d
(1/2−β)2ε2 ) and by the standard VC-dimension argument,

we have that with high probability errS(H) ≤ errD(H) + (1/2−β)ε
8

, and the generalization

error of our final hypothesis deviates from the empirical error by at most ε/4, which

completes the proof with the desired generalization error bound.
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7.4 Experiments

In this section, we compare the empirical performance of the proposed distributed boosting

algorithms with two other algorithms on synthetic and real-world datasets. The first one is

distributed AdaBoost [118], which is similar to our algorithm but without the projection step.

The second one is the distributed logistic regression algorithm available in the MPI imple-

mentation of the Liblinear package [148]. We choose it as a comparison to a non-boosting

approach. Note that Liblinear is a highly-optimized package while our implementation is

not, so the comparison in terms of speed is not absolutely fair. However, we show that

our approach, grounded in a rigorous framework, is comparable to this leading method in

practice.

7.4.1 Experiment Setup

All three algorithms are implemented in C using MPI, and all the experiments are run on

Amazon EC2 with 16 m3.large machines. The data is uniformly partitioned across 16

machines. All the results are averaged over 10 independent trials. Logistic regression is

a deterministic algorithm, so we do not show the standard deviation of the error rate. We

however still run it for 10 times to get the average running time. Since each algorithm has

different number of parameters, for fairness, we do not tune the parameters. For the two

boosting algorithms, we use T = 100 decision stumps as our weak learners and set β = 0.2

and ε = 0.1 in all experiments. For logistic regression, we use the default parameter C = 1.

7.4.2 Synthetic Dataset

We use the synthetic dataset from [138]. This dataset has an interesting theoretical property

that although it is linearly separable, by randomly flipping a tiny fraction of labels, all

convex potential boosting algorithms, including AdaBoost, fail to learn well. A random

example is generated as follows. The label y is randomly chosen from {−1,+1} with equal
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Table 7.1: Average (over 10 trials) error rate (%) and standard deviation on the synthetic
dataset

Noise Dist.AdaBoost Dist.SmoothBoost Liblinear-LR

0.1% 11.64 ± 3.82 4.28 ± 0.66 0.00
1% 25.97 ± 1.56 13.38 ± 4.66 0.00

10% 28.04 ± 0.94 27.07 ± 1.60 37.67

Table 7.2: Average (over 10 trials) error rate (%) and standard deviation on real-world
datasets

Dataset #examples # features Dist.AdaBoost Dist.SmoothBoost Liblinear-LR

Adult 48,842 123 15.71 ± 0.16 15.07 ± 2.32 15.36
Ijcnn1 141,691 22 5.90 ± 0.10 4.33 ± 0.18 7.57
Cod-RNA 488,565 8 6.12 ± 0.09 6.51 ± 0.11 11.79
Covtype 581,012 54 24.98 ± 0.22 24.68 ± 0.30 24.52
Yahoo 3,251,378 10 37.08 ± 0.15 36.86 ± 0.27 39.15

odds. The feature x = 〈x1, . . . , x21〉, where xi ∈ {−1,+1}, is sampled from a mixture

distribution: 1) With probability 1/4, set all xi to be equal to y. 2) With probability 1/4,

set x1 = x2 = · · · = x11 = y and x12 = x13 = · · · = x21 = −y. 3) With probability 1/2,

randomly set 5 coordinates from the first 11 and 6 coordinates from the last 10 to be equal

to y. Set the remaining coordinates to −y.

We generate 1,600,000 examples in total for training on 16 machines and test on a

separate set of size 100,000. The results are shown in Table 7.1. One can see that our

approach (Dist.SmoothBoost), is more resistant to noise than Dist.AdaBoost and significantly

outperforms it for having upto 1% noise. In high noise setting (10%), Liblinear performs

poorly, while our approach achieves the best error rate.

7.4.3 Real-world Datasets

We run the experiments on 5 real-world datasets with sizes ranging from 50 thousands

to over 3 millions: ADULT, IJCNN1, COD-RNA, and COVTYPE from the LibSVM data
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Table 7.3: Average run time (sec) on real-world datasets

Dataset Dist.AdaBoost Dist.SmoothBoost Liblinear-LR

Adult 5.02 15.54 0.06
Ijcnn1 0.76 9.19 0.10
Cod-RNA 1.08 10.11 0.12
Covtype 3.71 6.48 0.31
Yahoo 3.37 3.79 1.37

repository 1; YAHOO from the Yahoo! WebScope dataset [149]. The Yahoo dataset is used

for predicting whether a user will click the news article on their front page. It contains user

click logs and is extremely imbalanced. We trim down this dataset so that the number of

positive and negative examples are the same. The detailed information of the datasets are

summarized in Table 7.2. Each dataset is randomly split into 4/5 for the training set and 1/5

for the testing set.

The average error rate and the total running time are summarized in Table 7.2 and Ta-

ble 7.3, respectively. The bold entries indicates the best error rate. Our approach outperforms

the other two on 3 datasets and performs competitively on the other 2 datasets. In terms

of running time, Liblinear is the fastest on all datasets. However, the communication of

our algorithm only depends on the dimension d, so even for the largest dataset (YAHOO), it

can still finish within 4 seconds. Therefore, our algorithm is suitable for many real-world

situations where the number of examples is much larger than the dimension of the data. Fur-

thermore, our algorithm can be used with more advanced weak learners, such as distributed

logistic regression, to further reduce the running time.

7.5 Conclusions

We propose the first distributed boosting algorithm that enjoys strong performance guar-

antees, being simultaneously noise tolerant, communication efficient, and computationally

efficient; furthermore, it is quite flexible in that it can used with a variety of weak learners.

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets.
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This improves over the prior work of [118, 117] that were either communication efficient

only in noise-free scenarios or computationally prohibitive. While enjoying nice theoretical

guarantees, our algorithm also shows promising empirical results on large synthetic and

real-world datasets.

Finally, we raise some related open questions. In this work we assumed a star topology,

i.e., the center can communicate with all players directly. An interesting open question is to

extend our results to general communication topologies. Another concrete open question is

reducing the constant in our error bound while maintaining good communication complexity.

Finally, our approach uses centralized weak learners for learning general concept classes, so

the computation is mostly done in the center. Are there efficient distributed weak learners for

some specific concept classes? That could provide a more computation balanced distributed

learning procedure that enjoys strong communication complexity as well.
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Part III

Applying AI to Protect Enterprise and

Society
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OVERVIEW

Part I and II of my thesis provide theories, algorithms, and insight of the capabilities and

limitations of AI. But how can we deploy AI in practice and utilize it to provide solutions

that solve real enterprise security problems and create positive societal impacts? I believe

the key to success is through deep communication and collaboration with domain experts.

In Part III of my thesis, I present two projects that utilize AI to help the security industry and

for broader social good through deep collaboration with industry and government partners.

• Virtual Product (Chapter 8) is a patented enterprise cyber threat detection method

developed with Symantec.

• Firebird (Chapter 9) is an open-source framework, developed with the Atlanta Fire

Rescue Department, to help municipal fire departments identify and prioritize com-

mercial property fire inspections.
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CHAPTER 8

PREDICTING CYBER THREATS WITH VIRTUAL SECURITY PRODUCTS

Cybersecurity analysts are often presented suspicious machine activity that does not conclu-

sively indicate compromise, resulting in undetected incidents or costly investigations into

the most appropriate remediation actions. There are many reasons for this: deficiencies in

the number and quality of security products that are deployed, poor configuration of those

security products, and incomplete reporting of product-security telemetry. Managed Security

Service Providers (MSSP’s), which are tasked with detecting security incidents on behalf of

multiple customers, are confronted with these data quality issues, but also possess a wealth

of cross-product security data that enables innovative solutions. We use MSSP data to

develop Virtual Product, which addresses the aforementioned data challenges by predicting

what security events would have been triggered by a security product if it had been present.

This benefits the analysts by providing more context into existing security incidents (albeit

probabilistic) and by making questionable security incidents more conclusive. We achieve

up to 99% AUC in predicting the incidents that some products would have detected had they

been present.

8.1 Introduction

Security products often are primed to detect certain threats extremely well. In other contexts,

they will generally provide less than conclusive or no evidence of attacks. This motivates a

defense in depth strategy that advocates for deploying multiple kinds of security devices

to provide the most robust defense. Clearly it is infeasible to deploy every single security

product to maximally protect every single device in an organization. Cybersecurity analysts,

therefore, must contend with suboptimal context regarding potential attacks because the

products that are providing telemetry are not well suited for a potential attack. Their
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Product Type Alert Description (Event)

Gateway TCP Urgent Data Enforcement
Gateway TCP anomaly
Gateway TCP Out of Sequence
Gateway ICMP Echo Request
Windows Cryptographic operation
Windows Attempt to unprotect auditable protected data
Windows Logon attempt using explicit credentials
Windows Key file operation
Windows Filter Manager Event 1
Windows Attempt to register a security event source
Windows Attempt to unregister a security event source
Windows Special privileges assigned to new logon
Windows A privileged service was called
Windows A network share object was accessed
Firewall TCP Connection
Firewall UDP Connection
Proxy TCP Cache Hit
Proxy TCP Cache Miss: Non-Cacheable Object

Table 8.1: A long list of inconclusive alerts generated in a real incident of a machine infected
by the infamous Zbot Trojan. These alerts overwhelm a cybersecurity analyst, and do not
help answer important questions such as: Is this machine compromised? How severe is the
attack? What actions should be taken? Our technique, Virtual Product, correctly predicts
the presence of the infamous Zbot Trojan, which would have been identified by an AV
product, had it been installed.
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confidence in either pursuing or ignoring a potential compromise is often less than ideal.

The key to improving detection rates in this environment is to learn from the vast

amounts of telemetry produced by the prevalent defense-in-depth approach to computer

security, wherein multiple security products are deployed alongside each other, producing

highly correlated alert data. By studying this data, we are able to accurately predict which

security alerts a product would have triggered in a particular situation, even though it was

not deployed. A representative example is shown in Table 8.1, wherein security alerts

produced by several products hint at the possibility of a security problem, but do not present

conclusive evidence. Our models, however, are able to correctly predict the presence of the

Zeus (also known as the Zbot) trojan, as the cause of the anomalous system and network

behavior on the machine.

We introduce and formulate the novel problem of Virtual Product, the first known attempt

to predict the security events and high-severity incidents that would have been identified by

a product if it had been deployed. Given sufficient data from many organizations deploying

different sets of security products, we posit it should be possible to predict the events that

would have been reported by additional security products that were not deployed. This

analysis benefits from the observations that many security products detect the same threats,

and that attacks are typically automated and therefore proceed in predictable sequences of

behavior.

Figure 8.1 shows how Virtual Product works. We formulate incident data as a large

matrix. Each row, called a machine-day, tracks all of the security events that were observed

on a particular machine, on a given date. Although many entries will be empty since

machines are at most protected by a handful of products, we can predict the likely events that

would have been triggered by those products that were not deployed. The security officers

can then hopefully make a more informed decision about the trade off of cost and value of

what other security products would provide. For the analyst, Virtual Product enriches each

incident (i.e., row) with more context to understand the severity of the threat posed by the
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Figure 8.1: Virtual Product helps our user Sam discover and understand cyber-threats, and
informs deployment decisions (e.g., add firewall?) through semi-supervised non-negative
matrix factorization on telemetry data from other users (with firewalls deployed). In the data
matrix, each row represents a machine-day, and each column a security event’s occurrences.
Missing events from undeployed products are shown as gray blocks. The last column
indicates if the firewall has detected an incident. Our virtual firewall serves as a proxy to the
actual product and predicts the output Sam may observe (dark green block) if he deploys it.

observed activity. Our work makes the following contributions:

• Novel Idea of Virtual Product. We introduce the problem of simulating a security

product’s individual security events and the security incidents that these events would

have raised, had it actually been deployed. We formulate techniques by which the security

data managed by Security Incident and Event Managers (SIEM’s) and Managed Security

Service Providers (MSSP’s) on behalf of multiple products can be used for this purpose
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(see Table 8.2 for definitions of these terms).

• Effective Approach. We provide a practical implementation for this problem by adapting

semi-supervised non-negative matrix factorization techniques, which simultaneously

addresses the problem of security incident and event prediction for the absent products,

with high accuracy.

• Impact to Security Industry. Our Virtual Product model will impact the security industry

by increasing company security at significantly reduced costs. We are working towards

making Virtual Product events and security incidents available to customers of an MSSP.

By deploying Virtual Product on behalf of customers, we provide a new way for them to

experience the potential benefits of security products without deploying them, allowing

them to make more informed purchasing decisions.

To enhance readability of this chapter, we have listed the terminology used in this chapter

in Table 8.2. The reader may want to return to this table throughout this chapter for technical

terms’ meanings and synonyms used in various contexts of discussion. We proceed by

discussing related work in Section 8.2, and present our proposed Virtual Product model in

Section 8.3. We evaluate the performance of our algorithm in Section 8.4. Next, we discuss

the expected impact of Virtual Product and concrete deployment plans studies in Section

8.5. Finally, we discuss our findings and conclude in Section 8.6.

8.2 Related Work

There has been growing interest in applying machine learning and data mining techniques

to detect cyber-threats, such as malicious files [45, 44], malicious websites [150, 151],

and online fraudulent behaviour [52], using approaches range from Naive Bayes [152], to

neural networks [153], decision trees [154], to large-scale graph-based inference [45, 44].

In contrast to prior work, instead of predicting cyber-threats directly, we formulate and

tackle the novel Virtual Product problem of predicting how a security product would work
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Technical term Meaning

Virtual product A machine learning model used to reconstruct a real security product’s
behavior

Machine-day A machine on a particular day

Security event A description of activity recorded by a security product, not necessarily
malicious, e.g., login failure

Incident A serious security threat, evidenced by one or more events, warranting
attention, e.g., unblocked malware

SIEM Security Incident and Event Managers, which manage security events
produced by products, that they analyze to detect and report security
incidents

MSSP Managed Security Service Providers, which run a SIEM on behalf of
multiple customers

Table 8.2: Terminology used in this chapter

in a customer’s specific environment, had it been deployed. Not only do we predict the

incident triggering behaviour of a product, but also reconstruct all the security events it

detects, tackling both tasks simultaneously using matrix factorization methods. To the best

of our knowledge, Virtual Product addresses a novel problem, one that provides additional

context and detection capabilities by predicting the incidents and individual security events

that would be provided by security products had they been deployed.

Matrix factorization [155, 156, 157] exploits latent features of a data matrix by decom-

posing the matrix into a series of low-rank factor matrices. These factor matrices, though

additional constraints can be enforced on them, are learned by minimizing a generalized

Bregman divergence [156, 158] between the original data matrix and the dot product of the

low-rank factor matrices. Matrix factorization has been popularly used in collaborative fil-

tering [159, 160, 161] of highly sparse user-item rating records to predict users’ preferences

and recommend unrated products. Document clustering is another well-studied research

domain that uses matrix factorization. A common approach is to apply non-negative matrix

factorization (NMF ) [162, 163] on sparse bag-of-words features of documents and group
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documents using the derived non-negative factors [162, 163, 164]. Supervision in the context

of matrix factorization introduces class separating structure into the factor matrices, which

enforces linear separation of classes in the linear projection of data [159, 165]. The objective

function of the factorization has been designed to enforce specific properties of the latent

projected data. Previous efforts on supervised and weakly supervised matrix factorization

can be found in [159, 166, 167, 168]. Most of them focus on decomposing densely valued

data matrices to improve clustering accuracy. Our algorithm extends and adapts prior work

to the classification problem of predicting attacks by reconstructing missing signals on

extremely sparse data.

8.3 Proposed Model: Virtual Product

Given a security product P , our Virtual Product model aims to detect and categorize

incidents for customers who have not deployed P . We formulate the construction of Virtual

Product as a classification problem, training it on machine-day observations collected from

machines that have deployed P . The training process learns the functional mapping between

the event occurrence patterns of other products and the incident class labels reported by

P . During testing, the Virtual Product model takes as input the observed event occurrence

patterns from products except P , and produces incident detection and categorization results.

A main challenge for Virtual Product is in training and applying it with incomplete event

occurrence patterns as input. Events may be missing either because their corresponding

products are not deployed, or due to data corruption at the telemetry data collection process.

To address this issue, we propose a semi-supervised non-negative matrix factorization

method (SSNMF ) as a core computation technique for Virtual Product. It extracts an

unified discriminative feature representation of the event occurrence records from both the

training and testing datasets. We conduct incident detection and categorization in Virtual

Product by feeding the learned feature representations as input to any standard supervised

classifiers. Virtual Product denotes the process of conducting SSNMF on event occurrence
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data, followed by training a supervised classifier on the output of SSNMF .

Another contribution of Virtual Product is to estimate event occurrence patterns that are

missing from the observed data. It is helpful for security analysts to understand relations

between event occurrence profiles and reported security incidents. The SSNMF well

matches this requirement, as it is intrinsically equipped with the capability of reconstructing

the missing event values through inner product of low-rank matrices.

8.3.1 Semi-Supervised Non-negative Matrix Factorization (SSNMF)

We use a non-negative data matrix X ∈ RN×M to denote the aggregation of both training

and testing event occurrence data. Each row in X , noted as Xi,: denotes occurrence counts

of different events around a machine-day. Without loss of generality, the first N1 rows of X

belong to the training event occurrence data. They are equipped with corresponding incident

class labels reported by the target product P . The remaining N − N1 rows of X are the

testing data corresponding to event occurrence data collected from customers’ machines

without P deployed.

Non-negative Matrix Factorization reconstructs a non-negative data matrix X ∈ RN×M

using the dot product of two non-negative factors U ∈ RN×k and V ∈ RM×k, where k is the

number of latent features that is often determined by cross-validation. As shown in Equation

(8.1), the latent factors are learned by minimizing the reconstruction error on the observed

events in our data.

U, V = argmin
U,V >0

‖X − UV T‖o
2

(8.1)

The norm ‖‖o indicates the aggregated reconstruction error on the observed entries of X .

Each row in U , Ui,: represents the linear projection of Xi,:, which formulates a new feature

representation of machine-day observations in a low-dimensional space. Column vectors of

V are the projection bases spanning the projection space.

To integrate supervision information into the matrix factorization process, we introduce

a class-sensitive loss into the objective function of matrix factorization, in order to force
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machine-day observations of different classes to be separated from each other in the projected

space. Equation (8.2) and Equation (8.3) give the formulation of the discriminative loss

functions defined for binary and multi-class classification scenarios, respectively.

F (Ŷ , U,W ) = −
N∑
i=1

Ŷi log
1

1 + exp (−Ui,:W T )

+ (1− Ŷi) log
1

1 + exp (Ui,:W T )

(8.2)

F (Ŷ , U,W ) = −
N∑
i=1

C∑
j=1

Ŷi,j log
exp (Ui,:W

T
j,:)∑

j′ exp (Ui,:W T
j′,:)

(8.3)

where W ∈ R1×k stores the regression coefficients. Ŷi represents the class label of

each machine-day observation. For labeled machine-days, Ŷi it either 1 or 0, depending

on whether Xi,: belongs to positive or negative class. For unlabeled machine-days, Ŷi

represents any plug-in estimator of probabilistic confidence of Xi,: belonging to positive

class. In the multi-class version of the loss function, C denotes the number of classes in the

labeled dataset. As a result, W becomes a RC×k matrix. Each row in W corresponds to

the regression coefficients for each class. Ŷi,j of labeled data is defined following one-hot

encoding scheme. For unlabeled data, Ŷi,j represents the probabilistic class membership of

each Xi,:. U is the common factor shared by both matrix factorization in Equation (8.1) and

the class-sensitive loss function defined in Equation (8.2) and (8.3). This design guarantees

the feature representation U preserves the class separating structure of the training data.

Ŷ for unlabeled data can be initialized using external oracles with probabilistic output,

such as gradient boosting and logistic regression. In this work, we treat Ŷ as one variable

to learn and estimate it by jointly optimizing the objective function with respect to U , V ,

W and Ŷ . We assume that unlabeled data points with similar profiles are likely to share

similar soft class label Ŷ . By enforcing such assumption to the objective function design,

we explicitly inject supervised information into the projection of both labeled and unlabeled
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machine-day observations. The complete optimization problem of SSNMF is shown in

the following equation.

U, V,W, Ŷ = argmin
U,V≥0,W,1≥Ŷ≥0

‖X − UV T‖o
2

+ αF (Ŷ , U,W )

+ βTr(Ŷ TLŶ ) + γ(‖U‖2 + ‖V ‖2) + ρ‖W‖2

s.t. Ŷi = Yi if Xi,: is labeled

(8.4)

The constraint in the objective function requires strict consistency between Ŷ and the true

class labels on labeled machine-day observations. L is the graph laplacian matrix defined

based on K-nearest neighbor graph of the whole data matrix X . Minimizing the trace

function Tr(Ŷ TLŶ ) propagates the confidence of class membership from true class label

of labeled machine-days to unlabeled machine-days. It embeds class-separating information

into the projection U of unlabeled machine-days. Regularization terms γ(‖U‖2 + ‖V ‖2)

and ρ‖W‖2 are added to prevent over-fitting.

8.3.2 Optimization Algorithm

We use coordinate descent to optimize Equation 8.4. During each iteration, U , V , W and Ŷ

are updated alternatively. One of the four variables are updated while all the others are fixed.

Iterations continue until the objective value cannot be further improved. U , V are updated

using multiplicative update [163], which is a popular optimization technique for solving

many variants of NMF . Equation (8.5) gives the formulations of multiplicative update of

U and V

U t+1 = U t � [(X �M)V ]+ + [(UV T �M)V ]− + α[Ŷ W ]+ + α[RW ]−

[(X �M)V ]− + [(UV T �M)V ]+ + α[Ŷ W ]− + α[RW ]+ + γU

V t+1 = V t � (X �M)TU

(UV T �M)
T
U + γV

(8.5)

where [A]+ = (|A|+ A)/2 and [A]− = (|A| − A)/2. R is the output from the sigmoid
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function (binary classification) Ri = 1
1+exp (−Ui,:WT )

or the softmax function (multi-class

classification) Ri,j =
exp (Ui,:W

T
j,:)∑C

j′=1 exp (Ui,:WT
j′,:)

. The operation � indicates Hadamard product

between matrices. M is a entry-wise weight matrix. Mi,j = 1 if the entry Xi,j is observed,

and Mi,j = 0 otherwise.

Updating Ŷ consists of two components. For one aspect, the learning of Ŷ is based

on supervision information propagation. For the other aspect, estimates of Ŷ depends on

the output from the sigmoid or softmax function, which encodes the retraction from data

reconstruction penalty in the objective function. Equation (8.6) and Equation (8.7) define

how to estimate Ŷ in binary and multi-class classification scenarios:

Ŷi = Yi if Xi,: is labeled

Ŷ t+1 = Ŷ t � α log (1 + exp (UW T )) + 2βSŶ

α log (1 + exp (−UW T )) + 2βDŶ

(8.6)

Ŷi = Yi if Xi,: is labeled

Ŷ t+1 = Ŷ t � α log R̂ + 2βSŶ

2βDŶ

(8.7)

where R̂i,j =
exp (Ui,:W

T
j,:)∑C

j′=1 exp (Ui,:WT
j′,:)

. S is weight matrix of K-nearest neighbor graph. D is a

diagonal matrix with Di,i defined as
∑N

i=1 Si,j .

By removing terms without W in Equation (8.4), the left terms of the objective function

formulate a L2-penalised logistic regression with soft class labels Ŷ and training data points

in the projected space U . Therefore, learning W given U and Ŷ fixed can be performed

through iterative gradient descent until convergence. We found that the number of iterations

can be dramatically reduced by choosing the step size of gradient in an adaptive way using
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Dataset #Machine
Days

#Detected
Incidents

#Events Sparsity #Incident
Type

FW1: Firewall 1 4506 770 1011 98% 10
FW2: Firewall 2 9254 3093 1927 99% 12
FW3: Firewall 3 4477 1274 2019 98% 10
EP1: Endpoint Protection 1 18983 4128 2409 99% 30
EP2: Endpoint Protection 2 8006 904 988 97% 5

Table 8.3: Summary of the training datasets (Jul-Sept) for the top five products that detect
the most incidents.

AdaGrad [169], as shown below:

W t+1 = W t + λ
GW t√∑t−1
t′=1

G
W t
′

(8.8)

where GW is the gradient of Equation (8.4) with respect to W .

When U , V and W converge, U1:N1,: and UN1:N,: are used as low-dimensional feature

representations of the training and testing data, respectively. We then train a logistic

regression on the row vector space of U to conduct incident detection and categorization

in Virtual Product. Note that we are not restricted to logistic regression. We choose it due

to its simplicity and probabilistic decision output. Despite its simplicity, it shows superior

performance thanks to the learned feature representation U , as reported in the experimental

study.

8.4 Evaluation

8.4.1 Data Collection

Our evaluation uses telemetry data sent from a leading Managed Security Service Provider

(MSSP), which supports roughly 80 security products from different vendors. Customers

send telemetry from their deployed products to the MSSP, which analyzes the telemetry to

identify and report incidents. Due to space constraints, we show the results of the top five

products that detect the most incidents: three firewalls (FW1, FW2, FW3) and two endpoint
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protection products (EP1, EP2).

To evaluate our approach’s prediction performance for a specific product P , we derived

an anonymized dataset from the telemetry data. This derived dataset consists of data

contributed by the machines that have deployed P , which allows us to extract ground truth

labels. When performing prediction, we do not use any events from P . In other words, we

pretend that product P is not deployed and hide all its events.

The dataset is represented as a N -by-M matrix X (see Figure 8.1). Each row Xi,: is an

instance that represents a machine-day. Each column X:,j is a feature that corresponds to the

number of occurrences of a event from different products except P . To prevent numerical

overflow during computation, we take the logarithm of each event occurrence count in X .

Since events relevant to an incident may not appear within a single machine-day, when

counting occurrences, we consider the period that spans three days before and after the

machine-day. Note that our task is not to predict an incident before it happens, so we also

collect events observed after the machine-day. To prevent duplicate and similar instances,

we only use machine-days from the same machine that are at least one week apart from

other machine-days.

The matrix is extremely sparse, and each machine-day typically only has a few observed

events. Events may be missing if their corresponding products are not deployed. They may

also be caused by data corruption when the products report them. To avoid machine-days

with zero or very few observed events, which are nearly impossible to perform prediction,

we filter out all machine-days with fewer than 20 observed events.

There are two sets of labels associated with each machine-day, one for binary classi-

fication of whether there is an incident, and the other one for multi-class classification of

the incident type. The positive and negative machine-days are collected as follows. For

each incident reported in our system, we label a machine-day as positive if an incident is

detected by product P . For negative machine-days, we use the same set of machines (as

when collecting positive instances). A machine-day is labeled negative if no incidents have
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Dataset #Machine-days #Detected
Incidents

Sparsity
level

FW1 3090 355 98%
FW2 6515 2830 98%
FW3 2660 253 97%
EP1 8222 2377 98%
EP2 2275 754 98%

Table 8.4: Summary of validation datasets (Oct-Dec).

been detected by any products within a one-month period (15 days before to 15 days after).

This binary label definition is used in experiments, in order to evaluate the capability of the

proposed method for detecting malicious incidents. We also include a multi-class definition

of incident labels. The multi-class incident label denotes multiple categories of detected

incidents, valued as {−1, 1, 2, ...C}, where C is the number of incident categories, and −1

means “no incident”.

The same data collection process is performed over two independent time periods.

The first dataset was collected from July to September in 2016 — we call this the training

dataset (summarized in Table 8.3), on which we conduct cross-validation to verify theoretical

validity of the algorithmic design in Section 8.4.4 and evaluate reconstruction performances

in Section 8.4.3. The second dataset was collected from October to December in 2016 —

we call this the validation dataset (summarized in Table 8.4). We use the training dataset to

tune the parameters of our model, then apply it on the validation dataset to evaluate incident

classification accuracy in real-world applications

In Table 8.3, we also show the sparsity level of each product’s dataset, to highlight how

sparse the data matrices are in our study. The sparsity level of a given data matrix is defined

as the fraction of unobserved entries in the matrix.

8.4.2 Experiment Setup and Overview

Our experiment consists of three parts.

1. In Section 8.4.3, benefiting from matrix factorization, the proposed method estimates
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count values of security events produced by those products whose events were withheld

from the dataset. The reconstructed event counts will later help us determine whether a

security incident would have been raised by the events produced by the withheld product.

Since security incident are formulated as collections of relevant events, reconstructing

the missing events is essential for incident reproduction based on the occurrence pattern

of the corresponding incident. Furthermore, the individual events provide important

insights and context into the nature of the security incident, which frequently enable

improved triage and remediation of the incident. We evaluate our proposed event-

reconstruction model by measuring reconstruction error between ground truth event

counts and our estimated values.

2. In Section 8.4.4, we evaluate the performance of our proposed method for detecting

security incidents. This output of Virtual Product’s methods allows us to build a incident

detector based on incomplete event information. The test is conducted on the training

data matrices and the incident labels of all five products. Both binary and multi-class

incident labels are produced for this test.

3. In Section 8.4.5, we investigate the computational complexity and empirical scalability

of our proposed Virtual Product model, noted as VP.

8.4.3 Evaluation on Reconstruction Accuracy

We validate in this section that the proposed model can compensate for missing events. We

investigate the reconstruction performance of Virtual Product with respect to the occurrence

counts of withheld event observations. Reconstruction capability is a key function of the

proposed model, since knowing which events were responsible for triggering a predicted

security incidents is essential to the understanding of that incident, and to its remediation.

Accordingly, we evaluate the reconstruction capability of the proposed method. We randomly

select 50% of the observed entries and take the event count of these entries as ground truth.
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R-squared Score Percentage
Dataset Mean Std Mean Std

FW1 0.8493 0.0036 0.9819 0.0009
FW2 0.7300 0.0032 0.9834 0.0002
FW3 0.8408 0.0023 0.9858 0.0007
EP1 0.7356 0.0013 0.9801 0.0001
EP2 0.8193 0.0014 0.9832 0.0004

Table 8.5: Performance of reconstruction on all five datasets

After that, we hold out the ground truth counts and apply our matrix factorization method to

derive the estimated count values of the masked entries. To measure reconstruction accuracy

we use the R-squared score between the ground truth and the estimated values. To remove

randomness introduced by sampling, we repeatedly sample the observe entries 10 times.

The average and standard deviation of the derived R-squared scores from different sampling

rounds are used as a comprehensive evaluation metric of the reconstruction performance.

The average and standard deviation of R-squared scores derived on the five datasets are

shown in Table 8.5. We also provide a statistical summary of our reconstruction results in

Table 8.5. In addition, for each dataset, we count the percentage of the entries in which the

reconstructed event occurrence counts are larger than 50% of the corresponding ground truth

occurrence count values, as noted as Percentage in Table 8.5. This statistical summary

provides an intuitive understanding on the reported reconstruction accuracy. In practice,

if the reconstructed occurrence count of a given event is close enough to its ground truth,

the reconstruction is precise enough to estimate whether this event was triggered by the

corresponding product. The results show that Virtual Product is able to reconstruct event

occurrence patterns with precision for the security products. As seen in the results, almost

all masked event occurrence patterns are perfectly recovered through the matrix factorization

process embedded using our proposed method. As we will see in Section 8.4.6, these

recovered security events enable machine learning models to perform improved incident

detection. The true value of this work, however, is perhaps best illustrated by the case

studies shown in Section 8.5.1.
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8.4.4 Evaluation: Incident Detection and Categorization

We perform 10-fold Monte Carlo cross-validation, where each randomly samples 70% of

the machine-days from the training dataset collected from July to September in 2016. The

remaining 30% is left for testing.

We set up a baseline model (shorthand: LR) by training a logistic regression classifier

directly on the event count matrix X , with missing entries filled with zeros. In our approach

(shorthand: VP), we train a logistic regression classifier on the low-dimensional feature

representation of X produced by Virtual Product model.

The purpose of introducing the baseline model is two-folds. Firstly, we use the results

from the baseline model to further validate our initial assumption: it is possible to predict

the events that would have been reported by additional security products that were not

deployed. The baseline model conducts classification using only the observed events from

the deployed products. No reconstructed event information is embedded. Therefore, if the

baseline method can detect or categorize incidents with an acceptable accuracy, we have

strong reason to believe the proposed Virtual Product model can perform even better by

incorporating the reconstructed event counts into the classifier design. Secondly, we aim to

conduct a fair comparative study for our proposed methodology, though we note that the

baseline model is not a comparison to prior art, as Virtual Product addresses a novel problem

of not only predicting the incidents but also recovering the associated security events. The

objective function of SSNMF , used in Virtual Product, can be roughly understood as

construction of a logistic regression classifier on the projected space of the original data.

This comparative study aims to verify the benefits gained from the algorithmic design of

Virtual Product for classification with missing features.

To allow fine-grained comparison, we compute the mean and standard deviation of the

Area-Under-Curve (AUC) and the True Positive Rate (TPR) across 10 folds, and display them

in Table 8.6 and Table 8.7, respectively. As we can see in the two tables, both the baseline and

the proposed Virtual Product method present good classification performances over training
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VP AUC LR AUC
Dataset Mean Std Mean Std

FW1 0.9831 0.0041 0.9695 0.0055
FW2 0.9900 0.0018 0.9810 0.0029
FW3 0.9200 0.0070 0.8761 0.0131
EP1 0.8218 0.0066 0.8076 0.0072
EP2 0.8962 0.0083 0.8306 0.0164

Table 8.6: Our approach (VP) detects security incidents with high accuracies (AUCs) across
all five datasets, outperforming the baseline model (LR).

VP TPR LR TPR
Dataset Mean Std Mean Std

FW1 0.9724 0.0114 0.9661 0.0078
FW2 0.9820 0.0057 0.9810 0.0074
FW3 0.7879 0.0157 0.7608 0.0228
EP1 0.5200 0.0175 0.5016 0.0268
EP2 0.5897 0.0293 0.5663 0.0399

Table 8.7: True positive rate (TPR) of incident detection on all five data sets at 10% false
positive rate (FPR). Our approach (VP) outperforms the baseline (LR)

datasets of all five security products. It indicates that counts of events collected from different

organizations are able to predict occurrence of incidents that would have been reported by

undeployed products. Furthermore, the result unveils consistently superior incident detection

precision of the proposed Virtual Product model over the baseline method across the training

datasets of different products. Figure 8.2 shows the average ROC curve and AUC derived

from the cross-validation test, offering a global and intuitive view of incident detection

performances over training datasets of different products using the proposed Virtual Product

model. All obtained results support the design of the proposed Virtual Product method.

Embedding matrix completion into classification helps extract correlation among observed

events of different products, which increases available information to boost classification

precision.

Additionally, test on the validation datasets follows a standard training-testing process

of machine learning models in real-world applications. Classification model built with the
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Figure 8.2: Averaged ROC curves from 10-fold cross-validation of Virtual Product on our
top five product datasets.

training dataset collected within the precedent time period is used to detect incidents on the

validation dataset formulated within the current time slot.

Interestingly, as shown in Figure 8.3, incident detection result using the proposed Virtual

Product model presents consistent high detection accuracy over validation datasets of

different products. The reported detection accuracy confirms the robustness of the proposed

Virtual Product model.

As described in Section 8.3, the proposed Virtual Product can be seamlessly extended

for incident categorization, which classifies detected incident at a finer scale. Without major

modification, the proposed Virtual Product is able to achieve both incident detection and

categorization (multi-class classification) at the same time. Table 8.8 shows the average

F1-score of incident categorization on training datasets of different products using Virtual

Product. As we can see, Virtual Product can achieve almost perfect incident categorization

on the FW1 and FW2 datasets. In the EP2 dataset, over 99% of detected incidents belong
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Figure 8.3: ROC curves of the Virtual Product model evaluated using the validation datasets
of the five products.

to a single incident type. Severe class imbalance makes any classifier built on the dataset

statistically unstable, so we chose not to include the EP2 dataset in the experimental study

of incident categorization. The categorization precisions on EP1 and FW3 are relatively

lower. This is mainly due to class imbalance among different incident categories in these

two datasets, particularly in the case of the EP1 training dataset, for which nearly half of the

30 incident types are minority classes. Each of these minority classes contains fewer than

10 machine-day observations, which increases the difficulty of categorization. The impact

of class imbalance is also confirmed by the baseline LR method. Nevertheless, even in this

extreme situation, the proposed Virtual Product still obtains improvements compared to the

baseline model.

In general, all experimental results in this section verify the effectiveness of Virtual

Product. By jointly conducting matrix factorization and discriminative model learning, the

proposed model makes full use of inter-event correlation to compensate information missing
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VP LR

FW1 0.9927 0.9910
FW2 0.9425 0.9338
FW3 0.8005 0.8043
EP1 0.7501 0.7220

Table 8.8: Average F1 scores of incident categorization on our datasets. We do not include
EP2 because over 99% of the detected incidents belong to one single incident type.

due to the extremely sparse data structure. As a result, it provides a good reconstruction of

the classification boundary from highly incomplete event occurrence data.

8.4.5 Evaluation of Computational Cost

Time Complexity Analysis. The training of Virtual Product’s model consists of two parts.

First, we construct a k-nearest neighbor (K-NN) graph in an offline manner. Nearest

neighbor searching generally requires a cost of O(N2M), which is quadratic to the size of

the dataset. Since the machine-day event count data is high-dimensional and highly sparse,

we use an approximate K-NN method [170] tailored for sparse data. This reduces the cost

of K-NN searching to O(DNlogN) in the worst case, where D is the number of feature

dimensions. Next, we perform multiplicative updates in O(TNMk) + O(TNCk) time,

where T is the number of iterations and k is the dimension of the projected representation

U . The total cost of the proposed model is therefore at most O(DNlogN) +O(TNMk) +

O(TNCk). For all five datasets, we observed that 200 iterations (T = 200) were sufficient

to achieve convergence.

Empirical Scalability. We conducted experiments to study how our proposed model

scales with increasing volumes of data. We report the average training runtime of the

proposed Virtual Product model on EP1 and FW2 (across 10 runs). Our machine is a 64-bit

Linux laptop (Ubuntu 14.0) with an Intel Core i7 quad-core CPU running at 2.5GHz, 16GB

RAM and 500GB disk. The Virtual Product model is implemented in Python 2.7, with

API provided in python scientific computing packages, numpy 1.13 and scikit-learn 0.18.1.
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Dataset #Machine-days Runtime (minutes)

FW2 9,254 10
EP1 18,983 25
Large FW2 92,540 45
Large EP1 189,830 57

Table 8.9: Average virtual product training times (over 10 runs).

EP1 and FW2 datasets contain approximately 19k and 9k machine-days, representing real-

world medium-scale applications. To study large-scale scenarios, we enlarge EP1 and FW2

datasets by 10 folds by replicating real machine-days contained in the original datasets. The

enlarged EP1 and FW2 datasets (we call them Large EP1 and Large FW2) contain 190k

and 90k machine-days respectively. Table 8.9 shows the average runtimes of our proposed

model across the datasets.

Our MSS service currently monitors about 80 products. Since each virtual product can be

trained independently from each other, we can easily speed up overall computation through

parallelization (e.g., distributed computation using Spark; more discussion in Section 8.5.2).

For the evaluation in this section, we were able to train Virtual Product in under an hour, even

on a commodity computer of modest power with an unoptimized software implementation.

8.4.6 Improvement in Analyst Response Predictions

As additional evidence to support the utility of Virtual Product, we measure event reconstruc-

tion’s ability to improve the accuracy of a model that the internal Managed Security Services

analysts use in determining whether to publish incidents to customers or suppress them as

false positives. We use a recent version of this model that is trained with no interaction or

influence from Virtual Product, and whose primary task is to recommend whether incidents

should be published to customers, or suppressed.

We took the FW1 dataset and removed all events from FW1, while keeping the events

of other devices. We call this dataset Xnone. We take Xnone and create a new dataset Xtop2

from it, for which we include the top two predicted events for FW1. We choose the two
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events with the highest predicted instance count, normalized by the average instance count

for that event. Although we could expand the number of predicted events beyond two, we

believe that the simplicity afforded by this heuristic will include the most salient missing

context versus the complexity of determining which predicted events to include.

Our model achieved 94.7% accuracy on Xnone and 97.6% on Xtop2. The 2.9% improve-

ment in accuracy results in halving the error rate. Although the accuracy on Xnone is quite

good already, we must consider that the model is used to increase the productivity of security

analysts. The median salary for an analyst is $90.1K US dollars [171] and therefore making

them individually more efficient is desirable.

8.5 Impact and Deployment

This section will illustrate how Virtual Product empowers MSSP customers to identify

security incidents by adding additional context to make more confident incident response

decisions. To provide concrete illustrations of this, we present two case studies and discuss

other areas of expected impact. We then proceed to a discussion of our current efforts,

and future plans to integrate Virtual Product into the infrastructure used by our Managed

Security Services.

8.5.1 Case Studies and Impact

As in Table 8.1, in this section we present two additional real-world incidents and the event

predictions identified by Virtual Product for these incidents as examples of its positive

impact on the incident response process.

Example 1. One of our customers, whom we will call Alice, has an important server

that is protected by many network security products, as shown in Table 8.10. What value

is FirewallB providing? Let us imagine that FirewallB is not deployed. Alice observes

several suspicious events output from the deployed products. FirewallA detects an HTTP

beacon from the HiKit exploit kit and the proxy also detects visits to suspicious websites.
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Product Event Description

Seen Indicators (security events)
Proxy Suspicious connection
FirewallA WebVPN Authentication Rejected
FirewallA WebVPN session created
FirewallA WebVPN session terminated
FirewallA WebVPN session deleted
FirewallA WebVPN session started
FirewallA WebVPN Authentication success
FirewallA SSL handshake completed
FirewallA Teardown TCP connection
FirewallA TCP connection
FirewallA Session disconnected
IPS SQL Query in HTTP Request
IPS RookIE/1.0 malicious user-agent string
IPS Angler exploit kit exploit download attempt
IPS Known malicious user agent - mozilla
IPS HiKit initial HTTP beacon
IPS TeamViewer remote administration tool outbound connection attempt
Router Flow session close

Top Predicted Primary Indicators
FirewallB Windows Executable
FirewallB Malicious File
FirewallB SQL Injection Attempt
FirewallB Phishing Webpage
FirewallB RIG Exploit Kit
FirewallB Windows DLL
FirewallB Heartbleed Malformed OpenSSL Heartbeat
FirewallB Microsoft Indexing Service UTF-7 Cross-Site Scripting Vulnerability
FirewallB Microsoft IIS HTR Request Parsing Buffer Overflow Vulnerability
FirewallB /etc/passwd Access Attempt

Table 8.10: Virtual Product correctly predicts that FirewallB would have detected an incident,
and 10 of its top 11 predicted alerts coincide with the one that actually occurred, yielding
a clearer picture of the artifacts involved in the attack and the vulnerabilities used. The
incorrect prediction is shown in strikeout font.
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Product Event Description

Seen Indicators (security events)
Firewall Bad TCP Header length
Firewall P2P Outbound GNUTella client request
Firewall wu-ftp bad file completion attempt
Firewall DNS zone transfer via TCP detected
Firewall SNMP possible reconnaissance, private access udp
Firewall ICMP PATH MTU denial of service attempt
Firewall FTP format string attempt
Firewall SMTP expn root
Firewall SMTP vrfy root
Firewall Server netcat (nc.exe) attempt
Firewall philboard admin.asp auth bypass attempt
Firewall SSLv2 Challenge Length overflow attempt
Firewall OpenSSL KEY ARG buffer overflow attempt
Firewall proxystylesheet arbitrary arbitrary command attempt
Firewall Oracle ONE JSP src-code disclosure attempt
Firewall JBoss admin-console access
Firewall RevSlider information disclosure attempt
Firewall Accellion FTA arbitrary file read attempt
Firewall Apache Tomcat directory traversal attempt
Firewall Apache non-SSL conn. to SSL port DoS attempt
Firewall Windows NAT helper components tcp DoS attempt
Firewall Multiple SQL injection attempts
Firewall Bash CGI environment variable inject attempt
Firewall Suspicious .tk dns query
Firewall Suspicious .pw dns query
Firewall ColdFusion admin interface access attempt
Firewall Windows Terminal server RDP attempt
Firewall Suspicious DNS request for 360safe.com
Gateway Connectra Request Accepted
Gateway ICMP: Timestamp Request
Gateway Possible IP spoof
Router Admin Authentication Failed

Top Predicted Primary Indicators
AV CVE-2012-4933 ZENWorks Asset Mgmt Exploit
AV Post-Compromise PHP Shell Command Execution
AV CVE-2015-1635 OS attack, HTTP.sys Remote Code Execution Exploit

Table 8.11: An attack on a webserver is obviously underway, but was it successful? Virtual
Product correctly predicts, with 99.9% confidence, that not only a deployed AV product
would detect attacks on the machine, but predict successful infection of the system.
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Product Event Description

Seen Indicators (security events)
Firewall Microsoft Windows 98 User-Agent string
Firewall SMTP: Attempted response buffer overflow
Windows Encrypted data recovery policy was changed.
Windows A cryptographic self test was performed.
Windows Cryptographic operation.
Windows MSI Installer
Windows Key file operation.
Windows A logon was attempted using explicit credentials.
Windows An attempt was made to reset an account’s password.
Windows Special privileges assigned to new logon.
Windows System audit policy was changed.
Windows A user account was changed.
Windows A security-enabled local group was changed.
Windows An account failed to logon
Proxy TCP Cache Miss: Non-Cacheable Object
Gateway Connectra Request Accepted

Top Predicted Primary Indicators
AV Bloodhound.Exploit.170

Table 8.12: There are indications of possible ransomware activity, but how did the attack
appear on the machine in the first place? Virtual Product correctly indicates that a malicious
spreadsheet (detected as Bloodhound.Exploit.170) was at fault, a method by which the
Locky RansomWare has been known to propagate.
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No incident was generated by these security products, indicating that without the evidence

from FirewallB, the remaining events are insufficiently threatening to warrant attention.

Based on evidence from the “virtual” FirewallB, however, Alice finds that there is likely an

incident, with 95% confidence.

To further understand the cause of the potential incident, Alice takes a deeper look at

FirewallB’s predicted events, which include malicious Windows executables, SQL injection

attempts, a visit to a phishing webpage, and attacks on several recognized vulnerabilities.

This additional telemetry gives Alice clarity on the used avenues of attack, which she can

use to prioritize patching updates to prevent a recurrence of the attack. It also suggests

possible data leaks through SQL injection and visits to phishing websites, enabling Alice to

take action that could prevent a serious data breach.

For this particular incident, 11 events were triggered by the actual FirewallB product,

and we list the top 11 reconstructed events identified by Virtual Product. These predictions

are prioritized by dividing the events’ reconstructed instance count by the average instance

count for that event, which is akin to TF-IDF normalization in statistical language model. In

actual deployment, Virtual Product users can customize its confidence thresholds based on

whether they wish Virtual Product to provide only highly confident event reconstructions

or a broader list that is more likely to include erroneous predictions, but that may include

valuable information that would otherwise have been suppressed.

Example 2. In some cases, while existing security events may make it quite obvious

that an attack has taken place, they may leave a vital question unanswered, Was the attack

successful?. This is a vital question, since most webservers are constantly exposed to

attacks, and yet most attacks do not succeed in compromising the machine, both because the

machine is often not vulnerable to the attempted attack, and because the network devices

that report attack events are often able to block them. Table 8.11 illustrates such an example,

in which Virtual Product is able to determine that an AV product would have detected a

serious incident with 99.9% probability. The reconstructed AV events further indicate that
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the attack is very likely to have been successful, and they give further insight into the nature

of the predicted attack.

Example 3. Virtual Product is often able to provide context that outlines appropriate

remediative and preventative actions. In the product events seen in Table 8.12, an observant

analyst may see hints of a possible Ransomware attack, but the initial method of attack

is not clear. Virtual Product correctly indicates that a malicious spreadsheet was at fault,

a method by which the Locky Ransomware has been known to propagate, and therefore,

reveals a possible social engineering campaign that the company’s security department

should investigate.

As is evident in these three case studies, and in the case study shown in Table 8.1, Virtual

Product helps security analyst by providing context that helps them answer vital questions,

such as: Is this machine compromised or just displaying unusual behavior? Was the attack

that I see on this machine successful? How should I go about cleaning up this infected

machine? How can I prevent a recurrence of a similar attack on this or other machines

in my environment? By answering these questions for MSSP customers, Virtual Product

significantly facilitates the security analyst’s core tasks.

8.5.2 Deployment

We are currently working towards delivering an initial version of this technology to our

Managed Security Services Product (MSSP), which will run on the Amazon Web Services

platform. At present, we process data in batches, because telemetry data is uploaded every

15 minutes from our Security Operations Centers.

To integrate virtual product into the existing customer interface, we both introduce

entirely new security incidents that are identified on the basis of Virtual Product’s missing

signal detection, and enrich existing incidents with additional context from virtual products.

Our current system is a hybrid of components that are coupled with services that publish and

subscribe to various streaming pipelines. Because of the flexibility that will be afforded by
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cloud platforms, we will schedule and provision resources to perform matrix completion and

will leverage the existing pipelines for incident generation and enrichment. The interactions

that customers and MSS analysts have with Virtual Product will be fully captured, as at

present, allowing us to tune the parameters of our algorithm.

8.6 Conclusions and Discussion

We have presented Virtual Product, a novel technology that allows us to predict events

from devices that are not currently deployed. Our evaluation shows that Virtual Product

can significantly improve our ability to detect incidents. The business value of Virtual

Product affects multiple levels of the enterprise. Cybersecurity analysts can leverage Virtual

Product to enrich events coming from machines to make a better determination if and what

kind of attack is being conducted. For security officers, Virtual Product empowers these

decision makers to make informed purchasing decisions based on the additive value of

potential products. If this technology is broadly adopted, it could create pressure on security

product vendors to focus more on differentiation through actual capability and not through

naming conventions. Future applications of this technology include providing product

recommendations to our customers, particularly if we can perform “attack forecasting” to

identify the likely attacks a customer would experience and how well they are defended and

detected by existing products.
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CHAPTER 9

FIREBIRD: PREDICTING FIRE RISK AND PRIORITIZING FIRE

INSPECTIONS IN ATLANTA

The Atlanta Fire Rescue Department (AFRD), like many municipal fire departments, actively

works to reduce fire risk by inspecting commercial properties for potential hazards and

fire code violations. However, AFRD’s fire inspection practices relied on tradition and

intuition, with no existing data-driven process for prioritizing fire inspections or identifying

new properties requiring inspection. In collaboration with AFRD, we developed the Firebird

framework to help municipal fire departments identify and prioritize commercial property

fire inspections, using machine learning, geocoding, and information visualization. Firebird

computes fire risk scores for over 5,000 buildings in the city, with true positive rates of

up to 71% in predicting fires. It has identified 6,096 new potential commercial properties

to inspect, based on AFRD’s criteria for inspection. Furthermore, through an interactive

map, Firebird integrates and visualizes fire incidents, property information and risk scores

to help AFRD make informed decisions about fire inspections. Firebird has already begun

to make positive impact at both local and national levels. It is improving AFRD’s inspection

processes and Atlanta residents’ safety, and was highlighted by National Fire Protection

Association (NFPA) as a best practice for using data to inform fire inspections.

9.1 Introduction

In 2014 alone, there were 494,000 structure fires in the United States, causing 2,800 civilian

deaths and $9.8 billion in property damage [172]. Municipal fire departments, as the

Authority Having Jurisdiction (AHJ), are responsible for enforcing applicable fire codes to

reduce the risk of structure fires. The City of Atlanta Fire Rescue Department (AFRD), like

many other fire departments, conducts regular commercial property inspections to ensure that
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Figure 9.1: Firebird Framework Overview. By combining 8 datasets, Firebird identifies
new commercial properties for fire inspections. Its fire risk predictive models (SVM, random
forest) and interactive map help AFRD prioritize fire inspections and personnel allocation.

they comply with the city’s Code of Ordinances [173] for fire prevention and safety. With an

annual average of nearly 650 structure fires and 2,573 annual commercial inspections, the

AFRD Community Risk Reduction Section wanted to both identify uninspected properties

and ensure that the properties being inspected were those at greatest risk of fire. Through

a partnership between the City of Atlanta and the Data Science for Social Good (Atlanta)

program, our research team developed the Firebird framework for identifying and prioritizing

property fire inspections, based on fire department criteria and historical fire risk, tackling

two important challenges:

Challenge 1: Property Identification. The AFRD Community Risk Reduction Section

knew that the 2,573 annually inspected commercial properties were not all of the commercial

properties in the city of Atlanta, but they did not have a way to obtain a more complete

list of commercial properties that potentially needed inspection. The existing process for

AFRD’s property inspections involved a legacy system of paper file records and inspections

conducted on the basis of pre-existing permits, without a robust process for identification,

selection, and prioritization of new properties to inspect. In addition, the variety of data

sources AFRD had compiled to inform their inspections were inconsistent, incomplete,
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and were often at different levels of granularity. Thus, cleaning and merging the datasets

to identify which inspectable properties in the city had fallen through the cracks required

significant effort. By integrating data from a variety of government and commercial sources,

we discovered 19,397 potential new commercial properties to inspect, based on the property

usage types that the Atlanta Code of Ordinances specifies require inspection.

Challenge 2: Fire Risk Prediction. Because 19,397 new commercial property inspec-

tions is far greater than the current number of annual commercial property inspections, and

far more than AFRD’s current staff of fire inspectors can reasonably inspect, we developed

a method to prioritize those inspections based on their fire risk. First, we created a joined

dataset of building- and parcel-level information variables, for 8,223 commercial properties1.

Then, we built predictive models of fire risk using machine learning approaches, including

Support Vector Machine (SVM) [174] and Random Forest [175]. These models achieve true

positive rates (TPRs) of up to 71.36% (in predicting fires) at a false positive rate (FPR) of

20%. As our most important goal is to save lives, a higher TPR outweighs the increase in

FPR. The resulting fire risk scores were then assigned to over 5,000 commercial properties

to help ARFD prioritize inspections.

Contributions & Impact. With Firebird, AFRD can now use data about historical

fires to inform their fire inspections and more efficiently utilize their inspection personnel

capacity. The challenges that Firebird addresses are not unique to AFRD or the City of

Atlanta; many municipal agencies across the country work to integrate a variety of data

sources to inform decision-making at all levels of governance. Specifically, many fire safety

departments are seeking effective prioritization of property inspections and allocation of

inspection resources, given limited inspection personnel and large numbers of inspectable

properties. Firebird has already begun to improve AFRD’s inspection processes. Its major

1We will be referring to buildings and properties as two distinct concepts throughout this chapter. The
AFRD conducts property inspections and issues permits to the owners of those “inspectable spaces,” which are
properties. However, it is the physical structure of buildings that catch fire, and thus, when we built predictive
models, we did so with information about the buildings themselves. This is significant because one property
may contain multiple buildings, while another building may contain multiple properties.
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contributions include:

• Discovering new properties. Firebird improves the safety of Atlanta residents and

visitors by identifying 19,397 previously unidentified inspectable commercial proper-

ties.

• Predictive fire risk model. Firebird correctly predicts more than 70% of commercial

fires (at 20% FPR), and applies the resulting fire risk scores to over 5,000 properties

to help ARFD prioritize inspections.

• Impact to Atlanta: Firebird at work. Through an interactive map, Firebird inte-

grates and visualizes fire incidents, property information and inspections, and risk

scores to inform the decision-making processes of AFRD fire inspectors, executive

staff, and their Community Risk Reduction Section for inspection prioritization and

inspection personnel allocation.

• National impact: reusable end-to-end framework for inspection prioritization.

Firebird provides an explicated model for other municipalities and agencies to use

to identify new properties and prioritize commercial property inspections based on

fire risk. This project was highlighted by the National Fire Protection Association

(NFPA) at the Smart Enforcement Workshop for fire service professionals across North

America as a best practice for using data to inform fire inspections.
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Figure 9.2: Joining eight datasets using three spatial information types (geocode, address,
parcel ID).
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9.2 Related Work

Risk prediction models have been widely used in many domains, including health care [176],

student performance evaluation [177], and accounting fraud detection [178]. However, urban

fire risk prediction has received relatively less attention, despite its obvious importance.

Forest fire prediction. Much of the prior work on data-driven fire risk prediction has

targeted woodland and forest fires, such as in Italy [179], Greece [180], and Portugal [181].

They used different methods, such as neural networks [181], fuzzy algebra [180], and

decision trees [179] to support the allocation of firefighting, fire prevention, and foliage

recuperation resources to the areas of highest fire risk. The features they used, such as soil

type and topography, are very different from the ones typically used in urban fire prediction

like construction material and property usage type.

Community-level urban fire prediction. Prior work in data-driven urban fire risk

prediction tends to work at the region or community level [182, 183], rather than the

property- or building-level, which is the unit that the Atlanta fire inspectors are assigned to

inspect. For instance, [182] undertook a randomized controlled trial of community fire risk

education efforts, targeting high-risk residential communities. However, their method for

identifying the high-risk areas was to create a point-distribution map of residential structure

fires and draw ellipses to capture the areas of densest concentration of fire incidents. A

more methodologically rigorous approach, as seen in [183]’s work on optimizing smoke-

alarm inspections, joins data from the American Community Survey and American Housing

Survey to predict municipal blocks most likely to have homes without functioning smoke

alarms, using a Random Forest. Our work similarly uses publicly available datasets to

predict properties most likely to be in need of inspection, but differs in that we offer a fire

risk prediction score for individual commercial properties, rather than municipal residential

blocks.

Property-level urban fire prediction. There is limited work on predicting fire risk at
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the property or building level. In British Columbia, [184] developed a risk-based model for

determining the frequency of commercial property fire inspections, using static and dynamic

building-level characteristics. They scored each property by its level of compliance on prior

inspections and by a set of risk metric components such as building classification, age, and

presence of sprinklers. However, as they acknowledge, the weights and selection of those

components were based on their fire code, and not on historical data on features that were

highly predictive of fire, such as we utilize in our work.

The nearest precedent for our research with AFRD is the recent work from the New York

Mayor’s Office of Data Analytics (MODA) with the Fire Department of New York (FDNY)

to build a “Risk-Based Inspection System” (RBIS) [185]. They built a data-driven model

to identify structures at greatest fire risk, to better prioritize FDNY’s inspection process,

using a set of structural and behavioral information about those properties. However, due to

a lack of detailed information on their technical approach, it is unclear how it may apply to

AFRD’s scenario.

In both the FDNY RBIS initiative and our work with AFRD, a key challenge emerged:

the difficulty of joining disparate datasets about commercial properties, gathered from

various city departments without a shared convention for building ID numbers, consistent

address formats, or strict internal quality control practices to ensure the datasets are accurate

and up-to-date. We differ from [185] and [184] by providing a clear method for identifying

new inspectable commercial properties that the fire department is not already aware of.

Further, our work goes beyond [185] by presenting a detailed comparison of the performance

of several machine learning algorithms for predicting the fire risk of commercial properties,

and by incorporating them into an interactive GIS visualization for use by the AFRD fire

inspectors and Community Risk Reduction Section, following [186].
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9.3 Data Description

An essential step before identifying and prioritizing potential properties to inspect is to join

the data about commercial properties from multiple sources. This was done to construct as

complete a picture as possible for the properties in Atlanta needing inspection, as required by

the Atlanta Code of Ordinances. After the data joining, we identified 19,397 new potential

commercial properties to inspect, through a process of property discovery that utilized

AFRD and City of Atlanta fire code criteria. See Table 9.1 for a summary of the different

lists of total commercial property inspections and commercial buildings we will be referring

to throughout this chapter.

Name Count

Current annual inspections 2,573
Long list of potential new inspections2 19,397
Short list of potential new inspections 6,096
Current + short list inspections 8,669
Current + short list inspections with risk score 5,022
Properties for building predictive model 8,223

Table 9.1: Summary of inspection and building lists

9.3.1 Data Sources

Firebird uses data from multiple sources, as tabulated in Table 9.2. AFRD provided us with

a dataset of 2, 543 historical fire incidents from July 2011 to March 2015, of which 34.3%

were commercial fires. This includes information about fire incidents, such as time, location,

type, and cause of fire. AFRD also provided a dataset of fire inspections, with 32, 488

inspection permit records from 2012 to 2015. The inspection data includes information such

as inspected property types, address, and time of inspections. We also obtained structural

information about commercial properties from a dataset purchased by AFRD from the

2We provided AFRD with two lists of potential properties: one longer list that was the most extensive that
we could provide, and another shorter list that was more manageable to display on a map, refined using the
most frequently inspected property usage types.

161



Source Name Description

Atlanta Fire Rescue Department
Fire Incidents Fire incidents

from 2011 - 201

Fire Permits All permits filed by
AFRD in 2012-2015

City of Atlanta
Parcel Basic information for

each parcel in Atlanta
Strategic Community
Investigation

Information regarding
parcel conditions

Business Licenses All the business licenses
issued in Atlanta

Atlanta Police Department
Crime 2014 crime in Atlanta

Liquor Licenses All filed liquor licenses
by Police Department

Atlanta Regional Commission
Neighborhood
Planning Unit

Boundary data for each
Atlanta neighborhood

U.S. Census Bureau
Demographic

Household number,
population by race and age

Socioeconomic Household median income

CoStar Group, Inc CoStar Properties Commercial property
information

Google Place APIs Google Place Information regarding
places from Google Maps

Table 9.2: Firebird Data Sources Summary

CoStar Group, a commercial real estate agency. This dataset includes building-level features

such as year built, building material, number of floors and units, building condition and

other information. A total of 8,223 commercial properties are documented by the CoStar

Group in the City of Atlanta.

While CoStar offers building-level information, parcel data from Atlanta’s Office of

Buildings provides parcel-level information, such as property value, square footage, address,

and other information about each parcel (a unit of land surrounding building(s)). The

business license dataset obtained from the City of Atlanta’s Office of Revenue provides

information about businesses that own commercial properties. The business licenses dataset

has 20,020 records with over 20 features including business type, business name, address,

owner, etc. For non-business commercial properties (e.g., schools, churches, daycare
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centers), we obtained such data from Google Places API and State of Georgia Government.

To offer more information about properties for building a predictive risk model, we also

obtained socioeconomic and demographic data from the U.S. Census Bureau, liquor license

and 2014 crime data from the Atlanta Police Department, and Certificate of Occupancy

(CO) data from the Atlanta Office of Buildings. All of these data sources contributed to

discovering new inspections and developing our predictive model for commercial fire risk

estimation.

9.3.2 Data Joining

A critical step of this study was to join different datasets together so that data from different

sources about the same building or property could be unified to create the most complete

picture of a given property. For instance, by joining fire incident and commercial property

data together, we can obtain a general idea regarding which commercial properties caught

fire in the past five years. Furthermore, by joining commercial property data with data

from the commercial real estate reports like the CoStar Group or the SCI Report, we can

generate a more comprehensive view regarding specific characteristics of buildings, such as

the structure and parcel condition, and even vacancy information.

We joined the datasets together based primarily on spatial location information. There are

three types of spatial or location information in our datasets: longitude and latitude, address

information, and the parcel identification number, which is a unique ID number created by

Fulton and DeKalb county3 for tax purposes. We then performed a location join based on the

above three types of location information. The variety of spatial information types, and our

method for joining them is illustrated in Figure 9.2. One obstacle we encountered was that

spatial information had different formatting standards across the datasets. For example, the

addresses from the CoStar Group were all in lowercase, with road names abbreviated instead

3The City of Atlanta is comprised of two separate counties, Fulton and Dekalb. Although both county
governments provided building information, their parcel ID numbering schemes were not consistent. Thus,
building information had to joined using addresses and coordinates.
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of fully spelled out, while datasets from the multiple departments of the City of Atlanta tend

to use a more consistent address format. Therefore, a spatial information cleaning process

was conducted before joining the datasets directly. The address location information from

different datasets was first validated using Google Geocoding API. The API can auto-correct

some misspellings of address information. After validation, addresses were then reformatted

using US Postal Service’s address validation API. The coordinate information was processed

in ESRI ArcGIS software to filter out data points falling outside of the City of Atlanta. The

cleaned datasets were then joined together based on the formatted addresses from the USPS

API and the coordinate information from ArcGIS.

9.4 Identifying New Properties Needing Inspection

To discover new properties, we first needed to understand what types of properties currently

required fire inspections according to the Fire Code [173], and we then identified other

similar properties. In the current fire inspection permit dataset, we found more than 100

unique occupancy usage types, such as restaurants, motor vehicle repair facilities, textile

storage, schools, children’s day care centers, etc. To identify other similar commercial

properties, we joined the list of currently inspected properties with the Atlanta Business

License data by matching both the spatial location (identified through the joining process

explained in Section 3.2) and the business name.

We discovered that, in addition to the 2,573 currently inspected properties, there were

approximately 19,397 properties of the same occupancy usage types as the city’s current

inspections. For instance, the Fire Code of Ordinances [173] stipulates that motor vehicle

repair facilities require inspection, due to the presence of flammable or combustible materials.

However, only 186 of a total of 507 of those facilities in the city were on the list of current

annual property inspections, suggesting that many or all of 321 remaining facilities should

be inspected. However, because some occupancy types, such as “miscellaneous business

service,” may have many properties that are not actually required for inspection, we created
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a shorter, more refined list of 6,096 new potential property inspections (instead of the 19,397

mentioned above), including only the top 100 most frequently inspected property usage

types. We discovered these properties from a variety of data sources, including the Atlanta

Department of Revenue’s Business License dataset, the liquor license dataset from the

Atlanta Police Department, the Georgia Department of Education’s child care and preschool

database, and Google Places API. We used the Google Places API to supplement the other

datasets primarily because it provided more up-to-date information about some of our most

commonly inspected property types, such as restaurants, bars, nightclubs, schools, churches,

gas stations, etc, and because it proved especially useful for discovering properties that

required inspection, but were not in the Business License dataset as they did not belong

to any “business” category (e.g., churches). Google Places API served as a “bridge” to

cross-check properties from different datasets, increasing the accuracy of our property

discovery process.

In identifying new properties needing inspection, the most challenging part was to

determine how buildings with different names (or IDs, or address formats) in various

datasets actually refer to the same building. We had to ensure that properties on our new

inspectable property list were unique and not already on the list of currently inspected

properties, after the aforementioned datasets were joined together. Different approaches

were attempted to ensure the uniqueness and novelty of properties on our potential list. The

most reliable and efficient method was found to be joining different datasets in pairs using

geocoding and approximate (“fuzzy”) string matching to approximately match both the

business name and the address. We used Google Maps Geocoding API for geocoding and a

Python library [187] to match the strings based on the edit distance. From the joined dataset,

a final property list was extracted that contained information from all the available data

sources.

165



9.5 Predictive Model of Fire Risk

However, 19,397 new properties (or even the shorter list of 6,096) is far more than AFRD is

able to add to their annual property inspections, and not all of those properties are likely to

need inspection at the same priority. We therefore created a predictive model to generate

a fire risk score based on the building- and parcel-level characteristics of properties that

had fire incidents in the last five years. This model was built using the scikit-learn machine

learning package in Python [188]. The model uses 58 independent variables to predict fire

as an outcome variable for each property.

9.5.1 Data Cleaning

After joining various datasets together to obtain building- and parcel-level information,

significant data cleaning still needed to occur. The bulk of the data cleaning process involved

finding the extent of the missing data and deciding how to deal with that missingness. Our

missingness procedures were designed to minimize deletion of properties with missing data,

because a significant number of the properties in our model had NA values (not available)

for many variables (such as the structure condition of a building, which is only known if

the building was inspected by the CoStar Group before). For each property with missing

data for a particular feature, we replaced missing values with 0 when appropriate. We also

included a binary feature indicating whether each property had missing data for each feature.

We used log transformation for variables with a large numerical range, such as the “for sale”

price of properties.

9.5.2 Feature Selection

After merging datasets, we had a total of 252 variables for each property. We manually

examined each variable to determine whether it may be relevant to fire prediction, and

excluded many obviously non-predictive variables in this initial process (such as the phone
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number of the property owner, or property ID numbers). We then used forward and backward

feature selection processes to determine each variable’s contribution to the model, and

removed the variables that did not contribute to higher predictive accuracy. Our final model

includes only 58 variables. We then expanded categorical variables into binary features. For

example, the zip code variable was expanded into 37 binary features, and for each property

only one zip code was coded as 1 (all zip codes were designated as 0 if a property’s zip code

data was missing). After expansion, we had 1127 features in total.

9.5.3 Evaluation of the Models

We chose to validate our model using a time-partitioned approach. A fire risk model would

ideally be tested in practice by predicting which properties would have a fire incident in the

following year, and then waiting a year to verify which properties actually did catch fire.

Because we wanted to effectively evaluate the accuracy of our model without waiting a year

to collect data on new fires, we simulated this approach by using data from fire incidents in

July 2011 to March 2014 as training data to predict fires in the last year of our data, April

2014 to March 2015.

We used grid search with 10-fold cross validation on the training dataset to select the best

models and parameters. The models we tried included Logistic Regression [189], Gradient

Boosting [190], Support Vector Machine (SVM) [174], and Random Forest [175]. SVM

and Random Forest performed the best, with comparable performances (see Table 9.3).

For SVM, the best configuration is using RBF kernel with C = 0.5 and γ = 10
#features .

For Random Forest, restricting the maximum depth of each tree to be 10 gave the best

performance. Increasing the number of trees in general improves the performance, but we

only used 200 trees since adding more trees only obtained insignificant improvement.

We then trained SVM and Random Forest on the whole training set using the best

parameters and generated predictions on the testing set. Note that training and testing sets

include the same set of properties, but different labels correspond to fires in different periods
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Figure 9.3: ROC curves of Random Forest and SVM

of time. This is a valid approach because we didn’t use information that we would only

know after the training period, i.e., fires in 2015.

The ROC curves for the training and testing performances are shown in Figure 9.3. All

the results are averaged over 10 trials. The most important metric in this case is the true

positive rate (TPR), i.e., how many fires were correctly predicted as positive in our model.

The SVM model was able to predict 71.36% of the fires in 2014-2015, at a false positive

rate (FPR) of 20%, which was deemed practically useful for AFRD — potential to save

lives (by achieving a higher TPR) significantly outweighs the increase in FPR. At the same

time, a high FPR facilitates more inspections of risky buildings, which is also beneficial. In

practice, AFRD can adjust the TPR/FPR ratio to match their risk aversity and inspection

capacity. The Random Forest model achieved a slightly lower TPR of 69.28% at the same

FPR, but had a higher area under the ROC curve (AUC). Considering how few fires occur

(only about 6% of the properties in our total dataset had fires), these results are much more

predictive than guessing by chance.

False positives (FPs) provide important information to AFRD. As our testing period was

the final year in our dataset, it is possible that some of those FP properties may actually

catch fire in the near future. These properties share many characteristics with those that did
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catch fire, and should likely be inspected by AFRD.

9.5.4 Further Discussion of the Models

In this section, we discuss some insight we obtained while conducting the experiments.

First, there is a mismatch between the meaning of labels in the training and testing datasets.

The training labels represent fires that happened in a relatively long period of time, whereas

the testing labels represent fires in a single year. One way to address this issue would be

to expand each properties into multiple examples, one for each year. Each example is then

a properties for a particular year, and the corresponding label indicates whether there was

a fire in that year. Using this approach, however, did not improve the performance in our

experiments. The reason is that most of our variables are static, such as floor size and zip

code, and only a few variables are time-dependent, such as the age of the building and

the time since last inspection. Therefore, expanding the properties only gives us many

similar examples. However, this approach would potentially be helpful after collecting other

dynamic information in the future, such as violations of health codes, sanitation ordinances,

or other information from relevant city agencies.

Another important issue is whether the performance of predicting fires is consistent in

different testing time periods. To test this, we tried different time windows for training,

and for each window, we evaluated its prediction performance for the subsequent year.

For each time window, we repeated the process described in Section 9.5.3, including grid

search and cross validation, and finally used the best model to predict fires in the following

year. The results are shown in Table 9.3. The performances decrease slightly for shorter

training periods. This is due to fewer positive training examples, especially in the period

of 2011-2012, which only consists of eight months of data (July 2011 to March 2012).

However, this is still significantly better than guessing by chance, which demonstrates that

we were not just “lucky” in predicting fires for a particular year.

Finally, it is helpful for us and for AFRD to know which features are the most effective
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Testing AUC of the following year

Training window Random Forest SVM

2011-2012 0.7624 0.7614
2011-2013 0.8030 0.7914
2011-2014 0.8246 0.8079

Table 9.3: Testing AUC of each year

predictors. The Random Forest model presents a natural way to evaluate feature importance:

for each decision tree in the Random Forest, the importance of a feature is calculated by

the ratio of examples split by it. The final importance is then averaged among all trees.

The top ten most predictive features are displayed in Table 9.4. Collectively, they capture

the intuitive insight that buildings of a larger size or those containing more units (thus

more people) would have higher probability of catching fire, and those of higher appraised

value and higher taxes would have a lower probability of catching fire. The impact of

higher appraised property value may be due to more developed fire prevention practices or

infrastructure, but this hypothesis has not been empirically validated.

We also tried logistic regression, a linear model, to estimate each feature’s importance

based on the corresponding weight coefficient in the model. We found that the top features in

the logistic regression were very different from the ones in Random Forest. All were binary

features indicating either a particular neighborhood or property owner. Some neighborhoods

have either very high or low fire rates, and logistic regression tends to assign large positive

or negative weights to them, respectively. However, since each of these features is only good

at predicting a small number of properties within a certain area but does not predict well on

the overall data, they are not chosen in the first few iterations of a decision tree.

9.5.5 Assignment of Risk Scores

After we built the predictive model, we then applied the fire risk scores of each property

to the list of current and potential inspectable properties, so that AFRD could focus on

inspecting the properties most at risk of fire. To do this, we first computed the raw output
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Top 10 features

1 floor size
2 land area
3 number of units
4 appraised value
5 number of buildings
6 total taxes
7 property type is multi-family
8 lot size
9 number of living units
10 percent leased

Table 9.4: Top-10 features in Random Forest

of our predictive model for the list of properties we used to train and test the model. This

generated a score between 0 and 1, which we then mapped to the discrete range of 1 to 10 that

is easier for our AFRD colleagues to work with. Then, based on visual examination of the

clustering of risk scores, we categorized the scores into low risk (1), medium risk (2-5), and

high risk (6-10). These risk categorizations were intended to assign a manageable amount

of medium risk (N = 402) and high risk properties (N = 69) for AFRD to prioritize.

We then needed to find out which of the properties with risk scores were in the lists of

2,573 current annually inspected properties and 6,096 potentially inspectable properties.

Because of the lack of a consistent property ID across the various datasets used to develop

the risk model, the currently inspected and potentially inspectable properties were spatially

joined with the properties in the risk model, based on their geo-coordinates or addresses.

After joining, we were able to assign risk scores to 5,022 of the 8,669 total commercial

properties on the inspection list (both currently inspected [2,573] and potentially inspectable

[6,096]).
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9.6 Impact On AFRD and Atlanta

9.6.1 Previous Inspection Process

Our goal in developing the Firebird framework was to help the Atlanta Fire Rescue De-

partment (AFRD) and other municipal fire departments improve their identification and

prioritization of commercial property inspections. Before considering the impact our work

had on that process, it is important to first describe the previous process of commercial fire

inspections in Atlanta. First, fire inspectors at AFRD received a list of properties to inspect

every month, which had been inspected during that same month in the previous year. The

existing process for adding new commercial properties to the list of required inspections

was extremely ad hoc, without a formal notification process from other city departments

when new buildings were built or occupied, or new businesses registered. It was largely

the responsibility of individual fire inspectors to notice new inspectable properties and

initiate an inspection process while driving to another inspection site. Moreover, there was

no formal process used by the inspectors to prioritize their monthly inspections based on

risk, or even to schedule their daily inspections based on proximity to other inspections. In

other words, it is very possible that an inspector could return to the same business complex

multiple times throughout the year conducting inspections on adjacent properties, which is

not the most effective use of municipal resources. In addition, at present, the City of Atlanta

Code of Ordinances does not specify the frequency of inspections based upon risk or other

factors. As a result, inspections are effectively binary; regardless of potential fire risk, a

property either gets an annual inspection in the same month every year, or it is unlikely to

be inspected at all.

9.6.2 Technology Transfer to AFRD

After developing the Firebird framework, we first provided AFRD’s executive staff and

Community Risk Reduction Section with a dataset of all commercial properties in Atlanta
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Figure 9.4: Interactive map of fires and inspections. The colored circles on the map
represent fire incidents, currently inspected properties, and potentially inspectable properties
in red, green, and blue, respectively. Inspectors can filter the displayed properties based
on property usage type, date of fire or inspection, and fire risk score. Callout: activating
the Neighborhood Planning Unit overlay allows an inspector to mouse-over a political
subdivision of the city to view its aggregate and percentage of the fires, inspections, and
potential inspections.

that fit their criteria for inspection. This included a shorter list of 6,096 new inspectable

properties which are of the top 100 currently inspected property usage types (e.g., restaurants,

motor vehicle repair facilities, etc), and a longer list of all commercial properties (19,397)

that fit any property usage type that had been previously inspected. This dataset included the

associated building- and parcel-level information for those properties in the form of a CSV

file, with a subset of those properties (5,022) assigned a fire risk score. We then provided

AFRD with an interactive map-based visualization tool, as part of the Firebird framework,

for the fire inspectors and AFRD executive staff to use to augment their policy and decision-

making processes. The map in Figure 9.4 was made using the open source map-making tools

Mapbox and Leaflet to create the base map layer. Then, using the Javascript visualization

library D3.js, we displayed differently colored circles on the map to represent fire incidents,

currently inspected properties, and potentially inspectable properties in red, green, and blue,

respectively, using their longitude and latitude coordinates.

We also built a user interface for the Firebird map developed through discussions with the

AFRD Assessment and Planning Section, and refined by incorporating feedback from fire
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inspectors and AFRD executive staff. The map includes an information panel for displaying

property information when hovering over a property on the map, such as its business name,

address, occupancy usage type, date since fire incident or inspection, and fire risk score,

if available. The map also includes a user interface panel with the ability to filter the fire

incidents, the currently inspected, and the potentially inspectable properties according to

their property usage type, the date of fire incident or inspection, and their risk score. Finally,

we incorporated a set of regional overlays requested by the AFRD executive staff, including

the AFRD battalions, and the Atlanta Neighborhood Planning Units (NPU) and Council

Districts, which are both political subdivisions of the city. We included dynamically updated

counts and percentages for the displayed fire incidents, current inspections, and potential

inspections for each regional overlay (Figure 4), so the AFRD executive staff could make

decisions at a battalion, NPU, or Council District level.

This map, and the Firebird framework in general, could be used as a powerful tool for

supporting data-driven conversations about personnel and resource allocation and inspection

decisions, and may even be used to inform decisions regarding community education

programs for fire safety and prevention. To ensure AFRD could update the risk model and

property visualization as new fire incident and inspection data becomes available, we shared

our source code and process with AFRD’s Assessment and Planning Section, and made it

publicly available on Github.4

9.6.3 Impact on AFRD Processes

After receiving the dataset of properties needing inspection, prioritized according to their fire

risk score, AFRD has begun integrating the results of the analytics into their fire inspection

process. Increasing the number of annual inspections by 6,096 (237%) overnight was

not feasible without significant changes in organizational processes, local ordinances, or

increased staffing. As an initial effort, AFRD assigned the 69 high-risk properties to the

4https://github.com/DSSG-Firebird
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inspectors covering those respective areas. Of those, 27 had current or out-of-date fire safety

permits that required re-inspection, 13 properties required new permits, and 15 properties

recently went out of business. The remaining properties were found to not require a fire

safety permit. Most significantly, the inspectors assigned to review these properties found a

total of 48 violations that needed to be addressed to meet the Fire Code. As AFRD continues

working through the list of potentially inspectable properties in descending risk order,

the sheer number of additional inspections (increased workload) and potential violations

identified and mitigated (positive outcomes) has already had a transformative impact on the

daily operations of AFRD’s fire inspection process.

In addition to the immediate impact on the daily property inspections, the results of this

work have stimulated important conversations within the executive leadership of AFRD and

the Assessment and Planning Section about 1) how to more effectively allocate inspection

personnel; 2) how to update and utilize the model to provide dynamic risk data in real time

(e.g., on a monthly basis when new inspection assignments are given to the inspectors); 3)

how to motivate increased data sharing between various government departments such as

the Office of Buildings and AFRD; 4) how to give teams of firefighters access to fire safety

permit and violation information when they respond to a fire emergency at that commercial

property; and 5) how to extend the risk prioritization to residential properties using more

behavioral data such as noise or sanitation ordinance violations, and consumer data from

companies like Experian or ESRI.

Though there are many more inspectable properties than AFRD currently has the person-

nel capacity to handle, AFRD has already begun to take steps toward a more efficient use

of their existing personnel, by discussing how to assign inspectors to regions with a higher

proportion of properties requiring inspection, rather than by the geographical assignment to

fire battalions currently in use. In addition, they have begun to discuss altering properties’

inspection frequencies to reflect their fire risk levels. By prioritizing future inspections and

more efficiently allocating inspection personnel to target the commercial properties most at
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risk of fire, we hope this work will lead to a reduction in the frequency and severity of fire

incidents in Atlanta. We also hope that this framework can be instructive for other municipal

fire departments to improve their fire inspection processes.

9.7 Challenges

As fire departments in many municipalities embark on more data-driven fire risk inspection

policies and practices, several challenges we encountered could prove instructive for others.

As with many governmental data science initiatives, the practical application of the predictive

model has been contingent on local politics, organizational inertia, and existing policies, or

what [191] calls the “politics of place.’ While AFRD was an active and engaged partner

throughout this project, securing access to clean and usable data proved a challenge. At the

time of this writing, the City of Atlanta’s Office of Buildings, Office of Housing, and AFRD

do not share a unified database of buildings or a shared building identification numbering

convention, and thus, the process of joining various datasets was more technologically

difficult than it might otherwise have been. Even the seemingly simple task of discovering

which properties in the Office of Building’s dataset were also in the AFRD dataset required

a rather elaborate process of fuzzy text-matching and address verification. In addition, our

ability to leverage regularly updated dynamic data was similarly hindered by the difficulty

of data sharing among city departments. For instance, the Office of Building’s Business

License database may very well be updated regularly, but without a pipeline in place for

those updated data to be used by AFRD, businesses may close without AFRD knowing,

causing inspectors to waste time attempting to inspect closed businesses. These challenges

could be mitigated if each department with a vested interest in municipal commercial

properties and structures worked more closely to share their data and information.

Entrenched organizational processes may similarly hinder the adoption of new methods

of identifying properties to inspect. While, in theory, the fire inspection process targets

properties that are required by city ordinance to have a fire safety permit (e.g., restaurants
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over a certain capacity, auto repair facilities, etc.), in practice there is no existing organiza-

tional procedure at AFRD and in many other cities to systematically add properties to the

list of regular inspections, or to determine their frequency of inspection [184]. In this work,

while we have created and employed an innovative method of identifying new properties

to inspect, until inter-departmental data-sharing becomes widespread, this process would

need to be redone on a regular basis as new businesses open, close, or change usage type.

Further, though we created an interactive map for visualization of various types of property

inspections, such a tool has not previously been part of AFRD fire inspectors’ regular

workflow, and this novelty presents a barrier for adoption, as seen in [186]. Finally, with the

number of inspectable properties increasing by up to 237%, there is no clear incentive for

the fire inspectors to work more efficiently to increase their individual number of property

inspections per month.

From a policy standpoint, the existing municipal Fire Code in Atlanta [173] requires

that inspections occur regularly for a specified set of commercial property types, but it is

not clear that those property types require inspection with equal priority or frequency, or

that these property types are the most in need of inspection. After using the results of this

work for determining individual property fire risk, the AFRD should begin a conversation

about how best to revise their municipal fire code to reflect differences in inspection type,

priority, and frequency due to the fire risk associated with various property types. Prior work

in [184] has similarly suggested revisions of the British Columbian fire code from being a

reactive, inflexible document based on tradition and intuition to a data-driven, responsive,

and pro-active document that incorporates information about fire risk. Finally, AFRD’s

policies for property fire inspections are primarily geared towards commercial properties,

yet the majority of the fires in Atlanta occur in residential properties. This will require

additional rethinking of their residential community fire safety and prevention education

programs.

As in many municipalities, fully leveraging the power of analytics to improve fire
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safety in Atlanta will require a significant rethinking of how to approach and manage city

operations such as fire inspections, and how to best facilitate data sharing practices between

different city agencies.

9.8 Conclusions and Future Research Directions

Due to the large number of commercial properties in Atlanta potentially requiring inspection

and the limited inspection personnel capacity of the Atlanta Fire Rescue Department (AFRD),

as in many other municipalities, there is a need for a data-driven prioritization of commercial

property inspections. In this work, we provide the Firebird framework: a re-usable method

for municipal fire departments to identify and prioritize their commercial property fire

inspections based on each property’s fire risk. Our work first provides a clear process for

joining disparate data sources from multiple municipal departments and private sources

to identify new inspectable properties based on currently inspected property types. We

were able to identify 6,096 new inspectable properties, comprised of the top 100 property

types currently inspected by the AFRD, and a total of 19,397 new inspectable properties

comprised of all currently inspected property types by AFRD.

We next present a method for predicting fire risk for each commercial property. Our

models used 58 building- and parcel-level variables to predict fires in 8,223 properties, 5,022

of which are on the list of properties requiring inspection. Specifically, we trained SVM

and Random Forest models using data from 2011-2014 to predict fires in 2015. At a false

positive rate of 20%, the SVM and Random Forest models were able to predict 71.36% and

69.28% of the fires in that year, respectively. Furthermore, even the false positives provided

valuable insight, since they represent properties with high risk of catching fire, that likely

should be inspected by AFRD. We also identified features that are highly related to fires.

From the Random Forest model, we learned that features related to building size, number

or units, and value were most predictive. On the other hand, the logistic regression model

revealed certain neighborhoods and property owners that associate with very high or low
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fire rates. We then converted these results to a risk score for each property, and were able

to apply these scores to 5,022 currently inspected and potentially inspectable properties

(1,975 currently annually inspected and 3,047 potentially inspectable), with 454 of those

properties having a medium or high risk score (188 currently inspected and 266 potentially

inspectable properties). Finally, we incorporated those scores into our joined dataset of

property inspections and visualized each of the properties on an interactive map, with their

associated property information and risk score, for use by AFRD to augment their inspection

decision processes.

Research Directions. Future research should seek to refine, expand, and further validate

our prediction model. Due to missing or erroneous entries in the data sources, we could

only to incorporate 8,223 properties into our predictive fire risk model, out of the more than

20,000 commercial properties in the city. In addition, because of the lack of integration

across city department datasets and a lack of completeness in many of our datasets, we

could only provide risk scores for 5,022 of the 8,669 current and potentially inspectable

properties in the dataset we provided to AFRD. Researchers working with other municipal

fire departments might train their models on a dataset that has fewer building- or parcel-

level information variables, but may be applicable to more properties. Other work could

improve the accuracy of the model by incorporating additional dynamic sources of data,

such as violations of prior fire inspections, data from the Department of Health and Wellness

inspections, information from the Certificates of Occupancy, or other, more behavioral

sources, such as sanitation or noise violations, as seen in [185], rather than the largely static

building- and parcel-level data that we used. In addition, more research needs to be done

on the usefulness and usability of an interactive map to display inspection, and how the

inspectors or executive staff of a fire department could use it in different ways to inform

their day-to-day planning, decisions, and operations. One step that municipal government

agencies can take towards implementing this framework is to generate a unique Building

Identification Number (BIN), used by all stakeholders, such as the Office of Buildings,
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Office of Housing or city planning departments, as well as the Fire and Police Departments.

This would allow for easier joining of disparate sources of data, without the need for address

validation, text matching, and other complex and potentially error-generating processes for

joining datasets.

Identification, selection, and prioritization of risky properties for fire inspection can be

difficult for cities that do not have an integrated data platform, because some municipal

agencies may have relevant property and structure information that is isolated from other

local data sources, and which may not have a regular, timely process for updating. Our

framework outlined here can be a model for improving the complex process of property

inspection, identification, and prioritization. Additionally, our experience joining isolated

datasets from different government departments, commercial data, and open data sources

could be invaluable for many cities that want to begin utilizing data science for a smarter

city, without requiring a significant financial investment. We hope the impact from our work

may further promote the beneficial use of open public sector data, both in the city of Atlanta

and elsewhere.
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CHAPTER 10

CONCLUSIONS

While Artificial Intelligence has tremendous potential as a defense against real-world cyber-

security threats, understanding the capabilities and robustness of AI remains a fundamental

challenge. This dissertation tackles problems essential to successful deployment of AI in

security settings.

10.1 Contributions

We contribute at the intersection of AI, cybersecurity, algorithmic game theory:

• New Algorithms: We developed ShapeShifter (Chapter 3), the first targeted physical

adversarial attack that fools state-of-the-art object detectors. We also developed practi-

cal defenses including SHIELD (Chapter 4), an efficient defense leveraging stochastic

image compression, and UnMask (Chapter 5), a knowledge-based adversarial detec-

tion and defense framework. Both ShapeShifter and SHIELD are open-source and

have been integrated into an Intel AI Academy course. Our distributed boosting algo-

rithm is simultaneously noise tolerant, communication efficient, and computationally

efficient (Chapter 3).

• New Theories: We introduce a new online decision-making setting in game theory

where players are compelled to play “diversified” strategies, and give strong guarantees

on both the price of anarchy and the social welfare in this setting. (Chapter 6). Our

distributed boosting algorithm requires exponentially less communication complexity

in the agnostic setting, solving an open problem in distributed learning [9]. (Chapter 7)

• New Applications: Our Virtual Product framework has led to two patents and is the

first method to predict security events and high-severity incidents identifiable by a
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security product as if it had been deployed. Our Firebird framework computes fire

risk scores for over 5,000 buildings in the city, with true positive rates of up to 71% in

predicting fires. Firebird open sourced and has been used by the Atlanta Fire Rescue

Department to prioritize fire inspections. Firebird won the Best Student Paper Award

Runner-up at KDD 2016 and was highlighted by National Fire Protection Association

as a best practice for using data to inform fire inspections.

10.2 Future Research Directions

This thesis takes an important step in designing practical, robust ML algorithms with strong

theoretical guarantees, to reliably solve high-stakes societal problems, such as safe-guarding

security-critical systems. Moving forward, I hope to broaden and deepen this investigation,

extending my work to more theoretical frameworks and applications. Initially, I will focus

on the following three interrelated research directions.

Physical Attacks against Real ML Systems and Countermeasures. To the best of

our knowledge, there is no reported physical attack yet that affects ML systems in the

real-world. This is because all the existing physical attacks, including ShapeShifter, only

work in the white-box setting, where the attacker has full access to the ML model and all

the deployed defensive techniques. To raise the awareness of the security issues in ML,

I would like to design black-box physical attacks that break real ML systems, such as a

security surveillance system or a smart home system. Depending on the applications, the

perturbations may not need to be imperceptible and can be arbitrarily large. For example,

the attacker can wear a t-shirt with a large color perturbation to fool an object detection

system [192]. There are many possible methods to defend against such attacks in practice.

One way is by utilizing multi-modal sensing, such as using RGB and depth sensing at the

same time. How to efficiently incorporate multi-modal information is a challenging and

important research problem.

Fraud Detection with ML and Game Theory. I believe AI has the potential to protect
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people from a wide range of cyber harms that affect our everyday lives. For example, fraud

detection is an important adversarial ML application, where the fraudster creates a benign

facade to evade detection. I have worked on detecting fraudulent users and reviews on

Yelp by using graph mining techniques like dense graph extraction [50]. However, there is

much more information to be utilized to improve detection. I plan to combine techniques

in ML, graph mining, natural language processing, and time series analysis to incorporate

information from different data sources. I also plan to better understand how and why

fraudsters work in particular ways, by using game theory, and ultimately design a framework

that discourages people to conduct fraud by better mechanism design.

Model and Data Privacy. Keeping an ML model secret is crucial for defending against

black-box adversarial attacks. I plan to design practical ML algorithms that are hard to

reverse-engineer, such as dynamic random ensemble using online boosting [112]. I will also

formalize the benefit of randomization as a defense to adversarial attacks by incorporating

the techniques in cryptography. Besides model privacy, I also aim to study the problem

of data privacy, which has been receiving an increasing amount of attention in the past

few years, due to some high-profile data leaks in industry. Differential privacy is the most

popular theoretical framework for data privacy, wherein a typical method is by adding

random noise to the original data. I believe our diversified strategy concept (Chapter 6) is

also helpful to preserving differential privacy.
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