
CLASSICAL OPTIMIZATION TO IMPROVE VARIATIONAL QUANTUM
ALGORITHMS

A Dissertation
Presented to

The Academic Faculty

By

Reuben Tate

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Mathematics

Algorithms, Combinatorics, and Optimization

Georgia Institute of Technology

May 2023

© Reuben Tate 2023

CLASSICAL OPTIMIZATION TO IMPROVE VARIATIONAL QUANTUM
ALGORITHMS

Thesis committee:

Dr. Swati Gupta
Industrial and Systems Engineering
Georgia Institute of Technology

Dr. Gregory Mohler
Cybersecurity, Information Protection,
and Hardware Evaluation Research
Georgia Tech Research Institute

Dr. Grigoriy Blekherman
Mathematics
Georgia Institute of Technology

Dr. Stuart Hadfield
Quantum Artificial Intelligence Labora-
tory
National Aeronautics and Space Adminis-
tration

Dr. David Gamarnik
Operations Research
Massachusetts Institute of Technology

Date approved: April 12, 2023

To everyone who believed in me,

ACKNOWLEDGMENTS

First, I would like to express my deepest thanks to my advisor Swati Gupta. I have

gained an interest and appreciation for the field of quantum computing as a result of work-

ing with her. She has also been invaluable in regards to giving advice, networking, and

navigating certain aspects of academia; I thank her for her patience, guidance, and for

believing in me.

I would also like to thank Greg Mohler, Grigoriy Blekherman, Stuart Hadfield, and

David Gamarnik for taking the time to serve on my dissertation committee. I would also

like to express my gratitude to my coauthors: Creston Herold, Jai Moondra, Swati Gupta,

Bryan Gard, Greg Mohler, Majid Farhadi.

I also very much appreciate all the help and support from everyone involved in the

Feymman Quantum Academy Internship Program at the USRA-NASA Quantum Artificial

Intelligence Laboratory; I would like to give additional special thanks to my mentor Stuart

Hadfield for their advice and kind guidance during and beyond the internship.

I would also like to extend my gratitude to all the faculty and staff in the ACO program

and the Mathematics department at Georgia Tech for teaching excellent classes, providing

invaluable support, giving many intriguing talks, and overall creating a rich and vibrant

academic program and community.

Next, I would like to give a thank you to DARPA for providing the funding necessary

for me to work on the Optimization with Trapped Ion Qubits (OPTIQ) team. On the OP-

TIQ team, I would like to give my sincere thanks to Creston Herold and Greg Mohler in

particular who were instrumental in helping me get “up-to-speed” on quantum computing;

their experiences and perspectives as physicists were also very helpful.

I also have my parents, parental figures (Stepahnie Oshiro and Darryl Mizuguchi),

and many others in my family to thank for their unwavering support and encouragement

throughout my life. I am also eternally grateful for my partner, Jonathon Lucas Mitchell,

iv

for their love and support, for putting up with my erratic sleep schedule and vanilla coke

addiction, for surprising me with little treats, for the countless rides to the airport, and for

ultimately keeping me sane; I could not have done this with without him.

I have countless friends to thank; however, I would like to specifically thank my friend

Jad Salem, also an ACO student; they have had my back since Day 1 of arriving at Georgia

Tech and I am happy to have gone through this academic journey with them. I would also

like to acknowledge my friends who are affiliated with Georgia Tech’s SOFT organization

who have made my experiences in Atlanta both fun and memorable.

Lastly, there are countless others (e.g. old teachers and friends) from before my time at

Georgia Tech who have previously provided support and encouragement and have molded

me into the person I am today; even though, for some, our paths in life may have diverged,

I am forever grateful for our time together, thank you.

v

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . x

List of Figures . xiii

Summary . xx

Chapter 1: Introduction . 1

1.1 Contributions of the Thesis . 5

1.2 Related Work . 10

Chapter 2: Background and Notation . 13

2.1 General Quantum Computing Background 13

2.1.1 Classical Perspective . 13

2.1.2 General Qubits . 19

2.1.3 Geometric Interpretation: Bloch Sphere 21

2.1.4 Quantum Operations . 22

2.1.5 Properties of the Kronecker Product 25

2.1.6 Multi-Qubit Operations . 30

2.2 Approximation Ratio . 31

vi

2.3 Classical Methods for Max-Cut . 32

2.4 The Quantum Approximate Optimization Algorithm 37

2.5 Independent Set Problem . 39

Chapter 3: Interesting Instances For Quantum Advantage 41

3.1 Small Instances from Karloff’s Construction with Low GW Approximation
Ratios . 44

3.1.1 Review of Karloff’s Construction 44

3.1.2 Identification of Small Instances Using Karloff’s Approach 46

3.2 Provable Guarantees for the GW Algorithm on Strongly-Regular Graphs . . 48

3.3 Empirical Results . 58

3.3.1 Instances where Classical Heuristics Perform Poorly 59

3.3.2 Extensions of Karloff’s Construction 61

3.4 QAOA’s Performance on Challenging Instances for the GW Algorithm . . . 64

Chapter 4: Warm-starts for QAOA using Standard Mixers 70

4.1 Framework for Constructing Initial Quantum States 70

4.1.1 Random Rotations . 71

4.1.2 Mapping to Bloch Sphere . 74

4.2 Initialization Schemes for Warm-Start State 75

4.2.1 k-dimsional Burer-Monteiro . 75

4.2.2 Projected Goemans-Williamson 82

4.2.3 Single Cut Initializations . 90

4.3 Limitations of QAOA-Warm . 96

vii

4.4 QAOA-Warm on Antipodal Structures . 98

4.5 Numerical Simulations for QAOA-Warm 107

4.5.1 Experimental Setup . 108

4.5.2 Optimizer Choice . 111

4.5.3 Choice of Rank and Rotations . 113

4.5.4 Aggregate Results . 114

4.5.5 Parameter Landscapes and Trajectories 118

4.5.6 Pre-processing Time vs Parameter Search Time 122

4.5.7 QAOA-Warm with Median and Worst Vertex-At-Top Rotations . . . 124

4.6 Discussion . 126

4.7 Conclusion . 128

Chapter 5: Warm-Starts with Customized Mixers 131

5.1 Custom Mixer Construction . 131

5.2 Proof of Convergence in the Adiabatic Limit 133

5.2.1 Eigenstates of Custom Mixers . 133

5.2.2 Eigenvalue Gap for Custom Mixers 135

5.2.3 Proof of Convergence (Special Case) 139

5.2.4 Proof of Convergence (General) 140

5.3 Convergence Rate of QAOA-warmest . 145

5.4 Numerical Simulations and Hardware Experiments for QAOA-Warmest . . 146

5.4.1 Comparing QAOA-warmest to Other Methods 147

5.4.2 QAOA-warm With Noise . 155

viii

5.4.3 Projected GW vs BM-MC Warm-Starts 160

5.4.4 Choice of Rank and Rotation . 161

5.4.5 Projected GW Solutions and BM-MC Scaling 161

5.4.6 Interesting Instances . 162

5.4.7 Comparison with Egger et al. 163

5.5 Discussion . 164

Chapter 6: Warm-Starts from Classical Local Algorithms 166

6.1 Using Ancilla Qubits to Emulate Classical Algorithms 167

6.1.1 Properties of Local-Search Quantum Algorithm 173

6.2 Effect of QAOA on States with Ancilla . 178

6.2.1 Effects on Measurement on States with Ancilla 180

6.3 Discussion and Future Directions . 182

Chapter 7: Conclusion . 184

7.1 Open Questions . 185

Appendices . 188

Appendix A: Partial Geometries . 189

References . 194

Vita . 205

ix

LIST OF TABLES

3.1 A listing of small (< 1000 nodes) instances using Karloff’s construction. For each in-
stance, we include the number of nodes, edges, and the theoretical instance-specific ap-
proximation ratio one would obtain if running the GW algorithm on that instance (assum-
ing an optimal solution of Y as described earlier). 47

3.2 Instances G = (V,E) of strongly-regular graphs parameterized by n = 4(3t + 1), k =

3(t + 1), λ = 2, µ = t + 1 for some t, where Max-Cut(G)
|E| ̸= 2

3 . The last column is the
instance-specific approximation ratio that the GW algorithm achieves on each of these
instances. 57

3.3 The table includes all the instances in the MQLib library for which no MQLib heuristic
obtained 99.9% of the optimal solution within 5% of the alloted runtime (abbreviated as
R.T. throughout the table) described in Footnote 1. In the first part of the table, the columns
correspond to the instance name (as given in the MQLib library), the number of nodes
and (nonzero-weight) edges, the allotted runtime (in seconds), the instance-specific GW
approximation ratio αGW,G, the time needed to run the GW solver in seconds, whether the
instance has negative-weighted edges, and the range of edge-weight magnitudes (defined
as maxe∈E log(|we|) − mine∈E log(|we|)). In the second part of the table, we find the
best approximation ratio obtained by a MQLib heuristic that is allowed to run for only
5% of the alloted runtime; the second and third columns correspond to this ratio and the
corresponding heuristic (with ties between heuristics being broken by runtime). The next
two columns are obtained the same way but with the full allotted runtime being allowed.
All ratios in the table are written with the denominator being the value of the Max-Cut for
that instance. The GW algorithm times and the MQLib heuristic times were computed on
different machines so these times are incomparable to one another. 62

4.1 Multiple tables comparing the average instance-specific approximation ratio achieved dur-
ing QAOA-warm when utilizing different combinations of ranks and rotations during the
preprocessing stage. For the top row of tables, these averages were computed using all the
graphs in our graph library G (see Section 4.5.1) whereas for the bottom row, we restrict
our attention to only those graphs in G with positive edge weights. Each run of standard
QAOA and QAOA-warm terminates when the difference in successive values of Fp(γ, β)

is less than 10−6W̄ where W̄ is the sum of the absolute values of the edge weights. . . . 113

x

4.2 We consider 4 algorithms: Goemans-Williamson (G), 2-dimensional Burer-Monteiro with
hyperplane rounding (B), QAOA-warm (W), and standard QAOA (S). There is a row for
each of the 4! = 24 ways the algorithms can perform relative to one another with the
cell value indicating the percentage of instances for which that ordering occurs. As an
example, the top-leftmost value indicates that for 25.08% of instances, W ≥ B ≥ G ≥ S
in terms of AR with W and S being depth-1. The four largest entries in each column
are bolded for emphasis. To account for numerical error for nearly solved instances, we
declare QAOA-warm (W) as the best as long as it is within 0.001 AR of the best algorithm.
We include columns corresponding to the entire graph library G as well as the subset of G
that have positive-weighted edges. 115

4.3 The table summarizes what is known about different variants of QAOA (for Max-Cut)
based on various combinations of initializations (equal superposition, BM-MCk, pro-
jected GW, and single-cut initializations) and mixing Hamiltonian (standard, custom mix-
ers (Section 5), and the mixer proposed by Egger et al. [42] for single-cut initializations).
For various combinations, we state what is known regarding the convergence and worst-
case approximation ratio (for depths p ≥ 0) of the corresponding QAOA variant for graphs
with non-negative edge weights. 130

5.1 For each Max-Cut algorithm (Goemans-Williamson, standard QAOA, QAOA-warmest,
and QAOA-warm), we report the percentage of instances for which it did the best and
second-best (in terms of approximation ratio). Both QAOA-warm and QAOA-warmest
use BM-MC2 warm-starts. There is a tie (last column) if the top two algorithms have
approximation ratios that differ by no more than 0.01. QAOA-warmest is a part of every
tie. Each instance is either accounted for in “Tie” or the other columns. For the column
labeled *, we report, for each circuit depth, the percentage of instances for which QAOA-
warmest was within 0.01 approximation ratio of the best algorithm. 148

5.2 The percentage of instances for which QAOA-warmest achieves an instance-specific AR
of 99.0% for each combination of circuit depth and initialization method (standard initial-
ization, BM-MC2 initialization, single-cut initialization with θ∗ = 0.1). 151

5.3 These tables reports the approximation ratios achieved for the five instances (amongst
those in our instance library G) for which depth-8 QAOA-warmest did not obtain the best
approximation ratio when compared to depth-8 QAOA-warm, depth-8 standard QAOA,
and the GW algorithm. The top and bottom tables are for instances in which standard
QAOA and the GW algorithm performed the best respectively. The instances in the bottom
table have the property that there exists exactly one negative edge weight whose magnitude
is much larger than the other edge weights. For the bottom table, in the last column,
we also include the approximation ratio for QAOA-warmest in the case where a more
suitable vertex-at-top rotation is used; i.e., we take one of the vertices incident to the
large-magnitude negative edge and rotate it to the top. 160

xi

5.4 Multiple tables comparing the average (instance-specific) approximation ratio achieved
during QAOA-warmest when utilizing different combinations of ranks and rotations dur-
ing the preprocessing stage. For the top row of tables, these averages were computed using
all the graphs in our graph library G whereas for the bottom row, we restrict our attention
to only those graphs in G with positive edge weights. 161

xii

LIST OF FIGURES

1.1 To the left, an unweighted graph G = (V,E) with five vertices. To the right, the node
colors correspond to the partition of V for the max-cut; the node placements are altered to
illustrate that all but one edge “goes across” the cut. Since the graph is not bipartite, the
cut illustrated on the right is optimal. 4

2.1 Two coins, C1 (red) and C2 (blue) connected by a piece of glue so that they are always
either both heads-side-up or tails-side-up. 18

2.2 A single-qubit state |ψ⟩ represented on the surface of the Bloch sphere. 20

3.1 The plot shows the instances that the BiqCrunch solver solved exactly. Each instance is
represented by a single point with the position dependent on the number of vertices, n, in
the graph and the density of the graph. The logarithm in the plot is base-e and density is
defined to be the ratio between the sum of the normalized absolute edge weights and the
total number of possible edges in the graph, i.e.,the density is

∑
e∈E |we|

(n2)maxe∈E |we|
, where we

is the weight of edge e. Aside from some graphs with densities close to zero, the solver
could only solve instances of up to 735 nodes (indicated by the black line on the figure).
A time limit of 24 hours was imposed on the solver (excluding preprocessing). 60

3.2 A PCA analysis of the MQLib library with respect to 58 graph properties. Gray dots
represent instances that were not solved (exactly) by the BiqCrunch solver. The remaining
non-red dots are colored based on which heuristic was first to obtain 99.9% of the optimal
solution with 5% of the allotted runtime. The red instances (circled) correspond to GCC,
instances for which no heuristic reached 99.9% of the optimal solution with 5% of the
allotted runtime. 60

3.3 The above is the edge-weight distribution of instance g003179. As the edge weights are
integers, we see that there are both positive and negative edge weights spanning several
orders of magnitude; a similar edge weight distribution can be found for the other MQLib
instances in Table 3.3 with the exception of instances g000435 and g001349. 61

xiii

3.4 Both plots show the result of the GW algorithm when modifying the instances made via
Karloff’s construction. In particular, we consider modifications of J(6, 3, 1), J(8, 4, 1), J(10, 5, 1)
and J(10, 5, 2). The top plot shows the estimated approximation ratio using the GW al-
gorithm for instances modified via edge deletions (with up to 4 edges removed) where the
estimated approximation ratio for an instance G′ is calculated as Round(G′,Y ′)

Max-Cut(G)−|F | where G
is the corresponding (unmodified) original instance from Karloff’s construction and |F |
is the number of edges deleted (as seen in Equation 3.1); the actual approximation ra-
tios could possibly be lower for each instance. The bottom plot shows the approximation
ratio using the GW algorithm for instances modified via edge weight perturbations (as de-
scribed in Section 3.3.2). The bottom plot also includes the GW approximation ratio for
the interesting instances in the MQLib library (found in Section 3.3.1). 65

4.1 Comparison of the hyperplane rounding and quantum sampling for a 3-cycle (Max-Cut=2):
figure (a) shows a local optimal BM-MC3 solution, where any random hyperplane will give
a cut of size 2. Both (b) and (c) show two different embeddings of the BM-MC3 solution
(from (a)) onto the Bloch sphere. In (b), the qubits lie on x = 0 plane and quantum sam-
pling results in a expected cut of 1.875. In (c), all qubits lie on the equator of the Bloch
sphere (similar to the standard start of QAOA), so each edge has a probability of 1/2 of
being cut, yielding a total expected cut of 1.5. Both (b) and (c) demonstrate that the ori-
entation of the rotated BM-MC3 solution is important when embedding it into the Bloch
sphere and can result in different expected cuts. 71

4.2 We begin with the classically obtained x∗. We then apply a rotation R ∈ {RU , RV }; here
we show RU being applied (top-right). Lastly, we use Q to map this rotated solution to a
quantum product state. 72

4.3 Pie charts representing best expected cut value (expectation over randomness in sampling)
obtained by using (i) hyperplane rounding of the BM-MCk solution (HR), (ii) quantum
sampling of the BM-MCk solution (QS1), and quantum sampling of the initial state of
standard QAOA (QS2). For every instance, QS2 always yielded the worst result of the
three, and for majority of the instances QS1 ≥ HR. For HR and QS1, the best of 5 (in
terms of SDP objective) locally optimal BM-MCk solutions are used; for that solution,
the best of 5 rotations is used for QS1. The regions marked in gray indicate instances for
which QS1 and HR had a tie (difference in instance-specific approximation ratio of at most
0.001). 78

4.4 In red, the function
1
2 (1−

cos θ
k)

θ/π that is minimized in the proof of Corollary 20 with k = 3.

In green, a similar function
1
2 (1−

cos θ
k)

1
2 (1−cos(θ)

that is minimized in the proof of Theorem16 (where
the BM-MCk objective is compared to the maximum cut instead of the expected cut value
from hyperplane rounding) with k = 3. Over the interval [0, π], both achieve a minimum
value of 2/3 at θ = π. The corresponding plots for k = 2 are similar but instead both
functions reach a minimum value of 3/4 at θ = π. 89

xiv

4.5 A schematic for projected GW warm-starts. There are three procedures to obtain a cut from
an SDP solution. The first is to use Goemans-Williamson hyperplane rounding (on the top
labelled I). The second (labelled II) is to do a two-step rounding through an intermediate
state in Rk, k ∈ {2, 3}. We prove that this two-step rounding procedure is equivalent
to Goemans-Willimson hyperplane rounding in Theorem 19. The third procedure is our
proposed warm-start of QAOA using the SDP solution (highlighted in blue, labelled III).
This procedure involves rounding the SDP solution to Rk first, then rotating this solution
using uniform or vertex-at-top rotations and mapping to the Bloch sphere to get an initial
state for QAOA, and finally running QAOA on this initial state. 90

4.6 A plot of the percentage of the Max-Cut achieved with QAOA-warm (when the optimal
variational parameters are chosen) with p = 1 for a one-edge graph G at various starting
states |s0⟩ = Q(x) where one point of x has polar angle θ and azimuthal angle φ and the
remaining point is diametrically opposed. The starting states that perform the worst, i.e.
|+−⟩ and |−+⟩, are marked with a black ×. For each point in the figure, the optimal vari-
ational parameters were estimated by performing a dense grid-search over the variational
parameter space. 98

4.7 Parameter landscapes of the instance-specific approximation ratio of the four-cycle C4

for p = 1. When no warm start is used, the landscape has many peaks and valleys in
the form of local maxima and minima (a). For both BM-MC2 and BM-MC3, a vertex-
at-top rotation yields a convex landscape with a ridge-like shape (b), thereby effectively
capturing the optimal solution for the 4-cycle. When a uniform rotation is used, a BM-
MC2 formulation (c) achieves optimality for some choice of parameters whereas this is
not the case for a BM-MC3 formulation (d). 99

4.8 To the left is the rank-1 solution x∗. To the right is the solution x′ after moving the points
in A and B by angle θ along the unit circle. Thale’s Theorem tells us that connecting the
endpoints of the diameter of a circle with another point on the circle yields a right triangle. 101

4.9 Illustration depicting the range of graph metrics for our instance library G. When compar-
ing unit-weight Erdős-Rényi graphs (red) with the remaining graphs in G (blue), there is
an increase in the range of values obtained for both graph metrics. 110

4.10 Histogram of differences in instance-specific approximation ratio (AR) αA,G between
ADAM and other optimizers for QAOA-Warm (top) and standard QAOA (bottom). Over-
lapping regions are in purple. The red bin indicates instances for which optimizers per-
formed similarly to ADAM. 112

4.11 Histogram of differences in instance-specific approximation ratios between QAOA-warm
and standard QAOA. Overlapping regions are in purple. 114

xv

4.12 The number of instances for which QAOA-warm obtained at least an r% improvement
in AR as the circuit depth increases from p = 0 to p = 1 (left) and from p = 1 to
p = 8 (right). For each instance, the best percent improvement (across all five vertex-at-
top rotations) is used. Note that % improvements in instance-specific approximation ratios
go up to 80-120% from p = 0 to p = 1, and up to 12-20% from as depth increases from
p = 1 to p = 8. 118

4.13 This figure shows how standard QAOA (dotted) and QAOA-warm (solid) perform as we
alter the circuit depth and the number of nodes. For QAOA-warm, we take the best of
5 vertex-at-top rotations. For the left plot, for each n = 2, . . . , 12, we find the instance-
specific approximation ratio achieved for both standard QAOA and QAOA-warm for each
n-node instance in G (see Section 4.5.1), and take the median of those instance-specific
approximation ratios. The right plot is constructed similarly except only instances in G
with positive edge-weights are considered. We plot the results for circuit depths p = 1, 2, 4, 8.118

4.14 Parameter landscapes for Ĝ (top-left) with corresponding SDP solution (bottom-left). For
each trajectory of optimization of the variational parameters, we use a black circle to
denote the beginning of the trajectory and a white × to denote the end of the trajectory.
When no warm start is used, there are many peaks and valleys (top-center). When vertex
1 rotated to the top; we have a ridge-like landscape with the optimal solutions occurring
on the horizontal line β1 = 0 (bottom-center). When rotating vertex 2 at the top instead,
the parameter landscape is less ridge-like and the endpoints of the trajectories are more
scattered (top-right). When using a uniform rotation we have peaks and valleys similar to
when no warm-start was used but with overall better solution qualities (bottom-right). . . 119

4.15 This figure shows how various statistics of the parameter landscape change with the vari-
ant of QAOA considered (standard QAOA, QAOA-warm with vertex-at-top rotations, and
QAOA-warm with random rotations). For each unit weight graphs in our graph library
G (See Section 4.5.1) and for each QAOA variant, we first generate the parameter land-
scape; we use a single 2-dimensional initialization for both rotation schemes considered
for QAOA-warm. For each landscape, we calculate the minimum, maximum, and aver-
age across the landscape in addition to the range (the difference between the highest and
lowest instance-specific approximation ratio achieved in the landscape). 121

4.16 This figure shows how the median runtime changes for both GW and BM-MCk (k = 2, 3)
as the number of nodes increases. The extended graph library G′ (2076 instances) was used
to generate the results above; we also run plot the results for just the positive-weighted
graphs in G′ as well. The top and bottom of the colored regions corresponding to 75 and
25 percentiles respectively. 122

xvi

4.17 This figure shows how the median runtime changes for the optimization loop of both stan-
dard QAOA and QAOA-warm for various optimizers (ADAM, BFGS, and Nelder-Mead).
COBYLA was not included due to technical limitations with our software; in particular,
we were unable to gain direct access to the source code needed to in order to exclude the
runtime of function or gradient evaluations. as the circuit depth increases. These runtimes
do not include the time taken to evaluate/estimate the function values or gradients of the
expected cut value Fp(γ, β) (since in practice, such calls would be made on the quantum
device). These plots were generated by randomly selecting 20 8-node graphs from our
graph library G (see Section 4.5.1), with 10 of the 20 graphs having only positive edge
weights. For each solid colored line (corresponding to the median), there are two dashed
lines of the same color above and below representing the 75th and 25th percentiles respec-
tively. On the right, we plot the runtimes for BFGS separately in order to more easily see
the trend in runtime as p increases. 123

4.18 Histograms comparing the instance-specific approximation ratio in (depth-p) QAOA-warm
and (depth-p) standard QAOA for both p = 1 (blue) and p = 8 (red) where the median
vertex-at-top rotations are used. Overlapping portions of the histogram are in purple. The
left plot is generated using the graphs in our graph library G (see Section 4.5.1) whereas
for the bottom right plot, we restrict our attention to only those graphs in G with positive
edge weights. 125

4.19 Histograms comparing the instance-specific approximation ratio in (depth-p) QAOA-warm
and (depth-p) standard QAOA for both p = 1 (blue) and p = 8 (red) where the worst
vertex-at-top rotations are used. Overlapping portions of the histogram are in purple. The
left plot is generated using the graphs in our graph library G (see Section 4.5.1) whereas
for the right plot, we restrict our attention to only those graphs in G with positive edge
weights. 125

5.1 For both plots, we compare the log-error of QAOA-warmest to both QAOA-warm (right)
and standard QAOA (left). BM-MC2 warm-starts are used for both approaches. Each
marker in the plot corresponds to a combination of instance (from our graph ensemble
G) and circuit depth (either p = 1 or p = 8) with the shape of the marker being used to
denote if the instance has only positive edge weights or not. Points below the black line
correspond to instances where QAOA-warmest performs better than the other algorithm
being compared. 148

5.2 Trends in median log-error of standard QAOA (dotted), QAOA-warm (dashed), and QAOA-
warmest (solid) as one varies the number of nodes and circuit depths; the median is taken
across graphs in instance library G. BM-MC2 warm-starts are used for both QAOA-warm
and QAOA-warmest. 149

xvii

5.3 Instance specific approximation ratios achieved by QAOA-warmest with various types of
initializations: standard initialization (equivalent to standard QAOA), BM-MC2 initializa-
tion, single-cut initialization, and uniform random initializations) for a randomly selected
10-node instance. For QAOA-warmest, we used a BM-MC2 initialization with a vertex-
at-top rotation; here we intentionally chose the worst vertex (i.e. the one with worst AR
at depth-0) to better illustrate the convergence rate. For the single-cut initialization, we
chose a cut that obtains an instance-specific approximation ratio of 0.848 and created ini-
tial quantum states using regularization angles of θ∗ = 0.01, 0.1, and 0.5 radians. For the
uniform random initilizations, five such initializations were created and only the best one
was kept (i.e. the one with best AR at depth-0). 152

5.4 Performance of QAOA-warmest (with BM-MC2 warm-starts) and standard QAOA as a
function of QAOA depth for an ideal (dashed) and noisy simulation (dotted). For the
chosen 20-node graph, the GW algorithm achieves an approximation ratio of 0.912, while
in the ideal case, QAOA-warmest outperforms the GW algorithm for p ≥ 2 while standard
QAOA requires p > 4. The noise simulation is based on calibration data from IBM-Q’s
Guadalupe device. 152

5.5 IBMQ Guadalupe device which shows the physical connectivity of qubits. We choose a
native graph which matches this connectvity and random weights as indicated by color. . . 153

5.6 Performance of QAOA-warmest (with BM-MC2 warm-starts) compared to standard QAOA
in an ideal simulation and on IBM-Guadalupe hardware. Each subfigure is a scan of p = 1

parameters β vs γ, brighter regions indicating values which result in a larger cut. All
figures share the same absolute color scale. 153

5.7 Performance of QAOA-warmest (with BM-MC2 warm-starts) compared to standard QAOA
in an ideal simulation (dashed), noisy simulation (dotted) and on IBM Guadalupe hardware
(solid). Each subplot considers a different native hardware graph with randomly selected
weights as well as a different choice of initialization procedures. (Left) For a random
initialization of the classically informed QAOA-warmest start rotation. (Right) For an ef-
ficiently selected, optimal choice for the classically informed QAOA-warmest start rotation. 154

5.8 QAOA-warmest performance on Quantinuum simulators and hardware. The 20-node
Karloff instance considered here is directly mapped to the fully-connected Quantinuum
20-ion hardware. In contrast to Figure 5.4, here we use a GW warmest start and find that
this particular initialization outperforms the GW algorithm on average for p ≤ 2. 158

5.9 Comparison between standard QAOA mixer to using BM-MC2 warm-starts with custom
mixers . We show the noiseless (left) and noisy (right) case. In both cases, the custom
mixer significantly outperforms the standard mixer. Shaded regions indicate the distribu-
tion of results for 20 randomly chosen 8 node graphs with positive and negative weights. . 158

xviii

5.10 Difference in approximation ratio between rank-n GW hyperplane rounding and hyper-
plane rounding of various warm-start initializations (rank-k projected GW SDP solutions
(Projk-GW) and approximate BM-MCk solutions for k = 2, 3) as the number of nodes
varies. For each instance and each rank k, we obtained 5 random projections and 5 ap-
proximate BM-MCk solutions, and then kept the best one (of 5) in regards to the BM-MCk

objective. Each circle in the figure corresponds to an instance from (a subset of) the MQLib
library [38]; see Appendix 5.4.5 for details. 159

5.11 For both plots, we compare the log-error of QAOA-warmest (with BM-MC2 warm-starts)
to the variant of QAOA proposed by Egger et al. [42] for Max-Cut. For Egger et al.’s
approach, we consider two different initializations: initializing the variational parameters
to the origin (left) and initializing the parameters in a way that recovers the cut used to
initialize the quantum state (right). Each marker in the plot corresponds to a combination
of instance (from our graph ensemble G) and circuit depth (either p = 1 or p = 8) with the
shape of the marker being used to denote if the instance has only positive edge weights or
not. Points below the black line correspond to instances where QAOA-warmest performs
better than the other algorithm being compared. 159

5.12 Histogram showing the difference in (instance-specific) approximation ratio (AR) when
using QAOA-warmest (on instance library G) with various warm-start strategies: pro-
jected GW and locally optimal BM-MC warm-starts. The blue and red bars correspond to
depth p = 1 and p = 8 QAOA-warmest respectively with the purple regions indicating an
overlap in the histograms. For both approaches, rank-3 solutions and vertex-at-top rota-
tions are used to produce the figure; the results are similar if one instead uses a different
combination of rank and/or rotation scheme. 162

xix

SUMMARY

There is growing interest in utilizing near-term quantum technology to solve challeng-

ing problems in combinatorial optimization. The Quantum Approximate Optimization Al-

gorithm (QAOA) is a general framework proposed by Farhi et al. [1] in 2014 for obtaining

approximate solutions to certain classes of combinatorial optimization problems (namely

those that can be formulated as a Quadratic Unconstrained Binary Optimization (QUBO)

problem). In this thesis, we explore ways to bridge the theories of classical and quantum

optimization in an effort to develop fast hybrid solvers for the Max-Cut problem.

In Chapter 1 and 2, we discuss related work and introduce some background and nota-

tion regarding both classical and quantum methods of solving combinatorial optimization

problems. In Chapter 3, in an effort to find classes instances for which QAOA can poten-

tially demonstrate quantum advantage, we identify (weighted) Max-Cut instances which

are classically hard in two different senses. In the first sense, amongst a library of Max-Cut

instances and heuristics from Dunning et al., we consider instances for which no classical

heuristic achieves a cut value within 0.99 of the optimal cut value (within some instance-

dependent time limit). Such instances have both positive and negative edges whose weights

span several orders of magnitude; smaller instances with a similar edge-weight distribution

were created for the purposes of numerical simulation. These numerical simulations show

that QAOA also performs poorly on these instances; in general, QAOA tends to produce

low-quality solutions whenever there is a (roughly) balanced mix of both positive and neg-

ative edge weights. In the second sense of being classically hard, we identify instances for

which the Goemans-Williamson (GW) algorithm, the best known classical approximation

algorithm, performs poorly. In 1996, Karloff [2] constructed an sequence of graphs that

proves that GW’s 0.878-approximation is tight; we use this construction and the result of

a conjecture to find small instances that are suitable for near-term quantum devices. Al-

though QAOA converges to Max-Cut in the adiabatic limit, we prove that its performance

xx

at depth-1 is limited on Karloff’s sequence of graphs, only yielding 0.592 of the optimal

cut value in the sequence’s limit. Additionally, we also show that for a family of strongly-

regular graphs, the GW algorithm yields a 0.912-approximation.

Next, in Chapter 4, to enhance the solving power of low-depth QAOA, we introduce

a classically-inspired ”warm-start” to initialize the QAOA, using solutions to the low-rank

SDP relaxation of Max-Cut and randomized projections of solutions to Max-Cut’s SDP

relaxation. We call this variant QAOA-warm and show that this outperforms standard

QAOA on lower circuit depths in solution quality and training time. We show that the

warm-starts constructed from projected SDP solutions initialize the QAOA circuit with

constant-factor approximations of 0.658 and 0.585 for rank-2 and rank-3 warm-starts for

graphs with non-negative edge weights, improving upon previously known trivial (i.e., 0.5

for standard initialization) worst-case bounds. While this improvement is partly due to the

classical warm-start, we find strong evidence of further improvement using QAOA circuit

at small depth. We provide experimental evidence of improved performance; however, we

find that the performance of QAOA-warm eventually plateaus. More precisely, we show

that there exists an instance for which, at any circuit depth, QAOA-warm returns half the

optimal cut value in expectation, regardless of the choice of variational parameters used in

the circuit.

Afterwards, in Chapter 5, we improve the QAOA-warm algorithm by modifying the

QAOA circuit so that the starting state is the most excited state of the mixing Hamiltonian.

We demonstrate that this version of QAOA, which we call QAOA-warmest, converges

to Max-Cut under the adiabatic limit as the circuit depth increases for any choice of ini-

tial product state whose qubits are not at the poles of the Bloch sphere; when using the

warm-starts proposed in this thesis, this convergence is shown to be empirically fast com-

pared to other initialization choices. Additionally, our numerical simulations with QAOA-

warmest yield higher quality cuts (compared to standard QAOA, the classical Goemans-

Williamson algorithm, and a warm-started QAOA without custom mixers). We further

xxi

show that QAOA-warmest outperforms the standard QAOA of Farhi et al. in experiments

on current IBM-Q and Quantinuum hardware.

Finally, in Chapter 6 we propose possible methods for handling both unconstrained

and constrained optimization problems with QAOA; in particular, we discuss a novel algo-

rithm where ancillary qubits are used to generate feasible initial quantum states (i.e. those

which are a superposition of feasible solutions) whose distributions match those obtained

by classical local-search algorithms. We provide partial results on the performance of this

algorithm and show that when applying the standard QAOA algorithm to such a state; the

ancilla qubits prevent certain types of entanglement from occurring, thus limiting QAOA’s

performance.

We conclude the thesis with a discussion of research questions stemming from this

work in Chapter 7.

The results of this thesis have been published in ACM Transactions on Quantum Com-

puting [3] and under review at Quantum [4].

xxii

CHAPTER 1

INTRODUCTION

In the field of combinatorial optimization, the goal is to find an optimal object amongst

a given finite collection; more precisely, a general problem in combinatorial optimization

takes the form of

max
s∈S

f(s),

where S is a finite set and f : S → R is some real-valued objective function on S. Ex-

amples of combinatorial optimization problems include the Shortest Path problem [5], the

Max-Cut problem [6], Hamiltonian Cycle problem [6], the Traveling Salesman problem

[7], Minimum Spanning Tree [8], Maximum Weight Matching [9], and Job Shop schedul-

ing [10]. In the case of the shortest path problem for example, given a graph G = (V,E)

with edge weights w : E → R≥0 and two vertices u, v ∈ V , let S be the set of all paths

from u to v and, for all s ∈ S, let f(s) be the sum of the edge weights along the path s;

in this case, maxs∈S f(s) is the objective. For this problem, the set of all paths is entirely

determined by the graph G which can be concisely represented; such is typically the case

in the field of combinatorial optimization, i.e., the size of the set S to be optimized over is

typically exponential in the size of the representation. For this reason, evaluating f(s) for

each s ∈ S becomes intractable as the size of the representation grows and more sophisti-

cated methods are required that exploit the structure of S and its relation with the objective

function f .

For many problems in combinatorial optimization, there exists an algorithm (such as

Dijkstra’s algorithm [5] for the Shortest Path problem) there exists a combinatorial algo-

rithm that finds the optimal solution and whose runtime is polynomial in the size of the

(representation of the) input; such problems with polynomial-time algorithms are said to

1

belong to complexity class1 P. On the other hand, there exists challenging combinatorial

optimization problems in the class NP-Hard, meaning that no such polynomial-time al-

gorithm exists for such problems (assuming P ̸= NP)2; one such example is the Max-Cut

problem [6].

Given a graph G = (V,E) with edge weights w : E → R, the goal of the Max-Cut

problem is to partition V into two parts so that the sum of the weights of the edges between

the parts is maximized (Figure 1.1), i.e., we wish to determine

max
S⊆V

∑
e∈E

we1[e ∈ S × (V \ S)].

Although no polynomial-time algorithm exists to solve Max-Cut exactly (unless P =

NP), Max-Cut is in the complexity class APX, meaning that there exists a polynomial-time

algorithm for which a solution is produced whose value is at least some guaranteed fraction

of the optimal solution value [11]. The celebrated Goemans-Williamson (GW) algorithm

[11] is one such algorithm that achieves a 0.878-approximation; more precisely, the GW

algorithm relaxes Max-Cut to a semidefinite program (SDP), solves the SDP in polynomial

time, and then rounds the optimal SDP solution (via a technique called hyperplane round-

ing) to obtain a cut (S, V \ S) whose expected cut value is within 0.878 of the optimal cut

value. The GW algorithm is thought to be the best possible approximation algorithm for

Max-Cut, i.e., under the Unique Games Conjecture (UGC) and assuming P ̸= NP, there

does not exist a polynomial-time algorithm with an approximation ratio better than the

0.878 [12–14].3

1To be more precise, for any class of combinatorial optimization problem maxs∈S f(s) where S is deter-
mined by an instance I from a set of possible instances I, it is the corresponding decision problem “Given
k ∈ R and I ∈ I, does there exists s ∈ S such that f(s) ≥ k?” that is in P if the answer to the decision
problem can be determined in polynomial time for all choices of k and I . If the optimization problem can be
solved in polynomial-time, it is clear that the same can be said about the corresponding decision problem.

2The complexity class NP is the class of all decision problems for which a proof for a “yes” answer can be
verified in polynomial time. It is not difficult to see that P ⊆ NP; however determining if P is a strict subset
of NP or not remains a major open problem [6]. The complexity class NP-Hard consists of all problems P
with the property that, for all decision problems Q ∈ NP, Q can be reduced to P in polynomial time.

3If only P ̸= NP is assumed, it is known that there does not exist a polynomial-time algorithm for
Max-Cut that achieves an approximation ratio greater than 0.941 + ϵ for any ϵ > 0 [15, 16].

2

Up to this point, the results considered thus far in this thesis have been in terms of clas-

sical algorithms, i.e., algorithms performed by a classical computer or Turing machine;

however, there are other models of computation, such as quantum computing, that also

exist. Unfortunately, it is believed that even quantum algorithms can not break past the

0.878-inapproxamibility result under UGC; this is because such an algorithm would imply

that NP ⊆ BQP which is widely conjectured to be false [17–19].4 Despite this, it may

still be the case that for some classes of Max-Cut instances, algorithms on quantum devices

can outperform the classical GW algorithm (in the worst-case on such instances). Algo-

rithms on quantum computers have already demonstrated a (nearly) exponential speedup

over their classical counterparts for some problems, e.g., Shor’s algorithm [23] is a quan-

tum algorithm that factorizes integers in polynomial time which is not the case for any

(known) classical algorithms; however, in order to be of any use for modern cryptographic

purposes, a suitably large, fault-tolerant quantum device would need to be constructed and

such devices likely will not exist in the near-term.

For problems like Max-Cut, Farhi et al. [1] proposed the Quantum Approximate Op-

timization Algorithm (QAOA) which is a general framework for solving certain classes of

combinatorial optimization problems. The QAOA algorithm alternates between two types

quantum operations, a cost unitary (corresponding to a cost Hamiltonian HC) and a mixing

unitary (corresponding to a mixing Hamiltonian HB), with each operation being applied

a total of p times each, where p is chosen by the user; p is often referred to as the depth

of the quantum circuit5. The cost and mixing unitaries are parameterized by γ, β ∈ Rp

which are classically optimized. QAOA is of interest to quantum researchers since it (or

some variant) has the potential to realize a quantum advantage (over classical machines)

4The complexity class BQP consists of decision problems solvable by a quantum computer in polynomial
time with an error probability of at most 1/3 for all instances. While it is known that P ⊆ BQP [20–22], the
relationship between NP and BQP is still unknown; many suspect that there are problems in NP that are not
in BQP and vice-versa [18, 19].

5For the purposes of this thesis, a quantum circuit can be thought of as a portion of a quantum algorithm
that is performed entirely on the quantum device. Additionally, circuit depth is analogous to the notion of
runtime in classical computing.

3

Figure 1.1: To the left, an unweighted graph G = (V,E) with five vertices. To the right, the node colors
correspond to the partition of V for the max-cut; the node placements are altered to illustrate that all but one
edge “goes across” the cut. Since the graph is not bipartite, the cut illustrated on the right is optimal.

on current and near-term Noisy Intermediate-Scale Quantum (NISQ) [24, 25] devices. In

addition to being well-known amongst classical optimizers, the Max-Cut problem has also

been a problem of interest to quantum optimizers and physicists as it can be easily formu-

lated in terms of the Ising model6 [26]; in particular, the objective of the Max-Cut problem

is easily formulated in the QAOA framework using native quantum gates/operations across

various quantum devices [1].

QAOA has shown some promise; for example, in the context of the Max-Cut problem,

numerical simulations have shown that, for some instances, QAOA often outperforms the

Goemans-Williamson (GW) algorithm [11] for modest circuit depths [28]. On the theo-

retical forefront, Farhi et al. showed that depth-1 QAOA achieves a 0.6924-approximation

for Max-Cut on 3-regular graphs [1]; at depth-2, Wurst and Love [29] show that the ap-

proximation ratio improves to 0.7559 for Max-Cut QAOA on 3-regular graphs. Although

classically trivial to solve, Farhi et al. [1] conjectured that depth-p QAOA on an n-node

even cycle achieves an approximation ratio of 2p+1
2p+2

for Max-Cut whenever n > 2p; how-

ever, it has since been shown that the fraction 2p+1
2p+2

is an upper bound on the performance

of such cycles [30].

Others have also proven limitations of the standard QAOA algorithm as well: Bravyi

et al. [31] show that, for all d ≥ 3, there exists a sequence of d-regular bipartite graphs

6The Ising model [26] is the physicists’ analog of the Quadratic Unconstrained Binary Problem (QUBO)
problem studied in classical optimization. The Ising model and QUBO formulation are both used to formulate
a large class of combinatorial optimization problems [27].

4

such that depth-p QAOA with p < (1/3 log2 n−4)d−1 on such instances produces a cut (in

expectation) whose value is at most 5
6
+

√
d−1
3d

, meaning that, in the worst case, constant-

depth QAOA for Max-Cut is inferior to the classical Goemans-Williamson algorithm as

limd→∞
Ä
5
6
+

√
d−1
3d

ä
= 5

6
≈ 0.833 < 0.878 ; Farhi et al. [32] show a similar result when

QAOA is applied to the Max Independent Set problem7. Theoretically, there is still much

that is not known about QAOA, especially in regards to lower bounds on its approximation

ratio at higher circuit depths.

There are two key issues affecting the quality of the solutions obtained by the standard

QAOA algorithm:

Issue 1: At higher circuit depths p, finding the optimal variational parameters γ, β ∈

Rp for the QAOA circuit becomes increasingly difficult.

Issue 2: At low circuit depths, QAOA fails to distinguish between certain instances due

to the locality of the algorithm, i.e., no correlation is built-up between qubits that are far

away from each other in the graph.

In the context of near-term NISQ technology, there is also concern regarding an in-

crease in noise as the circuit depth of QAOA increases. Regarding the first issue, many

have proposed initialization and optimization strategies for finding a good set of variational

parameters [33–37]. Many have also proposed variants of QAOA that modify the QAOA

circuit and the algorithm itself, some of which have the possibility of addressing the second

issue. Such variants are discussed in Section 1.2; moreover, such modifications are a core

aspect of this thesis as we will see momentarily.

1.1 Contributions of the Thesis

The primary goal of this thesis is to bridge the theories of both classical optimization and

quantum computing in order to better understand and improve upon current quantum op-

timization algorithms. In this thesis, we work towards this goal by addressing two key
7Given a graph G = (V,E), the goal of the Max Independent Set problem is to find S ⊆ V , with |S| as

large as possible, such that for all vertices u, v ∈ S, the edge (u, v) ∈ E.

5

questions:

Question 1: What are the classically hard instances which have a potential for demon-

strating quantum advantage on quantum devices?

Question 2: Can solutions obtained by classical algorithms be exploited in order to

improve quantum algorithms?

This thesis addresses the first question in Chapter 3. First, the data collected from

Dunning et al.’s empirical study [38], in which they ran 38 Max-Cut heuristics on a total

of 3,296 Max-Cut instances, is further analyzed; the purpose of their study was to develop

a machine learning algorithm that predicts the best heuristic to use for any given Max-

Cut instance. When searching for instances where no heuristic algorithm performs well,

11 such instances in Dunning et al.’s instance library were found. These 11 instances

are much too large for current quantum devices; however, these instances have a similar

edge-weight distribution and thus, one can produce smaller instances with a similar edge-

weight distribution. On these smaller constructed instances, numerical simulations show

that low-depth QAOA also produces low-quality solutions meaning that such instances are

challenging for both the classical and quantum regime.

In general, the task of finding Max-Cut instances for which a quantum algorithm out-

performs every classical heuristic is incredibly difficult. Later in Chapter 3, we relax this

task to instead finding a class of instances for which some quantum algorithm outper-

forms the GW algorithm, the classical algorithm with the best provable approximation

guarantee. Karloff [2] showed that there exists a sequence of graphs {Gm}∞m=1 such that

the (instance-specific) approximation ratio of Goemans-Williamson on these graphs ap-

proaches the 0.878 bound; such instances are promising in regards to the relaxed task pre-

viously described. Since the graphs in the sequence grow very quickly in size, this work

also considers perturbations of the smaller instances in {Gm}∞m=1; interestingly, we find

that, empirically, even small changes to these instances yields a significant change in the

performance of the GW algorithm. In particular, we empirically show that the GW algo-

6

rithm has a higher instance-specific approximation ratio on these modified graphs when

compared to their unmodified counterparts. In addition to these instances found using

Karloff’s construction, we also prove that the GW algorithm achieves an approximation

ratio of 0.912 on a particular family of strongly-regular graphs; in general, strongly-regular

graphs are of interest since their vertices can be mapped to a hypersphere in a way where

points corresponding to adjacent angles are equiangular, thus simplifying the analysis of

the GW instance-specific approximation ratio. Lastly, we consider how these instances fare

in the quantum regime; we prove (Theorem 15) that depth-1 QAOA on {Gm}∞m=1 achieves

an (instance-specific) approximation ratio that approaches 0.592 as m → ∞, which is

provably worse than the 0.878 bound of the GW algorithm.

We address Question 2 in Chapters 4 through 6 by exploiting a class of techniques in

classical optimization known as warm-starting; such techniques initialize the combinato-

rial problem with a feasible, often high-quality, solution in an effort to more quickly obtain

solutions of even higher quality [39–41]. In the context of quantum computing, we pro-

pose a method of mapping 2-dimensional and 3-dimensional8 classical solutions (to the

GW SDP relaxation for Max-Cut) to the quantum Bloch sphere to obtain a warm-started

quantum product state. In Chapter 4, we introduce a variant of QAOA called QAOA-warm

which considers applying the QAOA circuit to such warm-started quantum states. We find

that, for some methods of warm-starting, this approach empirically produces better cuts

(compared to standard QAOA) at extremely low circuit depths of p = 0 (i.e. quantum

measurement of the warm-started initial quantum state) and p = 1. As the circuit depth

increases, the standard QAOA algorithm converges to the optimal solution, in theory, due

to QAOA’s relationship with quantum adiabatic computing [1]; however, very high-depth

quantum algorithms are not of practical interest since current and near-term NISQ devices

are subject to increasing amounts of noise/error as the circuit depth grows. Unfortunately,

for low-depths beyond p > 1, the performance of QAOA-warm plateaus; in addition to pro-

8Here, by k-dimensional classical solution, we mean that each vertex in the graph is associated with a unit
vector in Rk.

7

viding emperical evidence for this claim, we also prove that there exists an instance whose

(instance-specific) approximation ratio with QAOA-warm is 1/2, regardless of the choice

of circuit depth or variational parameters (Section 4.3). The plateau in performance is due

to the fact that the initial state of the QAOA algorithm was changed without making any

modifications to the remainder of the QAOA circuit; thus, the relationship between QAOA

and quantum adiabatic computing no longer holds.

In Chapter 5, we improve the QAOA-warm algorithm by making additional modifi-

cations to the QAOA circuit, more specifically, we alter the mixing Hamiltonians so that

they incorporate the structure of the warm-start in a way that reestablishes the connection

between QAOA and quantum adiabatic computing. We refer to this improved version of

QAOA-warm as QAOA-warmest. We prove the convergence of QAOA-warmest (Section

5.2) and furthermore, we show that this convergence is empirically fast (Section 5.4) with a

suitable choice of warm-start initialization. We additionally show that QAOA-warmest em-

pirically yields better results across all circuit depths compared to standard QAOA, QAOA-

warm, and a similar warm-start approach proposed by Egger et al. [42].

In both Chapters 4 and 5, there are two main initializations for QAOA-warm and

QAOA-warmest that we consider. The first are initializations obtained via k-dimensional

Burer-Monteiro solutions. The Burer-Monteiro relaxation is a relaxation of the Max-Cut

objective where each vertex of the graph is represented by a point on a (k−1)-dimensional

sphere. Note that this relaxation is equivalent to the Goemans-Williamson relaxation when

k = n (where n is the number of vertices); however, we consider the case where k = 2, 3

since the classical solutions are easily mapped to the quantum Bloch sphere. The relax-

ation is non-convex, meaning that globally optimal solutions are not necessarily easy to

find; however, locally optimal solutions can be found rather quickly. The second type

of initialization considers projections of solutions to the Goemans-Williamson relaxation

(i.e. n unit vectors in Rn) to two and three dimensions; we prove that such projections

preserve the approximation ratio obtained by hyperplane rounding. For QAOA-warm and

8

QAOA-warmest, we prove guarantees for both initializations in the case of graphs with

non-negative edge weights, in particular, at depth p = 0 (i.e. quantum measurement of the

initial quantum state) locally optimal solutions to the Burer-Monteiro relaxations yield a 3
4
κ

and 2
3
κ approximation for two-dimensional and three-dimensional solutions respectively,

where κ is the ratio of the (Burer-Monteiro) objective value of the solution to the optimal

cut in the graph (Theorem 16); by applying the results of Mei et al., which bound the per-

formance of locally optimal solutions to Burer-Monteiro relaxations, this corresponds to

approximation ratios of 0 and 1/3 respectively (for 2 and 3-dimensional solutions) when

using QAOA-warm or QAOA-warmest. However, these low approximation ratios have

not been proven to be tight, i.e., it may be the case that a more careful analysis demon-

strates a higher (worst-case) approximation ratio for QAOA-warm with such warm-starts.

Meanwhile, for the projected GW solutions, when using a suitable projection (which we

show can be easily found with high probability), we prove that depth-0 QAOA-warm and

QAOA-warmest achieve an approximation ratio of 3
4
· 0.878 ≈ 0.658 and 2

3
· 0.878 ≈ 0.585

respectively (for 2 and 3-dimensional solutions) (Corollary 20); as locally optimal solutions

to low-rank Burer-Monteiro relaxations are typically faster to obtain compared to such pro-

jected optimal GW solutions, we obtain a trade-off between time and theoretical solution

quality when choosing between these two warm-start methods. Although these results are

at depth p = 0, note that the performance of QAOA (and the variants we consider) mono-

tonically increase with circuit depth (assuming a suitable choice of variational parameters

are chosen).

Finally, in Chapter 6, we consider the notion of warm-starts from one more perspec-

tive; unlike Chapter 4 and 5, this method can directly be used for both unconstrained and

constrained optimization problems. For many combinatorial problems, randomized local-

search algorithms have been developed that utilize some notion of a local move to obtain

improved solutions. We provide a general framework for constructing initial quantum states

that have the same probability distribution of solutions as these randomized classical local-

9

search algorithms (Theorem 15); this method exploits the use of ancilla qubits to perform

operations that would be considered non-unitary from the perspective of the sub-system of

non-ancilla qubits. The randomized classical local-search procedure we consider is param-

eterized by a randomization parameter α; we show partial results regarding the performance

of the (classical and quantum) local search algorithm as function of α. Lastly, we discuss

the potential use of such quantum states (whose distributions match classical local-search

algorithms) as a warm-start for QAOA-like algorithms; we find that standard QAOA (and

many variants) have no effect on the ancilla qubits, thus causing a lack-of-interference ef-

fect between bitstrings with different ancilla tags throughout the QAOA circuit. However,

Bärtschi and Eidenbenz [43] had proposed a variant of QAOA that uses a Grover-inspired

mixer; such a mixer is of potential use in the context of our ancilla approach since the

Grover-inspired mixer maintains feasibility of solutions for constrained optimization prob-

lems (assuming the state its applied to is a superposition of feasible solutions) while si-

multaneously having the ability (unlike standard QAOA) to non-trivially force interactions

between bitstrings with differing ancilla tags.

1.2 Related Work

Since Farhi et al.’s [1] seminal paper in 2014, many others have researched QAOA from a

theoretical perspective [17, 31, 32, 44–49] while others have took more experimental di-

rections [33–37, 50–56]. Many have also considered modifications of the QAOA algorithm

itself which we discuss more below.

For the Max-Cut problem, Egger et al. [42] construct the initial quantum state by

(non-trivially) mapping a single specific cut (S, V \ S) (obtained via the GW algorithm

or possibly other means) to an initial quantum state. Egger et al. also modify the mixing

Hamiltonian so that at depth p = 1 (with the right choice of QAOA variational parameters),

the cut (S, V \ S) is recovered; however, there is no evidence to suggest that such an

approach will converge to the optimal solution for depth p→∞.

10

Egger et al. [42] also consider a different warm-started approach (which they refer

to as continuous warm-started QAOA) for Quadratic Unconstrained Binary Optimization

(QUBO) problems. For certain classes of QUBO’s, the binary variables can be relaxed

to be in the interval [0, 1] to obtain a convex quadratic program whose optimal solution

can then be mapped to the quantum Bloch sphere. The mixer used in our QAOA-warmest

approach is a generalization of the mixer used in this particular approach by Egger et al.;

however, the initialization scheme is quite different. In particular, their continuous warm-

started QAOA approach cannot be directly applied to Max-Cut as the corresponding relaxed

quadratic program is not convex; however, we do consider local optima of such relaxations

in Section 4.2.3.

Recent work by Cain et al. [57] further explored convergence properties of warm-

starts, when augmented with standard mixers. They showed using a perturbative approach

that QAOA with single-cut warm-starts (i.e., each qubit is initialized at |0⟩ or |1⟩) does not

show any improvement in the approximation ratio, even when the circuit depth is increased.

This result is interesting when compared to our QAOA-warmest approach, since we find

that (1) using custom mixers, one can guarantee convergence as long as the initialization is

not at a single-cut, and (2) warm-starts that are close to a single-cut initilazation converge

very slowly even with custom mixers.

Additionally, there have been other works which have explored other modifications of

the QAOA algorithm. Farhi et al. [45] consider having separate variational parameters for

each vertex and edge. Hadfield et al. [58] and Wang et al. [59] consider versions of QAOA

that are suitable for combinatorial optimization problems with both hard constraints (that

must be satisfied) and soft constraints (for which we want to minimize violations). Zhu

et al. [60] modify QAOA such that the ansatz is expanded in an iterative fashion with

the mixing Hamiltonian being allowed to change between iterations. Bravyi et al. [31]

proposed a recursive QAOA approach that decreases the instance size at each iteration;

Egger et al. [42] also consider a similar recursive version of their approaches. Bärtschi

11

et al. [61] and Jiang et al. [62] consider modifications of QAOA inspired by Grover’s

(quantum) algorithm [63] for fast database search. For the scope of this work, we do not

consider these alternate approaches to modify the QAOA algorithm; however, it may serve

as an interesting direction for future work the approaches discussed in this thesis can likely

be used in conjunction with some of these other approaches.

12

CHAPTER 2

BACKGROUND AND NOTATION

In this chapter, we introduce notation that will be useful in presenting the results in this

thesis. We also review some background on quantum computing and combinatorial opti-

mization. This is by no means an exhaustive review, and we refer the reader to [64–66] for

further reading. All of the results in this chapter have been previously known; however, we

do provide some proofs, calculations, and explanations for the reader’s convenience.

2.1 General Quantum Computing Background

In order to make this thesis understandable to a wide audience, this section will give a brief

introduction to the basics of quantum computing.

2.1.1 Classical Perspective

Before diving into the aspects of what makes quantum computing truly “quantum”, we first

consider things from a classical perspective whilst introducing the notation and terminology

used in quantum computing. As we will see in the rest of this section, quantum devices and

algorithms are probabilistic in nature, so we begin by first introducing quantum computing

in the context of classical probability.

Single Fair Coin

We begin with the simplest example in (classical) probability: a single fair coin. At any

point in time, if we observe the coin, it will be in one of two states: heads or tails which we

will represent with the notation |H⟩ and |T ⟩ respectively.

Much of quantum computing involves casting these notations of probability into the

language of linear algebra; for this reason, we will make a correspondence between these

13

states and the standard basis vectors of R2:

|H⟩ =

1
0

 and |T ⟩ =

0
1

 .
We take a moment to describe the notation |·⟩ which comes from the bra-ket notation

often used by physicists. Anything of the form |·⟩ is referred to as a ket and, for the pur-

poses of this thesis, can be thought to represent the state of the system being considered;

alternatively,one can mathematically interpret kets as just something that denotes a column

vector. Similarly, anything of the form ⟨·| is called a bra and can be mathematically inter-

preted to mean denoting a row vector. Note that if a ket (i.e. column vector) |v⟩ already

exists, then the notation ⟨v| should be interpreted as meaning the corresponding bra (i.e.

row vector) ⟨v| = (|v⟩)† where (·)† denotes the conjugate transpose.1

Now, let us imagine that someone tosses the coin and covers the coin with their hand

as it lands. If we were to then observe the coin, we know we would see heads and tails

both with a 50% probability. Before the coin is revealed, we can imagine that the coin is

effectively in a superposition of both heads |H⟩ and tails |T ⟩ with equal probability; we

thus write the state of the coin, |C⟩ as follows:

|C⟩ =
»

1/2 |H⟩+
»

1/2 |T ⟩

=
»
1/2

1
0

+
»

1/2

0
1


=

√1/2√
1/2

 .
Note that the squares of the coefficients of the kets correspond to the probabilities of

the outcomes after the coin is revealed. Similarly, in the linear algebra framework, we

1The notations (·)∗ and (·)H are also commonly seen to denote the conjugate transpose.

14

see that when the state is written as a vector, that the squares of the entries correspond

to the probabilities of observing the classical states |H⟩ and |T ⟩. In classical probability,

probability vectors are typically written so that they are unit-vectors with respect to the

1-norm, meanwhile, in quantum computing, we enforce that states are represented by unit-

vectors with respect to the 2-norm; later in Section 2.1.4, we will discuss the importance of

representing states in this way.

We now generalize and consider a biased coin such that when it is tossed, it has a

probability p ≥ 0 of landing on heads and probability q ≥ 0 of landing on tails with

p + q = 1. Like we previously saw, before the coin is revealed, we can imagine that the

state of coin, |C⟩ is in a superposition of both heads |H⟩ and tails |T ⟩ where the squares

of the coefficients/entries correspond to the probabilities of seeing the corresponding state

upon revealing the coin, i.e.,

|C⟩ = √p |H⟩+√q |T ⟩

=
√
p

1
0

+
√
q

0
1


=

√p
√
q

 .
It may be the case that one is given a biased coin but does not know the exact values

of p and q. However, one can estimate both quantities by repeatedly doing the coin toss-

ing experiment and making repeated observations. In the context of quantum computing,

these observations are called measurements. When doing quantum computing with actual

quantum devices, we typically do not have direct access to the coefficients of the classical

outcomes (which physicists refer to as amplitudes) throughout the computation; thus, such

measurements are a key aspect of quantum computing.

Now, consider two biased coins, C1 and C2. For j = 1, 2, suppose the coin Cj is biased

15

such that it lands on heads and tails with probability pj and qj respectively. For each of the

two coins, we can write the state of the coin, before it is revealed after a toss as:

|C1⟩ =
√
p1 |H⟩+

√
q1 |T ⟩ =

√p1
√
q1

 ,

|C2⟩ =
√
p2 |H⟩+

√
q2 |T ⟩ =

√p2
√
q2

 .
In the two-coin experiment, there are four possible outcomes, which we will formally

write as |H⟩ ⊗ |H⟩ , |H⟩ ⊗ |T ⟩ , |T ⟩ ⊗ |H⟩ , and |T ⟩ ⊗ |T ⟩; where, semantically, |a⟩ ⊗ |b⟩

means that |a⟩ is the outcome of the first flip and |b⟩ is the outcome of the second flip.

Here, ⊗, is the Kronecker product (also sometimes called a tensor product). In the context

of linear algebra, it is an operator on matrices which is defined as the following block

matrix, given matrices A and B:

A⊗B =


a11B · · · a1nB

...

an1 · · · annB

 ,
where aij ∈ C is the entry in the ith row and jth column of A. Using this definition and

recalling that |H⟩ = [1, 0]⊤ and |T ⟩ = [0, 1]⊤, we have that,

|H⟩ ⊗ |T ⟩ =

1 |T ⟩
0 |T ⟩

 =


1

0
1


0

0
1



 =


0

1

0

0

 .

Similarly, we have that the other three outcomes produce the other standard basis vec-

16

tors of R4:

|H⟩ ⊗ |H⟩ =


1

0

0

0

 , |T ⟩ ⊗ |H⟩ =

0

0

1

0

 , |T ⟩ ⊗ |T ⟩ =

0

0

0

1

 .

For convenience, for these four classical outcomes, we will often drop the Kronecker

product symbol and write everything in a single ket, e.g., |HT ⟩ = |H⟩ ⊗ |T ⟩.

We can also use the Kronecker product to describe the probabilities of the four classical

outcomes of the two-coin experiment. Letting |C1,2⟩ to represent the state of the two-coin

system, we have:

|C1,2⟩ = |C1⟩ ⊗ |C2⟩ =

√p1
√
q1

⊗
√p2
√
q2

 =


√
p1

√p2
√
q2


√
q1

√p2
√
q2



 =



√
p1p2
√
p1q2
√
p2q1
√
p2q2


=
√
p1p2 |HH⟩+

√
p1q2 |HT ⟩+

√
p2q1 |TH⟩+

√
p2q2 |TT ⟩ .

As observed previously, the squares of the coefficients of the classical outcomes cor-

respond to the probabilities of those outcomes occurring (recall from classical probability

that if two events are independent, then the probability of them both occurring are the prod-

uct of the individual probabilities). In general, if |ψ1⟩ and |ψ2⟩ represent the states of two

independent subsystems, then the state of the combined system is described by |ψ1⟩⊗|ψ2⟩.

We discuss the interpretation of the Kronecker product on general matrices in a later sec-

tion. When a state like |C1,2⟩ can be non-trivially decomposed as a Kronecker product of

two other states2, we say that such a state is separable or factorizable. Any state that is not

2More precisely, if |ψ⟩ ∈ Cn and if there exists |ψ1⟩ ∈ Cn1 and |ψ2⟩ ∈ Cn2 with n1, n2 > 1 and
|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩, then we say |ψ⟩ is separable. We will later see the role of complex numbers in quantum
computing. Since it is not necessary for the understanding of this work, and to keep this background section
accessible for most readers, we will not consider states in Cn where n is not a power of 2.

17

Figure 2.1: Two coins, C1 (red) and C2 (blue) connected by a piece of glue so that they are always either
both heads-side-up or tails-side-up.

separable is called an entangled state which we given an example of next. If, up to a global

phase (see Section 2.1.3), an n-qubit state |ψ⟩ can be written as |ψ⟩ = |ψ1⟩ ⊗ · · · ⊗ |ψn⟩

where each |ψj⟩ (for j ∈ [n]) corresponds to a single-qubit state, then we say that |ψ⟩ is a

product state; by this definition, every product state is a separable but the converse is not

necessarily true.

We now consider the scenario where there are two (unbiased) coins, but the outcome

of each coin is not independent. Suppose we were to glue the two coins together as shown

in Figure 2.1. In this case, if this system of two coins were to be tossed, we could describe

the state of the system as:

|Cglued⟩ =
»
1/2 |HH⟩+

»
1/2 |TT ⟩ =


1/
√
2

0

0

1/
√
2

 ,

i.e., there is a 50% chance of observing both coins being heads and a 50% chance of ob-

serving both coins being tails. Since the coins are glued together, the observations of the

two coins are dependent, and thus, we say that the state |Cglued⟩ is an entangled state; it is

impossible to non-trivially write |Cglued⟩ = |ψ1⟩ ⊗ |ψ2⟩ for some |ψ1⟩ , |ψ2⟩. As a conse-

quence, it is impossible to find two weighted coins such that flipping them independently

yields a state with the same amplitudes/coefficients as those found in |Cglued⟩.

Another consequence of entanglement is that partial observations/measurements of one

18

coin can tell us something about the other coin. In the case of |Cglued⟩, before any coin is

revealed, there is a 50% chance of the 2nd coin being heads. However, if we observe just

the first coin and see that it is heads, we now know with 100% certainty that the 2nd coin

must also be heads.

2.1.2 General Qubits

Moving beyond the classical perspective, we now generalize a bit of information (like we

saw with |H⟩ and |T ⟩) to a quantum bit or qubit. Instead of |H⟩ and |T ⟩, we now use

|0⟩ and |1⟩ to represent the classical outcomes (and [1, 0]⊤ and [0, 1]⊤) respectively. The

general qubit |ψ⟩ can be written as

|ψ⟩ = α |0⟩+ β |1⟩ =

α
β

 ,
where α, β ∈ C and |α|2 + |β|2 = 1. In the context of quantum computing, an observation

or measurement3 of |ψ⟩ will yield an outcome of |0⟩ with probability |α|2 and an outcome

of |1⟩ with probability |β|2. Unlike the classical setting, we now allow arbitrary complex

coefficients in front of the classical outcomes; moreover, we square the magnitude of the

coefficient.

Consider the following two states:

|ψ1⟩ =
»
1/2 |0⟩+

»
1/2 |1⟩ ,

|ψ2⟩ = i
»

1/2 |0⟩ −
»

1/2 |1⟩ .

For both states, an observation/measurement would provably yield both |0⟩ and |1⟩
3Throughout this thesis, we only consider measurements in the computational basis, meaning that a mea-

surement of a single-qubit state yields either |0⟩ or |1⟩. One can generalize the notion of measurement by
measuring with respect to a different basis, although not considered in this thesis, the details of such general-
izations can be found in [64].

19

Figure 2.2: A single-qubit state |ψ⟩ represented on the surface of the Bloch sphere.

with a 50% chance each; however, as we will see later, these states behave differently in

the context of quantum operations.

Now, let us consider a general system of n qubits. The classical outcomes that we

can observe/measure will be elements of {0, 1}n, i.e., bitstrings of length n. An arbitrary

n-qubit state |ψ⟩ is then given as

|ψ⟩ =
∑

b∈{0,1}n
αb |b⟩ =


α0···0

...

α1···1

 ,

where αb ∈ C for all b ∈ {0, 1}n and
∑

b∈{0,1}n |αb|2 = 1. Like before, this representation

corresponds to a state where, for all bitstrings b ∈ {0, 1}n, there is a probability of |αb|2 of

observing b. Note that as a vector, |ψ⟩ has 2n components. Using the ket notation, a state

like

|ψ⟩ =
»
1/4 |01010⟩+

»
1/4 |11010⟩+

»
1/2 |10001⟩ ,

is compactly written, whereas the vector representation would require us to write out 25 =

32 entries (most of which would be zero).

20

2.1.3 Geometric Interpretation: Bloch Sphere

Consider again a single-qubit state |ψ⟩ = α |0⟩+β |1⟩. We consider how such a state could

be viewed geometrically. The state could be completely described by four real numbers:

ℜ(α),ℑ(α),ℜ(β),ℑ(β), i.e., the real and imaginary parts of α and β; however, visualizing

things in four dimensions is non-trivial.

Instead, physicists often view a qubit as lying along the surface of a sphere; such a

sphere is called the Bloch sphere and is illustrated in Figure 2.2 . Using the notation for

spherical coordinates4 usually used by physicists, any point on the surface of the sphere

can be described by the polar angle θ away from the top of the sphere and the azimuthal

angle φ between the x-axis and the projection of the point to the xy-plane. Given a point

on the surface of the sphere with polar angle θ and azimuthal angle φ, the corresponding

single-qubit quantum state is given by:

|ψ⟩ = cos(θ/2) |0⟩+ eiφ sin(θ/2) |1⟩ . (2.1)

We make a few observations regarding this Bloch sphere representation. Firstly, from

Equation 2.1, observe that the probability of observing/measuring either |0⟩ or |1⟩ is en-

tirely determined by the polar angle θ. In general, the closer a point is to the north pole

of the Bloch sphere; the more likely we are to observe |0⟩; in particular, the point at the

top of the Bloch sphere corresponds to the state |ψ⟩ = |0⟩. Similarly, the closer a point is

to the south pole of the Bloch sphere; the more likely we are to observe |1⟩; in particular,

the point at the bottom of the Bloch sphere corresponds to the state |ψ⟩ = |1⟩. Currently,

the azimuthal angle φ, which is sometimes referred to as the phase of |φ⟩, has no impact

on the measurement; however, this angle will have importance in the context of quantum

operations which we will discuss later.

It is important to not confuse the Bloch sphere representation with the vector repre-

4More precisely, given the polar angle θ and azimuthal angle φ, the corresponding point in cartesian
coordinates is given by (x, y, z) = (sin θ cosφ, sin θ sinφ, cosφ).

21

sentation seen before. In particular, as vectors, observe that the states |0⟩ = [1, 0]⊤ and

|1⟩ = [0, 1]⊤ are perpendicular to one another in the plane; however, on the surface of the

Bloch sphere, |0⟩ and |1⟩ are instead antipodal.

Note that the mapping provided by Equation 2.1 results in the amplitude of |0⟩ being

a real-number. Thus, it appears that the Bloch sphere does not represent all single-qubit

states; however, one can show that it effectively does, in a sense. To see this, we define

an equivalence relation ∼ on single-qubit states where |ψ1⟩ ∼ |ψ2⟩ if there exists an angle

φ such that |ψ1⟩ = eiφ |ψ2⟩. This equivalence relation is motivated as follows: one can

show that quantum computing can not distinguish between |ψ1⟩ and |ψ2⟩, i.e., no matter

what sequence of quantum operations (see Section 2.1.4) are performed on both states; the

resulting probability distribution of observing |0⟩ and |1⟩ will be the same. Thus, for any

state |ψ1⟩, there exists an equivalent state |ψ2⟩ and point x on the Bloch sphere such that

Equation 2.1 maps x to |ψ2⟩.

In addition to |0⟩ and |1⟩, we also have the following well-known quantum states which

correspond to various points along the equator of the Bloch sphere as seen in Figure 2.2 :

|+⟩ =
»

1/2 |0⟩+
»

1/2 |1⟩ ,

|−⟩ =
»
1/2 |0⟩ −

»
1/2 |1⟩ ,

|+i⟩ =
»
1/2 |0⟩+ i

»
1/2 |1⟩ ,

|−i⟩ =
»
1/2 |0⟩ − i

»
1/2 |1⟩ .

2.1.4 Quantum Operations

Next, we discuss quantum operations in quantum computing. These operations take as

input, a quantum state, and output another quantum state. Thus, one can think of quantum

operations as a method for moving between quantum states (which in turn can be thought of

as moving between different probability distributions for the possible classical outcomes).

22

In quantum computing, quantum operations on quantum states are always linear and thus,

since quantum states are represented by (finite) vectors, one can always represent a quantum

operation as a matrix. Note that not any linear operator corresponds to a quantum operation;

in particular, we need to ensure that the output of the quantum operation is a valid quantum

state; we investigate this condition next.

Suppose there is a quantum operation (represented by the matrix) U such that U |ψ1⟩ =

|ψ2⟩ and |ψ1⟩ =
∑

{0,1}n αb |b⟩ and |ψ2⟩ =
∑

{0,1}n βb |b⟩with αb, βb ∈ C for all b ∈ {0, 1}n

and
∑

{0,1}n |αb|2 =
∑

{0,1}n |βb|2 = 1. Observe that {|0 · · · 0⟩ , . . . , |1 · · · 1⟩} corresponds

to the set of standard basis vectors in C2n and thus, the condition
∑

{0,1}n |αb|2 = 1 is equiv-

alent to ∥ |ψ1⟩ ∥ = 1; similarly the condition
∑

{0,1}n |βb|2 = 1 is equivalent to ∥ |ψ2⟩ ∥ = 1.

This means that U must be a linear norm-preserving5 operator, or equivalently, that U is

a unitary matrix. This shows that any quantum operation must be a unitary matrix and

vice-versa.

We now consider specific quantum operations. Note that applying an quantum oper-

ation corresponding to some arbitrary unitary U is not always feasible; instead, in actual

quantum devices, quantum operations are constructed by applying a sequence of quantum

gates; similar to an instruction set in low-level classical computing, these gates serve as

the building blocks for constructing quantum algorithms. There are several different types

of quantum devices, some of which have a different “native” set quantum gates. In what

follows, we demonstrate some common quantum gates/operations, many of which will be

utilized in the main body of this thesis.

We begin with the Pauli gates:

σx =

0 1

1 0

 , σy =

0 −i
i 0

 , σz =

1 0

0 −1

 .
Many authors also use X, Y, Z to denote the Pauli gates σx, σy, σz respectively.

5More specifically, we have shown that if ∥x∥2 = 1, then ∥Ux∥2 = 1; however, one can easily show this
implies that U is norm preserving in general.

23

Observe that,

σx |0⟩ =

0 1

1 0

1
0

 =

0
1

 = |1⟩ ,

σx |1⟩ =

0 1

1 0

0
1

 =

1
0

 = |0⟩ ,

in other words, σx acts as a negation or a bit-flip operator when viewed classically. Ge-

ometrically, this acts as a rotation by π around the x-axis of the Bloch sphere; a similar

geometric interpretation exists for σy and σz.

We can also consider rotations by arbitrary amounts as well, in particular, we consider

the quantum operations Rx(θ), Ry(θ), Rz(θ) corresponding to rotations by angle θ about

the x, y, and z axes of the Bloch sphere respectively. The formulas for these are given

below:

Rx(θ) = cos(θ/2)I − i sin(θ/2)σx =

 cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

 ,
Ry(θ) = cos(θ/2)I − i sin(θ/2)σy =

cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

 ,
Rz(θ) = cos(θ/2)I − i sin(θ/2)σz =

e−iθ/2 0

0 eiθ/2

 .
As an example, if we rotate the point corresponding to |+⟩ about the z-axis by π/2, we

should expect the result to be the state |+i⟩. Observe,

Rz(π/2) |+⟩ =

e−iπ/4 0

0 eiπ/4

√1/2√
1/2

 =

e−iπ/4 0

0 eiπ/4

√1/2√
1/2

 =

e−iπ/4
√

1/2

eiπ/4
√
1/2



= e−iπ/4

 √
1/2

eiπ/2
√

1/2

 = e−iπ/4

√1/2

i
√
1/2

 = e−iπ/4 |+i⟩ ,

24

which is equivalent (under the equivalence relation ∼ from before) to |+i⟩.

As another example, consider the Hadamard gate,

H =
1√
2

1 1

1 −1

 .
The operation H corresponds to a rotation by π along the axis determined by a 45

degree angle between the x and z axes. In particular, similar calculations show thatH |0⟩ =

|+⟩ and H |+⟩ = |0⟩ and that H |1⟩ = |−⟩ and H |−⟩ = |1⟩. In particular, note that

measurement of |+⟩ and |−⟩ yield the same result, but if a Hadamard gate is applied to

each of these gates, then measurement of such states yields differing results.

2.1.5 Properties of the Kronecker Product

Next, we consider the role that Kronecker products play in the context of multi-qubit sys-

tems. Let |ψ1⟩ and |ψ2⟩ be the state of two independent subsystems; from before, we have

that |ψ1⟩ ⊗ |ψ2⟩ describe the state of the combined system. Suppose that there exists a

quantum operations U1 and U2 for each of the two subsystems respectively; we can repre-

sent the application of both of those operations (independently to each subsystem) in the

context of the overall system with the operation U1 ⊗ U2, i.e.,

(U1 ⊗ U2)(|ψ1⟩ ⊗ |ψ2⟩) = (U1 |ψ1⟩)⊗ (U2 |ψ2⟩).

The above is a consequence of the mixed-product property of Kronecker products as

stated in the proposition below.

Proposition 1. For matricesA,B,C,D of the appropriate size (A ∈ Cm×n, B ∈ Cp×q, C ∈

Cn×k, D ∈ Cq×r),

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

Applying the mixed-product property with identity matrices of the appropriate size, we

25

have that, for matrices A and B that

(A⊗ I)(I ⊗B) = (AI)⊗ (IB) = A⊗B,

and

(I ⊗B)(A⊗ I) = (IA)⊗ (BI) = A⊗B;

in the context of quantum computing, the operation A⊗B can be interpreted as a two-step

procedure where we first apply A to the first subsystem and then apply B to the second

subsystem. Alternatively, we could apply B to the second subsystem first and then apply

A to the first subsystem since the above shows that the order of these two steps does not

matter. However, the Kronecker product itself is not necessarily commutative, i.e., typically

A⊗B ̸= B ⊗ A.

In addition to the mixed-product property, the Kronecker product has additional prop-

erties of interest, many of which are similar to properties of the standard matrix product.

Proposition 2. Let A ∈ Cm1×n1 , B ∈ Cm2×n2 , C ∈ Cm2×n2 be matrices and let k ∈ C.

Let 0 be an all-zeroes matrix of any fixed size, then,

1. A⊗ (B + C) = A⊗B + A⊗ C,

2. (B + C)⊗ A = B ⊗ A+ C ⊗ A,

3. (kA)⊗B = A⊗ (kB) = k(A⊗B),

4. (A⊗B)⊗ C = A⊗ (B ⊗ C),

5. A⊗ 0 = 0⊗ A = 0.

6. Im ⊗ In = Imn, where Im and In are the m × m and n × n identity matrices

respectively,

7. (A⊗B)−1 = A−1 ⊗B−1 if A and B are both invertible,

26

8. (A⊗B)T = AT ⊗BT

9. (A⊗B)† = A† ⊗B†

Proof. We refer the reader to [67] for detailed proofs of each of the properties above.

By induction, properties 1 and 2 can be extended for a sum of an arbitrary number

of matrices; similarly, properties 6 through 9 can be extended for a Kronecker product

of an arbitrary number of matrices. We also note that the complex field C in the above

proposition can be replaced with any arbitrary field F and the results will still hold. For the

Kronecker product of n matrices A1, . . . , An, we define,

n⊗
j=1

Aj = A1 ⊗ A2 ⊗ · · · ⊗ An;

note that no parenthesis are needed since the Kronecker product is associative by Proposi-

tion 2.

In the context of multi-qubit systems, we often want to apply a single-qubit gate to

just one qubit. For example, for an n-qubit system, if one wanted to apply σx to the first

qubit, the overall operation in the context of the full n-qubit system would be represented

as σx⊗I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−1 times

where I2 is the 2×2 identity matrix. We adopt the following notation

for convenience:

σx
j = I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

j−1 times

⊗ σx︸︷︷︸
jth term

⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−j times

,

to represent applying σx to the jth qubit in an n-qubit system. Both σy
j and σz

j are

similarly defined to represent applying σy and σz to the jth qubit respectively.

In general, the Kronecker product can be used to describe the action of several quantum

operations being applied independently to several subsystems in quantum computing. In

particular, if |ψ1⟩ , . . . , |ψk⟩ describe states of k independent subsystems and U1, . . . , Uk

are quantum operations on those subsystems, then in the context of the overall system,

27

U1⊗· · ·⊗Uk represents applying each of the operations independently to each subsystem,

i.e.,

(U1 ⊗ · · · ⊗ Uk)(|ψ1⟩ ⊗ · · · ⊗ |ψk⟩) = (U1 |ψ1⟩)⊗ · · · ⊗ (Uk |ψk⟩);

this property of Kronecker products is formalized in the proposition below which is a gen-

eralization of the mixed-product property (Proposition 1).

Proposition 3. Let m,n ≥ 2. For each i ∈ [n] and j ∈ [m], let A(j)
i be a matrix with

complex entries. Then,
m∏
j=1

n⊗
i=1

A
(j)
i =

n⊗
i=1

m∏
j=1

A
(j)
i ,

for matrices A(j)
i of the appropriate size (i.e. the matrix products above are well-defined).

Proof. For convenience, let A(j) =
⊗n

i=1A
(j)
i . We first prove that the proposition holds

when m = 2 in the lemma below.

Lemma 1. Let n ≥ 2. Let A =
⊗n

i=1Ai and let B =
⊗n

i=1Bi. Then

AB =
n⊗

i=1

(AiBi).

Proof. We proceed by induction. When n = 2 the above is equivalent to the original

mixed-product property (Proposition 1). Observe,

AB =

(
n⊗

i=1

Ai

)(
n⊗

i=1

Bi

)

=

((
n−1⊗
i=1

Ai

)
⊗ An

)((
n−1⊗
i=1

Bi

)
⊗Bn

)
(by associativity)

=

(
n−1⊗
i=1

Ai

)(
n−1⊗
i=1

Bi

)
⊗ (AnBn) (mixed-product property)

=

(
n−1⊗
i=1

(AiBi)

)
⊗ (AnBn) (by induction)

=
n⊗

i=1

(AiBi).

28

We now proceed with induction on m. Observe,

m∏
j=1

A(j) =

(
n−1∏
j=1

A(j)

)
A(m)

=

(
n⊗

i=1

m−1∏
j=1

A
(j)
i

)
A(m) (by induction)

=

(
n⊗

i=1

m−1∏
j=1

A
(j)
i

)(
n⊗

i=1

A
(m)
i

)
(def of A(m))

=
n⊗

i=1

((
m−1∏
j=1

A
(j)
i

)
A

(m)
i

)
(by Lemma 1)

=
n⊗

i=1

(
m∏
j=1

A
(j)
i

)
,

which is the desired result.

Up to this point, we have implicitly assumed that if A and B correspond to quantum

operations (i.e. they are unitary matrices), then so does A ⊗ B. This is formalized in the

proposition below; we also show that being Hermitian is also a property that is preserved.

Proposition 4. Let A,B be matrices over C.

• If A and B are Hermitian, then A⊗B is Hermitian.

• If A and B are unitary, then A⊗B is unitary.

Proof. We first prove the first statement. Let A and B be Hermitian, i.e., A† = A and

B† = B. Then, by Property 9 of Proposition 2,

(A⊗B)† = A† ⊗B† = A⊗B,

29

thus proving that A⊗B is Hermitian.

We now prove the second statement. Let A and B be unitary matrices, i.e., A−1 = A†

and B−1 = B†. Then, by Properties 7 and 9 of Proposition 2, we have that,

(A⊗B)−1 = A−1 ⊗B−1 = A† ⊗B† = (A⊗B)†,

thus proving that A⊗B is unitary.

2.1.6 Multi-Qubit Operations

Up until now, we have only considered quantum operations that directly affect a single-

qubit at a time. If a quantum state is a product state, then applying single-qubit operations

causes the state to remain as a (unentangled) product state. In order to cause the state to

become entangled, multi-qubit operations are necessary. In this subsection, we give one

such example of a multi-qubit operation: the controlled-not (CNOT) gate. There are many

other multi-qubit operations of interest; however, it is well-known that any quantum state

can be approximated (up to arbitrary precision) by using only single-qubit gates and CNOT

gates (see Chapter 16 of [64]).

The CNOT gate operates on two qubits. When the qubits correspond to two classical

bits, the CNOT gate simply flips the second bit if the first bit is |1⟩, otherwise, the CNOT

gate does nothing. More precisely,

CNOT |00⟩ = |00⟩ ,

CNOT |01⟩ = |01⟩ ,

CNOT |10⟩ = |11⟩ ,

CNOT |11⟩ = |10⟩ .

30

Recall that the states |00⟩ , |01⟩ , |10⟩ , |11⟩ correspond to vectors that form a basis for

C4, then CNOT can be represented by the following 4× 4 matrix:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

2.2 Approximation Ratio

Before delving into the relevant algorithms in quantum and classical settings, we first define

the notion of approximation ratio (AR) for Max-Cut in general weighted graphs. In the

QAOA literature, many have adopted the term approximation ratio to mean the performance

of a single run of an algorithm on a particular instance. This ratio is typically “normalized”

to lie in the interval [0, 1] and is well-defined even when the Max-Cut(G) = 0. Given an

expected cut value of the cut obtained EA,G using algorithm A on graph G, we call such a

ratio, αA,G, the normalized instance-specific approximation ratio and define it as

αA,G =
EA,G − Min-Cut(G)

Max-Cut(G)−Min-Cut(G)
. (2.2)

When the weights of all the edges in the graph are non-negative, then the trivial cut (V,∅)

is a minimum cut for G with Min-Cut(G) = 0; however, if the graph contains negatively-

weighted edges, then it may be the case that Min-Cut(G) < 0. For brevity, we will simply

use the term instance-specific approximation ratio (or simply the empirical approximation

ratio) to gauge the performance of variants of QAOA over the family of graph instances we

consider G (see Section 4.5.1).We also note that in the classical optimization literature, the

term approximation ratio is usually reserved for a theoretical lower bound on the perfor-

31

mance of a particular algorithm across all problem instances6. We will call such a bound

as the theoretical worst-case approximation ratio or simply the approximation ratio when

clear from context.

For both standard QAOA and our proposed variant QAOA-warm on a particular graph

G, we obtain a final quantum state |ψ⟩ and EA,G is defined as the expected cut value

obtained from measuring |ψ⟩ in the computational basis. Both the Burer-Monteiro and

Goemans-Williamson algorithms yield a collection of points x = (x1, . . . , xn) on a hyper-

sphere and EA,G is defined to be the expected value of the cut obtained from performing

randomized hyperplane rounding on x.

For our simulations in Section 4.5, we calculate EA,G exactly. Since we are using a full-

state vector classical simulator for QAOA (instead of an actual quantum device), we can

directly calculate EA,G by reading off the amplitudes of the final quantum state (as opposed

to simulating several quantum measurements and approximating EA,G with an emperical

average). Similarly, when working with the Burer-Monteiro or the GW algorithm, EA,G

is computed exactly by analyzing the angles between the points on the hypersphere (as

opposed to actually performing hyperplane rounding and approximating EA,G with an em-

perical average). Precise formulas for EA,G are provided in Sections 2.4 and 2.3.

2.3 Classical Methods for Max-Cut

In this section we review two classical approximation algorithms for Max-Cut. Recall that

given a (weighted) graph G = (V,E) with weights w : E → R, the Max-Cut problem is

to find a partitioning of the vertices into two subsets, S and T = V \ S, that maximizes the

6In particular, for a randomized algorithm A for Max-Cut theoretical computer science literature refers
to an approximation ratio of αA if

αA ≤ min
G∈G

E[cut(SA,G)]

Max-Cut(G)
, (2.3)

where (SA,G, V (G)\SA,G) is the (random) cut returned byA (onG), the expectation is over the randomness
of algorithm A taken as the worst-case over all positive weighted graphs G. For example, the 0.878 bound
for Goemans-Williamson is a worst-case bound obtained where the expectation is over all positive weighted
graph instances.

32

number of cut edges, i.e.,

Max-Cut(G) = max
S⊆V

cutG(S),

where,

cutG(S) =
∑
e∈E

we · 1[e ∈ S × (V \ S)],

we often omit the subscript G above if the graph is understood from context.

Instead of maximizing over subsets of V , one can rewrite the problem as maximizing

over {−1, 1}|V | instead. To do this, we associate every vertex i ∈ V with a decision variable

xi, where xi = +1 indicates that vertex i ∈ S and xi = −1 indicates that i /∈ S. Observe

that for an edge (i, j) ∈ E, we have that the edge is cut if and only if xi ̸= xj . Using the

above fact, one can easily check that:

1

4
wi,j(xi − xj)2 =


wij, (i, j) is cut,

0, (i, j) is not cut.
(2.4)

By adding up the contribution of each edge and letting n = |V |, it becomes clear that

one can reformulate the Max-Cut problem as the following maximization problem:

max
x∈{±1 }n

cut(x) = max
x∈{±1 }n

1

4

∑
(i,j)∈E

wi,j(xi − xj)2, (2.5)

= max
x∈{±1 }n

1

2

∑
(i,j)∈E

wi,j(1− xixj),

=
1

2
W + max

x∈{±1 }n
1

4
⟨−A, xxT ⟩, (2.6)

whereA is the adjacency matrix ofG, ⟨·, ·⟩ denotes the Frobenius product of two matrices7,

7Not to be confused with the bra-ket notation, the Frobenius product of two same-sized matricesA andB,
denoted by ⟨A,B⟩, is equal to Tr(A†B) where Tr(·) denotes the trace of a matrix and (·)† denotes conjugate
transposition.

33

and W =
∑

(i,j)∈E wij .

Goemans-Williamson (GW) Algorithm. In the seminal work of Goemans and Williamson

[11] in 1995, the authors pioneered the use of semi-definite programs for solving combi-

natorial problems. Considering Y = xxT ≽ 0 from equation (2.6), Max-Cut is equivalent

to maximizing ⟨−A, Y ⟩ by matrix Y from the positive semidefinite cone, subject to hav-

ing a unit diagonal, in addition to being rank-1.8 Relaxing the last constraint gives us a

semidefinite program as follows:

maximize ⟨−A, Y ⟩

subject to ⟨Y, eieTi ⟩ = 1, ∀i ∈ [n],

Y ∈ Sn
+ ,

(2.7)

where n = |V | and Sn
+ is the set of all n × n positive semidefinite matrices. The value

given by the relaxation above was first considered in 1993 by Delorme and Poljak [68] in

the form of an eigenvalue maximization problem with the equivalence shown shortly after

by Poljak and Rendl [69] in 1995. The above relaxation is in the form of a semi-definite

program and hence since it is a convex program it can be solved in polynomial time up to

arbitrary precision, e.g., by using interior point methods [70].

For a Cholesky decomposition of Y = XTX (with X ∈ Rn×n), one can think of the

solution to the above SDP as an embedding which maps vertex i to X:i, i.e., the ith column

ofX . This embedding can be viewed as a maximizer of a relaxation of equation (2.5) where

xi still has unit distance from the origin, but now in Rn, i.e., xi lies on the (n− 1)-sphere.9

To map this high dimensional solution to a cut in the graph, the GW algorithm considers

a random hyperplane through the origin to partition the vertices into two sets according

to which side of the hyperplane they lie on; Goemans and Williamson [11] proved that

8We use “A ≽ 0” to mean that A is a positive semidefinite matrix, i.e., A is a symmetric matrix with real,
nonnegative eigenvalues.

9The k-sphere, denoted Sk, is defined as Sk = {x ∈ Rk+1 : ∥x∥2 = 1}.

34

this choice of rounding yields an approximation ratio of α∗ ≈ 0.878 to Max-Cut, when

the edge weights are non-negative. More specifically, given a fixed GW SDP solution

of Y = XTX , the expected value of the cut obtained via hyperplane rounding is given

by 1
π

∑
(i,j)∈E wijarccos(X:i · X:j); in the context of instance-specific approximation ratio

(Equation 2.2), we define the expected cut value (on a particular run of the GW algorithm)

as the previous sum, i.e., EA,G = 1
π

∑
(i,j)∈E wijarccos(X:i · X:j). A similar definition of

EA,G is also used for the Burer-Monteiro method which we describe next.

Burer-Monteiro (BM) Method. Observe that changing variables as Y = XTX (with

X ∈ Rn×n), one can eliminate the positive semi-definite constraint in (2.7) and obtain the

following equivalent reformulation:

maximize ⟨−A,XTX⟩

subject to ∥xi∥2 = 1, ∀i ∈ [n], (2.8)

xi ∈ Rn, ∀i ∈ [n] , (2.9)

where xi denotes the ith column of X . Burer and Monteiro [71] proposed relaxing xi for

each vertex to Rk instead of Rn in (2.9), i.e., use xi ∈ Rk. Unlike the relaxation used

in the Goemans-Williamson relaxation, this modification yields a non-convex optimization

problem. We refer to this modification as the rank-k Burer-Monteiro Max-Cut (BM-MCk)

relaxation. For ease of notation, given a (feasible) BM-MCk solution x, we let

HP(x) =
∑

(i,j)∈E

wi,j

π
arccos(xi · xj),

denote the expected cut value obtained from performing hyperplane rounding on x [11] and

we let,

BM-MCk(x) =
∑

(i,j)∈E

wi,j

4
∥xi − xj∥2, (2.10)

35

denote the BM-MCk objective at x; for a given graph G, we let

BM-MCk(G) = max
x

BM-MCk(x),

denote the globally optimal BM-MCk objective value forG. Lastly, we say that the solution

x is κ-approximate if HP(x) ≥ κMax-Cut(G) and similarly, x is considered κ-close if

BM-MCk(x) ≥ κMax-Cut(G).

Not only is optimizing a non-convex (non-concave) optimization problem difficult, but

even finding a local optimum to a non-convex optimization problem can be challenging due

to saddle-points. Nevertheless, first and second-order optimization methods have showed

promising performance in converging to high quality local optima for low-rank BM for-

mulation of Max-Cut (and many other combinatorial optimization problems). Burer and

Monteiro invented this heuristic method, motivated by existence of a low rank optimal

solutions to the original (n dimensional) SDP whenever
(
k
2

)
is no less than the number

of constraints of the SDP, known as the Barvinok-Pataki bound [72, 73]. Their method

has showed promising performance in practice, even in constant dimensions and is an ac-

tive area of research in non-convex optimization theory [74–76]. Experiments by Burer,

Monteiro, and Zhang [76] demonstrate that BM-MC2 performs much more quickly while

maintaining relatively good solutions; on one particular 20,000-node instance, the GW al-

gorithm took over 1.5 days to complete, whereas a rank-2 approximate BM-MC solution

was found in a little over a second; repeated runs of BM-MC2 over the course of a couple

minutes on the same graph yielded cuts that were at least as good as those obtained by the

GW algorithm [76]. More details on the runtime of the GW algorithm and BM-MCk can

be found in Section 4.5.6.

Recently, Mei et al. [77] showed that, for Max-Cut SDPs corresponding to graphs

with non-negative edge-weights, any second-order local optimum for the BM formulation

is approximately optimal with respect to the original SDP.

36

Theorem 2 (Mei et al. [77]). For graphs with non-negative edge weights, the objective at

a locally optimal solution, for the above non-convex, rank-k SDP formulation, is within a

factor 1− 1
k−1

of that of the rank-n SDP.

To parse Mei et al.’s result in other words, for an n-node graph G with non-negative

edge weights, any locally-optimal solution x to BM-MCk is also (1 − 1
k−1

)−close since

BM-MCn(G) ≥ Max-Cut(G). The above theorem highlights the fact that increasing k

improves performance of the BM formulation; however, for the purposes of this work (and

simple mapping to the Bloch sphere), we restrict our attention to rank-2 and rank-3 solu-

tions.

2.4 The Quantum Approximate Optimization Algorithm

In this section, we review the hybrid quantum-classical algorithm of QAOA for the Max-Cut

problem. QAOA assigns a quantum spin to every binary output variable. In each of the p

layers of the algorithm, a cost unitary (corresponding to Hamiltonian HC) and a mixing

unitary (corresponding to Hamiltonian HB =
∑

i∈[n] σ
x
i , where σk

i is a Pauli matrix for

qubit i with k = x, y, z), are alternately applied to the initial quantum processor state |s0⟩,

generating a variational wavefunction

|ψp(γ, β)⟩=e−iβpHBe−iγpHC · · · e−iβ1HBe−iγ1HC |s0⟩ , (2.11)

where |s0⟩ = |+⟩⊗n is the standard initial state. When the circuit in Equation 2.11 is used,

we will often say that we are running depth-p QAOA; this notion of depth should not be

confused with the notion of circuit depth for general quantum circuits. Sampling from the

final variational state will yield a cut with an expected cut value of:

Fp(γ, β) = ⟨ψp(γ, β)|HC |ψp(γ, β)⟩ .

37

In general, for any cost function f : {0, 1}n → R, the corresponding cost Hamiltonian

HC is defined so that HC |b⟩ = f(b) |b⟩ for all b ∈ {0, 1}n.

In the specific case of the maximization problem Max-Cut, it can be shown [1] that the

cost Hamiltonian for a graph G = (V,E) (with weights w : E → R) can be written as

HC =
1

2

∑
(i,j)∈E

wij(1− σz
i σ

z
j) .

The (near) optimal parameters of the algorithm, γ, β, are found by a classical algorithm

to maximize the performance of the QAOA algorithm, with Fp(γ, β) viewed as a multi-

dimensional non-convex function. We let Mp denote the expected cut value with optimal

choice of γ, β parameters, i.e.,

Mp = max
γ,β

Fp(γ, β).

It is not difficult to see that Mp is a non-decreasing function in p; moreover, as previously

mentioned, Mp → Max-Cut(G) as p → ∞ [32]. For graphs with non-negative edge-

weights, the ratio Mp/ Max-Cut(G) ≥ 0.5 for all p ≥ 0 due to the 0.5-approximation ratio

achieved at p = 0 for the standard initialization.

To find the optimal variational parameters, one can simply perform a dense grid search

for γ, β ∈ [−π, π]2p, but this would be feasible only for small circuit depths. For scala-

bility, one can instead treat Fp(γ, β) as a black-box10 and utilize a classical optimizer to

(iteratively) update and find suitable values of γ and β in an effort to the maximize the

expected cut value. For any classical optimization algorithmA, it will eventually terminate

at some (γ, β) = (γ̂, β̂); in the context of instance-specific approximation ratio (Equation

2.2), the expected cut value is EA,G = Fp(γ̂, β̂).

To optimize the variational parameters, we consider four choices of the optimizer:

10For actual quantum devices, the value of Fp(γ, β) and its gradients can be estimated by taking multiples
measurements of ψp(γ, β) in the computational basis.

38

ADAM [78], COBYLA [79], Nelder-Mead [80], and BFGS [81]. Since Fp(γ, β) is

non-convex, classical optimizers are not guaranteed to stop at a globally optimal choice of

γ and β, i.e., the expected result of QAOA will not always be equal toMp (i.e. the expected

result of QAOA had we initialized γ and β optimally). ADAM and BFGS operate with

the first-order information (i.e., using gradient estimates), whereas COBYLA and Nelder-

Mead operate with the zeroth-order information (i.e., function value estimates). On quan-

tum devices, gradients are estimated using multiple evaluations of the function Fp(γ, β)

at various (γ, β); these function evaluations are noisy since Fp(γ, β) itself is estimated by

taking an average of multiple quantum measurements. For this reason, gradient-free opti-

mizers are typically more robust against quantum noise and are recommended in practice

over gradient-based methods [82]. Application of machine learning techniques for opti-

mizing the variational parameters (a technique known as meta-learning) has also shown

promise in the noisy quantum setting [83]. Recent results regarding the concentration of

the (standard) QAOA landscape can also be used to speed up optimization of the variational

parameters [84]. Even though the runtimes for various optimizers may significantly differ,

we find that the choice of the optimizer has much smaller impact on the instance-specific

approximation ratio achieved for QAOA-warm (discussed in Section 4.5).

2.5 Independent Set Problem

In Chapter 6, we consider an example of a combinatorial optimization problem with hard

constraints called the Independent Set problem. Given a graph G = (V,E), the goal of the

Independent Set problem is to find largest independent set S ⊆ V where an independent

set is defined to be any subset of vertices in the graph such that no edges exists between

the vertices of S, more precisely, we wish to solve maxxi∈{0,1} xi subject to xi + xj ≤ 1

10One can calculate (or approximate) the gradient using a variety of methods. Our implementation approx-
imates the gradient using an analytic forward difference method implemented in TENSORFLOW QUANTUM
(with default parameters error order=1 and grid spacing=0.001). By analytic, we mean that any
expectations computed in the calculation are computed exactly (instead of using a sampling-based approxi-
mation).

39

for all (i, j) ∈ E where xi = 1 denotes that vertex i is included in the independent (and

xi = 0 indicates otherwise). It is known that the Independent Set problem is NP-Hard

[6]. While constant-factor approximation ratios for the Independent Set problem exists

for certain special classes of graphs [85–87], there does not exist such a constant-factor

approximation ratio for general graphs [88].

40

CHAPTER 3

INTERESTING INSTANCES FOR QUANTUM ADVANTAGE

As previously discussed in Chapter 1, demonstrating quantum advantage1, i.e. the ability

for physical quantum computers to complete a given task that no classical computer can

complete in a reasonable amount of time, has been of particular interest to quantum re-

searchers. In 2019, Google had announced that they had demonstrated quantum advantage

on a 53 qubit quantum device; however, the problem they solved was specifically designed

for the sole purpose of illustrating quantum advantage and thus is not of practical use [89].

On the other hand, there exists algorithms, such as Shor’s algorithm for integer factoriza-

tion, which are theoretically faster than any currently known classical algorithm; however,

to be of practical use, Shor’s algorithm requires a large number of qubits which is currently

not feasible for current quantum devices. [23].

Many believe that the Quantum Approximate Optimization Algorithm (QAOA) applied

to the Max-Cut problem has the potential for demonstrating a quantum advantage over clas-

sical algorithms [35, 46, 47, 90–92]. This is in part due to a recent result by Farhi et al.

[1] which shows that under the adiabatic limit (i.e., as the circuit depth goes to infinity),

the QAOA algorithm would converge to the Max-Cut. It may be the case that QAOA (and

its variants) only have an advantage over classical algorithms on certain classes of graphs

for finite circuit depths. To identify such classes of graphs, one can take a two-pronged ap-

proach: (i) find graph families which are challenging for classical optimization algorithms,

(ii) show that the QAOA performs well on such graph families. From the perspective of

1We note that there is not universal agreement regarding the definition of quantum advantage. Many have
used the term quantum supremacy to refer to what we call quantum advantage in this thesis; meanwhile,
many will instead use the term quantum advantage to mean a situation where, for some given task, a physical
quantum devices has at least some slight edge in runtime compared to any classical algorithm on any classical
machine. Regardless of the definition of quantum advantage that one uses, we believe that the instances
presented in this chapter should be of interest to the reader.

41

showing quantum advantage for certain families of graphs on near-term NISQ devices, it is

further of interest to find such relatively small graphs.

In this chapter2, we further our knowledge of challenging families for the celebrated

Goemans-Williamson algorithm [11]. The Goemans-Williamson (GW) algorithm attains

the best-possible approximation ratio of 0.878 in polynomial time for graphs with non-

negative edge-weights, assuming that the Unique Games Conjecture is true [12–14].

Regarding related work, Herrman et al. [90] run numerical simulations for Max-Cut

QAOA, up to depth p = 3, for all non-isomorphic graphs with 8 or fewer nodes, in order to

find correlations between various graph properties and performance metrics (including the

approximation ratio and the probability of observing the maximum cut); in particular, they

find that QAOA performs empirically better on graphs with higher amounts of symmetry,

thus further motivating the investigation of the classes of instances considered in this work,

which we will now discuss.

In Section 3.1, one such class that we consider is a sequence of graphs proposed by

Karloff [2] whose GW instance-specific approximation ratio approaches the GW bound of

0.878. The smallest possible graph using Karloff’s construction has 924 nodes and the re-

maining instances in the sequence quickly blow up in size making them not suitable for cur-

rent or near-term quantum devices; however, by carefully analyzing Karloff’s proof and one

of his conjectures (later proven by Brouwer et al. [93]), we show (Table 3.1) that there are

other instances under 1000 nodes that can be constructed using Karloff’s construction with

the smallest having 20 nodes. In Section 3.2, we prove that the GW algorithm also achieves

a low instance-specific approximation ratio for a special class of strongly-regular graphs.

In particular, for all strongly-regular graphs G = (V,E) parameterized by (n, k, λ, µ) with

n = 4(3t + 1), k = 3(t + 1), λ = 2, µ = t + 1 for some integer t, we prove (Theorem

12) that the GW algorithm yields a 0.912-approximation whenever Max-Cut(G) = 2
3
m;

we computationally verify that this condition (Max-Cut(G) = 2
3
m) holds for all but 13

2The results presented in this chapter is joint work with Swati Gupta and is in preparation for submission
to Operation Research Letters.

42

instances amongst all strongly-regular graphs with the parameters described above.

Many other classical algorithms exist for the Max-Cut problem including Trevisan’s

algorithm, which yields a 0.614-approximation [94, 95], and numerous heuristics such

as those found in the MQLib library [96]. The task of identifying classes of instances

that demonstrate quantum advantage over all classical algorithms is very difficult; for this

reason, we first consider the simpler task of demonstrating an advantage over the best-

known classical algorithm, i.e., the GW algorithm. Additionally, we remark that in the

context of Sum of Squares (SOS) hierarchies [97, 98], the GW relaxation is equivalent to a

degree-2 SOS relaxation; higher-degree relaxations can potentially be used, thus obtaining

stronger relaxations, but this requires a prohibitively higher computational cost.

Next, in Section 3.3, we provide empirical results for classes of instances which may be

of interest from a benchmarking perspective. First, using the instances and heuristics found

in the MQLib library [38], we identify classically-hard instances for which no classical

heuristic obtains an instance-specific approximation ratio of 0.999 or more within a given

(instance-dependent) time-frame; such instances have edges of both positive and negative

weight whose magnitudes span several orders of magnitude as seen in Figure 3.3. Looking

forward in Chapter 5, we empirically show that QAOA also achieves low-quality solutions

for similarly-constructed instances with mixed edge weights. Afterwards, in order to gen-

erate more suitably-sized instances for near-term quantum benchmarking, we further ex-

tend the small instances generated by Karloff’s construction by applying perturbations (e.g.

edge deletions and edge-weight modifications) to such instances; we find that, empirically,

the GW algorithm is sensitive to such changes, causing the instance-specific approximation

ratio to rise (compared to the unperturbed instance), yet these approximation ratios are still

bounded considerably away from 1.

Finally, in Section 3.4, we discuss QAOA’s performance on the instances in Section 3.1

where the GW algorithm provably performs poorly as a result of Karloff’s construction. We

prove (Theorem 15) that depth-1 QAOA achieves an instance-specific approximation ratio

43

that approaches 0.592 for the sequence of graphs constructed by Karloff; thus, a higher-

depth or some modification of the QAOA algorithm is required in order to demonstrate

some form of quantum advantage for these instances. For strongly-regular graphs, the

proof of Theorem 15 can not directly be extended as our proof uses a result by Wang et

al. [99] that is only applicable for triangle-free graphs and strongly-regular graphs are not

triangle-free in general.

3.1 Small Instances from Karloff’s Construction with Low GW Approximation Ra-

tios

We review a known graph family constructed by Karloff in [2] where the GW algorithm

attains the tight approximation ratio of 0.878 as the graph size increases. The smallest

instance using Karloff’s construction has 924 nodes, which is infeasible for numerically

testing or simulating on current quantum hardware. Instead, we studied the construction to

increase the size of the graph family by showing that a conjecture, regarding the eigenvalues

of the adjacency matrix of the graphs in Karloff’s construction, is in fact true [93]. This

allowed us to expand the set of graphs where the GW algorithm has low approximation

ratio to include graphs of 20 nodes and above (see Table 3.1).

3.1.1 Review of Karloff’s Construction

We encourage the reader to first review Section 2.3 regarding the Goemans-Williamson

algorithm. Using the notation from Section 2.2, we let αGW,G denote the approximation

ratio achieved by the GW algorithm on graph G.

Goemans and Williamson [11] proved that for a graph G = (V,E) with non-negative

edge weights,

αGW,G ≥ α∗, where α∗ :=
2

π
min
θ∈[0,π]

θ

1− cos θ
;

calculating α one finds that 0.878 < α∗ < 0.879.

44

However, the typical analysis of Goemans-Williamson does not show that this is tight;

that is, could there perhaps be a constant β∗ > α∗ such that αGW,G ≥ β∗ for all graphs

G? Karloff [2] proved that the GW algorithm can indeed guarantee no better than an

α∗ ≈ 0.878 approximate solution, by constructing simple graphs for which the expected

performance of the algorithm is arbitrary close to α∗.

These challenging instances for the Goemans-Williamson algorithm are explained as

follows. For non-negative integers b ≤ t ≤ m, let J(m, t, b) denote the graph with vertex

set
(
[m]
t

)
, i.e., the vertices are all t-element subsets of [m]; two distinct vertices/subsets S

and T of J(m, t, b) are adjacent if and only if they have exactly b elements in common, i.e.

|S ∩ T | = b. Of particular interest are graphs J(m, t, b) where m is even and t = m/2.

By choosing m, t, b appropriately as seen in Theorem 3, Karloff proves that this con-

struction yields instances that are arbitrarily close to the α∗ ≈ 0.878 bound.

Theorem 3 (Karloff [2]). There exists an optimal solution Y of the GW SDP relaxation

such that for each ε > 0, there are b and m, m even and positive and 0 ≤ b ≤ m/12, such

that αGW,G ≤ α∗ + ε where G = J(m,m/2, b).

The construction of the matrix Y in Theorem 3, given by Karloff [2], is as follows. For

each vertex/subset S of J(m,m/2, b), the vector wS ∈ Rm is constructed where the ith

entry of wS is +1 if i ∈ S and −1 if i /∈ S. Then, each wS is rescaled by 1/
√
m so that the

wS’s are of unit length. Now, an m× n matrix W is built by letting the column indexed by

S be the vector xS . Finally, Y is set to Y = W TW . The feasibility of Y (with respect to

the GW relaxation) can be easily verified; Karloff proves that Y is also an optimal solution

provided that 0 ≤ b ≤ m/12 (a condition in Theorem 3).

In order to better understand the instances that satisfy the conditions of Theorem 3 and

the GW algorithm’s performance on such instances, we next review the specific approx-

imation ratio that is achieved as a function of the parameters m and b used in Karloff’s

construction [2].

45

Theorem 4 (Karloff [2]). Let m be an even positive integer and G = J(m,m/2, b). If

0 ≤ b ≤ m/12, then, using the optimal solution ŶG,

αGW,G =
1
π
arccos(4b

m
− 1)

1− 2b
m

=
2

π

θ

1− cos(θ)
≥ min

θ′∈[0,π]

2

π

θ′

1− cos(θ′)
= α∗,

where θ = arccos
(
4b
m
− 1
)
.

Numerically calculating the minimizer θ∗ in the inequality above yields θ∗ ≈ 2.33112.

Thus, the closer θ = arccos(4b/m− 1) is to θ∗ ≈ 2.33112, the lower the instance-specific

approximation ratio. Equivalently, in order to minimize the instance-specific approxima-

tion ratio, the ratio b/m should be chosen to be as close to 1
4
(cos(θ∗) + 1) ≈ 0.0777 as

possible; note that this can be achieved by picking m large enough and then picking a suit-

able b. Furthermore, if one picks b/m ≈ 0.0777, then the conditions of Theorem 4 still

hold as b ≈ 0.0777m ≤ m/12. Since it is clear that b and m can be chosen to make the

approximation ratio arbitrarily close to α∗, Theorem 3 follows.

3.1.2 Identification of Small Instances Using Karloff’s Approach

Theorem 4 seems to yield a promising approach for finding instances G where αGW,G is

small; however, Theorem 4 is not sufficient for finding small instances that are feasible for

near-term quantum computers. To illustrate why this is the case, we first consider the case

where b = 0. In this case, θ = arccos(−1) = π and thus αGW,J(m,m/2,0) =
2
π

π
1−cos(π)

= 1

which is not very interesting. If b > 0, then the condition b ≤ m/12 in Theorem 4 implies

that m ≥ 12 in which case the graph J(m,m/2, b) would have n ≥
(
12
6

)
= 924 nodes

which is much more than the number of qubits in most modern quantum computers.

One way to obtain smaller interesting instances is to find a way to relax the condition

b ≤ m/12 in Theorem 4. This condition is needed since Theorem 4 invokes the following

theorem.

Theorem 5 (Karloff [2]). Let m be an even positive integer and let 0 ≤ b ≤ m/12. The

46

Table 3.1: A listing of small (< 1000 nodes) instances using Karloff’s construction. For each instance,
we include the number of nodes, edges, and the theoretical instance-specific approximation ratio one would
obtain if running the GW algorithm on that instance (assuming an optimal solution of Y as described earlier).

Instance G Number of Nodes Number of Edges αGW,G

J(6, 3, 1) 20 90 0.912260171954089
J(8, 4, 1) 70 560 0.8888888888888888
J(10, 5, 1) 252 3150 0.881040955873917
J(10, 5, 2) 252 12600 0.940157028081625
J(12, 6, 1) 924 16632 0.878735432638524
J(12, 6, 2) 924 103950 0.912260171954089

smallest eigenvalue of the adjacency matrix of J(m,m/2, b) isÇ
m/2

b

å2 ï
4b

m
− 1

ò
.

Karloff conjectured that the condition 0 ≤ b ≤ m/12 in Theorem 5 could be relaxed to

the condition 0 ≤ b < m/4. Fortunately, in 2018, this conjecture was proven by Brouwer

et al. (see remark after Theorem 3.10 in [93]). We had gone through Karloff’s proof of

Theorem 4 and observed that the only time the condition 0 ≤ b < m/12 is used is in

the invocation of Theorem 5. Thus, the proven conjecture also implies that the condition

0 ≤ b ≤ m/12 in Theorem 4 can also be relaxed to 0 ≤ b < m/4. For convenience, we

restate Theorem 4 with the relaxed inequality below.

Theorem 6 (Karloff [2]). Let m be an even positive integer and G = J(m,m/2, b). If

0 ≤ b < m/4, then

αGW,G =
1
π
arccos(4b

m
− 1)

1− 2b
m

=
2

π

θ

1− cos(θ)
≥ min

θ′∈[0,π]

2

π

θ′

1− cos(θ′)
= α∗

where θ = arccos
(
4b
m
− 1
)
.

From Theorem 6, we generate instances J(m,m/2, b) where m is as small as m = 6

and whose GW instance-specific approximation ratios are at most 0.940; these instances

and approximation ratios are displayed in Table 3.1.

47

3.2 Provable Guarantees for the GW Algorithm on Strongly-Regular Graphs

In Karloff’s proof of Theorem 4, he exploits the fact that, for any fixed instance J(m,m/2, b)

with 0 ≤ b ≤ m/12, angles between adjacent vertices in the optimal GW SDP solution

are all equal (with angle θ = arccos
(
4b
m
− 1
)
). This raises an important question: are

there other graphs whose optimal GW SDP solution has equal angles between adjacent

vertices, and if so, what is the GW approximation ratio for such graphs? This subsection

answers this question in the affirmative: we prove that such a property holds for nearly

all instances in a particular family of strongly-regular graphs (i.e. those parameterized by

n = 4(3t+1), k = 3(t+1), λ = 2, µ = t+1 for some integer t) and that the GW algorithm

yields an instance-specific approximation ratio of 0.912 amongst all instances in this family

(Theorem 12).

This choice of parameters for this family of strongly-regular graphs was inspired by par-

ticular instances in the MQLib library [38] and ultimately found due to the connection that

strongly-regular graphs have with partial geometries; we refer the reader to Appendix A

for more details. Additionally, this family of strongly-regular graphs has several instances

under 100 nodes, making them suitable for current and near-term quantum devices.

We divide the proof of Theorem 12 into multiple parts. First, in Proposition 5 , we gen-

eralize a portion of Karloff’s proof to prove that hyperplane rounding of the GW algorithm

yields a cut with θ
π
|E| edges in expectation for any unit-weight graph whose optimal GW

SDP solution has equal angles θ between adjacent vertices. Then, we define the notion

of strongly-regular graphs (Definition 7) and exploit the well-known fact that the vertices

of such graphs can be mapped onto a unit-hypersphere so that the angles between adja-

cent vertices are all equal (Theorem 8) [100]. For a particular family of strongly regular

graphs, we prove (Theorem 11) this mapping corresponds to an optimal GW SDP solution

by finding a feasible solution to the dual SDP with the same objective value. Finally, we

computationally verify that for all but 13 instances in this family of graphs, the maximum

48

cut contains exactly two-thirds of the edges; this last step then allows us to conclude in

Theorem 12 that, with the exception of the 13 instances, the GW algorithm yields a 0.912

instance-specific approximation ratio for instances in this family.

We begin the proof with Proposition 5 which relates the angles in the SDP solution to

the GW approximation ratio in the case that graph has unit-weight edges and equal angles

between all adjacent vertices in the optimal GW SDP solution.

Proposition 5. If G = (V,E) is a unit-weight graph with optimal GW SDP solution Y =

xTx and if there exists θ ∈ R such that arccos(xu · xv) = θ for all (u, v) ∈ E, then the GW

algorithm (with hyperplane rounding on x) yields exactly θ
π
|E| edges in expectation and

obtains an instance-specific approximation ratio of at least θ
π

.

Proof. Let G = (V,E) be a unit-weight graph with optimal GW SDP solution Y = xTx

such that, for some θ ∈ R, arccos(xu ·xv) = θ for all (u, v) ∈ E. Recall that HP(x) denotes

the expected number of edges obtained from applying hyperplane rounding to x. Thus,

HP(x) =
∑

(i,j)∈E

wi,j

π
arccos(xi · xj)

=
∑

(i,j)∈E

1

π
arccos(xi · xj)

=
∑

(i,j)∈E

1

π
θ

=
θ

π
|E|.

For the last part of the proof, observe that for any unit-weight graph, Max-Cut(G) ≤

49

|E|, and thus,

HP(x)
Max-Cut(G)

=
θ
π
|E|

Max-Cut(G)

≥
θ
π
|E|
|E|

=
θ

π
,

which completes the proof.

In 1963, Bose introduced the notion of strongly-regular graphs [101] defined below.

These strongly graphs, parameterized by3 n, k, λ, and µ, are highly symmetric; from this

symmetry, as seen by Theorem 8, Seidel [100] proves that the vertices of an n-node

strongly-regular graphs can be mapped to an (r − 1)-dimensional hypersphere with r ≤ n

so that, points corresponding to adjacent vertices all have the same instance-dependent

angle θ.

Definition 7. A unit-weight graphG is a SRG(n, k, λ, µ), i.e.,G is a strongly-regular graph

with parameters n, k, λ, µ, if G has n nodes, G is a k-regular graph, every pair of adjacent

vertices in G have λ common neighbors, every pair of non-adjacent vertices in G have µ

common neighbors, and G is neither a complete graph nor the complement of a complete

graph. A strongly-regular graph G is said to be primitive if both G and its complement are

connected.

Theorem 8 (Seidel [100]). Let G = (V,E) be a primitive strongly regular graph

SRG(n, k, λ, µ). Let ξ2 be the smallest eigenvalue of the adjacency matrix of G. Then

there exists an integer r ≤ n and a function f : V → Sr−1 so that for all (u, v) ∈ E,

3In the literature for strongly-regular graphs, one typically uses the parameter v instead of n to represent
the number of vertices; this was done to avoid confusion with the other notation used throughout this thesis.
It should also be noted that for any fixed set of parameters (v, k, λ, µ), there may be more than one non-
isomorphic strongly-regular graph with those parameters.

50

f(u) · f(v) = ξ2/k.

Proposition 5 cannot immediately be applied to strongly-regular graphs as Theorem 8

alone does not provide any guarantees on the optimality of the spherical mapping (with

respect to the GW SDP); however, we do prove such optimality for a specific family of

strongly-regular graphs, namely those with parameters of the form n = 4(3t + 1), k =

3(t + 1), λ = 2, µ = k
3
. In order to demonstrate such a proof, we first utilize a closed-

form analytical expression for the eigenvalues of the adjacency matrices of strongly-regular

graphs (Theorem 9) to the family above in Proposition 6; this allows us to determine (in

Corollary 10) the angles between adjacent vertices in the spherical mapping used in Theo-

rem 8 for the specific family of strongly-regular graphs mentioned above.

Theorem 9 (Seidel [100]). Let G be an SRG(n, k, λ, µ). Then the eigenvalues of the

adjacency matrix of G are:

• Eigenvalue k with multiplicity 1.

• Eigenvalue

ξ1 =
1

2

[
(λ− µ) +

»
(λ− µ)2 + 4(k − µ)

]
with multiplicity

1

2

ñ
(n− 1)− 2k + (n− 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

ô
.

• Eigenvalue

ξ2 =
1

2

[
(λ− µ)−

»
(λ− µ)2 + 4(k − µ)

]
with multiplicity

1

2

ñ
(n− 1) +

2k + (n− 1)(λ− µ)√
(λ− µ)2 + 4(k − µ)

ô
.

Additionally, ξ2 is the smallest eigenvalue.

Theorem 9 implies that the eigenvalues of a strongly-regular graph are entirely deter-

mined by the parameters (n, k, λ, µ). By choosing the parameters appropriately as shown

51

in Proposition 6 below (i.e. n = 4(3t+1), k = 3(t+1), λ = 2, µ = k
3
), this induces a fam-

ily of graphs whose 2nd smallest eigenvalue is given by a simple expression (ξ2 = −k/3);

by Corollary 10, this implies that, for this family of graphs, there exists a spherical map-

ping f of the vertices such that the angles between adjacent vertices are equal (with angle

arccos(−1/3)). We remark that this angle is identical to the angles formed by the vertices

of a regular tetrahedron with its center.4

Proposition 6. Let G be a SRG(n, k, λ, µ) where n = 4(3t+ 1), k = 3(t+ 1), λ = 2, µ =

t + 1 for some non-negative integer t. Let ξ2 be the smallest eigenvalue of the adjacency

matrix of G. Then ξ2 = −k
3
.

Proof. Let G be an SRG(4(3t + 1), 3(t + 1), 2, t + 1) for some non-negative integer t.

Observe that the SRG parameter µ is equal to µ = t+ 1 = 1
3
· 3(t+ 1) = k

3
.

From Proposition 9, substitution of the above parameter values, and some algebraic

manipulation, we have that

ξ2 =
1

2

[
(λ− µ)−

»
(λ− µ)2 + 4(k − µ)

]

=
1

2

[
(2− k/3)−

»
(2− k/3)2 + 4(k − k/3)

]
= −k

3
.

Corollary 10. LetG = (V,E) be a SRG(n, k, λ, µ) where n = 4(3t+1), k = 3(t+1), λ =

2, µ = t + 1 for some non-negative integer t. Then there exists an integer r ≤ n and a

function f : V → Sr−1 so that for all (u, v) ∈ E, f(u) · f(v) = −1/3.

Proof. LetG = (V,E) be a SRG(n, k, λ, µ) where n = 4(3t+1), k = 3(t+1), λ = 2, µ =

t + 1 for some non-negative integer t. Let ξ2 be the smallest eigenvalue of the adjacency

matrix of G. By Proposition 10, the smallest eigenvalue of the adjacency matrix of G is

given by ξ2 = −k/3. It is straightforward to see that any non-primitive strongly-regular

4See [102] for a simple, yet succinct proof that such angles in a tetrahedron have a measure of 109.47◦.

52

graph must either satisfy µ = 0 or µ = k; since this is not the case for G, then G must be a

primitive strongly-regular graph. Thus, by Theorem 8, there exists an integer r ≤ n and a

function f : V → Sr−1 so that for all (u, v) ∈ E, f(u) · f(v) = ξ2
k
= −k/3

k
= −1

3
.

In order to apply Proposition 5 to the family of graphs and the SDP solution corre-

sponding to the mapping f obtained from Corollary 10 above, we must prove that such a

solution is optimal (with respect to the GW SDP). We prove this optimality using a standard

technique in optimization: find a feasible solution to the dual optimization problem with

the same objective value. In particular, we prove (Propositions 7 and 8) that the primal GW

SDP and its dual have an optimal objective value of 2
3
|E|.

For ease of notation, for feasible solutions Y of the primal GW SDP, we let zP (Y) de-

note the objective value of the primal GW SDP at Y . Similarly, for feasible solutions ζ of

the dual to the GW SDP, we let zD(ζ) denote the objective value of the dual at ζ . Addition-

ally, we let z∗P = maxY zP (Y) and z∗D = minζ zD(ζ) represent the optimal objective values

of the GW SDP and its dual, where the max and min are taken over all feasible solutions

of the SDP and its dual (respectively).

Proposition 7. Let G be a SRG(n, k, λ, µ) where n = 4(3t+ 1), k = 3(t+ 1), λ = 2, µ =

t + 1 for some non-negative integer t. Then there exists a feasible Y for the GW SDP so

that zP (Y) = 2
3
|E|.

Proof. Let G = (V,E) ∈ Q with |V | = n. By Corollary 10, there exists an integer r ≤ n

and a function f : V → Sr−1 so that for all (u, v) ∈ E, we have f(u)·f(v) = −1/3. We can

embed the solution onto a sphere that lies in Rn by extending the function f : V → Sr−1

to the function f̂ : V → Sn−1 where, for all i, j ∈ [n],

f̂(i)j =


f(i)j, 1 ≤ j ≤ r

0, r + 1 ≤ j ≤ n,

53

where f̂(i)j denotes the jth entry of f̂(i). It is straightforward to see that angles are pre-

served, i.e., for all u, v ∈ V , f̂(u) · f̂(v) = f(u) · f(v).

Let x be an matrix where the ith column is given by f̂(i) for all i ∈ [n] and let Y = xTx.

We can now calculate zP (Y):

zP (Y) =
∑

(i,j)∈E

wij
1− Yij

2

=
∑

(i,j)∈E

1− Yij
2

(wij = 1)

=
∑

(i,j)∈E

1− f̂(i) · f̂(j)
2

=
∑

(i,j)∈E

1− f(i) · f(j)
2

=
∑

(i,j)∈E

1− (−1/3)
2

=
2

3
|E|,

as desired.

Proposition 8. Let G be a SRG(n, k, λ, µ) where n = 4(3t+ 1), k = 3(t+ 1), λ = 2, µ =

t+ 1 for some non-negative integer t. Then there exists a feasible ζ for the dual of the GW

SDP so that zD(ζ) = 2
3
|E|.

Proof. Let G be a SRG(n, k, λ, µ) where n = 4(3t + 1), k = 3(t + 1), λ = 2, µ = t + 1

for some non-negative integer t. Let ξ2 be the smallest eigenvalue of the adjacency matrix

of G; from Proposition 9, we have that ξ2 < 0.

The dual of the GW SDP relaxation is given as follows: find ζ = (ζ1, . . . , ζn) ∈ Rn to

minimize

zD(ζ) =
1

2
W +

1

4

n∑
i=1

ζi,

54

subject to,

A+ diag(ζ1, . . . , ζn),

being positive semidefinite, where W is the sum of the weights in G and diag(ζ1, . . . , ζn)

is a diagonal matrix whose ith entry on the diagonal is ζi [2].

Let ζ = (−ξ2, . . . ,−ξ2). Then,

A+ diag(ζ1, . . . , ζn) = A+ diag(−ξ2, . . . ,−ξ2) = A− ξ2I.

It is a standard result of linear algebra that for any square matrix M and constant c, if λ is

an eigenvalue of M , then λ + c is an eigenvalue of M + cI; thus letting λmin(M) denote

the smallest eigenvalue of a matrix M , we have,

λmin(A+ diag(ζ1, . . . , ζn)) = λmin(A− ξ2I) = λmin(A)− ξ2 = ξ2 − ξ2 = 0.

Since λmin(A+diag(ζ1, . . . , ζn)) ≥ 0, thenA+diag(ζ1, . . . , ζn) is positive-semidefinite,

meaning that ζ is a feasible solution.

We now calculate zD(ζ):

55

zD(ζ) =
1

2
Wtot +

1

4

n∑
i=1

ζi

=
|E|
2

+
1

4

n∑
i=1

ζi (wij = 1 for (i, j) ∈ E)

=
|E|
2

+
1

4

n∑
i=1

−ξ2

=
|E|
2
− ξ2n

4

=
|E|
2

+ k
n

12
(ξ2 = −k/3 from proof of Prop. 10)

=
|E|
2

+
2|E|
n

n

12
(|E| = nk/2 as G is k-regular)

=
2

3
|E|,

as desired.

Theorem 11. LetG be a SRG(n, k, λ, µ) where n = 4(3t+1), k = 3(t+1), λ = 2, µ = t+1

for some non-negative integer t. be a graph. Then z∗P = 2
3
|E| (and similarly, z∗D = 2

3
|E|).

Moreover, the mapping f obtained by Corollary 10 corresponds to an optimal GW SDP

solution Y .

Proof. Let G be a SRG(n, k, λ, µ) where n = 4(3t + 1), k = 3(t + 1), λ = 2, µ = t + 1

for some non-negative integer t. Let Y be the feasible GW SDP solution corresponding to

the mapping f obtained in Corollary 10. From Propositions 7 and 8, there exists feasible ζ

such that zP (Y) = 2
3
|E| = zD(ζ). Thus,

2

3
|E| = zP (Y) ≤ z∗P ≤ z∗D = zD(ζ) =

2

3
|E|,

implying that 2
3
|E| ≤ z∗P ≤ 2

3
|E| and 2

3
|E| ≤ z∗D ≤ 2

3
|E|, and hence z∗P = 2

3
|E| = zP (Y)

and z∗D = 2
3
|E| = zD(ζ). Note that in the inequalities above, z∗P ≤ z∗D follows by weak

56

Table 3.2: Instances G = (V,E) of strongly-regular graphs parameterized by n = 4(3t + 1), k = 3(t +

1), λ = 2, µ = t+1 for some t, where Max-Cut(G)
|E| ̸= 2

3 . The last column is the instance-specific approximation
ratio that the GW algorithm achieves on each of these instances.

ID # n |E| Max-Cut(G) Max-Cut(G)
|E| αG,GW

11 40 240 156 0.6500 0.9357
12 40 240 156 0.6500 0.9357
13 40 240 156 0.6500 0.9357
14 40 240 156 0.6500 0.9357
15 40 240 156 0.6500 0.9357
16 40 240 158 0.6583 0.9238
17 40 240 158 0.6583 0.9238
18 40 240 158 0.6583 0.9238
19 40 240 158 0.6583 0.9238
20 40 240 158 0.6583 0.9238
21 40 240 158 0.6583 0.9238
22 40 240 158 0.6583 0.9238
23 40 240 158 0.6583 0.9238

duality. 5

Next, we discuss the Max-Cut value that is achieved for the family of strongly-regular

graphs parametrized by n = 4(3t+1), k = 3(t+1), λ = 2, µ = t+1 for some non-negative

integer t. It is known that that there are a finite number of strongly-regular graphs with

such parameters; these details can be found in Appendix A. A straightforward computer

verification shows that for all but 13 instances in this family of strongly-regular graphs, the

maximum cut contains exactly two-thirds of the number of edges. A list of exceptions can

be found in Table 3.2; we remark that all the exceptions have 40 nodes (corresponding to

t = 3) and that the maximum cut value is still close to (but not equal to) two-thirds of the

number of edges. The verification code can be found online in the CI-QuBe library [104].

For the instances for which Max-Cut = 2
3
|E| holds, a non-computer proof of this equal-

ity would be more satisfying; however, we were unable to find such a proof as of the writing

of this thesis. We believe that such a non-computer proof and the other proofs in this sub-

section have the potential to be generalized to produce theorems similar to Theorem 12

5Unlike linear programs, strong duality (i.e. z∗P = z∗D) does not hold generally for SDP’s; however, for
problems that satisfy certian criteria known as Slater’s conditions, strong-duality does hold [103].

57

below for other families of strongly-regular graphs.

Theorem 12. LetG be a SRG(n, k, λ, µ) where n = 4(3t+1), k = 3(t+1), λ = 2, µ = t+1

for some non-negative integer t. If Max-Cut(G) = 2
3
|E|, then the GW algorithm achieves

an instance-specific approximation ratio of 0.912.

Proof. Let G = (V,E) be a SRG(n, k, λ, µ) where n = 4(3t + 1), k = 3(t + 1), λ =

2, µ = t + 1 for some non-negative integer t with Max-Cut(G) = 2
3
|E|. By Corollary 10,

there exists an r ≤ n and f : V → Sr−1 so that arccos(f(u) · f(v)) = arccos(−1/3) for

all (u, v) ∈ E; let θ = arccos(−1/3). By Theorem 11, this mapping corresponds to an

optimal solution Y to the GW SDP relaxation. Since Y is optimal with respect to the GW

SDP, then by Proposition 5, the instance-specific GW approximation ratio for G is given

by:
θ
π
|E|

Max-Cut(G)
=

θ
π
|E|

2
3
|E|

=
3

2
· θ
π
=

3

2
· arccos(−1/3)

π
≈ 0.912.

3.3 Empirical Results

In this section, we review classes of instances which we show are classically challenging (in

some form) by empirical means. First, we show that empirically, mixed-weight graphs with

roughly equal amounts of positively and negatively-weighted edges are the most difficult

instances for classical heuristics; moreover, results in Chapter 5 show that QAOA also

performs empirically poorly on similarly-constructed instances with mixed-weights. Next,

we extend the small instances from Karloff’s construction from Section 3.1 by considering

perturbations of such instances by means of edge deletions and edge-weight perturbations.

We show that, empirically, such perturbations cause an increase in the GW instance-specific

approximation ratio; however, for many of these perturbed instances, the instance-specific

approximation ratio is still bounded considerably away from 1.

58

3.3.1 Instances where Classical Heuristics Perform Poorly

In this subsection, we consider instances for which no classical heuristic quickly finds a

near-optimal solution. More specifically, we analyze the data collected by Dunning et

al. consisting of 38 Max-Cut heuristics and 3,296 instances [38]. In their work, machine

learning was used in order to predict which heuristic would perform best on which instances

depending on certain graph properties.

The data in their library (called MQLib) included the value of the cut obtained on every

instance by each heuristic; however, it did not include the value of the Max-Cut for each

instance which is needed in order to calculate the instance-specific approximation ratio for

each graph. To rectify this, we used the semidefinite-based exact solver BiqCrunch to find

the optimal solution for as many instances as possible [105]. For each instance, BiqCrunch

was run for 24 hours; however, BiqCrunch could only find and verify the optimal cut for a

subset of instances as seen in Figure 3.1.

In Dunning et al.’s work, every graph instance has an instance-specific allotted runtime

and every heuristic is allowed to run up to that allotted runtime on that instance.6 For

nearly every instance (for which BiqCrunch found the optimal solution), there was at least

one heuristic that would obtain at least 99.9% of the solution in 5% of the allotted runtime;

there are 11 instances for which this was not the case. Details of these classically challeng-

ing instances, which we denote by GCC, can be found in Table 3.3. A Principle Component

Analysis (PCA) was performed in order to see where GCC lies in the larger instance land-

scape, see Figure 3.2. In the figure, the 11 instances of GCC form two different clusters of

sizes 2 and 9 instances.

The cluster of 9 instances have certain similar characteristics. In particular, these 9 in-

stances have between 200 and 300 nodes and have both positive and negative edge weights

6In order to be meaningful across machines of varying performance, the (instance-dependent) allotted
runtime was originally determined by the amount of time it took to generate 1500 random solutions and run
the local search heuristic callAllFirst1Swap to local optimality. In the data provided by Dunning et
al., the final allotted runtime (for the machines they used) is determined via a linear regression on the original
allotted runtime and the number of nodes [38].

59

Figure 3.1: The plot shows the instances that the BiqCrunch solver solved exactly. Each instance is repre-
sented by a single point with the position dependent on the number of vertices, n, in the graph and the density
of the graph. The logarithm in the plot is base-e and density is defined to be the ratio between the sum of
the normalized absolute edge weights and the total number of possible edges in the graph, i.e.,the density is∑

e∈E |we|
(n2)maxe∈E |we|

, where we is the weight of edge e. Aside from some graphs with densities close to zero, the

solver could only solve instances of up to 735 nodes (indicated by the black line on the figure). A time limit
of 24 hours was imposed on the solver (excluding preprocessing).

Figure 3.2: A PCA analysis of the MQLib library with respect to 58 graph properties. Gray dots represent
instances that were not solved (exactly) by the BiqCrunch solver. The remaining non-red dots are colored
based on which heuristic was first to obtain 99.9% of the optimal solution with 5% of the allotted runtime.
The red instances (circled) correspond to GCC, instances for which no heuristic reached 99.9% of the optimal
solution with 5% of the allotted runtime.

60

Figure 3.3: The above is the edge-weight distribution of instance g003179. As the edge weights are
integers, we see that there are both positive and negative edge weights spanning several orders of magnitude;
a similar edge weight distribution can be found for the other MQLib instances in Table 3.3 with the exception
of instances g000435 and g001349.

spanning several orders of magnitude as seen in Figure 3.3. In regards to simulation of

QAOA on a classical computer, these 9 instances are much too large; thus, in Chapters 4

and 5, we consider smaller instances (|V | ≤ 12) with a similar edge weight distribution

obtained by having weights of the form we = ±2k where Pr(we = 2k) = Pr(we = −2k) =

2−k−2 for each non-negative integer k. In these future chapters, we find that such instances

are also challenging for QAOA and its variants.

3.3.2 Extensions of Karloff’s Construction

Even with the proven conjecture by Brouwer et al. [93], the construction by Karloff only

yields 6 small instances under 1000 nodes where the GW algorithm performs poorly. In

order to obtain more such instances, we propose perturbing the instances constructed by

Karloff in one of two ways: (1) removing edges and (2) perturbing edge weights.

For the first method, let G = J(m,m/2, b) be an instance using Karloff’s construction

(with m even and b < m/4) and let G′ := G − F for some subset F ⊆ E of edges in

61

Table 3.3: The table includes all the instances in the MQLib library for which no MQLib heuristic obtained
99.9% of the optimal solution within 5% of the alloted runtime (abbreviated as R.T. throughout the table)
described in Footnote 1. In the first part of the table, the columns correspond to the instance name (as given
in the MQLib library), the number of nodes and (nonzero-weight) edges, the allotted runtime (in seconds),
the instance-specific GW approximation ratio αGW,G, the time needed to run the GW solver in seconds,
whether the instance has negative-weighted edges, and the range of edge-weight magnitudes (defined as
maxe∈E log(|we|)−mine∈E log(|we|)). In the second part of the table, we find the best approximation ratio
obtained by a MQLib heuristic that is allowed to run for only 5% of the alloted runtime; the second and
third columns correspond to this ratio and the corresponding heuristic (with ties between heuristics being
broken by runtime). The next two columns are obtained the same way but with the full allotted runtime being
allowed. All ratios in the table are written with the denominator being the value of the Max-Cut for that
instance. The GW algorithm times and the MQLib heuristic times were computed on different machines so
these times are incomparable to one another.

Instance G Nodes Edges R.T. (s) αGW,G GW Time (s) Neg. Weights Magnitude Range

g000330 300 14011 176 8334779.65
8493173

= 98.14% 359.34525442123413 Yes 5.308

g000417 300 34753 176 8828162.87
9102033

= 96.99% 321.5829267501831 Yes 5.388

g000435 420 619 247 56964.35
58537

= 97.31% 880.8003544807434 No 2.581

g000572 200 18246 120 6574563.33
6795365

= 96.75% 250.95755791664124 Yes 5.365

g000723 200 18230 120 5307502.47
5568272

= 95.32% 130.70434188842773 Yes 5.316

g000762 250 26522 147 7636025.14
7919449

= 96.42% 409.95273995399475 Yes 5.443

g001349 640 960 377 97842.93
101723

= 96.19% 838.4398355484009 No 0.566

g001361 250 12031 147 6330851.05
6418276

= 98.64% 192.36800813674927 Yes 5.267

g002581 200 18237 120 6102967.87
6294701

= 96.95% 249.02441000938416 Yes 5.380

g002935 300 13983 176 8069149.92
8242904

= 97.89% 235.74102520942688 Yes 5.342

g003179 250 26534 147 6391628.70
6596797

= 96.89% 169.3680293560028 Yes 5.263

Instance G Best Heuristic, 5% R.T. Best Ratio, 5% R.T. Best Heuristic, 100% R.T. Best Ratio, 100% R.T.

g000330 PALUBECKIS2004bMST2 8479772
8493173

= 99.8422% PALUBECKIS2004bMST2 8485022
8493173

= 99.9040%

g000417 PALUBECKIS2004bMST2 9079073
9102033

= 99.7477% PALUBECKIS2004bMST2 9086298
9102033

= 99.8271%

g000435 FESTA2002GPR 58431
58537

= 99.8189% MERZ2004 58498
58537

= 99.9334%

g000572 PALUBECKIS2004bMST2 6784784
6795365

= 99.8443% PALUBECKIS2004bMST2 6795365
6795365

= 100.0000%

g000723 PALUBECKIS2004bMST2 5560562
5568272

= 99.8615% HASAN2000GA 5566434
5568272

= 99.9670%

g000762 PALUBECKIS2004bMST2 7909253
7919449

= 99.8713% PALUBECKIS2004bMST2 7917221
7919449

= 99.9719%

g001349 BURER2002 101579
101723

= 99.8584% MERZ2004 101723
101723

= 100.0000%

g001361 MERZ1999GLS 6411845
6418276

= 99.8998% PALUBECKIS2004bMST2 6413509
6418276

= 99.9257%

g002581 PALUBECKIS2004bMST2 6287070
6294701

= 99.8788% PALUBECKIS2004bMST2 6294701
6294701

= 100.0000%

g002935 PALUBECKIS2004bMST2 8231686
8242904

= 99.8639% PALUBECKIS2004bMST2 8239573
8242904

= 99.9596%

g003179 MERZ1999GLS 6583762
6596797

= 99.8024% PALUBECKIS2004bMST2 6595245
6596797

= 99.9765%

62

G. Observe that by removing the edges in F from the optimal cut in G, then this yields

a cut for G′ and the number of edges across the cut has decreased by at most |F |; a Max-

Cut for G′ could possibly have even more edges across. In other words, Max-Cut(G′) ≥

Max-Cut(G)−|F |. We can thus bound the approximation ratio for G′ from above in terms

of G as follows:

αGW,G′ =
GW(G′)

Max-Cut(G′)
≤ GW(G′)

Max-Cut(G)− |F |
. (3.1)

The numerator of the bound GW(G′)
Max-Cut(G)−|F | can be quickly computed by equations in Section

2.3 and the denominator can also be quickly computed since Karloff found a closed-form

analytical expression for the optimal cut of the instances he constructed:

Max-Cut(J(m,m/2, b)) =
n

2

Ç
m/2

b

å2 ï
1− 2b

m

ò
, (3.2)

where m is even and b < m/4. In Figure 3.4, we show the results of modifying J(6, 3, 1),

J(8, 4, 1), J(10, 5, 1), and J(10, 5, 2) via edge deletions (up to 4 edges).

For the second method of finding instances similar to those using Karloff’s construction,

we consider perturbations of the edge weights. Again, let G = J(m,m/2, b) for m even

and b < m/4. In the original construction by Karloff, the edges of G are of unit weight; the

modified instances of G have the same edges but the weights are sampled from a normal

distribution with mean 1 and standard deviation σ. These modified instances were made

with varying values of σ (in particular, σ = 0.01, 0.1, and 1). The results of modifying

J(6, 3, 1), J(8, 4, 1), J(10, 5, 1), and J(10, 5, 2) in this way are shown in Figure 3.4.

We have also calculated the GW approximation ratio of the 11 interesting MQLib in-

stances discussed in Section 3.3.1. For each of these MQLib instances, the GW algorithm

achieves between 95% and 99% of the optimal cut which is much higher compared to the

approximation ratio of the instances made via Karloff’s constructions (including some of

the modified instances).

Although we found interesting instances by modifying instances made by Karloff’s

63

construction, it is interesting to note that there were also several modified instances whose

approximation ratio is close to 1, even when the modifications are small. In other words,

the result of the GW algorithm can sometimes be very sensitive to small changes in the

input graph.

3.4 QAOA’s Performance on Challenging Instances for the GW Algorithm

Due to their construction, the GW algorithm performs poorly on the instances found using

Karloff’s construction; one may hope that quantum computing may have some advantage

over these instances which are, in a sense, classically difficult. We prove in Theorem 15,

that depth-1 QAOA achieves a lower instance-specific approximation ratio for the instances

that arise from Karloff’s construction; this implies that, for these instances, either a higher

circuit depth or some modification of the QAOA algorithm (such as those presented in the

later chapters of thesis) would be needed in order to demonstrate some form of quantum

advantage (over the GW algorithm).

To first make the sequence of graphs considered more precise, we consider the family

of Karloff instances Gm = J(m,m/2, b) where m is even and b = ⌈1
4
(cos(θ∗) + 1)m⌉

and θ∗ = argmin0≤θ≤π
2
π

θ
1−cos θ

≈ 2.33112; recall from Section 3.1 that this choice of b is

(near) optimal in the sense that, for fixed m, the corresponding graph will have the worst

possible approximation ratio with respect to the GW algorithm. Some calculations give us

that b ≈ ⌈0.077m⌉. We will assume thatm ≥ 12, and hence one can prove that 0 ≤ b < m
6

.

It follows from Karloff [2] that the expected cut value of Gm approaches α∗ = 0.878 as

m→∞.

We first prove two helpful lemmas. In the first lemma, we prove that the degree of Gm

is
(
m/2
b

)2
and in the next lemma, we prove that for m large enough, the graphs Gm are

triangle free.

Lemma 13. The degree of each vertex in Gm is
(
m/2
b

)2
.

Proof. Let us now determine the degree of Gm. Let S be a vertex of Gm. To construct a

64

Figure 3.4: Both plots show the result of the GW algorithm when modifying the instances made via
Karloff’s construction. In particular, we consider modifications of J(6, 3, 1), J(8, 4, 1), J(10, 5, 1) and
J(10, 5, 2). The top plot shows the estimated approximation ratio using the GW algorithm for instances
modified via edge deletions (with up to 4 edges removed) where the estimated approximation ratio for an
instance G′ is calculated as Round(G′,Y ′)

Max-Cut(G)−|F | where G is the corresponding (unmodified) original instance from
Karloff’s construction and |F | is the number of edges deleted (as seen in Equation 3.1); the actual approx-
imation ratios could possibly be lower for each instance. The bottom plot shows the approximation ratio
using the GW algorithm for instances modified via edge weight perturbations (as described in Section 3.3.2).
The bottom plot also includes the GW approximation ratio for the interesting instances in the MQLib library
(found in Section 3.3.1).

65

neighbor T , we must pick b elements from the m/2 elements in S for T for the overlap,

then from the remaining m/2 elements in [m] \ S, we must pick m/2 − b elements to

determine the remaining elements in T . Thus, the neighbor of ways to construct a neighbor

for S are,

deg(S) =

Ç
m/2

b

åÇ
m/2

m/2− b

å
=

Ç
m/2

b

å2

.

Lemma 14. For all m ≥ 12, Gm is triangle-free.

Proof. As m ≥ 12, we have that 0 ≤ b < m/6 as determined previously.

Now, for a given edge (S, T) in Gm, let us count how many ways we can construct

a mutual neighbor U of both S and T . Let k be the number of elements in U that are

also contained in S ∩ T . Since |S ∩ T | = b, there are
(
b
k

)
ways to pick such k elements

for U . Now, |S ∩ U | = b, we need to pick b − k more elements from the remaining

m/2− b elements of S to add to U ; there are
(
m/2−b
b−k

)
ways to do this. Similarly, there are(

m/2−b
b−k

)
ways to choose the elements of T (not in S ∩ T) that also belong in U . Lastly,

there are m/2 − (k + (b − k) + (b − k)) = m/2 − 2b + k remaining elements we need

to add to U to ensure it has a total of m/2 elements and these can be selected from the

|[m]\ (S∪T)| = m− (m/2+m/2− b) = b elements outside of S ∪T ; there are
(

b
m−2b+k

)
ways to do this. Summing over the possible choices of k = 0, . . . , b, we have that the total

number of mutual neighbors between S and T are

b∑
k=0

Ç
b

k

åÇ
m/2− b
b− k

å2Ç
b

m/2− 2b+ k

å
.

We claim that the above sum is zero. To see this, consider the term
(

b
m/2−2b+k

)
in the

sum above. Observe that, for k ≥ 0 and since 0 ≤ b < m/6, we have

m/2− 2b+ k ≥ m/2− 2b > (6b)/2− 2b = b

66

and hence the
(

b
m/2−2b+k

)
term is zero, making the whole sum zero.

Finally, we prove that as m increases, the approximation ratio that depth-1 (standard)

QAOA achieves on Gm approaches the constant 0.592.

Theorem 15. Let Fp(G) denote the expected cut value obtained from depth-p (standard)

QAOA when the optimal choice of variational parameters (γ, β) are used. Then

lim
m→∞

F1(Gm)

Max-Cut(G)
= 0.592.

Proof. By [99], since Gm is triangle-free (for m ≥ 12) due to Lemma 14, we have that

depth-1 QAOA achieves the following expected cut value when the optimal parameters,

i.e.,

(γ, β) = (arctan(1/
√
d− 1), π/8),

are used:

F ∗(Gm) =
|E|
2

Ç
1 +

1√
d

Å
d− 1

d

ã(d−1)/2
å
;

here, d is the degree of the (regular) graph Gm, which is d =
(
m/2
b

)2
(Lemma 13).

From Equation 3.2, we know that since 0 ≤ b < m/6 < m/4, we have that the

maximum cut is given by

Max-Cut(Gm) =
n

2

Ç
m/2

b

å2 Å
1− 2b

m

ã
.

Thus, the approximation ratio for depth-1 standard QAOA on Gm (with m ≥ 12) goes

to,

67

lim
m→∞

F ∗(Gm)/Max-Cut(Gm)

= lim
m→∞

|E|
2

Ä
1 + 1√

d

(
d−1
d

)(d−1)/2
ä

n
2

(
m/2
b

)2 (
1− 2b

m

)
= lim

m→∞

nd/2
2

Ä
1 + 1√

d

(
d−1
d

)(d−1)/2
ä

n
2

(
m/2
b

)2 (
1− 2b

m

) (as Gm is d-regular)

= lim
m→∞

nd/2
2

n
2

(
m/2
b

)2 (
1− 2b

m

) (
(
d−1
d

)(d−1)/2 → e−1/2 as d→∞)

= lim
m→∞

nd/2
2

n
2
d
(
1− 2b

m

) (as d =
(
m/2
b

)2
)

= lim
m→∞

1

1 + 1− 4b
m

(simplify)

=
1

1− cos(θ∗)
(as cos(θ∗) = 4b

m
− 1 as m→∞)

=
π

2

α∗

θ∗
(as α∗ = 2

π
θ∗

1−cos θ∗
)

≈ 0.592.

In the above calculations we use that as m→∞, then b→∞ and we have that (for m

large enough)7, d =
(
m/2
b

)
≥
(
m/2
1

)
= m/2 → ∞. Note that all of the calculations above

also hold true (including the triangle-free result) if we instead consider b = ⌊0.077m⌋

instead of b = ⌈0.077m⌉ in the construction of Gm.

The theorem above indicates that a higher circuit depth and/or a modification to QAOA

is needed in order to demonstrate quantum advantage (over the GW algorithm) for the

sequence of graphs Gm. In the case of the family of strongly-regular graphs considered in

Section 3.2 (parameterized by n = 4(3t + 1), k = 3(t + 1), λ = 2, µ = t + 1 for some

non-negative integer t), the proof used in Theorem 15 can not be used the proof depends on

the graphs being triangle-free and the family of strongly-regular graphs that we consider

7One can prove that b is strictly positive when m ≥ 12. If we instead take b = ⌊0.077m⌋, then b is strictly
positive whenever m ≥ 14.

68

are not triangle-free (as λ = 2 ̸= 0).

69

CHAPTER 4

WARM-STARTS FOR QAOA USING STANDARD MIXERS

In this chapter1, we will discuss the methods for generating warm-starts for the QAOA

algorithm; when the standard mixer is used with such warm-starts, we refer to such a variant

of QAOA as QAOA-warm. As we will see, the performance of QAOA-warm quickly

plateaus as the circuit depth is increased; in the next chapter, we explore a way of modifying

the mixing Hamiltonian in a way that depends on the warm-started state to avoid such

plateaus.

In what follows, we provide a general framework for constructing initial quantum states,

we then provide specific examples of initialization schemes and discuss their properties

(including guarantees they obtain at depth-0 QAOA-warm). Afterwards, we discuss the

limitations of QAOA-warm and discuss theoretical properties in the case where the relax-

ation itself effectively solves the problem. Experimental results are provided in the last two

sections; these results are consistent with the theoretical results found in the chapter.

Although our results in this chapter for primarily for QAOA-warm; we do discuss some

warm-start initializations schemes in the context of other mixers (including the custom

mixer of QAOA-warmest discussed in the next chapter). For this reason, Table 4.3 is pro-

vided to aid in summarizing what results are known for different combinations of QAOA

mixers and warm-start initializations; the table can be found towards the end of the chapter.

4.1 Framework for Constructing Initial Quantum States

In this section, we discuss the general framework for creating a initial product state using

classical methods. We summarize the process in three steps:

1. Obtain x∗ : V→ Sk−1 for k ∈ {2, 3} via solving some classical problem,
1The results presented in this chapter were published in ACM Transactions on Quantum Computing [3].

70

Figure 4.1: Comparison of the hyperplane rounding and quantum sampling for a 3-cycle (Max-Cut=2):
figure (a) shows a local optimal BM-MC3 solution, where any random hyperplane will give a cut of size 2.
Both (b) and (c) show two different embeddings of the BM-MC3 solution (from (a)) onto the Bloch sphere.
In (b), the qubits lie on x = 0 plane and quantum sampling results in a expected cut of 1.875. In (c), all
qubits lie on the equator of the Bloch sphere (similar to the standard start of QAOA), so each edge has a
probability of 1/2 of being cut, yielding a total expected cut of 1.5. Both (b) and (c) demonstrate that the
orientation of the rotated BM-MC3 solution is important when embedding it into the Bloch sphere and can
result in different expected cuts.

2. Perform a global randomized rotation on x∗,

3. Map the rotated solution to the Bloch sphere to obtain a quantum product state .

In the above, we refer to k as the dimension of the solution and say that the solution is k-

dimensional. There are numerous ways of accomplishing the first step; we discuss various

possibilities in Section 4.2. We discuss the details of the random rotation and quantum

mapping in Sections 4.1.1 and 4.1.2 respectively.

4.1.1 Random Rotations

Classical hyperplane rounding of x∗ : V→ Sk−1 is invariant under a global rotation of the

entire solution, however quantum sampling is not as it has a fixed axis along which mea-

surements are performed. For example, in Figure 4.1 we consider 3 rotations of a particular

BM-MC initialization (to be discussed in Section 4.2.1) of 3 qubits on the Bloch sphere,

and though hyperplane rounding is agnostic to a rotation of the Bloch sphere, quantum sam-

pling depends on the choice of the measurement axis. The difference in instance-specific

approximation ratio attained by quantum sampling in two different orientations of the same

71

Figure 4.2: We begin with the classically obtained x∗. We then apply a rotation R ∈ {RU , RV }; here we
show RU being applied (top-right). Lastly, we use Q to map this rotated solution to a quantum product state.

solution on Bloch sphere demonstrates the importance of choosing a suitable rotation when

embedding the classically obtained solution x∗ to the Bloch sphere. Thus, before mapping

x∗ to the Bloch sphere, a global rotation is performed to mitigate unfavorable orientations

due to warm-starts.

We consider two types of random rotation schemes: uniform rotation in Rk (for all

the vertices), and random “vertex-at-top” rotations where a vertex is sampled uniformly

and mapped to the (0, 0, 1)T vector for rank-3 and (1, 0)T in 2-dimensional solutions. Uni-

form random rotations can provably recover a significant fraction of the BM-MCk objective

(see Section 4.2.1) whereas vertex-at-top rotations serve as a useful heuristic. We use the

shorthand RV (x
∗) and RU(x

∗) to denote the rotations of the approximate solution x∗ by a

random vertex-at-top rotation RV and a random uniform rotation RU respectively. We now

discuss the details of each rotation scheme below.

72

Uniform Rotation

In this case, we uniformly pick a rotation of the (k − 1)-dimensional sphere and apply it

to the k-dimensional solution x∗. For 3-dimensional solutions, one way to accomplish this

is by picking a point x̂ uniformly at random from the surface of the sphere, rotating x̂ to

the top of the sphere (in a way similar to the vertex-at-top rotations), and then performing

a uniform random rotation in [0, 2π] around the z-axis. Such an x̂ can be generated by

picking α, β uniformly at random from the interval [0, 1] and then setting φ = 2πα and

θ = arccos(2β− 1). The pair (θ, φ) will then correspond to the polar and azimuthal angles

of the randomly chosen point x̂ on the surface of the sphere [106].

For 2-dimensional solutions, we can simply shift all the angles by some random angle.

More precisely, set θj = θj + θ̂ where θj denotes the angle of the point corresponding to

the jth vertex in the 2-dimensional solution and θ̂ is chosen uniformly at random in [0, 2π].

It should be noted that the angle of the final rotation about the z-axis does influence the

distribution of cuts (and expected cut value) obtained via QAOA-warm; however, we will

see in the next chapter that QAOA-warm’s successor, QAOA-warmest, is not influenced by

this rotation (Theorem 14).

Vertex-at-Top Rotation

We first describe the rotation in 3-dimensions for vertex

vi = (sin θi cosφi, sin θi sinφi, cos θi)
T ,

which is sampled uniformly at random (for i ∈ [n]). The rotation that maps vi ∈ R3

to (0, 0, 1)T is obtained by first rotating clockwise along the z-axis by φi, followed by a

clockwise rotation along the y-axis by θi, followed by a uniform at random rotation µ in

[0, 2π] around the z-axis.

Indeed, one can check thatRV (x
∗(vi)) = (0, 0, 1)T (which will correspond to the quan-

73

tum state |0⟩ on the Bloch Sphere). For 2-dimensional solutions, with a uniform at random

vertex vi = (cos(θi), sin(θi))
T sampled from i ∈ [n], we can simply work with polar coor-

dinates and shift all polar angles by θi to obtain the random vertex-at-top rotation. To be

precise, we set θj = θj − θi where θj denotes the angle of the point corresponding to the

jth vertex in the 2-dimensional solution.

4.1.2 Mapping to Bloch Sphere

To map the rotated solutions R(x∗) = ((θ1, φ1), . . . , (θn, φn)) (with R ∈ {RU , RV }), we

can simply map the 3-dimensional solutions for each vertex to the Bloch sphere (see Figure

4.2) using a tensorizable state for each qubit, i.e., the “quantum mapping” Q is given by:

Q(x∗) = Q3(θ1, φ1)⊗ · · · ⊗Q3(θn, φn),

where

Q3(θ, φ) = cos(θ/2) |0⟩+ eiφ sin(θ/2) |1⟩ .

For 2-dimensional solutions, let R(x∗) = (θ1, . . . , θn) be the rotated approximate solu-

tion in polar coordinates where θi ∈ [0, 2π) for i = 1, . . . , n. We embed the solution into

the yz-plane of the Bloch sphere with the following quantum mapping:

Q(x∗) = Q2(θ1)⊗ · · · ⊗Q2(θn),

where Q2(θ) is given by:

Q2(θ) =


cos
(
θ
2

)
|0⟩+ e−iπ/2 sin

(
θ
2

)
|1⟩ , θ ∈ [0, π),

cos
(
π − θ

2

)
|0⟩+ eiπ/2 sin

(
π − θ

2

)
|1⟩ , θ ∈ [π, 2π).

The quantum mapping for 2-dimensional solutions is motivated by the fact that for

3-dimensional solutions, certain initializations along the x-axis cause QAOA-warm to per-

74

form poorly (see Section 4.3)); mapping to the yz-plane of the Bloch sphere allows us to

avoid these problematic states.

4.2 Initialization Schemes for Warm-Start State

4.2.1 k-dimsional Burer-Monteiro

Recall from Section 2.3 that k-dimensional Burer-Monteiro (BM-MCk) solutions are the

result of optimizing a relaxation of the Max-Cut that relaxes each vertex variable to a k-

dimensional unit vector. Unlike the GW SDP, such a relaxation does not yield a convex

program and thus, it is intractable to find a globally optimal solution and so, for the purposes

of warm-starting the QAOA algorithm, we consider locally optimal solutions of the BM-

MCk objective.

Implementation Details of BM-MCk Optimization

We begin with n points chosen uniformly at random on the unit circle (for k = 2) or unit

sphere (for k = 3). We represent these points in polar coordinates (for k = 2) or spherical

coordinates (for k = 3); that is, we keep track of the polar (θ) angles (for k = 2, 3)

and azimuthal (ϕ) angles (for k = 3) of each point. To find locally optimal solutions,

we perform stochastic coordinate ascent2 by making small random perturbations to these

angles (thus maintaining feasibility) and update our solution if the objective increases.

In Algorithm 1, we describe our implementation for obtaining the semidefinite pro-

gramming (SDP) solution for BM-MCk for k = 2, 3 using coordinate ascent. In the al-

gorithms below, we write U(a, b) to denote the uniform distribution on the interval [a, b]

(where a, b ∈ R with a < b). We set η = 1/20 for experiments in this work. We nor-

malize the angles output by BM-MC3 to enforce the standard range of angles for spherical

coordinates without changing the objective value.

2Stochastic coordinate ascent works well in practice in finding a local optimum, see e.g., [77]. Nev-
ertheless, for guaranteed convergence one can use other methods such as (fast) Riemannian Trust-Region
methods.

75

Algorithm 1: Obtain Solution for BM-MCk

Input: Weighted graph G = (V,E), w : E → R, k ∈ {2, 3}
1 If k = 2, let θ1, . . . , θn ∈ R be the angles of n points chosen uniformly at random

on the 2-dimensional unit circle. If k = 3, let (θ1, ϕ1), . . . , (θn, ϕn) be the
spherical coordinates of n points chosen uniformly at random on the
3-dimensional sphere.

2 repeat
3 for i = 1 through n do // coordinate ascent
4 Sample the perturbation value(s) ∆θ (and ∆ϕ if k = 3) from U(−η, η) for

small η > 0.
5 Update θi = θi +∆θ (and ϕi = ϕi +∆ϕ if k = 3) and compute the BM

objective.
6 If the objective improves, keep the perturbation.
7 end
8 until no improvement in objective by ≥ 10−5

∑
e∈E |we| within 100 evaluations.

The algorithm above is repeated 5 times to obtain 5 local optima; we then keep the best

one (with respect to the BM-MCk objective) and let t x∗ : V → Sk−1 denote this solution.

Motivation for BM-MCk Warm-Starts

To motivate such an approach for creating warm-starts for QAOA, we highlight

two key observations. First, since the objective of BM-MCk can be written as

maxxi,xj∈Sk−1

∑
(i,j)∈E wij∥xi − xj∥22, the classical solutions are incentivized to move the

adjacent vertices as far apart as possible, ideally, to opposite ends of the sphere. This helps

increase the probability of an edge being in a cut obtained not only by hyperplane rounding

but also quantum sampling (as long as the corresponding qubits are aligned with the mea-

surement axis as much as possible, i.e. at the north and south poles of the Bloch sphere).

In general, if there is a cluster of vertices at both the poles of the sphere, then the probabil-

ity of capturing the weight of the edges that go across these clusters is increased for both

classical and quantum approaches.

Next, we find a reduction to the quantum sampling objective from the BM-MC objective

for an edge. Consider an edge e, such that one of the vertices is located at the top of

Bloch sphere. Then the probability of that edge being cut via quantum sampling and the

76

contribution that edge makes to the BM-MC3 objective coincides. Consider an edge e =

(i, j) such that xi = (0, 0, 1)T , and xj = (sin θ cosϕ, sin θ sinϕ, cos θ)T (where θ and ϕ are

the polar and azimuthal angle respectively). The expected contribution of e to the Max-Cut

from quantum sampling is equal to wi,j multiplied by the probability that the edge e is cut,

i.e., wi,j sin
2(θ/2). The contribution to the BM-MC3 objective from edge e can be written

as 1
2
wi,j(1− xi · xj). By definition, cos(θ) = xi · xj , and thus, the contribution to the BM-

MC3 objective is 1
2
wi,j(1 − cos(θ)) = wi,j sin

2(θ/2), which is equivalent to the expected

contribution of e from quantum sampling3.

Performance: Hyperplane Rounding vs Quantum Measurement

A natural question at this point is if there is any improvement in cut quality when applying

QAOA-warm to the warm-start initialization compared to simply performing hyperplane

rounding on said warm-start, and if quantum sampling of a classical solution is even com-

petitive compared to a hyperplane rounding of the same. We show in Figure 4.3 that quan-

tum sampling of the warm-start (QS1) initialization empirically outperforms the expected

cut obtained using the standard initial state for QAOA (QS2). Moreover, with an appropri-

ate initial rotation of the warm-start (Section 4.1.1), QS1 outperforms hyperplane rounding

(HR) for the majority of instances. By interpreting QS1 and QS2 as being the result of

depth-0 QAOA-warm and standard QAOA respectively, the results motivate our approach

in the hopes that QAOA-warm outperforms standard QAOA (and the GW algorithm) for

circuit depths p > 0 as well.

Depth-0 Performance Guarantees for BM-MCk

We had just seen that quantum sampling a mapped BM-MCk solution has the potential

to yield solutions that, often, are as good or better than that obtained from hyperplane

rounding of the same solution. We next show that we can in fact provably guarantee that at

3This may not be true in general for the Max-Cut over the entire graph, due to alignment with the mea-
surement axis.

77

BM-MC2 BM-MC3

V
er

te
x-

A
t-

To
p

Figure 4.3: Pie charts representing best expected cut value (expectation over randomness in sampling)
obtained by using (i) hyperplane rounding of the BM-MCk solution (HR), (ii) quantum sampling of the BM-
MCk solution (QS1), and quantum sampling of the initial state of standard QAOA (QS2). For every instance,
QS2 always yielded the worst result of the three, and for majority of the instances QS1 ≥ HR. For HR and
QS1, the best of 5 (in terms of SDP objective) locally optimal BM-MCk solutions are used; for that solution,
the best of 5 rotations is used for QS1. The regions marked in gray indicate instances for which QS1 and HR
had a tie (difference in instance-specific approximation ratio of at most 0.001).

least a certain fraction of the optimal cut value is preserved when moving from the classical

to the quantum regime. More precisely, we prove that, at depth p = 0 (i.e. before any gates

are applied beyond initialization), QAOA-warm on graphs with non-negative edge-weights

achieves at least 0.75κ and 0.66κ approximations for the Max-Cut when using a κ-close

(i.e., BM-MCk(x
∗) ≥ κMax-Cut(G)) BM-MC2 and BM-MC3 solution respectively; for

κ > 2/3 and κ > 3/4 (for rank-2 and rank-3 respectively), this results in an improvement

from the 1/2-approximation provided by standard QAOA at p = 0.

Theorem 16. LetG be a graph with non-negative edge weights. If x is a κ-close solution to

BM-MC3 (for G) in 3-dimensions, (randomized) initialization of QAOA with RU(x) has a

(worst-case) approximation ratio of 0.66κ at p = 0, i.e., only using quantum sampling with

zero circuit depth for QAOA. Similarly, if x is a κ-close solution of BM-MC2 (for Max-Cut

of G) in 2-dimensions, initialization of QAOA with RU(x) is a 0.75κ-approximate solution

at p = 0. Note that these approximation factors are lower bounds on the expected fraction

of the Max-Cut obtained via random sampling.

Proof. We start by proving the 2/3 performance of a randomized mapping from BM-MC3

to the Bloch sphere. Let F ′
0 = F ′

0(γ, β) be the expected value of MAX-CUT obtained by

78

quantum sampling (i.e., QAOA for p = 0). Then,

F ′
0

Max-Cut(G)
≥ κ · F ′

0

BM-MC3(x)
(since BM-MC3(x) ≥ κ Max-Cut(G))

≥ κ min
(i,j)∈E

E[1[i and j have different spins]]
1
4
∥xi − xj∥2

.

(a+c
b+d
≥ min(a

b
, c
d
) for a, b, c, d ≥ 0; wij’s cancel)

It suffices to lower bound the ratio between edge-wise contribution from quantum sam-

pling versus edge-wise contribution to the semi-definite objective (which upper bounds

the BM-MCk denominator). Instead of rotating the sphere, we can choose a random di-

rection w ∈ S2 to correspond to the positive spin of the Bloch sphere. Consider an edge

e = (i, j) ∈ E whose endpoints are at angles α on S2 with respect to x, i.e., xi ·xj = cosα.

Let θ1 and θ2 correspond to angles from xi and xj to the positive spin w of the (rotated)

sphere. We can write

min
(i,j)∈E

E[1[i and j have different spins]]
1
4
∥xi − xj∥2

≥ min
α∈[0,π]

f(θ1, θ2)

sin2(α/2)
, (4.1)

where

f(θ1, θ2) = cos2
θ1
2
sin2 θ2

2
+ cos2

θ2
2
sin2 θ1

2
,

where we replaced E[1[i and j have different spins]] by a sum of probabilities of the two

cases corresponding to assignment of different spins to i and j, formulated considering the

state is a product state and observing that ∥xi − xj∥2 = 2 − 2 cos(α) = 4 sin2(θ/2). We

can rewrite the above as

min
α∈[0,π]

Eθ1,θ2|α[g1(θ1)g2(θ2) + g2(θ1)g1(θ2)]

2(1− cos(α))
= min

α∈[0,π]

Eθ1,θ2|α[1− cos(θ1) cos(θ2)]

(1− cos(α))
, (4.2)

where g1(θ) = 1 + cos(θ) and g2(θ) = 1− cos(θ).

To further simplify notation of our optimization problem let us assume that in-

79

stead of rotating xi and xj and sampling with respect to a spin direction, we ran-

domly choose the positive spin pivot w such that the z-axis is now rotated to be at

w ∈ S2. Without loss of generality, assume xi = (1, 0, 0), xj = (cosα, sinα, 0) and

w = (cos θ, sin θ cosφ, sin θ sinφ) ∈ S2 is uniformly sampled from the sphere. Let

h(θ, φ, α) = cos θ(cosα cos θ + sinα sin θ cosφ).

This give us the following:

min
α∈[0,π]

Eθ1,θ2|α[1− cos(θ1) cos(θ2)]

(1− cos(α))
(4.3)

= min
α∈[0,π]

1− 1
4π

∫ π

0

∫ 2π

0
h(θ, φ, α) sin θdφdθ

1− cosα
(4.4)

= min
α∈[0,π]

1− 1
2
cosα

∫ π

0
sin θ cos2 θdθ

1− cosα
(4.5)

= min
α∈[0,π]

1− cosα
2

[−1
3
cos3 θ

]π
0

1− cosα
= min

α∈[0,π]

1− cosα
3

1− cosα
=

2

3
. (4.6)

This finishes the proof for BM-MC3.

Recall that for BM-MC2, we perform a uniformly at random rotation along a unit circle

on the Bloch sphere passing through |0⟩ and |1⟩. The proof is similar to the rank k = 3

case, and easier. It suffices to lower bound the following ratio:

min
(i,j)∈E

E[1[i and j have different spins]]
1
4
∥xi − xj∥2

≥ min
α∈[0,π]

f(α)

sin2(α/2)
, (4.7)

by 0.75. Here f(α) denotes the probability that two unentangled qubits with (angular)

distance α over the sphere/circle, are measured by opposite spins. Similar as in previous

proof we can simplify the ratio as

min
α∈[0,π]

Eθ1,θ2|α[1− cos(θ1) cos(θ2)]

(1− cos(α))
,

80

where θ1 and θ2 are the angles between two vertices and the pivot.

Again we can think of vertices to be fixed over the sphere and randomly rotate the |1⟩

pivot. Without loss of generality, let xi = (1, 0) and xj = (cosα, sinα). The random pivot

can be formulated as (cos θ, sin θ) where θ is uniformly distributed over [0, 2π). We can

write θ1 = θ and θ2 = θ − α. The target ratio can be written as

min
α∈[0,π]

1− 1
2π

∫ 2π

0
cos(θ) cos(θ − α)dθ
1− cos(α)

= min
α∈[0,π]

1− 1
2π

∫ 2π

0
cos2(θ) cos(α)dθ + 0

1− cos(α)

= min
α∈[0,π]

1− 1
2
cos(α)

1− cos(α)
=

3

4
.

Using the same analysis as Goemans and Williamson [11], it is straightforward to prove

(for graphs with non-negative edge weights) that a κ-close solution must also be 0.878κ-

approximate (i.e. HP(x) ≥ 0.878κMax-Cut(G)). For locally optimal4 BM-MCk solutions,

a theorem by Mei et al. [77] (Theorem 2) proves that such solutions are κ-close (and hence

0.878κ-approximate) with κ = 1− 1
k−1

; thus, hyperplane rounding of such solutions yields

(worst-case) approximation ratios of 0.878(0) = 0 and 0.878
(
1
2

)
= 0.439 while depth-0

QAOA-warmest can obtain (worst-case) approximation ratios of 3
4
(0) = 0 and 2

3

(
1
2

)
= 1

3

for k = 2 and k = 3 solutions respectively. Note that, in pratice, κ could be much higher; in

our simulations, we observed κ ≥ 0.999 for all positive-weighted instances for BM-MC3,

the same can be said for BM-MC2 with the exception of 19 instances with the smallest κ

observed being κ = 0.833.

4When x∗ is a globally optimal BM-MCk solution, it immediately follows that x∗ is (at least) 1-close
and 0.878-approximate and hence (worst-case) approximation ratios of 3

4 and 2
3 (for k = 2 and k = 3 solu-

tions respectively) are achieved for depth-0 QAOA-warmest; however, since the Burer-Monteiro relaxation is
non-convex, finding such globally optimal solutions becomes intractable, especially as the number of nodes
increases.

81

4.2.2 Projected Goemans-Williamson

Recall that a solution to the Goemans-Williamson (GW) SDP relaxation consists of n unit

vectors {ui ∈ Rn : i ∈ V }, and their rounding algorithm uses a random hyperplane to

obtain an approximation for the Max-Cut on the given graph G. One can create a warm-

start to QAOA by instead rounding each of these vectors to Rk (with k ∈ {2, 3}) and then

mapping the rounded vectors to the Bloch sphere.

Specifically, given u ∈ Rn for some positive integer n, and a linear subspace A of Rn,

let ΠA(u) denote the (Euclidean) projection of u on A. Given ΠA(u) ̸= 0, define

ΛA(u) =
ΠA(u)

∥ΠA(u)∥2
,

as the unit-scale projection of u on A. This corresponds to normalizing ΠA(u) so it is a

unit vector. If A = span(v) for some unit vector v ∈ R, we abuse the notation and denote

Πv(u) = Πspan(v)(u) and Λv(u) = Λspan(v)(u).

To motivate warm-starts using solutions for the Goemans-Williamson SDP, consider

the following two-step process for rounding an optimal SDP solution {ui : i ∈ [n]} to a

cut:

• Choose a uniformly random linear subspace A of Rn of dimension k ∈ {2, 3}, and

consider the unit-scale projections ΛA(ui) ∈ Rk, i ∈ [n].

• Use Goemans-Williams hyperplane rounding on vectors ΛA(ui), i ∈ [n] to get a

(random) cut M ′.

That is, round the vectors ui ∈ Rn, i ∈ [n] to a random k-dimensional subspace

first, and then subsequently use the Goemans-Williamson hyperplane rounding on these

k-dimensional vectors.

We will later prove that this two-step rounding is equivalent to the Goemans-

Williamson hyperplane rounding on vectors ui, i ∈ [n]. To do this, we first prove a few

82

helpful lemmas.

Lemma 17. Let u, v be unit vectors in Rn and let A denote a linear subspace of Rn of

dimension k such that v ∈ A. If ΠA(u) ̸= 0 and Πv(u) ̸= 0, then

Λv(u) = Λv

(
ΛA(u)

)
.

That is, unit-scale projection of u on v is equivalent to first unit-scale projecting u to A

and projecting this projection ΛA(u) on v.

Proof. Let {v1, . . . , vk} be an orthonormal basis for A. Let αi = u⊤vi. Then

ΠA(u) =
∑
i∈[k]

αivi, ΛA(u) =

∑
i∈[k] αivi»∑

i∈[k] α
2
i

Since v ∈ A, write v =
∑

i∈[k] βivi. Then we have

Πv

(
ΛA(u)

)
=

∑
i∈[k] αiβi»∑

i∈[k] α
2
i

v,

so that

Λv

(
ΛA(u)

)
=

Πv

(
ΛA(u)

)
∥Πv

(
ΛA(u)

)
∥2

=

∑
i∈[k] αiβi∣∣∣∑i∈[k] αiβi

∣∣∣ v
=

Πv(u)

∥Πv(u)∥2
v

= Λv(u).

Note that the above lemma is a deterministic statement; we have not used any random-

ness so far.

83

Let us consider what happens if we select a linear subspace A of Rn of dimension k

uniformly randomly from Rn (one way to ensure it is chosen uniformly randomly is to se-

lect unit vectors vi ∈ Rn, i ∈ [k] recursively so that vi is chosen uniformly randomly in the

space orthogonal to v1, . . . , vi−1). Once we have A, let us select a vector v ∈ A uniformly

randomly again. Is this equivalent to choosing a vector v ∈ Rn uniformly randomly? By

symmetry, it is, since the former experiment is not biased in favor of any direction. We

omit the formal proof and state it as a lemma here:

Lemma 18. Let E denote the experiment of choosing a unit vector v chosen uniformly ran-

domly from Rn. LetE ′ denote the experiment of choosing a linear subspaceA of dimension

k uniformly randomly from Rn, and then choosing a unit vector v′ uniformly randomly from

A. Then E ′ = E, i.e., they correspond to the same probability space.

We now prove that the two-step rounding procedure is equivalent to the usual Goemans-

Williamson rounding procedure as demonstrated in Theorem 19 below.

Theorem 19. Suppose we are given unit vectors u1, . . . , un ∈ Rn that form an optimal

solution to the SDP relaxation for Max-Cut on some graph G = (V,E) with n vertices

and non-negative weights on the edges. Suppose the GW random hyperplane rounding on

u1, . . . , un obtains a (random) cut M of value X , and the two-step rounding described

above produces a (random) cut M ′ of value Y . Then,

1. The random variables X = Y . In particular, E(X) = E(Y) and therefore, in

expectation, M ′ provides a 0.878-approximation to Max-Cut on G.

2. Furthermore, the two-step rounding procedures produces a cut of value (0.878 − ϵ)

times the Max-Cut value with high probability if performed independently logn
ϵ

times

for any constant ϵ ∈ (0, 1/2).

Further, if A1, . . . , A logn
ϵ

are the intermediate k-dimensional subspaces in these logn
ϵ

runs, there is at least someAi (with high probability) such that performing the hyper-

84

plane rounding on Ai produces a (random) cut of average value at least (0.878− ϵ)

times the Max-Cut.

Proof. Let Un = {v ∈ Rn : ∥v∥2 = 1} be the set of unit vectors in Rn. Recall that for a

given probability space, a random variable is a real-valued function on the sample space,

or that X, Y : Un → R. From Lemma 18, the two experiments correspond to the same

probability space. Therefore, it is enough to prove that X(v) = Y (v) for all v ∈ Un.

One key observation is that rounding on a random hyperplane is equivalent to unit-scale

projecting to a uniformly random vector v: indeed, let v be the vector normal to the uniform

hyperplane, then any unit vector u is rounded to 1 if u · v > 0 and to −1 if u · v < 0. That

is, u is rounded to u·v
|u·v| = Λv(u)

⊤v.

Therefore,

X(v) =
∑

ij∈E(G)

wij 1
[
Λv(ui)

⊤v · Λv(uj)
⊤v < 0

]
.

Similarly, for a given A such that v ∈ A, we have Y (v) is equal to:

∑
ij∈E(G)

wij1
[
Λv

(
ΛA(ui)

)⊤
v · Λv

(
ΛA(uj)

)⊤
v < 0

]
.

Since dim(A) = k is a constant and A is chosen uniformly randomly, ΠA(ui) ̸= 0

for each i with probability 1. From Lemma 17, we have Λv

(
ΛA(u)

)
= Λv(u) for all unit

vectors u and for all A.

Therefore, we have

Y (v) =
∑

ij∈E(G)

wij 1
[
Λv(ui)

⊤v · Λv(uj)
⊤v < 0

]
= X(v).

Since X and Y have the same distribution, the same approximation guarantee holds for

85

X, Y . This proves part 1 of the theorem.

We prove part 2 next. Let C denote the maximum cut value on graph G, and denote

α = 0.878 for convenience. Then, part 1 shows that EY ≥ αC. We first show that

Pr (Y > (1− ϵ)EY) ≥ αϵ using Markov inequality:

Pr (Y > (1− ϵ)EY)

= 1− Pr (Y ≤ (1− ϵ)EY)

= 1− Pr (C − Y ≥ C − (1− ϵ)EY)

≥ 1− E (C − Y)

C − (1− ϵ)EY

=
ϵEY

C − (1− ϵ)EY

≥ ϵEY
EY
α
− (1− ϵ)EY

=
αϵ

1− α(1− ϵ)

≥ αϵ.

Suppose that logn
ϵ

independent cuts are produced by applying the two-step rounding

procedure log n times. Then the probability that all of these cuts have value less than

(1− ϵ)EY is at most

(1− αϵ)
logn

ϵ ≤
(
e−αϵ

) logn
ϵ =

1

nα
,

where we have used the standard inequality exp(−x) ≥ 1 − x. Since α ∈ (0, 1), this

probability goes to 0 as n goes to∞.

We prove the second claim of part 2. Given a k-dimensional subspace A of Rn, let wA

denote the average cut value after Goemans-Williamson hyperplane rounding is performed

on A, i.e.

wA =

∫
v∈UA

(cut value along v) dv∫
v∈UA

dv
,

86

where UA is the set of all unit vectors in A. Notice that

EY =

∫
A
wA dA∫
A
dA

.

For the first step of the two-step rounding procedure (i.e., the step selecting a random

subspace of dimension k), let Z denote the random variable that takes value wA when

subspaceA is selected. We need to show that for logn
ϵ

i.i.d. random variables Z1, . . . , Z logn
ϵ

,

there is at least some Zi such that Zi ≥ (1− ϵ)EY . Since the random subspace is selected

uniformly randomly, we have that

EZ =

∫
A
wA dA∫
A
dA

= EY.

A similar Markov inequality analysis on Z then gives the result.

The last part of Theorem 19 illustrates that we can obtain a high-quality rank-k pro-

jected GW solution in regards to hyperplane rounding; however, it is natural to ask if any

kind of guarantee can be preserved when mapping the solution to a quantum state. By

adapting Theorem 16, we can answer the question in the affirmative as seen in Corollary

20 below.

Corollary 20. LetG be a graph with non-negative edge weights and let x be a correspond-

ing κ-approximate projected GW solution in R3 with respect to hyperplane rounding.5 Let

RU(x) denote random uniform rotation applied to x, i.e., a global rotation where a uni-

formly selected point on the sphere gets mapped to (0, 0, 1). Then initialization of QAOA

with RU(x) has an (worst-case) approximation ratio of 2
3
κ at p = 0, i.e., only using quan-

tum sampling with initial state creation and no algorithmic depth for QAOA. Similarly, if

x is a κ-approximate projected GW solution in R2, initialization of QAOA with RU(x) is a

5The theorem also holds more generally for any feasible BM-MC2 or BM-MC3 solution.

87

3
4
κ-approximate solution at p = 0.

If x is chosen such that it is κ-approximate with κ = 0.878−ε (such an x is easily found

via Theorem 19), then, for small ε, this yields (worst-case) approximation ratios (for depth-

0 QAOA-warmest) of 3
4
(0.878 − ε) ≈ 0.658 and 2

3
(0.878 − ε) ≈ 0.585 for 2-dimensional

and 3-dimensional projections respectively.

Proof. Let F ′
0 = F ′

0(γ, β) be the expected value of MAX-CUT obtained by quantum sam-

pling (i.e., QAOA for p = 0). Then,

F ′
0

Max-Cut(G)

≥ κ · F ′
0

HP(x)
(since HP(x) ≥ κ Max-Cut(G))

≥ κ min
(i,j)∈E

E[1[i and j have different spins]]
1
π
arccos(xi · xj)

.

(a+c
b+d
≥ min(a

b
, c
d
) for a, b, c, d ≥ 0; wij’s cancel)

For i, j ∈ [n], let θij denote the angle between xi and xj . We can write

E[1[i and j have different spins]] = fk(θij),

that is, this expectation is solely a function of the angle between the adjacent vertices and

the rank k considered. In particular, from the proof of Theorem 16, we have that for

k ∈ {2, 3} that

fk(θij) =
1

2

Å
1− cos θij

k

ã
.

88

Figure 4.4: In red, the function
1
2 (1−

cos θ
k)

θ/π that is minimized in the proof of Corollary 20 with k = 3.

In green, a similar function
1
2 (1−

cos θ
k)

1
2 (1−cos(θ)

that is minimized in the proof of Theorem16 (where the BM-MCk

objective is compared to the maximum cut instead of the expected cut value from hyperplane rounding) with
k = 3. Over the interval [0, π], both achieve a minimum value of 2/3 at θ = π. The corresponding plots for
k = 2 are similar but instead both functions reach a minimum value of 3/4 at θ = π.

Additionally, arccos(xi · xj) = θij . Using these substitutions, we have

F ′
0

Max-Cut(G)

≥ κ min
(i,j)∈E

E[1[i and j have different spins]]
1
π
arccos(xi · xj)

= κ min
(i,j)∈E

fk(θij)

θij/π

≥ κ min
θ∈[0,π]

fk(θ)

θ/π

= κ min
θ∈[0,π]

1
2

(
1− cos θ

k

)
θ/π

.

For k ∈ {2, 3}, it is straightforward to verify that the minimum in the last line above is

achieved at θ = π (see Figure 4.4) which leads to the ratio F ′
0

Max-Cut(G)
being at least 3

4
κ and

2
3
κ respectively for k = 2, 3.

This motivates us to use the projected vectors ΛA(ui), i ∈ [n] to warm-start

QAOA.Figure 4.5 illustrates the two-step rounding procedure and this warm-start.

89

Rn Rk R1

Cut

. . .

Rotation III

QAOA
IIIInitial

state

Goemans-Williamson hyperplane rounding

I

k-dimensional rounding
II, III Random hyperplane

rounding

II

SDP
solution

Random
Cut

Figure 4.5: A schematic for projected GW warm-starts. There are three procedures to obtain a cut from
an SDP solution. The first is to use Goemans-Williamson hyperplane rounding (on the top labelled I). The
second (labelled II) is to do a two-step rounding through an intermediate state in Rk, k ∈ {2, 3}. We prove
that this two-step rounding procedure is equivalent to Goemans-Willimson hyperplane rounding in Theorem
19. The third procedure is our proposed warm-start of QAOA using the SDP solution (highlighted in blue,
labelled III). This procedure involves rounding the SDP solution to Rk first, then rotating this solution using
uniform or vertex-at-top rotations and mapping to the Bloch sphere to get an initial state for QAOA, and
finally running QAOA on this initial state.

4.2.3 Single Cut Initializations

For the purposes of comparison, we consider one last warm-start technique. In previous

works, initializations of the quantum state based on a single “good” cut (S, V \S) (obtained

via the GW algorithm or possibly other classical means) have also been considered [42,

57]. Given a regularization angle θ∗ ∈ [0, π/2], one can initialize the initial quantum state

so that qubits lie along the xz-plane of the Bloch sphere with vertices in S and V \ S

being initialized at an angle θ away from the north and south poles of the Bloch sphere

respectively; such a regularization angle aims to circumvent issues regarding reachability

[42]. More specifically, the quantum state is given by,

|s0⟩ =
n⊗

j=1

|s0,j⟩ ,

where,

|s0,j⟩ =


RY (θ

∗) |0⟩ , j ∈ S

RY (π − θ∗) |0⟩ , j /∈ S

90

where RY (θ) is a single-qubit rotation about the y-axis by angle θ.

As Proposition 9 illustrates, one can achieve a (worst-case) approximation ratio ap-

proaching 0.878 as the regularization angle θ∗ approaches zero.

Proposition 9. LetG = (V,E) be graph with non-negative edge weights. Let (S, V \S) be

a (random) cut obtained via the GW algorithm. Then, initializing |s0⟩ using regularization

angle θ∗ ∈ [0, π/2] and performing a quantum measurement (i.e. depth-0 QAOA) yields a

(worst-case) approximation ratio of at least 0.878 · cos(θ∗/2)2|V |.

Proof. Let X denote the random variable corresponding to the cut value obtained from

the cut obtained by quantum measurement of a single-cut initialization obtained by GW

hyperplane rounding as described in Section 4.2.3. For any S ⊆ V , let GW(S) denote the

event that the cut (S, V \S) was obtained from the GW hyperplane rounding step. similarly,

let QM(S) denote the event that quantum measurement of the initial state resulted in the

cut (S, V \ S).

First, observe that if the cut (S, V \ S) is used to initialize the quantum state with

regularization angle θ∗, then the probability of quantum measurement getting the same cut

is cos2|V |(θ∗/2); this is because each vertex independently has probability cos2(θ∗/2) of

remaining on the same side of the cut used to initialize the quantum state. Using this fact,

we find that,

91

E[X]

=
∑
S⊆V

E[X | GW(S)] Pr(GW(S))

=
∑
S⊆V

(∑
T⊆V

E[X | GW(S),QM(T)]

· Pr(QM(T) | GW(S)) · Pr(GW(S))

)

≥
∑
S⊆V

(
E[X | GW(S),QM(S)]

· Pr(QM(S) | GW(S)) · Pr(GW(S))

)

=
∑
S⊆V

(
cut(S) · cos2|V |(θ∗/2) · Pr(GW(S))

)

=cos2|V |(θ∗/2)
∑
S⊆V

(
cut(S) Pr(GW(S))

)

≥ cos2|V |(θ∗/2) · 0.878Max-Cut(G),

and thus E[X]
Max-Cut(G)

≥ 0.878 cos2|V |(θ∗/2) as desired. In the above formulas, we used the

fact that E[X | GW(S),QM(S)] = cut(S) and that the sum
∑

S⊆V (cut(S) Pr(GW(S))) is

simply the expected cut value of the GW algorithm, which we know is at least 0.878 of the

optimal cut value for graphs with non-negative weights [11].

Recall (Section 4.2.2) that QAOA with a (2-dimensional) projected GW initialization

has a depth-0 (worst-case) approximation ratio of 0.658. One may be led to believe that,

when custom mixers are used to guarantee convergence (as described in the next chapter),

that a single-cut initialization (with small regularization angle θ∗) is the better choice due

to its (theoretically) better (worst-case) approximation ratio at depth-0. However, as seen

92

empirically in Section 5.4, this is not the case: when θ∗ is small, the convergence rate of

QAOA with single-cut initializations is (emperically) incredibly slow across all instances.

For small θ∗, QAOA with custom mixers geometrically performs rotations around axes that

are near the poles of the Bloch sphere about the qubits’ initial positions; it is possible that

this geometric interpretation is responsible for the slow convergence for small θ∗.

In one of their approaches for Max-Cut, Egger et al. [42] use a mixer for QAOA that

is different than both the standard mixer and the custom mixers described in Section 5.

They prove that their mixer has the property that, when a single-cut initialization (based

on a cut (S, V \ S)) with regularization parameter θ∗ = π/3 is used, that measurement

of the depth-1 QAOA with variational parameters (γ1, β1) = (0, π
2
) produces exactly the

cut (S, V \ S) that was used to initialize the initial quantum state. The drawback is that,

with such a mixer proposed by Egger et al., no convergence guarantees are known and

experiments suggest that, unlike standard QAOA, the optimal cut value is not achieved in

expectation with increased circuit depth.

Cain et al. [57] consider the case where θ∗ = 0 and the standard mixer is used. They

find that such an approach performs very poorly; in particular, no convergence towards the

optimal cut is found with increased circuit depth either.

One can also consider using a single-cut initialization together with the custom mixers

proposed in Section 5; this idea was very briefly explored in the appendices of Egger et al.’s

work [42]. From Proposition 9 and Theorem 14, it is clear that this approach (with non-

negative weighted graphs) yields a (worst-case) approximation ratio approaching 0.878 for

θ∗ → 0 for depth-0 QAOA and that such an approach convergences to the optimal cut with

increased circuit depth.

Next, we discuss another approach proposed by Egger et al. [42] for more general

problems; we prove that in the context of Max-Cut, this approach (effectively) falls into the

category of single-cut initializations as described above.

93

Relation to QUBO Approach

Egger et al. [42] consider a warm-start approach (which they call continuous warm-started

QAOA) for QUBO’s of the form

min
y∈{0,1}n

yTMy,

where M ∈ Rn×n is a real-symmetric matrix. They then consider the relaxation

min
y∈[0,1]n

yTMy,

i.e. the binary variables are relaxed to lie in the interval [0, 1]. For certain matrices6 M , this

yields a convex quadratic program which can be easily solved to (global) optimality [107];

in this case, Egger et al. [42] find and use the globally optimal solution y∗ of the relaxation

to produce a initial quantum product state. We consider this approach in the context of

Max-Cut, specifically in the case of graphs with non-negative edge weights.

One can formulate Max-Cut on a graph G = (V,E) with edge weights w : E → R

as a QUBO problem as follows [38]. Simply construct the QUBO matrix M by setting

Mij = wij for i ̸= j and Mii = −
∑n

j=1wij for i ∈ {1, . . . , n}. If x∗ is an optimal solution

to Max-Cut (using the formulation in Equation 2.10), then there is a corresponding y∗ that

is an optimal solution of the QUBO such that x∗i = 2y∗i − 1 for i = 1, . . . , n.

Observe that M = −L where L Laplacian matrix of the graph G which is known to

be positive-semidefinite (for graphs with non-negative edge weights) [108]. Since L is

positive-semidefinite, then the function f(x) = xTLx is convex in x (as the Hessian of f ,

∇2f(x) = 2L, is positive-semidefinite). Thus, xTMx = −f(x) is generally not convex,

and hence solving minx∈[0,1]n x
TMx to global optimality (as is done by Egger et al. [42]) is

non-trivial in the case of Max-Cut. However, we can still consider locally optimal solutions

6In particular, Egger et al. [42] consider matrices of the form M = N + D where N ∈ Rn×n is a
(symmetric) positive-semidefinite matrix and D ∈ Rn×n is a diagonal matrix.

94

to the relaxation. Observe,

min
y∈[0,1]n

yTMy = max
y∈[0,1]n

yTLy,

i.e., the QUBO relaxation amounts to maximizing a convex function over a polytope, in

which case, all strictly local maxima lie on the vertices of the polytope; as the theorem

below illustrates.

Theorem 21. Let f : Rn → R be a convex function and let P ⊆ Rn be a polytope. Then,

if y∗ ∈ Rn is a strict local maximum of f over P , then y∗ lies at a vertex of P .

Proof. To see this, suppose by means of contradiction that y∗ was a strict local maximum

that did not lie at a vertex of the polytope. Then there exists z ∈ Rn such that y∗ − z and

y∗+z lie in the polytope such that f(y∗) > f(y∗−z) and f(y∗) > f(y∗+z). By convexity,

f(y∗) = f

Å
1

2
(y∗ − z) + 1

2
(y∗ + z)

ã
≤ 1

2
f(y∗ − z) + 1

2
f(y∗ + z)

<
1

2
f(y∗) +

1

2
f(y∗)

= f(y∗),

a contradiction.

The vertices of the polytope [0, 1]n correspond to cuts in the graph, thus, using the

strictly locally optimal solution to the relaxation of the QUBO corresponding to Max-Cut

degenerates to solutions corresponding to a single-cut; this means that, for Max-Cut (with

non-negative edge-weights), this QUBO approach is (effectively) a single-cut initialization

approach as described in Section 4.2.3.

95

4.3 Limitations of QAOA-Warm

In the case of the standard initialization for QAOA, we know that with the optimum choice

of parameters γ, β, the probability of sampling the Max-Cut (with a single measurement)

approaches 1 as the circuit depth p approaches infinity. This is not the case for QAOA-

warm:

Theorem 22. There exists a graphG and a warm-start initialization (ofG) such that for all

p ≥ 0, depth-p QAOA-warm (with any choice of variational parameters γ and β) results

in Fp(γ, β) = 1
2

Max-Cut(G), or in other words, the expected cut obtained via quantum

sampling is 1
2

Max-Cut(G).

Proof. We consider a graph G = (V,E) on two vertices connected by an edge of unit

weight initialized with |s⟩ := |u⟩⊗|v⟩ where |u⟩ := |+⟩ = 1√
2
(|0⟩+ |1⟩) and |v⟩ := |−⟩ =

1√
2
(|0⟩ − |1⟩). (Note that |s⟩ = Q(x∗) where x∗ = ((1, 0, 0)T , (−1, 0, 0)T) is an optimal

solution to BM-MC3.)

We first consider the p = 1 case. For convenience, let γ := γ1 and β := β1 for this

case. Observe,

|s⟩ = |u⟩ ⊗ |v⟩ = 1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩ − |1⟩) = 1

2
(|00⟩ − |01⟩+ |10⟩ − |11⟩).

Note that if we were to do a quantum measurement of this state, we would get each of the

four states |00⟩ , |01⟩ , |10⟩ , |11⟩ with equal probability, i.e., the theorem holds in the p = 0

case as well.

Since HC is the Hamiltonian of the Max-Cut problem, HC |01⟩ = 1 · |01⟩. Thus,

e−iγHC |01⟩ = e−iγ·1 |01⟩ = e−iγ |01⟩. Similar calculations show that e−iγHC |10⟩ =

e−iγ |10⟩ , e−iγHC |00⟩ = |00⟩ , and e−iγHC |11⟩ = |11⟩ and thus by linearity,

|s′⟩ := e−iγHC |s⟩ = e−iγHC

Å
1

2
(|00⟩ − |01⟩+ |10⟩ − |11⟩)

ã
96

=
1

2

(
|00⟩ − |11⟩+ e−iγ

(
|10⟩ − |01⟩

))
.

For a 2-node graph, HB = σx
1 + σx

2 , and thus,

HB(|00⟩ − |11⟩) = σx
1 |00⟩ − σx

1 |11⟩+ σx
2 |00⟩ − σx

2 |11⟩ = 0,

and similarly HB(|10⟩ − |01⟩) = 0.

By the above observations and linearity, we have that HB |s′⟩ = 0, i.e., |s′⟩ is an eigen-

vector of HB with eigenvalue 0 and thus,

|ψ1(γ, β)⟩ = e−iβHB |s′⟩ = e−iβ·0 |s′⟩ = |s′⟩ ,

i.e., the mixing Hamiltonian has no effect on the quantum state. Writing out |s′⟩, we have

|ψ1(γ, β)⟩ =
1

2

(
|00⟩ − |11⟩+ e−iγ

(
|10⟩ − |01⟩

))
.

If we repeat all of these calculations in the case that p > 1, we get that

|ψp(γ, β)⟩ =
1

2

(
|00⟩ − |11⟩+ e−iγp · · · e−iγ1

(
|10⟩ − |01⟩

))
=

1

2

Ä
|00⟩ − |11⟩+ e−i

∑p
i=1 γi

(
|10⟩ − |01⟩

)ä
,

in which case all four states |00⟩ , |01⟩ , |10⟩ , |11⟩ are measured with equal probability

meaning that the expected cut value for G is 50% of the maximum cut in G.

The previous theorem shows that QAOA-warm may achieve poor instance-specific ap-

proximation ratios on specific initial states, however we next discuss that this behavior is

consistent across slight perturbations around this state as well. In Figure 4.6, at any point

(φ, θ) we depict the percentage of Max-Cut obtained using the optimal choice of varia-

tional parameters if the initial state of the first qubit is given by the polar and azimuthal an-

97

A
pp

ro
xi

m
at

io
n

R
at

io

Figure 4.6: A plot of the percentage of the Max-Cut achieved with QAOA-warm (when the optimal
variational parameters are chosen) with p = 1 for a one-edge graph G at various starting states |s0⟩ = Q(x)
where one point of x has polar angle θ and azimuthal angle φ and the remaining point is diametrically
opposed. The starting states that perform the worst, i.e. |+−⟩ and |−+⟩, are marked with a black ×. For
each point in the figure, the optimal variational parameters were estimated by performing a dense grid-search
over the variational parameter space.

gles θ and φ and the second qubit is diametrically opposed. Note that the optimal Max-Cut

is achieved with probability 1 only when both vertices lie in the yz-plane. The worst case

occurs when the vertices lie on the x-axis; this is consistent with Theorem 22. In general,

in expectation, there is a larger gap to optimality the closer the solution x is to the x-axis;

which suggests that it is reasonable to embed the approximate solutions of BM-MC2 in the

yz-plane of the Bloch sphere (as described in Section 4.1.2). Lastly, we believe that this

behavior is consistent at larger circuit depths as well.

4.4 QAOA-Warm on Antipodal Structures

We illustrate a set of graph instances where QAOA-warm has a significant advantage over

standard QAOA by considering BM-MCk solutions that have a special structure. For any

98

(a) (b) (c) (d)

A
pp

ro
xi

m
at

io
n

R
at

io

Figure 4.7: Parameter landscapes of the instance-specific approximation ratio of the four-cycle C4 for
p = 1. When no warm start is used, the landscape has many peaks and valleys in the form of local maxima
and minima (a). For both BM-MC2 and BM-MC3, a vertex-at-top rotation yields a convex landscape with
a ridge-like shape (b), thereby effectively capturing the optimal solution for the 4-cycle. When a uniform
rotation is used, a BM-MC2 formulation (c) achieves optimality for some choice of parameters whereas this
is not the case for a BM-MC3 formulation (d).

positive integer k, we say that x ∈ (Rk)n has an optimal antipodal structure (in Rk) for a

graph G = (V,E) if there exists S ⊆ V and a unit vector u ∈ Rk such that (S, V \ S) is a

Max-Cut of G and xi = u if i ∈ S and xi = −u if i /∈ S. That is, the points corresponding

to each vertex lie at antipodal points on the sphere in a way determined by some Max-Cut

of G. If we consider |s0⟩ = Q(RV (x)) where RV is a random vertex-at-top rotation and

x has optimal antipodal structure, then we basically recover the Max-Cut. In this case,

QAOA-warm with initial state |s0⟩ yields the Max-Cut of G for p = 0.

For any connected bipartite graph and any k (including k = 2, 3), one can prove that

any globally optimal solution x of BM-MCk will have the antipodal structure described

above. For the special case of even cycles, we find that the BM-MC3 optimization of

Max-Cut always finds the global optimum. These observations simply imply that random

vertex-at-top rotations recover good solutions from the classical regime.

In Theorem 24 below, the characterization of local optima for even cycles simply im-

plies that initializing QAOA-warm with the random vertex-at-top rotation Q(RV (x
∗)) will

also recover the Max-Cut. To prove the structure of local optima, we exploit the structure

of the graph and utilize KKT conditions to first prove that any local optimum for BM-MC3

has rank at most 2.7 Further, we prove that any 2-dimensional solution can be improved

7In non-linear optimization, the Karush–Kuhn–Tucker (KKT) conditions are first-order necessary con-

99

locally, thus resulting in rank-1 local optimal (which thus corresponds to an optimal cut in

the graph as a result of Lemma 23).

Lemma 23. Let x∗ be a locally-optimal solution rank-1 solution of BM-MCk on a graph

G = (V,E) (and edge weights w : E → R) for 2 ≤ k ≤ n. Then the cut (S, T)

corresponding to x is an optimal cut in G.

Proof. We provide a proof for k = 2; the proof for higher values of k are obtained by

restricting to the plane that contains both antipodal points of the rank-1 solution and running

the k = 2 argument.

So suppose k = 2. By means of contradiction, suppose that the cut (S, T) that cor-

responds to x∗ (a locally optimal rank-1 solution) is not an optimal cut. We will show

there is a direction we can move in that improves the solution, thus contradicting the local

optimality of x∗.

Since (S, T) is not the optimal cut in G, there is an even better cut, i.e., there are A ⊆ S

and B ⊆ T such that ((S \ A) ∪ B, (T \ B) ∪ A) is a better cut than (S, T). For any

sets X, Y ⊆ V , let w(X, Y) denote the sum of the edges between X and Y . Note that by

moving from the cut (S, T) to ((S \ A) ∪ B, (T \ B) ∪ A), the value of the cut increases

by w(A, S \ A) + w(B, T \ B) and decreases by w(A, T \ B) + w(B, S \ B). Since this

new cut is better, this net change must be strictly positive, i.e.,

δ := w(A, S \ A) + w(B, T \B)− (w(A, T \B) + w(B, S \ A)) > 0.

Without loss of generality, suppose the rank-1 solution x∗ is such that every vertex in S

is at (−1, 0) on the unit circle and every vertex in T is at (1, 0). The solution x∗ is depicted

on the left side of Figure 4.8. We now perturb all the vertices in A and B by an arbitrarily

small angle θ > 0 so that all the vertices in A are now at (− cos θ, sin θ) and all the vertices

in B are now at (cos θ,− sin θ) on the unit circle as seen on the right side of Figure 4.8.

ditions which characterize the set of optimal solutions. The usage of the KKT conditions generalizes the
method of Lagrange multipliers [109][110].

100

Figure 4.8: To the left is the rank-1 solution x∗. To the right is the solution x′ after moving the points in A
andB by angle θ along the unit circle. Thale’s Theorem tells us that connecting the endpoints of the diameter
of a circle with another point on the circle yields a right triangle.

We now analyze this new configuration of points x′ on the unit circle and investigate the

net change in the BM-MCk objective. Recall that maximizing the objective of the rank-k

Burer-Monteiro relaxation is equivalent to maximizing:

∑
e=(i,j)∈E

wij∥xi − xj∥2 s.t. ∥xi∥ = 1, xi ∈ Rk ∀i ∈ [n].

Let d(A, S \A) be the distance from any point in A to any point in S \A on the unit circle

in x′. The quantities d(B, T \B), d(A, T \B), d(B, S \A) are defined similarly. Observe

that the change in objective is given by:

∆ :=w(A, S \ A)(d(A, S \ A)2 − 0)

+w(B, T \B)(d(B, T \B)2 − 0)

+w(A, T \B)(d(A, T \B)2 − 4)

+w(B, S \ A)(d(B, S \ A)2 − 4).

In the above, the 4 comes from the fact that originally (in x∗), the squared distance from A

to (T \B) was 22 = 4 (and similarly for B and S \A). Note that points at S \A and T \B

are antipodal in both x∗ and x′ so their distance doesn’t change from x∗ to x′; due to our

construction, the same can be said about the points in A and B.

To complete the proof, it remains to show that ∆ > 0 for any choice of θ > 0. By

101

Thale’s Theorem, the triangle determined by the points at S \A,A, T \B is a right triangle.

Thus, by the Pythagorean theorem:

d(A, S \ A)2 + d(A, T \B)2 = 4,

or alternatively:

d(A, T \B)2 − 4 = −d(A, S \ A)2.

A similar calculation shows that:

d(B, S \ A)2 − 4 = −d(B, T \B)2.

Making the above substitutions in the formula for ∆ in addition to the substitution d(A, S \

A) = d(B, T \B) yields that:

∆ = d(A, S \ A)2
(
w(A, S \ A) + w(B, T \B)− (w(A, T \B) + w(B, S \ A))

)

= d(A, S \ A)2 δ > 0,

which completes the proof.

Theorem 24. For a union of r even-cycles, any local optimum x∗ for BM-MC3 is a global

optimum.

Proof. Without loss of generality, let G be a cycle with n vertices. Let x : V → S2

be a local optimum for BM-MC3. Our proof consists of two steps. First, we show

rank(span({xv : v ∈ V })) ≤ 2. Next, building upon this characterization for the local

optima we show that in fact the above rank is exactly 1 and all edges are (fully) cut, i.e.,

global optimum is achieved.

We use first order necessary conditions, known as KKT, to derive the desired character-

102

ization. Let us formulate the Lagrangian for our constrained optimization problem,

L(x, α) =
∑

(u,v)∈E

∥xu − xv∥2 −
∑
v∈V

αv(∥xv∥2 − 1) ,

where αv ∈ R is a multiplier corresponding to the condition ∥xv∥ = 1, ∀v ∈ V .

It is easy to see the objective for our constrained optimization problem is equal to

maxx:V→S2 minα:V→R L(x, α) . Further using Lagrangian duality theory, we apply KKT

optimality conditions that require (at any local optima) stationary condition ∂L
∂xv

= 0 is

satisfied for all v ∈ V in addition to the following feasibility and complementary slackness

conditions (which are trivially satisfied):

• Primal feasibility requires ∥xv∥ = 1, ∀v ∈ V .

• Dual feasibility requires αv ∈ R, ∀v ∈ V .

• Complementary slackness requires αv = 0 whenever ∥xv∥ ≠ 1.

The stationary condition can be reformulated as

∂

∂xv

(∑
(u,v)∈E

(xv − xu)T (xv − xu)− αv(x
T
v xv − 1)

)
= 0 ∀v ∈ V .

Thus, for all v ∈ V , we have the following stationary condition:
∑

(u,v)∈E(xv−xu) = αvxv.

Considering our graph being a cycle, where every vertex v ∈ V has two neighbors,

the stationary condition implies a linear dependence of xv with xu’s corresponding to its

neighbors. Hence, rank(span({xv, xw, xu })) ≤ 2 where w and u are two neighbors of v.

Note that if this rank is 1, one can easily show neighbors of this vertex (and consequently

for every vertex) are at antipodal points xw = xu = −xv. Otherwise, xw and xu are

mirrored with respect to span({xv }). In this case, these three vectors lie on a unique

plane. Inductively, one can show all vertices of the cycle lie on the same plane.

103

With all the points lying on the same plane, it remains to show that the additional

dimension (direction) in R3 allows one to (locally) increase the objective. Without loss of

generality, let xv ∈ R3 be a point on the unit sphere with polar angle θ = π/2 and azimuthal

angle φv. Coloring vertices of the cycle by two colors cv ∈ { 1, 2 }, it is easy to see for

x̃v = (1, π/2 + (−1)cvε, φv) all edges stretch (unless they are antipodal) so the objective

increases. This shows x was not a local optimum, in case of a rank 2 assignment.

Lemma 23 guarantees that locally optimal rank-1 solutions correspond to an optimal

cut in G and since we have shown all local optima are rank-1, it must be the case that every

local optimum x∗ is also a global optimum.8

It is conjectured that the performance of standard QAOA for n-node even cycles is

(2p+ 1)/(2p+ 2) when n > 2p [1, 99]. The above theorem is a concrete example

where QAOA-warm outperforms standard QAOA, due to a warm-start with a classical

optimal solution. We find that warm-starts often result in flatter parameter landscapes

for QAOA-warm, e.g., see Figure 4.7 depicting the landscapes for various variants of

QAOA-warm on cycle C4 on four vertices (i.e. C4 = (V,E) with V = {1, 2, 3, 4} and

E = {(1, 2), (2, 3), (3, 4), (1, 4)}). For the vertex-at-top rotation in particular, notice that

the solution quality monotonically decreases in |β1| with the optimal parameters all lying

on the line β1 = 0. We make this precise in the following observation.

Observation 25. Let k ∈ {2, 3} and G = (V,E) be a graph with weights w : E → R

and S ⊆ V be such that (S, V \ S) is a Max-Cut of G. Let y be a unit vector in Rk. Let

x be such that xu = y if u ∈ S and xu = −y if u /∈ S. If we initialize QAOA-warm with

the initial state |s0⟩ = Q(RV (x)) where RV is a random vertex-at-top rotation, then, we

recover the Max-Cut since the states are aligned with |0⟩ and |1⟩. The expected cut value

8Note that Lemma 23 alone does not guarantee that a locally optimal rank-1 solution is also a globally
optimal solution; one has to use the fact that all locally optimal solutions are rank-1 in Theorem 24 in order
to deduce that the rank-1 solution is globally optimal.

104

at (γ1, β1) is given by

F1(γ1, β1) =
1

4

(
(2M −W) cos(4β) + 2M +W)

)
,

where M = Max-Cut(G) and W =
∑

e∈E we. Observe that F1(γ1, 0) = Max-Cut(G) for

all γ1 ∈ R and F1(γ1, β1) decreases as |β1| increases for all |β1| ∈ [0, π/4].

Proof. Since we are working only with circuit depth p = 1, for simplicity, we use γ and β

to denote γ1 and β1 respectively.

If |s0⟩ = Q(RV (x)) where RV (·) is a vertex-at-top rotation and x is as described in the

statement of the observation, then it is straightforward to see that there exists a reordering

of the vertices such that |s0⟩ = |0⟩⊗r ⊗ |1⟩⊗(n−r) where |S| = r (where the first r qubits

correspond to vertices in S).

Let M = Max-Cut(G). Since HC is the Hamiltonian of the Max-Cut problem and

|s0⟩ corresponds to an optimal cut, then |s0⟩ is a eigenvector of HC with eigenvalue M .

Thus,

e−iγHC |s0⟩ = e−iγ·M |s0⟩ = α |s0⟩ . (4.8)

where α = e−iγM . Using equation (4.8), we have that

|ψ1(γ, β)⟩ = e−iβHBe−iγHC |s0⟩ = αe−iβHB |s0⟩ = α
Ä
|sβ⟩⊗r ⊗ |s′β⟩

⊗(n−r)
ä
,

where sβ = cos(β) |0⟩ − i sin(β) |1⟩ and s′β = cos(β) |1⟩ − i sin(β) |0⟩ .

The expected energy is the sum of the expected energy for each edge (u, v) ∈ E and

each edge contributes a non-zero amount if and only if both endpoints have a different

spin after measurement. However, since |ψ1(γ, β)⟩ is an unentangled state, then we can

consider measuring each vertex independently.9 Consider an edge (u, v) ∈ E and suppose

9The α term is a global phase change that doesn’t affect the measurement and can thus be ignored.

105

that u ∈ S and v ∈ S. Then,

Pr(u and v measured to be |0⟩ and |1⟩ respectively)

= Pr(u measured to be |0⟩) · Pr(v measured to be |1⟩) (|ψ1(γ, β)⟩ is unentangled)

= Pr(sβ measured to be |0⟩) · Pr(sβ measured to be |1⟩) (by construction)

= cos2(β) · sin2(β). (def of sβ)

Similar calculations show that if u ∈ S and v ∈ S, then the probability that u is

measured to be |1⟩ and v is measured to be |0⟩ is also cos2(β) sin2(β). In the case that

u ∈ S and v /∈ S, one can similarly show that the probability of measuring both to have

differing spins is given by cos4(β) + sin4(β).

Combining all the calculations above, the expected energy is given by

F1(γ, β) = 2(W −M) sin2 β cos2 β +M(sin4 β + cos4 β),

where W is the sum of all edge weights (i.e. W =
∑

e∈E we).

Observe that when β = 0, the above equation reduces to F1(γ, β) = M as desired. By

applying various trigonometric identities and algebraic manipulations, we can rewrite the

above function as

F1(γ, β) =
1

4

(
(2M −W) cos(4β) + 2M +W)

)
.

The Max-Cut of a graph is at least half the sum of the edge weights, i.e., M ≥ W/2

(which implies 2M −W ≥ 0).10 Since cos(4β) is decreasing in |β| for β ∈ [−π/4, π/4],

then it must be that F1 is decreasing (in |β| for β ∈ [−π/4, π/4]).
10To see this, observe that the expected sum of the weights of the edges crossing a random cut (where one

independently places each vertex on one side of the cut or the other with probability 1/2) will be W/2. Since
the expectation is W/2, then there must exist at least one cut where the sum of the weights crossing the cut is
at least W/2, i.e., M ≥W/2.

106

The form of the expression for F1(γ1, β1) follows from the fact that the cost term of the

quantum circuit has no effect and that β1 can be interpreted as a rotation angle (about the

x-axis) in the Bloch sphere that moves the state away from the measurement axis.

In contrast to the vertex-at-top rotations preserving the optimality of antipodal solutions

(Observation 25), this is not always the case for uniform rotations. In Figure 4.7 for exam-

ple, the uniform rotation does not yield the optimal cut for C4 for any choice of parameters

when 3-dimensional solutions are used. However, if we instead use the BM-MC2 solution

with a uniform rotation to obtain R(x), then there does exists a combination of parameter

values that yields the optimal cut (by choosing γ1 = 0 and an appropriate choice of β1,

application of the quantum circuit can be interpreted as a rotation that aligns R(x) with the

measurement axis in this case). This is due to potential proximity of uniformly rotated 3-

dimensional solutions to the eigenstates of the mixer, which we can avoid in 2-dimensional

initializations as discussed in Section 4.3.

4.5 Numerical Simulations for QAOA-Warm

In this section, we discuss the results of our numerical simulations of QAOA-warm. We

first discuss the details of the warm-start constructions and the graph instances used in Sec-

tion 4.5.1. In order to compare QAOA-warm to other Max-Cut algorithms, one can use

different black-box optimizers, such as ADAM, COBYLA, Nelder-Mead and BFGS. We

first run computations to pick a single optimizer, then to pick the rank of the initialization,

and the rotation scheme to work with in Sections 4.5.2 and 4.5.3. In Section 4.5.4, we

next provide aggregate results for QAOA-warm including (i) a comparison against other

Max-Cut algorithms, (ii) improvement in instance-specific approximation ratio with in-

creased p depth, and (iii) trends in (median) instance-specific approximation ratio with

varying p-depth and graph size. Lastly, to understand the behavior of QAOA-warm, we dis-

cuss the qualitative shape and numerical properties of the parameter landscape of QAOA-

warm (and standard QAOA) in Section 4.5.5.

107

4.5.1 Experimental Setup

Graph Instances

We consider a collection of 1264 graphs, G, generated as follows. We first generated a

set of unweighted graphs, which includes all non-isomorphic graphs for n = 2 to n = 6

vertices (142 instances), and 29 random graphs for each size n = 7 to n = 12 sampled

from different random graph generators in PYTHON’s NETWORKX [111] package. These

random graph generators include Erdös-Renyı́, Barabasi Albert, Dual of Barabasi-Albert,

Watts-Strogatz, and Newman-Watts-Strogatz models. Many experimental studies in the

current QAOA literature only consider graphs from a single random graph model (e.g.

Erdös-Renyı́); however graphs from such models can have predictable behavior when it

comes to Max-Cut11 which could potentially have a large influence on the performance of

QAOA. For this reason, we construct an ensemble of graphs G using a variety of random

graph generators; this library has been made available online [104].

Construction of Unit-Weight Graphs

Below, we describe the collection of unit-weight graphs that were generated in the process

described above.

The collection of non-isomorphic graphs up to 6 nodes were generated using

SageMath [112]. The remaining instances were generated using various random graph

generators found in the NetworkX Python package [111]; the parameter names used be-

low are the same as those used in the corresponding NetworkX functions. The library

consists of the following graphs:

• All non-isomorphic connected graphs up to 6 nodes (142 instances)

11For example, when using the Erdös-Rényi graph model, if each edge appears independently with prob-
ability q, and if we take a random cut with k vertices on one side and n − k vertices on the other side, then
one would observe qk(n− k) edges across the cut (in expectation).

108

• Erdös-Renyı́ (42 instances): for each n from n = 7 to n = 12, 7 instances with p

sampled from [0, 1] uniformly were created.

• Random Regular (42 instances): for each n from n = 7 to n = 12, 7 instances with

d sampled uniformly from valid degrees were created.

• Barabasi Albert (18 instances): for each n from n = 7 to n = 12 and for all m in

{1, 2, 3}, 1 instance (with initial graph being star graph on m+1 nodes) was created

• Dual Barabasi Albert (36 instances): for each n from n = 7 to n = 12 and for all

{(m1,m2) : m1,m2 ∈ {1, 2, 3},m1 ̸= m2} with p = 0.25, 1 instance with initial

graph on star with max(m1,m2) + 1 nodes was created

• Watts Strogatz Graphs (18 instances): for each n from n = 7 to n = 12, for all k in

{2, 4, 6}, 1 instance with p sampled uniformly from [0, 1] was created.

• Newman Watts Strogatz Graphs (18 instances): for each n from n = 7 to n = 12, for

all k in {2, 4, 6}, 1 instance with p sampled uniformly from [0, 1] was created.

Figure 4.9 demonstrates how varied our ensemble is with respect to two important graph

metrics dependent on eigenvalues of the normalized Laplacian [113].

Construction of Weighted Graphs

Next, we create three weighted versions of each of the 316 unit-weighted instances con-

structed above, by considering independent edge-weightings drawn from (i) uniform distri-

bution on {−10,−9, · · · , 9, 10} \ {0}, (ii) uniform distribution on {1, 2, . . . , 10}, and (iii)

weights of form±2k with Pr[we = 2k] = Pr[we = −2k] = 2−k−2 for all non-negative inte-

gers k. The weighted and unweighted instances together give us a total of 1264 instances.

The last family of weighted instances is constructed due to high variation of performance

of classical heuristics on similar instances, observed in a previous study by Dunning et al.

[96] and discussed in Section 3.3.1. Note that some of the ways of sampling edge-weights

109

Figure 4.9: Illustration depicting the range of graph metrics for our instance library G. When comparing
unit-weight Erdős-Rényi graphs (red) with the remaining graphs in G (blue), there is an increase in the range
of values obtained for both graph metrics.

results in only positive edge-weight graphs. We will often present results for mixed-weight

graphs (positive and negative weights), and positive-only separately.

Experiment Description

We computed QAOA-warm, Goemans-Williamson and standard QAOA solutions for each

of the weighted graph instances G ∈ G. Both standard QAOA and QAOA-warm were run

for circuit depths p ∈ {1, 2, 4, 8}, for each optimizer considered, and QAOA-warm for each

considered rank of BM-MCk (k = 2, 3) and for each rotation type (vertex-at-top and uni-

form random). We consider the best of 5 warm-starts (in objective value) when selecting

BM-MCk warm-starts, and subsequently the best of 5 random rotations, i.e., the rotation

that yields the highest expected cut value at the end of the hybrid-optimization loop. In the

experiments, we compute the expected cut values exactly (details in Section 2.2) rather than

simulating quantum measurements or hyperplane rounding. For any two runs of standard

QAOA or QAOA-warm that differ only in choice of optimizer, the initial parameter values

used are the same (with γi and βi sampled uniformly from the interval [−0.0001, 0.0001]

110

for all i = 1, . . . , p). Our implementation of standard QAOA and QAOA-warm utilizes

Google’s TENSORFLOW QUANTUM library and IBM’s Qiskit library. The state |+⟩⊗n is

initialized by applying a Hadamard gate to each qubit in |0⟩⊗n. For states initialized based

on low-rank approximate solutions, we generate the initial state as discussed in Section 4.1,

which is easily implemented using standard rotation gates. For each epoch of each run of

standard QAOA or QAOA-warm, our implementation records the values of the variational

parameters, the expected cut value at those parameters, and the probability distribution of

all 2n cuts. Each run of standard QAOA and QAOA-warm terminated when the difference

in successive values of Fp(γ, β) was less than W̄ ∗ 10−6, where W̄ is the sum of the ab-

solute values of the edge weights. We next summarize the results from these numerical

simulations.

4.5.2 Optimizer Choice

We consider four different optimizers to optimize the 2p variational parameters: ADAM,

BFGS, Nelder-Mead, and COBYLA and present comparisons between these set of op-

timizers. As demonstrated in Figure 4.10, when ADAM is compared to the other three

optimizers, the expected cut values obtained for QAOA-warm are similar (i.e. within 0.01

difference in instance-specific AR) for at least 90% of the runs at p = 1; this percentage

decreases at p = 8 but the instance-specific approximation ratios are still relatively similar

for the majority of the instances. This suggests that the instance-specific approximation

ratios achieved for QAOA-warm are largely independent of the optimizer used; for this

reason, all remaining results involving instance-specific approximation ratios for QAOA-

warm will be in terms of runs using the ADAM optimizer. It should be noted that all of the

optimizers considered vary in regards to runtime, e.g., the cost per iteration and the number

of iterations required to train the variational parameters (we discuss this further in Section

4.5.6)

Even though the choice of the optimizer had almost no impact on the QAOA-warm

111

Figure 4.10: Histogram of differences in instance-specific approximation ratio (AR) αA,G between ADAM
and other optimizers for QAOA-Warm (top) and standard QAOA (bottom). Overlapping regions are in purple.
The red bin indicates instances for which optimizers performed similarly to ADAM.

112

Table 4.1: Multiple tables comparing the average instance-specific approximation ratio achieved during
QAOA-warm when utilizing different combinations of ranks and rotations during the preprocessing stage.
For the top row of tables, these averages were computed using all the graphs in our graph library G (see
Section 4.5.1) whereas for the bottom row, we restrict our attention to only those graphs in G with positive
edge weights. Each run of standard QAOA and QAOA-warm terminates when the difference in successive
values of Fp(γ, β) is less than 10−6W̄ where W̄ is the sum of the absolute values of the edge weights.

depth p = 1 depth p = 8

all graphs
vert. uniform

2-dim. 0.9581 0.9581
3-dim. 0.9576 0.9440

vert. uniform
2-dim. 0.9726 0.9718
3-dim. 0.9688 0.9560

positive-weight
graphs

vert. uniform
2-dim. 0.9569 0.9569
3-dim. 0.9556 0.9441

vert. uniform
2-dim. 0.9704 0.9697
3-dim. 0.9659 0.9548

in terms of the instance-specific approximation factors obtained, Figure 4.10 illustrates

a noticeable effect on αA,G achieved for standard QAOA especially at the higher circuit

depths that we tested for (p = 4 and p = 8).12 In particular, we find that runs using the

ADAM optimizer tend to have better performance for standard QAOA. For this reason, the

remaining results in this paper regarding standard QAOA will only include runs that utilize

the ADAM optimizer in order to obtain a more simple, direct, and fair comparison with

QAOA-warm.

4.5.3 Choice of Rank and Rotations

To compare QAOA-warm against standard-QAOA, the GW algorithm, and hyperplane

rounding of BM-MC2 , we need to narrow in to the choice of the BM-MCk rank (2 or

3) and the type of rotation (vertex-at-top or uniform random) to use. We explore these two

choices in this subsection.

Recall that we consider the best-of-5 warm-starts for each type of rotation13. Over

the 1264 graph instances, for 3-dimensional initializations, we find that the vertex-at-top

rotations typically have a slight increase in performance over random uniform rotations, es-

12We suspect this is an artefact of the parameter landscapes becoming flatter with the warm-starts.
13We found that restarting standard QAOA multiple times did not impact the results significantly.

113

Figure 4.11: Histogram of differences in instance-specific approximation ratios between QAOA-warm and
standard QAOA. Overlapping regions are in purple.

pecially when 3-dimensional solutions are used (e.g., at depth p = 1, 3-dimensional vertex-

at-top rotations obtain 0.9576 instance-specific approximation ratio on average, whereas 3-

dimensional uniform rotations obtain 0.9440). These results seem reasonable since vertex-

at-top rotations rarely end up in states that plateau for warm-starts (see Section 4.3 for an

example of such a warm-start). We include a summary of average instance-specific approx-

imation ratios observed across the four choices of rank and rotations in Table 4.1.

On the other hand, when using 2-dimensional initializations, there is virtually no dif-

ference between the two rotation approaches, as 2-dimensional solutions were specifically

designed to avoid bad states for warm-starts. For the ease of presentation, the remainder of

the results in this paper will utilize 2-dimensional initializations with a vertex-at-top rota-

tion scheme as this appears to be one of the most promising combinations for QAOA-warm.

4.5.4 Aggregate Results

Here we use aggregated results of QAOA-warm in order to answer three key questions:

(Q1) How does QAOA-warm fare compare to standard QAOA and classical Max-Cut algo-

rithms (BM-MC and Goemans-Williamson), (Q2) How much of QAOA-warm’s instance-

specific approximation ratio can be attributed to the warm-start itself v/s what is done by the

114

Table 4.2: We consider 4 algorithms: Goemans-Williamson (G), 2-dimensional Burer-Monteiro with hy-
perplane rounding (B), QAOA-warm (W), and standard QAOA (S). There is a row for each of the 4! = 24
ways the algorithms can perform relative to one another with the cell value indicating the percentage of in-
stances for which that ordering occurs. As an example, the top-leftmost value indicates that for 25.08% of
instances, W ≥ B ≥ G ≥ S in terms of AR with W and S being depth-1. The four largest entries in
each column are bolded for emphasis. To account for numerical error for nearly solved instances, we declare
QAOA-warm (W) as the best as long as it is within 0.001 AR of the best algorithm. We include columns
corresponding to the entire graph library G as well as the subset of G that have positive-weighted edges.

p=1 p=2 p=4 p=8
all positive all positive all positive all positive

WBGS 25.08% 25.08% 26.42% 26.42% 23.97% 23.97% 16.61% 16.61%
WBSG 0.00% 0.00% 0.16% 0.31% 0.32% 0.31% 0.71% 0.79%
WGBS 30.93% 30.93% 32.28% 32.28% 29.98% 29.98% 21.84% 21.84%
WGSB 0.00% 0.00% 0.24% 0.31% 0.32% 0.47% 2.06% 3.30%
WSBG 0.00% 0.00% 0.16% 0.16% 2.61% 2.52% 4.27% 4.56%
WSGB 0.08% 0.16% 0.00% 0.00% 2.29% 2.04% 4.27% 3.62%
BWGS 0.95% 1.89% 0.71% 1.10% 0.16% 0.16% 0.00% 0.00%
BWSG 0.08% 0.16% 0.24% 0.47% 0.08% 0.00% 0.00% 0.00%
BGWS 22.39% 22.39% 17.01% 17.01% 6.25% 6.60% 1.34% 0.47%
BGSW 1.50% 2.36% 4.83% 5.50% 10.44% 10.44% 4.03% 6.29%
BSWG 0.24% 0.47% 0.32% 0.63% 0.71% 1.26% 0.63% 1.26%
BSGW 0.32% 0.63% 0.24% 0.47% 1.34% 1.89% 1.11% 2.04%
GWBS 1.50% 1.89% 1.50% 1.89% 1.27% 1.57% 0.47% 0.31%
GWSB 0.08% 0.16% 0.08% 0.16% 0.08% 0.16% 0.55% 0.94%
GBWS 15.66% 15.66% 10.92% 10.92% 4.91% 4.87% 1.11% 0.63%
GBSW 0.71% 0.63% 3.72% 3.62% 6.09% 6.09% 2.69% 4.72%
GSWB 0.00% 0.00% 0.00% 0.00% 0.08% 0.16% 0.40% 0.63%
GSBW 0.00% 0.00% 0.00% 0.00% 0.08% 0.16% 0.24% 0.31%
SWBG 0.00% 0.00% 0.00% 0.00% 1.27% 1.57% 8.86% 8.86%
SWGB 0.16% 0.31% 0.32% 0.47% 1.74% 1.73% 8.23% 7.39%
SBWG 0.00% 0.00% 0.40% 0.79% 0.87% 1.57% 1.42% 2.20%
SBGW 0.16% 0.31% 0.24% 0.31% 2.69% 2.67% 11.71% 11.71%
SGWB 0.16% 0.31% 0.16% 0.31% 0.08% 0.16% 0.08% 0.16%
SGBW 0.00% 0.00% 0.08% 0.00% 2.37% 1.73% 7.36% 8.33%
Total 100% 100% 100% 100% 100% 100% 100% 100%

115

quantum circuit, and (Q3) What are the trends in QAOA-warm’s instance-specific approx-

imation ratio with varying depth and graph size and how does this compare with standard

QAOA?

(Q1). To answer the first question, we compare standard QAOA, QAOA-warm, the GW

algorithm, and hyperplane rounding of the BM-MC2 solutions in Table 4.2. At depth-1,

QAOA-warm is at least as good as the other three algorithms for 56.1% of the instances

meanwhile standard QAOA is the best for less than 1% of the instances. However, as

the circuit depth increases, standard QAOA is the best algorithm for a larger proportion

of instances (37.66% of instances at depth p = 8); meanwhile, QAOA-warm is still at

least as good as the other algorithms for 49.8%, nearly half, of the instances. These re-

sults empirically support our claim that warm-starts show improvements in performance of

QAOA at low circuit depths. Since standard QAOA achieves the optimal cut in the limit as

the circuit depth increases and thus, for any particular graph, there exists some (instance-

dependent) circuit depth p for which standard QAOA beats the GW algorithm [1]. Current

and near-term quantum devices can only reliably run QAOA for low circuit depth (due

to the presense of quantum noise), and therefore we propose that QAOA-warm can be of

significant use in this regime. Although our current implementation of QAOA-warm does

not perform as well at higher circuit depths (compared to standard QAOA), we later extend

QAOA-warm to QAOA-warmest in the next chapter by changing the mixer which we find

yields better performance with increased circuit depth.

We next consider the difference in instance-specific approximation ratios obtained by

QAOA-warm and standard QAOA. In Figure 4.11, we provide a detailed comparison be-

tween instance-specific approximation ratios attained by QAOA-warm and standard QAOA

in the form of a histogram. We see improvements in the instance-specific approximation

ratio ranging from 0.1 to 0.5 when using warm-starts, especially at low circuit depth. These

results are consistent with those depicted in Table 4.2. We note that in this figure, as in the

others, we take the best of 5 vertex-at-top rotations for QAOA-warm; and in Section 4.5.7,

116

we include results in the case where the median and worst (of 5) vertex-at-top rotations are

used instead.

(Q2). We now address the second key question regarding how much of the performance

of QAOA-warm can be attributed to the warm-start itself. This is an important question

to address because if the improvement generated by QAOA-warm is due only to the initial

quantum state at p = 0 having higher overlap with good solutions, then there would be

no point in running the quantum device. To test this, we compare, in Figure 4.12, the

improvement in instance-specific approximation ratio from depth-0 QAOA-warm (i.e. just

measuring the initial state obtained from the preprocessing stage) to depth-1 QAOA-warm,

as well as the improvement when we change the depth from 1 to 8. For 74 instances,

we observed that the instance-specific approximation ratio from QAOA-warm improved

by at least 50% when going from p = 0 to p = 1 and by at least 80% for 22 instances.

This shows the promise of using QAOA on top of the warm-starts. On the other hand,

the increase in instance-specific approximation ratio from depth-1 QAOA-warm to depth-8

QAOA-warm is milder, ranging upto 10% for positive-weighted instances and upto 22.3%

for general graphs. These results show that empirically, running QAOA-warm does yield

an increase in instance-specific approximation ratio beyond simply sampling the initial

warm-start state; however, the returns diminish with higher circuit depths (this is expected

because QAOA-warm can plateau for some instances, Section 4.3).

(Q3). Lastly, to address the third question, we consider how the performance of QAOA-

warm varies across n (number of nodes) and p (circuit depth), which we illustrate for our

graph library in Figure 4.13. While there is a significant improvement in performance

for standard QAOA with increasing circuit depth, we find that QAOA-warm consistently

outperforms standard QAOA (on average), except at p = 8. We also see that at fixed

depth, the performance of both standard QAOA and QAOA-warm degrades as the number

of nodes increases, while the degradation of QAOA-warm is much flatter compared to

standard QAOA. We further discuss pre-processing and parameter search time for QAOA-

117

Figure 4.12: The number of instances for which QAOA-warm obtained at least an r% improvement in AR
as the circuit depth increases from p = 0 to p = 1 (left) and from p = 1 to p = 8 (right). For each instance,
the best percent improvement (across all five vertex-at-top rotations) is used. Note that % improvements in
instance-specific approximation ratios go up to 80-120% from p = 0 to p = 1, and up to 12-20% from as
depth increases from p = 1 to p = 8.

All Graphs Positive-Weighted Graphs

Figure 4.13: This figure shows how standard QAOA (dotted) and QAOA-warm (solid) perform as we alter
the circuit depth and the number of nodes. For QAOA-warm, we take the best of 5 vertex-at-top rotations.
For the left plot, for each n = 2, . . . , 12, we find the instance-specific approximation ratio achieved for both
standard QAOA and QAOA-warm for each n-node instance in G (see Section 4.5.1), and take the median of
those instance-specific approximation ratios. The right plot is constructed similarly except only instances in
G with positive edge-weights are considered. We plot the results for circuit depths p = 1, 2, 4, 8.

warm in Section 4.5.6.

4.5.5 Parameter Landscapes and Trajectories

We now consider looking at all parameter combinations for γ and β in order to obtain a

better understanding of the landscape that we need to optimize over for standard QAOA

and QAOA-warm. For any graph G, initial state |s0⟩, and circuit depth p = 1, we can plot

a parameter landscape which allows us to visualize the solution quality as a function of

the variational parameters γ1 and β1. In particular, each point (γ1, β1) in the landscape is

118

No Warm Start BM-MC3, Vertex 2 to Top

BM-MC3, Vertex 1 to Top BM-MC3, Uniform Rotation

Figure 4.14: Parameter landscapes for Ĝ (top-left) with corresponding SDP solution (bottom-left). For
each trajectory of optimization of the variational parameters, we use a black circle to denote the beginning
of the trajectory and a white × to denote the end of the trajectory. When no warm start is used, there are
many peaks and valleys (top-center). When vertex 1 rotated to the top; we have a ridge-like landscape with
the optimal solutions occurring on the horizontal line β1 = 0 (bottom-center). When rotating vertex 2 at the
top instead, the parameter landscape is less ridge-like and the endpoints of the trajectories are more scattered
(top-right). When using a uniform rotation we have peaks and valleys similar to when no warm-start was
used but with overall better solution qualities (bottom-right).

assigned a color which corresponds to the instance-specific approximation ratio (i.e. the

quantity F1(γ,β)−MIN-CUT(G)
Max-Cut(G)−MIN-CUT(G)).

As an example, we plot the parameter landscape for graph Ĝ in Figure 4.14 without

and with warm-starts (using 2 vertex-at-top rotations and one uniform rotation). For each

parameter landscape, we ran the QAOA training loop twenty times with random initial-

izations of (γ1, β1) and overlayed the trajectories of the parameter values throughout the

training loop for the variational parameters. When no warm-start is used, the parame-

ter landscape has many peaks and valleys and a wide range of solution qualities; using a

warm-start drastically changes the landscape. However, if we rotate one of the approximate

solution of BM-MC3 for Ĝ using a vertex-at-top rotation, this yields a ridge-like parameter

landscape where the optimal parameter values lie near the line β1 = 0. This behavior is no

longer there for a different vertex-at-top rotation for the same approximate solution. The

endpoints of the optimization trajectories on the resultant are scattered, and the ridge-like

119

shape is not as pronounced. When performing a uniform rotation, the globally optimal

solution qualities are comparable to the solution qualities when rotating vertex 1 to the top;

however, the landscape retains some less symmetric peaks and valleys and some of the

trajectories end at local optima that are far from optimal.

Overall, we see that the rotation used in the preprocessing stage can have a consider-

able effect on both the shape of the landscape and the solution qualities. Ideally, with a

good choice of rotation, the parameter landscape has a ridge-like shape with high solution

qualities near the line β1 = 0, in which case, γ = β = 0 is a natural choice of initialization

when running QAOA-warm.

To quantify flatness of the parameter landscapes when using warm-starts, we consider

some simple aggregate statistics of the landscapes of all unit-weight graphs14 in G. For

each graph, we view each point in the parameter landscape as producing an instance-

specific approximation ratio in [0,1]. We compute the minimum, maximum, and aver-

age instance-specific approximation ratios found across each landscape15. As empirically

shown in Figure 4.15, QAOA-warm landscapes have lower range of instance-specific ap-

proximation ratios, e.g., 80.4% of the instances have a range of at most 0.4 in the instance-

specific approximation ratios attained in the landscape. This means that any two choices

of γ1, β1 parameters will produce solutions with a difference in instance-specific approx-

imation ratio of at most 0.4. In contrast, only 27.5% of our graph instances have such a

range of instance-specific approximation ratios for the standard QAOA. We further see that

when we use warm-starts, the overall quality of approximation across the parameter land-

scape improves. This can be seen by observing a higher minimum, maximum, and average

instance-specific approximation ratios than standard QAOA.

14Due to the symmetries in the QAOA circuit for unit-weight graphs, we know that it suffices to check the
values of Fp(γ, β) for (γ, β) in [−π, π]× [−π/4, π/4] [114].

15The minimum, maximum, and average are computed by considering a discretization of the land-
scape. In particular, we consider the values of F1(γ1, β1) for all (γ1, β1) ∈ D = {(π i

50 ,
π
4

j
50) : i =

−50,−49, . . . , 50 and j = −50,−49, . . . , 50}.

120

Figure 4.15: This figure shows how various statistics of the parameter landscape change with the variant
of QAOA considered (standard QAOA, QAOA-warm with vertex-at-top rotations, and QAOA-warm with
random rotations). For each unit weight graphs in our graph library G (See Section 4.5.1) and for each
QAOA variant, we first generate the parameter landscape; we use a single 2-dimensional initialization for both
rotation schemes considered for QAOA-warm. For each landscape, we calculate the minimum, maximum,
and average across the landscape in addition to the range (the difference between the highest and lowest
instance-specific approximation ratio achieved in the landscape).

121

Figure 4.16: This figure shows how the median runtime changes for both GW and BM-MCk (k = 2, 3)
as the number of nodes increases. The extended graph library G′ (2076 instances) was used to generate the
results above; we also run plot the results for just the positive-weighted graphs in G′ as well. The top and
bottom of the colored regions corresponding to 75 and 25 percentiles respectively.

4.5.6 Pre-processing Time vs Parameter Search Time

Here, we compare runtimes for various aspects of QAOA-warm to those of standard QAOA

and the GW algorithm. For the preprocessing stage, finding an approximate solution for

BM-MCk takes up the bulk of the time (i.e., 1-3 seconds). The rotation applied to the

solution and the mapping of the rotated solution to the Bloch sphere is negligible. We plot

the runtimes for BM-MCk for k = 2, 3 in Figure 4.16. To get a better idea of scaling,

we consider an expanded graph library G ′ consisting of 2076 instances; G ′ is generated in

the same way as G (see Section 4.5.1) but we instead consider graphs of up to 19 nodes.

Finding approximate solutions to rank-2 BM-MC2 is considerably faster than rank-3 BM-

MC3; furthermore, the runtimes are similar regardless of edge weight values. Plots of the

GW algorithm’s runtime for all graphs in G ′ are included in Figure 4.16; as before, we see

the runtimes are similar even if restrict our attention to only positive-weighted graphs. Note

that our code for BM-MC runs is not optimized, and possibly faster implementations for

this might be possible.

For both classical algorithms (the GW algorithm and BM-MCk), we see that the runtime

increases superlinearly in the number of nodes n. In regards to theoretical results, the

runtime of the GW algorithm is dominated by solving the SDP; Lee and Padmanabhan

[115] develop an algorithm where one can get within factor 1 − ε of the optimal SDP

122

Figure 4.17: This figure shows how the median runtime changes for the optimization loop of both standard
QAOA and QAOA-warm for various optimizers (ADAM, BFGS, and Nelder-Mead). COBYLA was not
included due to technical limitations with our software; in particular, we were unable to gain direct access to
the source code needed to in order to exclude the runtime of function or gradient evaluations. as the circuit
depth increases. These runtimes do not include the time taken to evaluate/estimate the function values or
gradients of the expected cut value Fp(γ, β) (since in practice, such calls would be made on the quantum
device). These plots were generated by randomly selecting 20 8-node graphs from our graph library G (see
Section 4.5.1), with 10 of the 20 graphs having only positive edge weights. For each solid colored line
(corresponding to the median), there are two dashed lines of the same color above and below representing
the 75th and 25th percentiles respectively. On the right, we plot the runtimes for BFGS separately in order to
more easily see the trend in runtime as p increases.

objective in Õ(m/ε3.5) time where m is the number of edges in the graph. Similarly, for

BM-MCk, Mei et al. [77] prove that one can use a variant of the fast Riemannian trust-

region algorithm to find a locally optimal solution in O(n2dk4 log n) time for d-regular

graphs.

We now consider the runtime of the optimization loop used in both standard QAOA

and QAOA-warm as seen in Figure 4.17 for various optimizers (ADAM, BFGS, Nelder-

Mead). To get an idea of the runtime of the classical portions of the optimization loop, we

exclude16 the time taken to estimate the function values or gradients of Fp(γ, β). During

our preliminary experiments, we found that the number of nodes did not have any noticable

effect on the runtime of the optimization loop for either standard QAOA or QAOA-warm

for any of the optimizers. However, for all optimizers, Figure 4.17 shows that, empirically,

more time is needed to optimize γ and β as the circuit depth increases. With the exception

of BFGS, for all optimizers and circuit depths, it appears that QAOA-warm converges to a

16We exclude such portions since including them would not be reflective of the runtime obtained on an
actual quantum device; a quantum device can estimate Fp(γ, β) (the expected cut value) in time polynomial
in n whereas a numerical simulation would (typically) take time that is exponential in n.

123

set of parameters more quickly compared to standard QAOA.

We now discuss the runtime of the preprocessing stage of QAOA-warm relative to the

runtime of QAOA-warm’s optimization loop. A direct comparison is difficult since the

former is independent of the circuit depth p and the latter is independent of the number of

nodes n. However, for the p and n considered in our experiments, it appears (from Figures

4.16 and 4.17) that the preprocessing stage takes orders of magnitude longer. We remark

that our current implementation for finding approximate BM-MCk solutions (Algorithm 1)

was not designed to find solutions quickly; we suspect other methods can find solutions

more quickly. Additionally, we remark that the runtime preprocessing stage appears to

scale modestly as the number of nodes increases. The trends in Figure 4.17 also suggest

that as the circuit depth p increases, that the proportion of QAOA-warm spent in the prepro-

cessing stage diminishes. Moreover, the real runtime of the optimization loop on an actual

quantum device would be longer since one needs to consider the time needed to query the

quantum device in order to estimate the value or gradient of Fp(γ, β) at every iteration of

the optimization loop. Lastly, there is the additional benefit that if one wants to perform

multiple QAOA-warm runs with different initializations of the variational parameters or

different rotation schemes, then one only needs to find a solution to BM-MCk once.

4.5.7 QAOA-Warm with Median and Worst Vertex-At-Top Rotations

For our numerical simulations in Section 4.5, we use the best of either 5 vertex-at-top rota-

tions or best of 5 uniform rotations for QAOA-warm. Performing multiple runs of QAOA-

warm with different rotations and taking the best allows one to mitigate the possibility of

using a warm-start with a poor rotation. We present the results with respect to the median

rotation here. We plot the results below in Figure 4.18; we see that the results do not differ

much from what was seen in Figure 4.11. In Figure 4.19, we also plot the results when the

worst of 5 vertex-at-top rotations are used to give an idea of the worst-case performance

for QAOA-warm.

124

Figure 4.18: Histograms comparing the instance-specific approximation ratio in (depth-p) QAOA-warm
and (depth-p) standard QAOA for both p = 1 (blue) and p = 8 (red) where the median vertex-at-top rotations
are used. Overlapping portions of the histogram are in purple. The left plot is generated using the graphs
in our graph library G (see Section 4.5.1) whereas for the bottom right plot, we restrict our attention to only
those graphs in G with positive edge weights.

Figure 4.19: Histograms comparing the instance-specific approximation ratio in (depth-p) QAOA-warm
and (depth-p) standard QAOA for both p = 1 (blue) and p = 8 (red) where the worst vertex-at-top rotations
are used. Overlapping portions of the histogram are in purple. The left plot is generated using the graphs
in our graph library G (see Section 4.5.1) whereas for the right plot, we restrict our attention to only those
graphs in G with positive edge weights.

125

4.6 Discussion

In this chapter, we proposed using classical approximate solutions to low-rank Max-Cut

formulations and low-dimensinal projections of higher-dimensional Max-Cut formulations

to initialize the QAOA algorithm. There are significant differences in classical approxi-

mation algorithms for Max-Cut and quantum algorithms. For example, in the classical

approach the vertices that share the same 3-dimensional representation on the sphere will

always be on the same side of the cut (no matter which hyperplane is selected). In con-

trast, quantum sampling creates a very different distribution (with a larger support) over

cuts, wherein vertices with the same state can be sampled on different sides of the cut.

Despite this difference, we observe that as the angle θ of the vertices to the measure-

ment axis approaches 0, the probability distribution of the classical solution approaches

that of the quantum sampling. Intuitively, as vertices start clustering at the antipodes on

the 3-dimensional sphere, quantum sampling of the corresponding qubits and hyperplane

rounding of the 3-dimensional representation both give similar cuts. Moreover, SDP-based

solutions spread adjacent vertices (with positive edge weights) as far as possible on the

k-dimensional sphere, which can be beneficial for quantum sampling as well.

Standard QAOA is a local algorithm [1]. If the circuit depth p is not high enough, then

standard QAOA may fail to achieve near-optimal solutions [31, 32]. However, when one

considers the preprocessing stage used in QAOA-warm, such a locality property no longer

exists. A clear example of this is BM-MC2 applied to an odd cycle: the optimal solution

consists of the vertices evenly spaced apart along the unit circle. However, if a single edge

is deleted, the optimal solution collapses to a rank-1 solution. The edge deletion has a

global effect on the positions of all the vertices, and consequently, on the probability of

each edge being cut. Put another away, although the quantum operations in QAOA-warm

are still local, the warm-start encodes information about the global structure of the graph,

in which case, building up correlations between distant qubits (via a high circuit depth)

126

may not be necessary if a high-quality warm-start is used.

Warm-starts also appear to flatten the energy landscape in terms of (β, γ). In the most

extreme case (for example Figure 4.7(b)), the warm start finds the optimal solution, com-

pletely decoupling the QAOA optimization loop from γ1 and the cost Hamiltonian HC .

Even when this does not occur, warm-starting still appears to make QAOA less sensitive to

initial (β, γ) values by starting off in the neighborhood of a possible solution. In particular,

the role of γ is diminished, as the warm-start has already begun optimizing the cost-energy.

This suggests that QAOA-warm serves as a kind of dimensional reduction, emphasizing the

amplitude manipulation of the mixer over the energy weighting of the cost Hamiltonian.

This is not a guarantee that the QAOA optimization will find the optimal solution in the

reduced space; the reduction may hide the optimal solution for graphs that are especially

challenging for SDP solvers. However, this flattening may prove important for physical

implementations of QAOA. The warm-start flattened landscapes may make QAOA more

robust to both classical and quantum noise that would otherwise complicate the optimal

solution search.

In this chapter, we restricted our attention to rank-2 and rank-3 initializations, whereas

in classical methods, one could also make an attempt at finding rank-k (k > 3) solutions.

These solutions are easier to find, and yield provably better approximations as k increases

[77]. However, increasing the number of dimensions makes the mapping to the quantum

states non-trivial. Exploration of higher-rank approximations are left as a future research

direction.

Another direction for future work is to apply QAOA-warm to other combinatorial

problems. One path is reduction of other problems in NP to Max-Cut [6]. Alternately,

Quadratic Unconstrained Binary Optimization (QUBO) problems can easily be recast as a

Max-Cut problem (and vice versa) with the number of variables differing by at most 1 [96].

Many combinatorial problems are easily expressed in the form of a QUBO [116, 117] so

Max-Cut is also an interesting problem to consider from a practical standpoint. However,

127

it may be of interest to see if our approach can be used directly for other combinatorial

problems without resorting to such reductions.

Lastly, as seen in Section 4.3, we acknowledge that QAOA-warm, in its current form,

has limitations; in particular, increased circuit depth does not necessarily yield optimality

of Max-Cut in the limit. This performance may be extendable to higher circuit depth via

modifications to the mixing Hamiltonian HB; this idea yields positive results in Egger et

al.’s work and such a modification is the subject of study in the next chapter.

4.7 Conclusion

In this chapter, we explored the idea of warm-starts for initializing the quantum state of the

QAOA algorithm, and showed promising experimental and theoretical results for low-rank

initializations using approximate SDP solution. On average, we find that QAOA-warm

performs better in terms of time and quality of solutions in low depth circuits, compared

to standard QAOA. Moreover, even though a portion of the instance-specific approxima-

tion ratios of QAOA-warm can be attributed to the classical warm-start itself, we find that

running QAOA-warm introduces significant improvements in expected cut quality beyond

simply (quantum) sampling the initial warm-start state for many instances. As the circuit

depth increases, QAOA-warm is however unable to converge to the optimal solution (unlike

standard QAOA). In the next chapter, this is remedied by considering further modifications

to QAOA-warm (e.g. modifying the mixing Hamiltonian), although standard mixers might

provide easier implementation on certain hardware. We further acknowledge that beyond

the instance-specific approximation ratio, there are a variety of methods and metrics in

which to measure the performance of QAOA and its possible variants. We leave such an

exploration of the cut distributions (and metrics on those distributions) for potential future

work; we refer the reader to a paper by Herrman et al. for such results on standard QAOA

[90].

Overall, we believe that the use of the standard mixers with warm-starts allows a prin-

128

cipled way of bringing in information from classical solvers into quantum algorithms.

The concept of warm-starts and plateauing of quality of instance-specific approximation

at higher p depth could be of interest to researchers looking at reachability of solution state

space and, at the limitations and strengths of the standard QAOA itself.

129

Table 4.3: The table summarizes what is known about different variants of QAOA (for Max-Cut) based on
various combinations of initializations (equal superposition, BM-MCk, projected GW, and single-cut initial-
izations) and mixing Hamiltonian (standard, custom mixers (Section 5), and the mixer proposed by Egger
et al. [42] for single-cut initializations). For various combinations, we state what is known regarding the
convergence and worst-case approximation ratio (for depths p ≥ 0) of the corresponding QAOA variant for
graphs with non-negative edge weights.

Initializations Mixers Citation Worst Case AR at
p=0

Converges
to Max-
Cut?

Comment

Equal
Superposition

Standard
mixer

[1] 0.5 Yes
Both mixers
are equiva-
lent for this
initialization

Custom
mixers

BM-MCk

Standard
mixer
(QAOA-
warm)

[3]
0 (k = 2)
0.333 (k = 3) No

Custom
mixers
(QAOA-
warmest)

This
work

0 (k = 2)
0.333 (k = 3) Yes Converges

quickly
(see Section
5.4.1)

Projected GW

Standard
mixer
(QAOA-
warm)

This
work

0.658 (k = 2),
0.585 (k = 3),
(Corollary 20)

No

Custom
mixers
(QAOA-
warmest)

This
work

0.658 (k = 2),
0.585 (k = 3),
(Corollary 20)

Yes Converges
quickly
(see Section
5.4.1)

Single cut
(with reg-
ularization
angle θ∗)

Standard
mixer
(QAOA-
warm)

[57]
(θ∗ = 0
case)

0.878 cos2n(θ∗/2),
(Proposition 9)

No

Custom
mixers
(QAOA-
warmest)

Appendix
I of
[42]

0.878 cos2n(θ∗/2),
(Proposition 9)

Yes Converges
slowly for
small θ∗

(see Section
5.4.1)

Other
custom
mixers

Section
2.3 of
[42]

0.878 No AR result
occurs at
(γ1, β1) =
(0, π/2)

130

CHAPTER 5

WARM-STARTS WITH CUSTOMIZED MIXERS

In this chapter1, we provide a general framework that shows, for any initial product state,

how to construct a custom mixing Hamiltonian for QAOA so that the QAOA (for Max-Cut)

converges to an optimal cut with increased circuit depth; recall that the approach discussed

in the previous chapter, QAOA-warm, does not have such convergence properties. When

this custom mixer approach is combined with a warm-start, such as those presented in the

previous chapter, we refer to such an approach as QAOA-warmest. In what follows, we

describe this custom mixer framework in detail, discuss its properties in regards to conver-

gence, and summarize the results of numerical simulations and hardware experiments.

5.1 Custom Mixer Construction

Consider any product state |s0⟩ on n qubits on the Bloch sphere, i.e., |s0⟩, up to a global

phase, can be written in the form:

|s0⟩ =
n⊗

j=1

|s0,j⟩ ,

where for j = 1, . . . , n,

|s0,j⟩ = cos(θj/2) |0⟩+ eiφj sin(θj/2) |1⟩ .

Here, θj and φj can be interpreted as the polar and azimuthal angle respectively of the jth

qubit on the Bloch sphere. The position of the jth qubit on the Bloch sphere can also be

described in Cartesian coordinates n̂j = (xj, yj, zj) via the following transformation from

1The results presented in this chapter are currently under revision for Quantum; a preprint is available on
the arXiv [3].

131

spherical to Cartesian coordinates:

xj = sin θj cosφj,

yj = sin θj sinφj,

zj = cos θj.

The custom mixing Hamiltonian HB is then constructed as follows:

HB =
n⊕

j=1

HB,j,

where HB,j = xjσ
x + yjσ

y + zjσ
z. To develop a geometrical understanding of the custom

mixer, consider the operator Rn̂,j(α) that rotates the jth qubit by angle α about the n̂-axis

for some unit vector n̂ = (x, y, z); such as operation can be written as:

Rn̂,j(α) = exp
(
−iα

2
(xσx

j + yσy
j + zσz

j)
)
.

Recall that for the kth of the p stages of the QAOA circuit (where p is the circuit depth),

one applies the unitary operator e−iβkHB with βk being a variational parameter (to be opti-

mized); this operator, e−iβkHB , can be written as
∏n

j=1Rn̂j ,j(2βk), i.e., in the kth stage of

the QAOA circuit, one independently rotates the jth qubit about the axis determined by its

original position by angle 2βk.

The standard QAOA [1] is, therefore, a special case of our custom mixer approach

as the standard starting state has each qubit on the x-axis (with Cartesian coordinates

(xj, yj, zj) = (1, 0, 0)) and with the standard mixer HB =
∑n

j=1 σ
x
j , the unitary opera-

tor e−iβkHB corresponds to rotations (by 2βk) about the x-axis.

132

5.2 Proof of Convergence in the Adiabatic Limit

In the special case that a product state consists of qubits that lie at the intersection of

the Bloch sphere and the xz-plane with positive x-coordinate, it can be proven that the

corresponding custom mixer is the same as those considered by Egger et al. [42] for convex

quadratic programs. It should be noted that while the construction of the mixer (for a given

initial state) is the same between both approaches, our approach and Egger et al.’s differ

signifcantly in regards to how the initial state is obtained (as discussed in Section 4.2.3).

In their paper, Egger et al. state that QAOA with such a modified mixer converges to the

optimal cut value with increased circuit depth.

While Egger et al. state such a convergence result, they do not provide a proof. While

straightforward calculations prove that the initial state is the highest-energy eigenstate of

the mixer (a condition needed in order to apply the adiabatic theorem and guarantee con-

vergence), a complete proof requires careful inspection of the eigenvalues of the time-

dependent Hamiltonian H(t) = (1− t/T)HB + (t/T)HC . In Sections 5.2.1 and 5.2.2 we

go over the details of the proof, before putting it all together in Section 5.2.3. We then show

how this convergence result can be generalized to arbitrary product states in Section 5.2.4.

5.2.1 Eigenstates of Custom Mixers

As previously discussed, the initial state of standard QAOA is the highest energy eigen-

state of the standard mixing Hamiltonian; such a property is required in order to make the

adiabatic argument that standard QAOA converges to the optimal cut with increased circuit

depth. Similarly, if we wish to prove convergence for QAOA-warmest; we must prove the

custom mixers and warm-started initial quantum state also exhibit this property; we prove

this is the case regardless of if the initial state lies in the xz-plane or not. We first prove that

the result holds for a single qubit, and then generalize to the Kronecker sums of matrices.

Lemma 26. Let |s⟩ = cos(θ/2) |0⟩ + eiφ sin(θ/2) |1⟩ be a single-qubit quantum state and

133

let n̂ = (x, y, z) be the Cartesian coordinates of that qubit on the Bloch sphere. Let U =

xσx + yσy + zσz. Then |s⟩ is the most-excited eigenstate of U .

Proof. We have the following relationship between the Cartesian and spherical coordinates:

x = cosφ sin θ, y = sinφ sin θ, z = cos θ. Thus, the matrix U = xσx + yσy + zσz is given

by

U =

 cos θ sin θe−iφ

sin θeiφ − cos θ

 .
One can show that the matrix can be diagonalized as U = PDP−1 where P = [v1 v2], D =

diag(1,−1), v1 = cos(θ/2) |0⟩ + sin(θ/2)eiφ |1⟩ , v2 = − sin(θ/2) |0⟩ + cos(θ/2)eiφ |1⟩.

Thus, v1 = cos(θ/2) |0⟩+ sin(θ/2)eiφ |1⟩ is the highest-energy eigenstate of U .

We can then formulate the most-excited eigenstate of U using the following relation

between eigenvalues of matrices involved in a Kronecker sum and the resultant matrix.

Theorem 27. (Theorem 13.16 in [118]) Let A ∈ Cn×n have eigenvalues λ1, . . . , λn and

let B ∈ Cm×m have eigenvalues µ1, . . . , µm. Then the Kronecker sum A ⊕ B has mn

eigenvalues given by {λi + µj : i ∈ [n], j ∈ [m]}. Moreover, if x1, . . . , xp (p ≤ n) are

linearly independent eigenvectors of A corresponding to λ1, . . . , λn and z1, . . . , zq (q ≤

m) are linearly independent eigenvectors of B corresponding to µ1, . . . , µq, then, for all

i ∈ [p] and j ∈ [q], we have that xi ⊗ zj are linearly independent eigenvectors of A ⊕ B

corresponding to λi + µj .

By applying Theorem 27 with the summands HB,j of the mixing Hamiltonian HB, we

get the desired result as shown in Proposition 10.

Proposition 10. Let |s0⟩ be any initial product state and let HB be its corresponding cus-

tom mixer. Then |s0⟩ is the highest-energy eigenstate of HB.

Proof. Suppose for each j = 1, . . . , n we have a matrix Aj with real eigenvalues and

suppose the largest eigenvalue of Aj is λj with corresponding eigenvector vj . As a con-

sequence of Theorem 27, we have that the largest eigenvalue of
⊕n

j=1Aj is
∑n

j=1 λj with

134

one corresponding eigenvector being
⊗n

j=1 vj . Letting Aj = HB,j and vj = |s0,j⟩ and

applying Lemma 26, we see that |s0⟩ =
⊗n

j=1 |s0,j⟩ is a highest-energy eigenstate for

HB =
⊕n

j=1HB,j .

In order to fully complete the adiabatic argument for proving convergence, it remains to

prove that the gap between the two largest eigenvalues of the time-dependent Hamiltonian

H(t) = (1− t/T)HB + (t/T)HC is positive for all 0 ≤ t < T ; we discuss this condition

in more detail in the next section.

5.2.2 Eigenvalue Gap for Custom Mixers

LetHB andHC be the mixing and the cost Hamiltonian for QAOA respectively. It is known

that if the Quantum Adiabatic Algorithm is run for large enough time T with time-varying

Hamiltonian H(t) = (1− t/T)HB + (t/T)HC starting with the highest-energy eigenstate

ofH(0) = HB, then one can arrive at the highest-energy eigenstate ofH(T) = HC , i.e. the

optimal solution, provided that the gap between the largest and second-largest eigenvalue

ofH(t) is strictly positive for all t < T . This translates to finding an optimal solution when

running QAOA as we let the circuit depth p tend to infinity. Farhi et al. proved that this

eigenvalue gap was strictly positive for standard QAOA [1], thus guaranteeing convergence

to the optimal solution. In particular, they applied the following Perron-Frobenius theorem

to irreducible stoquastic2 matrices.

Theorem 28. [119] Let A be an irreducible matrix whose entries are all real and non-

negative. Let r be the spectral radius of A, i.e., r = max{|λ| : λ is eigenvalue of A}. Then

r is an eigenvalue of A and furthermore, it has algebraic multiplicity of 1.

If the eigenvalues of an n × n matrix A are real (e.g. if A is Hermitian), then its

eigenvalues (with multiplicity) can be ordered as λ1 ≥ · · · ≥ λn; if A is also irreducible
2Stoquastic matrices are square matrices with real entries so that all of the off-diagonal entries are non-

negative. Let A be an n × n square matrix. Construct a directed graph GA with vertex set [n] where the
edge (i, j) is included if and only if Aij > 0. If GA is strongly connected, then we say that A is irreducible.
Otherwise, we say that A is reducible.

135

and has real, non-negative entries then Theorem 28 ensures a gap between the two largest

eigenvalues (otherwise, if λ1 = λ2, then the algebraic multiplicity of λ1 would be at least 2,

contradicting the statement of the theorem.) This observation still holds if we relax the non-

negativity condition to allow negative entries along the diagonal as seen in the following

lemma.

Lemma 29. Let A be an irreducible stoquastic Hermitian matrix. Then the difference

between the largest and second-largest eigenvalue of A is strictly positive.

Proof. SinceA is stoquastic, then all of the off-diagonal elements are already non-negative;

however, the diagonal elements may be negative. Observe that for large enough k, we have

that A + kI is a matrix with all non-negative entries. Note that A + kI is Hermitian

(since A and I are) and thus the eigenvalues of A + kI are real. If we apply the Perron-

Frobenius theorem to A + kI , one observes that the gap between the largest and second-

largest eigenvalue is strictly positive.

One can show that the eigenvalues of A + kI can be obtained by shifting all of the

eigenvalues of A by k (i.e. of λ is an eigenvalue of A, then λ + k is an eigenvalue of

A+ kI). Moreover, the multiplicities of these shifted eigenvalues are preserved. Thus, the

gap between the largest and second-largest eigenvalue of A+kI (which is strictly positive)

is equal to the gap between the largest and second-largest eigenvalue of A.

If the custom mixer HB has the form
∑n

j=1(xjσ
x
j + zjσ

z
j) with xj ∈ R+ and zj ∈ R

for j = 1, . . . , n and if we can show that H(t) is an irreducible, stoquastic matrix, then,

by Lemma 29, the eigenvalue gap of H(t) is strictly positive meaning that one can achieve

the optimal solution as the circuit depth p → ∞ in QAOA-warmest. Geometrically, this

special case corresponds to an initial product state whose qubits lie in the xz-plane on the

Bloch sphere with x > 0. It remains to prove the stoquasticity and irreducibility of this

special case which is done in the following two propositions; but first, we prove a useful

technical lemma.

136

Lemma 30. If A and B are n× n and m×m stoquastic matrices respectively, then so is

A⊕B.

Proof. By definition, A ⊕ B = A ⊗ Im + In ⊗ B. Since we know the sum of stoquastic

matrices is stoquastic, it suffices to show that A⊗ Im and In ⊗B is stoquastic.

Observe that,

A⊗ Im =


A11Im · · · A1nIm

...

An1Im · · · AnnIm

 .
Note that for i ̸= j, the ijth block in the block matrix above is AijIm, which contains only

non-negative entries since Aij is an off-diagonal element of A and A is stoquastic. Now

consider the entries in the ijth block where i = j. Note that if there is an off-diagonal entry

of A ⊗ Im that is part of the iith block, then it is also an off-diagonal entry of that block

but all the off-diagonal entries of the iith block (AiiI) are zero. Thus, we have shown that

every off-diagonal element is non-negative, thus A⊗ Im is stoquastic.

Next, observe that

In ⊗B =


1B 0B · · · 0B

0B
.

... 0B

0B . . . 0B 1B

 ,

which makes it clear that the off-diagonal elements of In⊗B are either 0 or the off-diagonal

elements of B which are non-negative (by stoquasticity of B) and thus In⊗B is stoquastic.

Proposition 11. Let n be a positive integer. For each j = 1, . . . , n let xj be any non-

negative real number and let zj be any real number. Let HB =
∑n

j=1(xjσ
x
j + zjσ

z
j) and

let HC be the problem Hamiltonian for QAOA. Then H(t) = (1 − t/T)HB + (t/T)HC is

stoquastic for all 0 ≤ t ≤ T .

Proof. By construction HC (and thus (t/T)HC) is a diagonal matrix (as |b⟩ is an eigen-

137

vector of HC for each n-length bitstring b). If HB were stoquastic, then (1 − t/T)HB is

stoquastic (as 1 − t/T ≥ 0 for 0 ≤ t ≤ T) and thus H(t) = (1 − t/T)HB + (t/T)HC is

stoquastic (as adding a diagonal matrix to a stoquastic matrix yields a stoquastic matrix).

Thus, it remains to show that HB is stoquastic.

Let HB,j = xjσ
x + zjσ

z. Expanding σx and σz, we have that

HB,j =

zj xj

xj −zj

 ,
which is clearly stoquastic as we assumed that xj ≥ 0. As HB =

⊕n
j=1HB,j , the result

now follows from Lemma 30.

Proposition 12. Let n be a positive integer. For each j = 1, . . . , n let xj be a positive real

number and let zj be any real real number. Let HB =
∑n

j=1(xjσ
x
j + zjσ

z
j) and let HC be

the problem Hamiltonian for QAOA. Then H(t) = (1− t/T)HB + (t/T)HC is irreducible

for all 0 ≤ t < T .

Proof. First, we recall the definition of irreducible matrix. LetA be an n×n square matrix.

Construct a directed graph GA with vertex set [n] where the edge (i, j) is included if and

only if Aij > 0. If GA is strongly connected, then we say that A is irreducible. Otherwise,

we say that A is reducible.

For any square matrix M , let GM be the corresponding directed graph as described

above. Observe that HC (and hence (t/T)HC) is a diagonal matrix, thus, by the definition

of irreducibility, the irreducibility of (1− t/T)HB +(t/T)HC is the same as (1− t/T)HB.

Similarly, scaling a matrix by a positive constant does not affect its irreducibility, so it

suffices to prove the irreducibility of HB.

Observe that σx, σz are symmetric and thus it is not very difficult to show that HB is

also symmetric. This means, for the purposes of showing irreducibility, GHB
is effectively

an undirected graph and we just need to show that it is connected. One can write HB as

138

HB =
⊕n

j=1(xjσ
x + zjσ

z) where
⊕

denotes the Kronecker sum. According to [120], this

means thatGHB
can be written as the Cartesian graph product of the graphsH1, H2, . . . , Hn

where Hj = GAj
with Aj = xjσ

x + zjσ
z. Observe, that each of the Hj’s are connected if

and only if xj ̸= 0 which is true by assumption. Since each of the Hj’s are connected, then

it is also the case that GHB
is connected as well (see Theorem 1 of [121]) which finishes

the proof.

We can now prove the convergence for custom mixers of the special form (
∑n

j=1(xjσ
x
j+

zjσ
z
j) with xj ∈ R+ and zj ∈ R for j = 1, . . . , n) and their corresponding initializations as

described in Proposition 13 in Section 5.

Recall that for standard QAOA, we have that HB =
∑n

j=1(1 · σx
j + 0 · σz

j). Thus,

the fact that standard QAOA converges to the optimal cut as p → ∞ is a special case of

Propositions 11 and 12.

5.2.3 Proof of Convergence (Special Case)

Using the results above, we now formally prove the convergence result for QAOA-warmest

in the special case where qubits are initialized along the xz-plane of the Bloch sphere with

positive x-coordinate.

Proposition 13. Let |s0⟩ be any initial product state such that all qubits lie at the intersec-

tion of the Bloch sphere and the xz-plane with positive x-coordinate. Running QAOA with

initial state |s0⟩ and its corresponding custom mixer yields that

lim
p→∞

max
γ,β

Fp(γ, β) = Max-Cut(G),

i.e., the expected cut value of QAOA-warmest with optimal variational parameters will

yield the optimal cut value as the circuit depth p tends to infinity.

Proof. By construction, the corresponding custom mixers will have the form
∑n

j=1(xjσ
x
j +

zjσ
z
j) with xj ∈ R+ and zj ∈ R for j = 1, . . . , n. The result then follows from Proposition

139

10, Lemma 29 (which is applicable due to Proposition 11 and Proposition 12), and the

adiabatic theorem.

5.2.4 Proof of Convergence (General)

As seen in the previous chapter, it may be the case that we have a initial product quantum

state of interest whose qubits lie outside the xz-plane. We will eventually prove (in Propo-

sition 14), that just like in Proposition 13, convergence also holds for general initial product

states as long as the qubits are not initialized at the poles3.

The proof of convergence in the general case relies on the fact that proving general

convergence can be reduced to proving convergence in the xz-plane (with x > 0), which

we have already proven. This reduction is a consequence of Theorem 31 which proves that

for any product state |s0⟩, there is another state |s′0⟩ with qubits along the xz-plane (with

x > 0), for which our custom mixer approach achieves the same distribution of cuts.

Theorem 31. Let |s0⟩ be any initial product state and let HB be its corresponding custom

mixer. Let |s′0⟩ be the state |s0⟩ but with each qubit’s phase equaling 0 and let H ′
B be the

corresponding custom mixer. Then, for any fixed choice of variational parameters (γ, β),

the distribution of cuts obtained from QAOA-warmest with initial state |s0⟩ and mixer HB

is the same as the distribution of cuts from obtained QAOA-warmest with initial state |s′0⟩

and mixer H ′
B.

Proof. Let |s0⟩ =
⊗n

j=1 |s0,j⟩ with |s0,j⟩ = cos(θj/2) |0⟩ + eiφj sin(θj/2) |1⟩ be an ar-

bitrary initial product state. As a consequence of Proposition 13, it suffices to show that

QAOA-warmest with this initial state |s0⟩ yields the same expected cut value (at the same

variational parameters) as another initial product state |s0⟩′ where each qubit of |s0⟩′ lies in

the xz-plane of the Bloch sphere with positive x-coordinate.

3For convergence in the special case, it is assumed that the x-component of each qubit’s position on the
Bloch sphere is strictly positive. In the reduction from the general to the special case, if a qubit is initially at
the poles of the Bloch sphere, it will remain at the poles after the reduction and thus not have strictly positive
x-coordinate as desired; thus, we only consider initializations where the qubits are not at the poles.

140

We consider the state |s0⟩′ =
⊗n

j=1 |s0,j⟩
′ where |s0,j⟩′ = cos(θj/2) |0⟩+sin(θj/2) |1⟩.

Geometrically, going from |s0⟩ to |s0⟩′ has the effect of dropping the phase for all qubits so

that they lie in the xz-plane of the Bloch sphere with positive x-coordinate (assuming that

none of the qubits are at the poles).

It suffices to show that we can drop the phase for single qubit of |s0⟩ (say qubit k)

without changing the expected cut value; the argument can then be easily repeated for the

remaining qubits to show that |s0⟩ and |s0⟩′ yield identical expected cut values. In this case,

we consider the initial state |“s0⟩ = ⊗n
j=1 |”s0,j⟩ where |”s0,k⟩ = |s0,k⟩′ and |”s0,j⟩ = |s0,j⟩

for j ̸= k (i.e. only the position of qubit k is modified). Letting Rx,k(θ), Ry,k(θ), Rz,k(θ)

represent the standard rotation operator of the kth qubit (about axes x, y, z respectively)

about the Bloch sphere by angle θ, we can also write

|“s0⟩ = Rz,k(−φk) |s0⟩ , (5.1)

i.e., |“s0⟩ can be obtained from |s0⟩ by rotating around the z-axis (of the Bloch sphere) by

the appropriate amount.

Let HB and ”HB be the corresponding custom mixers for |s0⟩ and |“s0⟩ respectively. Let

UB(βℓ) = exp(−iβℓHB) and ”UB(βℓ) = exp(−iβℓ”HB). For convenience, let UC(γℓ) =

exp(−iγℓHC). We can write UB(βℓ) = UB, ̸=k(βℓ)UB,k(βℓ) where UB,k(βℓ) is the portion

of UB(βℓ) that acts on qubit k and UB, ̸=k(βℓ) is the portion that acts on the remaining qubits;

we can similarly write ”UB(βℓ) = UB, ̸=k(βℓ)‘UB,k(βℓ) (the part of the mixer that does not

affect the kth qubit remains the same). Geometrically, the operation UB,k(βℓ) corresponds

to rotating qubit k around its original position on the Bloch sphere by angle 2βℓ so,

UB,k = Rz,k(φk)Ry,k(θj)Rz,k(2βℓ)Ry,k(−θj)Rz,k(−φj).

141

The equation above yields the following key relation between UB,k and ‘UB,k:

Rz,k(−φk)UB,kRz,k(φk)

=Ry,k(θj)Rz,k(2βℓ)Ry,k(−θj) =‘UB,k. (5.2)

For convenience, we will let

U(γ, β) =

p∏
ℓ=1

[
UB(βℓ)UC(γℓ)

]
,

and

Û(γ, β) =

p∏
ℓ=1

[”UB(βℓ)UC(γℓ)
]
,

i.e., UB and ”UB correspond to the QAOA-warmest circuit (excluding the initial state) for

|s0⟩ and |“s0⟩ respectively.

The claim amounts to showing (up to some global phase) the following:

⟨s0|U(γ, β)†HCU(γ, β) |s0⟩

= ⟨“s0| Û(γ, β)†HCÛ(γ, β) |“s0⟩ ,
for any circuit depth p and any variational parameters γ = (γ1, . . . , γp) and β =

(β1, . . . , βp); and in particular, QAOA-warmest gives the same expected cut value for both

|s0⟩ and |“s0⟩.

142

First we observe that,

U(γ, β) |s0⟩

=

p∏
ℓ=1

[
UB(βℓ)UC(γℓ)

]
|s0⟩

=

p∏
ℓ=1

[
UB, ̸=k(βℓ)UB,k(βℓ)UC(γℓ)

]
|s0⟩

=

p∏
ℓ=1

[
UB, ̸=k(βℓ)Rz,k(φk)

Rz,k(−φk)UB,k(βℓ)Rz,k(φk)

Rz,k(−φk)UC(γℓ)
]
|s0⟩

=

p∏
ℓ=1

[
UB, ̸=k(βℓ)Rz,k(φk)‘UB,k(βℓ)

Rz,k(−φk)UC(γℓ)
]
|s0⟩ (by Equation 5.2)

=

p∏
ℓ=1

[
Rz,k(φk)UB, ̸=k(βℓ)‘UB,k(βℓ)

UC(γℓ)Rz,k(−φk)
]
|s0⟩ (commutativity)

=

p∏
ℓ=1

[
Rz,k(φk)”UB(βℓ)UC(γℓ)Rz,k(−φk)

]
|s0⟩ (combine ‘UB,k and UB, ̸=k)

=Rz,k(φk)

p∏
ℓ=1

[”UB(βℓ)UC(γℓ)
]
Rz,k(−φk) |s0⟩ (telescoping)

=Rz,k(φk)

p∏
ℓ=1

[”UB(βℓ)UC(γℓ)
]
|“s0⟩ (by Equation 5.1)

=Rz,k(φk)Û(γ, β) |“s0⟩ .
We now finally show that QAOA-warmest initialized with |s0⟩ and |“s0⟩ yield the same

value; in particular the extraneous Rz(φk) term from the previous calculations will not

143

effect the measurement due to commutativity with the cost Hamiltonian:

⟨s0|U(γ, β)†HCU(γ, β) |s0⟩

= ⟨“s0| Û(γ, β)†Rz(φk)
†HCRz(φk)Û(γ, β) |“s0⟩

= ⟨“s0| Û(γ, β)†HCÛ(γ, β) |“s0⟩ ,
where the last equality follows since HC commutes with Rz(φk). This completes the

proof.

An interesting consequence of the above theorem is that when performing a random

rotation of a classical solution in the process of getting the warm-started initial quantum

state (as described in Section 4.1.1), the final rotation about the z-axis has no influence

on the distribution of cuts obtained via QAOA-warmest (note this is not necessarily the

case for QAOA-warm). Similarly, when mapping a 2-dimensional classical solution to the

Bloch sphere, there is no benefit to mapping to the yz-plane specifically, we could have

similarly mapped to the solution along the intersection of any plane with the Bloch sphere

as long as that plane was parallel to the z-axis.

We are now ready to prove convergence in the general case.

Proposition 14. Let |s0⟩ be any initial product state whose qubits do not lie at the poles

of the Bloch sphere. Running QAOA with initial state |s0⟩ and its corresponding custom

mixer yields that

lim
p→∞

max
γ,β

Fp(γ, β) = Max-Cut(G),

i.e., the expected cut value of QAOA-warmest with optimal variational parameters will

yield the optimal cut value as the circuit depth p tends to infinity.

Proof. Let F ′
p(γ, β) be the expected cut value obtained from QAOA with custom mixers

144

with the state |s′0⟩ as described in Theorem 14. As a consequence of Theorem 14, we have

for all p ≥ 0 that F ′
p(γ, β) = Fp(γ, β). Thus,

lim
p→∞

Fp(γ, β) = lim
p→∞

F ′
p(γ, β) = Max-Cut(G),

where the last equality holds by Proposition 13.

5.3 Convergence Rate of QAOA-warmest

Such a convergence property for custom mixers is of great interest considering that many

previous warm-started QAOA approaches lack such guarantees. The QAOA-warm ap-

proach by Tate et al. [3] considered arbitrary product states but with the standard mixer;

numerical simulations showed that the solution quality with QAOA-warm quickly plateaus

at higher circuit depths with some instances and initializations having (provably) zero im-

provement.

Cain et al. [57] consider the case where the initialization is a single bitstring with the

standard mixer; this can be viewed as a special case of Tate et al.’s approach but where the

initialization of the qubits lies at the poles. The latter’s key result is that such an initializa-

tion may not converge to the Max-Cut.

One of the approaches by Egger et al. consider a mixer that is neither the standard

mixer nor the custom mixer approach presented above. Their mixer is used in comjunction

with what we call a single-cut initialization (see Section 4.2.3) which recovers a particular

cut (obtained via the GW algorithm or other means) at depth 1. However, this initializa-

tion comes with no guarantees on convergence, and our results also do not apply to these

different mixers.

While QAOA with custom mixers is guaranteed to converge, the rate of convergence is

still an open question. Moreover, such convergence rate may be highly dependent on the

initial quantum state that is used. While it may seem that custom mixers with a single-cut

145

initialization are superior due to having a better theoretical approximation ratio at depth-

0, we empirically show in Section 5.4 that such a single-cut approach has an extremely

slow convergence rate for small values of the regularization parameter ε. On the other

hand, we show that our QAOA-warmest approach (with initializations obtained from BM-

MCk solutions or projected GW solutions) empirically has a significantly faster rate of

convergence.

In Section 4.2, we empirically show that depth-0 QAOA-warmest on positive-weighted

graphs yields much better approximation ratios compared to depth-0 standard QAOA; a

suitable convergence rate (for QAOA-warmest) would imply that QAOA-warmest will al-

ways fair better than standard QAOA for any finite depth p. We explore this empirically in

Section 5.4.

5.4 Numerical Simulations and Hardware Experiments for QAOA-Warmest

In this section, we demonstrate the importance of using a suitable warm-start and show that

with such warm-starts, QAOA-warmest empircally outperforms the Goemans-Williamson

Max-Cut algorithm as well as standard QAOA [1] and QAOA-warm [3]. We also show that

QAOA-warmest (with suitable warm-start) converges emperically fast, especially when

compared to random initializations on the Bloch sphere or to single-cut initializations. In

addition, we consider the effects of noise on QAOA and its variants. For our simulations,

we use the same library of graphs from Section 4.5.1, using all graphs up to 11 nodes; we

refer to this collection of graphs as G in this chapter. We consider comparisons with respect

to a recent warm-starts approach of Egger et al. [42] in Section 5.4.7.

In our simulations, for each instance, we first find five locally approximate solutions to

BM-MC2 and keep the best (in terms of the BM-MC2 objective value). We do the same for

BM-MC3. Similarly, for each instance, we solve the GW SDP, perform 5 projections to ran-

dom 2-dimensional subspaces, and keep the best (in terms of the BM-MC2 objective); this

process is repeated (using the same GW SDP solution) with projections to 3-dimensional

146

subspaces. Next, for both the best BM-MC2 and best BM-MC3 solution, and for both of the

best projected GW solutions (in 2 and 3 dimensions), we perform 5 different vertex-at-top

rotations and 5 different uniform rotations, yielding 40 different initial warm-started quan-

tum states per instance. We run QAOA-warm and QAOA-warmest using all 40 of these

warm-started states and, for each combination of rank and rotation scheme, record which

one performed the best in terms of (instance-specific) approximation ratio (as defined in

Section 2.2). Finally, we run standard QAOA on the instance.

For each run for each variant of QAOA, we initialize the variational parameters γ and β

close to zero4 and each run terminates when the difference in successive values of Fp(γ, β)

in the optimization loop is less than W̄ × 10−6 where W̄ is the sum of the absolute values

of the edge weights.

To simplify the results, the figures and tables in this section will only consider runs of

QAOA-warmest that use BM-MC2 initializations with vertex-at-top rotations. This choice

is due to runtime considerations and to allow for easier comparisons with previous related

literature [3, 42]; more details on the results and the choice of this decision can be found in

Section 5.4.4.

Additionally, for conciseness, in this section we will use “approximation ratio” to mean

the instance-specific approximation ratio as described in Section 2.2.

5.4.1 Comparing QAOA-warmest to Other Methods

In Table 5.1, we show the proportion of graphs where each Max-Cut algorithm (the GW al-

gorithm and variants of QAOA) performs the best for varying values of depth p = 1, 2, 4, 8.

We observe that for nearly all instances, QAOA-warmest beats or performs as well as every

other QAOA variant considered and eventually performs at least as well as the GW algo-

rithm as the circuit depth increases. We note that at p = 8, QAOA-warmest beats the GW

4For standard QAOA, many optimizers will immediately terminate if initialized exactly at the origin due
to the presence of a saddle point. Instead, each variational parameter (γ1, . . . , γp, β1, . . . , βp) is initialized
by sampling uniformly from the interval [−0.0001, 0.0001].

147

Table 5.1: For each Max-Cut algorithm (Goemans-Williamson, standard QAOA, QAOA-warmest, and
QAOA-warm), we report the percentage of instances for which it did the best and second-best (in terms of
approximation ratio). Both QAOA-warm and QAOA-warmest use BM-MC2 warm-starts. There is a tie (last
column) if the top two algorithms have approximation ratios that differ by no more than 0.01. QAOA-warmest
is a part of every tie. Each instance is either accounted for in “Tie” or the other columns. For the column
labeled *, we report, for each circuit depth, the percentage of instances for which QAOA-warmest was within
0.01 approximation ratio of the best algorithm.

1st Best QAOA-warmest Standard QAOA GW
Tie

2nd Best * Standard Warm GW Warmest Warm GW Warm Warmest Standard

Positive
Weighted
Graphs

p=1 90.3 % 0.69% 18.85% 15.22% 0.0% 0.0% 0.0% 0.17% 9.51% 0.0% 55.53%
p=2 98.1% 0.69% 20.24% 25.08% 0.0% 0.0% 0.0% 0.0% 1.9% 0.0% 52.07%
p=4 100% 8.65% 17.64% 20.58% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 53.11%
p=8 100% 25.77% 5.01% 2.94% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 66.26%

All Graphs

p=1 90.6% 0.35% 17.96% 17.43% 0.0% 0.0% 0.0% 0.53% 8.84% 0.0% 54.86%
p=2 98.1% 0.44% 20.17% 24.86% 0.0% 0.0% 0.0% 0.26% 1.68% 0.0% 52.56%
p=4 99.6% 9.11% 19.2% 18.93% 0.0% 0.0% 0.0% 0.08% 0.26% 0.0% 52.38%
p=8 99.6% 27.16% 7.96% 3.18% 0.17% 0.0% 0.0% 0.26% 0.0% 0.0% 61.23%

Figure 5.1: For both plots, we compare the log-error of QAOA-warmest to both QAOA-warm (right)
and standard QAOA (left). BM-MC2 warm-starts are used for both approaches. Each marker in the plot
corresponds to a combination of instance (from our graph ensemble G) and circuit depth (either p = 1 or
p = 8) with the shape of the marker being used to denote if the instance has only positive edge weights or
not. Points below the black line correspond to instances where QAOA-warmest performs better than the other
algorithm being compared.

148

Figure 5.2: Trends in median log-error of standard QAOA (dotted), QAOA-warm (dashed), and QAOA-
warmest (solid) as one varies the number of nodes and circuit depths; the median is taken across graphs in
instance library G. BM-MC2 warm-starts are used for both QAOA-warm and QAOA-warmest.

algorithm on all but three instances but this is easily rectified with a suitable vertex-at-top

rotation. Also at p = 8, QAOA-warmest outperforms standard QAOA on all but two in-

stances but the gap in approximation ratio is less than 0.02. More information regarding

these five instances can be found in Section 5.4.6.

We next report the improvement in approximation ratios when considering standard

QAOA, QAOA-warm, and QAOA-warmest with circuit depths p = 1, 8. For convenience,

for any Max-Cut algorithm, we define the approximation error (AE) by AE = 1 − AR

where AR is the approximation ratio. Additionally, we will refer to log10(AE) as the log-

error. Figure 5.1 gives a comparison of log-errors achieved for various instances. All points

below the x = y solid line indicate instances where QAOA-warmest beats either standard

QAOA or QAOA-warm. Note that due to the plots being log-scaled, being below -2 on

each axis corresponds to having an approximation ratio of at least 0.99. For both plots, we

see that higher approximation ratios can be achieved for positive-weighted graphs (cross-

marks) and that QAOA-warmest performs significantly better for most instances. When

comparing QAOA-warmest and standard QAOA at various circuit depths (red v/s blue), we

see that the performance for both standard QAOA and QAOA-warmest improves at p = 8;

149

however, this phenomenon is not that apparent for QAOA-warm (which is known to plateau

in performance with increased circuit depth for small instances).

Next, we show the empirical trend in approximation quality with increase in the number

of nodes n and the depth of the circuit p, in Figure 5.2. We see that, across all node

sizes, that circuit depth plays an important role in how good an approximation ratio one

can expect to achieve using QAOA-warmest. It is clear that QAOA-warmest has superior

(median) performance compared to the other algorithms for every combination of circuit

depth and node-size. We remark that in contrast, an increased circuit depth resulted in only

a marginal improvement in the approximation ratio for QAOA-warm, bolstering our claim

that custom mixers are crucial to the improvement in performance of QAOA.

In Figure 5.3, we compare the convergence rates of standard QAOA and QAOA-

warmest with various initilializations: BM-MCk, single-cut initializations (as described

in Section 4.2.3), and uniform random initializations5 with custom mixers for a random

10-node instance in our graph library. Consistent with what is seen in the other figures,

we see that standard QAOA, QAOA-warmest, and uniform random initializations quickly

achieve high approximation ratios at relatively low circuit depths, with the BM-MC2 ini-

tialization doing the best amongst the three across all circuit depths tested. On the other

hand, single-cut initializations do not converge as quickly; in particular, when θ∗ is small

(θ∗ ∈ {0.1, 0.01}) hardly any improvement in the approximation ratio is observed at all.

For larger regularization angles (θ∗ = 0.5), we do see worse performance at low depths

(p = 0, 1) as well as a noticeable increase in performance with increased circuit depth;

however, the amount of this increase is small compared to achieved by QAOA-warmest

which begins to outperform the single-cut initialization (with θ∗ = 0.5) for p ≥ 2. We find

similar qualitative results for most other instances in our graph ensemble G.

Table 5.2 provides a more aggregated view of the convergence of QAOA-warmest with

5Here, a uniform random initialization refers to a product state that is randomly created by (independently)
picking a position on the surface of the Bloch sphere uniformly at random for each qubit, and then tensorizing
the qubits.

150

Table 5.2: The percentage of instances for which QAOA-warmest achieves an instance-specific AR of
99.0% for each combination of circuit depth and initialization method (standard initialization, BM-MC2

initialization, single-cut initialization with θ∗ = 0.1).

p=0 p=1 p=2 p=4 p=8
BM-MC2 42.3% 57.8% 75.0% 91.9% 98.1%
Standard

Initialization
|+⟩⊗n

0% 0.6% 2.4% 8.7% 39.4%

Single Cut
Initialization
with θ∗ = 0.1

0% 0% 0% 0% 0.7%

different choices of initializations across the entire instance library G. For each combination

of initialization method and circuit depth, the table states the percentage of instances in

the library which achieved an instance-specific approximation ratio of 99.0% of higher.

The data for the single-cut initializations were obtained as follows: for each instance, we

obtained an optimal solution to the GW SDP relaxation, we performed 100 hyperplane

roundings on the optimal SDP solution to obtain 100 cuts, we discarded all cuts whose

value is more than 0.98 · MAX-CUT(G), and we used the best remaining cut to create a

single-cut initialization with regularization angle θ∗ = 0.1 (as described in Section 4.2.3);

the discarding of cuts with very high values were done in order to ensure that, in the case

of a high instance-specific approximation ratio, such a ratio can be partly attributed to the

quantum circuit and not just the initial cut itself. When using the BM-MC2 initializations

(with vertex-at-top rotations), there are steady improvements with increased circuit depths

with 42.3% of the instances achieving an instance-specific AR of 99.0% at depth-0; this

percentage increases to 98.1% at depth-8. With the standard QAOA initialization, |+⟩⊗,

none of the instances achieve an instance-specific AR of 99.0% or more; it is not until depth

p = 8 that we see a considerable fraction of the graphs (39.4% respectively) achieving

such an AR. As for the single-cut initialization with small regularization angle, we find that

nearly none of the instances achieve an instance-specific AR of 99.0% with the exception

of a few instances at depth p = 8.

151

Figure 5.3: Instance specific approximation ratios achieved by QAOA-warmest with various types of ini-
tializations: standard initialization (equivalent to standard QAOA), BM-MC2 initialization, single-cut initial-
ization, and uniform random initializations) for a randomly selected 10-node instance. For QAOA-warmest,
we used a BM-MC2 initialization with a vertex-at-top rotation; here we intentionally chose the worst vertex
(i.e. the one with worst AR at depth-0) to better illustrate the convergence rate. For the single-cut initializa-
tion, we chose a cut that obtains an instance-specific approximation ratio of 0.848 and created initial quantum
states using regularization angles of θ∗ = 0.01, 0.1, and 0.5 radians. For the uniform random initilizations,
five such initializations were created and only the best one was kept (i.e. the one with best AR at depth-0).

0 1 2 3 4 5
p

0.75

0.80

0.85

0.90

0.95

Ap
pr

ox
im

at
io

n
Ra

tio

Warmest Ideal
Standard Ideal
Warmest Noisy
Standard Noisy
GW

Figure 5.4: Performance of QAOA-warmest (with BM-MC2 warm-starts) and standard QAOA as a function
of QAOA depth for an ideal (dashed) and noisy simulation (dotted). For the chosen 20-node graph, the GW
algorithm achieves an approximation ratio of 0.912, while in the ideal case, QAOA-warmest outperforms the
GW algorithm for p ≥ 2 while standard QAOA requires p > 4. The noise simulation is based on calibration
data from IBM-Q’s Guadalupe device.

152

Figure 5.5: IBMQ Guadalupe device which shows the physical connectivity of qubits. We choose a native
graph which matches this connectvity and random weights as indicated by color.

W
ar

m
es

t
St

an
da

rd
β

β

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Simulation

1.5

1.0

0.5

0.0

0.5

1.0

1.5

St
an

da
rd

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Experiment

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

W
ar

m

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

12
8
4

0
4
8
12
16

3.0
1.5

0.0
1.5
3.0
4.5
6.0
7.5
9.0

8
4

0
4
8
12
16
20
24

2
0
2
4
6
8
10
12
14

γ γ

Figure 5.6: Performance of QAOA-warmest (with BM-MC2 warm-starts) compared to standard QAOA in
an ideal simulation and on IBM-Guadalupe hardware. Each subfigure is a scan of p = 1 parameters β vs γ,
brighter regions indicating values which result in a larger cut. All figures share the same absolute color scale.

153

0 1 2
p

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ap
pr

ox
im

at
io

n
Ra

tio

Standard Ideal
Warmest Ideal
Standard Hardware
Warmest Hardware
Standard Noisy Simulator
Warmest Noisy Simulator

0 1 2
p

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5.7: Performance of QAOA-warmest (with BM-MC2 warm-starts) compared to standard QAOA in
an ideal simulation (dashed), noisy simulation (dotted) and on IBM Guadalupe hardware (solid). Each subplot
considers a different native hardware graph with randomly selected weights as well as a different choice of
initialization procedures. (Left) For a random initialization of the classically informed QAOA-warmest start
rotation. (Right) For an efficiently selected, optimal choice for the classically informed QAOA-warmest start
rotation.

154

5.4.2 QAOA-warm With Noise

In addition to the theoretical (noise-less) behavior of QAOA-warmest, we also demonstrate

its performance with several example cases using noise models and experiments on IBM-

Q hardware. We show in Figure 5.4 the performance of QAOA-warmest and standard

QAOA on an instance generated via a construction by Karloff [2]; this unweighted graph

is chosen due to the fact that it is a small graph that achieves a GW approximation ratio

of 0.912 (see Section 3.1) which is close to the lower bound of 0.878 provided by the

GW algorithm. In contrast, both QAOA-warmest and standard QAOA outperform this

approximation ratio, under ideal, noiseless conditions. However, note that QAOA-warmest

outperforms standard QAOA for all QAOA depths and outperforms the GW algorithm

after p > 1. We also consider a noise model utilizing Qiskit’s built in modules [122] and

use calibration data in order to simulate IBM’s Guadalupe device. We note that QAOA-

warmest outperforms standard QAOA for all noisy simulations, using the same fixed noise

model.

In addition to this device-focused noise simulation, we also run QAOA-warmest on

a native hardware graph matching IBM’s Guadalupe device. In general, the connectivity

of the graph and its matching to physical qubit hardware connectivity plays a key role in

performance due to the overhead of inserting swap operations in order to compensate for

limited connectivity [123]. Therefore, the simplest graph is a so-called native graph, which

is a graph with exactly the same connectivity as the underlying physical qubit device. This

graph is shown in Figure 5.5. We assign randomly chosen weights to each edge chosen

from a uniform distribution [−10, 10]. Finding the Max-Cut solution to this graph can still

be done by brute force and for a fixed choice of randomly weighted edges, we find the

Max-Cut value to be approximately 33.96209.

We show the results of QAOA-warmest and standard QAOA in an ideal simulation and

on hardware in Figure 5.6. The color scale is shared across all plots, showing that QAOA-

warmest finds larger cut values as compared to standard QAOA, both in simulation and

155

on actual hardware. For hardware results, we apply the efficient SPAM noise mitigation

strategy based on a CTMP strategy [124, 125].

In order to demonstrate the scaling of QAOA-warmest, we also show results for depths

p = 0, 1, 2 in ideal simulation, noisy simulation, and on hardware, as shown in Figure 5.7.

We define p = 0 to simply mean the preparation and measurement of the initial state6.

In the case of QAOA-warmest, this directly demonstrates the ability of the QPU to create

and measure the classically suggested cut. For both the ideal and noisy simulation, we use

IBM’s Qiskit software package [122]. In the case of the noisy simulation, we exercise the

capability of Qiskit to pull calibration data directly from the Guadalupe device and use it

to construct a noise model for use in the simulator. In principle, this combination of ac-

tual hardware calibration and noise simulation should predict the behavior of the device.

However, the noise models themselves have inherent assumptions that the noise itself is un-

correlated and only directly models effects such as single and two-qubit gate errors, finite

qubit lifetime and dephasing time, and readout noise. While these serve as a good starting

point to model the noise in a quantum device, as shown in the Figure 5.7, there is significant

disagreement between the noise simulation and the actual hardware results. This disagree-

ment is mainly attributed to the assumptions mentioned earlier, specifically the assumption

of uncorrelated noise, where physical hardware experience significant crosstalk.

In addition, Figure 5.7 shows results for two different choices of the state initialization

for QAOA-warmest. The left plot shows the result of applying a uniform rotation in the

classical preprocessing stage whereas the right shows the result of using the best vertex-

at-top rotation amongst the 16 possible vertices, i.e., the rotation that gives the largest

approximation ratio at p = 0. These two plots clearly show the importance of initializ-

ing the initial quantum state in an optimal way. Another important point shown in these

plots is that small scale QAOA problems on 16 nodes, are nearly exactly solved when a

6The warm-starts come from rank-2 or rank-3 solutions whereas as the GW algorithm uses rank-n solu-
tions. Moreover, the way cuts are determined are different (hyperplane rounding vs quantum measurement)
so we should expect there to be a difference in approximation ratios.

156

suitable vertex-at-top rotation is chosen. When the best vertex-at-top rotation is used, the

use of QAOA actually shows a decrease in solution quality on hardware. This is due to the

inherent noise on the device and the fact that the solution quality is nearly optimal in the

initial state. The presence of noisy two-qubit gates in further layers of the algorithm (32

CNOT gates per layer), overwhelm the small benefit of the algorithm itself for these small

problems. A remaining goal then is to find native graphs on hardware for large systems,

while also offering sufficiently low error rates, in order to demonstrate improved solutions

with an optimally chosen initial quantum state and increased algorithmic depth (p > 0).

Finally, we show results for QAOA-warmest run on Quantinuum hardware in Figure

5.8. This 20-ion linear trap allows for arbitrary qubit connectivity and thus has no overhead

associated with mapping a specific graph to the hardware. In this case, we again consider

the 20-node Karloff instance graphs used in Figure 5.4, but here we use the GW warmest

start initialization. Notably we utilize a uniform rotation which gives a large initial ap-

proximation ratio (at p = 0) and while hardware cannot improve on this initial state, the

degradation is small considering that each p layer requires 90 two-qubit ZZ interactions

(among many other single qubit operations). We also note the close agreement of the noisy

simulator to the actual hardware results. In order to reduce the cost of these hardware runs,

we only consider a single objective function evaluation (with 1000 shots), using noiseless

simulations to find the optimal γi, βi at each p depth. Even with these considerations, we

see that the GW Warmest initialization outperforms the average GW performance on hard-

ware up to p ≤ 2. These results indicate that current quantum hardware is very close to

demonstrating improvement over the GW algorithm on known hard instance graphs when

using the QAOA-warmest initialization procedure and already outperforms the average per-

formance of the GW algorithm on this particular graph.

157

0 1 2
QAOA Depth

0.75

0.80

0.85

0.90

0.95

1.00

Ap
pr

ox
im

at
io

n
Ra

tio

Warmest - Quantinuum Noisy Sim
Warmest - Ideal Qiskit Sim
Warmest - Quantinuum H1-1 Device
GW
Standard Ideal

Figure 5.8: QAOA-warmest performance on Quantinuum simulators and hardware. The 20-node Karloff
instance considered here is directly mapped to the fully-connected Quantinuum 20-ion hardware. In contrast
to Figure 5.4, here we use a GW warmest start and find that this particular initialization outperforms the GW
algorithm on average for p ≤ 2.

0 1 2 3 4 5
p

0.5

0.6

0.7

0.8

0.9

1.0

Ap
pr

ox
im

at
io

n
Ra

tio

Ideal

Standard
Warmest

0 1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1.0

Noise

Figure 5.9: Comparison between standard QAOA mixer to using BM-MC2 warm-starts with custom mixers
. We show the noiseless (left) and noisy (right) case. In both cases, the custom mixer significantly outperforms
the standard mixer. Shaded regions indicate the distribution of results for 20 randomly chosen 8 node graphs
with positive and negative weights.

158

Figure 5.10: Difference in approximation ratio between rank-n GW hyperplane rounding and hyperplane
rounding of various warm-start initializations (rank-k projected GW SDP solutions (Projk-GW) and approx-
imate BM-MCk solutions for k = 2, 3) as the number of nodes varies. For each instance and each rank k,
we obtained 5 random projections and 5 approximate BM-MCk solutions, and then kept the best one (of 5)
in regards to the BM-MCk objective. Each circle in the figure corresponds to an instance from (a subset of)
the MQLib library [38]; see Appendix 5.4.5 for details.

Figure 5.11: For both plots, we compare the log-error of QAOA-warmest (with BM-MC2 warm-starts) to
the variant of QAOA proposed by Egger et al. [42] for Max-Cut. For Egger et al.’s approach, we consider
two different initializations: initializing the variational parameters to the origin (left) and initializing the
parameters in a way that recovers the cut used to initialize the quantum state (right). Each marker in the plot
corresponds to a combination of instance (from our graph ensemble G) and circuit depth (either p = 1 or
p = 8) with the shape of the marker being used to denote if the instance has only positive edge weights or
not. Points below the black line correspond to instances where QAOA-warmest performs better than the other
algorithm being compared.

159

Table 5.3: These tables reports the approximation ratios achieved for the five instances (amongst those in
our instance library G) for which depth-8 QAOA-warmest did not obtain the best approximation ratio when
compared to depth-8 QAOA-warm, depth-8 standard QAOA, and the GW algorithm. The top and bottom
tables are for instances in which standard QAOA and the GW algorithm performed the best respectively.
The instances in the bottom table have the property that there exists exactly one negative edge weight whose
magnitude is much larger than the other edge weights. For the bottom table, in the last column, we also
include the approximation ratio for QAOA-warmest in the case where a more suitable vertex-at-top rotation
is used; i.e., we take one of the vertices incident to the large-magnitude negative edge and rotate it to the top.

Instances Where Depth-8 Standard QAOA Performs Best
Instance ID QAOA-warmest QAOA-warm Standard QAOA GW

778 0.9550 0.8980 0.9635 0.9504
1820 0.9483 0.9078 0.9508 0.9429

Instances Where GW Performs Best
Instance ID QAOA-warmest QAOA-warm Standard QAOA GW QAOA-warmest (modified)

1698 0.9899 0.9950 0.9677 0.9968 0.9998
1889 0.9867 0.9886 0.9461 0.9899 0.9995
2010 0.9762 0.9797 0.9330 0.9948 0.9992

5.4.3 Projected GW vs BM-MC Warm-Starts

As described in the previous chapter, we consider two (main) approaches for generating

warm-starts: projected GW solutions and locally optimal BM-MCk solutions, with the for-

mer approach having better theoretical guarantees in regard to solution quality. However,

numerical simulations displayed in Figure 5.12 show both approaches on the instance li-

brary G (graphs with at most 11 nodes) achieve similar expected cut values at depth p = 1

QAOA-warmest; in particular, the difference in (instance-specific) approximation ratio is

less than 0.04 for nearly all instances. This similarity in solution quality is even more

pronounced at depth p = 8.

Since both warm-start approaches yield similar results (in numerical simulations) and

since the Burer-Monteiro approach scales better in regards to runtime (Section 4.2.1), the

results in Section 5.4 assumes that locally optimal BM-MCk solutions are used to produce

the warm-starts for QAOA-warm and QAOA-warmest.

160

Table 5.4: Multiple tables comparing the average (instance-specific) approximation ratio achieved during
QAOA-warmest when utilizing different combinations of ranks and rotations during the preprocessing stage.
For the top row of tables, these averages were computed using all the graphs in our graph library G whereas
for the bottom row, we restrict our attention to only those graphs in G with positive edge weights.

depth p = 1 depth p = 8

all graphs
vert. uniform

rank-2 0.9858 0.9758
rank-3 0.9854 0.9535

vert. uniform
rank-2 0.9988 0.9977
rank-3 0.9988 0.9960

positive-weight
graphs

vert. uniform
rank-2 0.9867 0.9789
rank-3 0.9864 0.9581

vert. uniform
rank-2 0.9991 0.9990
rank-3 0.9993 0.9981

5.4.4 Choice of Rank and Rotation

Table 5.4 demonstrates the average (instance-specific) approximation ratio achieved by

QAOA-warmest for various combinations of the rank used for BM-MCk and the rotation

scheme applied to the BM-MCk solution. We find that vertex-at-top rotations perform

better than uniform rotations, especially in the context of rank-3 solutions. The data is

inconclusive in regards to if rank-2 or rank-3 solutions are better for QAOA-warmest, both

are promising. Finally, we remark that for depth-8 QAOA-warmest, any choice of rank or

rotation scheme gave at least a 0.996 average approximation ratio across the instances.

To give fair comparison against QAOA-warm [3] (and also for comparisons with Egger

et al.’s approach [42]), the results in Section 5.4 assumes that we are using rank-2 initializa-

tions and vertex-at-top rotations unless otherwise stated, since these were the recommended

setting in [3].

5.4.5 Projected GW Solutions and BM-MC Scaling

As discussed in the previous chapter, two methods of creating a warm-start initialization

are discussed: projecting GW SDP solutions and finding approximate BM-MCk solutions.

161

Figure 5.12: Histogram showing the difference in (instance-specific) approximation ratio (AR) when using
QAOA-warmest (on instance library G) with various warm-start strategies: projected GW and locally optimal
BM-MC warm-starts. The blue and red bars correspond to depth p = 1 and p = 8 QAOA-warmest respec-
tively with the purple regions indicating an overlap in the histograms. For both approaches, rank-3 solutions
and vertex-at-top rotations are used to produce the figure; the results are similar if one instead uses a different
combination of rank and/or rotation scheme.

Figure 5.10 uses instances from the MQLib [38] library7 to compare these two methods

at different ranks (k = 2, 3) with respect to the (instance-specific) approximation ratio

they achieve with hyperplane rounding; these approximation ratios are compared against

hyperplane rounding of the rank-n GW SDP solution. It is clear from the figure that the

projecting of GW solutions preserves the approximation ratio (from hyperplane rounding);

this is consistent with the results of Theorem 19. On the other hand, while BM-MCk

solutions preserve the approximation ratio (from hyperplane rounding) for small graphs,

the gap in approximation ratios (compared to rank-n GW hyperplane rounding) grows as

the number of nodes increases.

5.4.6 Interesting Instances

In Section 5.4.1, Table 5.1 shows that at circuit depth p = 8, there are five instances

(amongst the instances tested) for which QAOA-warmest did not achieve the highest

7MQLib [38] is a diverse library of Max-Cut instances; the results of Figure 5.10 may differ if different
types/families of graphs are used (e.g. random Erdős–Rényi graphs). For each MQLib instance, we used the
exact Max-Cut solver BiqCrunch [105] to try to find the optimal cut. Figure 5.10 uses all positive-weighted
MQLib instances up to 663 nodes for which BiqCrunch finds the optimal cut within 24 hours.

162

(instance-specific) approximation ratio compared to the other algorithms considered.

Of these five instances, standard QAOA was the best algorithm for precisely two of

these (instances #778 and #1820). For the remaining three instances (#1698, #1889,

#2010), the GW algorithm was the best algorithm; however, all three of these instances have

the property that there is a single negative edge-weight whose magnitude is much larger

than the other edge weights in the graph and additional numerical simulations show that a

suitable vertex-at-top rotation (selecting the vertex that is incident to the large-magnitude

negative edge weight) allows QAOA-warmest to outperform the GW algorithm.

Table 5.3 gives detailed statistics for the approximation ratios achieved by each of the

Max-Cut algorithms considered for these five instances.

5.4.7 Comparison with Egger et al.

Figure 5.11 compares the (instance-specific) approximation ratios achieved by QAOA-

warmest and a variant of QAOA considered by Egger et al. [42]. In the context of the

Max-Cut problem, Egger et al. considered an approach which takes a good starting cut

(S, V \ S) (obtained via the GW algorithm or possibly other means) and uses this cut to

construct an initial quantum state |s0⟩. With this modified initial quantum state and an ap-

propriate modification of the mixing Hamiltonian, Egger et al. prove that their variation of

QAOA is recovers the cut at circuit depth p = 1, i.e., there is a choice of variational param-

eters γ1 and β1 such that the only cut obtained at those parameters is precisely (S, V \ S).

To give a fair comparison for Egger et al.’s approach, we consider 10 cuts generated by

the GW algorithm and take the best 5. Due to the size of the instances we consider, usually

at least one of the best 5 cuts would be optimal and hence Egger et al.’s approach would

essentially already start with an optimal solution which is not interesting. For this reason,

in Figure 5.11, we only consider those instances (22.7% of the instance library) for which

neither QAOA-warmest or Egger et al.’s approach starts with the optimal solution.

For Egger et al.’s approach, we consider two different choices for initialization of the

163

variational parameters: (1) near the origin and (2) the choice of parameters that recovers

the value of cut used to initialize the QAOA variant (i.e. β1 = π/2 with the remaining

parameters being set to zero). In both cases, Figure 5.11 demonstrates that QAOA-warmest

typically has the superior performance.

There are a total of 163 instances for which the approximation ratio achieved by depth-

8 QAOA-warmest beats the GW algorithm (by at least 0.001) and the approximation ratio

achieved by the GW algorithm beats Egger et al.’s approach (with initialization β1 = π/2

with the remaining parameters being set to zero) at depth-8 (by at least 0.001). For these

instances, the median gap in approximation ratio between QAOA-warmest and the GW al-

gorithm was 0.0466 and the median gap in approximation ratio between the GW algorithm

and Egger et al.’s approach is 0.0458.

5.5 Discussion

Our experimental results suggest that our QAOA-warmest method combined with initial-

izations obtained by classical means can outperform both the standard QAOA and the

Goemans-Williamson algorithm at relatively shallow circuit depths. Conversely, not all

initializations on the Bloch sphere are useful; in particular random initializations under-

perform compared to classically obtained initializations. Moreover, adversarial initializa-

tions could be chosen if one wanted QAOA to perform poorly (i.e. by putting qubits near

the poles of the Bloch sphere that correspond to the minimum cut). Overall, finding a

suitable initialization is needed in order to see success in QAOA-warmest. In the case of

classically-inspired initializations (e.g. Burer-Monteiro Max-Cut relaxations or projected

GW SDP solutions) which are (classically) invariant under global rotations, this also in-

cludes picking a suitable rotation scheme before embedding the solution into a quantum

state.

According to a paper by Farhi, Gamarnik, and Gutmann [32], QAOA needs to “see the

whole graph” (i.e. have a high enough circuit depth) in order to achieve desireable results.

164

Their results rely on the fact that local changes in the graph (e.g. modifying an edge weight)

give uncorrelated results in regards to measured qubits that are sufficiently far away from

such a local change. In other words, standard QAOA cannot distinguish between graphs

whose local subgraph-structure is identical. It should be noted that the circuit used in

QAOA-warmest also suffers from such a locality property; however, if we consider the

entirety of the QAOA-warmest procedure, including the preprocessing stage of computing

warm-starts, then this procedure can possibly distinguish between graphs with identical

local subgraph structure since the initial state is sensitive to the global structure of the

graph (when using BM-MCk relaxations or projected GW SDP solutions). This suggests

that certain negative theoretical results seen for standard QAOA may not necessarily hold

for QAOA-warmest since the distinguishability arguments used would no longer apply.

While our method with custom mixers guarantees convergence for arbitrary product

states, the rate of convergence for this method (and other QAOA variants) is still an open

question; our simulations indicate that this convergence is heavily influenced by the initial

state.

The (worst-case) approximation guarantees for our warm-starts at p = 0 and conver-

gence to Max-Cut (under adiabatic limit) combined with superior empirical performance

provide strong evidence for quantum advantage of this approach at low circuit depths com-

pared to existing classical methods, especially the Goemans-Williamson approximation.

An interesting open question would be to quantify the (worst-case) approximation bounds

obtained by QAOA-warmest for finite circuit depth greater than zero.

165

CHAPTER 6

WARM-STARTS FROM CLASSICAL LOCAL ALGORITHMS

For combinatorial problems with n (binary) variables, quantum algorithms typically use

exactly n qubits, one for each variable. However, such algorithms are naturally limited

by the fact that, in quantum computing, any operation that is applied must be unitary (and

hence also reversible). It is an interesting question to ask if some kind of advantage can

be gained through the use of additional qubits, i.e., using n + n′ qubits for an n-variable

combinatorial optimization problem with n′ > 0 where the qubits are partitioned into two

registers: the system register containing the first n qubits (which we call system qubits)

and the ancilla register containing the remaining n′ qubits (which we call ancilla qubits).

With this setup, operations on the (n + n′)-qubit device will unitarily evolve; however, by

restricting one’s view to just the system register, the quantum state evolves in a non-unitary,

i.e. potentially irreversible, manner. The system register can then be measured at the end

of such quantum algorithms to produce a (not necessarily feasible) n-length bitstring to the

optimization problem.

Quantum circuits that use more qubits than variables may be of potential interest on its

own; however, in this chapter1, we focus on ways that such additional qubits can be used to

construct generalized warm-starts for QAOA. In particular, by exploting ancilla qubits, we

develop a framework (for both constrained and unconstrained problems) for constructing

quantum states whose measurement of the system register yield the same distribution of

bitstrings as those obtained from certain classes of randomized local-search algorithms.

We refer to such initial states as quantum-local-search states.

Many classical local-search algorithms require one to update the state of the (classical)

1The results in this chapter are based on an in-progress collaboration between the thesis author and Stuart
Hadfield.

166

system in an irreversible way, e.g. using a single bitstring to represent the best bitstring

seen so far and updating this bitstring if a “neighboring” bitstring has a higher cost (and

is feasible); however, by using additional memory to store the “history” of the algorithm,

these local-search updates become reversible with respect to the overall state of the classical

machine. In Section 6.1, with the help of ancilla qubits, we export these classical ideas to

the quantum regime to construct the quantum framework described earlier.

This chapter serves as an introductory exploration of this idea of using ancilla qubits to

construct warm-starts inspired by classical local-search algorithms; throughout, we provide

discussion and some partial results regarding this idea that are subject to future/ongoing

work.

6.1 Using Ancilla Qubits to Emulate Classical Algorithms

In this next section, we consider a general framework for emulating certain types of ran-

domized classical local-search algorithms with quantum devices. In particular, one can

create a quantum superposition of states with the property that measuring such a sub-

system would yield the same distribution of states as a (possibly randomized) classical

local-search algorithm. This may be interesting in its own right, but it may also be inter-

esting from a state preparation standpoint: a classically-motivated initial quantum state can

serve as a warm-start for other quantum algorithms, thus possibly giving a boost in perfor-

mance. Additionally, by appropriately incorporating additional variational parameters, one

is guaranteed for the performance to be at least as good as both standard QAOA and the

corresponding classical algorithm.

For any optimization problem maxb∈F c(b) (with c : {0, 1}n → R and F ⊆ {0, 1}), we

consider the following α-parametrized classical local-search algorithm described in Algo-

rithm 2. For convenience, the following notation is used in the algorithm: for a bitstring b,

bj denotes the jth bit of b and b(j) denotes the bitstring b but with the jth bit flipped.

In words, Algorithm 6 starts with a feasible bitstring b0, and at each step, checks if

167

Algorithm 2: Randomized Classical Local-Search
Input: n, T ∈ Z≥0, c : {0, 1}n → R,F ⊆ {0, 1}, α ∈ [0, 1], ξ ∈ [n]T , b0 ∈ F

1 b := b0
2 for j = 1 through T do
3 if c(b(ξj)) > c(b) and c(b(ξj)) ∈ F then
4 With probability α, do nothing; else set b := b(ξj)

5 end
6 return b

flipping a particular bit (e.g. the ξj’th bit on step j) yields a feasible bitstring with improved

cost; if this check passes, then with probability α we do nothing and with probability 1−α

we flip said particular bit. The variable ξ = (ξ1, . . . , ξT) ∈ [n]T represents the sequence of

bit positions considered in the bitflip checks previously mentioned.

Note that when α = 0, Algorithm 6 becomes a deterministic algorithm; on the other

extreme, when α = 1, the algorithm simply returns the initial bitstring b0.

Now, given the same inputs as the classical Algorithm 6, we proceed to devise a quan-

tum algorithm whose measurement of the system register yields the same distribution of

strings.

Let
−→
W j be the operator that writes from the system to the ancilla based on the improve-

ment on flipping bit j:

−→
W j,k |s⟩ |a⟩ =


|s⟩ |a(k)⟩ , if c(s(j)) > c(s) and s(j) is feasible.

|s⟩ |a⟩ , otherwise.

For a minimization problem, one should flip the inequality in the definition above. One

could also consider replacing the strict inequality (>) with a non-strict one (≥). Moreover,

if one wants to check for jumps in solution values by at least a certain amount k > 0, one

could replace the inequality with c(s(j)) > c(s) + k; alternatively, with k < 0, this would

allow one to flip the ancilla even in cases where the value s(j) is slightly worse. The exact

implementation details of
−→
W j,k are outside the scope of this chapter; however, for most

168

combinatorial optimization problems of interest, the circuit implementation of
−→
W j,k can be

constructed in time polynomial in n.

Now, let
←−
W j,k(α) be the operator that “writes back” from the ancilla to the system based

on the improvement on flipping bit j:

←−
W j,k(α) |s⟩ |a⟩ =


√
α |s⟩ |a⟩+ i

√
1− α |s(j)⟩ |a⟩ , if ak = 1

|s⟩ |a⟩ , otherwise.

In the case where α is held constant throughout, we often simply write
←−
W j,k instead of

←−
W j,k(α). Observe that if we define θ = arccos(2

√
α), then one can observe that

←−
W j,k(α)

is simply a controlled-X rotation by angle θ on the jth system qubit (controlled by the kth

ancilla qubit).

Letting Vj,k =
←−
W j

−→
W j , the overall effect is given by:

Vj,k |s⟩ |a⟩ =



√
α |s⟩ |a(k)⟩+ i

√
1− α |s(j)⟩ |a(k)⟩ , (c(s(j)) > c(s) and s(j) is feas.) and ak = 0

|s⟩ |a⟩ , (c(s(j)) ≤ c(s) or s(j) not feas.) and ak = 0

|s⟩ |a(k)⟩ , (c(s(j)) > c(s) and s(j) is feas.) and ak = 1

√
α |s⟩ |a⟩+ i

√
1− α |s(j)⟩ |a⟩ , (c(s(j)) ≤ c(s) or s(j) not feas.) and ak = 1

.

Assuming that fresh ancillas are used (i.e. ak = 0) at the beginning of our approach

and that these ancillas are not re-used, only the first two lines of the cases described above

would be performed in practice.

It should be noted that both
←−
W j,k and

−→
W j,k can be confirmed to be unitary operators

(and hence, so is Vj,k). In particular, the i in the term i
√
1− α |s(j)⟩ |a⟩ of

←−
W j,k’s definition

is necessary; it’s removal can be proven to remove the unitary property from the operator.

Thus, although this technique is aimed at emulating a purely classical algorithm, there are

169

Algorithm 3: Randomized Quantum Local-Search
Input: n, T ∈ Z≥0, c : {0, 1}n → R,F ⊆ {0, 1}, α ∈ [0, 1], ξ ∈ [n]T , b0 ∈ F

1 Set |s0⟩ := |b⟩ |0⟩⊗T

2 Construct and run the quantum circuit VjT ,T · · ·Vj1,1 |s0⟩ to obtain state |ψLS⟩
3 Measure the first n bits of |ψLS⟩
4 return b

non-trivial phases given to some bitstrings based on the classical information. Given these

Vj,k operators, we construct the quantum local-search algorithm described in Algorithm 3

and in Proposition 15 below, we prove that both the classical and quantum local-search

algorithm produce the same distribution of bitstrings. Proposition 15 implies that the quan-

tum local-search algorithm has the same approximation factor as its corresponding clas-

sical local-search algorithm; later in Section 6.2, we explore quantum circuits that can be

applied to the final state |ψLS⟩ of Algorithm 3 which have the potential to further increase

the instance-specific approximation ratio (beyond what is achieved by the corresponding

classical local search algorithm).

Proposition 15. The distribution of bitstrings that are output by Algorithm 2 and Algorithm

Algorithm 3 are identical. Moreover, if we change the classical algorithm to start with

b being a random n-length bitstring (selected uniformly as random), then we can get a

similar result (regarding equality of distributions) by replacing |s0⟩ in the quantum circuit

with |s0⟩ = |+⟩⊗n |0⟩⊗T .

Proof. We proceed by induction; the base case is trivial. Suppose that the result is true

after k steps of the algorithm. Let

|ψ⟩k =
∑

b∈{0,1}n

∑
a∈{0,1}n′

β
(k)
b,a |b⟩ |a⟩

be the quantum state after k steps where β(k)
b,a ∈ C for all k, a, b. For b ∈ {0, 1}n, let pk(b)

170

denote the probability of obtaining bitstring b after k steps of the algorithm. We thus have,

pk(b) =
∑

a∈{0,1}n′

|β(k)
b,a |

2,

for all b ∈ {0, 1}n by the induction hypothesis. It suffices to show that the relationship

above holds after k + 1 steps of the algorithm for all b ∈ {0, 1}n.

Let us fix b ∈ {0, 1}n, we consider different cases.

Case 1: b is not feasible. Then the result trivially holds as pk+1(b) = 0 and β(k+1)
b,a = 0

for all a. This is straightforward to (inductively) see since after each step of the classical

algorithm, one always ends on a feasible state; similarly, by construction of the quantum

algorithm, only feasible states have non-zero support in |ψk⟩.

Case 2: b is feasible. Let b′ = b(ξ(k)). We now consider two subcases.

Cases 2a: c(b) > c(b′). By construction of the classical algorithm, we have

pk+1(b) = pk(b) + (1− α)pk(b′)

=
∑

a∈{0,1}n′

|β(k)
b,a |

2 + (1− α)
∑

a∈{0,1}n′

|β(k)
b′,a|

2

On the quantum end, observe that Vξ(k+1),k+1 performs the following mappings for all

a ∈ {0, 1}n′:

|b⟩ |a⟩ 7→ |b⟩ |a⟩ ,

and

|b′⟩ |a′⟩ 7→
√
α |b′⟩ |a′⟩+

√
1− α |b⟩ |a⟩ ,

where a′ denotes a(k). Aside from |b⟩ |a⟩ and |b′⟩ |a′⟩, there does not exist any other pair

of system and ancilla bitstrings such that Vξ(k+1),k+1 maps it to a superposition containing

|b⟩ |a⟩.

171

From the above, observe that:

β
(k+1)
b,a = β

(k)
b,a +

√
1− αβ(k)

b′,a′ .

However, by the nature of the algorithm, we know that if ak+1 = 1, then β(k)
b,a = 0 and

similarly, if ak+1 = 0, then β(k)
b′,a′ = 0 (this is due to the fact that in the first k steps of the

algorithm, only the first k bits of the ancilla can possibly be 1 since we start the algorithm

with the ancilla being all zeros). Thus, we really have,

β
(k+1)
b,a =


β
(k)
b,a , ak+1 = 0,

√
1− αβ(k)

b′,a′ , ak+1 = 1

and thus,

∑
a∈{0,1}n′

|β(k+1)
b,a |2

=
∑

a∈{0,1}n′
:

ak+1=0

|β(k+1)
b,a |2 +

∑
a∈{0,1}n′

:
ak+1=1

|β(k+1)
b,a |2

=
∑

a∈{0,1}n′
:

ak+1=0

|β(k)
b,a |

2 +
∑

a∈{0,1}n′
:

ak+1=1

|
√
1− αβ(k)

b′,a′ |
2

=
∑

a∈{0,1}n′
:

ak+1=0

|β(k)
b,a |

2 +
∑

a∈{0,1}n′
:

ak+1=0

|
√
1− αβ(k)

b′,a|
2

=
∑

a∈{0,1}n′

|β(k)
b,a |

2 +
∑

a∈{0,1}n′

|
√
1− αβ(k)

b′,a|
2

=
∑

a∈{0,1}n′

|β(k)
b,a |

2 + (1− α)
∑

a∈{0,1}n′

|β(k)
b′,a|

2

=pk+1(b),

as desired, where the last line follows from the previous sets of calculations.

172

Case 2b: c(b) ≤ c(b′). In this case, we have that

pk+1(b) = αpk(b).

The result holds by an argument similar to Case 2a (moreover, the calculations are also

simpler).

6.1.1 Properties of Local-Search Quantum Algorithm

In what follows, we discuss properties of the randomized classical local-search, i.e., Al-

gorithm 2; as a result of Theorem 15, this naturally also yields corresponding results for

Algorithm 3, the quantum local-search algorithm. More specifically, we study the effect of

the randomization parameter α introduced in Algorithm 2 and discuss its effect the proba-

bilities and distributions of bitstrings that are output as a result.

First, we prove in Proposition 16 that as long as the cost function is not constant, then,

for unconstrained optimization problems, if the classical Algorithm 2 is initialized with a

bitstring chosen uniformly at random from {0, 1}n, then the expected cost of Algorithm 2

is strictly better than what is achieved with uniform random guessing. Because of Propo-

sition 15, there is an analogous result for quantum Algorithm 3 where |s0⟩ is chosen to be

|+⟩n |0⟩T (where T is number of local-search steps, or equivalently, the number of ancilla

qubits).

Proposition 16. In Algorithm 2, let c : {0, 1}n → Z be an cost function (with integer

costs) for some unconstrained optimization problem (i.e. F = {0, 1}) and in Line 1 of

the algorithm, set b to be a uniformly sampled bitstring from {0, 1}n. Then, if f is not a

constant function, with T = 1 and α < 1, there exists a choice of ξ such that the expected

cost of Algorithm 2 is better than uniform random guessing, in particular, the improvement

in the expected cost is at least 1−α
2n

.

Proof. If f is not constant, it is straightforward to see that there exists b̂ ∈ {0, 1} and

173

j ∈ [n] such that c(b̂) < c(b̂(j)). With uniform random guessing, the average cost is given

by 1
2n

∑
b∈{0,1} c(b). Letting T = 1 and ξ = (j) (here, ξ is a 1-tuple) and letting Pr(b)

denote the probability that Algorithm 2 returns b, the difference in expected cost between

Algorithm 2 and uniform random guessing is given by:

∑
b∈{0,1}

c(b) · Pr(b)− 1

2n

∑
b∈{0,1}

c(b)

=
∑

b∈{0,1}

c(b) ·
Å
Pr(b)− 1

2n

ã
=

∑
b∈{0,1}:

c(b)<c(b(j))

c(b) ·
Å
Pr(b)− 1

2n

ã
+

∑
b∈{0,1}:

c(b)>c(b(j))

c(b) ·
Å
Pr(b)− 1

2n

ã
+

∑
b∈{0,1}:

c(b)=c(b(j))

c(b) ·
Å
Pr(b)− 1

2n

ã
=

∑
b∈{0,1}:

c(b)<c(b(j))

c(b) ·
Å
α

2n
− 1

2n

ã
+

∑
b∈{0,1}:

c(b)>c(b(j))

c(b) ·
ÅÅ

1− α
2n

+
1

2n

ã
− 1

2n

ã
+

∑
b∈{0,1}:

c(b)=c(b(j))

c(b) ·
Å

1

2n
− 1

2n

ã
=

∑
b∈{0,1}:

c(b)<c(b(j))

c(b) · α− 1

2n
+

∑
b∈{0,1}:

c(b)<c(b(j))

c(b(j)) · 1− α
2n

=
∑

b∈{0,1}:
c(b)<c(b(j))

(c(b(j))− c(b)) · 1− α
2n

≥
∑

b∈{0,1}:
c(b)<c(b(j))

1− α
2n

(as c(b) ∈ Z, ∀b ∈ {0, 1})

≥1− α
2n

.

The sum in the second-to-last line above has at least one term due to the existence of b̂

determined earlier.

174

Next, in Proposition 17, we compare the deterministic version of Algorithm 2 (at α =

0) with the general version of the algorithm (for α ∈ [0, 1]) and their probabilities of

outputting the same final bitstring, which can be used to provide a bound on the expected

cost of Algorithm 2 for general α ∈ [0, 1].

Proposition 17. Let b∗ be the output of Algorithm 2 when α = 0 and all other inputs

are fixed (note that the algorithm is deterministic in this case). Then the probability of

Algorithm 2 returning b∗ for general α ∈ [0, 1] is at least

(1− α)T .

Moreover, if α is chosen such that α = 1
kT

for some k ∈ R+, then as T → ∞, the limit of

the expected cost of the output of Algorithm 2 is at least c(b∗) · e−1/k.

Proof. Let T ′ be the number of times that the if condition of Algorithm 2 is satisfied; clearly

T ′ ≤ T . For general α ∈ [0, 1], one way that Algorithm 2 can output b∗ is to perform the

same sequence of bitflips as the deterministic version of the algorithm (at α = 0) which

will occur with probability (1−α)T ′ ≥ (1−α)T . For general α ∈ [0, 1], Algorithm 2 may

possibly output b∗ in some other way as well, but this can only increase the probability of

b∗ being output.

Note that for small enough α, this implies that the expected cost function value will

be close to the cost function of b∗, the output of the deterministic version of the classical

local-search algorithm. More specifically, observe that choosing α = 1
kT

for some k ∈ R+,

a bound on the expected cost of Algorithm 17 can be obtained as follows:

175

E[c(b)] ≥ c(b∗) · Pr(b = b∗)

≥ c(b∗)(1− α)T

= c(b∗)

Å
1− 1

kT

ãT
→ c(b∗) · e−1/k. (as T →∞)

For many combinatorial optimization problems, it is known that the deterministic ver-

sion of Algorithm 2 (with a carefully chosen sequence ξ) can achieve a locally optimal

solution (with respect to bitflips) in time polynomial in n. For example, in the case of Max-

Cut on a unit-weight graph with n nodes and m edges, Algorithm 2 with α = 0, T = nm

and a suitable choice of ξ is guaranteed to return a locally optimal cut and it can be proven

that this cut contains at least half the edges [126]; thus, by as a result of Proposition 17

(with α = 1/(kT), T = nm, k ∈ R>0) the randomized version of Algorithm 2 has an

approximation ratio approaching 1
2
· e−1/k for large n.

Initially, it may appear that choosing α > 0 (making Algorithm 2 non-deterministic)

may not be a wise choice, since the distribution of bitstrings that are output (with positive

probability) will contain bitstrings whose cost values are worse than the bitstring b∗ output

by the deterministic version of the algorithm. However, when considering the final quantum

state of the quantum version of the algorithm (Algorithm 3) as a warm-start to another

quantum circuit (like QAOA), we know that warm-starts consisting of a single bitstring

perform poorly [57] and our work in Chapters 4 and 5 of this thesis suggests that warm-

starts with a “richer” distribution of states often perform better in the context of QAOA-

like algorithms despite possibly having lower approximation ratios when just measuring

the warm-start state itself.

176

So far, the discussion above primarily focuses on the probability of measuring a par-

ticular bitstring, namely, the one obtained as the output of the deterministic version of

Algorithm 2. Below, for the Max Independent Set problem (described in Section 2.5), we

provide bounds on the probability for each feasible solution being output in Algorithm 2.

Proposition 18. Let c and F be chosen so as to correspond to an instance of Max Inde-

pendent Set on a graph G = (V,E) and consider starting the classical algorithm with

the all-zeroes bitstring. Let α ∈ (0, 1). Let ξ in the classical algorithm correspond

to some permutation of [n]. Then all valid independent sets have a positive probabil-

ity of being sampled, in particular, an independent set of size k will have probability at

least f(α) = αn−k(1 − α)k of being sampled. For fixed k and n, f(α) is maximized at

α = 1− k/n.

Proof. Without loss of generality, let ξ be the identity permutation, i.e., ξ(j) = j for all

j ∈ [n]. Let pj(b) be the probability that the classical algorithm would return the bitstring

b after j steps. We claim that if b is a independent set of size k and if bℓ = 0 for all

ℓ = j + 1, . . . , n, then

pj(b) ≥ αj−k(1− α)k.

We proceed by induction. The base case, j = 0 is trivial since only the zero bitstring

(which corresponds to an independent set of size k = 0) would be obtained and for j, k = 0,

we have αj−k(1 − α)k = αj = α0 = 1 for α ∈ (0, 1). Now, let b be correspond to an

independent set of size k where bℓ = 0 for all ℓ = j + 2, . . . , n. If bℓ+1 = 0, then by the

classical algorithm, we have

pj+1(b) ≥ αpj(b) = α(αj−k(1− α)k) = αj+1−k(1− α)k.

Otherwise, if bℓ+1 = 1, then by the classical algorithm, we have b(ℓ+1) corresponds to an

177

independent set of size k − 1 and thus,

pj+1(b) ≥ (1− α)pj(b(j+1)) = (1− α)(αj−(k−1)(1− α)k−1) = αj+1−k(1− α)k.

The result then applies by the above inductive argument in the case that j = n.

For the last statement of proposition, observe that the derivative of f is given by,

f ′(α) = (n− k)αn−k−1(1− α)k − kαn−k(1− α)k−1.

Setting f ′(α) = 0 and dividing through by the appropriate factors, we obtain:

0 = (n− k)(1− α)− kα.

Solving the above for α yields that α = 1 − k/n, as desired. (Note that the maximum

does not occur at the extreme points of α = 0 or α = 1 as f(0) = f(1) = 0.)

6.2 Effect of QAOA on States with Ancilla

The quantum local-search algorithm (Algorithm 3) described earlier may be interesting in

its own right; however, one may be interested in using such a procedure as a co-routine in a

larger quantum algorithm. In particular, one may be interested in warm-starting a QAOA-

like algorithm with the local-search-state |ψLS⟩ obtained from Algorithm 3 as a means of

potentially improving the instance-specific approximation ratio obtained from simply mea-

suring |ψLS⟩ (which, by construction, would yield an instance-specific approximation ratio

that matches the corresponding classical local-search algorithm used to generate |ψLS⟩).

Throughout this section, we will use |s0⟩ to denote some initial quantum state over n

qubits, ULS(α) to denote the quantum circuit in the quantum local-search algorithm (Algo-

rithm 3) parametrized by α ∈ [0, 1] (not including |s0⟩, and UP(ρ) to denote some general

178

parameterized circuit (like QAOA) parameterized by ρ ∈ Rp for some p and for conve-

nience, we assume that UP (0) is the identity operator. Note that at the very least, the circuit

UP(ρ)ULS(α) |s0⟩ with the right choice of parameters can guarantee the same performance

as simply running just UP(ρ) or just ULS(α) on |s0⟩ as

UP(ρ)ULS(1) |s0⟩ = UP(ρ) |s0⟩ ,

and

UP(0)ULS(α) |s0⟩ = ULS(α) |s0⟩ ;

of course, the hope is that there exists some non-trivial choice of (ρ, α) that yield strictly

better expected cost values compared to the trivial choices of (ρ, α) above.

Next, note that for problems in constrained optimization, if |s0⟩ is a quantum state con-

sisting of a superposition of feasible states, then so is |ψLS⟩ = ULS |s0⟩. Because of this,

it may be desirable to choose UP so that feasibility is maintained throughout the circuit

UP(ρ)ULS(α) |s0⟩. It is immediately clear that choosing the standard QAOA ansatz does

not maintain this feasbility due to its mixer HB =
∑

j∈[n] σ
x
j . Meanwhile, in the Quantum

Alternating Operator Ansatz (QAOA++) [127], the mixer is adjusted in a way that main-

tains feasibility making it a potentially more suitable choice of UP compared to standard

QAOA. For standard QAOA, one can work around the issue of feasbility by introducing

penalty terms in the cost Hamiltonian; however, this has been shown to yield poor results

empirically [128]. In regards to the QAOA-Warmest method proposed in Chapter 5, such

an ansatz can not be applied to |ψLS⟩ since QAOA-Warmest assumes that the warm-start

state is a product state and in general, this is not the case for |ψLS⟩.

Finally, we note that the standard QAOA, the variants above, and many other variants

of QAOA considered would only apply operations directly to the system register (and not

to the ancilla register). Because of this, the phenomena of constructive and destructive

interference, which is arguably one of the most important aspects of quantum computing,

179

is not present between basis states that have different ancilla tags; this is explored more in

the next subsection.

6.2.1 Effects on Measurement on States with Ancilla

To understand the effect that the ancillas have on measurement in the context of other

algorithms, let us consider the simple case of a single ancilla qubit, i.e., n′ = 1.

Suppose, before doing any QAOA, we run one of the classically-inspired algorithms to

obtain some state which can be generically written as,

|ψ⟩ = A0 + A1

where

A0 =
∑

x∈{0,1}n
γx,0 |x⟩ |0⟩ ,

A1 =
∑

x∈{0,1}n
γx,1 |x⟩ |1⟩ .

Let U be the standard QAOA circuit (of any depth); note that such a circuit will have

no effect on the ancilla qubits. The expected cut value will be:

⟨ψ|U∗HCU |ψ⟩ = (A0 + A1)
∗U∗HCU(A0 + A1)

= (UA0)
∗HC(UA0) + (UA1)

∗HC(UA1) + (UA0)
∗HC(UA1) + (UA1)

∗HC(UA0)︸ ︷︷ ︸
=0

= (UA0)
∗HC(UA0) + (UA1)

∗HC(UA1),

where equality to 0 is due to the states in A0 and A1 (and hence UA0 and UA1) being

orthogonal to one another (since their ancilla bit is different). The above illustrates that the

result of applying QAOA to the overall state |ψ⟩ is the same as applying QAOA to both

parts (A1 and A2) and simply adding the probabilities. In other words, the states in A0 and

180

A1 do not interfere (in the quantum sense).

To make this more clear, suppose that we fix a bitstring y and suppose that the final

quantum state U |ψ⟩ contained the following: δy,0 |y⟩ |0⟩ + δy,1 |y⟩ |1⟩ where δy,0, δy,1 ∈ C

are arbitrary complex coefficients. Suppose we were to measure U |ψ⟩ and discard the

ancilla, then the probability of measuring y is

|δy,0|2 + |δy,1|2.

Now, consider the case where instead of the initial state |ψ⟩, we consider a modified initial

state |ψ⟩′ which is exactly the same as |ψ⟩ but with the ancilla tags removed. (In some

cases, this may not lead to |ψ⟩′ being a properly normalized state, although there are cases

where it is, for example, if all the γx,0’s and γx,1’s are non-negative.) In this case, it is

straightforward to prove that the probability of measuring y in the state U |ψ⟩′ is,

|δy,0 + δy,1|2.

In the general case,

|δy,0|2 + |δy,1|2 ̸= |δy,0 + δy,1|2.

The left-hand expression is reminiscent of classical probability (positive probabilities being

added together) whereas the latter shows how the coefficients can possibly constructively

or destructively combine (as is usual in quantum computing). One direction of research

to pursue is how we can alter the standard QAOA circuit to possibly get around the “lack

of interference” issue (or possibly, this lack of interference can be exploited in a positive

way).

181

6.3 Discussion and Future Directions

To summarize, we have provided a general framework of quantum algorithms which are

capable of constructing a quantum state which has the same probability distribution as what

can be obtained via a (randomized) classical local-search algorithm. For the randomized

classical local-search algorithm parameterized by α, we proved that this yields a better

result compared to uniform random guessing. Additionally, we provide a bound on the

expected cost value of the randomized local-search algorithm in terms of the result of the

deterministic version of the algorithm (at α = 0) and in the case of Max Independent Set,

we provided α-dependent bounds on the probabilities of obtaining any feasible independent

set. Determining the optimal choice of α for various problems (both in regards to the clas-

sical local-search algorithm itself and in the context of quantum warm-starts) is still open;

moreover, further modifications of the classical Algorithm 2 may of be interest, including

choosing the sequence ξ of bitflips randomly or evenly dynamically, or considering local

changes to bitstrings beyond single-bitflips.

It should also be noted that the class of randomized local-search algorithms is not all-

encompassing, for example, for Max-Cut, instead of considering a sequence of bitflips,

one may consider bit positions whose flip improves the solution by at least some thresh-

old and then flip all such bits at once. Hirvonen et al. [129] prove that for triangle-free

d-regular graphs, d-dependent approximation ratio greater than 1/2 can be achieved with

such a thresholding approach. Variations of this classical approach have been used to il-

lustrate the limitations of low-depth standard QAOA [48, 130]. One potential research

direction would be to adapt our approach to create a quantum state whose measurement of

the system register yields bitstrings that match the distribution obtained from such thresh-

olding algorithms, and to analyze the effectiveness of such a state as a warm-start state for

QAOA-like algorithms.

This chapter briefly explored the possibility of utilizing the result |ψLS⟩ of quantum

182

local-search (Algorithm 3) as a warm-start to parameterized quantum circuits such QAOA

or its variants. The QAOA-like circuits we had considered in this chapter lacked construc-

tive or destructive interference between basis states with different ancilla tags; we conjec-

ture that a QAOA-like algorithm (applied to |ψLS⟩) that non-trivially act on both the system

and ancilla register (as is done in Algorithm 3) have a higher likelihood of yielding higher-

quality solutions in expectation. When being applied to |ψLS⟩, substituting the standard

QAOA mixer with a Grover-inspired mixer HB = |ψLS⟩ ⟨ψLS| might be a desirable choice

as its acts on both the system and ancilla registers in addition to maintaining feasibility;

however, we leave such an exploration for potential future work.

183

CHAPTER 7

CONCLUSION

To summarize, in Chapter 3, we first identified classes of Max-Cut instances that may be

of interest in regards to quantum benchmarking or demonstrating quantum advantage; such

classes, for which either the GW algorithm or classical heuristics perform theoretically or

empirically poorly (respectively), contain small instances under 1000 nodes which are suit-

able for current and near-term NISQ devices. In order to potentially demonstrate such a

quantum advantage, it may be the case that improvements and modifications to the stan-

dard QAOA algorithm are needed; to this end, in Chapters 4 and 5, we introduce the algo-

rithms QAOA-warm and QAOA-warmest for Max-Cut which utilize classically-obtained

warm-starts, the latter of which converges to the optimal solution with increased circuit

depth (as a result of the adiabatic theorem) and empirically outperforms standard QAOA

across all depths tested. Additionally, both QAOA-warm and QAOA-warmest, at depth-0

(i.e. quantum measurement of the initial warm-start state), achieve a approximation ra-

tio of 0.658 which is better than the 0.5 approximation ratio achieved by uniform random

guessing. Finally, in Chapter 6, we consider one last warm-start approach which exploits

the use of ancilla qubits in order to construct a warm-start whose measurement (of some

subset of the qubits) yields a distribution of bitstrings that matches what is obtained by a

randomized local-search algorithm; this approach can be utilized for both unconstrained

and constrained optimization problems. This ancilla approach may be of potential interest

from a theoretical perspective; however, the implementation of the gates required for such

an approach is non-trivial and is most likely not suitable for near-term NISQ devices.

184

7.1 Open Questions

To end, we provide the reader with a list of open questions and potential research directions

in regards to the work presented in this thesis.

Chapter 3

Q1. Can machine-learning be used to generate more instances that may be of interest

from a quantum benchmarking or advantage viewpoint? While such an approach may not

easily lend itself to finding easily-definable classes of instances with interesting theoretical

properties, the use of machine-learning approaches such as Generative Adversarial Net-

works [131] have the potential to generate such instances that are suitably-sized for NISQ

devices.

Q2. Do there exists other families of strongly-regular graphs for which the GW algo-

rithm yields a low instance-specific approximation ratio? The family of strongly-regular

graphs that were considered in Chapter 3 had the property that the optimal GW SDP had

angles arccos(−1/3) between adjacent vertices, which is exactly the angle between any

two vertices and the center of a regular tetrahedron [102]. In higher dimensions, regular ℓ-

simplices (in Rℓ) generalize the notion of a regular tetrahedron and have an angle between

arccos(−1/ℓ) between vertices; a more thorough analysis may potentially reveal families

of strongly-regular graphs that have such angles for various values of ℓ.

Chapters 4 and 5

Q3. Can provably guarantees be found for depth-1 QAOA-warmest? For standard

QAOA, guarantees on the approximation ratio have been found for depths up to p = 2 for

3-regular graphs [1, 44]. In the case of QAOA-warmest with finite depth, we have only

provided a guarantee at depth p = 0. One particular challenge is that when considering

the neighborhood of an edge, the initial positions of the qubits in the neighborhood of that

edge also play a role in the probability of that edge being flipped; thus, instead of having

to consider a finite number of potential edge-neighborhoods (as is done in [1, 44]), there

185

are now infinitely many possibilities to consider when considering all potential ways in

which qubits can be initialized on the surface of the Bloch sphere. A guarantee can also

potentially be found by finding a closed-form analytical expression for the expected cost

of low-depth QAOA, as is done by Wang et al. [99] at depth p = 1 for standard QAOA;

however, the derivation of such an expression is dependent on numerous simplifications

and cancellations that are not possible in the case of QAOA-warmest.

Q4. Can QAOA-warmest be adapted to work with constrained optimization problems?

Although the ancilla approach in Chapter 6 can be used for constrained optimization, it may

not be practical in the NISQ era of quantum computing. Meanwhile, for many quantum

devices, QAOA-warmest is nearly as easy to implement as standard QAOA and performs

empirically well, thus any way to adapt QAOA-warmest to work with constrained opti-

mization problems (while maintaining its performance) would be of great interest. It is not

immediately clear how to modify QAOA-warmest so that feasibility is maintained through-

out the quantum circuit (including the initial warm-start state). Alternatively, another po-

tential approach would be to utilize penalty terms in the cost Hamiltonian and analyze their

effects.

Q5. Can other modifications of the QAOA algorithm be used in conjunction with

QAOA-warmest? In addition to the approaches discussed in this thesis, many other variants

of QAOA (such as those discussed in Section 1.2) have been proposed, many of which

have the potential to be combined with the approaches suggested in this thesis. For exam-

ple, although QAOA-warmest performs relatively well with our naive choice of parameter

initialization, adapting the results and techniques that are known (for standard QAOA) in

regards to initialization and optimization of the variational parameters could potentially

yield faster and higher-quality solutions for QAOA-warmest.

Q6. Does the use of a warm-start allow one to break past the limitations of QAOA

that are due to its locality? The standard QAOA is local in the sense that the probability

of an edge being cut is uncorrelated with edges that are sufficiently far away and Farhi et

186

al. [32] use this fact to prove that a high-enough circuit depth is needed in order to “see

the whole graph” (as described by Farhi et al. [32]) and avoid such a locality limitation.

Although the quantum circuit for QAOA-warmest suffers from a similar locality property,

the overall algorithm is non-local when warm-starts are obtained via projected GW SDP

solutions since a small change in the given instance (e.g. edge deletion) can have a global

impact on the optimal GW SDP solution. Thus, because of its (overall) non-locality, such

negative results for standard QAOA may not necessarily apply to QAOA-warmest.

Chapter 6

Q7. Do there exists combinatorial optimization problems of interest for which the an-

cilla approach in Chapter 6 can easily be realized on near-term quantum devices? In

general, a more thorough analysis of the circuit complexity of the ancilla approach would

be of interest. As written, our quantum local-search algorithm, Algorithm 3, would require

a comparator in order to compare the cost function before and after flipping a bit of some

bitstring; however, for many problems, one may not necessarily need to compute the entire

cost function to make such a comparison and such a comparison can thus be made much

more efficiently. The use of such insights have the potential to simplify the implementation

of the operations considered in our ancilla approach for certain problems.

Q8. How should the QAOA algorithm be adapted if warm-started with the quantum-

local-search state obtained via Algorithm 3 and what can be said about the performance

and properties of such a QAOA-variant? As discussed in Chapter 6, a key issue with stan-

dard QAOA and most of its variants is that they act separately on basis states with different

ancilla tags, meaning that no constructive or destructive interference is possible. These

notions of interference are arguably one of the most important key features of quantum

computing, thus, it is reasonable to believe that any QAOA-like algorithm that does not

act non-trivially on both the system and ancilla register throughout the circuit is likely to

perform poorly. For future work, we propose adapting QAOA with a Grover-like mixer as

proposed in [61] which “does not see” the partitioning of the the qubits into registers.

187

Appendices

APPENDIX A

PARTIAL GEOMETRIES

In this Appendix, we motivate the choice of parameters (n = 4(3t+ 1), k = 3(t+ 1), λ =

2, µ = t + 1) for the family of strongly regular graphs considered in Section 3.2. The

work in Section 3.2 was initially inspired by several instances in the MQLib library that we

found where the GW algorithm achieved an approximation ratio of 0.912; additionally, the

comments in the graph files suggested that such graphs are strongly regular graphs (which

we later verified to be true)

Many strongly-regular graphs have a corresponding partial geometry that they are as-

sociated with; the next few definitions and propositions below establish this connection

between partial geometries and strongly-regular graphs.

Definition 32. An incidence structure C = (P,L, I) consists of points P , lines L, and

incidence relation I ⊆ P×L where a point p is said to be incident with a line l if (p, l) ∈ I .

We say that C is a partial geometry if there exists positive integers s, t, α such that:

• For distinct points p, q ∈ P , there is at most one line incident with both of them.

• Each line is incident with s+ 1 points.

• Each point is incident with t+ 1 lines.

• If a point p and a line l are not incident, there are exactly α pairs (q,m) ∈ I , such

that p is incident with m and q is incident with l.

We say that C is a PG(s, t, α) if it is a partial geometry with parameters s, t, α as described

above.

Definition 33. A partial geometry C is a generalized quadrangle if there exists positive

integers s, t such that C is a PG(s, t, 1), i.e., a partial geometry with parameter α = 1. We

189

say that C is a GQ(s, t) if it a generalized quadrangle with parameters s, t as described

above.

Definition 34. A graph G = (V,E) is said to be a geometric graph if there exists a partial

geometry C for which G is the point graph (also known as the collinearity graph) of C.

The collinearity graph of C is a graph whose vertices are the points of C where two points

are considered adjacent if and only if they determine a line in C (i.e. they are colinear).

As seen in Proposition 19 below, every partial geometry has a corresponding strongly-

connected graph; more precisely, the collinearity graph of a partial geometry is always a

strongly-regular graph.

Proposition 19 (Bose [101]). If G is a geometric graph with a corresponding partial

geometry PG(s, t, α) (i.e. G is the point graph of C), then G is a strongly-regular graph

with parameters,

v = (s+ 1)
(st+ α)

α
,

k = s(t+ 1),

λ = s− 1 + t(α− 1),

µ = α(t+ 1).

There are many strongly-regular graphs whose form is the same as the parameter sets

described in Proposition 19; however, they may not necessarily be geometric, i.e., they are

not necessarily the collinearity graph of some partial geometry. Such graphs are considered

to be pseudo-geometric; a more precise definition is provided below.

Definition 35. Suppose there exists positive integers s, t, α with α ≤ min(s + 1, t + 1)

and let G be a SRG(v, k, λ, µ) with the parameters (v, k, λ, µ) set as in Proposition 19, i.e.,

v = (s + 1) st+α
α

, k = s(t + 1), λ = s − 1 + t(α − 1), µ = α(t + 1). We refer to such a

G as being pseudo-geometric for PG(s, t, α), even if no such partial geometry PG(s, t, α)

exists.

190

For the strongly-regular graphs in the MQLib library where the GW algorithm achieved

an approximation ratio of 0.912, it is natural to ask if these are pseudo-geometric with

respect to some partial geometry. Such instances in the MQLib library were strongly-

regular with parameters λ = 2 and µ = k/3; Theorem 20 illustrates that if one has a

strongly-regular graphs with such a property and if the graph is pseudo-geometric, then

it must be pseudo-geometric with respect to generalized quadrangles of order (3, t) for

some t; moreover, we show that such graphs have exactly the same strongly-regular graph

parameters as those considered in Section 3.2.

Proposition 20. Let G be an SRG(n, k, λ, µ) where λ = 2 and µ = k/3 and suppose G is

pseudo-geometric, then G is pseudo-geometric for GQ(3, t) for some positive integer t and

moreover, n = 4(3t+ 1), k = 3(t+ 1), λ = 2, µ = t+ 1.

Proof. Let G be an SRG(v, k, λ, µ) with λ = 2 and µ = k
3

and suppose that G is pseudo-

geometric with parameters (s, t, α).

Observe that by Proposition 19 and the fact our assumption that µ = k
3
, we have that,

α(t+ 1) = µ =
k

3
=

1

3
s(t+ 1),

thus implying that

s = 3α. (A.1)

By Proposition 19, we have that,

2 = λ = s− 1 + t(α− 1),

or equivalently

s+ t(α− 1) = 3. (A.2)

Since s = 3α and α ≥ 1 (due to the definition of a partial geometry), then s ≥

3. Observe that if s was strictly greater than 3, then Equation A.2 above implies that

191

t(α − 1) < 0, a contradiction as t, α ≥ 1 (by the definition of a partial geometry). Thus, s

must be exactly 3 meaning that (by Equation A.1) α = s
3
= 1.

As s = 3 and α = 1, this means that G is pseudo-geometric to generalized quadrangles

of order (3, t) for some t.

By Proposition 19 and by using that s = 3 and α = 1, we have that,

v = (s+ 1)
st+ α

α
= 4(3t+ 1),

k = s(t+ 1) = 3(t+ 1),

λ = s− 1 + t(α− 1) = 2,

µ = α(t+ 1) = t+ 1,

thus completing the proof.

A computer verification quickly verifies that the strongly-regular MQLib instances we

considered were indeed strongly-regular graphs with parameters n = 4(3t+ 1), k = 3(t+

1), λ = 2, µ = t + 1 for some positive integer t meaning that this class of strongly-regular

graphs generalizes the collection of strongly-regular instances found in the library.

Next, it is natural to ask, for which values of t does there exists a strongly-regular graph

that is pseudo-geometric for a generalized quadrangle of order (3, t)? Haemers and Spense

[132] characterize all such values of t, however, there are only finitely many of them. In

particular, there exists 2, 28, 167, and 1 non-isomorphic pseudo-geometric graphs with

parameters (v, k, λ, µ) = (16, 6, 2, 2), (40, 12, 2, 4), (64, 18, 2, 6), and (112, 30, 2, 10) for

GQ(3, 1), GQ(3, 3), GQ(3, 5), and GQ(3, 9) respectively. As a result of Proposition 21,

Corollary 36, and a non-existence result [133] detailed in the proofs below, there do not

exist pseudo-geometric instances with other strongly-regular parameter sets for a GQ(3, t)

for some t.

192

Proposition 21 (Chapter 34 of [134]). Let G be a primitive strongly-regular graph that is

pseudo-geometric graph for a PG(s, t, α). Then:

1. The integer α(s+ t+ 1− α) divides st(s+ 1)(t+ 1).

2. The inequalities (s+1−2α)t ≤ (s−1)(s+1−α)2 and (t+1−2α)s ≤ (t−1)(t+

1− α)2 both hold.

Corollary 36. If G is a SRG(v, k, λ, µ) and if G is pseudo-geometric for GQ(3, t) for some

t, then t ∈ {1, 3, 5, 9}.

Proof. Let G be a SRG(v, k, λ, µ) and suppose G is pseudo-geometric for GQ(3, t) for

some t. Since a generalized quadrangle is a partial geometry with parameter α = 1, then,

as a result of Proposition 21, the integer s + t divides st(s + 1)(t + 1); furthermore, the

inequalities (s − 1)t ≤ (s − 1)s2 and (t − 1)s ≤ (t − 1)t2 both hold; these inequalities

simplify to t ≤ s2 and s ≤ t2. As s = 3, we have that t ≤ s2 = 9.

Substituting s = 3, the divisibility criteria simplifies to 3 + t divides 12t(t+ 1). When

substituting values of t with 1 ≤ t ≤ 9, this divisibility criteria is only satisfied by t ∈

{1, 3, 5, 6, 9}. Haemers [133] shows that the possibility t = 6 can be eliminated, i.e.,

there is no pseudo-geometric graph for GQ(3, 6); this corresponds to the non-existence of

a SRG(76, 21, 2, 7).

Thus, we have that G is a pseudo-geometric graph for GQ(3, t) for t ∈ {1, 3, 5, 9}.

193

REFERENCES

[1] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. “A quantum approximate
optimization algorithm”. In: arXiv preprint arXiv:1411.4028 (2014).

[2] Howard Karloff. “How Good is the Goemans–Williamson MAX-CUT Algorithm?”
In: SIAM Journal on Computing 29.1 (1999), pp. 336–350.

[3] Reuben Tate et al. “Bridging Classical and Quantum with SDP Initialized Warm-
Starts for QAOA”. In: ACM Transactions on Quantum Computing (June 2022).

[4] Reuben Tate et al. “Warm-Started QAOA with Custom Mixers Provably Con-
verges and Computationally Beats Goemans-Williamson’s Max-Cut at Low Circuit
Depths”. In: arXiv preprint arXiv:2112.11354 (2021).

[5] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In: Edsger
Wybe Dijkstra: His Life, Work, and Legacy. 2022, pp. 287–290.

[6] Richard M. Karp. “Reducibility among Combinatorial Problems”. In: Complex-
ity of Computer Computations: Proceedings of a symposium on the Complexity of
Computer Computations. Boston, MA: Springer US, 1972, pp. 85–103.

[7] Julia Robinson. On the Hamiltonian game (a traveling salesman problem). Tech.
rep. Rand project air force arlington va, 1949.

[8] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. “Otakar Borůvka on min-
imum spanning tree problem Translation of both the 1926 papers, comments, his-
tory”. In: Discrete mathematics 233.1-3 (2001), pp. 3–36.

[9] Jack Edmonds. “Paths, trees, and flowers”. In: Canadian Journal of mathematics
17 (1965), pp. 449–467.

[10] Ronald L Graham. “Bounds for certain multiprocessing anomalies”. In: Bell system
technical journal 45.9 (1966), pp. 1563–1581.

[11] Michel X Goemans and David P Williamson. “Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming”. In:
Journal of the ACM (JACM) 42.6 (1995), pp. 1115–1145.

[12] Subhash Khot. “On the power of unique 2-prover 1-round games”. In: Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing. 2002, pp. 767–
775.

194

[13] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. “Noise stability
of functions with low influences: invariance and optimality”. In: 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’05). IEEE. 2005, pp. 21–
30.

[14] Subhash Khot et al. “Optimal inapproximability results for MAX-CUT and other
2-variable CSPs?” In: SIAM Journal on Computing 37.1 (2007), pp. 319–357.

[15] Luca Trevisan et al. “Gadgets, approximation, and linear programming”. In: SIAM
Journal on Computing 29.6 (2000), pp. 2074–2097.

[16] Johan Håstad. “Some optimal inapproximability results”. In: Journal of the ACM
(JACM) 48.4 (2001), pp. 798–859.

[17] Boaz Barak and Kunal Marwaha. “Classical algorithms and quantum limitations for
maximum cut on high-girth graphs”. In: arXiv preprint arXiv:2106.05900 (2021).

[18] Charles H Bennett et al. “Strengths and weaknesses of quantum computing”. In:
SIAM journal on Computing 26.5 (1997), pp. 1510–1523.

[19] Scott Aaronson. “BQP and the polynomial hierarchy”. In: Proceedings of the forty-
second ACM symposium on Theory of computing. 2010, pp. 141–150.

[20] Charles H Bennett. “Logical reversibility of computation”. In: IBM journal of Re-
search and Development 17.6 (1973), pp. 525–532.

[21] Paul Benioff. “Quantum mechanical Hamiltonian models of Turing machines”. In:
Journal of Statistical Physics 29 (1982), pp. 515–546.

[22] Ethan Bernstein and Umesh Vazirani. “Quantum complexity theory”. In: Proceed-
ings of the twenty-fifth annual ACM symposium on Theory of computing. 1993,
pp. 11–20.

[23] Peter W. Shor. “Algorithms for quantum computation: discrete logarithms and fac-
toring”. In: Proceedings 35th Annual Symposium on Foundations of Computer Sci-
ence. Santa Fe, NM, USA, 1994, pp. 124–134.

[24] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum 2
(2018), p. 79.

[25] Aram W. Harrow and Ashley Montanaro. “Quantum computational supremacy”.
In: Nature 549 (2017), pp. 203–209.

[26] Francisco Barahona. “On the computational complexity of Ising spin glass mod-
els”. In: Journal of Physics A: Mathematical and General 15.10 (1982), p. 3241.

195

[27] Andrew Lucas. “Ising formulations of many NP problems”. In: Frontiers in physics
2 (2014), p. 5.

[28] Gavin E. Crooks. “Performance of the Quantum Approximate Optimization Algo-
rithm on the Maximum Cut Problem”. In: arXiv preprint arXiv:1811.08419 (2018).

[29] Jonathan Wurtz and Peter Love. “MaxCut quantum approximate optimization al-
gorithm performance guarantees for p ¿ 1”. In: Physical Review A 103.4 (2021),
p. 042612.

[30] Glen Bigan Mbeng, Rosario Fazio, and Giuseppe E. Santoro. “Quantum Anneal-
ing: a journey through Digitalization, Control, and hybrid Quantum Variational
schemes”. In: arXiv preprint arXiv:1906.08948 (2019).

[31] Sergey Bravyi et al. “Obstacles to Variational Quantum Optimization from Sym-
metry Protection”. In: Physical Review Letters 125 (26 Dec. 2020), p. 260505.

[32] Edward Farhi, David Gamarnik, and Sam Gutmann. “The quantum approximate
optimization algorithm needs to see the whole graph: A typical case”. In: arXiv
preprint arXiv:2004.09002 (2020).

[33] Stefan H Sack et al. “Transition states and greedy exploration of the QAOA opti-
mization landscape”. In: arXiv preprint arXiv:2209.01159 (2022).

[34] Stefan H. Sack and Maksym Serbyn. “Quantum Annealing Initialization
of the Quantum Approximate Optimization Algorithm”. In: arXiv preprint
arXiv:2101.05742 [quant-ph] (2021).

[35] Leo Zhou et al. “Quantum approximate optimization algorithm: Performance,
mechanism, and implementation on near-term devices”. In: Physical Review X 10.2
(2020), p. 021067.

[36] Ruslan Shaydulin et al. “Parameter transfer for quantum approximate optimization
of weighted maxcut”. In: arXiv preprint arXiv:2201.11785 (2022).

[37] Alexey Galda et al. “Transferability of optimal QAOA parameters between random
graphs”. In: 2021 IEEE International Conference on Quantum Computing and En-
gineering (QCE). IEEE. 2021, pp. 171–180.

[38] Iain Dunning, Swati Gupta, and John Silberholz. “What Works Best When? A Sys-
tematic Evaluation of Heuristics for Max-Cut and QUBO”. In: INFORMS Journal
on Computing 30.3 (2018).

[39] Dimitris Bertsimas, Angela King, and Rahul Mazumder. “Best subset selection via
a modern optimization lens”. In: The Annals of Statistics 44.2 (2016), pp. 813–852.

196

[40] Tobia Marcucci and Russ Tedrake. “Warm start of mixed-integer programs for
model predictive control of hybrid systems”. In: IEEE Transactions on Automatic
Control (2020).

[41] Ted Ralphs and Menal Güzelsoy. “Duality and warm starting in integer program-
ming”. In: Proceedings of 2006 NSF Design, Service, and Manufacturing Grantees
and Research Conference. 2006.

[42] Daniel J. Egger, Jakub Mareček, and Stefan Woerner. “Warm-starting quantum op-
timization”. In: Quantum 5 (June 2021), p. 479.

[43] Andreas Bärtschi and Stephan Eidenbenz. “Grover Mixers for QAOA: Shift-
ing Complexity from Mixer Design to State Preparation”. In: arXiv preprint
arXiv:2006.00354 (2020).

[44] Jonathan Wurtz and Peter Love. “MaxCut quantum approximate optimization al-
gorithm performance guarantees for p¿ 1”. In: Physical Review A 103.4 (2021),
p. 042612.

[45] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. “Quantum algorithms for
fixed qubit architectures”. In: arXiv preprint arXiv:1703.06199 (2017).

[46] Ruslan Shaydulin et al. “Classical symmetries and the quantum approximate opti-
mization algorithm”. In: Quantum Information Processing 20 (2021), pp. 1–28.

[47] Colin Campbell and Edward Dahl. “QAOA of the Highest Order”. In: 2022 IEEE
19th International Conference on Software Architecture Companion (ICSA-C).
IEEE. 2022, pp. 141–146.

[48] Kunal Marwaha. “Local classical MAX-CUT algorithm outperforms p = 2 QAOA
on high-girth regular graphs”. In: Quantum 5 (2021), p. 437.

[49] Sergey Bravyi et al. “Hybrid quantum-classical algorithms for approximate graph
coloring”. In: Quantum 6 (2022), p. 678.

[50] Gopal Chandra Santra et al. “Squeezing and quantum approximate optimization”.
In: arXiv preprint arXiv:2205.10383 (2022).

[51] Daniel Beaulieu and Anh Pham. “Max-cut clustering utilizing warm-start QAOA
and IBM runtime”. In: arXiv preprint arXiv:2108.13464 (2021).

[52] Felix Truger et al. “Selection and optimization of hyperparameters in warm-started
quantum optimization for the MaxCut problem”. In: Electronics 11.7 (2022),
p. 1033.

197

[53] Phillip C Lotshaw et al. “Scaling quantum approximate optimization on near-term
hardware”. In: Scientific Reports 12.1 (2022), p. 12388.

[54] Johannes Weidenfeller et al. “Scaling of the quantum approximate optimization al-
gorithm on superconducting qubit based hardware”. In: Quantum 6 (2022), p. 870.

[55] Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. “Accelerating quan-
tum approximate optimization algorithm using machine learning”. In: 2020 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE). IEEE. 2020,
pp. 686–689.

[56] Gian Giacomo Guerreschi and Anne Y Matsuura. “QAOA for Max-Cut requires
hundreds of qubits for quantum speed-up”. In: Scientific reports 9.1 (2019), pp. 1–
7.

[57] Madelyn Cain et al. “The QAOA gets stuck starting from a good classical string”.
In: arXiv preprint arXiv:2207.05089 (2022).

[58] Stuart Hadfield et al. “From the Quantum Approximate Optimization Algorithm to
a Quantum Alternating Operator Ansatz”. In: Algorithms 12.2 (2019).

[59] Zhihui Wang et al. “XY mixers: Analytical and numerical results for the quantum
alternating operator ansatz”. In: Phys. Rev. A 101 (1 Jan. 2020), p. 012320.

[60] Linghua Zhu et al. “Adaptive quantum approximate optimization algorithm for
solving combinatorial problems on a quantum computer”. In: Phys. Rev. Research
4 (3 July 2022), p. 033029.

[61] Andreas Bärtschi and Stephan Eidenbenz. “Grover mixers for QAOA: Shifting
complexity from mixer design to state preparation”. In: 2020 IEEE International
Conference on Quantum Computing and Engineering (QCE). IEEE. 2020, pp. 72–
82.

[62] Zhang Jiang, Eleanor G Rieffel, and Zhihui Wang. “Near-optimal quantum circuit
for Grover’s unstructured search using a transverse field”. In: Physical Review A
95.6 (2017), p. 062317.

[63] Lov K Grover. “A fast quantum mechanical algorithm for database search”. In:
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing.
1996, pp. 212–219.

[64] Scott Aaronson. Introduction to Quantum Information Science Lecture Notes. https:
//www.scottaaronson.com/qclec.pdf. 2021.

198

https://www.scottaaronson.com/qclec.pdf
https://www.scottaaronson.com/qclec.pdf

[65] Adetokunbo Adedoyin et al. “Quantum algorithm implementations for beginners”.
In: arXiv preprint arXiv:1804.03719 (2018).

[66] Michael A Nielsen and Isaac Chuang. Quantum Computation and Quantum Infor-
mation. American Association of Physics Teachers, 2002.

[67] Bobbi Jo Broxson. “The Kronecker Product”. In: UNF Graduate Theses and Dis-
sertations 25 (2006).

[68] C. Delorme and S. Poljak. “Laplacian eigenvalues and the maximum cut problem”.
In: Mathematical Programming 62 (1993), pp. 557–574.

[69] Svatopluk Poljak and Franz Rendl. “Nonpolyhedral Relaxations of Graph-
Bisection Problems”. In: SIAM Journal on Optimization 5.3 (1995), pp. 467–487.

[70] Yurii Nesterov and Arkadi Nemirovski. Interior-point polynomial algorithms in
convex programming. Philadelphia, PA, USA: SIAM, 1994.

[71] Samuel Burer and Renato DC Monteiro. “A nonlinear programming algorithm for
solving semidefinite programs via low-rank factorization”. In: Mathematical Pro-
gramming 95.2 (2003), pp. 329–357.

[72] Alexander I. Barvinok. “Problems of distance geometry and convex properties of
quadratic maps”. In: Discrete & Computational Geometry 13.2 (1995), pp. 189–
202.

[73] Gábor Pataki. “On the rank of extreme matrices in semidefinite programs and the
multiplicity of optimal eigenvalues”. In: Mathematics of Operations Research 23.2
(1998), pp. 339–358.

[74] Nicolas Boumal, Vladislav Voroninski, and Afonso S. Bandeira. “The non-convex
Burer–Monteiro approach works on smooth semidefinite programs”. In: arXiv
preprint arXiv:1606.04970 (2018).

[75] Nicolas Boumal, Vladislav Voroninski, and Afonso S Bandeira. “Deterministic
Guarantees for Burer-Monteiro Factorizations of Smooth Semidefinite Programs”.
In: Communications on Pure and Applied Mathematics 73.3 (2020), pp. 581–608.

[76] Yin Zhang, Samuel Burer, and Renato D. C. Monteiro. “Rank-2 relaxation heuris-
tics for Max-Cut and other binary quadratic programs”. In: SIAM Journal on Opti-
mization 12 (2 2001), pp. 503–521.

[77] Song Mei et al. “Solving SDPs for synchronization and MaxCut problems via the
Grothendieck inequality”. In: arXiv preprint arXiv:1703.08729 (2017).

199

[78] Diederik Kingma and Jimmy Lei Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2017).

[79] M.J.D. Powell. “A Direct Search Optimization Method That Models the Objective
and Constraint Functions by Linear Interpolation”. In: Advances in Optimization
and Numerical Analysis 275 (1994), pp. 51–67.

[80] Fuchang Gao and Lixing Han. “Implementing the Nelder-Mead simplex algorithm
with adaptive parameters”. In: Computational Optimization and Applications 51
(2012), pp. 259–277.

[81] Roger Fletcher. Practical Methods of Optimization (2nd edition). New York, NY,
USA: John Wiley and Sons, 1987.

[82] Wim Lavrijsen et al. “Classical Optimizers for Noisy Intermediate-Scale Quantum
Devices”. In: arXiv preprint arXiv:2004.030043 (2021).

[83] Max Wilson et al. “Optimizing quantum heuristics with meta-learning”. In: Quan-
tum Machine Intelligence 3.13 (2021).

[84] Fernando G.S.L. Brandao et al. “For Fixed Control Parameters the Quantum Ap-
proximate Optimization Algorithm’s Objective Function Value Concentrates for
Typical Instances”. In: arXiv preprint arXiv:1812.04170 (2018).

[85] Brenda S Baker. “Approximation algorithms for NP-complete problems on planar
graphs”. In: Journal of the ACM (JACM) 41.1 (1994), pp. 153–180.

[86] Magnús Halldórsson and Jaikumar Radhakrishnan. “Greed is good: Approximat-
ing independent sets in sparse and bounded-degree graphs”. In: Proceedings of the
twenty-sixth annual ACM symposium on Theory of computing. 1994, pp. 439–448.

[87] Meike Neuwohner. “An improved approximation algorithm for the maximum
weight independent set problem in d-claw free graphs”. In: arXiv preprint
arXiv:2106.03545 (2021).

[88] David Zuckerman. “Linear degree extractors and the inapproximability of max
clique and chromatic number”. In: Proceedings of the thirty-eighth annual ACM
symposium on Theory of computing. 2006, pp. 681–690.

[89] Frank Arute et al. “Quantum supremacy using a programmable superconducting
processor”. In: Nature 574 (2019), pp. 505–510.

[90] Rebekah Herrman et al. “Impact of graph structures for QAOA on MaxCut”. In:
Quantum Information Processing 20.9 (2021), pp. 1–21.

200

[91] Andreas Bayerstadler et al. “Industry quantum computing applications”. In: EPJ
Quantum Technology 8.1 (2021), p. 25.

[92] Edward Farhi and Aram W Harrow. “Quantum supremacy through the quantum
approximate optimization algorithm”. In: arXiv preprint arXiv:1602.07674 (2016).

[93] Andries E. Brouwer et al. “The smallest eigenvalues of Hamming graphs, Johnson
graphs and other distance-regular graphs with classical parameters”. In: Journal of
Combinatorial Theory, Series B 133 (2018), pp. 88–121.

[94] Luca Trevisan. “Max Cut and the smallest eigenvalue”. In: SIAM Journal of Com-
puting 41 (6 2012), pp. 1769–1786.

[95] José A. Soto. “Improved Analysis of a Max-Cut Algorithm Based on Spectral Par-
titioning”. In: SIAM Journal on Discrete Mathematics 29 (1 2015), pp. 259–268.

[96] Iain Dunning, Swati Gupta, and John Silberholz. “What works best when? A sys-
tematic evaluation of heuristics for Max-Cut and QUBO”. In: INFORMS Journal
on Computing 30.3 (2018), pp. 608–624.

[97] Jean B Lasserre. “Global optimization with polynomials and the problem of mo-
ments”. In: SIAM Journal on optimization 11.3 (2001), pp. 796–817.

[98] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry
methods in robustness and optimization. California Institute of Technology, 2000.

[99] Zhihui Wang et al. “Quantum approximate optimization algorithm for MaxCut: A
fermionic view”. In: Physical Review A 97.2 (2018), p. 022304.

[100] JJ Seidel. “Strongly regular graphs”. In: Surveys in combinatorics 38 (1979),
pp. 157–180.

[101] Raj Chandra Bose. “Strongly regular graphs, partial geometries and partially bal-
anced designs.” In: Pacific Journal of Mathematics (1963), pp. 389–419.

[102] WE Brittin. “Valence angle of the tetrahedral carbon atom”. In: Journal of Chemi-
cal Education 22.3 (1945), p. 145.

[103] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[104] Reuben Tate and Swati Gupta. “CI-QuBe”. In: GitHub Repository (2021). https:
//github.com/swati1729/CI-QuBe.

201

https://github.com/swati1729/CI-QuBe
https://github.com/swati1729/CI-QuBe

[105] Nathan Krislock, Jérôme Malick, and Frédéric Roupin. “BiqCrunch: A Semidefi-
nite Branch-and-Bound Method for Solving Binary Quadratic Problems”. In: ACM
Transactions on Mathematical Software 43.4 (Jan. 2017).

[106] William Feller. An Introduction to Probability Theory and Its Applications. 3rd.
Vol. 2. Hoboken, New Jersey: Wiley, 1971.

[107] Jacek Gondzio and Andreas Grothey. “Solving nonlinear financial planning prob-
lems with 109 decision variables on massively parallel architectures”. In: WIT
Transactions on Modelling and Simulation 43 (2006).

[108] Fan RK Chung. Spectral graph theory. Vol. 92. American Mathematical Soc., 1997.

[109] William Karush. “Minima of functions of several variables with inequalities as side
conditions”. MA thesis. University of Chicago, 1939.

[110] Harold W. Kuhn and Albert W. Tucker. “Nonlinear Programming”. In: Proceed-
ings of the Second Berkeley Symposium on Mathematical Statistics and Probability.
Berkeley, Calif.: University of California Press, 1951, pp. 481–492.

[111] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network struc-
ture, dynamics, and function using NetworkX. Tech. rep. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2008.

[112] The Sage Developers. SageMath, the Sage Mathematics Software System. https :
//www.sagemath.org. 2020.

[113] Russell Lyons and Yuval Peres. Probability on trees and networks. Vol. 42. Cam-
bridge University Press, 2017.

[114] Leo Zhou et al. “Quantum approximate optimization algorithm: performance,
mechanism, and implementation on near-term devices”. In: arXiv preprint
arXiv:1812.01041 (2018).

[115] Yin Tat Lee and Swati Padmanabhan. “An Õ(m/ϵ3.5)-Cost Algorithm for Semidef-
inite Programs with Diagonal Constraints”. In: arXiv preprint arXiv:1903.01859
(2019).

[116] Fred Glover, Gary Kochenberger, and Yu Du. “Quantum Bridge Analytics
I: A Tutorial on Formulating and Using QUBO Models”. In: arXiv preprint
arxiv:1811.11538 (2019).

[117] Bas Lodewijks. “Mapping NP-hard and NP-complete Optimization Problems
to Quadratic Unconstrained Binary Optimization Problems”. In: arXiv preprint
arxiv:1911.08043 (2020).

202

 https://www.sagemath.org
 https://www.sagemath.org

[118] Alan J. Laub. Matrix Analysis for Scientists and Engineers. Vol. 91. Siam, 2005.

[119] Georg Frobenius. “Ueber Matrizen aus nicht negativen Elementen”. In: Sitzungs-
berichte der Königlich Preussischen Akademie der Wissenschaften (1912),
pp. 456–477.

[120] A. Kaveh and H. Rahami. “A unified method for eigendecomposition of graph
products”. In: Communications in Numerical Methods in Engineering with
Biomedical Applications 21 (7 2005), pp. 377–388.

[121] Simon Špacapan. “Connectivity of Cartesian products of graphs”. In: Applied
Mathematics Letters 21 (7 2008), pp. 682–685.

[122] Abraham Asfaw et al. Learn Quantum Computation Using Qiskit. http : / /
community.qiskit.org/textbook. 2020.

[123] Matthew P Harrigan et al. “Quantum approximate optimization of non-planar graph
problems on a planar superconducting processor”. In: Nature Physics 17.3 (2021),
pp. 332–336.

[124] Sergey Bravyi et al. “Mitigating measurement errors in multiqubit experiments”.
In: Phys. Rev. A 103 (4 Apr. 2021), p. 042605.

[125] George S. Barron and Christopher J. Wood. “Measurement Error Mitigation for
Variational Quantum Algorithms”. In: arXiv preprint arXiv:2010.08520 (2020).

[126] Sartaj Sahni and Teofilo Gonzalez. “P-Complete Approximation Problems”. In: J.
ACM 23.3 (July 1976), pp. 555–565.

[127] Stuart Hadfield et al. “From the quantum approximate optimization algorithm to a
quantum alternating operator ansatz”. In: Algorithms 12.2 (2019), p. 34.

[128] Tianyi Hao et al. “Exploiting In-Constraint Energy in Constrained Variational
Quantum Optimization”. In: arXiv preprint arXiv:2211.07016 (2022).

[129] Juho Hirvonen et al. “Large cuts with local algorithms on triangle-free graphs”. In:
arXiv preprint arXiv:1402.2543 (2014).

[130] Matthew B Hastings. “Classical and quantum bounded depth approximation algo-
rithms”. In: arXiv preprint arXiv:1905.07047 (2019).

[131] Antonia Creswell et al. “Generative adversarial networks: An overview”. In: IEEE
signal processing magazine 35.1 (2018), pp. 53–65.

203

http://community.qiskit.org/textbook
http://community.qiskit.org/textbook

[132] Willem H Haemers and Edward Spence. “The pseudo-geometric graphs for gen-
eralized quadrangles of order (3, t)”. In: European Journal of Combinatorics 22.6
(2001), pp. 839–845.

[133] WH Haemers et al. “There exists no (76, 21, 2, 7) strongly regular graph”. In:
Finite Geometry and Combinatorics (F. De Clerck et al., eds.), LMS Lecture Notes
Ser 191 (1993), p. 143.

[134] Charles J Colbourn. CRC handbook of combinatorial designs. CRC press, 2010.

204

VITA

Reuben Tate earned a Bachelor of Science in Computer Science, a Bachelor of Arts in

Mathematics, a minor in Physics, and certificate in Database Management from the Univer-

sity of Hawaii at Hilo. Reuben then joined the PhD program in Algorithms, Combinatorics,

and Optimization program at the Georgia Institute of Technology under the advisorship of

Professor Swati Gupta. Reuben was a member of the (Optimization with Trapped Ion

Qubits) OPTIQ group, led by the Georgia Tech Research Institute, which is a DARPA-

funded effort for performing optimization on trapped-ion qubits; during his time in the

group, Reuben developed a warm-started quantum approach for problems in combinatorial

optimization. Reuben was also an intern at the Feynman Quantum Academy program at

the USRA-NASA Quantum Artificial Intelligence Laboratory where he worked on other

modifications of quantum optimization algorithms under the mentorship of Dr. Stuart Had-

field.

Reuben has also had an interest in teaching: he has tutored for numerous schools and

organizations, he TA’ed many courses at both the University of Hawaii at Hilo and Geor-

gia Tech, he developed curriculum and co-instructed a problem-based learning summer

program for the Upward Bound organization (who assists low-income and upcoming first-

generation students), and most recently, he was a graduate student instructor for Differential

Calculus and Applied Combinatorics at Georgia Tech.

205

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Contributions of the Thesis
	Related Work

	2 | Background and Notation
	General Quantum Computing Background
	Approximation Ratio
	Classical Methods for Max-Cut
	The Quantum Approximate Optimization Algorithm
	Independent Set Problem

	3 | Interesting Instances For Quantum Advantage
	Small Instances from Karloff's Construction with Low GW Approximation Ratios
	Provable Guarantees for the GW Algorithm on Strongly-Regular Graphs
	Empirical Results
	QAOA's Performance on Challenging Instances for the GW Algorithm

	4 | Warm-starts for QAOA using Standard Mixers
	Framework for Constructing Initial Quantum States
	Initialization Schemes for Warm-Start State
	Limitations of QAOA-Warm
	QAOA-Warm on Antipodal Structures
	Numerical Simulations for QAOA-Warm
	Discussion
	Conclusion

	5 | Warm-Starts with Customized Mixers
	Custom Mixer Construction
	Proof of Convergence in the Adiabatic Limit
	Convergence Rate of QAOA-warmest
	Numerical Simulations and Hardware Experiments for QAOA-Warmest
	Discussion

	6 | Warm-Starts from Classical Local Algorithms
	Using Ancilla Qubits to Emulate Classical Algorithms
	Effect of QAOA on States with Ancilla
	Discussion and Future Directions

	7 | Conclusion
	Open Questions

	Appendices
	A | Partial Geometries

	References
	Vita

