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ATLANTA GEORGIA 30332 

June 28, 1977 
wi lhOM A TIC'S 

(22-3'7-b% 

GEORGIA INSTITUTE OF TECHNOLOGY 

Central Processing Section 
National Science Foundation 
Washington, D.C. 20550 

Attention: Dr. Julius R. Blum, Program Director 
Statistics Program 
Mathematical Sciences Section 
Division of Mathematical and Computer Science 

Subject: 	Annual Technical Letter 

Dear Dr. Blum: 

Some results of research conducted under NSF Grant 

No. MCS 76 -11040, 'Optimum designs when the basic observa-

tions are sample paths of a stochastic process" are summarized 

below. The summary consists essentially of the abstracts of 

two papers which have been submitted for publication. Pre- 

prints with more detailed results are available. If you 

desire them at this time, please let me know. 

Let the process {Y(x,t) : tcT} be observable for each x in 

some compact set X. Assume that Y(x,t) = 8 0 f 0 (x)(t)+•••+6 kfk (x)(t) 

+ N(t) where f.
] 
 are continuous functions from X into the repro- 

ducing kernel Hilbert space H of the mean zero random process N. 

The optimum designs for estimating c'e are characterized by an 

Elfving's theorem with R = col(clo,f(x)) H  : 11(1) 11 H  < 1, xeX} where 

(•,•) H  is the inner product on H. It is shown that if X is con-

vex and f. are linear design points may be chosen from the extreme 



Dr. Julius R. Blum 
June 28, 1977 
Page Two 

points of X. In some problems each linear functional c'8 

can be optimally estimated by a design on one point x(c). These 

problems are completely characterized. An example is worked and 

some partial results on minimax designs are obtained. 

Elfving's Theorem is not very useful in three or more 

dimensions. One of the iterative procedures referred to below 

can be used to find an approximately optimal design. It has 

some desirable characteristics not possessed by existing 

iterative techniques. 

Let K be a convex set in the Hilbert space H and the ray 

{ac:acR} "puncture" K at 8 * . Each algorithm results in a non-

increasingsequence{8.}which converges to 8 * . The points 

8.c lie in successive supporting hyperplanes to K. The normal to 
th 

the the n 	is obtained by a minimization over a set 

no larger than the unit n-cube. It is assumed that the subset 

K which maximizes (4,x) for x in K is relatively easily found. 

Sincerely. 

Carl Spruill 



G.- 31- 12‘ 

GEORGIA INSTITUTE OF TECHNOLOGY 
ATLANTA. GEORGIA 30332 

June 19, 1978 
MATHEMATICS 

Central Processing Section 
National Science Foundation 
Washington, D.C. 20550 

Attention: Dr. Julius R. Blum, Program Director 
Statistics Program 
Mathematical Sciences Section 
Division of Mathematical and Computer Science 

Subject: 	Annual Technical Letter 

Dear Dr. Blum: 

To date the results of research conducted under NSF Grant 

No. MCS76-11040A01 fall into two general categories. 

The first is related to H(K)-valued estimators of the mean 
k 

function { 	6.f.(x,t):teT1, where 6 is unknown. We were able 
j=0 D D  

to find the best linear unbiased estimator m of O'f(x), where 

x is fixed, and to prove an exact analogue of the Kiefer-Wolfowitz 

theorem on D-optimum designs. 

The second category of results is those related to the esti- 

mation of linear functionals of the unknown parameter 0 for the 

 

model 

 

Y(x,t) = mx (6,t) + E(t) 	t E T , 

where for each xe X the maps mx  are linear from the space 0 to 

H(K). The space 0 is linear but otherwise arbitrary. 



Preprints containing the detailed results in each of these 

categories are available. Please let me know if you would like 

copies at this time. 

Sincerely, 

Carl Spruill 

CS:jj 
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1. Background. 

Recorded below are the results of our investigations into 

some regression design problems. We assume a model y = m(0,x) + 

where y is a second order process, c is a zero mean second order 

process with known covariance kernel, and the mean function m is 

linear in the unknown parameter. 	The parameter x indexes a set 

of possible experiments. In the case that y, m, and c are scalars 

k 
and m is of the form 1 0.f.(x), where ff.l. k  

10 are known functions, = i=0 

regression design problems have been thouroughly investigated. See, 

for example, Elfving (1952), (1954), (1959); Chernoff (1972), 

Fedorov (1972), Karlin and Studden (1966), Kiefer (1960), (1961), 

(1974), Kiefer and Wolfowitz (1960), and Studden (1971). The prob-

lems we consider are either direct analogues of those in the 

scalar case or naturally motivated by the richer structure of the 

observations and parameter space. 

The statistical basis for our analysis is provided by the ele-

gant work of E. Parzen (1959) whose methods utilized and further 

developed the theory of reproducing kernel Hilbert spaces as found 

in Aronszajn (1950). Using this theory to handle unbiased estima-

tion problems convenient expressions for the variance, in terms of 

the known quantities and the design measure, are obtained. Modest 
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functional analytic techniques are then employed to characterize 

the optimal designs. 

The paper is divided into four chapters. The second and third 

chapters contain general theorems on various aspects of the design 

problems associated respectively with finite dimensional and infi-

nite dimensional parameter spaces. Examples are provided. The 

paper culminates in the contents of the fourth chapter. Here the 

general theory is applied successfully to random differential equa-

tions. 

One much studied class of problems which we do not explicitly 

treat arises in estimation problems involving stochastic processes 

by asking for the optimal sampling "times" Sacks and Ylvisaker 

(1966), (1968), (1969); and Wahba (1971), (1974). Another area of 

investigation which is not treated is that of Hilbert space methods 

as expounded byPazman (1978a). R. K. Mehra (1974) has investigated 

some design problems which closely resemble some of ours. Criteria 

are phrased in terms of the information matrix. He is able to 

treat non-linear problems in this way. We treat only problems 

linear in the unknown parameter. 

Finally, I would like to point out that certain portions of 

this paper represent the fruits of collaboration with Professor 

W. J. Studden [Spruill and Studden (1978), (1979)] and thank espe-

cially Professors M. J. Christensen, S. G. Demko, and Heinz Engl 

for their helpful conversations. 
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2. Finite dimensional parameter space. 

2.1. Introduction. Let X be a set of functions on [0,1]. Suppose 

that for each xEx an experimenter can observe the stochastic process 

{Y(x,t) : t E [0,1]}, where 

Y(x,t) = 0 0x(t) + 0 1 x (1)  (t)+ N(t) 

and N(t) is a zero mean noise process with covariance min(s,t). 

The constants
0 
 and 0

1 
are unknown. If the experimenter wishes 

to obtain an estimate of, say, 0 1  based on observing N outcomes 

{Y(x,t): tE [0,1]1, i = 1,•••,N, which x i (t) should he use? If 

it is desired to estimate the value of the mean function at some 

particular time t 0  in (0,1], what design minimizes the maximum 

over X of the variances of the estimators of this value? 

Let X be the closed convex hull of the set of functions on 

[0,1] such that x(0) = x (1) (0) = 0 and the second derivative is 

E 0 	t 	a 

< t < 1 

MEMO 	for some a E [0,1] and c = ±1. Then the answer to the first ques- 

tion is to take all observations at 
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0 s s 	1/2 

x( s) 

1/2 < s 	1 

The answer to the second, for t 0  = 1/4, is to take all observations 

at 

s 2
/2 0 	S 5_ 1/4 

1/16-(1/2-s)
2/2 1/4 < s s 1 

The answers to these and other questions of interest are ob-

tained by utilizing tae characterizations of the optimal designs 

developed below for tae more general model 

k 
Y(x,t) =e.f.(x)(t) + N(t), t€T , 

j=0 3 3  

where N has zero mean and known covariance kernel K(s,t). It seems 

intuitively reasonable that a mean of the given form should serve 

as an adequate approximation to the true mean in many experimental 

situations. If T is finite this is just the usual linear model 

mean. In either case it can be taken as the Taylor approximation 

to a differentiable mean (see Dieudonne (1960, 8.14.3). 

A characterization of the solution to the first problem, 

estimation of a linear form in the unknown 0's, is provided by an 

Elfving-type theorem. The second, minimax design, problem is not 

solved in general. The solution for the example shows that, as 
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6
1 	N 

= 1  X [2 Y(x. 1/2) - Y(x. ,1)] 
i=1 

2.2. Preliminaries. Let f = (f 0 ,f 1 , 	,fk) be a vector of mappings 

from a set X onto a subset of functions on the set T. That is, for 

each xEX, f.
7
(x)(•) is a real valued function on the set T with 

value f.(x)(t) at teT. The points xEX are possible levels of feasi-

ble experiments. For each level some experiment can be performed 

whose outcome is a stochastic process {Y(x,t): tET}. It is assumed 

that the process has mean function 

5 

one might expect, the optimal designs in some minimax problems do 

not necessarily coincide with the D-optimal designs. 

Although the estimators are based on the values of the process 

Y on the set T which may be an interval or larger set, the informa-

tion on the optimal design is valuable for at least two reasons. 

If the experimenter is only able to sample values of Y at some 

finite set T
m 

c T and this set "fills" T sufficiently (see Sacks and 

Ylvisaker (1966)), the experiment based on our optimal design will 

be nearly optimal. Our optimal design should be easier to find 

since it does not depend upon how Tm  "sits" in T. The second rea-

son is that in certain cases the optimal estimators may turn out 

to depend on the values of the process at only a finite set of 

points, an integral over the interval, or some other quantity which 

may be realized as the output of an analogue device. The optimal 

estimator of 6 1 for the example above turns out to be 
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k 
ef.(x) (t) 	, 	tET , 

j=0 3 3  

and known proper covariance kernel 

K(s,t) = cov[Y(x,$),Y(x,t)], xEX, s,tET . 

The constants 0 0 ,•••,e k  are unknowns and the function c'e, where 

c(0) is a fixed known vector, is to be estimated on the basis of 

N uncorrelated observations {Y(x ,t): tET, i = 1,•••,N}. 

An experimental design specifies a probability measure con-

centrating mass 	 at the points x l ,•••,xr  , where p iN = n i  , 

i = 1,••.,r are integers. The associated experiment involves 

taking n i  observations of the stochastic process {Y(x i ,t): tET). 

The problem confronting the experimenter is to choose the 

design which minimizes the variance of the minimum variance linear 

unbiased estimator of c'e. 

Let K be as above and H(K) be the associated reproducing ker-

nel Hilbert space of functions on T with inner product ( , ,•) K  (see 

Parzen (1959)). The assumptions are as follows. 

(Al) The functions {f} 0  ,f
j 
 : X 4- H(K) are continuous on the 

compact set X with the norm topology of H(K). 

(A2) The set X can be given a topology so that one point sets are 

measurable. Arbitrary Borel probability measures will be 

admitted as possible designs. We denote the class of designs 

by E. 
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(A3) There is a measure ECI: such that 

k 
fll 

j
/ 
0
a.f. ( x ) 1 1

2
dC(x) = O. 

= 3 3  

	

if and only if a o  = a l  = 	= ak  = O. 

Define for each measure CE E the matrix M(E) whose ij
th entry is 

[M(C)] i  = f(f i (x),f j (x)) KdC(x) . 	 (2) 

That M(F) is well defined follows from (Al). 

Consider the discrete design C which places masses p = i 	N 

at x. , 1 	i = 1,•••,r, where x i EX and {n}i=1 are integers with 

r 
p. = 1. The experiment consists of taking N uncorrelated obser-

i=1 1  

vations fY j (x i ,t): tET1, j = 1,...,n i ,i = 1,•••,r. As we vary 

t, Y(x,t) denotes a sample path observed at level x. Set 

F = 	(x1 ,1) , (x 1 ,2),..., 	 xT and 

define the process {Z(y): yEF} by Z(y) = Y j  (x i ,t) if y = (xi ,j,t). 

The covariance kernel of Z is given by 

	

K(ti ,t 2 ) 	if 	(x. ,j 1 ) = (x i  ,j 9 ) 1 1  2 
,j2) 

B(Y 1 ,Y 2 ) 

O.W. 

where y a  = ((xa ,j a ),ta). Denote by <Z,g>B  the random variable in 

L2 [Z(y): ycF] which is the image of g in the reproducing kernel 

n. 
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Hilbert space H(B) associated with B. Note that H(B) consists of 

functions defined on f. The class of linear estimators of c 1 0 is 

i<Z,g>B : gEH(B)1. The function c 1 8 is said to be estimable with 

respect to this design if there is a gEH(B) such that E e<Z,g>B 

 c1 0. Denote the inner product on H(B) by (.,.) B . Parzen (1959) 

proved the following. 

Theorem 10A. Let {Z(y): y€r} have known proper covariance kernel 

B and unknown mean value function m(0)EH(B). Given that c'0 is 

estimable there is a unique linear estimator <Z,g 0 >B  which is the 

uniformly minimum variance linear unbiased estimator of c 1 0 with 

variance I 1g II 2 0 B . Furthermore <Zg> B is umvlue of c
1 0 if and only 

if g is the unique function in the closure of fm(0): BEIR k+1 1 

satisfying c'0 = (m(0),g) B , OEIRk+1 . 

The proof of the next result is obtained by a routine appli-

cation of the properties of reproducing kernel Hilbert spaces as 

found in Parzen (1959) Section 5. 

Lemma 2.2.1. The element g is in H(B) if and only if 

g((xi ,j),•) E H(K) for each (xi ,j), j = 1,•••,ni 	= 1,•••,r. 

Furthermore, if g and h are in H(B) 

n. r 	1 
(h,g) B +1X(10‹.,j),g(x.,j))

K  . i=1 j=1 
(2.2) 

Still retaining E as defined above we have the following. 
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Lemma 2.2.2. (i) c'e is estimable if and only if c is in the 

range of M(„) 

(ii) The variance of the umvlue of c'e is 

N-1c'M+ ()c 
	 (2.3) 

where M+  is the Moore-Penrose g-inverse of M ( = M -1  if M is non-

singular). 

Proof: Since E 0<z,g> B  E (m(e),g) B  E (m(e),Pg) B  where Pg is the 

projection of g onto the (closed) subspace fm(e): GEBRI, c+1 1, and 

k 
since Pg(y) = 	a.f.(y) for some aciR kl-1 , one has E(Z,g> B 

Ee'NM()a 
j=0 3 3  

by Lemma 2.1. This last expression is identically c'e if and only 

if c is in the range of M(). Now (ii) follows from Parzen's theo-

rem 10A above and Lemma 2.2.1 which show that the variance of the 

umvlue is 

11Pg11 13  = Naim(E)a , 	 (2.4) 

where NM(C)a = c. Utilizing the properties of M 1- (C) it can be 

seen that the rhs of (2.4) is just N-1c'M
+ 

For arbitrary c in IRk+1 - {0} and E in E define 

d( c ,C ) = c'M
+
(C)c 
	

(2.5) 

if cER[M()], the range of M(), and d(c,O = +co otherwise. 



(2.6) 

For any symmetric non-negative definite matrix M and any vec- 

tors a and b 

la l Mbl 	 ✓b'Mb , 

with equality if and only if Ma = kMb for some constant k. 

The alternative expression below for d(c,) was proved by 

Karlin and Studden (1966). 

Lemma 2.2.3. For any c E R
k
- { 0} and C in E. such that m(E) 	0 

' 2 
d(c, C) = sup d , 

(c
m( d)ud  , 

dEU 

where U = {d: d'Md > 0}. 

10 

If c'El is estimable with respect to the particular C which 

has been the object of our attention so far, the variance of the 

umvlue of c 1 0 is N 1d(c,C). 

Following Karlin and Studden (1966) we make the following 

definitions for arbitrary C in 

Definition. The linear form c'e is estimable with respect to C if 

c is in R[M()]. 

Definition. A design C o  in E is said to be optimal with respect 

to the estimation of c'e if d(c,C 0 ) = min d(c,C). 
7.7 



d'Md 
(c'd)

2 
c'M+c . (2.7) 

1 1 

Proof: Write M for M(). If c E R(M) then since MM+  is the pro-

jection onto R(M) (see Nashed (1971)) one has c = MM+c. Thus 

(c'd)
2 

= (c 1 M
+
Md)

2 
5. c 1 M

+
cd 1 MM

+
Md 

= c'M
+
cd'Md 

for any d. If dEU then 

Setting d = Dec, which is in U, equality is achieved in (2.7). 

If c R(M) then c = cR  + c 1  is the direct sum decomposition 
R 

of c and licR
2 
> 0. Taking d c = cR

1 + ca, where a E R, a 	0, 

is such that (a,cR ) 	0, 

	

(c',d 6 ) 2 	licR111 2  + c(cR'  a) 

d'Md 6
2
a'Ma 

c1d)2 	+ . Therefore sup ( d , md  
dEU 

For each x in X and A in IRk+1 write 

k 
L(x,A) = 

j
y A.f.(x) . 
=0 3 3  

If g and h are in H(K) denote their inner product by (g,h) K  or 

(g,h) when no confusion is possible. When g o ,•••,gk  are in H(K) 
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.th 
let (h,g) be the k+1 vector whose 3-- component is (h,g.4). Let 

R = co{ (0,f(x)): xEX, 	= 11, where co (A) denotes the closed 

convex hull of A. For each AEIR
k+1 

- {0} let 

	

A(A) 	{xEX: IlL(x,A)11 = max IlL(17 ,A)111 
yEX 

and for any subsets G(A) of X 

(1,(x,A),f(x)) 
H
G

(A) 
IL(x,A)11 
	  : x6G(A), 111,(x,A)11 > 0 

Define the subset R o of R
k+1 

by R
o 	

AES 

= 	H
A
(A), where Sk+1 

`-'k+1 

is the unit sphere in IR
k+1 It can be shown that R = co(R 0 ). 

This relationship is useful in the theoretical work below. It is 

also potentially useful for a graphical solution since 

R
0 
 c { (cp,f(x)): xEX, 	= 11. 

Lemma 2.2.4. Under the assumptions Al - A3 R o  is compact. 

	

L(xj,Xj 	
Since 

) 
Proof: Let {r. . 	c R 	r = 	  

	

J 3=1 	0' J,A   

k+1 is 	Ao . Since 

f is continuous f(X) is a compact subset of the metric space 

(H(K))
k+1

. Therefore, there is a further subsequence f(x.,) 3  
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converging to f(x 0 ) componentwise for some x 0  in X. By the con-

tinuity of the functions involved it follows that 

( L(x0,A0) 

r j" 4' 	IlL(x0/A0)11 , f(x0) 	
in 	since also IlL(x 0 ,A 0 )11 = 

maxilL(x,A 0 )11. 
X 

2.3. Characterization of optimal designs.  Fix cE 41 
- {0} and 

let v 0 = inf 

1 
Lemma 2.3.1. 	(a) ISc E R implies v 0 	. 

1 (b) Sc E 3R implies v 0 	—f . 

Proof:  (a) If R = 0 the result is immediate. Otherwise, since 

13cER, one has by Caratheodory's theorem that 

k+1 
C3 c =

j 0
aiNvf(x0i )) 

= 

where a j > 0, ya j  = 1, and (0 O j ,f(xOj  )) E R 0  for j = 0,...,k+1. 

One has for any z in IRk+1 that 

2 	[a.(cp. .,L(x ,,z))] 2 

	

2 	(8c 1 z) 	03 	03  

	

(c'z) 	. 2 	- 
13. 2 

Yoc.11L(,z)11 2 	Yaz'M(x 03  )z 	, 3 	x0j 	3 	_ z M()z  

Ci
2 	

(3
2 	12 

(2.8) 
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where C is the measure which places masses a j  at xOji 
 land M(x 0i ) 

is the matrix for the measure placing all mass at x Oj 
. This 

1 shows v0 	c32 -- by Lemma 2.2.3 

(b) Since 8cEaR there is a point AEIRk+1  such that 

A' Sc 	A'r 	 (2,9) 

for all r€R. This implies A'Bc 	IA'r1 for all rER since R is 

( L(x
o
,A) 

symmetric about 0. Consider r 0  = 11L(x0,A)I1 , f(x 0 ) where 

 

11L(x0,A) II = max 11 1, (x,A)11 
X 

(2.10) 

From (2.8) one has 

    

 

A' 8c = Ya i Ni ,L(x 0i ,A)) 

Xaa'.(x 
j 3 	Oi  

(2.11) 

   

3 
.M(x

03 
 .)a. 
 3 

  

bl i ✓A 1 M(x0i )A = Ect i llL(x0i ,A)11 <max IIL(x,A)II  . 
X 

 

From (2.9), (2.10), and (2.11) one has 

max IlL(x,A)11 = Pro 	P8c 	max IlL(x,A)11 

with A'8c < max IlL(x,A)11 unless 



= PM(C)X 	A1M(11)A 5.d(c,n) 

for all n and the lemma is proved. 

Theorem 2.3.1.  Under the assumptions Al - A3 there is an optimal 

design 	for estimating c'el. Furthermore 	is optimal if and 

only if there is a function 0: X 	H(K), 110(x)11 El, such that 

U 

1 	(c'A) 2 (c ,  A)  2 

f(0(x), f(x))cl o (x) 	is 

15 

111(x03FX)11 = maxl1L(xfA)11 . 

for j = 0,•••,k+1. Consequently 

(A 1 c) 2  = maxilL(x,X) 112 
	

O 

	

= 11 1 (x 	FA)11
2 
 = PM(C)A 

where 	places masses a j  at x 0i  ,j = 0,1,•••,k+1. Since 

v0  = inf d(c,) there is a sequence r such that d(c,
n ) 	vo  . By 

A3 there is at least one design for which c is estimable. We may 

assume that cER[M( n )] for all n. It follows that A has a non-zero 

component in N I [M(C 11 )] for every n, for otherwise one would have 

AEN[M( 11 )] = R [M( 1.1 )] so that (Pc) 2  = O. This latter equality 

contradicts (A3) in view of (Wc) 2  = supilL(x,A)11
2 . Therefore 

x 
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(i) proportional to c and 

(ii) a boundary point of R. 

Proof: Since R is compact there is a S, 0 	8 < 00, such that 

icE3R. From Lemma 2.3.1
2 
= j— and since v0 

 is finite by A3 8 
v
0  

must be strictly positive. If C o  denotes the measure which places 

masses ot j  at x oi  as in (2.8) it follows that for any z in IR
k+1 

2 2 	(13,c 1 z) 	 2 	 2 
(c'z) = 	-- v0 (8c'z) .vo Ict i (cp oi ,L(x oi ,z)) (2.12) 

-.v o z'M(C o )z . 

Because v 0  is not zero N i [M(C
0 
 )] is non-void. For z'M(C 0  )z > 0 

(2.12) yields 

(c' z) 2 
z1M(C0)z 	v o 

Thus d(c,C 0 ) = v0  and it has been demonstrated that C o  is optimal. 

Now suppose C o  is optimal. Then c 1 M4- (C 0 )c = v0  and 

cER[M(C 0 )]. Set A 0  = M-1- (C 0 )c. Since cER[M(C o )] and MM+  is the 

projection onto R[M] one has M(C 0 )A 0  = M(C
0 
 )M-E (C 0  )c = c. Thus 

(a) M(C 0 )A 0  = c 	and 	 (2.13) 

(b) Pe( 3 )A 0  = vo  . 

Let {z:A '(z-v01/2c) = 0} be a supporting hyperplane to R at 

-1/2 
vo 	C. Since v-1/2c  is a boundary point of R 

0 



v0
1 (PM(E0 )A0 ) 

< vo lAim(yAA'om ( YAo ' 

max I lL(xd ) 11 2  = 

17 

-1/2 	k+1 
v0 	c = y 	 ((p ij ,t(x ii )) ER 0  

j=1 
(2.14) 

From the proof of Lemma 2.3.1 part (b) one finds 

iPM(E 1  )A = maxIlL(x,A) 	= A'y0 1/2c , 

where C 1  places masses y j 
> 0 at x

lj 
 ,j = 1,•••,k+1. Furthermore, 

on the support of E 1  S(E 1  ). 

A' (4)1J ► f ( x1J ))  = maxIlL(xd)ll • 
	 (2.15) 

Since M(E 0 )A 0  = c one has from (2.14) and (2.15) that 

Pm(E 0 )A 0v01/2 = maxIlL(x,A)11. Thus 

Using (2.13b) this shows that maxIIL(x,A)II 2 	PM(C0 )A with strict 

inequality unless M(F 0 )A 0  = kM(E 0 )A. Since the opposite inequality 

always holds IlL(x,A)11 = maxIIL(x,A)II a.e. E o  . Now set 

 

xES( 0 )nD 

0.W. 
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where D = 	ilL(x,X)II = maxilL(x,X)111 and 'Nil = 1. According 

to (2.13a) 

M(0)A
M(C )X 0 0  

f(q)(x),f(x))d 0 (x) maxIlL(x,X)11 = k maxilL(x,X)11 

k maxilL(x,X)11 

It follows from 

v0  = X' 0  M( 0  )X 0  =k X' 0  M(C 0  )X=k 	0 	0 
M( )X 0  1/X 1 M(C 0  )X 

that v o
1/2  = k maxilL(x,X) II-  This shows the necessity of the con-

ditions (i) and (ii). 

Next suppose (i) and (ii) hold. Then for any z in IR k+1  

1 v o  (c'z)
2 = (f(cp(x),L(x,z))dyx))

2 

f(flx),L(x,z)) 2dC 0 (x) 

fIlL(x,z)11 2dE 0 (x) = z'M(C 0  )z 

showing C o  to be optimal. 

In certain cases it is possible to have an optimal design con-

centrating all mass on a single point of X. In these cases the 

optimal approximate theory design coincides with the optimal exact 

theory design. The points c at which this phenomenon occurs is 

exactly the set {aR 0 : a > 0}. If 	has no "holes" this set is 

k 
112

+1 
 - {0}. A useful result in this connection is given by the 

following. 
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Theorem 2.3.2.  There is an optimal one point design for each 

cE1Rk+1  - {0} if and only if H A (X) is convex for each XES
k+1

. 

Proof:  Assume that there is a one point optimal design for each 

c but that H(X 0  ) is not convex for some X 0  ES
k+1 . Let zEcoH(X 0 

 ) - 

H(X 0  ). Then since zEDR, 

 

L(x,X)  
IlL(x,X)11 	' g(x) 	 (2.16) 

for some x and X. However, since zEcoH(X 0 ) 

( 	

L(x,,j,x0) 

	

z= Xai 	
I 11,(xj,A0).11 

,E(xj) 

	

where X;z = maxIlL(x,X 0 )11• 	By (2.16) 

X'M(x)X 
X'z - 	 < )/X 1 11(x)X o = 111,(x,X )11 0 

iX1M(x)X 	
0 	 0 

 
(2.17) 

Thus xEA(X o ). This implies equality in (2,17) which shows 

M(x)A = k M(x)A 0  . 	 (2.18) 

From (2.18) it follows that IlL(x,X) 11 = k 111,(x,A0)11 and 



2.4.Linearf—In the linear case certain simplifications are 

possible if (A4) holds. 

(A4) The set X is a compact convex subset in a locally convex 

topological vector space. 

To motivate these results consider the example alluded to in 

the introduction. 

20 

M(x)X  
k M(x)X

0 	
L(x,X

0 
 ) 

z= I 
	

, f(x) E H(X 0 ). 
1L(x,X) 11  -101L(x,X0)  11 = 	11 1, (x,X0)11 

This contradiction establishes the necessity of the convexity of 

H(X). 

Let H(A) be convex for each A let c be given. If 

{z: M(z-v-1/ 2  c) = 0} is a supporting hyperplane to R at v -1/2 c 

-1/2 = 	L(xj ,X) 
vc 	 f(x.)) 

	

3=13111Axi d°11 	3  

where IlL(xi ,X) 	maxiiIi(x,X)11 (see the proof of Lemma 2.3.1). 

Thus v
-1/2

C E
-
coH(X) = H(A), or equivalently, there is an x€A(A) 

such that 

( 

li.-1/2c _ 	L(x,x) 

IiIi(x,x)11 	. f(x) 
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Example 2.4.1. Let 

Y(x,t) = 0 0 
 x(t) + 6 1x (1) (t) + N(t), tE[0,1] 

be observable, where N(t) is a zero mean noise process with K(s,t) = 

min (s,t) and x is an element of the closed convex hull of the 

perfect splines on [0,1] of degree 2 with one knot satisfying 

x(0) = x
(1)

(0) = 0 . (2.19) 

That is, X is the closed convex hull of the set of functions on 

[0,1] satisfying (19) and 

0 s t 5 a 
(2.20) 

a< t 5 1 

for some aE[0,1], E = ±1. The problem is to find the optimal design 

for estimating c'0. 

To verify assump -,ion (Al) begin by noting that the reproducing 

kernel Hilbert space H(K) consists of all functions of the form 

t 
F(t) = f f(s)ds 

0 

for f in L 2 [0 , 1] with inner product 

(F,G , K  
1 

f f(s)g(s)ds , 
0 



(see Kuelbs (1970). 

Let B be the set of all functions h on [0,11 such that 

22 

f l Eih(t)1 2 	01 (1) (t)1 2 	111 (2) (t)1 2 1dt 	co  

0 
• (2,21) 

Define IIh11 2  by (2.21). The operators f ^ 	on B by f.(x) = 

x (7) are continuous as functions from B to H(K). The set of func+ 

tions satisfying (2.19) and (2.20) is compact as a subset of B so 

by Mazur's theorem (Dunford and Schwarz (1958)) X is also compact. 

Assumption (A2) is immediate. Computation of det[M(x a )] shows 

any design concentrating mass at any x a  satisfies (A3) since M(x a ) 

are all non-singular. 

We defer verification of (A4) and the solution of the problem 

until presentation of the results of this section. Since the set 

X is so large it woulc. conceivably be a difficult or impossible 

task to plot R0  directly. This is true even if one observes from 

the form of R 0  that it suffices to consider only those points x in 

'Om`' the boundary of X. 

It is the purpose of this section to prove the more useful 

result, at least for the example, that only points x in E(X), the 

extreme points of X, need be considered. If 

R 1  = 
XES 

k+1 x€B(X) 

L(x,X)  
II 	' g(x) 	' 

where B(X) = A(A)nE(X) we shall show that R = co(Ri). 
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One can prove the following. 

Theorem 2.4.1. If ip is a continuous convex functional on K, a com-

pact convex subset of a locally convex topological vector space, 

then ip achieves its maximum at an extreme point of K. 

If X satisfies (A4) then by Theorem 2.4.1 the sets B(A) are never 

empty for AES k+1 . This follows from the convexity of the functions 

lL(',A)11 on X. 

Theorem 2.4.2. Under the assumptions Al - A4 R = co(R 1 ). 

Proof: If suffices to prove R 0  cco(R1 ). Suppose R 0  is not con- 

  

tained in co(R
1 ). Then there is a point 

( 	

L(x ,A ) 
0 0  

r0 	Il L(x o ,A 0 ) 11 ' f (x 0 )  

in R
0 
 , a number a, and a vector y such that for all r€R 1 

	

y'r < a < y'r 0  . 	 (2.22) 

This follows from the compactness of co(R 1 ). Let 

r = 	
L(x,y) 	

f(x) 
11 1, (x , Y)11 	- 

) 
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be in R 1  . Then from (2.22) 

11 1-(x/Y)11 < a < 

  

y'M(x 	A. 
0) A0 

 

    

 

iPM(x ) 
0 	0 0 

 

 

1 11, (x 0 ,-011 	• 

This impossible since IlL(x,y)11 = maxilL(x,y)11. 
X 

Corollary 2.4.1. Under Al - A4 for each cEIR k+1  - {0} there is an 

optimal design on no more than k+1 points of E(X). 

Corollary 2.4.2. If kl - A4 hold, then there is an optimal one 

point design for each cEIRk+1 - {0} if and only if H B (A) is convex 

for each AES
k+1 

Example 2.4.1. (Solution). Assumption (A4) is satisfied since 

every Hilbert space is locally convex and B is a Hilbert space. 

By Lemma V.8.5 of Dunford and Schwarz (1958) every extreme point 

of X must satisfy (2.19) and (2.20). It is therefore possible to 

obtain R 1 by maximizing A'M(x)A. over aE[0,1] for each AES
k+1 

M(xu A. ) 
and plotting the points   . However, for this particular 

VA 1 M(xu )A 

example it is easier to solve the problem by noting that H B (A) are 

are always convex. If 

0 
and A 0 	0, XIM(xa )A. 

A 

= 
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is maximized by x a  or -xa  for a unique aE(0,1]. Hence H B (A) is 

C)  a one-point set for these A. If A = L] then A'M(x )A is con- 

1 	
a 

stant for aE[0,1]. In this case 

r- 	 21 

	

X1 	1/2(1-2a) HB (A) -  	 aE[0,1] 

	

I A ll 	1 

is also convex. Therefore for each cE]lt
k+1 - {0} the design which 

concentrates all mass at x a minimizing c'M
-1 (xa)c over aE(0,1] 

is optimal for the estimation of c'el. Using the methods of Parzen 

it can be shown that if the optimal design concentrates all mass 

at a
0 
 in [0,1] then 

a 0 	 1 
c'e = u0 	{Y.(1) [2a-1] - f Y.(s)ds + f Yi (s)dsl 0 . 	 0 	1  a 0 

 

+ u 	{ 2Y.1  (a 0  ) -Y. (1)1 

where u is any solution to 

N M(xa )u = c . 0 

Remark:Thelinearityofthef.combined with the convexity of 

X does not always entail one point optimal designs for each 

k+1 
CE IR 	- {0}. For example, if in the example above one takes X 
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to be the convex hull of the two functions which satisfy (2.19) 

and (2.20) for a = 	and a = 1, then the design for estimating 
2 	

0
0 

concentrates mass on both of these. 

However there is no simple relationship between the size of X 

and the existence of one point optimal designs for all of S
k+1 

Taking X to be the convex hull of the two functions satisfying 

(2.19) and (2.20) for a = 1/4 and a = 3/4 one finds that the opti-

mal design for each c in S k+1 
places all mass at the function cor-

responding to 3/4. 

The solution to the problem posed in the next example may be 

obtained without all the machinery developed above. It provides, 

however, a convenient solution. 

The problem has certain features in common with some problems 

discussed in Joiner and Campbell (1976) and Kiefer (1961). It is 

the problem of optimal estimation of 0 1  - 0 2  (see below) in the 

presence of a time trend whose form is known up to a multiplicative 

constant. 

It differs from :hose discussed by Joiner and Campbell (1976) 

and from most of those discussed by Keifer (1961) in the criterion 

of optimality. It should also be pointed out that our model above 

does not cover the Wi_liam's models discussed in Kiefer since in 

that problem the covariance depends on the unknown parameter. 

Example 2.4.2. Let 

Y(x,t) = e 0
+61

1 x1 (t)+...+8 kxk (t)+0 k+1 Ot)+E(t) 
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where x.(t) j = 1,•••,k is zero or one for each tET = { 1,•••,M}, 
E[e(t)] E 0, and E[c(s)c(t)] =

st. 
The function (O(t) is assumed 

to be known. 

One may visualize {Y(x,t)}
t=1 

as one day's observations taken 

under conditions which change with time as reflected by Ot). The 

function x specifies the level of each factor to be run at each 

time tET. The next day's observations with factor levels x i , are 

{Y(x
1 
 ,t) t

M  =1 }. An optimal experimental design specifies the types 

of daily experiments x which should be run and the proportion of 

days on which they should be run. We shall assume zero cost for 

all factor-level changes. 

Let cb(t 1 )54(t 2 )---(1)(tm) and assume, for simplicity's sake, 

that M is even. Let L = {t 1' t 2'
•••,t

M/2
} and U = {t

M/2+1' tM }. 

M 
Since 2 1 Ot) z 	4(t) and the opposite inequality holds when U 

tEU 	t=1 

is replaced by L, there is an a
0 
 E[0,1] such that 

a0[ / (Oft) 	7T) 11+ (1 - a 0 )[ X q5(t) 	
X0t)i)  = 0  . 

tEU 2  tEL 

Let x.
1
(t) = (x. (t)"ik x (t)), i = 1,2, be such that 

x 11  (t) 
for tEU 

for tEL 

and 
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x12 (t)  = 1  - x11(t) for tE{1,w,M}. Set xij (t) = 0 for i = 1,2, 
3, x21 (t)  = 1  - x11(t" and x22(t) = 1  - x21(t) . It will be 

shown that the design which places mass ot o  at xl  and 1 - ao  at x 2  

is optimal for estimating 0 1  - 0 2  and v0  = R . 

It is not hard to verify that, if F is the space of all func- 

k+1 k+2 with  Hu ll = y 11,1 ,11 , tions g from {1, — , 	= T, to 1R. 
j=0 

then 

X = {1,x1 ,•••,xk ,0} is a compact convex subset thereof. If 

fi(g) =g
3 
 . then all assumptions are satisfied since H(K) consists 

of all real-valued functions h on T with inner product (h l ,h2 ) = 

M 
y h1  (t)h2 (t). Therefore, see Studden and Tsay (1976), if one can t=1 

find al,•,ar  ,x1 ,•••,xr  and A0EIR k+2 such that 

(i) maxIlL(x,A0) II = min maxIlL(x,A)11, 

	

X 	 A'c=1 X 

where c' = (0,1,-1,0,•,0), and 

r 

(ii) 3
y 
1  a j 

 (f(x.),L(x.,A0 	X 
)) = maxilL(x,A 0 )11

2
c, 

	

- -3 	-3 -=  

then a 1 
	r ,x1r is an optimal design and 

1 
0 	maxliL(x,A 0 )11 2  • 

X 
M 

Consider solving (i). One has IlL(x,A) 2 = 	(A
0
+A 1x 1

(t)+ 
t=1 

...+A
k
x
k (t)+A

k+1 cp(t)) 2
. 
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Set/-10)=A 0 +A l. 6 1+w+A k. c 3 	 or 1, j = 

b A  = max h AW and a A  = min h0,0. Then since 

(b A
+

Ak+1
Ot))

2 
> (a

A
+A

k+1
cp(t)) 2 

and 

if and only 
if Ak+1 q)(t)  > 2 	

, and one has 
(a A +b A ) 

maxIlL(x,A)11 2 = X 	(b A
+A

k+1
cp(t)) 2 + X 	(a

A
+A

k+1
cp(t)) 2 

X 	 tE 	 tE W A 	 V A  

(a A +b A ) 
where W A = t: tET ' A 1+1 cP(t) > - 	

) 

2 	
and V

A 
= T - U A  . Now 

write 

a A + b A 	b A  -a A b
A +k+1

(I)  (t) 
 =k+1

(1)  (t) + 
2 	 2 

a A + b A 	a A -b  a
A 

+ A
k+1 cp(t) = A

k+1 c(t) + 
2 	2 

to see that on W
A , 

(b
A k+1

(p(t)) 2 	( b A-a 	2  
2 
l

and on V A  

2 

(a
A

+A k+1Ot))
2 

?_ 
(IDA-212 	 2 	(b A -a A ) 

. 	Thus maxilL(x,A)11 	M 
4 

X 

Now among Pc = 1, that is, A for which A l  - A 2  = 1, hA (E) = 

X 0 +(l+A 2 )c i+A 2 c 2 +•••+Ak c k  so b A - a A  = (1+A 2 ) 4_ + ( A 2 ) 4_ - 

	

,, 	M 
((l+A 2 ) _ + (A 2 ) - )1. Therefore, maxilL(x,A)11

2 	
T  . Setting 

X 



(- 1 	x11 (t)) 	(1-a 0 )  

x 2k  (t) 

1)(t) 

   

a 0( 

 

   

xlk (t) 

(p(t) 

0 
• 
• 
• 

0 

YOt) 	yot)  
2 	U 
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AO = (- 1  f ,1,0,...,0), one finds maxilL(x,A 0 )11
2 = 

11 is achieved 
X 

whenever any x l  is used. 

Using the particular x l ,x 2  and a o  given above one finds 

1 
2 + x21 (t)) 

M 

▪  

M 
2 	2 

M

▪  

M 
4 	2 

- M/4 - M/4 = 
0 

0 

0 

yflt) 
2 	L 

0 

M/4 

- M/4 

0 

0 

= .11  4 c . 
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2.5. Algorithms.  In general it may be difficult to obtain an 

optimal design analytically. Algorithms for finding optimal designs 

of various descriptions are given in Atwood, C. L. (1976), Fedorov 

(1972), Gribik and Kortanek (1977), Pazman (1978b), Studden and 

Tsay (1976). 

We describe below a somewhat different approach which exploits 

the geometry of the set R and the characterization provided by 

Elfving's theorem. The algorithm given is exact (i.e.; not yet 

developed to be useful when numerial errors are present) and is given 

in terms of the more general goal of obtaining the puncture point 

of a convex set K. At each stage a new normal for a supporting 

hyperplane to K is generated. The successive hyperplanes have the 

property that the point at which they intersect the ray puncturing 

K converges to the point at which the ray punctures K. The general 

idea is that if one knows the normal of the supporting hyperplane 

to K and the point of puncture, the optimal design can be found. 

Let K be a closed bounded subset of the finite dimensional 

Hilbert space H. Let c 0 be a fixed point in H and define 

13 * = 	inf 	sup (q),x)  
' (q),c)>0 xEK 4,c)  

where (•,•) is the inner product on H. If the ray {8c: 8E11} inter-

sects the closed convex hull of K, then 

8 *  = max{8: 13cEco(K)} . 

Otherwise, 8 *  = 



Some iterative techniques for finding ?,* are developed below. 

They are based on the assumption that for each (15 in H the subset of 

points in K which maximize (cP,•) is relatively easily found. 

It can be assumed, without loss of generality, that K = co(K) 

since P, *  is not affected. This assumption is made throughout. 

Other specific assump -:ions are stated as needed. 

For each ch in H let 13(40) be that value of Q for which Ic lies 

on the supporting hyperplane to K with normal cp. If (c,c) > 0 

0(cP) = max ((P,x)  
(4,c)xEK 

Otherwise let 13(0 = -00. Let M(y5) = {xEK: (c5,x) = max 0,y)}. 
yEK 

When a closed subspace is denoted by a script capital the 

orthogonal projection onto that subspace is denoted by the corre-

sponding Roman capital. Set 

Ak ={a:Ya.=1,a0}cR
k+1 

j=0 3  

For any set BAH denote the extreme points of B by E(B). Denote 

by I(c) the ray {ac: aER} and by int(A) the interior of any subset 

A. 

Procedure I 

For this procedure the following assumption is made. 

Assumption: The set K is a closed, bounded, convex subset of the 

real finite dimensional Hilbert space H and int(D)nI(c) 
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Let cp o  = c. If x 0 EM(45 0 ) then clearly 

1 =min 13(a 0  g 0  +a1 0 c-x 0 
 )) 	0 and ($ 0  '13 0  c-x 0 

 ) = 0. If 
acA - 1 

Po  = span{(1) 0 , 0 c-x 0 } then Pe ic is a boundary point of P oK. There-

fore, there is an x l EK (if dim H > 2) such that 13 0 13 1c = P 0x 1  . 

Since 

(3 1c-x 1 ,(3 0
c-x

0
) =1 c-xl' P00 c-x 0 

 )) 

= (P0 1  c-x 1  ),(3, 0  c-x 0  ) = 0 

and similarly, (c1) 0 ,13 1c-x1 ) = 0, the set {(1) 0 ,13 0c-x 0 ,f3 1c-x1 } is an 

orthogonal set. If dim H > 3 then since 

2 
13 2  = min 	a0 (1) 0  + X a_,.,0. 	- cx. )) 	,x2 can be found in 

ctEA3  
i= , 	1-1 	11 

K such that {$ 0 , 0c-x 0 ,..-, 2c-x2 } is an orthogonal set. Continuing 

in this way a sequencej j }c°=0 is generated which satisfies 

0 - 

 2.5.1. If dim H = n, then an-1 = IS *  • 

Proof: Since 13 *  > -00 there is a tPEH such that 	11)) = f3.1, • 

If dim H = n then 

n-1 
11) = acp o  + .1 	a.0, 	c-x 	) o  

3=1 3 3-1 	j -1  
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Since for any positive scalar t one has 	t11;) = 	10 the resul. 

will follow if it can be shown that all 3 
	

are non-negativ 

Clearly a o  > 0 since (tp,c) = a 0 I ic I 1
2
. For 1 	k s n 

= ak Ilk3 k_ lc-xk_ 1 11
2
. If B 	 theh 

k-lc- 1-1 

= 13* • Otherwise, one has , Ic_ 1 (c,11)) < (P'xk-1). 

implies B 'k-1 < (3 1, which is impossible. 

- this 

Procedure II 

Throughout this section the following assumption is made. 

Assumption: There is a compact set K 0  such that K = co(K 0 ) 

int(K)nI(c) 

The motivation for the following modification of Procedure I is 

that all computations can be performed in K 0  rather than K. 

Suppose (1) 0 ,—.04k ,13 0 ,...,13 k ,x 0 ,..--,xk  

satisfy (i).=Inin 	a cl) 	 i 133 	 0 
0+...+a 

 j 	j c-x- 	j-1 ))  aEA. 
3 

= (3(a (j) cb,
0 	3 
+-..+a ( j) H, 	c-x. 	)) 

	

 j-1 	3-1 

(ii) 	(P O = c ' (P j = a(j) 
	+.--+a( j) (13 	._ ) 0 C1) 0 	 j-1c-x  3 1 

for j = 1,2,••-,k 

and 	 x.,ENI(cp.) for j = 0,•••,k . 

Define 
(k+1) (f3 c-x ) and P. 	= (3(4) 	). (Pk+1 =(k+1)(I) 4---1-11  0 	0 	k+1 	k k 	k+1 	k+1 
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Lemma 2.5.1. If (i) - (iii) hold and {(1) 0 ,f3 0 c-x 0 ,•,f3kc-xk } is a 

linearly independent set with SkTl  > 13 * ' then 

(a) dim H > k+2 	and 

(b) there is an xEM(q). 	)nK k+1 	0 

such that {(1) 0 ,—,(3k  c- Xk+11 
 is a linearly independent set. 

Proof: ,1 	cow,lusion follows from the fact that if dim H = 

k+2 then t,ie riven se -  spans H and the coefficients for the normal 

to achieve )3 *  would a1 be non-negative. 

To obtain the second, note that M(q) k4.1 ) is a compact convex 

supporting set for K. It follows that E ["k+1)3cE(K). 
 So if 

13 k F ic-m ( 1)(4.1)nE ( K)c P 

where P = span{(1) 0 , 0c-x 0 ,•••, kc-xk }, then 

k+1
c - E[m(cp 	)]cP 

k+1 - 

(2.23) 

(2.24) 

Since P( k_i_ j_ c) is a boundary point of PK one has zdv1(thk+1'  ) such 

that 	-z)-z) 	 'Ic+l c-z  = 
P( 	 = 0. This, with (2.24) shows 	 0 contra- ' 

dicting B k+1 > C3 * . The second claim now follows from E(K)cK0  and 

the fact that (2.23) cannot hold. D 

	

(q) 0 ,x) 	($0 ,x 0 ) 
Let cp o = c and S O = max 	

0'
c) 	($0, c) . If dim H > 2 then 

XEA 0 

by Lemma 2.5.1 an x 1 EK0 nM(cp 1  ) can be found for which 
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{4)0' 6 0 c-x0' 6 1  c-x 1 
 1 is a linearly independent set. One can continue 

this process until a spanning set {qh 0 ,6 0c-x 0 ,...,6n-2c-xn-2
} has 

been found for H, with dim H = n. 

Theorem 2.5.2. The sequence {6 }
n
=
1 
generated above satisfies 

j 0  
6.
3+1 	6 *  for a 	— 	 B l„, j = 0,,n-2 and 'n-1 = 13 * • 

Procedure III 

Throughout this :ection the following assumption is made. 

Assumption: The set F is a compact, strictly convex set and 

int(K)nI(c) 

A strictly convex set 2 has the property that if c 1 ,c 2 EC then 

act + (1-a)c 2 is in tha interior of C for all aE(0,1). 

The motivation fo:: this modification is that if K is strictly 

convex then all minimizations can be carried out over A l . That is, 

at any stage the next .ormal can be found by a one-dimensional 

minimization on the interval [0,1]. The next lemma is more general 

than needed. The set K need only be convex and H need not be finite 

dimensional. 

Lemma 2.5.2. If (pEH is such that (q,c) > 0, 6 	6( ,$) > 6 *  , 

x 0 EM(op), and 

 

H3c -xo I = min 1*-YII 
YEM(0 
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then there is an e > 0 such that 

3(bcP+(l-b)(c-x
0 
 )) < 13 for bE(1-c,l) . 	 (2.25) 

Proof:  Let (P i  be such that S(gb l ) = fi *  < 	Let R = spanifSc-x 0 /0- 

The inequality (2.25) is equivalent to R(3c) being in the comple-

ment of the set RK. The supporting hyperplane to K With normal p 

contains the point iSc. Under the action of R this hyperplane 

becomes a supporting :ine to RK. Therefore, to show that R(3c) 

lies in the complement of RK it suffices to prove that it is not a 

boundary point of RK. 

Assume that R(3c) is a boundary point of P.K. Then there is an 

xEK such that R(3c-x) = 0. Since (Sc-x,(p) = (Sc-x,R(P) = 

(R(3c -x),4) = 0, x is in M(q)). Introduce the set 

T = spanii3c -x 0 ,(1),(1) 1 1 aild let {11),(P,C1  be an orthonormal basis for T. 

Since (13c -x ,(1)) = 0, ore has 
0 

(Sc -x 0  = bi tp + b3 c , 

and since (3c-x,q) = 0, one has 

3c-x = a 1 4) + a 3  + T1(3c-x)  . 

Also (3c-x,3c-x 0 ) = (3c-x,R(3c-x 0 )) = 0 shows that 

albl + a
3

b
3 

= 0 . 
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Consider the points x(a), aE[0,1] defined by x(a) = ax o  + (1-a)x. 

Note that x(a)EM(4) for all a. Set 

v(a) = c -x(a) = a(f3c -x 0 ) + (1 -a) (13c -x) 

Differentiating the square of the norm of v(a) with respect to a 

and taking the limit as a tends to one yields 

lim(ilv(a)11
2

) 1  = 2[bi (b i -a1 ) + b 3 (b 3 - a 3 )] 
a+1 

= 2118c-x 0 11 2  . 

Since v(1) = (3c-x 0 , a contradiction to the minimality of 

I18c-x
0 	

has been obtained. 0 

(;) 0  

(q) '  x ) Let 	= c and 0 	( 
= max ( ,x) -  ($,0)0  

) 	
mm . By Lemma 2.5.2, 

,c) xEK 

since M(q) 0 ) = {x 0 }, 13 1  = 	min (3(a(1) 0+(1 -aM0c-x0 )) < 8 0  unless 
aE[0,1] 

3 0  = 8 *  . Let a o  be chosen to minimize 8(acp 0+(l-a)(8 0c-x 0 )). Set 

= a o (P 0  + (1-a 0 )(13 0c-x 0 ). If 8 1  > 8 *  then 

2 = 	min f3( "1 -" 1-a) "3. 1 c-x1 ))  < 
aE[0,1] 

where {x 1 } = M(q) 1 	 j ). Proceeding in this way a sequence j =0 

is generated which has the property that either BB 
N N+1=...=13* for 

some N < co or 8 0 >8 1 >8 2 >..•>8 *  . 
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00 
= Theorem 2.5.3. The sequence {P-}, 	generated above converges 3 30 

to 13 *  . 

Proof: The only non-trival case is when 13 0 >13, 1 >•••>13 *  . Let 

= lim n . It suffices to prove 13 O *  . Assume that (3 > O *  . By 

the compactness of the unit shell in H and K there is a subsequence 

{q) 11 ,} of tcp n l which converges to 4  and a subsequence {xn ,} of {xn } 

which converges to xEK. It follows that {x} = M(0. By Lemma 2.5.1 

there is an aE[0,1] such thM:13(a4+(l-a)(Oc-x)) < (3. But this con-

tradicts (3 > (3 *  , for 

13(a4p n ,+(l-a)(O ni c-xn ,)) 	On  for all n' 

implies (3(a4)+(1-a)(13c-x)) 	O. 

2.6. Minimax designs. Let C be a subset of 1R
k+1 

. If the design 
* 

satisfies 

* 
sup d(c, ) = inf sup d(c,) 
cEC 	 C 

it is said to be a minimax design with respect to C. 

It is easily seen that if for some c 0 EC, 0  is optimal for 

estimating cp and 

sup d(c, 0 ) = d(c o , o ) 	 (2.26) 
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then E 0  is minimax. This follows from 

sup d(c,E 0 ) = d(c 0 ,E 0 ) 5 d(c 0 ,E) 5 sup d(c,E) 

for any E. 

Example 5.1. The minimax design for estimating the value of the 

mean function of Example 4.1 at t = 1/4 is the minimax design with 

respect to the set 

(x (( l1/) 	/4)  4)) 
-

• 

xEX 

( x(1/4) 
Define the mapping c: X 	R

2 
by c(X) = 	 . Then c(X) =C, 

x (1) (1/4) 

and for any design E a  which concentrates all mass on x a , 

✓d(c(•),Ea ) is continuous and convex on X. Thus Theorem 4.1 shows 

max d(c,E a ) = max d(c(x),E a ) = max d(c(x),%) . 
C 	 X 	 E(X) 

A plot of the set c[E(X)] suggests that the design optimal for 

estimating 1/32 0 0  + 1/4 0 1 is minimax. This design, E , concen-

trates all mass at x a for a = 1 
	

Computation shows that for 
4 

(1/32) 
C O  = 

1/4 
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1 max d(c(x),C
*

) 16 = d(c O' C*)  = E(X) 
so that 

* 
F is minimax. 

Example 5.2. For a fixed input {x 0 (t): tET} one may wish to esti-

mate quantities depending on the unknown mean L(x o ,0), such as 

the value of the mean at certain times tET, or possibly its deri-

vative there. If it is desired to hold the maximum variance of 

these estimators to a minimum we have a minimax design problem. 

The particular design problem is dictated by the collection of 

estimators. A collection of interest is the set of estimators 

of the quantities (z,L(x0 ,0)) where z is in the unit ball of H(K). 

That is, the estimators of certain continuous linear functionals 

of the mean. Since L(x 0 ,0) E H(K) and the evaluation functional 

is continuous in H(I) this set always includes the estimators of 

the values of the mean at any time tET. Depending upon K, it may 

also include derivatives or integrals of the mean evaluated at 

points in T. With regard to the setup as described in Example 

4.1, we find the minimax design with respect to the set c(Q) = C 

where Q = {zEH(K): Ilzil s 1} and c(z) = (z,f(xv3 )). That is, 

we find the minimax design for the collection of estimators of 

the quantities f (z,L(x 1/3 ,0)): 	 11, where L(x 1/3 ,0) = 

0 0x 1/3 (t) + 0 1  x
(1)

(t). The convex set c(Q) may be plotted by  1/3 

plotting its boundary 
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M(x
1/3

)2t  
AEb 
, 

VA'M(x 1/3 

The plot suggests that a design optimal for estimating 3/54 0 0 + 0 1 

 is minimax. Such a design E is the one which places all mass at 

x 2/3 and satisfies d(( 3 154 ),E * ) = 1. It can be seen that E is 
1 

minimax by (2.23) since 

max 
k A E S +1  

A'M(x1/3 )M-1  (x
2/3 )M(x1/3 )A 

A1M(x 1/3
)t 	

- 1 . 

The preceding examples demonstrate that there are minimax designs 

which are distinct from designs which maximize 1M(E)1,  the deter- 

minant of M(E). Furthermore min max d(c,E) is not, for these 
C 

examples equal to k+1. Thus a useful theorem developed by Kiefer 

and Wolfowitz (1960) for the case when T is a one-point set does 

not apply to the min,max problems described above. There is how-

ever a natural design criterion which yields a direct analogue of 

the Kiefer-Wolfovitz theorem. A general description of this 

criterion is as follows. Suppose for each design EEE and x in X 

A we can find a minimur: "variance" linear unbiased estimator m
x of 

k 
the entire mean function { y 0.f.(x,t): tET}. That is, our 

i=0 3  

A k 
estimator mx is H(K) valued, its expected value is mx = y e f (x), 

j=0 
A 

and its "variance" is Ellmx
-m
x K I 1

2 
• Defining the (new) function 

d: XXE by 
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A 
N
-1
d(x,C) = Ellmx-mx 11

2 

one has the equivalence of the following: 

i) C maximizes IM(C)1 

ii) C minimizes sup d(x,C) 
X 

* 
iii) sup cl(x,C ) = k+1. 

X 

We state these results more precisely below. First we inves-

tigate H-valued linear random variables defined on the observable 

process. 

Let V be a Hilbert space with inner product (.,.) v . Let A be 

an arbitrary set and consider a zero-mean stochastic process 

{Q(S): SEA} defined on a probability space (Q,A,P) with known 

covariance kernel C. Denote by H(C) the reproducing kernel Hilbert 

space of functions on A induced by C and by (•,•) c  the inner pro-

duct on this space. Let L2 (V) be the space of all V-valued random 

variables Z on (Q,A) for which 

l z 1 1,„ ,(v)  = f ( li z i l idp < 

The space L,(V) is a Hilbert space with inner product ( ,Z 2 ) L (V) = 2 

f(Z 1 ,Z 2 ) vdP. 
n 

Let V(C,A) = { y v.Q(S.): n < 	v.€V, S S E 
j=1 3 	3  

} and 

V 2 (CA) be the closure of V(C,A) in L 2 (V). 

p 
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Lemma 2.6.1. Let REV
2
(CA) satisfy 

n 

I I R- 	X 	, 4(6 	•)I I 
j=1 n3 	n3 	

L2(V) +0 as n 	. 

Then if hEH(C) 

n 

	

1:m ( 	n3 (1+4) (6 .)) n3 n+00 j=1 

exists in L2 (V). 

Proof: It suffices to prove that 

n 
S = 	v .h(d .) n 	n3 	n3 j=1 

is a Cauchy sequence in L 2 (V). Let m and n be arbitrary. By rede-

fining coefficients properly one may write 

n 
Sn - Sm 
	(vN'

* -w 
* .)h(6

*  

i=1 	N3 	Ni) 

N< n+m. For any Z E L 2  (V) 	HZ' I L (V) 2  
= 1, 

1(Z,Sn-Sm ) L200  1 2  = 1f(Z(w),Sm-Sn ) vdP(w)1 2  
(2.27) 

= I y [(11 	v .) —(p ,w)lh(s .)1 
j=1 	

z , 
N3 v 	z N3 v 	N3 

N 	* 	 * * 	2 
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where p z  = fZdP (Bochner-integral). By the reproducing property 

of C the expression in (2.27) may be written 

N 
1( y [(1 ,vNj )vz ,wNj )1C(-,6Nj

* ),h(.)) c l
2 
 . 	(2.28) 

j =1  

Using the Schwarz inequality for the inner product •,•) c  it can 

be seen that (2.28) is 

N N r 	r 	* 	* 	* 	* 	* 	* 
111111 2 	2, 	2,  (ti ,V 	-W 	) 	(p ,V.  .^W 	) C(S 	,6 	) . 	(2.29) c . 1=1  . 1  z Ni Ni v z NJ Nj v 	Ni Nj j= 

It can be checked that the righthand sum in (2.29) is just 

El(p z , y vnj4(6nj)  - . y vmi4(6Mi)) V
12 

1 J=1 	 =1 
(2.30) 

so that using the Schwarz inequality on (2.30) for the inner pro- 

duct (•,•) v  one obtains 

2 	 2 i(Z,Sn-Sm ) L (v) 1
2 
	I1hli c 1ip z il

2
11 y v .Q(5 .)- y v 	Q(S 	)11 

mi 	L (V) • 2 	 J=1 	 1=1 	 2 

2 
Since lip z il v 	1 for all Z in the unit ball of L 2 (V) one has 

. 	 n 

It"m 

 
11S -S 11 2 	:5- 111111 2 IlY v .Qcs .) —y vm .Q(6 	)1 2 

mi ' 1'L 2 (V) n m L2 (V) 	c  1 n3 	n3 	1 	1  
(2.31) 

It now follows from the assumptions that S n  is Cauchy in L2 (V). 

n 
IF S(A,V) = nj ,Snj ):v  njEV,6nj E©} and L

2
(A,C,V) is that 

n=1 j=1 
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subset of S(A,V) for which 	v n3 
 .Q(cS  n3 

 .) converges in L2
(V) then 

j=1 
n 

for each LEL 2 (A,C,V) define L(Q) = lim X v n3 
 .Q(6 n3 

 .). Fix xEX and 
j=1 

let m(8) = 8'f (x) EH(K). Set Z = X + O'f when OER k+1 , holds, 

where Z is as above with covariance B. 

Definition. The set of linear estimators of the mean m(6) E H(K) 

is 

L2 " (r B H(K)) . 

The lemma above shows that if L E L2 " (r B H(K)) then for any OERk+1 , 

L(Z+0 1 f) is in L2 [H(K)]. 

Definition. L 0  EL2 ' (F B H(K)) is unbiased for m(8) if for all 

k 
OER

+1 
 

I 	 112 
IE(L0 (X+0'f)] - m(2) 11 K  E 0 . 

Definition. The estimator L 0  EL2 " (F B H(K)) is said to be best 

linear unbiased for m(8) if 

(i) L
o 

is unbiased 

and 	(ii) for any other linear unbiased estimator 

LE L 2 (F,B,H(K)) and all OERk+1 

EllL0 (X+0 1 f)- m(8)11 12. EI IL(X+e'f)-m(0)11 12  
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Keeping x fixed let M = 101f(x)EH(K): eERk+11 and Pm  be the ortho-

gonal projection in H(K) onto M. 

Lemma 2.6.2. If L E 1- 2 (r,B,H(10) is unbiased for m(0) then so is 

P L and for all OER
k+1 

EllP m L ( X+ 0 1 f )-m(0 )11 	E 1l L ( X+ 0'f )-m( 0)11 

Proof: Clearly PmL(X+0'f) E L 2 (r,B,H(K)) and P mL(X+0'f) is unbiased. 

Fix 8 and set x+eif = U. One has 

11 2 	 1 2 El I 	K = El ILU-P LU + P LU - mi 1 K 

ii2 = 	 + E((I-Pm )LU,Pm (LU-m)) K  

1 ,2 
+ EllPmLU-mil K 

11 2 
ElIP LU-mil K 

Therefore, if there is a best linear unbiased estimator, it must 

have values in M with probability one. 

Lemma 2.6.3. Let LEL 2 (r,B,H(K)) satisfy L(X(w)+6 1 f)EM for 

WE 0 ,P(Q 0 
 ) = 1. Then there is LEL 2 (F,B,R

k+1
) such that 

111,(X+0 1 f)-[L * (X+0 1 f)Pf(x)II K  = 0 

with probability one. 



Proof: 	Fix 8 and set U(w) = 	L(X(w)+8'f). 

•-■ 

(f 	,U(w)) 0 	K 
Define V(w) = and 

(fk ,U(w)) K 

()(w) = M+V(w) where 

Then for each wEQ 0 

Mij  = (f i (x),f j (x)) K  

48 

(2.32) 

(2.33) 

(2.34) 

	

18'(w)f(x) -u(w)11 = 	sup 	1(z, 0̂(w)f(x) -U(w)) K I 
K 	11z11K= 1  

= supI( X a.f.(x),f'..6(w)-U(w)) K 1 
aEA j=0 3 3  

k+1 :  
where A = {aeR 
	a'Ma 	1}. Thus (2.33) is 

supla t M8(w)-a 1 V(w)1 
a„EA 

= supla l [MM+V(w)-V(w)11 . 
aEA 

I 

For wES2 0' U(w) = f'6 for some e IRk +1 
so that V(w) = MO. Thus 

for WEQ
o

V(W) is in the range of M. Since MN+  is the projection 

onto the range of M the expression in (2.34), and hence in (2.32), 

is zero for wES2 o • It follows that 10 1 f-Ull K = 0 with probability 

one. To finish the proof take L EL 2 (F,B,R
k+1

) to correspond to 

the sequences 

I 
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r- 
(f , 0v n3 K 0.0 un 

(M 
 (+ 

• 	
iyni )1 where LEL 2 

 (r
" 
B H(K)) 

t oo, 	n 
corresponds to (v n3  .,y n3  .)}. n=1 j=1 

In our notation the random vector 

N-1 (<z,f0 >
B' 
 •••,(<z,fk  > B  )M

+ (C)f(x) 

is written 

L
0  (x+0 1 f) 

n=1 j-1 (f , kv n3 K 

N (2.35) 

Lk (X+0 1 f) 

whereL.EL
2
F,13,10,j=0,—,k.TheoperatorL.corresponds to 

(;) 	 n 
..) -((a. 1-,".1' -!')} where 	 a'?'13(•,Y () )11 	0 as n÷. ni 	ni 	 ni 	ni 	B n=1 i=1 	 i=1 

For any matrix A let R(A) denote the range of A. 

Lemma 2.6.4. If LEL2 " ( r B H(K)) is unbiased for O'f(x) then 

f(y,f(x)) K : yEH(K)} c R[M()] . 



0 

•

• 	

= L • 0 
L
k  

N 
-1M  + 

S 
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Proof: One may check that for any yEH(K), (y,L) KEL 2 (F,B,R) and 

is unbiased for (y,f(x))KO. Also, (y,L) K  is the image of some g 

in H(B) (see Leiiuna 2.2.2). Hence the image of Pg, where P is the 

orthogonal projection onto the subspace {O'f: OEE:/c+1 }, is also 

unbiased and has expected value 

0 1 M()Na 	 (2.36) 

for some aERk+1 . Since for all 0(2.36) equals (y,f(x)) 1 0 the 

assertion has been proven. 

Lemma 2.6.5. If 0'f(x) is linearly estimable then 

f"(x)N-1M+ M 

L0  

• • • 
Lk  

(2.37) 

   

is in L
2 
 (F,B,H(K)) and is unbiased for O'f(x). The estimator 

is in L2 " tr B Rk+1 ) and fpr any other unbiased estimator 

LEL2 ' ' cr B H(K)) which has values in M almost surely the covariance 

of the associated L EL
2 
 (7" B R

k+1
) satisfies 
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c'cov(L0 )c 	c'cov(L )c 

for all CE {(y,f(x)) K : yEH(K)). 

Proof: The reader may check that (2.37) is in L 2 (r,B,H(K)). The 

unbiasedness follows from Lemma 2.6.4 above and Lemma 2.2.2 

co 	n 
Let. L i  correspond to U ,....){(a () ,y ( P)} j 	 By ni 	ni 	' n=1 i=1 

defining the components in an appropriate way it can be checked 

that L0  corresponds to 

M(n) 	* 	* 
(bmi ,imi )} 

n=1 i=1 

	

where bmi  c: R
k+1 

 for each i, y mi Er, and M = M(n) 	(k+l)n. It may 

be shown that L0  is in L 2 (r,B,Rk+1 ) using this correspondence. 

If LEL 2 (r,B,H(K)) is unbiased for 6'f(x) then (y,L) K  is in 

L 2 (F,B,R) and is unbiased for(Y,1(x))16.  Since (y,f(x))'L = 

(y,L) K  a.s. if L has values in M with probability one, the vari- 

ance of (y,L) K  is 

-1 
N c'cov(L

*
)c where c = (y,f(x)) K  . 

The variance of c'L 0  is, from Lemma 2.2.2, N
-1
c'cov(L 0 )2. The 

 
conclusion now follows from the fact that c'L 0 

 is the umvlue of 

c 0 . ❑ 
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The main result of this section can now be proved under the 

additional assumption below. 

(A4) There is a sequence of finite subsets T n c Tn+i cT, n = 1,2,••• 

such that for all f and g in H(K) 

(f ' g) T = f; 	s-
1-(T 

n'
1 
gT ' n 	n 

K 	

n 
 (2.38) 

lim (f,g) T  = (f,g) K  , and 

IlfIl T = (f,f)T , is non-decreasing in n. 
n 

The notation f' 
T  means the n-vector (f(tnl)),---,f(tnN(n)))  where 
n 

th 	
y Tn = ftnl, .-.,tnN(n)

} and K(Tn ) has 	entry K(tni,tnj ). Parzen 

(1959) in his Theorem 6E shows that, for example, if T is a sepa-

rable metric space and K is weakly continuous on T then (A4) is 

satisfied for any non-decreasing sequence Tn  whose union UT 
n n 

is dense in T. 

Theorem 2.6.1. Under the assumptions (Al) - (A4), and if there is 

an unbiased estimator in L 2 (r,B,H(K)) of O'f(x), then the estimator 

    

f'(x)L *0  = (N-1M+( 

 

L0  

• • • 
Lk  

) 'f ( x) 
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where L
0 
 is described in (2.35), is the uniformly best unbiased 

estimator in L2 " (r B H(K)). 

Proof: By Lemma 2.6.5 the only part to be proved is that f'(x)L 0 

 is best. Let L in L2 (r,B,H(K)) be an arbitrary unbiased estimator 

for O'f(x). We may as well assume that L = P ML (see Lemma 2.6.2). 

Let L be the associated estimator in L 2 (r,B,R
k+1 

 ) given by Lemma 

2.6.3. If Tn is a finite subset as in (A4) then 

2 Elif'(x)L0 (X+0 1 f)-V(x)011 T  

= tr{K- (T n )F' (x) cov(L 0 )FT  (x)}  n  

..th where the matrix F
T  (x) has 13-- entry n 

f i (x,t n .), i = 0,...,k, j = 1,—,N(n) 

For L one has 

1 
I
2  Ellf'(x)L

*
(X+O‘f) - f'(x)col T  

n 

= tr {K
+
(Tn )FT  (x) cov(L )F T  (x)} . 

Now for any vector aERN(n) 
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F
T 
 (x)a = 1 f 0 (x i tnj )a j 

e-- 

n fk (xitnj )a j 

= (la j K(•,tnj ),f(x)) K  

sothat,sincela.lq-,t 

	

	E H(K), one has by Lemma 2.6.5 that n3 

FT (x) [cov(L )-cov(L0 	T )1F 	(x) 
n 	 n 

is non-negative definite. Therefore, for any finite subset Tn  

Ellf'(x)L0 (X+8 1 f)-f'(x)811 T  

Ellf'(x)L (X+8'f)-f'(x)0 IT  

The conclusion of the 7.heorem now follows from (A4) and the mono-

tone convergence theorem. 0 

An especially simple treatment of the above results is avail-

able if the estimators are H(K) valued and H(K) is separable. In 

this case the space of linear H(K)-valued random variabls defined 

on Z consists of elements of the form 3 1 3 0. 3 i s 

a complete orthonormal system for H(K), gj  are each in H(B), and 

E[<Z,q.>.2„] < co. 
3 n 

In this context an anbiased estimator U of O'f(x) is one 
3 

which satisfies the following equivalent conditions. 
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lEOU ]-0 1 f(x)11 K  = 0 

k 
E 0  [U(t)] = 	

0 f (x,t) 	for tET . 
j=0 

A "best" linear unbiased estimator U of 0'f(x) is one which is 

unbiased and for any other unbiased estimator V one has 

E 11V-60f(x) 11 2 	E 11U- e i f(x)11 2  0 	 K 

Theorem 2.6.1'. If an unbiased estimator of 8'f(x) exists then 

the estimator (2.35) s the best unbiased estimator. 

Proof: Using extensions of Parzen (1959) or Lemma 2.2.2 it follows 

that the estimator in (2.35) is unbiased and for any finite set 

A 
Tn  = {t i ,—,tn }c T (Ya.K(•,t i ),m) is the umvlue of 

' 

A 
(Ya.K(..„t] ),O'f(x)). Let U = m - 0'f(x) and V be the corresponding 

-  
quantity for any unbiased estimator. For hEH(K) of the form 

h = Ya i K(•,t.) 

E(h,U)
2 
 = a' cov(UT )a . 

Therefore E(h,U)
2 	E(h,V) 2 

 holds for a dense subset of hEH(K). 

1 	11 	 2 From this it can readily be deduced that EllUil 2 	EIIVII
K. 
	❑ 

We assume below that (AU - (A4) hold. Let L
0 
 (x)EL 2  (r" B H(K)) be 

best unbiased for f'(x)8. From above L 0  (x) = f'(x)L0  where - 	-   
* 

L0 EL 2
(r,B,R

k+1
). Let M(x) = M( x ) where x places all mass at x. 



n 

= tr{K
+

(T )F' (x)cov(L
0 
 )FT  (x)} . 

n -T
n 	 n 

EI IL (x)(X+6'f)-ft(x)614 
(2.39) 
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Lemma 2.6.5. If 6'f(x) is linearly estimable then L o (x) is best 

unbiased for e'f(x) and 

EIIL 0 (x)(X+0'f)-f'(x)611 

= N
-1+

(C)M(x)} 

Proof:  Let T
n 

T be a finite subset as in (A4) . Then 

  

Since cov(L 0 ) = N
-1

M
+

( C), the expression in (2.39) is just 

N l tr{K
+

(T )F' (x)M
+

( C)FT  (x)} n -T
n 	 n 

= N l trIM
+ (C)FT  (x)K

+
(T 
nT  )F' (x) } n 	 n  

= N l trtM
+ 

 (C)M
T

(x)} 
n 

 

. .th 
where the 1,3-- entry of M T (x)may be written, using (2.38), as 

n  

(f.(x),f
j

(x))
T . The conclusion of the lemma now follows using 

(A4) and taking the limit as n oo. 

In all the above C has been a discrete design. The following 

definitions are made for arbitrary designs C EE 
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Definition: The mean f'(x)0 is said to be estimable with respect 

to the design C if f (y,f(x)) K : 17El-1(K)) c 12[M(E)] . 

Definition: Let d(x,C) = tr{M -F (E)M(x)} if f'(x)e is estimable 

with respect to E and +00 otherwise. 

Definition: The design C is said to be a minimax design if 

* 
inf sup d(x,E) = sup d().(,C ) - 
CEE xEX 	 xEX 

Theorem 2.6.2. Under (Al) - (A4) the coditions 

(i) 	C maximizes  IM(C)I 
*  

(ii) C minimizes sup d(x,E) 
x 

* 
(iii) sup d(x,E ) = k +1 

x 

are equivalent. The set r of all E satisfying these conditions 
* 	 * 

is convex and closed and M(E ) is the same for all c Er. 

Proof: If there is an xEX such that f'(x)e is not estimable 

d(x,E) = +co. By (A3) there is a design C o  for which IM(E 0 )1 	0. 

Thus R[M(E 0 )] = Rk+1 and f'(x)e is estimable for all xEX. There- 

fore attention may be restricted to those EEE for which 

IM(C)1 > 0. The remainder of the proof is exactly, except that 

the matrixes M(F) differ, as it appears in Karlin and Studden 

(1966). 
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For finding the D-optimal design the iterative process given 

below can be shown to converge in exactly the same manner as in 

Feforov (1972), Theorem 5.2.2. 

1. Let C o  be such that IM(C 0 )1 > 0. 

2. Find x0  to maximize 

trfM-1 (C 0 )M(x)}. 

3. The design C ,  = (1-a 0 )C 0  + a 0 F(x 0 ) is constructed. 

4. The matrix M(C 1  ) is found and its inverse is computed.  

Operations 2-4 are repeated with C i  ,then with C 2  and so on 

as long as one of the inequalities 

maxftr M-1 (C s )M(x)} - (k+1) s d l  

livi( s+ ) I - 11,4 ( s )) 

Im(s+1) 1 
	

2 ' 

where d 1 
and d

2 are small positive preassigned numbers, is vio-

lated. The quantities a s  are conveniently chosen to satisfy 

as 	
0, lim s = 0, and Ya s = +00. 

s.+00 



3. General linear parameter space. 

3.1. Introduction. The action of an unknown variable force 

{@(t): tE[0,1]} on a particle of known mass xE[a,b] which is ini- 

tially at rest may be observed repeatedly. The results are marred 

by an observational error of zero mean and known covariance. In 

an experiment with N uncorrelated observations iY(x i ,t): tE[0,1]} i=1 

 of the position function of the particle over time, what is the 

1 
"best" selection of masses {x 1 " xN  } for estimating f 0(s)ds 

0 

(see Example 2.1)? 

The problem described above is a particular case of a type 

of design problem whose solution is characterized below. In the 

case of the general problem, for each x in a set X of possible 

levels of feasible experiments an experiment can be performed 

whose outcome is a stochastic process {Y(x,t): tET}. 	It is 

assumed that the process has a mean function m(x,0,t) of known 

form, linear in the unknown parameter O. The parameter 8 is an 

element of a linear, but otherwise arbitrary, space O. For each 

x in X and 8 in 0 the function m(x,0) on T is a member of the 

reproducing kernel Hilbert space H(K) generated by the known 

covariance kernel K(s,t) = cov[Y(x,$),Y(x,t)], xEX,s,tET. The 

value T(0), where T is a linear (not necessarily continuous) 

59 
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functional on 0, is to be estimated on the basis of N uncorrelated 

observations fY(xt): tET, i = 1,•••,10. The problem to be solved 

is to find the experimental design which minimizes the variance 

of the best linear unbiased estimator of T(8). 

This model generalizes that of chapters 1 and 2 by allowing 

a more general mean and parameter space. For the most part, the 

development below parallels that above. There is at least one 

major difference however. Under assumptions similar to those in 

the finite-dimensional case, the variance of the blue may fail to 

be minimized by any probability measure on the factor space which 

concentrates on a finite number of points. A design is called 

optimal below only if it minimizes the variance of the blue and 

is supported on a finite number of points. 

3.2. Preliminary results. The class of linear estimators of 

T(0) is {<Z,g> B : gEH(L)}. The functional T(0) is said to be (lin-

early) estimable with respect to this design if there is a gEH(B) 

such that E 8<Z,g> B E T(8). Denote by (•,•) B the inner product on 

H(B) and for 	as given above fixed, by m the map from 0 to H(B) 

defined by m(8) (y) = m(x i3 O,t) if y = ((x i ,j),t). Parzen (1959) 

proved the following. 

Theorem (10A). Given that T(0) is estimable, there is a unique 

linear estimator <Z,ge B  which is the uniformly minimum variance 

linear unbiased estimator (umvlue) of T(8) with variance Ilg 11  
0 B. 
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Furthermore <Z,g> B  is the umvlue of T(0) if and only if g is the 

unique function in the closure of R(m) = {m(0): 0E0} satisfying 

T(0) E (m(0),g) B , 0E0. 

Let m' be the map from H(B) to the space of linear functionals 

0' on 0 defined by 

W(v)( 0 ) = (V,m( 0 )) B  • 

The map m' is the restriction of the usual transpose to H(K) (see 

Taylor (1958)). Setting 

M = N
- l
m'm 
	

(3.1) 

it will be shown below that an expression for the variance of the 

umvlue of T(0) may be obtained which is analogous to that obtained 

for 0 = Rk+1 above. If 0 = R
k+1 

the variance of the umvlue of 

T(0) is N
-1 

 T'M
+ 
 T where M

+ 
 is the Moore-Penrose generalized inverse 

of M. 

The notion of a generalized inverse extends to mappings be-

tween arbitrary linear spaces (see Nashed and Votruba (1976)). In 

particular, we use the notion of an algebraic generalized inverse 

(A.G.I.). The reader is referred to Proposition 1.16 and the 

material preceding Proposition 1.17 of Nashed and Votruba (1976) 

which shows that given the linear operator L: 0 	0' there are 

(algebraic) projectors P and Q,P defined on 0 and Q on 0', such 

that 
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= N(L) + M r  

0' = R(L) + S , 

R(P) = M(L), R(I-P) = M 

R(Q) = R(L) , and R(I-Q) = S . 

(3.2) 

The symbol + means algebraic direct sum so that P and Q are not 

necessarily continuous projectors. Indeed, we should emphasize 

that no topological assumptions have been made, or will be made 

in this section. 	For a mapping A, R(A) denotes the range of A 

and N(A) denotes the null space of A. 	Nashed and Votruba demon- 

strate the existence of a unique (for P and Q fixed) linear opera- 

tor L # : 0' 	-4- 0 called the A.G.I. of L which satisfies 

LL# L = L 

L# LL #  = L # 

L# L = I - P 

LL #  = Q . 

We note that if 0' 	= L-) then 0 - L
# 0 , 	( I-L #

L)0 or 

0 = L 0' + (I—Ome . (3.3) 
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If the form T(0), TEO', is estimable then there is a umvlue 

which corresponds to, say g o  E R(m) (the closure of R(m)). Let 

0
n

E0 be such that lim Ilm(0 n )-g
0

11 B = 0 and define 8' = LO
n 

, where 
n÷co 

L = NM. 

Lemma 3.2.1.  (i) The form T(8) is estimable if and only if 

TER (TO ) 

(ii) If T(0) is estimable then 

lig011123 = N -1  lim 0,;(1,1#0'). 
n±co 

Proof: 	(i) 	T(0) E (m(0) ,(4 0 ) B  if and only if T(e) E m'g o (0). 

	

(ii) 	ligollg = lim Ilm( 0 /1 )11 123  
n÷co 

= lim m'm(0 n )(0 n ) 
n±co 

= lim L(On ) (0 n ) 
n÷00 

= lim 0'(L
#
0' + (I-L # L)0

n
) 

n±co 

= lim 0 1'1 (0%) + 0;1 (I-L # L) 0 n n-4. 00 

The result will follow as soon as it is shown that a ,  (I—L # L)e n =0. 

To see this, suppose uEN(L). Then for all yE0,0 = Lu(y) = 

N(m(u),m(y)) B . In particular, m(u) = 0 so N(L)cN(m). Since 

(I-L # L)8
n 
 E N (L) and 

0 1 (I-L L,0
n 

= N(m(O n ), m(I-L#L)0
n )

B 

the lemma has been proved. 
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Corollary. If T(8) is estimable and R(m) is closed in H(B) the 

variance of the umvlue of T(8) is given by 

V = N
-1 

 T(M
# 
 T) 

Denote by E. the set of all probability measures on X with finite 

support. Let H be the Hilbert space of real valued functions 

f on S(F)xT, where SUJ is the support of F, such that 

f(x.) EH(K) for xi ES(C). The inner product of f and g is 

(f , g) 	= 	c(x)(f(x) ,g(x) ) K  . 
xES(C) 

Denote by m the map from 0  to H  defined  by 111  ( 0 ) (x. , t) = 

m(xi ,8,t) for x i ES(C), tET. Let 

m(C = m'
C
m . (3.4) 

If 	has all its mass at a point xEX write mx  rather than m . 

When C has rational probabilities at its support points (3.1) 

and (3.4) coincide. We are now in a position to make the following 

definitions for CEE. 

Definition. The linear form T(8) is estimable with respect to 

the design CEE if TER(m -) • 

Let M = {m (8): 8E0}. Then M cH and if T(8) is estimable 

there is a unique gEM (the closure of M ) such that 



(m (0),g) = T (0) and a sequence {0 n }c 0 such that 

11m0 0 11 ) - gil 	0 as n -4- co. Let 0;1  = M(C)O n  and define 

d(T,0) = lim 0'M# (C)0' 
	

(3.5) 
n-±co 

If T is not estimable let d(T,F) = +00. 

Definition. The design C 0  EE is said to be optimal for estimating 

T(0) if d(T,C 0 ) = inf. d(T,C). 

Lemma 3.2.2. For CEE the operator M(C) is given by 

M(C) = fm:mxdC(x). 

Proof: For u and v in 0 

(M(C)u)v = (mnu)v = (m0u),m c (v)) 

= f(m(x,u),m(x,v)) KdC(x) 

= f(m;( (mxu))vdC(x) 

Lemma 3.2.3. For any 0 1 ,0 2 E0 and CEE 

( m ( c"1"21 	l ( m ( c )0 1 )0 1 1 (m ( c) 0 2 )0 2 
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with equality if and only if m(0 1 ) = km(0 2 ) for some constant k. 
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Proof: Set 11m...(6 1  )-sm (62C  )11
2 
= f(s). Then the real valued 

function f defined on (-00,+0.) has a minimum at 

(M( 13 2 	)ei 1  
s 0 	(M() 0 2 ) 	 if mC (0 2 ) 	0. Using the fact that f(s) 	0, 

with equality if and only if m(O 1 ) = km(0 2 ), the result is 

proved as in the usual finite dimensional case. 

In addition to the algebraic generalized inverse of a linear 

operator T it is useful to have another notion of the transpose. 

It differs somewhat from both the usual transpose (see Taylor 

(1958), Chapter 1) and the transpose defined above. In particular, 

we suppose that T: 0 -4- 0', where as above, 0 is a linear space and 

0' is the space of all linear functionals on 0. 

Definition. The t-transpose of T, written T t , is the linear oper-

ator mapping 0 into 0' defined by Tx(y) = T ty(x), for all x,y in 0. 

The following lemma is true for T t but is not in general true for 

the usual transpose. Some additional notation is required. For 

an arbitrary subset Ace let A l  = {0' c 0': 8 , (0) = 0 for all OEA}. 

For an arbitrary subset B c 0 1  let B 1  = 03E0: 8 1 (6) = 0 for all 

Lemma 3.2.4. (i) R 1  (T)= N(Tt ) 

(ii) R 1  (T t )= N(T) 

(iii) R(Tt ) = N 1  (T) 

(iv) R(T) = NI(Tt). 
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Proof: Parts (i) and (ii) are proved in a similar manner, so we 

only prove (i). Let xER 1 (T). Then (Ty)x = 0 for all yE0. Thus 

T
t
x(y) = 0 for all yE0. Therefore T

t
x = 0. The reverse inclusion 

follows from the same argument. 

If W is any subspace contained in 0 then W = W
11 

(see Taylor 

(1958), Thm. 1.9-A). Parts (iii) and (iv) follow immediately. 

Lemma 3.2.5. For any 0'E0' , O' 	0, and CEE 

(0 1 (8))
2 

d(8' ,C) = sup
Eu (M()0)0 o 

where U = fe: (m()e)e 	el. 

(3.6) 

Proof: As in (3.2), write 0 = N(M) + M. First, suppose O'ER(M). 

Then 8' = MM# 8' since MM#  is the projection onto R(M). Thus 

(0 , (0))
2 
= [(MMe')0]

2 

= (M(M # 0 1 )0)
2 

[M(M# 0 1 )M# 0'] [(M0)0] 

= [e'(M# 0 1 )][(M0)0] , 

for any e. If OEU then (M8)8 	0 so 

(0' (0))
2 

(M# 0 1 )0 1  . (M0)8 (3.7) 

Setting 0 = M# 0 1 , which is in U, equality is achieved in (3.7), 

proving the result for (PERM. 
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If 6'ER(m') 	R(M) then 6 1 (0) is estimable with umvlue cor- 

responding to some g o ERcH(). Let {On } c 0 be such that 

0 and set 0' = MO n . The linear form 0'(6) is 

estimable and its umvlue corresponds to m(6 n ) since 

= (m(o n ),m(0)) 

and m(0 n )EM . Furthermore O'ER(M), so by the above argument 

(0'(0)) n 	 

	

d(0',U = sup 	 and 
n 	 (MO) 0 OEU 

(3.8) 

	

d(6 111 ,C) = Ilm(0/1)11 2 
	l i go ii 11 2  = d(e',c) • 

2 

Notice that for fixed 6 

2 [vn 	
2  (e)] 	2 I 

 _ 	
(m(0 11 ) ,m(0)) 	- (g0,m(0)) 2 ) 

	

(me)e 	(me)e 
[6' (6)]  

Ilm( 0 )11
2 	

 

I 
(m"n ) 	g0'm (e)) 0m (en ) 	g0fm" )) 1 

IIm(6 n ) - g o ll 	11111(0 11 ) 	go lk 

(3.9) 

so that given 6 > 0 it follows from (3.9) that for n sufficiently 

(a)1 2  
large Ic1(0',) - sup [81 "" I < e/ 2  and from (3,8) that 

eEu 	:me" 

Id(e;c ) - 	< e/2. Hence for n sufficiently large 



(e'(0 )) T 0 	 -1 
+ 0(n ) 

2 

(MO
1
)0 1 
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id( 0 ',) - sup 10
(m0)0

21  < E 
eEu 	

6)1 
 

This proves the lemma for OIER(m 1 ). 

If 0'/R(m') then O R  = 8k (m , )  + 0.1_ where 0' = R(m') + T and 

OT X 0. If Te) E C for 8EN(M) then 0+EN (M). By lemma 3.2.4 

O'ER(Mt ). 	Since MO 1 (0 2 )  = (m(0 1 ),m(0 2  )) 	and M
t 8

1
(8

2
) = MO 2 (0 1 ) = 

(m(0 I ),m(0 2 )) we observe that M = M
t and hence that R(M

t
) =R(M). 

Since R(M) c R(1-0), we have arrived at the contradictory conclusion 

that 0.i_ER(W) unless 3 0  in N(M) can be found for which 8.1r (8 0 ) X0. 

1 Fix 8 1  EM and let O n = 0 0 
+ 	. Then (MO n )8 n = 1 

--(me )0 1  and n 2 	1 

0'(0n ) = 	
(m' ) 

8' 	(00 
	T 
) + 0'(00 
	 R (m' ) 
) + 0' (

e

n 	
. Since 8' 	= m'h for R  

some hEll(B) one has 8k (m , ) (0 0 ) = (h,m(0 0 )) c  . The latter expression 

is zero by virtue of its being in N(M) so 

2 
(0' (O n )) 2 
	 - n 

 

and the lemma has been proven. ❑ 

(MOnn 

Example 3.2.1.  With reference to the introduction, let the 

unknown variable force be {8(t): tE[0,1]}. The observation is 

{Y(x,t): tE[0,1]} when mass xE[a,b] is used, where 

1 
0 (u)  

Y (t) = f (t—u)
+ x 

du + N(t) and N(t) is a zero mean process 
0 
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1 
with covariance K(s,t) = f (t-u) + (s-u) +du. As usual a+ =max{ 0,a}. 

0 
1 

The quantity to be estimated is f 0(s)ds = T(0). The space H(K) 
0 

is the set of all functions f on [0,1] for which f(0) = f'(0) = 0 

and f"EL 2 [0 ' 1]. The inner product is 

1 
(f,g) K  = f f"(s)g"(s)ds . 

0 

For any 8 	0 in 0 = C[0,1] and CEE 

(M(00)0 = IC(xj)limx. ( 0 )11 
J 

C(x.) 	1 2  
= 	2  f 0 (s)ds > 0 

x. 	0 
J 

SO 

d(T,U = sup 
00 	C (x.) 	1  
	 f 0

2 
(s)ds s  

j=1x . 	0 

From the Schwarz inequality one has d(T,) - 	1  so the 

2 
xj  

optimal design takes all observations at x = a. 

1 Q\\ 2 
 (s)ds) 

0 
2 

0 
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Example 3.2.2.  Assume the same conditions as in example 2.1 

except that we wish to estimate 6(1/2). We shall show that 6(1/2) 

is not estimable with respect to any design 

First we observe that for any CEE and 6EC[0,1] 

1 2 

Ilmc( e )11 2E = 	C(x)i 	6 (s
2

)  ds 
xES(C) 	0 	x 

so that m is continuous from C[0,1] to H(K). Thus m' is actually 

the adjoint m mapping H(K) into the topological dual of C[0,1]. 

Therefore, given vEH(K) there is a function g of bounded variation 

on [0,1] such that for all 0EC[0,1] 

1 
(m v)6 = f 0(s)dg(s) . 

0 

If 6(1/2) were estimable one would have vEH(K) such that m v cor-

responds to 

	

e 0 	s < 1/2 
g(s) = 

	

1 	1/2 	s 
(3.10) 

However, using the facts that 
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* 	 1 	6(s)  
(m v)6 = (v,m one = 	( x) f v"(s) 	x  ds C 	 C  xES(C) 	0 

(

/ 1 	1 
y"x lf v"(s)6(s)ds 

x 	0 
(3.11) 

1 
and f (v"(s)) 2

ds 
0 

< .0 it is clear that (3.11) implies m v can not 

correspond to the g in (3.10). 

3.3. Characterization of optimal designs. The assumptions which 

at various times we shall have need of in this section are 

(B1) The parameter space 0 is a linear topological space. 

(B2) The mappings im x 1xEX from 0 to H(K) are all linear and con- 

tinuous and R(m ) is closed for CEE. 

Since (B2) implies m' has values in 0 , the topological dual of 0, 

we shall write m e  rather than m . Let F denote the set of all 

functions from X into the unit ball of H(K) and 

(B3) 

that 

(B4) 

For each 

r 0  (0 0  ) 
	_>_ 

For each 

R = 

r oER 

r(0
0 

 ) 

0E0, 

ffmxclo(x)d(x): 	CEE,(PEFI 	. 

(the boundary of R) 	there is a 

for all rER. 

0 	0, 	sup 	Ilmx (6)11 	> 	0. 
X 

0 0 E0 such 
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it 

The notation and assumptions may be simplified if instead the 

parameter space 0 is assumed to be a Hilbert space. The details 
* 

appear in Spruill (1980). Fix 0 E0 and let v 0 
 = inf d(19 ,C). 

Lemma 3.3.1. Let B1 - B4 hold. Then 

(a) S0
*
ER implies v 0  s 	, and 

1 

(b) (30
*
E3R implies v o 	. 1 

Proof: (a) If 3 = 0 the result is trivially true. Otherwise 

n 
3 = 	y a.m* 

(1)„ 	. 
J= 1  3 

One has for any eEe that 

* 

	

2 	[ Xa j (4) x 	K.'mx. (0)) 1  * 	2 	H30 con 	_... 	3 	7  Le (OH - 	2 	 2 

	

(3 	 F3 

I Xa j Mx. 0(0) 
3  

13
,2 

M(C) 	0(0) • 
2 

	

Therefore, by lemma 2.7, v 0 	. 

(b) Since f30 E3R there is a 0E0 such that P.8 (W 	Ir(6)1 

for all rER. This is a consequence of (B3). Let x nEX be 

2 
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m
xn

(0) 

such that lim 	(0)11 -* sup Ilmx (6)11. 	Let rn  = mx 	I'm 	(o  xm 	X 	 n 	11  x 	
il  

n ' 

to obtain 

(e)> Irn (0)1 = 11mx  ( 0 )11 • 
n 

(3.12) 

We conclude that a 8 (8) 	sup lim (6)11. Also, since R is sym- 
X 	x  

metric and convex, for c > 0 sufficiently small (-08 ER 	> 0 

by 

Combining (3.12) and (3.13) we have 

(( 30: 12) c ae ndo :B4);:  One 	 = Ya.m (cb.) so 

J 

	

Ya i  11mxj (6)11 5 sup 11mx (0)11 • 	(3.13) 

ISO (0) = sup 11mx (6)11 . 

x. 

X 

	

x. 	3 

(3.14) 

Let n be such that d(8 ,fin)v0  . If v 0  is +co the result is 
* 	* 

trivially true. Assume, therefore that 6 ER(m, ) for each n. 

Then 0 must be such that (M(Cn )6)0> 0 for all n. To see this, 

suppose that it is not for some n. Then OEN[M(C n )] = R I [Mt (Cn )], 

and since M( n ) = Mt ( n ) (see lemma (3.2.5) one has OERI[M(n)]. 
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From the argument in lemma (3.2.5) there is a sequence O kER[M( 11 )] 

such that lim Id(8
k'n ) -d(e) ,C11 )1 = 0. But 8 k (0) E 0 by definition 

k-*oo 

of R [M(C 11 )] so that 6(8) = 0. This, with (3.14) contradicts 

(B4). Since (M(C 11 )0)8 > 0 for all n one has 

1 = 	[8 * (8)] 2 
[0 	

*
(0)]

2 
< 	 d(0 

13
2 	

supilmx (6)11 2 	(M( n )0)(31  

* 
Theorem 3.3.1.  Let 8 (8) be estimable with respect to some design 

and B1 - B4 hold. The design C o  is optimal for the estimation of 

8 (0) if and only if there is a function 0 X -+ H(K) such that 

II(P(x)11 	_ = 1 and 

fmx (1)(x)dC 0 (x) 

is (i) proportional to 8 and (ii) in RnaR. 

Proof:  Suppose C o  is optimal. Then setting A o  = M# (C 0 )8 one 

has M0  A 0  = 8
* and M0  A 0  (A 0  ) = v0' Let {z: A(z-vo

1/2 8 * ) = ol be a 

giv 	supporting hyperplane to R at v -01/2
6
* 
where A 	0. From above 

6 1/2 *(v 
-1/2 X) = suplim 

x
(X)11. Since M

0  X 0  = 0
* 
one has v o 	M0  X 0 

 (A) = 
X 

supilmx (X)11. Therefore 
X 

X 
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supilmx (A)11 2  = v 0-1  [(V&A]
2 (3.15) 

# v-
o

1 [Mo o (M * )Mo# e * 	(mo x)x] 

1 * # * 
= v o  [8 Mo 0 ][(m0 X)A] = (M0 X)X 

with strict inequality unless m (A ) = kmC (A) for some scalar 
"0 0 	 0 

k. Since one always has (M 0 A)A 	supi Im
x
(X)11

2 equality holds in 
X 

 

(3.15) and we have I'mx (X)11 = supilm 
x
(X)II on the support S(C o ) 

X 

of C o . Set gb(x) - ilmx0011 	 0 . Then for xES(C )  

fmx(p(x)dC 0 (x) - 

From above 

MA 	 M 
0 
	 0 A

0 
suplimx (A)11 = k suplimx (X)11 • 

v o = M0  A 0  (A 0 	) = k M0  A(A 0  ) = k iM 0  A 0 
 (A

0  ) 
	0A (A) 

= k v0/2  suplImx (A)II 

f 
so that jmx (p(x)dC 0 (x) = v-01/2* . 

If (i) and (ii) hold then for any 0E0 

-1 * 	2 	r 

	

v o  [0 (0)] 	= (j(mx (0),(1)(x)dC 0 (x)) 2 

I 'Imx (0)11 2dc 0 (x) = (M0 0)0 

showing C o  to be optimal. ❑ 

m
x
(A) 
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Another theorem of interest whose proof we leave to 

the reader (see Studden and Tsay (1976)), is the following. 
* * 

Let 0 0 E0 be fixed, 0 be a reflexive Banach space, and 

	

A = {6c0: 	o (6) = 1}. 

Theorem 3.3.2. Under Bl - B4, if 6 0 EA satisfies 

(i) inf supl mx (6)II K  = suplimx (6 0 )11 , 
A X 	 X 

(ii) s ( 0 ) ctx: limx (6 0 )11 = nicplImx ( 6 0 )111 

0 
, 

	

and (iii) 	jm 
x  mx 

 (6
0 
 )(:1 (x) is proportional to 0

0 

* 
then o 

is optimal fpr estimating 0
0 
and v

0 
= (sup Ilmx 0  (6  )11)

-2
- 

X 

Furthermore, if there is an optimal design 	, then there is a 

6
0 
 satisfying (i), (ii), and (iii). 

Some other theorems of possible interest may be obtained 

from section 2 above. Their statements and proofs require certain 

additional assumptions and modifications along the lines of those 

presented above. 

3.4. Verifying the assumptions. Verification of assumptions 

Bl - B4 may be a non-trivial task. We present herein some suf-

ficient conditions which relate especially to (B3), the most dif-

ficult to verify. The assumption (B3) is trivial if 0 = Rn  for 

some n. We introduce some terminology. 
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The point a is said to be an internal (not necessarily inte- 
* 	 * * 

rior) point of the set Ace if aEA and for each 0 co there is an 

* 
a o  > 0 such that a0 + (1-a)aEA for 0 .__ a < a 0 . Since R is sym- 

metric, R has an internal point if and only if 0 is an internal 
* 

point. Furthermore, since 0 is a Banach space, an application 

of the Baire category theorem shows that R has an internal point 

if and only if it has an interior point. 

The next result may be found in Holmes (1975). 

* 
Lemma 3.4.1. If A c 0 contains an interior point and is convex 

** 	** 
then at each point IDEA there is a non-zero element O b  E 0 	such 

that 

** 	** 
0
b 

(b) 	b (a) for all aEA . 

We prove the following. 

Theorem 3.4.1. If 0 is a reflexive Banach space, suplIm x (0)11 > 
X 

kliell for some k > 0, and {m x }xEX are continuous then (B3) 

holds. 

Proof: It suffices to prove that 0 is an internal point of R. 
* * 	 *  

Let 0 0  E 	 suppose that a0 be non-zero and uo tht 0
0 
 is not in K. Then 

* 
there is a A

a
Eesuch that IIA a II = 1, and a0

0
(A

a
) _?_ a(a) > b(a) .?._ 

r(A ct ) for all r•Er (see Dunford and Schwarz (1959), V. 2.11). 

Therefore, 
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al I 0 *0  II > cte *0  vi od > I Imx  (A ct ) I I 
	

(3.16) 

m (A ) 
as in seen by choosing r = mx Il mx (A

a  )11 ' for some x which makes 
x 	Y. 

Ilmx( xa)II > °- In view of our assumptions, (3.16) implies 0 is 

an internal point of R. 

* * 
Lemma 3.4.2.  If (B2) holds and 0 (0) is estimable for each 8 E0 

then 0 is an internal point of R. 

* 	 * 
Proof:  Let 0 	0. Then, since 0 (0) is estimable there is a 

EEsuchthate=for some hEH . Since R (m ) c N(m ) and 

R(m ) is closed there is a 0 0 E0 such that 6 = m m (0 0 
 ) or 

0  = 	C(x)mx*m x (0 0 
 ) . 

)ES(C) 
(3.17) 

Since 	max Ilm x 
 (6

0  )11 > 0, the result follows from (3.17) upon 
xcS(C) 

dividing both sides by 	max Ilm 
x

(0 0 )11. 
xES(0 

* * 
Lemma 3.4.3.  If 0 (0) is estimable for each 6 ce and (B2) holds 

then (B4) holds. 

Proof:  Suppose 0 0 	0 and suplImx(00) 11 = 0. Let 0 0  be such 
X 

that II0 0 	= 6 0  (6 0 
 ). Since 0 0 (6) is estimable an argument simi- 

lar to that in lemma 3.4.2 shows that there is a sequence {O n } 

such that 



80 

lim 110
0 

- 	C(x)mxmx (0 n )1I = 0 . 
n-4-00 	xES(C) 

But then 

110 0 11 = e o  (e 0  ) = lim 10x)(mx (e n ), mx (e o )) = 0 . n÷co 

This contradiction establishes the lemma. We have proved the fol-

lowing. 

Theorem 3.4.2. If 0 is a reflexive Banach space, (B2) holds and 
* * 

0 (0) is estimable for each 0 Ee then (B3) and (B4) hold. 

Example 3.4.1. Let the observed process be Y(x,t) = 

1 
f (t-u) + 8(u)x(u)du + N(t), tE[0,1] where N(t) is as in example 
0 

3.2.1 above and the function x is of the form 

0 

X (U) 

1 	 U 	1 

0 < U < 

(3.18) 

Let X consist of all functions of the form (3.18) for some 

ac[0,1]. We suppose -:hat 0 = L2 [0,1] and that we are to optimally 

1 
estimate T(0) = f (s-L) 4_6(s)ds. We shall employ theorem 3.3.2 

0 

to solve this problem. 
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To verify that B1 - B4 hold observe that the hypotheses of 

Theorem 3.4.1 hold (and therefore B4 holds also) with k = 1. 

Let S satisfy 

1 
1 = T(S) = f S(s)(s-c) +ds . 

0 
(3.19) 

We seek to minimize 

sup Ilm 	2 = sup f 1 x2 (s)6
2
(s)ds = j

1 S 2 
(s)ds 

X 	x 	 X 	0 	 0 

subject to (3.19). From Schwarz's inequality 

1 ? 	 1  d - (s)ds > 1 
0 f (s-e)

2
ds 

0 

with equality if and only if S(s) = k(s-E) +  . Therefore, any 

design which concentrates all its mass at x's satisfying 

‘ 3  
x(c) = 1 is optimal and v - (1-6 ' 

3 

Example 3.4.2. Let 

1 
Y(x,t) = f 0(s)e-xsds + W(t), tE[0,1] 

0 

where xE[a,b] and W(t) is the Wiener process. We suppose that 

= L2 [0 ' 1] and that we wish to estimate 



t o  

T, T(0)= f e(S)e liSdS, is in L 2  * . The map mx : L 2 -4- H(K) is con- 0 

1 
Since L2 is reflexive and f (x (s) e -Ys ) 2 ds < co the function 

0 	[0,t 0 ] 

82 

f 0(s)e Ysds 
0 

for some t 0 €(0,1], and some yER. We note that H(K) consists of 

all functions f on [0,1] for which f(0) = 0 and f'EL 2 [0,1], with 

1 
(f,g) K  = f 	f'(s)g'(s)ds . 

0 

t
o 

tinuous since 

1 
11 	r _„ Ilmx(8)2 	2 11 = j u (s)e-2xs  ds 	f 

1
8 2 (s)e -2asds 

0 	 0 

2 e-2a 11011 2  . 

Also, the conditions of theorem 3.4.1 are satisfied since 

sup Ilmx (8)11 2 ?- e
-2b

11011,
2  

. 
a<x<b 	 4 

Therefore, we may apply theorem 3.3.2. Let 

1 = T(ó) = 
1 - ys 

X(s) e 	(3(s)ds . 
0 [0,t 0 ] 

(3.20) 
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We shall minimize 

	

sup f
12

(s)e
- 2xs

ds = 
12

(s)e 	ds 
-2as 

a5_)b 0 	 0 

subject to (3.20). We have, by Schwarz, 

1= f 
	, 	ys 	, 2 	r 1 ,2 	 2(a-y)s (s)e-2asdsf 1 e 	x . x . 1 

j oks)c 	xkx) as 	j 	 k ) ds 
0 	[0,t 9 ] 	0 	 0 	[0,t ] 0 

with equality if and only if 

o(s)e-as  = kease ys  x(s) 	. - 

[0,t 0 ] 

= 
0 	

( 	2(a-y) 	) 
e
(2a-y)s Therefore (5 (s) 

	

2(a-y)t 	 X(x) 

and 

sup 	mx ( ,5 0 )II
2 = 

2(a-y)t, 
2(a-y)  

e 	u -1 

To find mx note that for vEH(K) and A in L2 

1 
m
x
v(A) = f m v(s)A(s)ds 

0 x  

1 
and mxv(A) = (v,m x  (A)) K  = f vi(s)A(s)e -x s

ds 
0 

0 -1 	 [0,t ] 0 



2 2n 
sup 	Ilmx (6)11

2 	
f 	Ilmx (0)11

2
cP(x)dx = 1182 112  

0 

84 

so mx corresponds to v'(s)e
-xs  . The support of any optimal design 

is x = a so we must have mama(60)  proportional to T. We see that 

mama (6 0
) = ma (6

0
)'(s)e -as 

-2as 	
(a 

t ) 	 -ys 

e 	
X(x) e  .

0

(s)e 

	

2(a-y)t o 	ro,tol  
-1 

Therefore, the design which places mass one at x = a is optimal 

2(a-y)t, 
u-1  and v - 2(a-y) 

Example 3.4.3.  Let X = [0,2n], 0 = L2 [0,1], and 

1 
Y(x,t) = f 0(s) sin (2ns-x)ds + W(t) 

0 

for tE[0,1]. Since 

	

2 	
j 1 

2 

	

ilmx (0)11 	= 	(t) sin
2
(2nt-x)dt 	1181 1 2

0  

(B1) and (B2) are satisfied. Let cl)(x) =x(x) . 
2ff  [0,2n] 

so (B3) and (B4) are satisfied. We shall use Theorem 3.3.2 to 

1 
solve the design problem for estimating f 0(s)ds. If we view 

0 



1 
{e:f o 6(s)ds=1} 	0)2 .rr 	 0..)2 .rr 

. 	inf 	sup 	Ilmx (e)II 2  = 	sup 	Ilmx (0 0 )II 	= -2- 
2 	1 
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X as the parameter space, [0,1] as the outcome space, R as the 

action space, and e(•) a decision rule in a statistical decision 

1 
problem then 0 0 (s) E 1 results in a constant risk of 2- . Viewing 

cp as a prior on the parameter space, it is easily seen that 0 
 is 

1 
Bayes among those 0E1, 2  such that f e(s)ds = 1. That is; it is 

0 

minimax, 

It remains to find a design for which 

[XC(X)M:Mx (0 0 )j(t) E 1 	 (3.21) 

Since mx
*m x  (6 0 	 i )(t) = 0 0 (t) sn2 

 (2 .fft-x) the design which places 

masses 1/2 at x = 0 and 1/2 at x = Tr/2 satisfies (3.21) and is 

1 
optimal for estimating f 0(s)ds with v = 2. 

0 

t 
Example 3.4.4. Let 0 = L 2 [0,1] and Y(x,t) = f 0(s)x(s)ds + W(t), 

0 

t€[0,1], where x is any function of the form 

x(s) = as + b, lal 	A, 	Ibl s B, AB > 0 . 

Since 
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limx(e)11 2 	f 1002 	
) 

(.s,x2 
(s)ds < (A+B)21i01122 

and supil im 	
1  2 	

B2  Ilell 2 
 B1 - B4 are satisfied. We are to 

' 

1 
find the optimal design for estimating f 0(s)ds so we seek to 

0 

minimize 

r
1 

I2 
I 	

2 
supilmx (°) 	= j 	(s)(As+B)

2
ds 

x 	
.11  

0 

1 
among all AEL 2  such that f A(s)ds = 1. Using q(s) = As + B 

0 

1 = (fa) 2  = 
g)) 2 	f xyf cp -2 

)  we see that A0 	
B(A+B (s) - 	satisfies 2 
As+B) 

inf suPlimx (A)1( 2  = suPlImx (A 0 )11 2  = B(A+B) . 
fA=1 X 	 X 

To complete the solution to the problem we must find a design on 

the two functions x 1  (s) = -As - B and x 2 (s) = As + B such that 

am* m (A ) + (1-a)m* m (A ) 
x 1 x1 0 	 x2 x2 0 (3.22) 

is constant. Since 
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A 0 (s) 	+ (1-a)x
2 (s)] = B(A+B) 

and design which distributes all its mass between x1  and x2  is 

optimal with v = [B(A+B)]
-1

. 

Finally we provide some examples of how estimable functions 

may fail to have an associated optimal design. 

Example 3.4.5. Let 0 = £2 , T be a one point set, and X c t 2  • 

Suppose Y(x) = (0,x) + c and X is the open unit sphere illx11 < 

Since mx
: R -4- t 2 satisfies mxu = ux one finds that R = {+x: xEX}. 

Since R n aR =(1) there can be no optimal designs even though every 

linear form is estimable. 

The non-existence of optimal designs in the preceding example 

could be attributed to the fact that Ilmx (0)11 failed to attain 

its supremum on X. Even in a finite dimensional space 0 an esti-

mable function -r may fail to be optimally estimable although 

lim (e x 0)11 attains its maximum on X, where 

maxIlmx (0 0 )11 = 	inf supilmx (8)11. 	If however, 0 is finite 
X 	 T (0)=1 X 

dimensional and -Cmx (1)(x): Ilflx)11 = 1, xEX} is closed and bounded, 

then there is an optilial design for each estimable function. The 

next example shows that the latter is not the case if 0 is not 

finite dimensional. 

Example 3.4.6. As in example 3.4.5, let 0 = t 2  and m
x (8) = (x,8). 

Let {(1) 0  ,(1) 11 
 --.} be a complete orthonormal basis for t

2 and 
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 +
0

0 
 

Since m
x
u = ux one finds that R = co(X). We observe that (0 0 ,6) 

is estimable since m (1, 	(2) = 	Also D O ER since taking 
'YO/2 	0' 	0 

a
n, 

= 	, j = 	one has an J  

n 
110 + 	a 	0. - 0

2 
= 	0 . 

0 	
.=J- 

n. 3 
J 

ThefactthatfornoCEEorIEHE 1 is it true that 

0 = 	s E (0 0  +0 ) implies at once that 0 0 E3R but not in R. 
JEJ jjj 

Therefore, there is no optimal design for estimating (00,0). 



4. Application to random differential equations. 

4.1. Introduction. Suppose that {0(t): tE[0,1]} is a variable 

1 
force and that f 0(t)dt is to be measured but that any action of 

0 

this force is contaminated by white noise. Three possible experi-

ments to accomplish this task are: 

1) Observe the motion fY i (t): tE[0,1]) of a particle of mass m 

initially at rest at zero under the influence of 

{0(t) + laW(t): tE [0,11 }. 

2) Observe the motion CY2 (t): tE[0,1]} of a particle of mass m 

initially at rest at 0 under the influence of 

{0(t) + oW(t): tE[0,1]} and a restoring Hook's law spring with 

constant k. 

3) Observe fY 3 (t): tE[0,1]} subject to few + aw , (t): tE[0,1]} 

and a frictional force -fY'(t). 

In each of these cases it is possible to compute the variance 

1 
of the uniform minimum variance unbiased estimator f 8(t)dt as 

0 

discussed above. Which of the experiments described above yields 

the smallest such variance? 

Before answering the question let us rephrase it in a form 

which will allow a more general answer. Notice that the observ-

able processes are respectively the solutions to the following 

three random differential equations, tE[0,1], 

89 
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mY"1 
 (t) = 0(t) + 6W' (t) I 

Y 1 (0) = Y'(0) = 0 ; 

mY2 (t) + kY(t) = e(t) + aW(t) 

Y2 (0) = Y'2 
 (0) = 0 ; 

mY3 (t) + fY3 (t) = 6(t) + 6W' (t) 

Y3 (0) = Y'3  (0) = 0 . 

(4.1) 

(4.2) 

(4.3) 

More generally the output Y(t) of a measuring instrument (see 

Doebelin (1975)) satisfies an equation of the form 

(D
n
+an-1D

n-1+•••+aI)Y(t) = 6(t) + 6ll 1 (t) 

(0) 	(1) 	 (n-1) 
subject to Y (0) = Y (0) = 	= Y (0) 	= 0. The questions in 

this generality become: 

a) Is there a best selection of coefficients a0''an-1 and an 

integer n 	1? 

b) What are the values of these parameters if there is a best 

selection? 

The answer can be given from the more general results given 

below in theorem 4.2.1. All such experiments yield the same vari- 

1 
ance. In fact, if f u(s)6(s)ds is to be estimated, where 8 and 

0 

u are in L2 " [0 1] then the variance of the umvlue is just 

■ 
■ 
■ 
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2,
1  2 

o 	u (t)dt regardless of n 	1 and the coefficients a o , , .. ,an_ i . 
0 

Some implications of this result for the design of measurement 

systems are discussed in section 4.3 below. 

Before describing the optimum design problem which motivates 

our current efforts we need some notation. Let [a,b] be an arbi-

trary closed bounded subinterval of R, n an integer greater than 

orequaltoone,andfc.(t)1 n-1j=0  be n-times continuously differ-

entiable on [a,b]. As in Kimeldorf and Wahba (1970) H L [a,b] is 

the set of real-valued functions on [a,b] for which D n-lf is abso-

lutely continuous and Lf is in L 2 [a,b], where L is the differ-

ential operator defined by 

L = D
n 

+ cn-1 D
n-1 + 	+ c 0 

 I . (4.4) 

(j) -1 
Let fz.l.

n 
	CH satisfy z.1 (a) = 

6.. , j = 0,•••,n-1 and Lz = 0. i 1=0 	13 

Denote the Green's function of L by G(s,t). That is, G(s,t) = 0, 

G)/ 	6, s < t, L
(s)

G(s,t) = 0, s 	t, and 
a 	

(s,t 
s=t 	3,n-1 3s 	/  

Lemma 4.1.1: (Kimeldorf and Wahba). If fY(t): t [0,1]1 satisfies 

(j) 
LY(t) = F(t) + 6W 1 (t) subject to Y (a) = Y. , j = 0,•••,n-1, where 

y
0 ,•••,yn-1 , W are uncorrelated and FEL 2 [a , b] then 

Y(t) = m(t) + N(t) 	tE[a,b] 
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where 

n-1 
m(t) = 	y p.z.(t) + f G(t,$)F(s)ds , 

J=0 3 3 	a 

n-1 
N(t) = 	y (Y.-p)z.(t) + of G(t,$)dw(s) 

j=0 3 	3 	a 

andp.
7 
 =E(Y.),Ifo.

2  =Var(Y.) > 0 for all j = 0,•••,n-1 the 
 3 	3 	3 

reproducing kernel Hilbert space generated by K(s,t) = cov(N(s),N(t)) 

consists of all functions f on [a,b] of the form 

n-1 
f(t) = y a.z.(t) + f G(t,$)u(s)ds 

j=0 3 3 	a 

such that uEL 2 [a,b] and the a's are real scalars. If 

n-1 
g(t) = 	y f3.z.(t) + f G(t,$)v(s)ds 

j=0 3 3 	a 

the Hilbert space innner product of f and g is given by 

n-1 a.. 	1 	b 
(f,g) K  . 	

2 
y 	32 3  + 	f u(s)v(s)ds . 

j=0 G. 	a 
	a 

Proof: As indicated, the proof follows from Kimeldorf and Wahba 

(1970). 	❑ 

We remark here tnat the formulas continue to hold for 

2 
a 	 mm = 0 if p, = 0 also. Just omit those indices from the summation. i 



A general description of the type of experimental situation 

to which our techniques apply is as follows (see section 5 for 

generalizations). For each x in a set X of possible experiments 

an experiment can be performed whose outcome is a stochastic pro-

cess {Y(x,t): a 	t 	b}. It is assumed that the stochastic pro- 

cess Y(x,t) is the solution to 

LxY(x,t) = F(x,O,t) + ax
W'(t) 

on [a,b], where Lx EL, the collection of all differential operators 

satisfying (4.4) for some n 	1, and the initial conditions are 

given by 

Y(x,t)/ 	= Y. (x) , j = 0,•••,n-1 . 
dt j  / t=a 

The Wiener process W and the random variables Yj  are mutually 

uncorrelated and E[Y i (x)] E0 for j = 0,•••,n-1. The function 

F(x,0,•) in L 2 [a,b] is of known form and is linear in the unknown 

parameter 0. The parameter 8 is an element of a linear, but 

otherwise arbitrary space O. The value T(0), where T is a linear 

functional on 0, is to be estimated on the basis of N uncorrelated 

observations {Y(xt): tE[a,b], i = 1,•,N). The problem is to 

find the experimental design which minimizes the variance of the 

minimum variance unbiased estimator of T(0). 

Denoting by E. the set of probability measures E on X whose 

supports S(E) consist Df subsets of X with a finite number of 

elements we have the following theorem for the differential equa-

tion data problem. 

d i 
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Theorem 4.1.1. The deisgn C o  EE is optimal for estimating T(e) 

if and only if 

	

2 	
[T(8)l 2  [T(e)]  sup 	 sup 

OEU(C) 	X 	
, u (x) 	b z 

 n f - 	 eEU(C) 	C(x) 	f F2 (x,e,t)dt 0  

	

(x,e,t)dt 	 2 a 
a xcS(C o ) 	
2 
x 	

a 	 S(C) 	a 

for all CEE, where 

b 2  
U(C) = {e: X C(x2

' f F (x,e,t)dt > 0} . 
a 	a x 

Proof: By lemma 4.1.1 above it follows that the solutions to the 

random differential equations {Y(x i ,t): tE[a,b]1 may be expressed 

in the form 

Y(x,t) = m(x,e,t) + N(t) , tda,b] 

where m and N satisfy all the assumptions of the general means 

regression design problem except that the covariance kernel depends 

upon x. Modification of the methods in section 3 to cover this 

case results in the following version of lemma 3.2.5. The func-

tion d(T,) satisfies 

d(TC) = sup 	[T (e)]
2 	

2  , where 
OEU(C) YC(x)11m(x, 0 )11 K  

x 

U(C) 	{ 	: XC(x)Ilm(x,(3 )11 /{ 	> 
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The definition of optimal design as that design in E which mini-

mizes d(T,F), and lemma 4.1.1 above which shows that 

2 	n(x)-1 p
2 	b 2  

Ilm(x,0)11 K  = 	y 	f F (x,0,t)dt 
x 	j=0 	a, 	a 

b 
= 

2 
f F 2 (x,0,t)dt 

aa  
7.< 

demonstrates the validity of the assertion. 0 

In summary, we have shown that the design problem with data 

from random differential equations may be analyzed in the frame-

work of the general linear means regression design problem when 

the forcing function is linear in the unknown parameter. The 

function d(T,C) defined by 

	

d(T,) = sup 	[T(0)]
2  

	

OEU 	
2 

(x) 
 .1  E

b_2 
(x,0,t)dt 

a 
x 

a 

(4.5) 

b 
where U = {0E0: y(2)  f F 2 (x,0,t)dt > 01 determines the optimality 

a  a x 

of the deisgn C EE . The optimal design C o  EE , if one exists, 

must satisfy d(T,E 0 ) = inf d(T,C). 
EE 

4.2. Application to the design of measuring instruments. In this 

section we shall identify measuring instruments with the differen-

tial operators L of sect,_on 4.1. That is, we shall identify a 
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measuring instrument by the differential operator LEL which 

describes its dynamic response. Not all measuring instruments 

are covered, but many are. See Doebelin (1975) for details. We 

shall identify the process of designing a measuring instrument 

with the choice of an order n of its differential operator and the 

selection of its (possibly variable, but throughout this work 

deterministic) coefficients. More precisely, we shall be inter-

ested in the optima_ collection of instruments {L 1 ,••,LN }EL to 

minimize the variance of the best unbiased estimator of a linear 

functional of the forcing function. We assume that: 

a) the unknown forcing function 0 is an element of L [0,1]. 

b) we observe {Y 1 ,•••,YN } where Y j  solves 

L.Y. = 0 + aW! 
3 3 

(i) 
subject to Y (0) = 0, i = 0,—, -1, where 	is the order of 

i 	
nj 	 nj 	 Lj  

and {W1, ••,WN } are uncorrelated. 

1 
The value T(0) = f 0(t)u(t)dt, uEL 2 [0,1], is to be estimated 

0 

using the best unbiased estimator. 

This corresponds to the problem described in section 4.1 above 

where L = X, F(x,0) = 0, and ax  E a > 0. 

Theorem 4.2.1. Every measuring instrument LEL yields the same 

variance of the best unbiased estimator of T(0). This variance 

is 2
IITII

2 
= d(T,C) for all designs C. 



[T(0)] 
() 

 f 0
2 (t)dt 

2 	0 

112 0 2 
= sup [  Hei

Ii 
  

exo 
d(T,U = sup 

0/0 
X 

2 

2 

Proof:  For any SEE equation (5) shows 
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2 (11 	2 = IIT1120,2 
sup 1 1

T
1
0)
811 	0 	" 

0/0 

This shows that by our (very narrow) criterion all instruments of 

order at least one yield the same precision. 

Even though the variances of the best unbiased estimators 

are the same, the form of the best estimator as a function of the 

observable process fY i (t): tE[0,1], i = 1,•••,N} depends upon the 

differential operator L i 	= 1,•••,N. Since the form of the 

measuring instrument does not affect the precision we may attempt 

to design the instrument so that the final estimator is as simple 

a functional of the observable process as can be achieved, or per-

haps as numerically stable as possible. We do not attempt here 

to investigate these questions any further than to offer theorem 

4.2.2 below. 

We first give some requisite lemmas. 

Lemma 4.2.1.  The Green's functions G(t,$) of the constant coeffi- 

cient differential operator 

L = D
n 

+ an-1 D
n-1 + 	+ a0  I 
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defined on HL [0 ' 1] and the covariance kernel (see Kimeldorf and 

Wahba (1970) 

2 1 
K(s,t) = 6 2 j  G(s,u)G(t,u)du 

0 

(1) 
of the process {Y(t): tE[0,1]} satisfying LY = W', Y (0) = 0, 

i = 	 satisfy 

ai 
a) K(s,t)EH(K) 	for j = 0,1,•••,n-1 , 

Dt 3  

b) 
Di 	 1 	aj  K(s,t) = a

2
fG(s,u) 	G(v,u)/ 	du , j=0,•••,n-1 , 

at-) 	 0 	9v 3 	/ v=t 

and 

Di  
c) . G(t,$) 	for j = 0,1,•••,n-1 , 

Dt i  

is a continuous function in the supremum norm on [0,1]x[0,1] of 

the coefficients (a 0 ,... ,an_ i )ER . 

Proof:  Part (a) follows from Wahba (1974). Part (b) is a conse-

quence of the proof of theorem 3.4.2 of Naimark (1967). Finally, 

in the case of constant coefficients the form of G as a function 

of a o ,•••,am_ i  can be used to show (c). 

In the next lemma denote by L 2  the space of complex valued 

+co 
Lebesgue measurable functions g on (-co,+co) such that f ig(s)I 2ds < 

00 

For z E (C write 



99 

n 
p(z) = z

n 
+ an-1zn-1  + 	+ a0  = ll (z-z j ) 

j=1 

where p(z i ) = 0. For E positive and real let 

n 

p 6 (z) 	(z-(z.--E"  • j=1 
(4.6) 

Assume that Re(z.) 	0 for j = 1,•••,n. 

Lemma 4.2.2. Suppose that for each positive real E there is a 

function u6EL2 whose Fourier-Plancherel transform 14)(u ) satisfies 

uE)(-A) =  q(jA) 
 

P(iA) , A real , 

and there is a function uEL such that Ip(u)(-A) - q (iA) 	Then 
2 p(iA) • 

u E 	u in L2 as 6 	0. 

Proof: Since 1p is an isometry of L 2  onto L2 (see Rudin (1973)) it 

( qiA) 	 q(iA) i suffices to prove that P 
	

converges to 	 in L2  . Note that 
6 (iA) 	 P(iX) 

q(iA) 	q(iA)  = q(iA)  ( 1 	p(iA)  
p(iA) 	p 6 (iA) 	p(iA) 	p (iA) ) • 

(iA) It is clear from the form of - p 	- that lim p(iX)  = 1 except at p
6 
 (iX) 

6-4-0 
p 6 (iA) 

thosepointsz.of the form iA. . Also writing z = a + ib 
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iA-z 
 is-z+c 

+ 

J(C-a) 
2
+ (A-b)

2  
< 2 

 

 

   

• 

• I 

L 
• 

• 

I I 

I 

for all AE(-00,+.0). It follows that 

1 
p(iA) 

 pc  (iA) 
1 + 2

n (4.7) 

   

   

for all AER. Since 

 

(1 	
P 	X 
P ( 	A)

)
) 

   

q(iA) 
 p(iA) 

 

q (iX) 
p(iA) 

(2n+1) 

    

    

q(iA)  
and ,.„ E L the dominated convergence theorem shows that pkiA) 

	

q (iA) 	,e fix\ 	p(iA) 	in L 
.v 	

2 

The proof of the lemma is complete. ❑ 

Let 

1 
T(0) = f 0(s)u(s)ds 

0 

where uEL 2 [0 ' 1] and define for AER 

1 
= f elAsu(s)ds . 

0 

That q) is well defined follows from the usual theory of Fourier 

transforms for L1 functions since uEL1 [0 ' 1]. 

ti 
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Theorem 4.2.2. If there exists an integer n 	1, real constants 

a 0' ••• ' an-1 'bOu'...,bn-lu and points tuE[0,1], u = 1,•••,r, 

such that 

r n-1 
y [12.vu 

 (ix) ]e
iAt u 

u=1 v=0 = (H A) , n 	
(IA) 	+...+a

n-1  
(iA)+a

n-1 	 0 

	

where z
n
+a

n-1
zn-1+•••+a 0  = 0 implies Re(z) 	0, then the best 

A 

unbiased estimator T(0) of T(0) satisfies 

r n-1 	(v) 
T A(0) =1 	IbY(t) 

u=1 v=0 vu 	
u  

where Y is the solution to 

(D
n
+an-1D

n-1+..-+a 0  I)Y = 0 + 

(j) 
on [0,1] subject to 1(0) = 0, j = 

Proof: First suppose that the zeros of 

p(z) 	zn+a
n-1

z n-1+...+a 0 

all have negative real parts. That is, p(z) = 0 implies Re(z)< 0. 

Denote by G(t,$) the Green's function of the differential 

operator 
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L = Dn+an-1D
n-1+-..+a 0  I . 

(j) 
That is, G(t,$) = h(t-s) where h(u) = 0 for u < 0, h(0) = 6 j,n-1 ' 

j = 0,•••,n-1 and Lh = 0 on [0,1]. Since the zeros of p(.) have 

negative real parts h is in L 1 (-00,+00) n L2  (-00,+0D) and the Fourier 

transform 1ph of h satisfies 

co 

H(A) = Al(A) = f eh( )du = [P(iA)]
-1 

 

If t
1' t2' ..-,t t 

 are points in [0,1] and c are arbitrary scalars 

-00  

r 	 r co 
f e"u 	c.h(u-t.)du = 	c.e 

iAt. 	
H(A) 

j=1 3 	 j=1 J  

It is also easily verified that 

CO 

f eiu (v) (t.-u)du = (iA) vH(A)e 
iAt

I 
 

-co 

for v = 1,2,•••,n-1, where 

dv 	 (v) 	 (v) v 

ds
v h(s)/t._11  = h (t.-u) = G (t.,u) - 	 

at
v G(t,u 

t=t. 

One has therefore 

r n-1 	(v) 
tp[ X 	X 	G (t ,t)](-A) = 	. 
u=1 v=0 vu 	u  

(4.8) 
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If u(t) = u(t)X(t) 	then uELi  ( - c°,4-co) n L 2  (-00,+.0) and one has from 
[0,1] 

(4.8) that 

r n-1 	(v) 
y 	X b G (t ,t)1(-A) = tpu(-X) . 

u=1 v=0 vu 	u 

Therefore, in the L2  sense, 

r n-1 	(v) 
17i(t) = 	X 	b G (t,t) u=1 v=0  vu 	u  (4.9) 

on (-00,+00). In particular this equality holds on [0,1]. 

Define the function g on [0,1] by 

	

2 1 	r n-1 	(v) 
g(t) = u f G(t,$) X 	X b G (t,$)ds . 

	

0 	u=1 v=0 vu 	u 

By lemma 4.2.1 (a) and (b) gEH(K). Also by (4,9) we have 

1 
g(t) = f G(t,$)c 2u(s)ds . 

0 

Therefore g€McH(K) where M is the closed subspace of possible 

(j) 
mean functions of the Y process with Y (0) = 0, j = 0,•••,n-1 

defined by 

M = {m(6 ) : 0E 1, 2 [ 0, 1 ] 1 . 

From Parzen's theory, if 



III 	then the linear operations which yield g in terms of the kernel 

T (e) E 	(g,m(o)) k  
0 	
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K are the same ones which when applied to the process Y yield the 

umvlue of T(e). Since 

	

i 	

, 	1 , 

	

(g,m(0)' 	= — 	a u(s)0(s)ds = T(0) 
k 	

a
2 

0 

we conclude by lemma 4.2.1 that the umvlue (by normality the umvue) 

of T(0) is 

	

A 	r n-1 	(v) 
T(5) .y 	yby(t ) . vu u u.1 v.10 

In order to complete the proof of the theorem we must demand 

only Re(z) 	0 for z satisfying p(z) = 0. 

From the proof above one may glean the fact that it suffices to 

prove that (in L2 [0,1]) 

r n-1 	(v) 
u(t) =y 	ZbG(t ,t) 

u=1 v=0 vu u 
(4.10) 

holds where G(t,$) = h(t-s), but now h is not in L 1 (-0,, ,-1-00). Let 

> 0 be arbitrary and define G E (t,$) to be the Green's function 

of the differential oprator p E (D) where p E (z) is defined in (4.6). 

r n-_ 	iAt 
 Setting q(iX) = 	y (iA) ve 	we observe that 

u=1 v=) 
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q(iA) _ q(iA) 	p(iA)  
P c  (iA) 	p(iA) p ( ix) so by (4.7) ,cl n E L2  for all E > 0. Since 

q) is an isometric isomorphism of L 2  onto itself there exists u E EL 2 

 such that 

(U E 	pci 
q(iA) 	. 

Also, since the polynomial p c  satisfies p c (z) = 0 => Re(z) < 0 

the preceding analysis yields 

n-1 	(v) 
X b vu  G E  (t U

,v) = u (t) 

in L 2 where GE  is the Green's function of the differential operator 

(v) 	 (v) 
p(D). By lemma 4.2.1 (c) we have G (t,$) converging to G(t,$) 

on [0,1]x[0,1] where G is the Green's function of p(D). The proof 

is completed by observing that lemma 4.2.2 shows that u c  converges 

in L2 to U. We conclude that (4.10) holds and therefore the theorem. 

1 
Example 4.2.1. Suppose we wish to estimate f 0(t)dt. We are able 

0 
1 

to observe {0(t) + aW':t): tE[0,1]). Since T(0) = f 1.0(t)dt we 
0 

see that 

iA 

v= 0 

iA 
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It follows from theorem 4.2.2 that if we observe the output 

{Y(t): tE[0,1]} of the instrument whose differential operator is 

L = D then the minimum variance unbiased estimator of T(0) is 

T i(0) = Y(1) - Y(0) = Y(1). 

Example 4.2.2. Suppose the same conditions as in example 4.2.1 

1 
except we wish to estimate T(0) = f sin(wt)0(t)dt. Computations 

0 

show that 

(A) 
[-w cos w + is sin w]e

iA 
+ w 

(1) 	 2 (D) + w
2 

Therefore if {Y(t): tE[0,1]1 is the output of the instrument whose 

(1) 
dynamic response is given by L = D

2 
+ w

2
I, Y(0) = Y (0) = 0, when 

the input is f0(t) + aW(t): tE [0,11 } then the umvlue of T (0) is 

A 
T(0) = -w cos w Y(1) + sin w Y'(1) + wY(0) 

= -w cos w Y(1) + sin w Y'(1) . 

For the sake of simplicity we have assumed that the initial 

conditions on the solution Y to (Dn+an-1D
n-1+..-+a

0  I)Y = F + eW' 

(j) 	 2 	(j) 
satisfy p

j 	
uj  = E[Y (0)] : 0, 	= Var[Y (0)] = 0, j = 0,•••,n-1. 

The results stated above continue to hold true for arbitrary p.
3
's 

2 andcr.2  'swherievercy...--pirripliesp.--13 and the initial values 

are mutually uncorrelated and uncorrelated with W. The case of 

intercorrelations can also be treated. (See section 4.4 below). 



4.3. Modulation of the forcing function. In the preceding section 

we studied the efficacious selection of the coefficients in the 

linear differential operator describing the dynamic response of 

the measuring instrument. In this section we consider the proper 

selection of the forcing term F(x,0,t). Our objective is limited 

to the proper modification of the mean forcing term. We do not 

consider filtering or other modification of the input F(x,0,t) + 

axW'(t). We shall deal with this problem elsewhere. 

A general description of the experimental situation and data 

follows. 

a) The experimenter observes (or has available) the stochastic 

processes - TheprocessY(x.,t ) 

solves 

L[Y(x i )] = F(x i3 O) +WI xi  

(j) 
subject to Y (xi3 O) = 0, j = 0,•••,n-1, where 

L = D
n + an-1D

n-1 + 	+ a I 0 

is an element of L. 

b) The unknown parameter 0 is a member of the real linear space 

0 and for each x in t.e set of feasible experiments X the mappings 

Fx  from 0 to L 2 [0,1] defined by F x (0)(t) = F(x,0,t) are linear 

and of known form. 

c) The real number T(6), where T is a linear functional on 0 is 

to be estimated. 
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Before presenting our results for the general problem we 

offer the following two examples. They illustrate some cases in 

which the optimal design problem of estimating a linear functional 

in 0 may be solved using procedures which have already been studied 

to some extent in the existing literature. A feature which they 

share is that the parameter space 8 is Rk for some k. 

Example 4.3.1. Suppose there is a function n in L 2 [0,1], 0 = Rk , 

and there are function f j  mapping X into R, j = 1,•••,k, such that 

k 
F(x,e,t) = [

j 
 y 0.f.(x)]n(t) . 
=1 	3  

Any linear functional T on 0 has values given by T(0) = c'e for 

some fixed vector cER
k
. Writing c'e rather than T(0) one has 

	

2 	1  [c i f) 
d(c,) = sup olm(E)] 0 1 0  6 U 	 I n'(t)dt 

0 

where U = {0: 0 1 MME > 0} and 

M (E) = y(x)f (x)f (x) . 

Therefore the problem has been reduced to a regression design 

problem for scalar observations. There is a large literature 

dealing with the solu -:ions to such problems. See, for example, 

Fedorov (1972), Karlin and Studden (1966) or Kiefer (1974). Note 
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A that if 0 i s the Gauss-Markov estimator of 8 based on the solution 

process Y (see Wahba (1979) and section 2.6 above) then defining 
A 	 A 

F(x,t) = F(x,8,t) one has 

A 	 2 	A 
E
e
11F(x,t)-F(x,8,t)11

L2 
=E

e
l Im(x)-m(x,0)

2 
, 

where m(x,8) is the mean function of the solution process Y and A 
is given by 

k 	 1 
A 	 A 
M(Xft) = 	8.f i (x)]f G(t,$)n(s)ds . 

	

i=1 1 	0 

Therefore the minimax design problem studied in section 2.6 may 

be solved in this special case by using the techniques appropriate 

for scalar deservations. We see also that there is an additional 

interpretation of the D-optimal design. It is also the minimax 

design for the unbiased estimation of the forcing function F(x,e) 

as an element of L 2 [0,1]. 

Example 4.3.2.  As in -Example 4.3.1 assume 0 = R
k
. Suppose that 

for each i = 1,•••,k g is a function defined on X with values in ,  

L2 [0,1] and 

k 

	

F(x,(,t) = 	X 0.g.(x,t) . 
i=1 

In this case the mean cf the process {Y(x,t): tE[0,1]1 is given 

by 



k 
m(1,0,t) = 	e.f.(x,t) , 

i=1 

110 

where 

1 
f.(x,t) = f G(t,$)g.(x,$)ds . 

0 

Design problems of this sort were treated in section 2. Wahba 

(1979) has further studied these problems when X is contained in 

H(K) and f i are bounded commuting self-adjoint operators. Note 

that as in Example 4.3.1 the D-optimal design has the additional 

interpretation of being the minimax design for the forcing func-

tion F(x,e) as an element of L 2 [0,1]. 

For each finite subset S of X define the linear mapping F s 

 from 0 into L2 [0,1] by [F s (e)(t)l i  = F(x i ,e,t) where S ={xi ,•••,xm} 

and [v] is the ith component of the m-vector v. Write Fx when 

s = 

Lemma 4.3.1. a) For every xEX for which F x  is bounded, mx  is a 

-2 * bounded linear transformation from 0 to H(Kx ) and mx = ax  F x 0L. 

b) If for every finite subset S c X the mappings F s  have closed 

range, then for every F E.., R(m) is closed in H . 

Proof: From lemma 4.1.1 we have 

Ilmx (e)11
2 
 = 	f 1  F(x,e,t)dt 	IlFx11 2110112 , 

a 	0 	 G x 	 x 
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proving the first part of (a). Let vEll(K x ). Then by definition 

m
x
(v)(0) = (v,m

x
(0))

K
. Therefore 

1 
m* (v)(0) = 2 
	 2 —

1 f L(v)(t)Fx (0)(t)dt= 	(Lv,Fx
0)

L2 	
(4.11) 

ax 0 	 ax 

where LEL is the differential operator associated with the process. 

F
x
0L(v) 

From (4.11) we have :hat m v
(v) corresponds to 

a 2 

To prove the second part, suppose {0 n }c 0 and m C (0
n
) converges 

to z in H . Then 

2
1 

Ilm(o n ) - zil 	= X 	( 2 )  J (F(x,O n ,t)-Lzx (t))
2
dt , 

	

S ax 	0 

where S = S(C) (the support of E'), converging to zero shows that 

for each xEX, F(x,O n ) converges in measure (Lebesgue) to Lz x (t). 

One can extract a subsequence {0 1'1 } such that 

■ a.e. 
Fx  (0') 	Lz

x  n (4.12) 

for all x in S. Since the range of F s  is closed one must have a 

0 0 such that 

FS n  (0') 	FS  (0 0  ) • (4.13) 

From (4.12) and (4.13) we have the existence of a point
0 ce such 

that 



F(x
' 
 0 0 ,t) = Lz x (t) 

for all xES. From (4.14) one has 

1 
zx (t) = f G(t,$)F(x,0 0 ,$)ds 

0 

or equivalently z = m (0 0 ). This concludes the proof of the 

lemma. ❑ 

We are now prepared to specialize the theorems of section 

3.3 to the case of interest in this section, the case of processes 

which arise as solutions to certain white noise random differen-

tial equations. We choose to present only the specialization of 

Theorem 3.3.2, the specialization of 3.3.1 can be obtained simi-

larly. We make the following assumptions. 

(Cl) The parameter space 0 is L2 [0,1]. 

(C2) There is a constant k > 0 such that 

sup f1 
F2(x,

2 	c) 
 0,,_, 
dt > kllell

2 
for all 0EL 2

. 
X 	0

x 

(C3) The mappings F s : 0 	L2  defined above are bounded linear 

transformations and all have closed range. 

1 
Let T(0)=f u(s)0(s)ds be a fixed linear functional on 0 and define 

0 

A = {0: T(0) = 1} . 



x 

Furthermore, if an optimal design exists then there exists 

a 6 0  EA satisfying i), ii), and iii). 

1 F 2
(x,d 0 ,t) 	-1 

for the estimation of T(0) with d(T, o ) = sup f 	 2 	
dt 

X 	0 	a
) 	. 
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Theorem 4.3.1.  Under the assumptions (C) if 6 0 EA satisfies 

1 2 1 F 2  (x, (5 ,t) 

	

_ 	. 
i) inf sup f F (T,t)  dt - sup f 	dt , 

A 	X 	0 	0x 	
X 	0 	a

2
0 

 
x 

6 1 F
2
(x,6

o 	
,t) 	 1 F 2

(x,
0

t) 
'  

i ) S ( 0
) c ( x: f 	 dt - sup f dt) 

0 	G
x
2  
	

X 	0 	ax 

1 F
*
F 

and iii) J 

	

	
X

2
X 
 6 0 0  (x) 

is proportional to u then 0  is optimal 0 
x 

Proof:  The proof can be accomplished, in light of theorem 3.3.2, 

lemma 4.3.1 above, and our assumptions by verifying 

* 
F F 
x x 
Q 2 
x 

The reason for this is that (C1) shows that (B1) is satisfied. 

Lemma 4.3.1 above and (C3) show that (B2) is satisfied. Theorem 

3.4.1, (C2) and lemma 4.3.1 show that (B3) is satisfied. Finally, 

(B4) follows from (C2 above. 

For the verification of (4.15) observe that m* (v) =-1 F
*
0L(v) 

Q2 x 
x 

from lemma 4.3.1 above. Since Lm x (0) = Fx (0) one has m
*
m 
x
(8) = 

1 	* 
2 FxFx (0) concluding the proof. 

IT 
X  M  X 

 - (4.15) 
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Example 4.3.3.  Suppose ax  E a , F(x,6,t) = x(t)0(t), 0 = L 2 [0,1], 

and X = {fEL.[0,1]: 	 c}. Assume that we wish to estimate 

1 
T(6) = f u(s)6(s)ds where uEL 2 [0,1] is some arbitrary function. 

0 

We show that the design C is optimal if and only if it places all 

mass on the functions xEX satisfying lx(t)I = c a.e. and d(T,C) = 

2 	2 
° 	ITI  

2 
. We bgin py verifying the assumptions (C). The first 

is immediate. For (C2) observe 

	

sup f
1 
 x-(t)6

2
(t)dt 	c2f

1 
 6
2 
(t)dt . 

X 	0 

Verification that Fx is bounded results from 

l 

	

11Fx(0)11 22  = fx2 0 2 	C 2 11611 2 . 

0 

(4.16) 

(4.17) 

Finally, let S = {x 1 ,—,xm }c X, {An } c L 2 [0,1] and Fs (O n ) converge 

to z in L2[0,1]. Tha: is 

1 
max f (xi (t)On (t) - z i (t))

2
dt 	0 

0 

as n ± 00. Extract a subsequence {on} for which x i 6 1,11  co verges 

a.e. to z. for all values of i = 1,—,m. On the set w ere x. 1 	 1 

z i  
is nonzero 6' converges a.e. to 	. On the set where all x i are 

zero let e be arbitrary. Off of this set one obtains 0 
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z i (t) 
0 0 (t) - xi(t) 	

a.e. 

if x i 	0. Therefore F s (O n ) > Fs (0 0 ) in LT[0,1] showing that (C3) 

is satisfied. 

From (4.16) we observe that 

, 

	

inf sup 
1 	

x,0,t)dt > inf c
2 j1 

 0
2 
(t)dt . 

A 	X 	0 	 A 	0 

By Schwarz's inequality, if 0€A 

1 
1 = (f eu) 2  < fe 2 fu 2 

0 

(4.18) 

(4.19) 

with equality if and only if 6 = ku. Combining (4.18) and (4.19) 

shows that 

r
1 
 2 	 2( 1  2) -1  

inf supjF(x,0,t)dt 	fu 
A 	X 	0 	 0 

• (4.20) 

Taking 

..4 

u(t)  
(S (t) = 	2 — 	 1111112 

(4.21) 

one has 

j 1 
2 	 211 	II-2 sup 	F (x,6,t)dt 	c 11 u 1 I 2 	. 

X 	0 
(4.22) 
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Combining (4.22) and (4.20) shows that we may take 6 0 (t) to be the 

& of (4.21). We note that if lx(t)1 = c a.e. fails then 

 
f F

2
(x,6 0'  t)dt = f1 x2 d o

2  < cilull 2-2  

0 	 0 

We must now find a measure 0  on X which satisfies iii). In 

the case which we ar.Y considering, F x (6) = x0, one can verify that 

xv 	 x215 

2
0  Fxv = 	so, in particular, FxFx 6 0  - 	 . Therefore we seek 

0 	 0  

those measures CEE which satisfy 

C(x) x2  (t)
u(t)  

2 a u(t) a.e. 

Clearly any measure C satisfying S(C) c{  ix(t)i = c a.e.} satisfies 

this requirement. 

Example 4.3.4. Make the same assumptions as in example 4.3.3 

except that 

X = {-- 
1 
 , sin(27t),•••,sin(2K 1 7t)} 

[2-  

1 
and T(6) = f 0(s)sin(21 2 7s)ds, where K2  > K1  are positive integers. 

0 

02 	!lull 

We shall verify that the unique optimal design C o  for this problem 

places all mass at the constant function x(t) = 2 -1/2 EX. 
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Again, we begin by verifying the assumptions (C) and again 

1 
2 	111,,,2 (C1) is immediate. Since —1 	 j E X sup 	x 0 2 	filull 2  verifying 

X 	0 

(C2). Certainly 11Fx (8)11 2 	
11011 2  and the portion of the proof 

that F has closed range given in example 4.3.3 applies without 

alteration to exampl2 4.3.4. 

Let 

SW, = 2 sin(2K 2 fft) . 	 (4.23) 

Since for any integer m # 0 

1 
j si 2 	7 	1 n (2mt)dt = -2- 
0 

(4.24) 

the function cS is in 	= {0: T(0) = 1}. Denote the elements of 

X by {x 0 ,-..,xK } where x 0 (t) = 2 -1/2  and x j (t) = sin(2j7t) f  i  

j = 1,-..,K 1  . Since for any integers n and m, n 	m, 

1 
f sin 2 (2rfft)sin 2 

 (2m7t)dt = T  
1 

0 
(4.25) 

one has 

1 
f 6 2 (t)x2(t)dt = 1, j = 0,1,••.,K 	. 
0 	

1 

Since 2-1/2  E X, 
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1 1 	
1 

i 	 0 2x2  j nf.  -f  f e 2 	inf sup 	0 x . 
A 	0 	A 	X 	0 

r 1  2 
Using (4.19) and (4.24) shows that 1 = inf 

1
-/ 0 2 . Now (4.25) 

A 	0 

shows that we may take S o  to be the ó defined in (4.23) and yields 

no information about the possible supports of optimal designs. We 

seek a design which satisfies 

	

[ K
1 	0 (x. )   2 

	

j=0 	02 	
xi 

 
] 2 sin(2K2 Trt) cc sin(2Kifft) 	a.e. , 

and consequently must have 

2 y 	(x.)x.(t) . 1 a.e. 
3 	J j=0 

The unique measure 	which does this places all mass at 

x0  (t) = 2 -1/2 . 

4.4. Generalizations. For the most part we have assumed above 

that the solution to 

LY = F(x,0) + axW' 

was on [0,11, a fixed subinterval independent of x, and the initial 

(j) 
conditions were Y (0) = 0, j = 0,•••,n-1. This was done for the 
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sake of simplicity. In the general case one may allow variable 

intervals and initial conditions. For example, we may suppose 

(j) 
that Yx solves L x Yx  = F(x,6) + axW' on [O,b(x)] where E[Yx (0)] =T 

2 
j = 0,...,n(x)-1, and Var[Yx (0)] = o i (x). In this case we view 

= OxR , 0 = (6,11 0 ,1_ 1 ,—.), as the parameter space and for esti-

mators of T(0) we have 

 

	

2 	n(x)-1 p.2  1 rb (x) 
d(T,C) =sup LE (6)] /C(x) 	 23 	 + --- J 	F

2 (x, e,t)cat 
edi xi=o 0. ( ) 	ax 0 

3 

	

= sup [T 
 (o) ] 
	(2) 

fb
(x) 

F
2 
(x,8,t)dt 

0€1.3 	 ax 	0 

(4.26) 

(4.27) 

  

as above. However, we may also investigate functionals of the 

form T(6) = cip + T(0) where cER
k 
for some finite number k. In 

this case (4.26) does not simplify to (4.27). 

Another model results if it is assumed that some or all of 

the p.'s are under the control of the experimenter. In order to 

preserve the linearity assumption made throughout the paper we 

may subtract these terms from the observable process. For example, 

if p 0 (x) is assumed to be under the control of the experimenter 

and n(x) E n > 2 one has 

n-1 	 1 
y p.z.(t) + f G(t,$)F(x,6,$)ds + N(t). 

j=1 3 	 0 
Y(x,t) = p o (x)z o (t) 
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Setting Y(x,t) = Y(x,t) 	p0  (x)z 0 
 (t), the process Y is observable 

and the mean function is a linear mapping from OxR
n-1 into H(Kx ) 

if F(x,•) is linear. 

From the relationship between (4.26) and (4.27) it can be 

seen that all results given in sections 4.1 through 4.3 hold 

regardless of the random initial conditions, as long as the vari-

ances of the initial conditions are positive. 

(j) 
If the variance of an initial condition, say Y (0) is zero 

and the mean is unknown, the mean of the solution process Yx  is 

not in the reproducing kernel Hilbert space H(Kx ). However, 

(j) 
taking Yx (0) for one observation yields p, which can then be sub- 

tracted to form Yx satisfying the assumptions of this section. 
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