
HYBRID AND OPTICAL SWITCHING SCHEDULING ALGORITHMS IN DATA
CENTER NETWORKS

A Dissertation
Presented to

The Academic Faculty

By

Liang Liu

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology

May 2020

Copyright c© Liang Liu 2020

HYBRID AND OPTICAL SWITCHING SCHEDULING ALGORITHMS IN DATA
CENTER NETWORKS

Approved by:

Dr. Jun (Jim) Xu, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Mostafa Ammar
School of Computer Science
Georgia Institute of Technology

Dr. Ellen W. Zegura
School of Computer Science
Georgia Institute of Technology

Dr. Lance Fortnow
School of Computer Science
Illinois Institute of Technology

Dr. Mohit Singh
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Date Approved: March 27, 2020

The best preparation for tomorrow is doing your best today

H. Jackson Brown, Jr.

ACKNOWLEDGEMENTS

I would like to convey my deepest gratitude to my advisor Jun (Jim) Xu, for giving me

the opportunity to be a member in his group and continuous supports on my research. His

strong passion on research and broad and deep knowledge inspired, guided, and helped me

overcome many difficulties. He is also very considerate and helped me get through many

tough times.

I would like to express my sincere gratitude to my other thesis committee members, Dr.

Mostafa Ammar, Dr. Ellen W. Zegura, Dr. Lance Fortnow, and Dr. Mohit Singh for being

great teachers and mentors, and for their interests in my graduate work and their valuable

and insightful comments.

My thanks also goes to the lab members, Sen Yang, Long Gong, Yimeng Zhao, Tarun

Mangla, Jingfan Meng, Huayi Wang, and others. Thank you for the help, insights, and dis-

cussions. I am also indebted to my friends, Qiang Hu, Shan Chen, Bobin Deng, Tongzhou

Sun, Zidong Zhou, and others. Thank you for creating an unforgettable memory for me in

the past few years.

I owe my utmost gratitude to my family, especially my parents, Guang Liu and Lihua

Zhang. Their endless love, support, and encourage are always the source of my strength

and motivation. This dissertation is dedicated to them.

This work is supported in part by US NSF through award CNS-1909048.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . x

List of Figures . xi

Chapter 1: Introduction . 1

1.1 Motivation and Background . 1

1.2 Research Objective and Main Contributions 3

1.2.1 Scheduling algorithms for single optical switch 3

1.2.2 Scheduling problem in parallel-optical-switched networks 5

Chapter 2: Literature Survey . 7

2.1 Hybrid Switching Algorithms . 7

2.2 Optical Switch Scheduling Algorithms . 8

2.3 Other optical datacenter networks . 9

2.4 Flow scheduling algorithms in DCN . 11

Chapter 3: 2-hop Eclipse: adapt indirect routing in hybrid switch scheduling . . 12

3.1 System Model and Problem Statement . 12

3.2 Background on Eclipse and Eclipse++ . 13

v

3.3 Overview . 15

3.4 2-hop Eclipse . 16

3.4.1 The Pseudocode . 17

3.4.2 The Matrix Irem . 17

3.4.3 Update Drem and R . 19

3.4.4 Complexities of 2-hop Eclipse . 21

3.5 Evaluation . 21

3.5.1 Performances under Different System Parameters 23

3.5.2 Performances under Different Traffic Demands 24

3.5.3 Compare 2-hop Eclipse with Eclipse++ 27

Chapter 4: Quantized Birkhoff-von Neumann Decomposition (QBvND) 28

4.1 System Model and Problem Formulation 28

4.1.1 The Optical Switching Problem 28

4.1.2 The Hybrid Switching Problem . 29

4.2 Background on Birkhoff-von Neumann Decomposition 30

4.2.1 Preliminaries . 30

4.2.2 The Stuffed BvND Algorithm . 31

4.3 Quantize BvND . 32

4.3.1 Pseudocode of QBvND . 32

4.3.2 A Modified Max-Min BvND Algorithm 35

4.3.3 Theoretical Analysis and Quantization Unit Selection 36

4.4 Closely Related Works . 37

vi

4.4.1 Precomputed Packet Switching Algorithms 37

4.4.2 Optical Switching Algorithms . 39

4.4.3 Computational Complexity Comparisons 40

4.5 Evaluation . 41

4.5.1 Traffic Demand Matrix D . 41

4.5.2 System Parameters . 42

4.5.3 QBvND vs. Others for Optical Switching 43

4.5.4 An “Anatomic” Comparison of Transmission Time 44

4.5.5 QBvND vs. Solstice and Eclipse for Hybrid Switching 45

4.5.6 Execution Time Comparison . 46

Chapter 5: Best-First-Fit (BFF): Towards Partially Reconfigurable hybrid switch-
ing for data centers . 48

5.1 System Model and Problem Formulation 48

5.2 Partial Reconfigurability . 48

5.3 Open Shop Scheduling Problem . 49

5.4 LIST: A Family of Heuristics . 50

5.5 Best-First-Fit (BFF) . 51

5.6 Evaluation . 54

5.6.1 System Parameters . 56

5.6.2 Performances under Different System Parameters 56

5.6.3 Performances under Different Traffic Demands 57

5.6.4 Execution time comparison of Eclipse and BFF 61

vii

Chapter 6: Summary of the three algorithms . 62

6.1 Applicable condition, computational complexity, and theoretical guarantee . 62

6.2 Transmission Time Performance Comparison 64

6.2.1 Using constructed traffic demand matrices 64

6.2.2 Using recovered traffic demand matrices from real traces 67

6.3 From batch scheduling algorithm to batch scheduling process 73

6.3.1 Batch Scheduling Process . 73

6.3.2 Optical Switch Schedule Scaling 74

6.3.3 Evaluation Results . 76

Chapter 7: Line-Even Sparse Split (LESS): Traffic demand split in parallel-
optical-switched networks . 79

7.1 MSB Problem and LESS Solution . 79

7.1.1 Matrix Split and Balance (MSB) 79

7.1.2 Line-Even Sparse Split (LESS) . 80

7.1.3 LP-based 2-way LESS . 83

7.1.4 Combinatorial 2-way LESS . 85

7.2 Evaluation . 90

7.2.1 Simulation Parameters and Setup 90

7.2.2 Under Different System Parameters 92

7.2.3 Under Different Traffic Demands 93

7.2.4 Sparsity Evenness of LESS . 96

7.2.5 Execution Times of LESS . 96

viii

Chapter 8: Conclusion . 99

Appendix A: Proof of NP-completeness . 101

A.1 Proof of Lemma 2 . 104

References . 112

Vita . 113

ix

LIST OF TABLES

3.1 Comparison of time complexities . 15

4.1 Complexities of various algorithms . 40

4.2 Transmission time comparison of optical switching algorithms 45

4.3 Comparison of average execution time . 47

5.1 Comparison of time complexities . 54

5.2 Comparison of average execution time for Eclipse and BFF 61

6.1 Applicable condition, computational complexity, and theoretical guarantee
comparisons of 2-hop Eclipse, QBvND, and BFF 63

7.1 Variations among {‖D1‖0, ‖D2‖0, ..., ‖Ds‖0} 96

7.2 Execution Time Comparison . 97

x

LIST OF FIGURES

1.1 Hybrid Optical and Packet Switch . 2

3.1 Performance comparison under different system settings (varying δ) 23

3.2 Performance comparison under different system settings (varying rc/rp) . . 24

3.3 Performance comparison while varying sparsity of demand matrix 25

3.4 Performance comparison while varying skewness of demand matrix 26

3.5 Performance comparison of Eclipse, 2-hop Eclipse and Eclipse++ 27

4.1 Comparison while varying the reconfiguration delay (optical) 43

4.2 Comparison under various demand matrices (optical) 44

4.3 Comparison under different system settings (hybrid) 46

4.4 Comparison under various demand matrices (hybrid) 46

5.1 Performance comparison under different system settings (varying δ) 57

5.2 Performance comparison under different system settings (varying rc/rp) . . 58

5.3 Performance comparison while varying sparsity of demand matrix 59

5.4 Performance comparison while varying skewness of demand matrix 60

6.1 Performance comparison while varying sparsity of demand matrix 65

6.2 Performance comparison while varying skewness of demand matrix 66

xi

6.3 Traffic Generation Model . 69

6.4 Transmission time performances under generated traffic matrices 71

6.5 Maximum row/column sums of the generated traffic matrices 72

6.6 An example of the schedule of an input port (transmitter) 76

6.7 Effect of the scaling factor on the total amount of data transmission 77

7.1 Example of cycle cancellation . 88

7.2 Alternating cycle mapping . 89

7.3 LESS+BFF vs. Naive+BFF while varying δ 92

7.4 LESS+BFF vs. Naive+BFF while varying sparsity of D 94

7.5 LESS+BFF vs. Naive+BFF while varying skewness of D 95

A.1 A valid constructed schedule of length 4M + 2 102

A.2 The only valid schedule structure of length 4M + 2 104

A.3 Possible processing time intervals of the job 104

A.4 The sliding and concatenation process of a job (Top: before sliding, Bot-
tom: after sliding) . 105

xii

SUMMARY

Hybrid-switched data center networks have received considerable research attention

recently. A hybrid-switched data center network employs a much faster optical switch that

is reconfigurable with a nontrivial cost, and a much slower packet switch, to interconnect its

racks of servers. A fundamental research (optimization) problem in such a hybrid-switched

data center network is, how to properly schedule the optical switch to both fully utilize its

high bandwidth and minimize its reconfiguration cost. However, this optimization problem,

in various forms, has been proved to be NP-hard. Almost all existing solutions are mostly

greedy heuristics that either achieve poor throughput performance, or require an extremely

high computational complexity.

The objective of this dissertation research is to design high-performance low-complexity

scheduling algorithms for optical switches in hybrid-switched data center networks to boost

the throughput performance.

We proposed three different scheduling algorithms that exploit different methodologies

towards our objective. The first work, 2-hop Eclipse [1], extends the state-of-the-art solu-

tion Eclipse [2] from a direct routing scheduling algorithm to an algorithm that supports

both direct routing and 2-hop indirect routing. The second work, Quantized Birkhoff-

von Neummann Decomposition (QBvND) [3], builds upon a classic framework for packet

switch scheduling. Although adapting this framework to optical switch scheduling straight-

forwardly incurs high reconfiguration cost, we manage to overcome this problem by com-

bining the framework with the quantization technique. The third work, Best First Fit

(BFF), is the first hybrid switching solution that exploits partial reconfigurability of optical

switches, which leads to a new form of the optimization problem. This new optimization

problem can be viewed as a special case of the well-known Open Shop Scheduling (OSS)

problem. BFF, adapted from an existing OSS solution, not only significantly outperforms,

but also has much lower computational complexity than the state-of-the-art solutions.

xiii

Another closely related research problem about the optical and hybrid switching schedul-

ing that we investigated is, when the racks of servers are connected by multiple independent

(i.e., parallel) optical switches, how to split the traffic demand matrix into sub-workload

matrices and give them to the parallel optical switches as their respective workloads. This

problem induces a general mathematical problem: How to split a nonnegative matrix D

into s nonnegative matrices D1, D2, ..., Ds such that (1) each of them accounts for 1/s the

row sum and the column sum of D, and (2) the total number of nonzero entries in these s

matrices is minimized. Here the first condition aims for workload load-balancing, and the

second condition aims for minimizing the overall reconfiguration cost. We develop a com-

binatorial solution for this matrix split problem that achieves both perfect load-balancing

(i.e., satisfies the first condition) and near-optimal (minimum) reconfiguration costs. Our

evaluation results show that, using this matrix split algorithm, the parallel optical switches

deliver balanced and ideal throughput performance under various system parameter settings

and various traffic demands.

xiv

CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

Fueled by the phenomenal growth of cloud computing, data center networks (DCN) con-

tinue to grow relentlessly both in size, as measured by the number of racks of servers a

DCN has to interconnect, and in speed, as measured by the amount of traffic a DCN has to

transport per unit of time to/from each rack [4]. A traditional data center network (DCN)

architecture typically consists of a three-level multi-rooted tree of switches that start, at the

lowest level, with the Top-of-Rack (ToR) switches, that each connects a rack of servers to

the network [5]. However, such an architecture has become increasingly unable to scale

with the explosive growth in both the size and the speed of the DCN, as we can no longer

increase the transporting and switching capabilities of the underlying commodity packet

switches without increasing their costs significantly. A cost-effective approach to this scal-

ability problem, called hybrid DCN architecture, has received considerable research atten-

tion in recent years [6, 7, 8, 9, 2].

In a hybrid data center, shown in Figure 1.1, n racks of computers on the left hand side

(LHS) are connected by both an optical (circuit) switch and a packet switch to n racks on

the right hand side (RHS). Each switch transmits data from input ports (racks on the LHS)

to output ports (racks on the RHS) according to the configuration of the switch (a bipartite

matching) at the moment. The optical switch has higher bandwidth than the packet switch,

typically by an order of magnitude, but incurs a nontrivial reconfiguration delay δ when the

switch configuration (matching) has to change. Depending on the underlying technology

of the circuit switch, δ can range from tens of microseconds to tens of milliseconds [6, 10,

11, 12, 13]. Note that racks on the LHS is an identical copy of those on the RHS; however

1

Hybrid Switch

Circuit
Switch

Packet
Switch

Input ports Output ports

11

n

2 2

n

Figure 1.1: Hybrid Optical and Packet Switch

we restrict the role of the former to only transmitting data and restrict the role of the latter

to only receiving data. This purpose of this duplication (of racks) and role restrictions is

that the resulting hybrid data center topology can be modeled as a bipartite graph.

The following optimization problem is the focus of most of the research works, in-

cluding ours, on hybrid switching: Given a traffic demand matrix D from the input ports

to the output ports, how should we schedule the optical switch to best (i.e., in the short-

est makespan or equivalently with the highest throughput) meet the demand? A typical

schedule for the optical switch consists of a sequence of configurations (matchings) and

their time durations (M1, α1), (M2, α2), · · · , (MK , αK). An ideal schedule should let the

optical switch remove (i.e., transmit) the vast majority of the traffic demand from D by a

small number of configurations (i.e., small reconfiguration cost), so that every row or col-

umn sum of the remaining demand matrix is small enough for the packet switch to handle.

Since the problem of computing the optimal schedule (i.e., in the shortest makespan) for

hybrid switching, in various forms, is NP-hard [14], almost all existing solutions are greedy

heuristics.

2

1.2 Research Objective and Main Contributions

The objective of this dissertation research is to design high-performance low-complexity

scheduling algorithms for hybrid-switched data center networks. Such algorithms should

achieve good throughput/makespan performance and be scalable (i.e., low computational

complexity) when the switch size (i.e., number of input/output ports) increases. Existing

hybrid switching algorithms either provide poor makespan performance (e.g., Solstice [9]),

or require an extremely high computational complexity (e.g., Eclipse [2], Albedo [15]).

The main contribution of this dissertation research is, we proposed three different

scheduling algorithms, 2-hop Eclipse [1], Quantized Birkhoff-von Neumann Decompo-

sition (QBvND) [3], and Best First Fit (BFF) [16], for optical switch scheduling that inves-

tigated different methodologies towards the objective. Another contribution is, we investi-

gated a closely related research problem about the optical and hybrid switching scheduling,

that is, when the racks of servers are connected by multiple independent (i.e., parallel) op-

tical switches, how to properly split the traffic demand into sub-workloads and feed them

to the parallel optical switches as their respective workloads, so that each of the parallel

optical switches can achieve high throughput (or short makespan) performance when inde-

pendently scheduling their respective workloads by our proposed scheduling algorithms.

1.2.1 Scheduling algorithms for single optical switch

In this section, we briefly introduce the three scheduling algorithms. The first work, 2-hop

Eclipse [1], extends the state-of-the-art solution Eclipse [2] from a direct routing scheduling

algorithm to an algorithm that supports both direct routing and 2-hop indirect routing. More

specifically, in each iteration, Eclipse tries to extract and subtract a matching (with its

duration) from the traffic demand matrix that has the largest cost-adjusted utility, which

is defined as the quotient of the amount of the traffic demand the matching can serve and

the duration of the matching. 2-hop Eclipse, on the other hand, also tries to extract and

3

subtract a matching from the traffic demand matrix that has the largest cost-adjusted utility

in each iteration. The difference is, the cost-adjust utility here accounts for not only the

traffic that can be transmitted under direct routing, but also that can be indirectly routed

over all possible 2-hop paths. 2-hop Eclipse harvests a considerate throughput gain from

2-hop indirect routing while its asymptotical computational complexity is the same as that

of Eclipse.

The second work, QBvND [3] builds on a framework in packet switching scheduling

[17], which is to stuff the traffic matrix into a scaled doubly stochastic matrix first and then

decompose the stuffed matrix into a sequence of configurations (permutation matrices)

with durations (weights of the matrices) as the schedule using Birkhoff-von Neumann de-

composition (BvND) [18]. Note that this packet switching method itself however performs

poorly in optical switches, since it would result in a quadratic number of configurations

that leads to a huge reconfiguration and computation cost. We overcome this problem by

quantizing the demand matrix and substitute the standard BvND algorithm with the max-

min BvND algorithm [19], which significantly reduces the total number of configurations

both theoretically and empirically.

The third work, Best First Fit (BFF), is the first hybrid switching algorithm that ex-

ploits partial reconfigurability of optical switches for hybrid data center networks [16].

All existing works on hybrid switching solve this problem based on the following conve-

nient assumption: When the circuit switch changes from one configuration to another, all

input ports have to stop data transmission during the reconfiguration period (of duration

δ), including those input ports that pair with the same output ports during both configu-

rations. This is however an outdated and unnecessarily restrictive assumption because all

electronics or optical technologies underlying the circuit switch can readily support partial

reconfiguration in the following sense: Only the input ports affected by the reconfiguration

need to pay a reconfiguration delay δ, while unaffected input ports can continue to transmit

data during the reconfiguration. For example, in cases where free-space optics is used as

4

the underlying technology (e.g., in [20, 21]), only each input port affected by the reconfig-

uration needs (to rotate its micro-mirror) to redirect its laser beam towards its new output

port and incur reconfiguration delay. By exploiting this partial reconfigurability, BFF not

only significantly outperforms but also has much lower computational complexity than the

state of the art solutions.

1.2.2 Scheduling problem in parallel-optical-switched networks

Another closely related research problem about the optical and hybrid switching scheduling

problem is, when the racks of servers are connected by multiple independent (i.e., paral-

lel) optical switches (say s optical switches), how to split the traffic demand D into sub-

workload matrices D1, D2, ..., Ds and give them to the parallel optical switches as their

respective workloads. This approach makes perfect systems sense, as the scheduling of

each sub-workload matrix can be computed independently of each other (using a different

processor).

We focus on a Matrix Split and Balance (MSB) problem that lies at the heart of this

divide-and-conquer approach: How to split the traffic demand D so that the resulting sub-

workload matrices D1, D2, ..., Ds lead to near-optimal switching performance yet the com-

putation of this split is not NP-hard or otherwise extremely expensive? One intuitive no-

tion of optimality is to minimize the worst-case (i.e., longest) makespan of the s schedules

resulting from D1, D2, ..., Ds respectively. This optimality notion is however computa-

tionally infeasible since even to minimize the makespan of a single schedule is usually

NP-hard [14]. Hence, we instead impose the following two milder conditions on this split

that can work toward this optimality.

The first condition is that the total traffic demand in every row of D, which corresponds

to that originating at an input port, should be evenly split among D1, D2, ..., Ds, and so

should every column of D, which corresponds to that destined for an output port; we call

this condition line-even as each row or column is a straight line through the matrix. The ra-

5

tionale for such a split is that, since every optical switch receives roughly the same amount

of workload to its 2n input and output ports, these s switches hopefully can finish their re-

spective workloads in similar amounts of time (i.e., similar makespans), leading to a short

overall makespan (the maximum among the s makespans).

Although letting D1 = D2 = · · · = Ds = D/s trivially satisfies this condition, this

naive split is far from ideal because every nonzero entry in D is cut into s identical pieces,

each of which incurs a nontrivial reconfiguration delay δ. Hence we impose the second

condition that
∑s

k=1 ‖Dk‖0, the total number of nonzero entries in these s matrices, is to

be minimized, which we call the sparsity condition. Here ‖M‖0 denotes the number of

nonzero entries in a matrix M .

To summarize, our MSB problem is to split D into D1, D2, ..., Ds under the constraint

that every row or column sum of D is evenly split and with the objective of minimizing the

total number of nonzero entries in D1, D2, ..., Ds. Unfortunately, this relatively easier con-

strained minimization problem is still NP-hard [22]. We propose LESS (Line-Even Sparse

Split) [23], an approximation algorithm that provides the strong theoretical guarantee (a

bounded gap between the total number of nonzero entries split by LESS and the theoretical

optimal) on this constrained minimization problem. The LESS algorithm, based on linear

programming (LP), is conceptually straightforward. Its execution time is however a bit too

long. We reduce this execution time by converting the LP computation problem to a graph

computation problem that is much less expensive.

6

CHAPTER 2

LITERATURE SURVEY

In this chapter, we summarize related works on hybrid switching and standalone opti-

cal switching algorithms respectively in section 2.1 and section 2.2. Then we introduce

some other works that proposed different datacenter network architectures using optical

switches. We defer to describe Eclipse [2], the state of the art hybrid switching algorithm,

in section 3.2, since 2-hop Eclipse, the hybrid switching algorithm that we will propose in

chapter 3, builds upon Eclipse.

2.1 Hybrid Switching Algorithms

Liu et al. [9] first characterized the mathematical problem of the hybrid switch scheduling

using direct routing only and proposed a greedy heuristic solution, called Solstice. In each

iteration, Solstice effectively tries to find the Max-Min Weighted Matching (MMWM) in

D, which is the full matching with the largest minimum element. The duration of this

matching (configuration) is then set to this largest minimum element. The Solstice [9] work

mentioned the technological feasibility of partial reconfiguration, but made no attempt at

exploiting this capability.

This hybrid switching problem has also been considered in two other works [20, 21].

Their problem formulations are a bit different than that in [2, 9], and so are their solution

approaches. In [20], the problem of matching senders with receivers is modeled as a (dis-

tributed) stable marriage problem, in which a sender’s preference score for a receiver is

equal to the age of the data the former has to transmit to the latter in a scheduling epoch,

and is solved using a variant of the Gale-Shapely algorithm [24]. This solution is aimed at

minimizing transmission latencies while avoiding starvations, and not at maximizing net-

work throughput, or equivalently minimizing transmission time. The innovations of [21]

7

are mostly in the aspect of systems building and are not on matching algorithm designs.

To the best of our knowledge, Albedo [15] is the only other indirect routing solution

for hybrid switching, besides Eclipse++ [2]. Albedo was proposed to solved a different

type of hybrid switching problem: dealing with the fallout of inaccurate estimation of the

traffic demand matrix D. It works as follows. Based on an estimation of D, Albedo first

computes a direct routing schedule using Eclipse or Solstice. Then any unexpected “extra

workload” resulting from the inaccurate estimation is routed indirectly. However, Albedo

has a high computational complexity, since it needs to perform a larger number of single-

source shortest path computations.

2.2 Optical Switch Scheduling Algorithms

Scheduling of circuit switch alone (i.e., no packet switch), that is not partially reconfig-

urable, has been studied for decades. Early works often assumed the reconfiguration delay

to be either zero [25, 13] or infinity [26, 27, 28]. Further studies, like DOUBLE [26], AD-

JUST [14] and other algorithms such as [27, 29], take the actual reconfiguration delay into

consideration.

Towles et al. [26] first considered the scheduling of circuit switch (alone) that is

partially reconfigurable and discovered that such a scheduling problem is algorithmically

equivalent to open-shop scheduling (OSS) [30]. They tried to adapt List scheduling (LIST)

[31, 32, 33], the well-known family of polynomial-time heuristic algorithms, to tackle

this problem. However, no algorithm in the LIST family benefits much from the partial

reconfiguration capability, as explained earlier. LIST gains no advantages from partial re-

configuration, because in this circumstance (i.e., no packet switch), all traffic including the

demand from large number of short VOQs has to be transmitted by the optical switch, and

that incurs a massive cost for reconfiguration inevitably.

Recently, a solution called Adaptive MaxWeight (AMW) [34, 35] was proposed for op-

tical switches (with nonzero reconfiguration delays). The basic idea of AMW is that when

8

the maximum weighted configuration (matching) has a much higher weight than the current

configuration, the optical switch is reconfigured to the maximum weighted configuration;

otherwise, the configuration of the optimal switch stays the same. However, this algorithm

may lead to long queueing delays (for packets) since it usually reconfigures infrequently.

Towles et al. [26] first considered the scheduling of circuit switch (alone) that is

partially reconfigurable and discovered that such a scheduling problem is algorithmically

equivalent to open-shop scheduling (OSS) [30]. They tried to adapt List scheduling (LIST)

[31, 32, 33], the well-known family of polynomial-time heuristic algorithms, to tackle this

problem. However, no algorithm in the LIST family benefits much from the partial re-

configuration capability, as explained earlier. Recently, Van et al. [36] proposed a solution

called adaptive open-shop algorithm (AOS), for scheduling partially reconfigurable opti-

cal switches. It essentially runs an optimal preemptive strategy [37] and a non-preemptive

LIST strategy [30, 38] in a dynamic and flexible fashion to find a good schedule. However,

the computational complexity of the optimal preemptive strategy [37] alone is O(n4).

Bianco et al. [39] considered a different aspect of the lifetime of optical switch and pro-

poses the fatigue-aware scheduling approach that takes both throughput and fatigue costs

into consideration. The main idea of reducing the fatigue cost in [39] is sorting configu-

rations properly, so that the number of variations (i.e., connection setup and breakdown)

occurring in the sequence of matchings is minimized.

2.3 Other optical datacenter networks

There are also a class of optical switch scheduling algorithms for specific optical datacen-

ter networks. RotorNet [40] proposed an optical datacenter network design that uses rotor

switches rotating through a set of pre-defined matchings. This (traffic) demand-unaware

design makes the computational complexity of the scheduling operation extremely low

(O(1) per frame). However, it gives up on the opportunity to boost network (throughput)

performance using workload information as were done in recent work [9, 2, 1, 16, 3].

9

For instance, while demand-aware networks can achieve an outstanding throughput per-

formance (e.g., > 80%) given sparse and skewed traffic demand matrices [9, 2, 1, 16, 3],

RotorNet can only achieve < 50% throughput under such traffic demands.

The Petabit switch fabric [41] adopts a three-stage Clos network to build a large-scale

optical switch fabric that includes interconnected Arrayed Waveguide Grating Router (AW-

GRs) and tunable wavelength converters (TWCs). It does not use any buffers inside the

switch fabric and thus avoids the power hungry E/O and O/E conversion. Instead, the

congestion management is performed using electronic buffers in the Line cards that are

connected to the input ports. Although the optical fabric performs highspeed switching

with nanosecond-level reconfiguration overhead, the reconfiguration time is not negligible

compared to the packet length. To reduce the impact of switching (i.e., reconfiguration)

time, the Petabit switch adopt frame-based switching, which assembles packets into fixed

size frames in the ingress of the line cards and disassembled at the egress of the line cards.

However, besides the reconfiguration time, a guard time needs to be inserted between con-

secutive frames to compensate the propagation delay difference, since the optical switch

fabric is bufferless and switch modules are reconfigured synchronously. The reconfigura-

tion time and guard time could significantly decrease the throughput of the Petabit switch.

In [42], Shay et al. extended the classic hybrid switching architecture by introducing

one-to-many and many-to-one composite paths between the circuit switch and the packet

switch to improve the performance of hybrid switch under one-to-many and/or many-to-

one traffic workloads. They proposed a simple technique to transform the problem of

scheduling such a special hybrid switch into that of scheduling a standard hybrid switch.

The transformed problem is then solved using existing solutions such as Solstice [9] and

Eclipse [2]. However, no new solutions to the standard hybrid switching problem were

proposed in [42].

Mellette et al. [43] proposed a new beam-steering optical switch, “partially config-

urable” optical switch, for data centers with the switching time in the order of less than

10

150µs. Here “partial configurability” means only a subset of output ports are directly

connected with each input port, which is very different from the “partial reconfigurabil-

ity” in the thesis. In an n × n “partially configurable” optical switch, the connectivity of

each input port is limited by k << n. This reduction in the number of optical states sig-

nificantly reduces the aperture and tilt requirements of the micromirror, allowing it to be

redesigned for higher speed operation. Here “partial configurable” means only a subset of

port-mappings (matchings) are achievable. Although this phrase is quite similar with our

“partial reconfigurable” optical switch, they are totally different concepts.

2.4 Flow scheduling algorithms in DCN

There is another group of DCN load-balancing algorithms on flow routing scheduling. The

seminal work [44, 45] on flow routing uses Equal Cost MultiPath (ECMP), which equally

splits the traffic among available shortest paths by hashing, to do load-balancing. How-

ever, ECMP can perform poorly since it may hash large flows to the same path and cause

congestion. And ECMP also perform poorly in asymmetry data center architectures (such

as JellyFish [46]). There has been much research on flow scheduling algorithms [47, 48,

49, 50, 51, 52, 53, 54] that addresses the shortcoming of ECMP and improves its load-

balancing performance. Our problem scope is different from that of these prior works,

which are focused on load-balancing among different switches over the whole DCN topol-

ogy (e.g., FatTree [48], JellyFish [46], etc). Hybrid switching on the other hand is designed

to do load-balancing within a switch for local traffic.

11

CHAPTER 3

2-HOP ECLIPSE: ADAPT INDIRECT ROUTING IN HYBRID SWITCH

SCHEDULING

3.1 System Model and Problem Statement

In this section, we formulate the problem of hybrid circuit and packet switching precisely.

We first specify the aforementioned traffic demand traffic D precisely. Borrowing the term

virtual output queue (VOQ) from the crossbar switching literature [55], we refer to, the set

of packets that arrive at input port i and are destined for output j, as VOQ(i, j). In some

places, we refer to a VOQ also as an input-output flow. The demand matrix entry D(i, j)

is the amount of VOQ(i, j) traffic, within a scheduling window, that needs to be scheduled

for transmission by the hybrid switch. It was effectively assumed that the demand matrix

D is precisely known before the computation of the circuit switch schedule begins (say at

time t). Consequently, all prior hybrid switching algorithms perform only batch scheduling

of this D. In other words, given a demand matrix D, the schedules of the circuit and

the packet switches are computed before the transmissions of the batch (i.e., traffic in D)

actually happen.

Our 2-hop Eclipse algorithm also assumes that D is precisely known in advance and is

designed for batch scheduling only. Since batch scheduling is offline in nature (i.e., requires

no irrevocable online decision-making), 2-hop Eclipse algorithm is allowed to “travel back

in time” and modify the schedules of the packet and the circuit switches as needed.

In this work, we study this problem of hybrid switch scheduling under the following

standard formulation that was introduced in [9]: to minimize the amount of time for the

circuit and the packet switches working together to transmit a given traffic demand matrix

D. We refer to this amount of time as transmission time throughout this thesis. An alter-

12

native formulation, used in [2], is to maximize the amount of traffic that the hybrid switch

can transmit within a scheduling window of a fixed duration. These two formulations are

roughly equivalent, as mathematically the latter is roughly the dual of the former.

A schedule of the circuit switch consists of a sequence of circuit switch configurations

and their durations: (M1, α1), (M2, α2), · · · , (MK , αK). Each Mk is an n× n permutation

(matching) matrix that denotes the kth switch configuration. Mk(i, j) = 1 if input i is

connected to output j and Mk(i, j) = 0 otherwise. αk denotes its duration. Note that the

circuit switch takes a reconfiguration delay δ between any two sequential switch configura-

tions, and it transmits no traffic during this period. The total transmission time of the above

schedule is Kδ +
∑K

k=1 αk, where δ is the reconfiguration delay, K is the total number of

configurations in the schedule.

Since computing the optimal circuit switch schedule alone (i.e., when there is no packet

switch), in its full generality, is NP-hard [14], almost all existing solutions are greedy

heuristics. Indeed, the typical workloads we see in data centers exhibit two characteristics

that are favorable to such greedy heuristics: sparsity (the vast majority of the demand matrix

elements have value 0 or close to 0) and skewness (few large elements in a row or column

account for the majority of the row or column sum) [9].

3.2 Background on Eclipse and Eclipse++

Since our 2-hop Eclipse algorithm builds upon Eclipse [2], we provide here a more detailed

description of Eclipse. Eclipse iteratively chooses a sequence of configurations, one per it-

eration, according to the following greedy criteria: In each iteration, Eclipse tries to extract

and subtract a matching from the demand matrixD that has the largest cost-adjusted utility,

defined as follows. For a configuration (M,α) (using a permutation matrixM for a duration

of α), its utility U(M,α), before adjusting for cost, is U(M,α) , ‖min(αM,Drem)‖1,

where Drem denotes what remains of the traffic demand (matrix) D after we subtract from

it the amounts of traffic to be served by the circuit switch according to the previous match-

13

ings, i.e., those computed in the the previous iterations. The ‖ · ‖1 denotes the entrywise L1

matrix norm, which is the summation of the absolute values of all matrix elements. Note

that U(M,α) is precisely the total amount of traffic the configuration (M,α) would remove

from D. The cost of the configuration (M,α) is modeled as δ + α, which accounts for the

reconfiguration delay δ. The cost-adjusted utility is simply their quotient U(M,α)
δ+α

.

Algorithm 1: Eclipse
Input: Traffic demand D;
Output: Sequence of schedules (Mk, αk)k=1,...,K ;

1 sch← {}; . schedule
2 Drem← D; . remaining demand
3 tc← 0; . transmission time of circuit switch
4 while ∃ any row or column sum of Drem > rptc do
5 (M,α)← arg max

M∈M,α∈R+

‖min(αM,Drem)‖1
δ+α

;

6 sch← sch ∪{(M,α)};
7 tc ← tc + δ + α;
8 Drem ← [Drem − α ·M]+;
9 end

Although the problem of maximizing this cost-adjusted utility is very computationally

expensive, it was shown in [2] that an computationally efficient heuristic algorithm solution

exists that empirically produces the optimal value most of time. This solution, invoking

the scaling algorithm for computing maximum weighted matching (MWM) [56] O(log n)

times, has a relatively low computational complexity of O(n5/2 log n logB), where B is

the value of the largest element in D. Hence the computational complexity of Eclipse

is O(Kn5/2 log n logB), shown in Table 3.1, where K is the total number of matchings

(iterations) used.

However, restricting the solution strategy space to only direct routing algorithms may

leave the circuit switch underutilized. For example, a connection (edge) from input i0 to

output j0 belongs to a matching M that lasts 50 microseconds, but at the start time of this

matching, there is only 40 microseconds worth of traffic left for transmission from i0 to

j0, leaving 10 microseconds of “slack” (i.e., residue capacity) along this connection. The

14

existence of connections (edges) with such “slacks” makes it possible to perform indirect

(i.e., multi-hop) routing of remaining traffic via one or more relay nodes through a path

consisting of such edges.

Eclipse++ [2] explored indirect routing using these “slacks”. It was shown in [2] that

optimal indirect routing using such “slacks”, left over by a direct routing solution such as

Eclipse, can be formulated as the maximum multi-commodity flow over a “slack graph”,

which is NP-complete [57, 58, 59, 60]. Eclipse++ is a greedy heuristic that converts,

with “precision loss” (otherwise P = NP), this multi-commodity flow computation to a

large set of shortest-path computations. The computational complexity of Eclipse++ is

still extremely high, since it involves a large number of shortest-path computations. Both

us and the authors of [2] found that Eclipse++ is roughly three orders of magnitude more

computationally expensive than Eclipse [61] for a data center with n = 100 racks.

Table 3.1: Comparison of time complexities
Algorithm Time Complexity

Eclipse O(Kn5/2 log n logB)

2-hop Eclipse O(Kn5/2 log n logB + min(K,n)Kn2)

Eclipse++ O(WKn3(logK + log n)2)

3.3 Overview

Our first algorithm, called 2-hop Eclipse [1], builds upon and significantly improves the

throughput of the state of the art solution Eclipse/Eclipse++ [2]. 2-hop Eclipse is a slight,

but very subtle, modification of Eclipse. On one hand, its asymptotical computational

complexity is the same as, and its execution time only slightly higher than, that of Eclipse.

On the other hand, given the same workloads (the traffic demand matrices) used in [2],

2-hop Eclipse harvests, from indirect routing, much more performance gain (over Eclipse)

than Eclipse++, which is three orders of magnitude more computationally expensive.

15

3.4 2-hop Eclipse

Unlike Eclipse, which considers only direct routing, 2-hop Eclipse considers both direct

routing and 2-hop indirect routing in its optimization. More specifically, 2-hop Eclipse

iteratively chooses a sequence of configurations that maximizes the cost-adjusted utility,

just like Eclipse, but the cost-unadjusted utility U(M,α) here accounts for not only the

traffic that can be transmitted under direct routing, but also that can be indirectly routed

over all possible 2-hop paths.

We make a qualified analogy between this scheduling of the circuit switch and the

scheduling of “flights”. We view the connections (between the input ports and the out-

put ports) in a matching Mk as “disjoint flights” (those that share neither a source nor a

destination “airport”) and the residue capacity on such a connection as “available seats”.

We view Eclipse, Eclipse++, and 2-hop Eclipse as different “flight booking”algorithms.

Eclipse books “passengers” (traffic in the demand matrix) for “non-stop flights” only. Then

Eclipse++ books the “remaining passengers” for “flights with stops” using only the “avail-

able seats” left over after Eclipse does its “bookings”. Different than Eclipse++, 2-hop

Eclipse “books passengers” for both “non-stop” and “one-stop flights” early on, although

it does try to put “passengers” on “non-stop flights” as much as possible, since each “pas-

senger” on a “one-stop flight” costs twice as many “total seats” as that on a “non-stop

flight”.

It will become clear shortly that the sole purpose of this qualified analogy is for us

to distinguish two types of “passengers” in presenting the 2-hop Eclipse algorithm: those

“looking for a non-stop flight” whose counts are encoded as the remaining demand matrix

Drem, and those “looking for a connection flight” to complete their potential “one-stop

itineraries”, whose counts are encoded as a new n × n matrix Irem that we will describe

shortly. We emphasize that this analogy shall not be stretched any further, since it would

otherwise lead to absurd inferences, such as that such a set of disjoint “flights” must span

16

the same time duration and have the same number of “seats” on them.

3.4.1 The Pseudocode

The pseudocode of 2-hop Eclipse is shown in Algorithm 2. It is almost identical to that

of Eclipse [2]. The only major difference is that in each iteration (of the “while” loop), 2-

hop Eclipse searches for a matching (M,α) that maximizes ‖min(αM,Drem+Irem)‖1
δ+α

, whereas

Eclipse searches for one that maximizes ‖min(αM,Drem)‖1
δ+α

. In other words, in each iteration,

2-hop Eclipse first performs some preprocessing to obtain Irem, which denotes the “possi-

ble 2-hop indirect routing traffic demand” using the previous slacks. Then substitute the

parameter Drem by Drem + Irem in making the “argmax” call (Line 7) to jointly optimize

the cost-adjusted utility on both direct routing and 2-hop indirect routing. The “while” loop

of Algorithm 2 terminates when every row or column sum of Drem is no more than rptc,

where rp denotes the (per-port) transmission rate of the packet switch and tc denotes the

total transmission time used so far by the circuit switch, since the remaining traffic demand

can be transmitted by the packet switch (in tc time). Note there is no occurrence of rc, the

(per-port) transmission rate of the circuit switch, in Algorithm 2, because we normalize rc

to 1.

3.4.2 The Matrix Irem

Just like Drem, the value of Irem changes after each iteration. We now explain the value

of Irem, at the beginning of the kth iteration (k > 1). To do so, we need to first introduce

another matrix R. As explained earlier, among the edges that belong to the matchings

(M1, α1), (M2, α2), · · · , (Mk−1, αk−1) computed in the previous k − 1 iterations, some

may have residue capacities. These residue capacities are captured in an n×n matrix R as

follows: R(l, i) is the total residue capacity of all edges from input l to output i that belong

to one of these (previous) k − 1 matchings. Under the qualified analogy above, R(l, i) is

the total number of “available seats on all previous flights from airport l to airport i”. We

17

Algorithm 2: 2-hop Eclipse
Input: Traffic demand D;
Output: Sequence of schedules (Mk, αk)k=1,...,K ;

1 sch← {}; . schedule
2 Drem← D; . remaining demand
3 R← 0; . residue capacity
4 tc← 0; . transmission time of circuit switch
5 while ∃ any row or column sum of Drem > rptc do
6 Construct Irem from (Drem, R); . 2-hop demand matrix
7 (M,α)← arg max

M∈M,α∈R+

‖min(αM,Drem+Irem)‖1
δ+α

;

8 sch← sch ∪{(M,α)};
9 tc ← tc + δ + α;

10 Update Drem;
11 Update R;
12 end

refer to R as the (cumulative) residue capacity matrix in the sequel.

Now we are ready to define Irem. Consider that, at the beginning of the kth iteration,

Drem(l, j) “local passengers” (i.e., those who are originated at l) who need to fly to j

remain to have their “flights” booked. Under Eclipse, they have to be booked on either a

“non-stop flight” or a “bus” (i.e., through the packet switch) to j. Under 2-hop Eclipse,

however, there is a third option: a “one-stop flight” through an intermediate “airport”. 2-

hop Eclipse explores this option as follows. For each possible intermediate “airport” i such

that R(l, i) > 0 (i.e., there are “available seats” on one or more earlier “flights” from l to

i), I(l)rem(i, j) “passengers” will be on the “speculative standby list” at “airport” i, where

I
(l)
rem(i, j) , min

(
Drem(l, j), R(l, i)

)
. (3.1)

In other words, up to I(l)rem(i, j) “passengers” could be booked on “earlier flights” from l to

i that have R(l, i) “available seats”, and “speculatively stand by” for a “flight” from i to j

that might materialize as a part of matching Mk.

The matrix element Irem(i, j) is the total number of “nonlocal passengers” who are

originated at all “airports” other than i and j and are on the “speculative standby list” for a

18

possible “flight” from i to j. In other words, we have

Irem(i, j) ,
∑

l∈[n]\{i,j}

I
(l)
rem(i, j). (3.2)

Recall that Drem(i, j) is the number of “local passengers” (at i) that need to travel to j.

Hence at the “airport” i, a total of Drem(i, j) + Irem(i, j) “passengers”, “local or nonlo-

cal”, could use a “flight” from i to j (if it materializes in Mk). We are now ready to pre-

cisely state the different between Eclipse and 2-hop Eclipse: Whereas ‖min(αM,Drem)‖1,

the cost-unadjusted utility function used by Eclipse, accounts only for “local passengers”,

‖min(αM,Drem + Irem)‖1, that used by 2-hop Eclipse, accounts for both “local” and

“nonlocal passengers”.

Note that the term Drem(l, j) appears in the definition of I(l)rem(i, j) (Formula (3.1)),

for all i ∈ [n] \ {l, j}. In other words, “passengers” originated at l who need to travel

to j could be on the “speculative standby list” at multiple intermediate “airports”. This is

however not a problem (i.e., will not result in “duplicate bookings”) because at most one

of these “flights” (to j) can materialize as a part of matching Mk.

3.4.3 Update Drem and R

After the schedule (Mk, αk) is determined by the “argmax call” (Line 7 in Algorithm 2)

in the kth iteration, the action should be taken on “booking” the right set of “passengers”

on the “flights” in Mk, and updating Drem (Line 10) and R (Line 11) accordingly. Recall

that we normalize rc, the service rate of the circuit switch, to 1, so all these flights have

αk × 1 = αk “available seats”. We only describe how to do so for a single “flight” (say

from i to j) in Mk; that for other “flights” in Mk is similar. Recall that Drem(i, j) “local

passengers” and Irem(i, j) “nonlocal passengers” are eligible for a “seat” on this “flight”.

When there are not enough seats for all of them, 2-hop Eclipse prioritizes “local passen-

gers” over “nonlocal passengers”, because the former is more resource-efficient to serve

19

than the latter, as explained earlier. There are three possible cases:

(I) α ≤ Drem(i, j). In this case, only a subset of “local passengers” (directly routed traffic),

in the “amount” of αk, are booked on this “flight”, and Drem(i, j) is hence decreased by α.

There is no “available seat” on this “flight” so the value of R(i, j) is unchanged.

(II) α ≥ Drem(i, j) + Irem(i, j). In this case, all “local” and “nonlocal passengers” are

booked on this “flight”. After all these “bookings”, Drem(i, j) is set to 0 (all “local pas-

sengers” traveling to j gone), and for each l ∈ [n] \ {i, j}, Drem(l, j) and R(l, i) each is

decreased by I(l)rem(i, j) to account for the resources consumed by the indirect routing of

traffic demand (i.e., “nonlocal passengers”), in the amount of I(l)rem(i, j), from l to j via

i. Finally, R(i, j) is increased by α −
(
Drem(i, j) + Irem(i, j)

)
, the number of “available

seats” that remain on this flight after all these “bookings”.

(III) Drem(i, j) < α < Drem(i, j) + Irem(i, j). In this case, all “local passengers” are

booked on this “flight”, soDrem(i, j) is set to 0. However, different from the previous case,

there are not enough “available seats” left on this “flight” to accommodate all Irem(i, j)

“nonlocal passengers”, so only a proper “subset” of them can be booked on this “flight”. We

allocate this proper “subset” proportionally to all origins l ∈ [n] \ {i, j}. More specifically,

for each l ∈ [n] \ {i, j}, we book θ · I(l)rem(i, j) “nonlocal passengers” originated at l on

one or more “earlier flights” from l to i, and also on this “flight”, where θ ,
α−Drem(i,j)

Irem(i,j)
.

Similar to that in the previous case, after these “bookings”, Drem(l, j) and R(l, i) each is

decreased by θ · I(l)rem(i, j). Finally, R(i, j) is unchanged as this “flight” is full.

We restrict indirect routing to most 2 hops in 2-hop Eclipse because the aforementioned

“duplicate bookings” could happen if indirect routing of 3 or more hops are allowed, mak-

ing its computation not “embeddable” into the Eclipse algorithm and hence much more

computationally expensive. This restriction is however by no means punitive: 2-hop indi-

rect routing appears to have reaped most of the performance benefits from indirect routing,

as shown in subsection 3.5.3.

20

3.4.4 Complexities of 2-hop Eclipse

Each iteration in 2-hop Eclipse has only a slightly higher computational complexity than

that in Eclipse. This additional complexity comes from Lines 6, 10, and 11 in Algo-

rithm 2. We need only to analyze the complexity of Line 6 (for updating I(l)rem), since it

dominates those of others. For each k, the complexity of Line 6 in the kth iteration is

O(kn2) because there were at most (k − 1)n “flights” in the past k − 1 iterations, and

for each such flight (say from l to i), we need to update at most n − 2 variables, namely

I
(l)
rem(i, j) for all j ∈ [n] \ {l, i}. Hence the total additional complexity across all iter-

ations is O(min(K,n)Kn2), where K is the number of iterations actually executed by

2-hop Eclipse. Adding this to O(n5/2 log n logB), the complexity of Eclipse, we arrive at

the complexity of 2-hop Eclipse: O(Kn5/2 log n logB + min(K,n)Kn2) (see Table 3.1).

We found that the execution times of 2-hop Eclipse are only roughly 20% to 40% longer

than that of Eclipse, for the instances (scheduling scenarios) used in our evaluations. Also

shown in Table 3.1, the computational complexity of Eclipse++ is much higher than those

of both Eclipse and 2-hop Eclipse. Here W denotes the maximum row/column sum of the

demand matrix. Finally, it is not hard to check that the space (memory) complexity of 2-

hop Eclipse is O(max(K,n)n), which is empirically only slightly larger than O(n2), that

of Eclipse. This O(Kn) additional space is needed to store the residue capacities (of no

more than n links in each schedule) induced by each schedule (Mk, αk).

3.5 Evaluation

In this section, we evaluate the performance of 2-hop Eclipse and compare it with those

of Eclipse and Eclipse++, under various system parameter settings and traffic demands.

We do not however have Eclipse++ in all performance figures because its computational

complexity is so high that it usually takes a few hours to compute a schedule. We do

not compare our solutions with Solstice [9] in these evaluations, since Solstice was shown

21

in [2] to perform worse than Eclipse in all simulation scenarios. For all these comparisons,

we use the same performance metric as that used in [9]: the total time needed for the hybrid

switch to transmit the traffic demand D.

For our simulations, we use the same traffic demand matrix D as used in other hybrid

scheduling works [9, 2]. In this matrix, each row (or column) contains nL large equal-

valued elements (large input-output flows) that as a whole account for cL (percentage) of

the total workload to the row (or column), nS medium equal-valued elements (medium

input-output flows) that as a whole account for the rest cS = 1 − cL (percentage), and

noises. Roughly speaking, we have

D = (

nL∑
i=1

cL
nL
Pi +

nS∑
i=1

cS
nS
P ′i +N1)× 90% +N2 (3.3)

where Pi and P ′i are random n× n matching (permutation) matrices.

The parameters cL and cS control the skewness (few large elements in a row or column

account for the majority of the row or column sum) of the traffic demand. Like in [9, 2],

the default values of cL and cS are 0.7 (i.e., 70%) and 0.3 (i.e., 30%) respectively, and the

default values of nL and nS are 4 and 12 respectively. In other words, in each row (or

column) of the demand matrix, by default the 4 large flows account for 70% of the total

traffic in the row (or column), and the 12 medium flows account for the rest 30%. We will

also study how these hybrid switching algorithms perform when the traffic demand has

other degrees of skewness by varying cL and cS .

As shown in Equation (3.3), we also add two noise matrix termsN1 andN2 to D. Each

nonzero element inN1 is a Gaussian random variable that is to be added to a traffic demand

matrix element that was nonzero before the noises are added. This noise matrix N1 was

also used in [9, 2]. However, each nonzero (noise) element here inN1 has a larger standard

deviation, which is equal to 1/5 of the value of the demand matrix element it is to be added

to, than that in [9, 2], which is equal to 0.3% of 1 (the normalized workload an input port

receives during a scheduling window, i.e., the sum of the corresponding row in D). We

22

increase this additive noise here to highlight the performance robustness of our algorithm

to such perturbations.

Different than in [9, 2], we also add (truncated) positive Gaussian noises N2 to a por-

tion of the zero entries in the demand matrix in accordance with the following observation.

Previous measurement studies have shown that “mice flows” in the demand matrix are

heavy-tailed [62] in the sense the total traffic volume of these “mice flows” is not insignif-

icant. To incorporate this heavy-tail behavior in the traffic demand matrix, we add such a

positive Gaussian noise – with standard deviation equal to 0.3% of 1 – to 50% of the zero

entries of the demand matrix. This way the “mice flows” collectively carry approximately

10% of the total traffic volume. To bring the normalized workload back to 1, we scale the

demand matrix by 90% before adding N2, as shown in Equation (3.3).

0.001 0.01 0.1
1

1.5

2

2.5

3

T
ra

n
s
m

is
s
io

n
 T

im
e

0.001 0.01 0.1
1

2

3

4

Eclipse 2-hop Eclipse

Figure 3.1: Performance comparison under different system settings (varying δ)

3.5.1 Performances under Different System Parameters

We evaluate the performances of Eclipse and 2-hop Eclipse for different value combina-

tions of δ and rc/rp under the traffic demand matrix with the default parameter settings.

23

For each scenario, we perform 100 simulation runs, and report the average transmission

time and the 95% confidence interval (the vertical error bar) in Figure 3.1 and Figure 3.2.

They show that 2-hop Eclipse performs better than Eclipse, especially when reconfigu-

ration delay δ and rate ratio rc/rp are large. For example, when δ = 0.01, rc/rp = 10

(default setting), the average transmission time under 2-hop Eclipse is approximately 13%

shorter than that under Eclipse, and when δ = 0.04, rc/rp = 20, that under 2-hop Eclipse

is 23% shorter. The performance of 2-hop Eclipse is also less variable than Eclipse: In all

these scenarios, the confidence intervals (of the transmission time) under 2-hop Eclipse are

slightly smaller than that under Eclipse.

10 20 30 40
1.2

1.4

1.6

1.8

2

2.2

T
ra

n
s
m

is
s
io

n
 T

im
e

=0.01

10 20 30 40
1.5

2

2.5

3

3.5
=0.04

Eclipse 2-hop Eclipse

Figure 3.2: Performance comparison under different system settings (varying rc/rp)

3.5.2 Performances under Different Traffic Demands

In this section, we evaluate the performance robustness of our algorithm 2-hop Eclipse

under a large set of traffic demand matrices that vary by sparsity and skewness. We control

the sparsity of the traffic demand matrix D by varying the total number of flows (nL + nS)

in each row from 4 to 32, while fixing the ratio of the number of large flow to that of small

flows (nL/nS) at 1 : 3. We control the skewness of D by varying cS , the total percentage of

24

5 10 15 20 25 30

Number of flows per node

1.2

1.4

1.6

1.8

T
ra

n
s
m

is
s
io

n
 T

im
e

5 10 15 20 25 30

Number of flows per node

1.6

1.8

2

2.2

2.4

5 10 15 20 25 30

Number of flows per node

1.2

1.4

1.6

1.8

2

2.2

T
ra

n
s
m

is
s
io

n
 T

im
e

5 10 15 20 25 30

Number of flows per node

2

2.2

2.4

2.6

2.8

3

Eclipse 2-hop Eclipse

Figure 3.3: Performance comparison while varying sparsity of demand matrix

traffic carried by small flows, from 5% (most skewed as large flows carry the rest 95%) to

75% (least skewed). In all these evaluations, we consider four different value combinations

of system parameters δ and rc/rp: (1) δ = 0.01, rc/rp = 10; (2) δ = 0.01, rc/rp = 20; (3)

δ = 0.04, rc/rp = 10; and (4) δ = 0.04, rc/rp = 20. Figure 3.3 compares the transmission

time of 2-hop Eclipse and Eclipse when the sparsity parameter nL + nS varies from 4 to

32 and the value of the skewness parameter cS is fixed at 0.3. Figure 3.4 compares the

transmission time of 2-hop Eclipse and Eclipse when the the skewness parameter cS varies

from 5% to 75% and the sparsity parameter nL + nS is fixed at 16 (= 4 + 12).

Both Figure 3.3 and Figure 3.4 show that 2-hop Eclipse performs better than Eclipse

25

0 20 40 60 80

% traffic carried by small flows

1.2

1.3

1.4

1.5

1.6

1.7

T
ra

n
s
m

is
s
io

n
 T

im
e

0 20 40 60 80

% traffic carried by small flows

1.6

1.8

2

2.2

0 20 40 60 80

% traffic carried by small flows

1.4

1.6

1.8

2

T
ra

n
s
m

is
s
io

n
 T

im
e

0 20 40 60 80

% traffic carried by small flows

2

2.2

2.4

2.6

2.8

Eclipse 2-hop Eclipse

Figure 3.4: Performance comparison while varying skewness of demand matrix

under various traffic demand matrices, especially when the traffic demand matrix becomes

dense. This shows that 2-hop indirect routing can reduce transmission time significantly

under a dense traffic demand matrix. This is not surprising: Dense matrix means smaller

matrix elements, and it is more likely for a small matrix element to be transmitted entirely

by indirect routing (in which case there is no need to pay a large reconfiguration delay for

the direct routing of it) than for a large one.

26

3.5.3 Compare 2-hop Eclipse with Eclipse++

In this section, we compare the performances of 2-hop Eclipse and Eclipse++, both indirect

routing algorithms, under the default parameter settings.

δ

0.04 0.08 0.16 0.32 0.64

T
ra

ns
m

is
si

on
 T

im
e

1.5

2

2.5

3

3.5

4

4.5
2-hop Eclipse
Eclipse++
Eclipse

Figure 3.5: Performance comparison of Eclipse, 2-hop Eclipse and Eclipse++

Since Eclipse++ has a very high computational complexity, we perform only 50 simula-

tion runs for each scenario. The results are shown in Figure 3.5. They show that Eclipse++

slightly outperforms 2-hop Eclipse only when the reconfiguration delay is ridiculously large

(δ = 0.64 unit of time); note that, as explained earlier, the idealized transmission time is 1

(unit of time)! In all other cases, 2-hop Eclipse performs much better than Eclipse++, and

Eclipse++ performs only slightly better than Eclipse.

27

CHAPTER 4

QUANTIZED BIRKHOFF-VON NEUMANN DECOMPOSITION (QBVND)

In this section, we introduce QBvND, a scheduling algorithm that works for both hybrid

switching and standalone optical switching (i.e., no packet switch).

4.1 System Model and Problem Formulation

In this section we describe the formal model for the optical and hybrid switching problems.

In both cases we are given an n×n traffic demand matrix D, and each matrix entry D(i, j)

is the amount of traffic that originates at input port (rack) i and is destined for output port

(rack) j, within a short (e.g., 3 milliseconds long) scheduling epoch of the recent past (e.g.,

from 4 milliseconds ago to 1 millisecond ago). Our optical or hybrid switching algorithm

needs to meet this demand in the next scheduling epoch. We assume full knowledge of the

precise and complete demand matrix D (in this recent past epoch), as do most prior works

on hybrid switching and on optical switching.

4.1.1 The Optical Switching Problem

Given a traffic demand matrix D, we aim to compute a schedule that minimizes the trans-

mission time, the amount of time for the optical switch to transmit D. An alternative for-

mulation, used in Eclipse [2], would maximize the effective throughput, i.e., the amount

of traffic that the optical or hybrid switch can transmit within a scheduling epoch of fixed

duration. These two formulations are roughly equivalent, as mathematically the latter is

roughly the dual of the former. So do the two corresponding metrics: shorter transmission

time implies higher effective throughput and vice versa. Hence we use transmission time

as the metric in all performance evaluation plots, but effective throughput as the metric in

interpreting these plots.

28

A schedule of the optical switch consists of a sequence of configurations (matchings)

and their durations: (P1, α1), (P2, α2), · · · , (PK , αK). Each configuration Pk is an n × n

permutation (matching) matrix that denotes the kth switch configuration, where Pk(i, j) =

1 if input i is connected to output j and Pk(i, j) = 0 otherwise. αk denotes its duration.

The transmission time of the above schedule is
∑K

k=1(αk + δ), where δ is the reconfigura-

tion delay, and K is the number of configurations in the schedule. The optical switching

problem aims to minimize this transmission time, under the constraint that the configu-

rations Pk with their respective durations αk can “sweep clean” the traffic matrix D, or

mathematically

min{Kδ +
K∑
k=1

αk} such that D ≤
K∑
k=1

αkPk (4.1)

Since this optimization problem is NP-hard [14], almost all optical switching solutions use

heuristics.

4.1.2 The Hybrid Switching Problem

In a hybrid switching system, the packet switch is typically an electronic switch, which is

an order of magnitude or more slower than the optical switch. For example, the optical and

packet switches might operate at the respective rates of 100 Gbps and 10 Gbps per port.

However, unlike the optical switch, the packet switch does not incur a reconfiguration delay

when its configuration (matching) changes from one switching cycle to the next.

In hybrid switching, the optical switch is allowed to leave a small residue matrix R ,

(D−∑K
k=1 αkPk)

+ for the packet switch to handle. Suppose the per-port rate of the packet

switch is rp. Then no row sum or column sum of the reside matrix R can exceed rp, as

otherwise the corresponding input or output port would be given a workload larger than its

its capacity. Mathematically, this constraint can be written as

1
T ·R ≤ rp · 1T and R · 1 ≤ rp · 1 (4.2)

29

where 1 is a column vector with n scalars that all have value 1, and T stands for trans-

pose. Hence the mathematical formulation of the hybrid switching problem is the same

as that of optical switching, except that the constraint in (4.1) is changed to (4.2) above.

This optimization problem is also NP-hard, because optical switching is a special case of it

(where rp = 0).

4.2 Background on Birkhoff-von Neumann Decomposition

Since QBvND and many optical and hybrid switching solutions are based on Birkhoff-von

Neumann Decomposition(BvND), here we provide a brief introduction on it.

4.2.1 Preliminaries

We say that a nonnegative n× n matrix M is doubly stochastic (or doubly sub-stochastic)

if every row or column sum of M is equal to 1 (or no larger than 1). The Birkhoff-von

Neumann Theorem [18] states that a doubly stochastic matrix M can be expressed as a

linear combination of permutation matrices. More precisely, we have

M =
K∑
k=1

αkPk (4.3)

where
∑K

k=1 αk = 1 and P1, P2, ..., PK are permutation matrices, in which each row or

column has exactly one non-zero entry with value 1.

Algorithm 3: BvND
Input : Doubly stochastic matrix M ;
Output: BvND of M : M =

∑K
k=1 αkPk;

1 k ← 1;
2 while M is not a zero matrix do
3 Find a perfect matching Pk in graph M ;
4 αk ← min{weights of the edges ∈ Pk};
5 M ←M − αkPk;
6 k ← k + 1;
7 end

30

The standard BvND algorithm, which is used in the constructive proof of the Birkhoff-

von Neumann Theorem, is shown in algorithm 3. In this algorithm, the matrixM is viewed

also as a weighted bipartite graph, with n vertices, denoted as I1, I2, ..., In, that correspond

to the n rows of M in one partite, and another n vertices, denoted as O1, O2, ..., On that

correspond to the n columns of M in the other partite; the bipartite graph contains an edge

between Ii and Oj if and only if the (current) value of the matrix element mij is nonzero,

in which case the weight of the edge is mij .

In each (say kth) iteration, algorithm 3 first finds a perfect matching, which corresponds

to a permutation matrix Pk, in the bipartite graph, and then subtracts αkPk from M . Here

the coefficient αk is set to the smallest value among the weights of the edges in the perfect

matching, so that after the subtraction, at least one previously nonzero matrix element will

become zero; once a matrix element becomes zero, the corresponding edge is deleted from

the bipartite graph in performing the subsequent iterations. Hence at most n2 iterations are

needed to zero out the matrix M , and algorithm 3 has a total computational complexity of

O(n4.5), when the classical O(n2.5) maximum cardinality matching algorithm [63] is used

to find a perfect matching in each iteration.

Let M be a doubly stochastic matrix. We call any uM , where u > 0 is a scaling factor,

a scaled doubly stochastic matrix. Clearly, any scaled doubly stochastic matrix can also be

expressed as a linear combination of permutation matrices, and this decomposition can also

be computed using algorithm 3. In this case, the sum of the linear coefficients
∑K

k=1 αk is

equal to u instead of 1.

4.2.2 The Stuffed BvND Algorithm

A BvND-based algorithm was proposed in [17] for packet switching when the traffic arrival

rate matrix Λ is constant or very slowly varying. It consists of two steps, namely stuffing

and BvND, so we call it stuffed BvND in the sequel. In the stuffing step, the matrix Λ,

which is in general not scaled doubly stochastic, is stuffed into a scaled doubly stochastic

31

matrix Λ′, using the von Neumann stuffing algorithm [64]. In the BvND step, algorithm 3,

the standard BvND algorithm, is used to decompose the scaled doubly stochastic matrix

Λ′ into
∑K

k=1 αkPk. To service the incoming traffic, the packet switch simply repeats the

following schedule forever (or until Λ changes): use permutation matrix P1 as the switch

configuration for a duration of α1, P2 for a duration of α2, . . . , and PK for a duration of

αK . Since this schedule is precomputed for repeated use, we refer to such an operation as

precomputed packet switching in the sequel.

The stuffed BvND algorithm in general works for neither optical nor hybrid switch-

ing, because the resulting decomposition would in general consist of K = O(n2) different

configurations, where n is the number of racks, and hence incur a prohibitively high re-

configuration delay cost; it works well for packet switching because the reconfiguration

delay there is zero. For this reason, although many existing optical and hybrid switching

solutions are based on BvND, they all have to somehow reduce this number K.

4.3 Quantize BvND

In this section, we first provide an overview of QBvND in subsection 4.3.1, then describe

the max-min BvND step of QBvND in subsection 4.3.2, and finally discuss how to tune a

critical parameter of QBvND in subsection 4.3.3.

4.3.1 Pseudocode of QBvND

In this section, we first provide an overview of QBvND in the context of optical switching,

and then describe, toward the end, how to modify it slightly for hybrid switching.

Algorithm 4: QBvND
1 Quantize D to an s-integer matrix D(Q);
2 Stuff D(Q) to a scaled doubly stochastic matrix D(QS);
3 Max-min BvND of D(QS) into

∑K
k=1 αkPk;

The pseudocode of our solution, called Quantized BvND or QBvND in short, is shown

32

in algorithm 4. As its name suggests, QBvND prepends a quantization step before the

two other steps described earlier, namely stuffing and BvND. In the quantization step, an

appropriate quantization unit s > 0 is first chosen and fixed, and then every element Dij

in a doubly sub-stochastic traffic demand matrix D , (Dij)n×n is rounded up to dDij

s
e · s,

the nearest s-integer, defined as an integral multiple of s. The resulting s-integer matrix is

denoted as D(Q) , (D
(Q)
ij)n×n.

Due to the positive rounding error (no larger than s) added to each matrix element of

D(Q) in the rounding-up process, the maximum row or column sum of D(Q) could exceed 1

(i.e., the matrix may not be doubly sub-stochastic any more), but is clearly upper-bounded

by 1 + ns. This maximum row or column sum corresponds to the minimum net (exclud-

ing the reconfiguration delays) transmission time
∑K

k=1 αk required to serve traffic matrix

D(Q). Hence this step is not slack-free in the sense the minimum net transmission time in

general increases after the quantization step.

In the second step, the s-integer matrix D(Q) is carefully stuffed into another s-integer

matrix D(QS) that is at least as large (i.e, D(QS) ≥ D(Q)) and is scaled doubly stochastic.

This problem, known as matrix stuffing, has been studied in [64, 9, 65]. Among many

different such algorithms, we use for our solution QBvND a greedy heuristic algorithm,

called QuickStuff, that was used in the Solstice algorithm [9] for hybrid switching, because

it possesses two desirable properties that others generally don’t. The first property is that, if

the inputM is an s-integer matrix (hence φ is an s-integer), the output computed by Quick-

Stuff is also an s-integer matrix. Preserving this “s-integrality” during the stuffing step is

necessary for the next step (BvND) to cap K, the number of configurations (matchings)

in the resulting schedule, at O(n). The second property is that, QuickStuff avoids, to the

extent possible, converting a zero element to a nonzero element and thereby decreasing the

sparsity of the matrix. It is desirable for the traffic demand matrix to be sparse, since the

BvND of a sparse matrix generally contains a smaller number of configurations than that

of a dense one, resulting in a smaller total reconfiguration delay. Finally, we note that all

33

stuffing algorithms, including QuickStuff, guarantees to be slack-free in the sense the max-

imum row or column sum ofD(QS) is the same as that ofD(Q) (so the net transmission time

remains unchanged after the stuffing). We refer readers to [9] for a detailed description of

QuickStuff.

The last step is the BvND of D(QS). Now since D(QS) is an s-integer scaled doubly

stochastic matrix, it can be expressed as a linear combination of at most O(n) (instead of

O(n2)) permutation matrices, whose corresponding durations are s-integers, as follows.

Suppose for the moment that algorithm 3 is used for the decomposition. Then all co-

efficients αk, k = 1, 2, · · · , K, are positive s-integers for the following reason. In the

first iteration of algorithm 3, the coefficient α1 computed from line 4 must be a positive

s-integer, as it is the minimum of a set of s-integer edge weights, so D(QS) remains an

s-integer matrix after the subtraction of α1P1 from it. Hence α2 is also a positive s-integer,

and so on. Since each αkPk takes away at least weight s from any row or column in D(QS),

whose sum is upper-bounded by 1 + ns as explained earlier, there are at most (ns + 1)/s

configurations in the BvND of D(QS). Since s is set to Ω(1/n) or larger, the number of

configurations K is at most O(n).

To further reduce the total number of configurations K, we use the max-min BvND

algorithm [19], instead of algorithm 3, to decompose D(QS). The resulting K is also O(n),

but with a much smaller constant factor. The computational complexity of the last step

(max-min BvND) is O(n3.5). Since it dominates the complexities of the other two steps,

which are both O(n2), the overall complexity of QBvND is O(n3.5).

Finally, to use QBvND for hybrid switching, only the following slight modification

needs to be made to its last step (max-min BvND): the iterative process of searching for

max-min matchings can stop as soon as what remains of the quantized stuffed matrixD(QS)

can be handled by the packet switch.

34

4.3.2 A Modified Max-Min BvND Algorithm

In this section, we describe the last step of our QBvND solution: max-min BvND [19].

The max-min BvND algorithm differs from algorithm 3 only in that, in each iteration (say

kth), whereas the latter finds an arbitrary full matching Pk (Line 4), the former finds a Pk

that maximizes the value of the corresponding αk. Such a matching is called max-min

matching because αk is the minimum among the weights of the edges in Pk, and we are

trying to maximize this minimum. As a result, max-min BvND can extract most or all of

the traffic from the traffic demand matrix using much fewer configurations than almost all

other BvND algorithms.

Now we describe the algorithm, proposed in [66], for computing a max-min match-

ing P in the weighted bipartite graph that corresponds to a nonnegative matrix M . With

a slight abuse of notation, we denote this bipartite graph also as M . This algorithm can

be best explained using the following alternative formulation of this computation problem.

Consider the pruning of the graph M according to a threshold ε > 0 as follows: an edge is

removed from the graph M if and only if its weight is less than ε. We denote the resulting

pruned graph asMε. This computing problem can be restated as finding the maximum ε for

Mε to contain a full matching (which is exactly the max-min matching P we are looking

for). This algorithm is simply to binary-search for this ε in the interval [0, εmax], where

εmax is the value of the largest element in the matrix M , as follows: at each binary search

point ε′, the search is considered successful if a full matching can be found using the clas-

sical O(n2.5) maximum cardinality matching (MCM) algorithm [63]. The computational

complexity of finding a single max-min matching is O(n2.5 log n), since log(εmax) binary

search steps are needed, each of which involves a MCM computation, and log(εmax) is

O(log n) in our context.

Using this max-min matching algorithm, the total complexity of the max-min BvND

step in QBvND would be O(n3.5 log n), since it needs to run this algorithm at most O(n)

times thanks to the quantization. In QBvND, by doing away with the binary search, we

35

reduce this complexity further by a factor of O(log n) as follows. The modified algorithm

conducts a linear search, starting from the value of the largest matrix element in D(QS)

(also denoted as εmax), which is an s-integer no larger than 1 + s (since the original traffic

demand matrix D is sub-stochastic), for all O(n) max-min matchings. In other words,

it searches for and extracts full matchings exhaustively (i.e., until a full matching can no

longer be found) at each of the O(n) arithmetically progressing graph-pruning thresholds

εmax, εmax − s, εmax − 2s, · · · , 2s, and s.

Since the modified algorithm conducts at mostO(n) successful searches, each of which

results in a max-min matching and has complexity O(n2.5), and at most O(n) unsuccess-

ful searches (once at each of the O(n) graph-pruning thresholds), its total complexity is

O(n3.5). In QBvND, we also significantly reduce the constant factor inside this big-O, by

increasing the unit step of the linear search (i.e., the arithmetic progression) from s to 5s. In

doing so, we observe only a negligible degradation in the qualities (i.e., the durations and

the number) of the resulting configurations (matchings). Finally, we note this linear search

trick can be used here only because the matrixD(QS) is s-integral. Otherwise, the algorithm

would have to linearly search through all distinct values, in the decreasing order, among

the nonzero matrix elements (in general O(n2) of them), resulting in a total complexity of

O(n4.5).

4.3.3 Theoretical Analysis and Quantization Unit Selection

In this section, we explain how to approximately maximize the throughput performance

(or equivalently minimize the transmission time) of QBvND by tuning the quantization

unit s. The (gross) transmission time of an optical switch schedule can be split into two

parts: the net transmission time
∑K

k=1 αk and the reconfiguration cost Kδ. As explained

in subsection 4.3.1, in optical switching, the first part is upper-bounded by 1 + ns, and

K is upper-bounded by (1 + ns)/s, so the second part is upper-bounded by (1 + ns)δ/s.

Hence the (gross) transmission time is upper-bounded by 1 + ns + 1+ns
s
δ = 1 + nδ +

36

ns + δ/s, which reaches the minimum when s =
√
δ/n. Although this upper bound is

not exactly the objective function we would like to minimize, it is reasonable to use this

optimal parameter setting
√
δ/n “asymptotically”, that is, to set s to β

√
δ/n where β > 0

is a tunable parameter.

It remains to explain how to set this β. In optical switching, the second part Kδ (upper-

bounded by (1 + ns)δ/s) is quite large so we would like to make s larger to reduce it.

In this case, we set β to a value larger than 1 (e.g., set to
√

2 in section 7.2). In hybrid

switching, however, the second part becomes smaller since the packet switch can absorb

a residue matrix that would otherwise have to be swept clean by a fairly large number of

configurations with short durations. Hence, it becomes less important to reduce the second

part by increasing s. In this case, we choose β < 1 (e.g., set to 0.3 in section 7.2).

4.4 Closely Related Works

In this section, we describe several (precomputed) packet, optical, and hybrid switching

algorithms that are most related to QBvND and we will evaluate QBvND against in sec-

tion 7.2. We will also compare their computational complexities against that of QBvND

in subsection 4.4.3.

4.4.1 Precomputed Packet Switching Algorithms

We are aware of two other quantized BvND algorithms, namely RQ (Rate Quantization)

[67] and FBD (Frame-Based Decomposition) [68]. Both were proposed, more than a

decade ago, for precomputed packet switching (PPS). They both address the following

problem with Chang et. al’s original solution (i.e., the stuffed BvND algorithm described

in subsection 4.2.2) [17] for PPS: among the numerous (more specifically O(n2)) config-

urations {(Pk, αk)}Kk=1 contained in the resulting decomposition, most of them are very

short in duration (i.e., with a tiny αk), and moreover much shorter than a switching cycle

of the packet switch (called a frame in FBD). However, each of these short configurations

37

still has to be covered by a full switching cycle, resulting in a poor utilization of the packet

switch bandwidth.

In both RQ and FBD, the sole purpose of quantization is to reduce the number of such

severely underutilized switching cycles. Although as an unintended side benefit of the

quantization, both algorithms also reduce the number of configurations in the resulting de-

composition, this number is still too large for bandwidth-efficient optical switching, as we

will show in subsection 4.5.4. Note this is not a shortcoming of either algorithm: there is

no incentive to reduce the number of configurations in packet switching, where the recon-

figuration delay is zero.

FBD uses the same quantization method (of rounding up to an s-integer where s is

set to the length of a switching cycle in FBD) as QBvND, but performs the decomposi-

tion differently. Whereas QBvND greedily finds and extracts, in each iteration, a fully

utilized configuration with maximum possible duration (i.e., a max-min matching), FBD

sets the duration of every configuration to the minimum value: one switching cycle (i.e., s).

Hence a (switch) schedule generated by FBD typically contains several times more config-

urations than a schedule generated by QBvND, as we will show in subsection 4.5.4, and

consequently incurs a much higher reconfiguration cost if used for optical switching. The

motivation for FBD to use the same minimum duration s for each configuration, as stated

in [68], is that the resulting computation problem can be modeled as edge coloring of a

bipartite multigraph, which has much faster algorithmic solutions (e.g., with O(n2 log n)

complexity using [69]), than BvND (roughly O(n3.5) with quantization).

RQ uses a slightly different quantization method than QBvND. It splits the traffic de-

mand matrix into an s-integer scaled doubly stochastic matrix and an “s-fractional” residue

matrix, the value of each element in which is a nonnegative value less than s. It then per-

forms the standard BvND of the former matrix using algorithm 3 and “covers” the latter

using n configurations (e.g., the n cyclic shifts of a permutation matrix) each with duration

s. However, this n is already several times larger than the number of configurations needed

38

by QBvND.

4.4.2 Optical Switching Algorithms

Scheduling of optical switch alone has been studied for decades. In early works the re-

configuration delay is often assumed to be either zero [25, 26, 13] or infinity (a very large

value) [26, 27, 28]. In later works, such as DOUBLE [26], ADJUST [14] and [27, 29],

the reconfiguration delay is usually assumed to be finite and nonzero. Towles et al. [26]

proposed three different scheduling algorithms, EXACT, MIN, and DOUBLE, for the op-

tical switches with zero, infinite, and nonzero finite reconfiguration delays respectively.

EXACT is identical to the stuffed BvND algorithm described in subsection 4.2.2, which

is very bandwidth-inefficient for optical switching when the reconfiguration delay is high,

due to the very large number (O(n2) in general) of configurations it has to use.

MIN is proposed to significantly reduce the number of configurations to at most n.

Its algorithm is identical to algorithm 3 except that in line 4, αk is set to the maximum

(instead of the minimum in algorithm 3) among the weights of edges in Pk. This way,

after the subtraction of αkPk, n matrix elements become zero. Hence only n configurations

are needed to “cover” the matrix. The flip side of the coin however is that most of the n

input-output connections in such a configuration can be severely underutilized (i.e., contain

considerable slack), as their corresponding edge weights can be much smaller than this

maximum.

DOUBLE is a compromise between the two extremes EXACT and MIN. Each schedule

computed by DOUBLE uses at most 2n configurations, each of which has the same dura-

tion 1/n, to “cover” a doubly sub-stochastic traffic demand matrix. The algorithm is named

DOUBLE because the total duration of these configurations is bounded at 2 (= 2n ∗ 1/n),

and any set of configurations that “cover” a doubly sub-stochastic matrix has a total dura-

tion of at least 1. In DOUBLE, each matrix element Dij is rounded down to the closest

1/n-integer bnDijc/n called the quotient, and their difference is called the residue. This

39

way, the matrix D is split into a quotient matrix and a residue matrix. Each matrix can be

covered by at most n configurations, each of which has duration 1/n. The residue matrix,

like in RQ, can be covered by at most n configurations, that are cyclic shifts of one another,

and each has the same duration 1/n. The quotient matrix, viewed as a bipartite multigraph

like in FBD, is decomposed into at most n configurations, each also with duration 1/n,

using an edge-coloring algorithm such as [69].

ADJUST [14] is different than DOUBLE only in that ADJUST sets the value of quan-

tization unit s to
√
δ/n (like we did in subsection 4.3.3) to strike the optimal compromise

between EXACT and MIN. ADJUST is the same as DOUBLE when the configuration de-

lay δ is equal to 1/n, since both are using the same quantization unit
√
δ/n = 1/n in this

case.

4.4.3 Computational Complexity Comparisons

Table 4.1: Complexities of various algorithms
Algorithms Complexities

Optical
Switching

DOUBLE [26] O(n2 log n)

ADJUST [14] O(n2 log n)

MIN [26] O(n3.5)

EXACT [26] O(n4.5)

Hybrid
Switching

Solstice [9] O(Kn2.5)

Eclipse [2] O(Kn2.5 log2 n)

Precomputed
Packet
Switching

BvND [17] O(n4.5)

FBD [68] O(n2 log n)

RQ [67] O(n4.5)

Table 4.1 summarizes the computational complexities of the optical and the hybrid

switching algorithms that QBvND will be compared against in section 7.2. In the complex-

ities of Solstice and Eclipse, K denotes the total number of configurations in the schedule.

Although K is not too large (roughly O(n)) in our simulation scenarios, it could be as

large as O(n2) in the worst case. Hence the worst case complexities of Solstice and Eclipse

are both higher than that of QBvND, which is O(n3.5). Compared to optical switching

40

algorithms, although QBvND has a higher computational complexity than DOUBLE and

ADJUST, it outperforms all four of them, in terms of throughput performance, by a wide

margin, as will be shown in section 7.2.

4.5 Evaluation

Since QBvND works for both hybrid switching and standalone optical switching, we will

evaluate the performance of QBvND in both of these two circumstances and compare it

with the state of the art hybrid and standalone optical scheduling algorithms, under various

system parameter settings and traffic demands.

4.5.1 Traffic Demand Matrix D

As shown in [9, 2], the typical workloads we see in data centers exhibit two characteristics:

sparsity (the vast majority of the demand matrix elements have value 0 or close to 0) and

skewness (few large elements in a row or column account for the majority of the row or

column sum). Hence, for our simulations, we use the same set of sparse and skewed de-

mand matrices as used in [9, 2]. In each such matrix D, each row (or column) contains nL

large equal-valued elements (large input-output flows) that as a whole account for cL (per-

centage) of the total workload to the row (or column), nS medium equal-valued elements

(medium input-output flows) that as a whole account for the rest cS = 1− cL (percentage),

and noises. Hence nL and nS control the sparsity, and cL and cS control the skewness, of

the traffic demand, respectively. Roughly speaking, we have

D =

nL∑
i=1

cL
nL
Pi +

nS∑
i=1

cS
nS
P ′i +N (4.4)

where each Pi and each P ′i is an n× n random permutation matrix.

Same as in [9, 2], in our simulation studies, the default values of the sparsity parameters

nL and nS are set to 4 and 12 respectively and the default values of cL and cS are set to 0.7

41

(i.e., 70%) and 0.3 (i.e., 30%) respectively. In other words, in each row (or column) of the

demand matrix, by default the 4 large flows account for 70% of its total traffic demand, and

the 12 medium flows account for the rest 30%. We will also vary the sparsity parameters

nL and nS and skewness parameters cL and cS in our evaluations. In Equation (4.4), before

a noise matrix N (described next) is added to it, each such D is doubly stochastic, that

is, the sum of each row or column of it is 1. This normalized workload 1 is defined as

the amount of traffic that an established (after paying for the reconfiguration cost) optical

switch connection/link, which we assume to have a normalized rate also of 1, can transmit

in 1 unit of time, defined as the length of a scheduling epoch (e.g., 3 milliseconds).

As shown in Equation (4.4), we also add a noise matrix term N to D, like in [9, 2].

Each nonzero element inN is a Gaussian random variable that is added to a traffic demand

matrix element that was nonzero before the noise added. Each nonzero (noise) element

here in N has a standard deviation, which is equal to 0.3% of the normalized workload 1.

4.5.2 System Parameters

In this section, we introduce the system parameters, for both optical and hybrid switching,

used in our simulations.

Network size: By default, both the optical switch and the packet switch (if applicable) has

n = 100 input/output ports (i.e., 100 racks of servers in the data center) although we will

vary n in subsection 4.5.6. Other reasonably large (say ≥ 32) switch sizes produce similar

results.

Reconfiguration delay of the optical switch δ: In both optical and hybrid switching,

the larger this reconfiguration delay is, the more time the optical switch has to spend on

reconfigurations, and hence the higher the transmission time is. By default, δ = 0.01 (i.e.,

1/100 of the scheduling epoch), although we will vary δ in our simulation studies.

Optical switch per-port rate rc = 1 and packet switch per-port rate rp: As far as

designing hybrid switching algorithms is concerned, only their ratio rc/rp matters. The

42

higher this ratio is, the higher percentage of traffic should be transmitted by the optical

switch. This ratio varies from 8 to 40 in our simulations. As explained earlier, we normalize

rc to 1.

The largest row or column sum in a (random) demand matrix D generated using Equa-

tion 4.4, also a random variable, has an expectation that is roughly equal to 1.0325, where

the fractional part 0.0325 comes from the noise matrix N . In optical switching, since

rc = 1, even with perfect scheduling and zero reconfiguration delay, the total transmission

time is at least 1.0325. In hybrid switching, the transmission time could be smaller than 1,

thanks to the switching and transmission capacity of the packet switch, although that never

materialized in our simulation studies, likely due to the nontrivial reconfiguration delays.

In the rest of section 7.2, every point in every plot in every figure is the sample mean

averaged from 100 simulation runs, so is every number in Table 4.2 and Table 4.3.

δ

10-3 10-2 10-1

T
ra

ns
m

is
si

on
 T

im
e

0

5

10

15

20
ADJUST
DOUBLE
MIN
QBvND

Figure 4.1: Comparison while varying the reconfiguration delay (optical)

4.5.3 QBvND vs. Others for Optical Switching

In this section, we compare QBvND, as an standalone optical switching solution, with three

state of the art optical switching algorithms: ADJUST [14], DOUBLE [26], and MIN [26].

Note that when δ = 0.01 (i.e., δ = 1/n since n = 100), ADJUST is the same as DOUBLE,

as we explained in subsection 4.4.2. Hence there is a combined plot for ADJUST/DOUBLE

in Figure 4.2.

43

Number of flows per node
10 20 30

T
ra

ns
m

is
si

on
 T

im
e

1

3

5

7

ADJUST/DOUBLE
MIN
QBvND

% traffic carried by small flows
0 20 40 60 80

1

3

5

7

ADJUST/DOUBLE
MIN
QBvND

δ = 0.01 δ = 0.01

Figure 4.2: Comparison under various demand matrices (optical)

The simulation results, shown in Figure 4.1 and Figure 4.2, demonstrate that the sched-

ules generated by QBvND are consistently better (i.e., shorter transmission times) than

those generated by ADJUST, DOUBLE, and MIN. More specifically, when δ = 0.01 (de-

fault setting) and δ = 0.04, the average transmission times of the schedules generated by

QBvND are roughly 40% shorter than those of schedules generated by ADJUST, the best

among others.

4.5.4 An “Anatomic” Comparison of Transmission Time

To better understand the reason why the QBvND outperforms all other optical switching

algorithms by a wide margin, we split the (gross) transmission time into the aforemen-

tioned two components: the net transmission time
∑K

k=1 αk and the reconfiguration cost

Kδ. Table 4.2 separately compares these two components in schedules computed by dif-

ferent algorithms under the default setting (4 large flows and 12 small flows accounting

for roughly 70% and 30% of the total traffic demand into each input port, δ = 0.01). Be-

sides ADJUST, DOUBLE and MIN, we compare QBvND also with three other algorithms:

FBD [68], RQ [67], and EXACT [26]. Note that FBD and RQ are proposed originally for

precomputed packet switching, but here we view them as optical switching algorithms and

impose the reconfiguration delay on them. ADJUST is not in the table since it is equiva-

lent to DOUBLE under this parameter setting. The simulation results are summarized in

44

Table 4.2.

Table 4.2: Transmission time comparison of optical switching algorithms
Algorithm Kδ

∑K
k=1 αk Kδ +

∑K
k=1 αk

DOUBLE 1.1245 1.1245 2.2490

MIN 0.4403 4.8337 5.2740

EXACT 12.98 1.0325 14.0125

FBD 0.8329 1.1697 2.0026

RQ 1.7252 2.0185 3.7437

QBvND 0.2294 1.1457 1.3751

As expected, the average net transmission time
∑K

k=1 αk under EXACT is equal to

1.0325, the aforementioned theoretical minimum, since it is precisely the stuffed BvND

algorithm (described in subsection 4.2.2). However, its reconfiguration cost is humongous

(12.98), due to the large number of configurations in the resulting BvND. The net trans-

mission time under QBvND (1.1457) is only slightly larger than the theoretical minimum

1.0325 and smaller than that of all other algorithms. Its reconfiguration cost (0.2294) is

smaller, by at least 70%, than that of all other algorithms except MIN, whose net transmis-

sion time (4.8337) is extremely high.

4.5.5 QBvND vs. Solstice and Eclipse for Hybrid Switching

In this section, we compare QBvND, as a hybrid switching solution, with the two state of

the art algorithms, Eclipse [2] and Solstice [9].

The simulation results demonstrate that the schedules generated by QBvND are better

than those generated by Solstice, especially when the reconfiguration delay δ or the rate

ratio rc/rp is large. More specifically, as shown in Figure 4.3(left), when δ = 0.04, rc/rp =

10, QBvND results in 8% shorter average transmission time than Solstice; as shown in

Figure 4.3(right), when δ = 0.01, rc/rp = 32, QBvND results in 11% shorter average

transmission time than Solstice. On the other hand, QBvND results in slightly longer

(approximately 5% longer) average transmission times in both cases than Eclipse.

45

δ

0.001 0.01 0.1

T
ra

ns
m

is
si

on
 T

im
e

1

1.5

2

2.5 Eclipse
Solstice
QBvND

rc/rp
10 20 30 40

1

1.1

1.2

1.3

1.4

1.5
Eclipse
Solstice
QBvND

rc/rp = 10 δ = 0.01

Figure 4.3: Comparison under different system settings (hybrid)

Number of flows per node
10 20 30

T
ra

ns
m

is
si

on
 T

im
e

0.9

1

1.1

1.2

1.3

1.4
Eclipse
Solstice
QBvND

% traffic carried by small flows
0 20 40 60 80

1

1.1

1.2

1.3
Eclipse
Solstice
QBvND

δ = 0.01, rc/rp = 10δ = 0.01, rc/rp = 10

Figure 4.4: Comparison under various demand matrices (hybrid)

4.5.6 Execution Time Comparison

In this section, we present the execution times of Eclipse, Solstice, and QBvND (all im-

plemented in C++) for three different δ values (0.0025, 0.01, and 0.04), under the traffic

demand matrix with the default parameter settings (nL = 4, nS = 12, cL = 0.7, cS = 0.3).

We set rc/rp to 10 in each scenario. These execution time measurements, shown in Ta-

ble 4.3, are performed on a Dell Precision Tower 3620 workstation equipped with an Intel

Core i7-6700K CPU @4.00GHz processor with 16GB RAM, and running Windows 10

Professional.

As shown in Table 4.3, the average execution time of QBvND is roughly 20 times

smaller than that of Eclipse under the default setting (n = 100). As n increases to 200,

QBvND outperforms Eclipse even more (e.g., 100 times when δ = 0.01) in terms of exe-

46

Table 4.3: Comparison of average execution time
δ Eclipse QBvND Solstice

n = 50
0.0025 152.3ms 52.75ms 33.23ms

0.01 141.5ms 24.90ms 33.83ms

0.04 128.8ms 19.45ms 25.95ms

n = 100
0.0025 1.430s 111.67ms 76.07ms

0.01 1.282s 55.65ms 72.67ms

0.04 0.943s 48.15ms 59.56ms

n = 200
0.0025 17.57s 263.6ms 182.8ms

0.01 12.37s 139.1ms 165.8ms

0.04 7.384s 111.2ms 134.0ms

cution time. Meanwhile, QBvND’s average execution time is only slightly larger than that

of Solstice when δ = 0.0025. When δ = 0.01, 0.04, QBvND is even faster than Solstice.

47

CHAPTER 5

BEST-FIRST-FIT (BFF): TOWARDS PARTIALLY RECONFIGURABLE HYBRID

SWITCHING FOR DATA CENTERS

5.1 System Model and Problem Formulation

In this work, we study this problem of hybrid switch scheduling under the following stan-

dard formulation that was introduced in [9]: to minimize the transmission time for the

circuit and the packet switches working together to transmit a given traffic demand matrix

D.

As stated earlier, the circuit switch being partially reconfigurable offers considerable

scheduling flexibility, leading to much lower computational complexities for computing a

schedule and higher throughputs of the hybrid switch. We now formulate the operational

constraints of a partially reconfigurable circuit switch precisely. Its configurations (sched-

ules) over time can be represented by an n × n matrix process S(t) =
(
sij(t)

)
, where

for any given time t, S(t) is a 0 − 1 (sub-matching) matrix that encodes the connections

between input ports and the output ports at time t. More specifically, sij(t) = 1 if input

port i is connected to output j at time t, and sij(t) = 0 otherwise. After an input port i

stops transmitting traffic to an output port j, it has to wait at least a reconfiguration delay

δ before starting transmitting traffic to another output port. As mentioned earlier, the good

thing about the switch being partial reconfigurable is that no other input port needs to stop

its ongoing transmission as a result of this configuration change.

5.2 Partial Reconfigurability

All existing works on hybrid switching solve this problem based on the following conve-

nient assumption: When the circuit switch changes from one configuration to another, all

48

input ports have to stop data transmission during the reconfiguration period (of duration

δ), including those input ports that pair with the same output ports during both configu-

rations. This is however an outdated and unnecessarily restrictive assumption because all

electronics or optical technologies underlying the circuit switch can readily support partial

reconfiguration in the following sense: Only the input ports affected by the reconfiguration

need to pay a reconfiguration delay δ, while unaffected input ports can continue to transmit

data during the reconfiguration. For example, in cases where free-space optics is used as

the underlying technology (e.g., in [20, 21]), only each input port affected by the reconfig-

uration needs (to rotate its micro-mirror) to redirect its laser beam towards its new output

port and incur reconfiguration delay.

For an optical switch that has partial reconfigurability, its schedule is no longer re-

stricted to a sequence of configurations with durations (M1, α1), (M2, α2), · · · , (MK , αK).

Instead, it can be represented by an n× n matrix process S(t) = sij(t), where for any give

time t, S(t) is a 0−1 sub-matching matrix that encodes the connections between input ports

and the output ports at time t. More specifically, sij(t) = 1 if input port i is connected to

output port j at time t, and sij(t) = 0 otherwise. After an input port i stops transmitting

traffic to an output port j, it has to wait at least a reconfiguration delay δ before starting

transmitting traffic to another output port. As mentioned earlier, the good thing about the

switch being partial reconfigurable is that no other input port needs to stop its ongoing

transmission as a result of this configuration change.

5.3 Open Shop Scheduling Problem

With the partial reconfiguration capability, the scheduling of the circuit switch only (i.e.,

without a packet switch) can be modeled as an Open Shop Scheduling (OSS). In an OSS

problem, there are a set of N jobs, a set of m machines, and a two-dimensional table

specifying the amount of time (could be 0) that a job must spend at a machine to have

a certain task performed. The scheduler has to assign jobs to machines in such a way,

49

that at any moment of time, no more than one job is assigned to a machine and no job is

assigned to more than one machine. The mission is accomplished when every job has all

its tasks performed at respective machines. The OSS problem is to design an algorithm

that minimizes, to the extent possible, the makespan of the schedule, or the amount of time

it takes to accomplish the mission. In this circuit switching (only) problem, input ports

are jobs, output ports are machines, each V OQ(i, j) is a task that belongs to job i and

needs to be performed at machine j for the amount of time D(i, j). In OSS, a machine

may need some time to reconfigure between taking on a new job, which corresponds to the

reconfiguration delay δ in circuit switching. The OSS problem is in general NP-hard [70],

so only heuristic or approximate solutions to it [31, 32, 33] exist that run in polynomial

time.

5.4 LIST: A Family of Heuristics

LIST (list scheduling) is a well-known family of polynomial-time heuristic OSS algo-

rithms [31, 32, 33]. LIST starts by attempting to assign an available job (i.e., not already

being worked on by a machine) to one of the available machines on which the job has a

task to perform, according to a machine preference criterion (can be job-specific and time-

varying). If multiple jobs are competing for the same machine, one of the jobs is chosen

according to a job preference criterion (can be machine-specific and time-varying). Af-

ter all initial assignments are made, the scheduler “sits idle” until a task is completed on

a machine, in which case both the corresponding job and the machine become available.

Once a machine becomes available, any available job that has a task to be performed on the

machine can compete for the machine.

Our BFF algorithm is an adaptation of a non-preemptive LIST algorithm [33] that uses

LPT (longest processing time) as the preference criterion for both the machines and the

jobs. In LPT LIST, whenever multiple jobs compete for a machine, the machine picks

the “most time-consuming task”, i.e., the job that takes the longest time to finish on the

50

machine; whenever a job has multiple available machines to choose from, it chooses among

them the machine that has the “most time-consuming task” to perform on the job. In other

words, LPT gives preference to longer tasks, whether a machine is choosing jobs or a job is

choosing machines. LPT is a perfect match for our problem, because with a packet switch

to “sweep clean” all short tasks (i.e., tiny amounts of remaining traffic left over in VOQs

by the circuit switch), the circuit switch can afford to focus only on a comparatively small

number of long tasks.

However, it is by no means obvious that adapting any LIST algorithm would be a good

idea for this hybrid switching problem. In fact, no algorithm in the LIST family, including

LPT LIST, is a good fit for the problem of circuit switching only (i.e., where there is not a

packet switch), when the circuit switch is partially reconfigurable [26]. In particular, it was

shown in [26] that, whenever a scheduling algorithm from the LIST family is used, whether

the circuit switch is partially reconfigurable or not makes almost no difference in the the

performance (measured by transmission time) of the resulting schedule. This is because,

without the help from a packet switch, the circuit switch would have to “sweep clean” the

large number of short tasks (VOQs) all by itself, and each such short task costs the circuit

switch a reconfiguration delay δ that is significant compared to its processing (transmission)

time. To the best of our knowledge, BFF is the first time that a LIST algorithm is adapted

for hybrid switching.

5.5 Best-First-Fit (BFF)

As explained earlier, BFF is an adaptation of the LPT LIST algorithm for open-shop

scheduling. There are two differences between BFF and LPT LIST. First, at the begin-

ning of the scheduling (i.e., t = 0), when all jobs and all machines are available, BFF

runs a maximum weighted matching (MWM) algorithm [56] to obtain the heaviest (w.r.t.

to their weights D) initial matching between jobs and machines. BFF does not use LPT

LIST for this initialization step because it would likely result in a sub-optimal (i.e., lighter

51

in weight) matching to start with. Second, BFF terminates when the remaining demand

Drem becomes small enough for the packet switch to handle. Here the remaining demand

matrix Drem denotes what remains of the traffic demand (matrix) after we subtract from D

the amounts of traffic to be served by the circuit switch according to the previous actions,

i.e., those computed in the pervious iterations.

Algorithm 5: Action taken by BFF after a machine is done with a job.

1 When input port i finishes transmitting VOQ(i, j) to output port j at time τ :
2 Output Seek Pairing(j, τ);
3 Input port i reconfigures during [τ, τ + δ];
4 Input Seek Pairing(i, τ + δ);

5 Procedure Output Seek Pairing(j, t)
6 Update Drem;
7 if {l ∈ Ia | Drem(l, j) > 0} 6= φ then
8 l = arg maxuDrem(u, j);
9 Connect output j with input l;

10 else
11 Oa ← Oa ∪ {j};
12 end

13 Procedure Input Seek Pairing(i, t)
14 Update Drem;
15 if {j ∈ Oa | Drem(i, j) > 0} 6= φ then
16 j = arg maxvDrem(i, v);
17 Connect input i with output j;
18 else
19 Ia ← Ia ∪ {i};
20 end

In BFF, for each input port i1, the task of deciding with which outputs the input port i1

should be matched with over time is almost independent of that for any other input port i2.

Hence, to describe BFF precisely, it suffices to describe the actions taken by the scheduler

after a job i gets its task performed at a machine j (i.e., after input port i transmits all traffic

in VOQ(i, j), in the amount of D(i, j), to output port j).

We do so in Algorithm 5. Suppose the machine j is done with the job i at time τ .

Then machine (output port) j immediately looks to serve another job by calling “Out-

52

put Seek Pairing(j, τ)” (Line 2 in Algorithm 5). The job (input port) i, on the other hand,

is not ready to be performed on another machine (output port) until τ + δ (i.e., after a

reconfiguration delay), so it calls “Input Seek Pairing(i, τ + δ)” (Line 4 in Algorithm 5).

However, since in this batching scheduling setting, the whole schedule S(t) is computed

before any transmission (according to the schedule) can begin, input port i knows which

machine it will be paired with at time τ + δ. Hence input port i can start reconfiguring to

pair with that machine at time τ (Line 4 in Algorithm 5) so that the actual transmission can

start at time τ + δ.

In Algorithm 5, Ia andOa denote the sets of available jobs (input ports) and of available

machines (output ports) respectively. Clearly, Procedure “Output Seek Pairing()” (Lines

6 through 12) follows the LPT (longest processing time first) preference criteria: It tries

to identify, for the machine (output port) j, the job (input port) that brings with it the

largest task, among the set of available jobs Ia. Similar things can be said about procedure

“Input Seek Pairing()” (Lines 14 through 20). In other words, each output port, at the very

first moment it becomes available (to input ports), attempts to match with the best input port

(i.e., the one with the largest amount of work for it to do), and vice versa. Therefore, we

call our algorithm BFF (Best First Fit).

Computational Complexity: In addition to theO(n5/2 logB) complexity needed to obtain

an MWM (using [56]) at the very beginning, with a straightforward implementing using a

straightforward data structure, BFF has a computational complexity of O(Kn2), where

K is the average number of times each input port needs to reconfigure over time, B is

the largest entry in the demand matrix D, W is the maximum row/column sum of the

demand matrix. Hence the overall complexity of BFF is O(Kn2 + n5/2 logB), which is

asymptotically smaller than that of Eclipse, which is O(Kn5/2 log n logB) (see Table 5.1).

Empirically, BFF runs about three orders of magnitude faster than Eclipse when n = 100,

as will be shown in subsection 5.6.4.

Wondering whether allowing indirect routing can bring further performance improve-

53

Table 5.1: Comparison of time complexities
Algorithm Time Complexity

Eclipse O(Kn5/2 log n logB)

Eclipse++ O(WKn3(logK + log n)2)

BFF O(Kn2 + n5/2 logB)

ments, we have made several attempts at combining indirect routing with BFF. However,

we found this direction not promising for two reasons. First, BFF leaves little “slack” in the

schedule for the indirect routing to gainfully exploit. Second, any extension for exploiting

indirect routing would increase the computational complexity of BFF considerably.

5.6 Evaluation

In this section, we evaluate the performance of our solution BFF, and compare it with that

of the state of the art algorithm Eclipse, under various system parameter settings and traffic

demands. We do not compare our solutions with Solstice [9] in these evaluations, since

Solstice was shown in [2] to perform worse than Eclipse in all simulation scenarios. For all

these comparisons, we use the same performance metric as that used in [9]: the total time

needed for the hybrid switch to transmit the traffic demand D.

For our simulations, we use the same traffic demand matrix D as used in other hybrid

scheduling works [9, 2]. In this matrix, each row (or column) contains nL large equal-

valued elements (large input-output flows) that as a whole account for cL (percentage) of

the total workload to the row (or column), nS medium equal-valued elements (medium

input-output flows) that as a whole account for the rest cS = 1 − cL (percentage), and

noises. Roughly speaking, we have

D = (

nL∑
i=1

cL
nL
Pi +

nS∑
i=1

cS
nS
P ′i +N1)× 90% +N2 (5.1)

where Pi and P ′i are random n× n matching (permutation) matrices.

The parameters cL and cS control the aforementioned skewness (few large elements in

54

a row or column account for the majority of the row or column sum) of the traffic demand.

Like in [9, 2], the default values of cL and cS are 0.7 (i.e., 70%) and 0.3 (i.e., 30%) respec-

tively, and the default values of nL and nS are 4 and 12 respectively. In other words, in

each row (or column) of the demand matrix, by default the 4 large flows account for 70%

of the total traffic in the row (or column), and the 12 medium flows account for the rest

30%. We will also study how these hybrid switching algorithms perform when the traffic

demand has other degrees of skewness by varying cL and cS .

As shown in Equation (5.1), we also add two noise matrix termsN1 andN2 to D. Each

nonzero element inN1 is a Gaussian random variable that is to be added to a traffic demand

matrix element that was nonzero before the noises are added. This noise matrix N1 was

also used in [9, 2]. However, each nonzero (noise) element here inN1 has a larger standard

deviation, which is equal to 1/5 of the value of the demand matrix element it is to be added

to, than that in [9, 2], which is equal to 0.3% of 1 (the normalized workload an input port

receives during a scheduling window, i.e., the sum of the corresponding row in D). We

increase this additive noise here to highlight the performance robustness of our algorithm

to such perturbations.

Different than in [9, 2], we also add (truncated) positive Gaussian noises N2 to a por-

tion of the zero entries in the demand matrix in accordance with the following observation.

Previous measurement studies have shown that “mice flows” in the demand matrix are

heavy-tailed [62] in the sense the total traffic volume of these “mice flows” is not insignifi-

cant. To incorporate this heavy-tail behavior (of “mice flows”) in the traffic demand matrix,

we add such a positive Gaussian noise – with standard deviation equal to 0.3% of 1 – to

50% of the zero entries of the demand matrix. This way the “mice flows” collectively carry

approximately 10% of the total traffic volume. To bring the normalized workload back to

1, we scale the demand matrix by 90% before adding N2, as shown in (5.1).

55

5.6.1 System Parameters

In this section, we introduce the system parameters (of the hybrid switch) used in our

simulations.

Network size: We consider the hybrid switch with n = 100 input/output ports throughout

this section. Other reasonably large (say ≥ 32) switch sizes produce similar results.

Circuit switch per-port rate rc and packet switch per-port rate rp: As far as designing

hybrid switching algorithms is concerned, only their ratio rc/rp matters. This ratio roughly

corresponds to the percentage of traffic that needs to be transmitted by the circuit switch.

The higher this ratio is, the higher percentage of traffic should be transmitted by the circuit

switch. This ratio varies from 8 to 40 in our simulations. As explained earlier, we normalize

rc to 1.

Since both the traffic demand to each input port and the per-port rate of the circuit

switch are all normalized to 1, the (idealistic) transmission time would be 1 when there was

no packet switch, the scheduling was perfect (i.e., no “slack” anywhere), and there was no

reconfiguration penalty (i.e., δ = 0). Hence we should expect that all these algorithms result

in transmission times larger than 1 under realistic “operating conditions” and parameter

settings.

Reconfiguration delay (of the circuit switch) δ: Reconfiguration delay is another im-

portant parameter of hybrid switch. In general, the smaller this reconfiguration delay is,

the less time the circuit switch has to spend on reconfigurations and the better performance

hybrid switch achieves. Hence, given a traffic demand matrix, the transmission time should

increase as δ increases.

5.6.2 Performances under Different System Parameters

In this section, we evaluate the performances of Eclipse and BFF for different value com-

binations of δ and rc/rp under the traffic demand matrix with the default parameter settings

(4 large flows and 12 small flows accounting for roughly 70% and 30% of the total traffic

56

demand into each input port). We perform 100 simulation runs for each scenario, and report

the simulation results in Figure 5.1 and Figure 5.2.

Here each point on a plot represents the average transmission time, and the correspond-

ing error bar represents their 95% confidence interval. The results, presented in Figure 5.1

and Figure 5.2, show that the schedules generated by BFF are consistently better, as in-

dicated by shorter and less variable transmission times, than those generated by Eclipse,

especially when reconfiguration delay δ and rate ratio rc/rp are large. More specifically,

when δ = 0.01, rc/rp = 10 (default setting), schedules generated by BFF result in ap-

proximately 19% shorter average transmission time than those generated by Eclipse. When

δ = 0.04, rc/rp = 20, schedules generated by BFF result in 23% shorter average transmis-

sion time than those generated by Eclipse. Meanwhile, the transmission time confidence

intervals of the schedules generated by BFF in all these scenarios are about 40% shorter

(i.e., less variable) than those of the schedules generated by Eclipse.

0.001 0.01 0.1
1

1.5

2

2.5

3

T
ra

n
s
m

is
s
io

n
 T

im
e

0.001 0.01 0.1
1

2

3

4

Eclipse BFF

Figure 5.1: Performance comparison under different system settings (varying δ)

5.6.3 Performances under Different Traffic Demands

In this section, we evaluate the performance robustness of our BFF algorithm under a large

set of traffic demand matrices that vary by sparsity and skewness. We control the sparsity

57

10 20 30 40

1.5

2

2.5

3

3.5

T
ra

n
s
m

is
s
io

n
 T

im
e

=0.01

10 20 30 40

1.5

2

2.5

3

3.5
=0.04

Eclipse BFF

Figure 5.2: Performance comparison under different system settings (varying rc/rp)

of the traffic demand matrix D by varying the total number of flows (nL + nS) in each

row from 4 to 32, while fixing the ratio of the number of large flow to that of small flows

(nL/nS) at 1 : 3. We control the skewness of D by varying cS , the total percentage of

traffic carried by small flows, from 5% (most skewed as large flows carry the rest 95%) to

75% (least skewed). In all these evaluations, we consider four different value combinations

of system parameters δ and rc/rp: (1) δ = 0.01, rc/rp = 10; (2) δ = 0.01, rc/rp = 20; (3)

δ = 0.04, rc/rp = 10; and (4) δ = 0.04, rc/rp = 20.

Figure 5.3 compares the transmission time of BFF and Eclipse when the sparsity pa-

rameter nL + nS varies from 4 to 32 and the value of the skewness parameter cS is fixed at

0.3. Figure 5.4 compares the transmission time of BFF and Eclipse when the the skewness

parameter cS varies from 5% to 75% and the sparsity parameter nL + nS is fixed at 16

(= 4 + 12). In each figure, the four subfigures correspond to the four value combinations

of δ and rc/rp above.

Both Figure 5.3 and Figure 5.4 show that schedules computed by BFF result in approx-

imately 20% − 30% shorter average transmission times than those computed by Eclipse,

under various traffic demand matrices. They also show that the transmission times of the

58

former schedules (i.e., those generated by BFF) are less variable (as indicated by shorter

95% confidence interval bars) or more stable than those of the latter schedules.

10 20 30

Number of flows per node

1

1.2

1.4

1.6

1.8

2

T
ra

n
s
m

is
s
io

n
 T

im
e

10 20 30

Number of flows per node

1.4

1.6

1.8

2

2.2

10 20 30

Number of flows per node

1.2

1.4

1.6

1.8

2

2.2

T
ra

n
s
m

is
s
io

n
 T

im
e

10 20 30

Number of flows per node

1.5

2

2.5

3

Eclipse BFF

Figure 5.3: Performance comparison while varying sparsity of demand matrix

The results, presented in Figure 5.1, Figure 5.2, Figure 5.3, and Figure 5.4, show that

the schedules generated by BFF are consistently better, as indicated by shorter and less

variable transmission times, than those generated by Eclipse, especially when reconfigura-

tion delay δ and rate ratio rc/rp are large. More specifically, when δ = 0.01, rc/rp = 10

(default setting), schedules generated by BFF result in approximately 19% shorter average

59

transmission time than those generated by Eclipse. When δ = 0.04, rc/rp = 20, schedules

generated by BFF result in 23% shorter average transmission time than those generated by

Eclipse. Meanwhile, the transmission time confidence intervals of the schedules generated

by BFF in all these scenarios are about 40% shorter (i.e., less variable) than those of the

schedules generated by Eclipse.

0 20 40 60 80

% traffic carried by small flows

1.2

1.4

1.6

1.8

T
ra

n
s
m

is
s
io

n
 T

im
e

0 20 40 60 80

% traffic carried by small flows

1.4

1.6

1.8

2

2.2

0 20 40 60 80

% traffic carried by small flows

1.2

1.4

1.6

1.8

2

T
ra

n
s
m

is
s
io

n
 T

im
e

0 20 40 60 80

% traffic carried by small flows

2

2.5

3

Eclipse BFF

Figure 5.4: Performance comparison while varying skewness of demand matrix

60

5.6.4 Execution time comparison of Eclipse and BFF

In this section, we present the execution times of Eclipse and BFF (all implemented in

C++) for different δ, under the traffic demand matrix with the default parameter settings

(nL = 4, nS = 12, cL = 0.7, cS = 0.3). We set rc/rp = 10 for each scenario. These

execution time measurements are performed on a Dell Precision Tower 3620 workstation

equipped with an Intel Core i7-6700K CPU @4.00GHz processor and 16GB RAM, and

running Windows 10 Professional. We perform 100 simulation runs for each scenario. The

average execution times are shown in Table 5.2.

Table 5.2: Comparison of average execution time for Eclipse and BFF
n = 32 n = 100

δ 0.0025 0.01 0.04 0.0025 0.01 0.04

Eclipse 1.25s 0.80s 0.44s 34.6s 16.4s 6.88s

BFF 2.50ms 2.34ms 1.93ms 30.1ms 22.6ms 17.4ms

As shown in Table 5.2, the execution time of BFF is roughly three orders of magnitude

smaller than those of Eclipse. We have also implemented Eclipse++ and measured its

execution time. It is roughly three orders of magnitude higher than those of Eclipse; the

same observation [61] was made by the first author of [2] (the Eclipse/Eclipse++ paper).

61

CHAPTER 6

SUMMARY OF THE THREE ALGORITHMS

In the previous three sections, we have shown that each of the proposed three algorithms

(2-hop Eclipse, QBvND, and BFF) outperforms the state-of-the-art solution Eclipse [2] on

one or several metrics (i.e., transmission time performance, execution time performance,

etc). However, their respective advantages over Eclipse are quite different from each other,

since the designs of them are focused on different metrics improvement. In this section, we

summarize their respective advantages of the three algorithms, by comparing the following

four metrics of them:

• Applicable conditions;

• Computational complexity;

• Theoretical guarantee on transmission time performance;

• Empirical transmission time performance;

6.1 Applicable condition, computational complexity, and theoretical guarantee

The first three metrics can be compared straightforwardly and we summarize the results in

Table 6.1.

Applicable condition. Only BFF requires the optical switch to be partially reconfigurable,

whereas 2-hop Eclipse and QBvND apply for all types of optical switches.

Computational complexity. The respective computational complexities of 2-hop Eclipse,

QBvND, and BFF are shown in Table 6.1. Here B is the largest entry in the demand

matrix, which can be considered as O(1), n is the number of racks (scale of the demand

matrix), and K is the number of average number of reconfigurations per port (rack), which

62

Table 6.1: Applicable condition, computational complexity, and theoretical guarantee com-
parisons of 2-hop Eclipse, QBvND, and BFF

Algorithm 2-hop Eclipse QBvND BFF

Applicable condition ∅ ∅ Partially
Reconfigurable

Computational Complexity
O(Kn5/2 log n logB
+ min(K,n)Kn2)

O(n3.5) O(Kn2+n5/2 logB)

Theoretical guarantee on
transmission time

performance
∅ (1+

√
nδ)2 2×OPT

is typically on the order of O(n). Hence, the computational complexities of 2-hop Eclipse,

QBvND, and BFF can be viewed as O(n4), O(n3.5), and O(n3) respectively. Obviously,

BFF has the lowest computational complexity and that of 2-hop Eclipse is the highest.

Theoretical guarantee on transmission time performance. Eclipse [2] considers a dif-

ferent objective, that is, to maximize the throughput given a fixed period of time. This

objective, as we mentioned earlier, is roughly the dual of our objective (minimize the total

transmission time). Eclipse [2] exploited the submodularity [71] structure of their opti-

mization problem and proved a theoretical guarantee that is (1 − 1/e) ≈ 63.2% times the

theoretically optimal (maximum) throughput. This property, however, does not apply to

our 2-hop Eclipse algorithm. QBvND has a theoretical guarantee that the total transmis-

sion time is upper bounded by (1 +
√
nδ)2, where both the maximum row / column sum

of the traffic demand matrix and the per-port transmission rate of the optical switch are

normalized to 1. This upper bound applies for both the hybrid switching problem and the

standalone optical switching problem. BFF also has a theoretical guarantee of 2×OPT , 2

times of the optimal transmission time, which is derived from the property of LIST schedul-

ing [72].

In the next section, we will compare the transmission time (throughput) performances

of 2-hop Eclipse, QBvND, and BFF, in hybrid switching under various system settings and

various traffic demand matrices.

63

6.2 Transmission Time Performance Comparison

6.2.1 Using constructed traffic demand matrices

For our simulations, we use the same traffic demand matrix D as used in [1, 16]. In this

matrix, each row (or column) contains nL large equal-valued elements (large input-output

flows) that as a whole account for cL (percentage) of the total workload to the row (or

column), nS medium equal-valued elements (medium input-output flows) that as a whole

account for the rest cS = 1− cL (percentage), and noises. Roughly speaking, we have

D = (

nL∑
i=1

cL
nL
Pi +

nS∑
i=1

cS
nS
P ′i +N1)× 90% +N2 (6.1)

where Pi and P ′i are random n× n matching (permutation) matrices.

Recall that the parameters cL and cS control the skewness (few large elements in a row

or column account for the majority of the row or column sum) of the traffic demand. The

default values of cL and cS are 0.7 (i.e., 70%) and 0.3 (i.e., 30%) respectively, and the default

values of nL and nS are 4 and 12 respectively. In other words, in each row (or column) of

the demand matrix, by default the 4 large flows account for 70% of the total traffic in the

row (or column), and the 12 medium flows account for the rest 30%. We will also study

how these hybrid switching algorithms perform when the traffic demand has other degrees

of skewness by varying cL and cS . Same as in [1, 16], two noise matrix terms N1 and N2

are added to D. Each nonzero element in N1 is a Gaussian random variable that is to be

added to a traffic demand matrix element that was nonzero before the noises are added.

Each nonzero (noise) element here inN1 has a standard deviation of 1/5 of the value of the

demand matrix element it is to be added to. We also add a positive Gaussian noise – with

standard deviation equal to 0.3% of 1 – to 50% of the zero entries of the demand matrix.

64

5 10 15 20 25 30

Number of flows per node

1.2

1.4

1.6

1.8

T
ra

n
s
m

is
s
io

n
 T

im
e

5 10 15 20 25 30

Number of flows per node

1.4

1.6

1.8

2

2.2

2.4

5 10 15 20 25 30

Number of flows per node

1.2

1.4

1.6

1.8

2

T
ra

n
s
m

is
s
io

n
 T

im
e

5 10 15 20 25 30

Number of flows per node

1.5

2

2.5

3

Eclipse BFF Solstice QBvND 2-hop Eclipse

Figure 6.1: Performance comparison while varying sparsity of demand matrix

Transmission Time Performances

In this section, we evaluate the performance robustness of the three algorithms, 2-hop

Eclipse, QBvND, and BFF, under a large set of traffic demand matrices that vary by sparsity

and skewness. We control the sparsity of the traffic demand matrix D by varying the total

number of flows (nL+nS) in each row from 4 to 32, while fixing the ratio of the number of

large flow to that of small flows (nL/nS) at 1 : 3. We control the skewness of D by varying

cS , the total percentage of traffic carried by small flows, from 5% (most skewed as large

flows carry the rest 95%) to 75% (least skewed). In all these evaluations, we consider four

65

different value combinations of system parameters δ and rc/rp: (1) δ = 0.01, rc/rp = 10;

(2) δ = 0.01, rc/rp = 20; (3) δ = 0.04, rc/rp = 10; and (4) δ = 0.04, rc/rp = 20.

0 20 40 60

% traffic carried by small flows

1.1

1.2

1.3

1.4

1.5

1.6

T
ra

n
s
m

is
s
io

n
 T

im
e

0 20 40 60 0

% traffic carried by small flows

1.4

1.6

1.8

2

2.2

2.4

0 20 40 60 0

% traffic carried by small flows

1.2

1.4

1.6

1.8

2

T
ra

n
s
m

is
s
io

n
 T

im
e

0 20 40 60 0

% traffic carried by small flows

1.8

2

2.2

2.4

2.6

2.8

Eclipse BFF Solstice QBvND 2-hop Eclipse

Figure 6.2: Performance comparison while varying skewness of demand matrix

Recall that δ is the reconfiguration delay of the optical switch, rc (= 1) and rp are

the transmission rate of the optical switch and the packet switch respectively. Figure 6.1

compares the transmission time of the three algorithms with Solstice and Eclipse when the

sparsity parameter nL + nS varies from 4 to 32 and the value of the skewness parameter

66

cS is fixed at 0.3. Figure 6.2 compares the transmission time of the three algorithms with

Solstice and Eclipse when the the skewness parameter cS varies from 5% to 75% and the

sparsity parameter nL + nS is fixed at 16 (= 4 + 12).

Both Figure 6.1 and Figure 6.2 show that BFF performs the best (i.e., shortest transmis-

sion times) in almost all the circumstances among all these algorithms. This is not surpris-

ing: Recall that BFF applies for optical switches that are partially reconfigurable. As we

described in section 5.2, this partial reconfigurability prevents unnecessary reconfigurations

and therefore increases the throughput of the optical switches. Comprehensively speaking,

2-hop Eclipse performs the second best among them. It even outperforms BFF in the right-

side two figures of Figure 6.1 when the number of flows per node is large (i.e., when the

traffic matrix is dense). This result is also reasonable: 2-hop Eclipse is an indirect routing

algorithm, which can serve more VOQs (i.e., more entries in the demand matrix) under a

fixed number of configurations. In other words, when the traffic matrix is dense (i.e., has

large number of nonzero entries), 2-hop Eclipse is able to use fewer number of configura-

tions to “cover” more nonzero entries and therefore reduces reconfiguration times. When

the reconfiguration delay δ is large, this smaller number of reconfiguration times induces

significant savings on the reconfiguration overhead. QBvND, on the other hand, does not

perform very well comparing with Eclipse and Solstice. It is mainly because the design

of QBvND is targeting the standalone optical switching problem, in which all traffic de-

mands are transmitted by the optical switch. The advantage of QBvND is at “swiping” out

the small entries using only a few configurations, which does not help much on the hybrid

switching problem.

6.2.2 Using recovered traffic demand matrices from real traces

For our simulations, we also use traffic demand matrices that are “recovered” (generated)

from real traces.

67

Dataset

We use the open-source traces provided by Facebook that describe Facebook’s data center

traffic [73]. The traces contain three different data center clusters that represent different

application types: Database, Web servers, and Hadoop servers. More than 300 million

packets are sampled from each of the three cluster traces. We note that the dataset is highly

sampled from the outbound link at a rate of 1 : 30, 000.

Inter-rack intra-pod traffic demand

Each sampled packet in the traces contains several attributes. Among them, we only con-

cern the following four attributes:

• Timestamp;

• Anonymized src/dst rack;

• Anonymized src/dst pod;

• Packet length

Here “pod” is a standard “unit of network” in Facebook data center fabric, which con-

sists of dozens of top of rack (TOR) switches and a few fabric switches to connect them.

Using the four attributes above, we can obtain all the inter-rack traffic in a pod.

Traffic recovery process

Recall that the dataset is highly sampled from the outbound link at a rate of 1 : 30, 000.

In other words, the traces only provide a tiny portion of traffic demand. Hence, we can-

not obtain traffic demand matrices (say within a 3ms interval) straightforwardly using the

traces. It naturally arises the following question: How to generate traffic matrices using the

traces? A. Chen et al [74] provides a traffic recovery method that is implemented on the

same trace. Figure 6.3 shows how it works.

68

from traces

�t
<latexit sha1_base64="grvIl58A4MJ6lhKccD8X4t52Lsk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpbhJ3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUkS8iQIl7ySaUxVI3g7GtzO//cS1EXH0gJOE+4oOIxEKRtFKnZ4RQ0X72C9X3Ko7B1klXk4qkKPRL3/1BjFLFY+QSWpM13MT9DOqUTDJp6VeanhC2ZgOedfSiCpu/Gx+75ScWWVAwljbipDM1d8TGVXGTFRgOxXFkVn2ZuJ/XjfF8NrPRJSkyCO2WBSmkmBMZs+TgdCcoZxYQpkW9lbCRlRThjaikg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wcsrpAO</latexit>

Sample

 Add �t
<latexit sha1_base64="grvIl58A4MJ6lhKccD8X4t52Lsk=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bpbhJ3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUkS8iQIl7ySaUxVI3g7GtzO//cS1EXH0gJOE+4oOIxEKRtFKnZ4RQ0X72C9X3Ko7B1klXk4qkKPRL3/1BjFLFY+QSWpM13MT9DOqUTDJp6VeanhC2ZgOedfSiCpu/Gx+75ScWWVAwljbipDM1d8TGVXGTFRgOxXFkVn2ZuJ/XjfF8NrPRJSkyCO2WBSmkmBMZs+TgdCcoZxYQpkW9lbCRlRThjaikg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wcsrpAO</latexit>

Repeat ?

�t �t�1

<latexit sha1_base64="m1vY5aRnSMGl1GMRzP9g4Gzy/kw=">AAACCXicbVBNS8NAEN3Ur1q/oh69LBbBiyWpgh6LXjxWsB/QhrDZbtqlu0nYnSgl9OrFv+LFgyJe/Qfe/Ddu2wja+mDg8d4MM/OCRHANjvNlFZaWV1bXiuuljc2t7R17d6+p41RR1qCxiFU7IJoJHrEGcBCsnShGZCBYKxheTfzWHVOax9EtjBLmSdKPeMgpASP5Nu5q3pfEB9wVLASiVHz/o2Vw4o59u+xUnCnwInFzUkY56r792e3FNJUsAiqI1h3XScDLiAJOBRuXuqlmCaFD0mcdQyMimfay6SdjfGSUHg5jZSoCPFV/T2REaj2SgemUBAZ63puI/3mdFMILL+NRkgKL6GxRmAoMMZ7EgntcMQpiZAihiptbMR0QRSiY8EomBHf+5UXSrFbc00r15qxcu8zjKKIDdIiOkYvOUQ1dozpqIIoe0BN6Qa/Wo/VsvVnvs9aClc/soz+wPr4BheCaNw==</latexit>

t t + 1
<latexit sha1_base64="YihVkeokkZs+C6kCWRHnVRz8/4Y=">AAAB+HicbVBNSwMxEM36WetHVz16CRZBEMpuFfRY9OKxgv2AdinZNNuGZpMlmVXq0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhYngBjzv21lZXVvf2CxsFbd3dvdK7v5B06hUU9agSijdDolhgkvWAA6CtRPNSBwK1gpHN1O/9cC04UrewzhhQUwGkkecErBSzy1BV7AIiNbqEcOZ33PLXsWbAS8TPydllKPec7+6fUXTmEmgghjT8b0Egoxo4FSwSbGbGpYQOiID1rFUkpiZIJsdPsEnVunjSGlbEvBM/T2RkdiYcRzazpjA0Cx6U/E/r5NCdBVkXCYpMEnni6JUYFB4mgLuc80oiLElhGpub8V0SDShYLMq2hD8xZeXSbNa8c8r1buLcu06j6OAjtAxOkU+ukQ1dIvqqIEoStEzekVvzpPz4rw7H/PWFSefOUR/4Hz+AFFOkts=</latexit>

t = 1
<latexit sha1_base64="JSHUmzwPY/87ek1Z4nAk8VIIvqI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrRxwn3I/oQIlQMIpWesBrr1cquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns1Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06RRuCt/jyMmlWK955pXp/Ua7d5HEU4BhO4Aw8uIQa3EEdGsBgAM/wCm+OdF6cd+dj3rri5DNH8AfO5w/TLY1+</latexit>

Yes (with probability p)No (with probability 1-p)

t t + 1

<latexit sha1_base64="YihVkeokkZs+C6kCWRHnVRz8/4Y=">AAAB+HicbVBNSwMxEM36WetHVz16CRZBEMpuFfRY9OKxgv2AdinZNNuGZpMlmVXq0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhYngBjzv21lZXVvf2CxsFbd3dvdK7v5B06hUU9agSijdDolhgkvWAA6CtRPNSBwK1gpHN1O/9cC04UrewzhhQUwGkkecErBSzy1BV7AIiNbqEcOZ33PLXsWbAS8TPydllKPec7+6fUXTmEmgghjT8b0Egoxo4FSwSbGbGpYQOiID1rFUkpiZIJsdPsEnVunjSGlbEvBM/T2RkdiYcRzazpjA0Cx6U/E/r5NCdBVkXCYpMEnni6JUYFB4mgLuc80oiLElhGpub8V0SDShYLMq2hD8xZeXSbNa8c8r1buLcu06j6OAjtAxOkU+ukQ1dIvqqIEoStEzekVvzpPz4rw7H/PWFSefOUR/4Hz+AFFOkts=</latexit>

Figure 6.3: Traffic Generation Model

The traffic matrix is generated by iteratively sampling packets from the trace. Once a

packet is sampled from the trace, it will be selected again in the next iteration with a repeat-

ing probability p, the same packet is sampled again; otherwise, a new packet is sampled

from the trace. Here p is the repeating probability of a packet. It determines how bursty

the generated traffic demand is. The larger p we use, more busty the traffic demand we

generate. Note that the number of repeating times of each packet follows the geometry

distribution with probability p. Each packet should be repeatedly sampled 1/(1 − p) (the

expectation of the geometry distribution) times on average.

To generate traffic matrices using the above method, we have two parameters to deter-

mine: (1) The repeating probability p; and (2) The total number of packets to sample for

each demand matrix. Normally, we should use derived statistics from the trace to deter-

mine the two parameters. However, for the repeating probability p, we cannot obtain any

useful statistics from the trace, since it is highly sampled. For this reason, we try to cover

the range of all meaningful p values by selecting various values of p for matrix genera-

69

tion. More precisely, we select p from the following four values {0, 0.8, 0.9, 0.95}, which

corresponds to an average repeating times (i.e., 1/(1− p)) of {1, 5, 10, 20} respectively.

On the other hand, since the optical switches have much larger bandwidth than packet

switches, the traffic demand within a small time interval (say 3ms) that is currectly being

handled by a packet switch is too “easy” for an optical switch to handle. For instance, for

the data center cluster used for database, the average number of sampled packets per second

is 14.7, which induces the average number of total packets per second to be 14.7×30, 000 =

441000 and the average number of total packets per 3ms to be 441000 × 0.003 = 1323.

If we generate a traffic matrix that accounts for only 1323 (or several thousands) sampled

packets, the traffic demand would be too small for an optical switch to handle (a packet

switch with much lower bandwidth is sufficient to handle the demand). In other words, the

resulting transmission time would be only a few dozens of microseconds, under a typical

optical switch configuration, which is much shorter than the length of the time interval

(3ms). For this reason, we scale the number of sampled packets per traffic demand matrix

to be a large number (say tens of thousands), so that the traffic demand is sufficiently large,

and it is worthy to apply an optical switch to transmit it.

Optical switch configuration

For our simulation, we borrow the configuration of the optical switch proposed in [75]:

• Reconfiguration delay δ: 11.5µs;

• Transmission rate per port rc: 10Gbps;

Note that each pod contains roughly 150 TOR switches, so the selected optical switch

must supports multiple input / output ports. We choose this particular optical switch, since

to the best of our knowledge, it has the smallest reconfiguration delay (in microseconds

level) among the optical switches that can support multiple (the prototype proposed in [75]

supports 24 ports) input / output ports. Similar to the previous works on hybrid switching,

70

we assume a packet switch that has a transmission rate rp = 0.1×rc (1/10 transmission rate

of the optical switch) is combined with this optical switch to schedule each traffic demand

matrix.

Transmission Time Performances

1 5 10 20
250

300

350

400

450

T
ra

n
s
m

is
s
io

n
 T

im
e
 (

s
)

BFF Solstice QBvND Eclipse 2-hop Eclipse

1 5 10 20
250

300

350

400

450

500
Packet Number: 18000 Packet Number: 27000

Figure 6.4: Transmission time performances under generated traffic matrices

Figure 6.4 shows the transmission time performances under generated traffic matrices.

Similar to the previous results (of using constructed traffic matrices), BFF performs the best

(i.e., shortest transmission times) in all the circumstances among all these algorithms, 2-

hop Eclipse performs the second best, and QBvND does not perform very well comparing

with Eclipse and Solstice. The underlining reason behind this result has been thoroughly

discuss earlier in subsection 6.2.1.

Recall that p, the repeating probability of packet sampling process, controls “how bursty

the traffic demand is”. When p is larger, each sampled packet will be reused for more times,

which induces a more bursty traffic pattern. Note that the burstiness implies the skewness

of the demand matrix. When the traffic pattern is bursty, a few large flows would account

for the majority of the traffic demand of the corresponding input port and output port. In the

context of the traffic matrix, the large flows are mapped to a fewer number of large elements

71

in the traffic matrix, each of them accounts for the a large portion of the row or column sum.

Therefore, the resulting demand matrix under larger p (i.e., large 1/(1−p)) would be more

skewed. The burstiness also implies the sparsity of the demand matrix. When the traffic

pattern is bursty, the sampled packets would be concentrated in a few flows, each of which

contributes at most 1 nonzero entry in the demand matrix. Therefore, the resulting demand

matrix under larger p (i.e., large 1/(1− p)) would also be more sparse.

Recall that the two characteristics, skewness (few large elements in a row or column

account for the majority of the row or column sum) and sparsity (the vast majority of the

demand matrix elements have value 0 or close to 0), are favorable for scheduling algo-

rithms to perform well. Figure 6.4 shows that the transmission time decreases as 1/(1− p)

increases (i.e., p increases) for almost all algorithms, except for 2-hop Eclipse. The perfor-

mance of 2-hop Eclipse is however counterintuitive: its transmission time slightly increases

as 1/(1− p) increases.

1 5 10 20

60

80

100

120

140

160

180

M
a
x
im

u
m

 r
o
w

/c
o
lu

m
n
 s

u
m

 (
M

b
it
s
) Packet number = 18000

1 5 10 20

100

150

200

250

300

350

Packet number = 27000

Figure 6.5: Maximum row/column sums of the generated traffic matrices

To explain this counterintuitive phenomenon, we further investigate the effect of bursti-

ness: We note that burstiness also incurs another “skewness” on the traffic demands among

the input (output) ports. More specifically, due to the burstiness, some input (output) port

72

may have much larger traffic demands than the other ports. In fact, it would cause the trans-

mission time to be longer, since the “heaviest” (i.e., having the largest amount of traffic

demand) input (output) port itself requires a long transmission time. To confirm our hy-

pothesis, we compute the maximum row and column sum of each generated traffic matrix,

which corresponds to the amount of traffic demand of the “heaviest” input (output) ports.

The results are shown in Figure 6.5. It shows that amount indeed increases as 1/(1 − p)

increases (i.e., p increases), which confirms our hypothesis.

6.3 From batch scheduling algorithm to batch scheduling process

Almost all previous works on hybrid switch scheduling, including ours, perform only a

“snapshot” of batch scheduling, that is, given the traffic demand matrix D, a schedule of

the optical and the packet switches is computed only for transmitting traffic in D. In real-

ity, a scheduling algorithm needs to handle traffic demands that are continuously arriving.

In this section, we will elaborate how to extend a batch scheduling algorithm to a batch

scheduling process.

6.3.1 Batch Scheduling Process

Let us introduce a naive batch scheduling process using an arbitrary batch scheduling al-

gorithm. Let {[tk, tk+1]}∞k=0 denotes the sequence of scheduling epochs. At time t1, the

traffic demand accumulated (within [t0, t1]), denoted as D1, is measured (by traffic demand

collector) and fed into the hybrid switch scheduler as the input. The scheduler then takes a

scheduling epoch [t1, t2] to compute the batch schedule of D1 (using the batch scheduling

algorithm). This schedule will be operated within epoch [t2, t3]. Similarly, the schedule of

the traffic demand accumulated at time t2, denoted as D2, is computed in [t2, t3] and then

operated within [t3, t4]. Generally speaking, the schedule of the traffic demand accumulated

at time tk, denoted as Dk, is computed in [tk, tk+1] and then operated within [tk+1, tk+2].

This naive batch scheduling process has two flaws: (1) The computation of a schedule

73

that is going to be operated within [tk+1, tk+2] only considers the traffic demand that is

accumulated before time tk. The new arrival traffic demand within [tk, tk+1] is completely

dismissed; (2) Normally, the computed schedule only occupies a portion of the scheduling

epoch, which leaves the rest of the epoch underutilized. Nevertheless, in the next section,

we will propose a solution that kills both birds (flaws) with one stone. The general idea is

very simple: We “expand” the computed schedule to use the whole scheduling epoch. The

“expansion” of the computed schedule, in turn, generates “slacks” (i.e., residue capacity)

that can carry new arrival traffic demand.

6.3.2 Optical Switch Schedule Scaling

Now we describe how to “expand” a schedule to make full use of a scheduling epoch in

detail. We start with a simple case, where the optical switch is not partial reconfigurable.

As we described before, a schedule S of such an optical switch consists of a sequence of

optical switch configurations and their durations: (M1, α1), (M2, α2), · · · , (MK , αK). Each

Mk is an n × n permutation (matching) matrix that denotes the kth switch configuration.

Mk(i, j) = 1 if input i is connected to output j and Mk(i, j) = 0 otherwise. αk denotes

its duration. Recall that the optical switch takes a reconfiguration delay δ between any

two sequential switch configurations, and it transmits no traffic during this period. The

total transmission time of the above schedule is TS , Kδ +
∑K

k=1 αk, where δ is the

reconfiguration delay,K is the total number of configurations in the schedule. Let T (> TS)

denotes the length of the scheduling epoch.

Our “expansion” algorithm scales up all of the durations α1, α2, · · · , αK by a univer-

sal factor c (> 1), such that the scaled schedule, denoted as S ′, expressed as (M1, cα1),

(M2, cα2), · · · , (MK , cαK), makes full use of the scheduling epoch. Mathematically, we

have

Kδ + c
K∑
k=1

αk = T (6.2)

74

It is easy to derive that Equation 6.2 holds if and only if c = (T − Kδ)/(TS − Kδ),

which would be used as the scaling factor.

This scaling algorithm has several merits: First, the scaling algorithm has an extremely

low computational complexity. Once a schedule S (before scaling) is computed (say using

QBvND), the scaling algorithm can scale S almost instantly and obtain the scaled schedule

S̃; Second, note that the traffic demand patterns between two successive schedule epochs

should have some similarities, since some data flows may exist during both scheduling

epochs. As a result, the optical switch configurations used in the last scheduling epoch

should be able to transmit a considerate portion of the traffic demands arrived in the current

scheduling epoch. Hence, this scaling algorithm should be able to transmit a considerate

portion of new arrival traffic demand; Third, this scaling algorithm does not incur additional

reconfiguration cost (i.e., the total number of reconfigurations K does not increase). Note

that the switching (reconfiguration) times is closely related to the lifetime of an optical

switch [39]. This scaling algorithm minimizes the fatigue costs of the optical switch.

Scale the schedule of a partially reconfigurable optical switch

When the optical switch is partially reconfigurable, scaling a schedule S of it becomes

more difficult, since the reconfigurations happening at different input (output) ports are not

synchronized. Recall that for a partially reconfigurable optical switch, its schedule can be

represented by an n×n matrix process S(t) =
(
sij(t)

)
, where for any given time t, S(t) is

a 0-1 (sub-matching) matrix that encodes the connections between input ports and output

ports at time t.

For describing the scaling algorithm, we consider the schedule S in a different way:

Note that the schedule of each input port (i.e., transmitter) can be viewed as a sequence

of successive intervals. There are three types of intervals in this context: (1) transmission

intervals; (2) reconfiguration intervals; and (3) idle intervals. Figure 6.6 shows an example

of such a schedule

75

R1 T1 I1R2 T2 R3 T3

R: Reconfiguration T: Transmission I: Idle

⌧0
<latexit sha1_base64="fCxjq/toupiVcNz5ScxXjJcTmQc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9p2nf75Ypbdecgq8TLSQVyNPrlr94gZmnEFTJJjel6boJ+RjUKJvm01EsNTygb0yHvWqpoxI2fza+dkjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J47WdCJSlyxRaLwlQSjMnsdTIQmjOUE0so08LeStiIasrQBlSyIXjLL6+SVq3qXVRr95eV+k0eRxFO4BTOwYMrqMMdNKAJDB7hGV7hzYmdF+fd+Vi0Fpx85hj+wPn8AUjHju8=</latexit>

⌧1
<latexit sha1_base64="LuhYc7lyyL0ujsllUTaz6L96lpY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9p2vf65Ypbdecgq8TLSQVyNPrlr94gZmnEFTJJjel6boJ+RjUKJvm01EsNTygb0yHvWqpoxI2fza+dkjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J47WdCJSlyxRaLwlQSjMnsdTIQmjOUE0so08LeStiIasrQBlSyIXjLL6+SVq3qXVRr95eV+k0eRxFO4BTOwYMrqMMdNKAJDB7hGV7hzYmdF+fd+Vi0Fpx85hj+wPn8AUpLjvA=</latexit>

⌧2
<latexit sha1_base64="D9on6NZWYL8gIeRtuUAsGkMb3ww=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9p2q/1yxW36s5BVomXkwrkaPTLX71BzNKIK2SSGtP13AT9jGoUTPJpqZcanlA2pkPetVTRiBs/m187JWdWGZAw1rYUkrn6eyKjkTGTKLCdEcWRWfZm4n9eN8Xw2s+ESlLkii0WhakkGJPZ62QgNGcoJ5ZQpoW9lbAR1ZShDahkQ/CWX14lrVrVu6jW7i8r9Zs8jiKcwCmcgwdXUIc7aEATGDzCM7zCmxM7L86787FoLTj5zDH8gfP5A0vPjvE=</latexit>

⌧3
<latexit sha1_base64="mXSc4pyfBJAaej1tWUiUADWI3rE=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4Kkkr6LHoxWMF+wFtKJvtpl27yYbdiVBC/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23jEo1402mpNKdgBouRcybKFDyTqI5jQLJ28H4dua3n7g2QsUPOEm4H9FhLELBKFqp1UOa9mv9UtmtuHOQVeLlpAw5Gv3SV2+gWBrxGJmkxnQ9N0E/oxoFk3xa7KWGJ5SN6ZB3LY1pxI2fza+dknOrDEiotK0YyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J47WciTlLkMVssClNJUJHZ62QgNGcoJ5ZQpoW9lbAR1ZShDahoQ/CWX14lrWrFq1Wq95fl+k0eRwFO4QwuwIMrqMMdNKAJDB7hGV7hzVHOi/PufCxa15x85gT+wPn8AU1TjvI=</latexit>

⌧4
<latexit sha1_base64="k9VAmflgudrE+/yP42+VyhuOKj0=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4r2FpoQ9lsN+3azSbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY38z8hyeujYjVPU4S7kd0qEQoGEUrtXtI0369X664VXcOskq8nFQgR7Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzaKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimGV34mVJIiV2yxKEwlwZjMXicDoTlDObGEMi3srYSNqKYMbUAlG4K3/PIqadeq3kW1dlevNK7zOIpwAqdwDh5cQgNuoQktYPAIz/AKb07svDjvzseiteDkM8fwB87nD07XjvM=</latexit>

⌧5
<latexit sha1_base64="wprNWeItrwres2rjSE27VDoXrmA=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGC/YA2lM12067dbMLuRCih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecJxwP6IDJULBKFqp2UWa9i57pbJbcWcgy8TLSRly1Hulr24/ZmnEFTJJjel4boJ+RjUKJvmk2E0NTygb0QHvWKpoxI2fza6dkFOr9EkYa1sKyUz9PZHRyJhxFNjOiOLQLHpT8T+vk2J47WdCJSlyxeaLwlQSjMn0ddIXmjOUY0so08LeStiQasrQBlS0IXiLLy+TZrXinVeq9xfl2k0eRwGO4QTOwIMrqMEd1KEBDB7hGV7hzYmdF+fd+Zi3rjj5zBH8gfP5A1BbjvQ=</latexit>

⌧6
<latexit sha1_base64="PaNrWVCgmhUXnyAAffimWtmbDBI=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGC/YA2lM12067dbMLuRCih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecJxwP6IDJULBKFqp2UWa9i57pbJbcWcgy8TLSRly1Hulr24/ZmnEFTJJjel4boJ+RjUKJvmk2E0NTygb0QHvWKpoxI2fza6dkFOr9EkYa1sKyUz9PZHRyJhxFNjOiOLQLHpT8T+vk2J47WdCJSlyxeaLwlQSjMn0ddIXmjOUY0so08LeStiQasrQBlS0IXiLLy+TZrXinVeq9xfl2k0eRwGO4QTOwIMrqMEd1KEBDB7hGV7hzYmdF+fd+Zi3rjj5zBH8gfP5A1HfjvU=</latexit>

⌧7
<latexit sha1_base64="BiVkojebPY6THxe07KEwkOF+kl8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqUI9FLx4r2FpoQ9lsN+3azSbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY38z8hyeujYjVPU4S7kd0qEQoGEUrtXtI0369X664VXcOskq8nFQgR7Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzaKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimGV34mVJIiV2yxKEwlwZjMXicDoTlDObGEMi3srYSNqKYMbUAlG4K3/PIqadeq3kW1dndZaVzncRThBE7hHDyoQwNuoQktYPAIz/AKb07svDjvzseiteDkM8fwB87nD1NjjvY=</latexit>

Figure 6.6: An example of the schedule of an input port (transmitter)

The schedule of an input port must satisfy the following properties: (1) The end time of

a reconfiguration interval is the start time of a transmission interval (i.e., τ1, τ3, τ6); (2) The

end time of an idle interval is the start time of a reconfiguration interval (i.e., τ5); and (3)

The end time of a transmission interval could be either the start time of a reconfiguration

interval (i.e., τ2), or the start time of a idle interval (i.e., τ4).

Now we describe the scaling algorithm using the above example. Given a scaling factor

c (we will describe how to determine c shortly), we first scale all the timings τ1, τ2, ..., τ7

by multiplying c. Then all of the reconfiguration intervals, transmission intervals, and

idle intervals are scaled c times respectively. Second, we split each scaled reconfiguration

interval (with duration cδ) into two parts, a normal reconfiguration interval (with duration

δ) plus an idle interval (with duration (c− 1) · δ).

The scaling factor c is assigned to be T/Tmax, where Tmax denotes the maximum finish

time of all input ports (i.e., the finish time of the input port in the example is τ7), and T is

the length of the scheduling epoch. Note that a necessary condition of a schedule S(t) to

be feasible is that S(t) is a sub-matching matrix at any time t (i.e., each input port connects

to at most one output port at the same time, and each output port connects to at most one

input port at the same time). It is easy to verify that the scaled schedule, denoted as S̃(t),

using this algorithm is feasible, since we have S̃(t) = S(t/c) at any time t.

6.3.3 Evaluation Results

In this section, we evaluate the performance of the above scaling algorithm. More specif-

ically, we measure the amount of additional traffic demand that can be transmitted under

76

various scaling factors. We use QBvND as the scheduling algorithm. Other scheduling

algorithms (e.g., BFF) show similar results.

Demand matrix

 1 1.1 1.2 1.5 2 3 5

Scaling factor

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

T
o
ta

l
a
m

o
u
n
t
o
f
tr

a
n
s
m

it
te

d
 t
ra

ff
ic

 d
e
m

a
n
d
 (

M
b
it
s
)

Effect of the scaling factor on the amount of data transmission

Theoretically maximum transmission amount

 Without

New Arrival

Figure 6.7: Effect of the scaling factor on the total amount of data transmission

We use the generated demand matrices used in subsection 6.2.2. We assume the gener-

ated demand matrices to be the arrival traffic demands for a sequence of successive schedul-

ing epochs. Each traffic matrix is generated by sampling 27, 000 packets, and the repeating

probability p is selected to be 0.95%. The generated traffic matrices correspond to the last

column of the right-hand-side of Figure 6.4, where 1/(1− p) = 20. Other generated traffic

matrices using a different number of sampled packets or a different repeating probability

show similar results. We continue to assume the reconfiguration delay of the optical switch

is 11.5µs, the optical switch has 156 input ports and 156 output ports respectively, and the

transmission rate per port is 10Gbps. We measure the total amount of transmitted traffic

77

demand under different scaling factors and concludes the results in Figure 6.7.

The first column of Figure 6.7 (i.e., without new arrival) is the amount of traffic trans-

mission when new arrival traffic demand is not in consideration. The rest columns consider

the new arrival traffic demand and use different scaling factors. It is not surprising that a

larger scaling factor induces a larger amount of transmitted traffic demand, as shown in Fig-

ure 6.7. For instance, when the schedule is scaled by a scaling factor of 1.2, the amount of

data transmission increases roughly 12% comparing to that of the original schedule (with-

out scaling); when the schedule is scaled by a scaling factor of 1.5, the amount of data

transmission increases roughly 24%.

The red line in Figure 6.7 represents the theoretically maximum amount of data trans-

mission after scaling: Note that the duration of each configuration is scaled up by a factor

of c. Theoretically, the amount of data transmission using the scaled schedule is at most c

times of that using the original (not scaled) schedule. Figure 6.7 shows that when the scal-

ing factor is small (i.e., c ≤ 1.2), the amount of data transmission is close to the theoretical

maximum. When the scaling factor is large (i.e., c ≥ 2), that amount is far less than the

theoretical maximum.

78

CHAPTER 7

LINE-EVEN SPARSE SPLIT (LESS): TRAFFIC DEMAND SPLIT IN

PARALLEL-OPTICAL-SWITCHED NETWORKS

7.1 MSB Problem and LESS Solution

In this section, we first formally formulate the Matrix Split and Balance (MSB) problem

in subsection 7.1.1. Then in subsection 7.1.2, we introduce our solution, Line-Even Sparse

Split (LESS), and elaborate how to reduce LESS for a s-way MSB problem to LESS for

a 2-way MSB problems. Then we describe in details how LESS solves a 2-way MSB

problems by two different methods, a straightforward but slower LP-based method in sub-

section 7.1.3, and a faster combinatorial method in subsection 7.1.4.

7.1.1 Matrix Split and Balance (MSB)

In this section, we formally formulate the MSB problem of splitting the demand matrix D

into s sub-workload matrices D1, D2, ..., Ds. It is a constrained optimization problem with

the objective of minimizing the total number of nonzero entries (Formula Equation 7.1),

or equivalently of maximizing the sparsity of the split. There are four sets of constraints

shown in Formulae Equation 7.2 through Equation 7.5 respectively. In them we define

[s] , {1, 2, · · · , s} and [n] , {1, 2, · · · , n}.

The first set of constraints (Equations Equation 7.2) state that, for each column j in

each matrix Dk, the sum of entries in the jth column of Dk must be equal to 1/s of the sum

of entries in the jth column of D. These constraints ensure that the jth output port of every

switch is given the same amount of workload that is equal to 1/s of the traffic to be received

by the rack j. The second set of constraints (Equations Equation 7.3) state the same for each

row i in each matrix Dk. These constraints ensure that the ith input port of every switch

79

is given the same amount of workload that is equal to 1/s of the traffic to be transmitted

by rack i. These two sets of constraints correspond to the aforementioned “line-even” (i.e.,

identical row or column sum) requirement. The fourth (Inequalities Equation 7.5) and the

third (Equations Equation 7.4) sets state respectively that D1, D2, ..., Ds are nonnegative

matrices and that their total is D.

minimize
s∑

k=1

‖Dk‖0 (7.1)

subject to
n∑
i=1

Dk(i, j) =
1

s

n∑
i=1

D(i, j),∀j ∈ [n], k ∈ [s] (7.2)

n∑
j=1

Dk(i, j) =
1

s

n∑
j=1

D(i, j), ∀i ∈ [n], k ∈ [s] (7.3)

s∑
k=1

Dk(i, j) = D(i, j),∀i, j ∈ [n] (7.4)

0 ≤ Dk(i, j) ≤ D(i, j),∀i, j ∈ [n] (7.5)

Although all the constraints are linear, the objective function
∑s

k=1 ‖Dk‖0 is not, so this

constrained optimization problem is not a Linear Programming (LP) problem. In fact, it has

been proved to be NP-hard [22], so only heuristic or approximate solutions to it exist that

run in polynomial time. Our solution LESS is a (1 + (2n−1)(s−1)
m

)-approximation algorithm,

where m = ‖D‖0 is the number of nonzero entries in D. In practice, it can be considered a

(1 + ε)-approximation algorithm, since typically n = o(m), s is a small constant (typically

< 10), and n can grow to hundreds (of racks) in real-world datacenter networks.

7.1.2 Line-Even Sparse Split (LESS)

The design of LESS is based on the following insight: The linear constraints Equation 7.2

through Equation 7.5 define a polytope within which any point satisfies the line-even con-

dition and any extreme point of this polytope corresponds to a fairly sparse split in the sense

80

of Equation 7.6, which we will prove shortly. Hence our LESS algorithm is simply to find

an extreme point of this polytope. This can be done by replacing the nonlinear objective

function in Equation 7.1 by a dummy linear objective function such as ”Minimizing 0” in

the constrained optimization problem above, and solving the resulting LP problem using

an LP solver such as Gurobi [76].

s∑
k=1

‖Dk‖0 ≤ ‖D‖0 + (s− 1)(2n− 1) (7.6)

Reduction from s-way Split to 2-way Splits

Throughout this section, whenever we use the term split, we mean to split (the matrix) in the

LESS manner. In other words, such a split always corresponds to an extreme point of the

corresponding polytope. Now we show that, for any s > 2, we can reduce an s-way split

(i.e.,D intoD1,D2, ...,Ds) to a “binary tree” of s−1 recursive 2-way splits. This reduction

will not only significantly simplify our presentation of the resulting linear programming

(LP) problem and solution, but also allow for the use of parallel processing (to be elaborated

next) to speedup its computation. Intuitively, this reduction is straightforward when s is a

power of 2. For example, when s = 8, D is split first into “two halves”, then into “four

quarters”, and finally into eight sub-workload matrices D1, D2, ..., D8, each of which

accounts for exactly 1/8 of the total workload contained in D. The corresponding “binary

tree” is a complete binary tree of height 3 with a total of s− 1 = 7 internal nodes, each of

which corresponds to a 2-way split.

We now explain how this reduction can be done when s is not a power of 2. Due to

the recursive nature of the splits, we need only to explain what the very first 2-way split

of a matrix D′ should be, when D′ needs to eventually be split into s′ pieces. There are

only two cases to consider. In the first case where s′ is an even number, the 2-way split

has weights (1/2, 1/2) in the sense each row or column sum of D′1 is equal to 1/2 of the

corresponding row or column sum of D′. Matrices D′1 and D′2 will then be split further

81

into s′/2 pieces each. In the second case when s′ is an odd number, the 2-way spit has

weights (s
′−1
2s′

, s
′+1
2s′

) in the sense each row or column sum of D′1 is equal to s′−1
2s′

of the

corresponding row or column sum of D′. Matrices D′1 and D′2 will then be split further into

(s′ − 1)/2 and (s′ + 1)/2 pieces respectively. For example, when s′ = 7, the 2-way split

has weights (3/7, 4/7). The resulting D′1 and D′2 need to be split further into 3 and 4 pieces

respectively.

Now that any s-way split can be reduced to s − 1 2-way splits, we will only describe

how a 2-way split is performed in the sequel. Furthermore, we will only consider weights

(1/2, 1/2) because the 2-way LESS algorithm works with any (pair of) weights (as pa-

rameters) in the same manner. When describing the 2-way LESS algorithm with weights

(1/2, 1/2) in the next section, we will also prove that each 2-way split increases the num-

ber of nonzero entries
∑s

k=1 ‖Dk‖0 by at most 2n − 1. This implies that any s-way split

increases
∑s

k=1 ‖Dk‖0 by at most (s − 1)(2n − 1) (Inequality Equation 7.6), since it can

be reduced to s− 1 2-way splits.

Parallelization

As explained earlier, this reduction from s-way split to 2-way splits allows for the speedup

of its computation using parallelization. We now illustrate how to parallelize the com-

putation in the aforementioned simple case of s = 8, where there are seven instances of

2-way split computations over three rounds: split D first into “two halves” (one instance)

in the first round , then into “four quarters” (two instances) in the second round, and fi-

nally into eight sub-workload matrices D1, D2, ..., D8 (four instances) in the third round.

Clearly, four (more generally s/2) parallel processors (or cores) can compute this 8-way

split in three rounds of time, that is, roughly three (more generally log2 s) times the amount

of time needed to compute a 2-way split instance. In comparison, serial execution takes

roughly seven (more generally s − 1) rounds of time. Finally, we do not advocate further

pipelining these three (more generally log2 s) rounds of computations because although it

82

increases the “throughput” of this computation, it does not reduce the “delay”, which is

what matters in real-world operations.

Comparison with Naive Solution

Although the naive MSB solution of splittingD evenly (i.e.,D1 = D2 = · · · = Ds = D/s)

satisfies all the constraints Equation 7.2 through Equation 7.5, it maximizes, rather than

minimizes, the objective function
∑s

k=1 ‖Dk‖0. This leads to much higher reconfiguration

costs for the naive solution, as we will show in section 7.2. As a result, LESS outperforms

the naive solutions under most of the realistic parameter settings.

7.1.3 LP-based 2-way LESS

In this section, we describe the 2-way split of a matrix D′ into two matrices D′1 and D′2

with weights (1/2, 1/2). For convenience of presentation, we drop the apostrophe character

from D′, D′1, and D′2 and write them as D, D1, and D2 respectively. We emphasize this

(new) D could be the original demand matrix or any internal node of the aforementioned

“binary tree” of 2-way splits.

This 2-way split corresponds to finding an extreme point of the polytope defined by

the following equations and inequalities using the LESS algorithm. Here Equation 7.7,

Equation 7.8, and Equation 7.9 correspond to the special case of Equation 7.2, Equation 7.3,

Equation 7.4, and Equation 7.5 when s is set to 2. And the weight for D1 is the term 1
2

in

Equation 7.7 and Equation 7.8. This term will have a different value if D1 has a different

weight (e.g., 3/7 in the “odd split” example in subsubsection 7.1.2). Note that we only

need to compute D1, since D2 = D −D1.

83

n∑
j=1

D1(i, j) =
1

2

n∑
j=1

D(i, j), ∀i ∈ [n] (7.7)

n∑
i=1

D1(i, j) =
1

2

n∑
i=1

D(i, j), ∀j ∈ [n] (7.8)

0 ≤ D1(i, j) ≤ D(i, j),∀i, j ∈ [n] (7.9)

Note that Equation 7.7 corresponds to n equations (also called tight constraints below

in Lemma 1), one for each row i, and so does Equation 7.8. Out of these 2n tight con-

straints, only 2n − 1 of them are linearly independent, because the sum of n row sums of

D1 has to be equal to the sum of n column sums of D1. According to Lemma 1 below, any

extreme point solution (defined precisely below in Definition 1) of this LP problem has at

most 2n−1 variables. In this context, a variable corresponds to a matrix entryD1(i, j) that

is not on the boundary of Equation 7.9, or in other words 0 < D1(i, j) < D(i, j). Clearly,

each such variable D1(i, j) increases the number of nonzero entries from one (namely

D(i, j)) before the split to two (namely D1(i, j) and D2(i, j)) after the split. This proves

the following proposition.

Proposition 1. A 2-way split of D under constraints Equation 7.7 through Equation 7.9

increases the total number of nonzero entries by at most 2n− 1.

Lemma 1 (Rank Lemma, Lemma 1.2.3 in [77]). Let P = {x : Ax ≥ b, x ≥ 0}, and let x

be an extreme point solution of P such that xi > 0 for each i. Then any maximal number

of linearly independent tight constraints of the form Aix = bi for some row i of A equals

the number of variables.

Definition 1 (Definition 1.2.1 in [77]). Let P = {x : Ax ≥ b, x ≥ 0} ⊆ Rn. Then x ∈ P

is an extreme point solution of P if there does not exist a nonzero vector y ∈ Rn such that

x+ y, x− y ∈ P .

84

Such an extreme point solution can be computed using a LP solver such as Gurobi

[76]. However, when n is large, this LP computation is very slow. For example, when

n = 100 (racks), it takes the Gurobi, which is the quickest among LP solvers by our

experience, hundreds of milliseconds to compute a 2-way split of D. In the next section,

we describe a non-LP-based LESS algorithm that performs the same LP computation, but

in a combinatorial manner. For n = 100, it runs an order of magnitude faster than LP-based

LESS, as we will show in subsection 7.2.5.

Algorithm 6: The pseudocode of combinatorial 2-way LESS
Input : D;
Output: D1;

1 Initialize D1(i, j)← D(i, j)/2,∀i, j ∈ [n];
2 Convert D1 to G;
3 while An alternating cycle σ is found in G do
4 Increase and decrease the weights of edges in σ in an alternating manner by the

same value η so that all edge weights remain within their “legal ranges” and
one or more edges become tight;

5 Remove tight edges from G;
6 end
7 Return D1 that is converted back from G;

7.1.4 Combinatorial 2-way LESS

The combinatorial LESS algorithm performs the same LP (solving) operation as before:

Starting with the aforementioned naive solution of D1 = D/2, the algorithm iteratively

modifies D1 within the solution space to push it towards one of its extremal points. How-

ever, it does so by modeling D1 as a bipartite graph and converting this LP (solving) oper-

ation into a graph computation problem.

Conversion to Graph Computation

To describe this conversion, we need the following definition.

Definition 2. We call a matrix entry D1(i, j) tight if D1(i, j) = 0 or D1(i, j) = D(i, j). In

85

other words, D1(i, j) is tight if it is on the boundary of the constraint 0 ≤ D1(i, j) ≤

D(i, j) (as a part of Equation 7.9). We call D1(i, j) loose otherwise (i.e., when 0 <

D1(i, j) < D(i, j)).

In the combinatorial LESS algorithm, the matrix D1 is modeled as a bipartite graph

G(U ∪ V,E) whose edge set E evolves when the values of its entries are changed by

the execution of the algorithm. In this bipartite graph, one partite (vertex set) U contains

n vertices u1, u2, · · · , un, in which each ui, 1 ≤ i ≤ n, corresponds to row i of D1.

The other partite V also contains n vertices v1, v2, · · · , vn in which each vj , 1 ≤ j ≤ n,

corresponds to column j of D1. A weighted edge exists between ui and vj , or in other

words (ui, vj) ∈ E, if and only if D1(i, j) is loose. The weight of this edge is set to

D1(i, j).

Pseudocode of Combinatorial 2-way LESS

The pseudocode of the combinatorial (graph) algorithm is shown in algorithm 6. The design

of the algorithm is based on the following fact: If the bipartite graph G contains a cycle σ

(line 3), then we can modify the weights of the matrix entries (of D1) that correspond to

the edges in σ so that one or more such matrix entries become tight (line 4). Once such

a matrix entry becomes tight, its corresponding edge is removed from the bipartite graph

(line 5), according to the definition of the edge set E above. In line 3 of algorithm 6, the

depth-first search (DFS) procedure is used to find a cycle.

algorithm 6 terminates only when no cycle exists in the bipartite graph. The resulting

cycle-free graph, which has only 2n vertices, can have no more than 2n − 1 edges (loose

entries), since otherwise it cannot be cycle-free. Since each loose entry increases the num-

ber of nonzero entries by 1 as explained earlier, each 2-way split increases this number by

at most 2n− 1. Hence this combinatorial view offers another proof of Proposition 1.

Now we explain why and how we can make one or more edges (rather the corresponding

matrix entries) tight in each such cycle σ, as stated in line 4 of algorithm 6. Since G is

86

bipartite, σ must contain an even number of edges. Like in the graph algorithm literature,

we call σ an alternating cycle for a similar reason: “Walking around” the cycle starting

at an arbitrary vertex on the σ and following a direction chosen arbitrarily (from the two

possible directions), we will increase or decrease the weights of the edges traversed by the

walk in an alternating manner, by the same amount η. In other words, we will increase the

weight of the first edge by η, decrease the weight of the second edge by η, increase the

weight of the third edge by η, and so on. As we will explain shortly using a toy example,

this amount η is decided such that after the weight modifications, the weights of all edges

(matrix entries) in σ remain within their “legal ranges” (i.e., 0 ≤ D1(i, j) ≤ D(i, j) for

any D1(i, j) in σ), and at least one of them becomes tight.

Since the starting point and the direction of each such walk are chosen arbitrarily, which

can be implemented as being chosen randomly in practice, it appears that algorithm 6 is

“equal-opportunity” in the sense its logic is inherently not biased for or against D1 (equiv-

alently against or for D2) in distributing the up to 2n − 1 new nonzero entries to D1 and

D2. This behavior explains why the resulting s sub-workload matrices from an s-way split

have similar sparsities, as will be shown in subsection 7.2.4.

A Toy Example

We now illustrate the concept of alternating cycle and the process of weight modification

by an example shown in Figure 7.1 and Figure 7.2. The first 4 × 4 matrix to the left in

Figure 7.1 is the demand matrix D, which has 9 nonzero entries. As shown in Figure 7.1,

D1 is initialized to D
2

(second 4× 4 matrix to the left), so it also has 9 nonzero entries. All

of them are loose to start with so they are all underlined. The bipartite graph corresponding

to D1 at this moment is shown in Figure 7.2. As explained earlier, vertices u1, u2, u3,

and u4 correspond to rows 1, 2, 3, and 4 of D1 respectively and vertices v1, v2, v3, and

v4 correspond to columns 1, 2, 3, and 4 of D1 respectively. The graph G has 9 edges,

corresponding respectively to the 9 loose entries of D1. For example, the edge u1 → v2

87

corresponds to the loose (underlined) matrix entry D1(1, 2).

0 0.1 0.3 0
0.05 0 0 0
0.2 0.15 0 0.05

0.15 0.15 0.1 0

+

-

Iteration 1 ⌘ = 0.1
<latexit sha1_base64="DMRrFdXAJ8mpZD2RAQnusUTJqK4=">AAAB8HicbVBNS8NAEN34WetX1aOXxSJ4CkkV9CIUvXisYD+kDWWznbRLdzdhdyOU0F/hxYMiXv053vw3btoctPXBwOO9GWbmhQln2njet7Oyura+sVnaKm/v7O7tVw4OWzpOFYUmjXmsOiHRwJmEpmGGQydRQETIoR2Ob3O//QRKs1g+mEkCgSBDySJGibHSYw8MufZcv9yvVD3XmwEvE78gVVSg0a989QYxTQVIQznRuut7iQkyogyjHKblXqohIXRMhtC1VBIBOshmB0/xqVUGOIqVLWnwTP09kRGh9USEtlMQM9KLXi7+53VTE10FGZNJakDS+aIo5djEOP8eD5gCavjEEkIVs7diOiKKUGMzykPwF19eJq2a65+7tfuLav2miKOEjtEJOkM+ukR1dIcaqIkoEugZvaI3RzkvzrvzMW9dcYqZI/QHzucPEUuPRA==</latexit>

0 0.2 0.2 0
0.05 0 0 0
0.3 0.05 0 0.05

0.05 0.15 0.2 0

Iteration 2

0 0.2 0.2 0
0.05 0 0 0
0.35 0 0 0.05

0 0.2 0.2 0
⌘ = 0.05

<latexit sha1_base64="5ZYCEFSbu5jwqLgnX54gB2ie1Gw=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0YtQ9OKxgv3ANpTNdtMu3WzC7kQoof/CiwdFvPpvvPlv3LQ5aOuDZR/vzTAzz48F1+g431ZhZXVtfaO4Wdra3tndK+8ftHSUKMqaNBKR6vhEM8ElayJHwTqxYiT0BWv749vMbz8xpXkkH3ASMy8kQ8kDTgka6bHHkFw7Veei1C9XzD+DvUzcnFQgR6Nf/uoNIpqETCIVROuu68TopUQhp4JNS71Es5jQMRmyrqGShEx76WzjqX1ilIEdRMo8ifZM/d2RklDrSeibypDgSC96mfif100wuPJSLuMEmaTzQUEibIzs7Hx7wBWjKCaGEKq42dWmI6IIRRNSFoK7ePIyadWq7lm1dn9eqd/kcRThCI7hFFy4hDrcQQOaQEHCM7zCm6WtF+vd+piXFqy85xD+wPr8AYekj4I=</latexit>

0 0.2 0.6 0
0.1 0 0 0
0.4 0.3 0 0.1
0.3 0.3 0.2 0

D =
<latexit sha1_base64="tfhuCD2Vd/pndPrhWM6XXo+YksA=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mtBb0IRT14rGA/oF1KNs22oUl2SbJCWfoXvHhQxKt/yJv/xmy7B219MPB4b4aZeUHMmTau++0U1tY3NreK26Wd3b39g/LhUVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYHKb+Z0nqjSL5KOZxtQXeCRZyAg2mXSHrtGgXHGr7hxolXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRW6ieaxphM8Ij2LJVYUO2n81tn6MwqQxRGypY0aK7+nkix0HoqAtspsBnrZS8T//N6iQmv/JTJODFUksWiMOHIRCh7HA2ZosTwqSWYKGZvRWSMFSbGxlOyIXjLL6+Sdq3qXVRrD/VK4yaPowgncArn4MElNOAemtACAmN4hld4c4Tz4rw7H4vWgpPPHMMfOJ8/xjWNZw==</latexit>

D1 =
D

2
=

<latexit sha1_base64="+Br2AGFbE7BdIhx/na3McHOIn9Q=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSK4KkkVdFMo2oXLCvYBbQiT6aQdOnkwMxFCiL/ixoUibv0Qd/6N0zYLbT1w4XDOvdx7jxdzJpVlfRtr6xubW9ulnfLu3v7BoXl03JVRIgjtkIhHou9hSTkLaUcxxWk/FhQHHqc9b3o783uPVEgWhQ8qjakT4HHIfEaw0pJrVlqujRpo6AtMslae1XPUcM2qVbPmQKvELkgVCrRd82s4ikgS0FARjqUc2FasnAwLxQineXmYSBpjMsVjOtA0xAGVTjY/PkdnWhkhPxK6QoXm6u+JDAdSpoGnOwOsJnLZm4n/eYNE+ddOxsI4UTQki0V+wpGK0CwJNGKCEsVTTTARTN+KyATrHJTOq6xDsJdfXiXdes2+qNXvL6vNmyKOEpzAKZyDDVfQhDtoQwcIpPAMr/BmPBkvxrvxsWhdM4qZCvyB8fkDoZyTeQ==</latexit>

+

+

+

+

-

-

-
-

Figure 7.1: Example of cycle cancellation

In the first iteration, the alternating cycle u1 → v2 → u3 → v1 → u4 → v3 → u1,

highlighted in Figure 7.2 in alternating red and blue colors, is discovered. We start the cycle

traversal at u1. As specified in line 4, we increase D1(1, 2), D1(3, 1), and D1(4, 3), which

correspond to the red edges in Figure 7.2 and are hence circled in red with a superscript

‘+’ in Figure 7.1, and decrease D1(3, 2), D1(4, 1), D1(1, 3), which correspond to the blue

edges in Figure 7.2 and are hence circled in blue with a superscript ‘-’ in Figure 7.1, all by

the same value η.

This alternating increase and decrease by the same value has a desirable property: Any

row and column sum of D1 remains the same after the weight modifications, because an

increase to a matrix entry in any row or column is always accompanied by a decrease to

another entry in the same row or column, and vice versa. For example, an increase to

D1(1, 2) is accompanied by a decrease to D1(1, 3). Due to this desirable property, the final

D1 output by algorithm 6 satisfies Equation 7.7 and Equation 7.8.

We now explain how this η is determined using this example. The three matrix entries

88

U V
u1

<latexit sha1_base64="MbC02krwJ3eCG6t5YpN7VC9uUuM=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0vJwCsPKlW35s5BVolXkCoUaA4qX/1hxBKJyjJBjel5bmz9lGrLmcBZuZ8YjCmb0BH2MqqoROOn81tn5DxThiSMdFbKkrn6eyKl0pipDLJOSe3YLHu5+J/XS2x446dcxYlFxRaLwkQQG5H8cTLkGpkV04xQpnl2K2FjqimzWTx5CN7yy6ukXa95l7X6w1W1cVvEUYJTOIML8OAaGnAPTWgBgzE8wyu8OdJ5cd6dj0XrmlPMnMAfOJ8/PYGNtQ==</latexit>

u2
<latexit sha1_base64="3KK009f1vFrlgPwst9msQx+MaaY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7Rf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEJ8I2i</latexit>

u3
<latexit sha1_base64="DDWbuH+aNlcNaNhpX9SwMVfPK7s=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf75crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb16tXZ3UWlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLdI2j</latexit>

u4
<latexit sha1_base64="fPwldOuaqJ8R+kDAtXk0VN3U1EA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHoxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6SPu1fqnsVtw5yCrxclKGHI1+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2naEPwll9eJa1qxbusVO9r5fpNHkcBTuEMLsCDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAM+I2k</latexit>

v1
<latexit sha1_base64="CjmP85F9x9vbcL2ENUsPPB1Vqnk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnter1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3vgZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Wqg9X5dptHkcBTuEMLsCDa6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAJ8o2i</latexit>

v2
<latexit sha1_base64="lE8WDoWfUTC8KgvVYi3+vwjrTxc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8MbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbusVB+uyrXbPI4CnMIZXIAH11CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AELdo2j</latexit>

v3
<latexit sha1_base64="Q/aveuY5+n/l8vwyIRXs5XSXR+c=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju7nfGqPSPJZPZpKgH9GB5CFn1Fjpcdyr9oolt+wuQNaJl5ESZKj3il/dfszSCKVhgmrd8dzE+FOqDGcCZ4VuqjGhbEQH2LFU0gi1P12cOiMXVumTMFa2pCEL9ffElEZaT6LAdkbUDPWqNxf/8zqpCW/8KZdJalCy5aIwFcTEZP436XOFzIiJJZQpbm8lbEgVZcamU7AheKsvr5NmpexVy5WHq1LtNosjD2dwDpfgwTXU4B7q0AAGA3iGV3hzhPPivDsfy9ack82cwh84nz8M+o2k</latexit>

v4
<latexit sha1_base64="iVTvddOc7068PJ07WLG+5oEmaUE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xyiOBDZkdGpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXju7nfmqDSPJJPZhqjH9Kh5APOqLHS46RX7RVLbtldgKwTLyMlyFDvFb+6/YglIUrDBNW647mx8VOqDGcCZ4VuojGmbEyH2LFU0hC1ny5OnZELq/TJIFK2pCEL9fdESkOtp2FgO0NqRnrVm4v/eZ3EDG78lMs4MSjZctEgEcREZP436XOFzIipJZQpbm8lbEQVZcamU7AheKsvr5NmpexdlSsP1VLtNosjD2dwDpfgwTXU4B7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8Ofo2l</latexit>

Figure 7.2: Alternating cycle mapping

to be increased and their current values are D1(1, 2) = 0.1, D1(3, 1) = 0.2, and D1(4, 3) =

0.1 respectively. Their respective upper bounds are D(1, 2) = 0.2, D(3, 1) = 0.4, and

D(4, 3) = 0.2. The three respective differences are D(1, 2) − D1(1, 2) = 0.1, D(3, 1) −

D1(3, 1) = 0.2, and D(4, 3) − D1(4, 3) = 0.1. So η cannot exceed 0.1, the minimum of

the three. Similarly, η cannot exceed 0.15, since the three matrix entries to be decreased

are D1(3, 2) = 0.15, D1(4, 1) = 0.15, and D1(1, 3) = 0.3 and their lower bounds are

all 0. Then η is set to the minimum of these two upper bounds, which in this case is

min{0.1, 0.15} = 0.1. After these increases and decreases by η = 0.1, the new values of

these matrix entries are D1(1, 2) = 0.2, D1(3, 1) = 0.3, D1(4, 3) = 0.2, D1(3, 2) = 0.05,

D1(4, 1) = 0.05, and D1(1, 3) = 0.2. Among them, the values of D1(1, 2) and D1(4, 3)

have reached their respective upper bounds (both due to an increase) D(1, 2) and D(4, 3),

so both of them become tight. Hence the two corresponding edges are removed from G

(so no longer underlined in the third 4 × 4 matrix to the left in Figure 7.1) after the first

iteration. In Figure 7.2, algorithm 6 stops after two iterations, when no more alternating

cycle exists.

89

Computational Complexity of algorithm 6

In the following analysis, we assume the n × n matrix D is not extremely sparse in the

sense n = o(m) where m = ‖D‖0 is the number of nonzero entries in D. In this case,

the “while” loop in algorithm 6 runs at most m − (2n − 1) = O(m) iterations because

there are m edges in G to start with, each iteration removes at least one edge from G,

and algorithm 6 terminates when G contains no more than 2n − 1 = o(m) edges. Hence,

the computational complexity of algorithm 6 is in theory O(m2) since, in each iteration,

detecting a cycle using DFS has complexity O(m), and so are computing η and updating

edge weights. In practice, however, cycles are usually quite short for a real-world workload

D, so empirically the complexity “feels more like” O(m1.5) or less.

7.2 Evaluation

In this section, we evaluate the efficacy of LESS, and compare it with that of the naive

algorithm (denoted in the figures and called “Naive” in the sequel) of simply dividing D

by s. We do so by feeding the sub-workload matrices resulting from LESS and Naive

respectively to the s optical switches, each of which is scheduled by BFF [16]. We denote

these these two resulting schedulers as LESS+BFF and Naive+BFF respectively. In this

comparison, we use the overall makespan, defined as the maximum among the makespans

of the schedules of the s switches, as the performance metric.

7.2.1 Simulation Parameters and Setup

Traffic demand matrix D: It was shown in [9, 2] that typical traffic workloads in real-

world data centers exhibit two characteristics: sparsity (the vast majority of the demand

matrix elements have value 0 or close to 0) and skewness (few large elements in a row or

column account for the majority of the row or column sum). Hence, for our simulations,

we use the same set of sparse and skewed demand matrices as used in [9, 2]. In each

90

such matrix D, each row (or column) contains nL large equal-valued elements (large input-

output flows) that as a whole account for cL (percentage) of the total workload to the row (or

column), nS medium equal-valued elements (medium input-output flows) that as a whole

account for the rest cS = 1 − cL (percentage), and noises. Hence nL and nS control the

sparsity, and cL and cS control the skewness, of the traffic demand, respectively. Roughly

speaking, we have

D =

nL∑
i=1

cL
nL
Pi +

nS∑
i=1

cS
nS
P ′i +N (7.10)

where each Pi and each P ′i is an n× n random permutation matrix.

Same as in [9, 2], in our simulation studies, the default values of the sparsity parameters

nL and nS are set to 4 and 12 respectively and the default values of cL and cS are set to 0.7

(i.e., 70%) and 0.3 (i.e., 30%) respectively. In other words, in each row (or column) of the

demand matrix, by default the 4 large flows account for 70% of its total traffic demand, and

the 12 medium flows account for the rest 30%. We will also vary the sparsity parameters nL

and nS and skewness parameters cL and cS in our evaluations. In Equation (7.10), before a

noise matrixN (described next) is added to it, each such D is doubly stochastic. As shown

in Equation (7.10), we also add a noise matrix term N to D, like in [9, 2]. Each nonzero

element inN is a Gaussian random variable that is added to a traffic demand matrix element

that was nonzero before the noise added. Each nonzero (noise) element here in N has a

standard deviation, which is equal to 0.3% of the normalized workload 1.

Reconfiguration delay of the optical switch δ: The larger δ is, the more time the optical

switch has to spend on reconfigurations, and hence the higher the resulting makespan is.

By default, δ = 0.04 (i.e., 4% of the scheduling epoch), although we will vary δ in our

simulation studies. Here we use a larger default value of δ than that in [9, 2], which is

δ = 0.01 (i.e., 1% of the scheduling epoch), because the former is closer to the δ values of

real-world large (e.g., 100 × 100) optical switches that range mostly from hundreds of µs

to milliseconds [78] (after being normalized by the typical epoch length of 3 milliseconds).

91

Although δ values as small as 12µs were mentioned in both [20] and [78], they apply only

to a small switch (e.g., 4×4) or an optical transmitter-receiver pair with tiny rotation-angle

distance.

Simulation Setup: In the rest of section 7.2, every point in every plot in every figure is

the sample mean averaged from 100 simulation runs, so is every number in Table 7.1 and

Table 7.2.

0.01 0.02 0.04 0.08
Reconfiguration delay

0.5

1

1.5

0.01 0.02 0.04 0.08
Reconfiguration delay

0.5

1

1.5

O
ve

ra
ll

M
ak

es
pa

n

LESS+BFF Naive+BFF
s=8s=4

Figure 7.3: LESS+BFF vs. Naive+BFF while varying δ

7.2.2 Under Different System Parameters

In this section, we compare the overall makespan performances of LESS+BFF and Naive+BFF

for different value combinations of s (number of parallel switches) and δ (reconfigura-

tion delay), under traffic demand D with the default parameter settings described above

(4 large flows and 12 small flows accounting for roughly 70% and 30% of the total traffic

demand into each input port). The simulation results, presented in Figure 7.3, show that

LESS+BFF outperforms Naive+BFF, as indicated by shorter overall makespans, when the

reconfiguration delay δ is large (say δ ≥ 0.02). More specifically, when δ = 0.04 and s =

8, LESS+BFF results in approximately 59% shorter overall makespan than Naive+BFF;

when δ = 0.08 and s = 8, LESS+BFF results in approximately 74% shorter overall

makespan than Naive+BFF. Although error bars representing 95% confidence intervals are

92

used in Figure 7.3, they are barely noticeable since, for every case (point) in the figure, the

simulation results are very close to one another.

Figure 7.3 also shows that when δ is mall (say δ ≤ 0.01), LESS+BFF results in sim-

ilar or slightly longer overall makespan than Naive+BFF. Our explanation is as follows.

With a LESS split, the sub-workloads D1, D2, ..., Ds are line-even but not identical ma-

trices, and although these s matrices have superb total sparsity (i.e.,
∑s

k=1 ‖Dk‖0), there

can be some variations in their individual sparsities. Due to these variations among the

sub-workload matrices and their individual sparsities, the makespans of the s switches can

have some variations. In comparison, with a naive split, all s switches are given identical

sub-workloads, so the resulting s makespans are identical. Since the performance metric

(overall makespan) is the maximum of these smakespans, this identicalness gives the naive

solution a performance edge over LESS. As a result, when δ is very small as in this case

or when D is extremely sparse (e.g., in the case of nL + nS = 8 to be presented in subsec-

tion 7.2.3), LESS’s performance gain from the total sparsity of the split could be dwarfed

by naive solution’s performance edge from this identicalness.

This said, LESS+BFF may still outperform Naive+BFF in this case (of δ = 0.01) when

the performance metric is changed to the average makespan of all s switches. For example,

when δ = 0.01 and s = 4, although the overall makepsan for LESS+BFF (= 0.4516)

is longer than that for Naive+BFF (= 0.4270), the average makepsn for LESS+BFF (=

0.4192) is actually shorter than that of Naive+BFF (= 0.4270).

7.2.3 Under Different Traffic Demands

In this section, we compare the overall makespan performances of LESS+BFF and Naive+BFF

under a diverse set of traffic demand matrices that vary by sparsity and skewness. We

control the sparsity of the traffic demand matrix D by varying the total number of flows

(nL + nS) in each row from 8 to 64, while fixing the ratio of the number of large flow to

that of small flows (nL/nS) at 1 : 3. We control the skewness of D by varying cS , the total

93

percentage of traffic carried by small flows, from 5% (most skewed as large flows carry the

rest 95%) to 75% (least skewed). In all these evaluations, we consider four different value

combinations of system parameters δ and s: (1) δ = 0.02, s = 4; (2) δ = 0.04, s = 4; (3)

δ = 0.02, s = 8; and (4) δ = 0.04, s = 8.

8 16 24 32 40 48 56 64

Number of flows per node

0.4

0.6

0.8

1

1.2

1.4

O
v
e
ra

ll
M

a
k
e
s
p
a
n

8 16 24 32 40 48 56 64

Number of flows per node

0.5

1

1.5

2

2.5

8 16 24 32 40 48 56 64

Number of flows per node

0.2

0.4

0.6

0.8

1

1.2

O
v
e
ra

ll
M

a
k
e
s
p
a
n

8 16 24 32 40 48 56 64

Number of flows per node

0

0.5

1

1.5

2

2.5

LISP+BFF Naive+BFF

 = 0.02, s=4 = 0.04, s=4

 = 0.04, s=8 = 0.02, s=8

Figure 7.4: LESS+BFF vs. Naive+BFF while varying sparsity of D

Figure 7.4 compares the overall makespan performances of LESS+BFF and Naive+BFF

when the sparsity parameter nL + nS varies from 8 to 64 and the value of the skewness pa-

rameter cS is fixed at 0.3. Figure 7.5 compares the overall makespan performances of

LESS+BFF and Naive+BFF when the skewness parameter cS varies from 5% to 75% and

the sparsity parameter nL +nS is fixed at 16 (= 4 + 12). In each figure, the four subfigures

94

correspond to the four value combinations of δ and s above. Both Figure 7.4 and Figure 7.5

show that LESS+BFF invariably results in shorter overall makespans than Naive+BFF, un-

der various traffic demand matrices. In Figure 7.4, LESS+BFF performs consistently bet-

ter than Naive+BFF, except in some cases where the traffic matrices are extremely sparse

(more specifically where nL + nS = 8).

5 15 25 35 45 55 65 75

% traffic carried by small flows

0.45

0.5

0.55

0.6

O
v
e
ra

ll
M

a
k
e
s
p
a
n

5 15 25 35 45 55 65 75

% traffic carried by small flows

0.65

0.7

0.75

0.8

0.85

0.9

0.95

5 15 25 35 45 55 65 75

% traffic carried by small flows

0.3

0.35

0.4

0.45

O
v
e
ra

ll
M

a
k
e
s
p
a
n

5 15 25 35 45 55 65 75

% traffic carried by small flows

0.4

0.5

0.6

0.7

0.8

LISP+BFF Naive+BFF

 = 0.02, s=8 = 0.04, s=8

 = 0.02, s=4 = 0.04, s=4

Figure 7.5: LESS+BFF vs. Naive+BFF while varying skewness of D

Although the reason for these outliers has been explained in the previous section, we

zoom in on the case of nL+nS = 8 and δ = 0.02 to emphasize that LESS is “not to blame”.

In this case, the average number of nonzero entries in a sub-workload matrix resulting from

Naive is 731 (or 7.31 per row or column) whereas that from LESS is only 352 (or 3.52 per

95

row or column). Hence on average, an input port pays 7.31δ reconfiguration cost in the

case of Naive and 3.52δ reconfiguration cost in the case of LESS. However, when δ = 0.02,

this advantage of LESS in reconfiguration cost is dwarfed by the identicalness advantage

enjoyed by Naive.

7.2.4 Sparsity Evenness of LESS

In this section, we show that, the s sub-workload matrices resulting from LESS generally

have similar sparsities (numbers of nonzero entries) empirically as measured by their nor-

malized mean absolute deviation (NMAD), although as explained earlier this property is

not theoretically guaranteed. The mean absolute deviation (MAD, or average absolute de-

viation) of a data set {x1, x2, ..., xn} is defined as the average distance between xi and its

mean x̄: 1
n

∑n
i=1 | xi − x̄ |. The normalized mean absolute deviation (NMAD) is defined

as MAD divided by x̄. Smaller NMAD means better evenness. Table 7.1 shows the mean

and the 95% percentile of NMAD of {‖D1‖0, ‖D2‖0, ..., ‖Ds‖0} (the number of nonzero

entries in the s sub-workload matrices), for s = 4 and s = 8, under D with the default

parameter settings (nL = 4, nS = 12, cL = 0.7, cS = 0.3). Table 7.1 shows that the

average NMAD is only 5% (i.e., deviates 5% from the mean on average) when s = 4 and

only 4% when s = 8.

s = 4 s = 8

Mean NMAD 5.00% 4.01%
95%-percentile NMAD 7.36% 5.61%

Table 7.1: Variations among {‖D1‖0, ‖D2‖0, ..., ‖Ds‖0}

7.2.5 Execution Times of LESS

In this section, we compare the (single-processor) execution times of LP-based LESS and

combinatorial LESS, both implemented in C++, under D with the default parameter set-

tings (nL = 4, nS = 12, cL = 0.7, cS = 0.3), on an Apple MacBook Air laptop equipped

96

with an 1.6 GHz Intel Core i5 processor and 8 GB 2133 MHz LPDDR3. We select Gurobi

[76] as the LP solver in the former algorithm due to its superior computational efficiency.

As shown in Table 7.2, the execution times of the combinatorial LESS are roughly an order

of magnitude shorter than those of LP-based LESS.

s = 2 s = 4 s = 8

Combinatorial 11.51ms 23.35ms 35.26ms
Gurobi [76] 85.72ms 216.55ms 431.02ms

Table 7.2: Execution Time Comparison

The former are already generally lower than the execution times of BFF (the under-

lying optical/hybrid switching algorithm), which as reported in [16] is much more com-

putationally efficient than any other hybrid switching algorithm. With parallel processing

(described in subsubsection 7.1.2), the former can be further improved by 20% to 40%, as

we have estimated through experiments.

This said, as mentioned earlier, the epoch duration is typically a few milliseconds long

(e.g., 3ms), so ideally the execution time of LESS should be no more than that. Cur-

rently, with software implementation, our combinatorial algorithm takes roughly an order

of magnitude longer, when n = 100 (i.e., 100× 100 switch) and k = 8 (parallel switches).

However, we believe this execution time gap can be closed with ASIC implementation, be-

cause our combinatorial algorithm is heavy on memory I/O (mostly linked list traversals),

which can be done much faster if all data reside in on-chip SRAM. The SRAM cost of

ASIC implementation is quite low: Only tens of KBs of SRAM is needed when n = 100

and k = 8.

Although the focus of this work is on the MSB problem and the LESS solution, we un-

derstand that for LESS to be practically useful, its “companion” scheduler, which is chosen

to be BFF in this work, also should have an execution time not exceeding the epoch dura-

tion. While with software implementation BFF [16] takes around 20 − 30ms to compute

a schedule when n = 100, we believe it too can be sped up by an order of magnitude, by

97

replacing the expensive maximum weighted matching (MWM) computation (at the begin-

ning) with a much less expensive but slightly lower-quality matching computation (e.g.,

using iSLIP [79]) and by using the ASIC implementation.

98

CHAPTER 8

CONCLUSION

This thesis proposed three algorithms that exploit different methodologies for the hybrid

and optical switching scheduling problem. We evaluate the performance of three algo-

rithms and compare it with that of the state-of-the-art algorithm. For our simulation, we

use both the constructed traffic demand matrices used in the previous works and the gen-

erated traffic matrices from real-world traces. The results show that all of the three al-

gorithms outperform the state-of-the-art algorithm in different metrics (i.e., transmission

time, execution time, etc). These three algorithms have different appliable conditions and

advantages, and we comprehensively compare and summarize them in chapter 6.

Another contribution of this thesis is, we investigated a closely related research prob-

lem about the optical and hybrid switching scheduling, that is, when the racks of servers are

connected by multiple independent(i.e., parallel) optical switches, how to split the traffic

demand matrix into sub-workload matrices and give them to the parallel optical switches

as their respective workloads. We formulate it as a matrix split and balance problem and

develop a general algorithm to split a matrix into balanced and sparse matrices. Our eval-

uation results show that, using this matrix split algorithm, parallel optical switches deliver

balanced and ideal throughput performance under various system parameter settings and

various traffic demands.

99

Appendices

100

APPENDIX A

PROOF OF NP-COMPLETENESS

In this section, we prove the Open Shop Scheduling (OSS) problem when allowing pre-

emption and having uniform interprocessor time delay is NP-complete. This proof uses

the same reduction in [70], which is used for proving a “weaker” statement, that is, the

Open Shop scheduling problem when NOT allowing preemption and having uniform inter-

processor time delay is NP-complete. The proof in [70] can also be applied to prove the

“stronger” (i.e., the former) statement under slightly modifications. As in [70], we choose

PARTITION, which is proved to be NP-complete in [80], to do reduction.

Preemptive Open Shop with uniform delays

Instance: A set of n jobs, each job, j, having an associated vector of nonnegative

integers, (l1j, l2j, · · · , lnj), where lij is the time to process the job on machine i (i =

1, 2, · · · , n); a uniform interprocessor time delay, δ ∈ N+ and a bound L ∈ N+.

Question: Is there a valid open shop schedule with completion time ≤ L?

Partition

Instance: Finite set A with cardinality of n (i.e., |A| = n), and a size function s(a) ∈

N+ for each a ∈ A.

Question: Is there a subset A′ ⊆ A such that

∑
a∈A′

s(a) =
∑

a∈A\A′

s(a) (A.1)

Without loss of generality, we can assume all instances of PARTITION have
∑{s(a) |

a ∈ A} = 2M for some integer M ; otherwise the instance is trivially a NO instance.

Moreover, by introducing a scaling factor, we can assume each s(a) ≥ 2. We then define

the reduction function f by mapping each a ∈ A into job ja with the associated process-

101

ing time vector of (s(a), s(a), 0, · · · , 0). We also introduce four capital jobs, denoted by

V,W,X, Y . The associated vectors are (1,M, 0, · · · , 0), (1,M, 0, · · · , 0), (M, 1, 0, · · · , 0)

and (M, 1, 0, · · · , 0) respectively. Thus, given an instance I of PARTITION, the con-

structed instance f(I) of OSS comprises these n + 4 jobs, a uniform delay δ = 2M ,

and a bound L = 4M + 2. Note that only the first two machines have tasks to process, the

rest of the machines do not. Clearly, f is a polynomial transformation. We only need to

show that I ∈ YPARTITION iff f(I) ∈ YOSS. Here YPARTITION denotes the set of PARTITION

instances that satisfies Equation A.1, and YOSS denote the set of OSS instances that have a

completion time ≤ L.

(1) I ∈ YPARTITION ⇒ f(I) ∈ YOSS: Assume A′ is a subset of A that satisfies

∑
a∈A′

s(a) =
∑

a∈A\A′

s(a) = M

Then a valid schedule S(t) for f(I) with delay 2M and of length 4M + 2 is given in

Figure A.1. It induces f(I) ∈ YOSS.

V
<latexit sha1_base64="ZHTJuVrsXJ8Nz2mGcO2drL0vXec=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZrtfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fs/+M3g==</latexit>

V
<latexit sha1_base64="ZHTJuVrsXJ8Nz2mGcO2drL0vXec=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZrtfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fs/+M3g==</latexit>

X
<latexit sha1_base64="kpPTAtGMnO2krFRSnNrra2xDivU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZqdfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ftweM4A==</latexit>

X
<latexit sha1_base64="kpPTAtGMnO2krFRSnNrra2xDivU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZqdfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ftweM4A==</latexit>

Y
<latexit sha1_base64="NRADBWhidLrGKbqT5Fr94wkW5hw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkYeBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJb3ZpygH9GB5CFn1Fip/tArltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+ALiLjOE=</latexit>

Y
<latexit sha1_base64="NRADBWhidLrGKbqT5Fr94wkW5hw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkYeBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJb3ZpygH9GB5CFn1Fip/tArltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+ALiLjOE=</latexit>

W
<latexit sha1_base64="yxUgNFppSsebkUqo0HdMiZJUGss=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqtPulsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0qhXvslJtXJVrt3kcBTiFM7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLSuOfnMCfyB8/kDtYOM3w==</latexit>

W
<latexit sha1_base64="yxUgNFppSsebkUqo0HdMiZJUGss=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqtPulsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0qhXvslJtXJVrt3kcBTiFM7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLSuOfnMCfyB8/kDtYOM3w==</latexit>

Elements
in A’

Elements
in A’

Elements
in A/A’

Elements
in A/A’Machine 1

Machine 2

0 1 M+1 2M+1 3M+1 4M+24M+1

Figure A.1: A valid constructed schedule of length 4M + 2

(2) f(I) ∈ YOSS ⇒ I ∈ YPARTITION: Consider the valid schedule S(t) of OSS with

a completion time ≤ 4M + 2. Since machine 1 and machine 2 each has tasks of length

4M + 2 to process, the schedule S(t) must be an optimal schedule (i.e., with the shortest

completion time) with duration of exactly L = 4M + 2 and have no idling.

As in [70], we call a schedule a staged schedule if and only if the schedule has the

following two properties: (1) The schedule is non-preemptive; and (2) There exists time T1

and T2 such that for all t ≤ Ti, machine i processes first tasks and for all t > Ti, machine

102

i processes second tasks. Here the first task of a job is the task that is processed firstly

(i.e., earlier than the other task), and the second task of a job is the task that is processed

secondly (i.e., later than the other task). In this case, we have the following lemma, which

will be proved later in section A.1.

Lemma 2. S(t) can be converted into a staged optimal schedule in polynomial time.

Based on Lemma 2, we can simply assume S(t) is a staged schedule (or we consider

the staged optimal schedule that is converted from S(t)). Note that at machine 1, the

last processed task before time T1 corresponds to a job that also has a second task to be

processed by machine 2. The completion time of the job is at least T1+δ+1 (the completion

time of the first task plus a delay of δ and the lower bound of the completion time of the

second task, which is 1). This completion time should be less than or equal to L, which

induces that T1 ≤ 2M + 1. Similarly, we have T2 ≤ 2M + 1. Also, no second task

can possibly be process before time 1 + δ (the lower bound of the completion time of the

corresponding first task plus a delay). Hence we have both T1 and T2 are larger than or

equal to 2M + 1, which induces T1 = T2 = 2M + 1.

To reach the equality in the above analysis, both the first processed task and the last

processed task at machine 1 and machine 2 each must have size 1. Note that only the four

capital jobs have a task of size 1 in each (since s(a) ≥ 1 for ∀a ∈ A). So these four size-1

tasks must be scheduled within the interval of [0, 1] or [4M + 1, 4M + 2] at machine 1 or

machine 2. Furthermore, the corresponding four size-M tasks (of the capital jobs) must be

scheduled within the interval of [M + 1, 2M + 1] or [2M + 1, 3M + 1] at machine 1 or

machine 2. In other words, the only valid schedule must have the capital jobs filling the

shaded area of Figure A.2.

The remaining jobs must be processed at the unshaded area. Let A′ , {a | ja is a first

job on machine 1}. Then we have
∑

a∈A′ s(a) = M , so I ∈ YPARTITION.

103

Machine 1

Machine 2

0 1 M+1 2M+1 3M+1 4M+24M+1

Figure A.2: The only valid schedule structure of length 4M + 2

A.1 Proof of Lemma 2

In this section, we show how to convert S(t) to a staged optimal schedule in three steps.

First, we consider an arbitrary job that is preemptively processed in S(t). Note that each

job can only be transported once between the two machines, otherwise the completion time

of the job is at least 2δ + 4 = 4M + 4 (two times of interprocessor delay plus the lower

bound of the processing time of the job), which is larger than L. Therefore in S(t), one of

the task of the job must be processed completely (at one machine) before being transported

to the other machine to process the other task. In other words, the processing time intervals

of the job must be like the shaded areas of one of the diagrams in Figure A.3. Due to

this property, we can also classify the two task into a first task and a second task for a

preemptively processed job, as we did for a nonpreempively processed job.

Machine 1

Machine 2

0 4M+2

Machine 1

Machine 2

0 4M+2

Figure A.3: Possible processing time intervals of the job

Second, we “sort” the order of tasks and sub-tasks (of the preemptively processed tasks)

to achieve the following property: For machine i = 1, 2, there exists a time Ti such that for

all t ≤ Ti, machine i processes first tasks (or the sub-tasks of first tasks) and for all t > Ti,

104

machine i processes second tasks (or the sub-tasks of the second tasks).

Without loss of generality, assume machine 1 processes the second task (or a sub-task

of it) of job j immediately before the first task (or a sub-task of it) of job k. We can

interchange these two tasks and still obtaining a valid optimal schedule. Repeating this

swap steps and we will get a valid optimal schedule has the above property.

Third, we “merge” the sub-tasks of the same task into an entirety. For the sub-tasks of

a first task, we slide all the sub-tasks towards the last sub-task and concatenate them. The

order of the rest task remains the same. Then the resulting schedule is also valid. Similarly,

for the sub-tasks of a second task, we slide all the sub-tasks towards the first sub-task and

concatenate them. The sliding and concatenation process of a job is shown in Figure A.4.

Machine 1

Machine 2

0 4M+2

Machine 1

Machine 2

0 4M+2

Figure A.4: The sliding and concatenation process of a job (Top: before sliding, Bottom:
after sliding)

After the above three processes, the resulting schedule (from S(t)) is an optimal and

staged schedule. It is obvious the conversion can be done in polynomial time.

105

REFERENCES

[1] L. Liu, L. Gong, S. Yang, J. J. Xu, and L. Fortnow, “2-hop eclipse: A fast algorithm
for bandwidth-efficient data center switching,” in International Conference on Cloud
Computing, Springer, 2018, pp. 69–83.

[2] S. Bojja Venkatakrishnan, M. Alizadeh, and P. Viswanath, “Costly circuits, submod-
ular schedules and approximate carathéodory theorems,” in SIGMETRICS, ACM,
2016, pp. 75–88.

[3] L. Liu, J. Xu, and L. Fortnow, “Quantized bvnd: A better solution for optical and
hybrid switching in data center networks,” in 2018 IEEE/ACM 11th International
Conference on Utility and Cloud Computing (UCC), IEEE, 2018, pp. 237–246.

[4] C. DeCusatis, “Optical interconnect networks for data communications,” J. Lightw.
Technol., vol. 32, no. 4, pp. 544–552, 2014.

[5] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz, R. Kern, H.
Kumar, M. Zikos, H. Wu, et al., “Ananta: Cloud scale load balancing,” in SIGCOMM
Comput. Commun. Rev., ACM, vol. 43, 2013, pp. 207–218.

[6] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fain-
man, G. Papen, and A. Vahdat, “Helios: A hybrid electrical/optical switch architec-
ture for modular data centers,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 4,
pp. 339–350, 2010.

[7] H. Wang, A. S. Garg, K. Bergman, and M. Glick, “Design and demonstration of an
all-optical hybrid packet and circuit switched network platform for next generation
data centers,” in OFC, Optical Society of America, 2010, OTuP3.

[8] N. Farrington, A. Forencich, P.-C. Sun, S. Fainman, J. Ford, A. Vahdat, G. Porter,
and G. C. Papen, “A 10 us hybrid optical-circuit/electrical-packet network for data-
centers,” in OFC, Optical Society of America, 2013, OW3H–3.

[9] H. Liu, M. K. Mukerjee, C. Li, N. Feltman, G. Papen, S. Savage, S. Seshan, G. M.
Voelker, D. G. Andersen, M. Kaminsky, G. Porter, and A. C. Snoeren, “Scheduling
techniques for hybrid circuit/packet networks,” in ACM CoNEXT, ser. CoNEXT ’15,
Heidelberg, Germany: ACM, 2015, 41:1–41:13, ISBN: 978-1-4503-3412-9.

[10] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and
Y. Chen, “OSA: An optical switching architecture for data center networks with

106

unprecedented flexibility,” IEEE/ACM Trans. Netw., vol. 22, no. 2, pp. 498–511,
2014.

[11] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng, M. Kozuch, and
M. Ryan, “C-through: Part-time optics in data centers,” in SIGCOMM Comput. Com-
mun. Rev., ACM, vol. 40, 2010, pp. 327–338.

[12] H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M. Voelker, G. Papen, A. C.
Snoeren, and G. Porter, “Circuit switching under the radar with reactor.,” in NSDI,
vol. 14, 2014, pp. 1–15.

[13] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fain-
man, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the
data center,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 447–458, 2013.

[14] X. Li and M. Hamdi, “On scheduling optical packet switches with reconfiguration
delay,” IEEE J. Sel. Areas Commun., vol. 21, no. 7, pp. 1156–1164, 2003.

[15] C. Li, M. K. Mukerjee, D. G. Andersen, S. Seshan, M. Kaminsky, G. Porter, and
A. C. Snoeren, “Using indirect routing to recover from network traffic scheduling
estimation error,” in ANCS, IEEE Press, 2017, pp. 13–24.

[16] L. Liu, L. Gong, S. Yang, J. Xu, and L. Fortnow, “Best first fit (bff): An approach
to partially reconfigurable hybrid circuit and packet switching,” in 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD), IEEE, 2018, pp. 426–433.

[17] C.-S. Chang, W.-J. Chen, and H.-Y. Huang, “On service guarantees for input-buffered
crossbar switches: A capacity decomposition approach by birkhoff and von neu-
mann,” in Quality of Service, 1999. IWQoS’99. 1999 Seventh International Work-
shop on, IEEE, 1999, pp. 79–86.

[18] D. Birkhoff, “Tres observaciones sobre el algebra lineal,” Universidad Nacional de
Tucuman Revista , Serie A, vol. 5, pp. 147–151, 1946.

[19] F. Dufossé and B. Uçar, “Notes on birkhoff–von neumann decomposition of doubly
stochastic matrices,” Linear Algebra and its Applications, vol. 497, pp. 108–115,
2016.

[20] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni, G. Ranade, P.-A.
Blanche, H. Rastegarfar, M. Glick, and D. Kilper, “Projector: Agile reconfigurable
data center interconnect,” in SIGCOMM, Florianopolis, Brazil, 2016, pp. 216–229,
ISBN: 978-1-4503-4193-6.

[21] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin, H. Shah,
and A. Tanwer, “Firefly: A reconfigurable wireless data center fabric using free-

107

space optics,” in Proceedings of the ACM SIGCOMM, Chicago, Illinois, USA, 2014,
pp. 319–330, ISBN: 978-1-4503-2836-4.

[22] E. Amaldi and V. Kann, “On the approximability of minimizing nonzero variables
or unsatisfied relations in linear systems,” Theoretical Computer Science, vol. 209,
no. 1-2, pp. 237–260, 1998.

[23] L. Liu, J. Xu, and M. Singh, “Less: A matrix split and balance algorithm for parallel
circuit (optical) or hybrid data center switching and more,” in Proceedings of the
12th IEEE/ACM International Conference on Utility and Cloud Computing, 2019,
pp. 187–197.

[24] D. Gale and L. S. Shapley, “College admissions and the stability of marriage,” The
American Mathematical Monthly, vol. 69, no. 1, pp. 9–15, 1962.

[25] T. Inukai, “An efficient SS/TDMA time slot assignment algorithm,” IEEE Trans.
Commun., vol. 27, no. 10, pp. 1449–1455, 1979.

[26] B. Towles and W. J. Dally, “Guaranteed scheduling for switches with configuration
overhead,” IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp. 835–847,
2003.

[27] B. Wu and K. L. Yeung, “Nxg05-6: Minimum delay scheduling in scalable hybrid
electronic/optical packet switches,” in GLOBECOM, IEEE, 2006, pp. 1–5.

[28] I Gopal and C Wong, “Minimizing the number of switchings in an ss/tdma system,”
IEEE Trans. Commun., vol. 33, no. 6, pp. 497–501, 1985.

[29] S. Fu, B. Wu, X. Jiang, A. Pattavina, L. Zhang, and S. Xu, “Cost and delay tradeoff
in three-stage switch architecture for data center networks,” in HPSR, IEEE, 2013,
pp. 56–61.

[30] M. L. Pinedo, Scheduling: theory, algorithms, and systems. Springer, 2016.

[31] D. B. Shmoys, C. Stein, and J. Wein, “Improved approximation algorithms for shop
scheduling problems,” SIAM J. Comput, vol. 23, no. 3, pp. 617–632, 1994.

[32] D. S. Hochba, “Approximation algorithms for np-hard problems,” ACM SIGACT
News, vol. 28, no. 2, pp. 40–52, 1997.

[33] H. Bräsel, A. Herms, M. Mörig, T. Tautenhahn, J. Tusch, and F. Werner, “Heuristic
algorithms for open shop scheduling to minimize mean flow time, part i: Construc-
tive algorithms,” 2008.

108

[34] C.-H. Wang, T. Javidi, and G. Porter, “End-to-end scheduling for all-optical data
centers,” in INFOCOM, IEEE, 2015, pp. 406–414.

[35] C.-H. Wang, S. T. Maguluri, and T. Javidi, “Heavy traffic queue length behavior in
switches with reconfiguration delay,” arXiv preprint arXiv:1701.05598, 2017.

[36] D. P. Van, M. Fiorani, L. Wosinska, and J. Chen, “Adaptive open-shop scheduling
for optical interconnection networks,” J. Lightw. Technol., 2017.

[37] T. Gonzalez and S. Sahni, “Open shop scheduling to minimize finish time,” J. ACM,
vol. 23, no. 4, pp. 665–679, 1976.

[38] T. Gonzalez, O. H. Ibarra, and S. Sahni, “Bounds for lpt schedules on uniform pro-
cessors,” SIAM J. Comput, vol. 6, no. 1, pp. 155–166, 1977.

[39] A. Bianco, P. Giaccone, and M. Ricca, “Scheduling traffic for maximum switch life-
time in optical data center fabrics,” Comput. Netw., vol. 105, no. C, pp. 75–88, 2016.

[40] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C. Snoeren,
and G. Porter, “Rotornet: A scalable, low-complexity, optical datacenter network,”
in Proceedings of the Conference of the ACM Special Interest Group on Data Com-
munication, ACM, 2017, pp. 267–280.

[41] K. Xi, Y.-H. Kao, and H. J. Chao, “A petabit bufferless optical switch for data center
networks,” in Optical interconnects for future data center networks, Springer, 2013,
pp. 135–154.

[42] S. Vargaftik, K. Barabash, Y. Ben-Itzhak, O. Biran, I. Keslassy, D. Lorenz, and
A. Orda, “Composite-path switching,” in Proceedings of the 12th International on
Conference on emerging Networking EXperiments and Technologies, ACM, 2016,
pp. 329–343.

[43] W. M. Mellette, G. M. Schuster, G. Porter, G. Papen, and J. E. Ford, “A scalable,
partially configurable optical switch for data center networks,” Journal of Lightwave
Technology, vol. 35, no. 2, pp. 136–144, 2017.

[44] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P.
Patel, and S. Sengupta, “Vl2: A scalable and flexible data center network,” in ACM
SIGCOMM computer communication review, ACM, vol. 39, 2009, pp. 51–62.

[45] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakr-
ishnan, V. Subramanya, and A. Vahdat, “Portland: A scalable fault-tolerant layer 2
data center network fabric,” in ACM SIGCOMM Computer Communication Review,
ACM, vol. 39, 2009, pp. 39–50.

109

[46] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Networking data cen-
ters, randomly.,” in NSDI, vol. 12, 2012, pp. 17–17.

[47] M. Shafiee and J. Ghaderi, “A simple congestion-aware algorithm for load balancing
in datacenter networks,” IEEE/ACM Transactions on Networking, 2017.

[48] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center net-
work architecture,” in ACM SIGCOMM Computer Communication Review, ACM,
vol. 38, 2008, pp. 63–74.

[49] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained traffic en-
gineering for data centers,” in Proceedings of the Seventh COnference on emerging
Networking EXperiments and Technologies, ACM, 2011, p. 8.

[50] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, “Hedera:
Dynamic flow scheduling for data center networks.,” in NSDI, vol. 10, 2010, pp. 19–
19.

[51] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley, “Im-
proving datacenter performance and robustness with multipath tcp,” in ACM SIG-
COMM Computer Communication Review, ACM, vol. 41, 2011, pp. 266–277.

[52] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load balancing without
packet reordering,” ACM SIGCOMM Computer Communication Review, vol. 37,
no. 2, pp. 51–62, 2007.

[53] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella, “Presto: Edge-
based load balancing for fast datacenter networks,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 465–478, 2015.

[54] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut, F.
Matus, R. Pan, N. Yadav, G. Varghese, et al., “Conga: Distributed congestion-aware
load balancing for datacenters,” in ACM SIGCOMM Computer Communication Re-
view, ACM, vol. 44, 2014, pp. 503–514.

[55] A. Mekkittikul and N. McKeown, “A starvation-free algorithm for achieving 100%
throughput in an input-queued switch,” in Proc. ICCCN, Citeseer, vol. 96, 1996,
pp. 226–231.

[56] R. Duan and H.-H. Su, “A scaling algorithm for maximum weight matching in bi-
partite graphs,” in SODA, SIAM, 2012, pp. 1413–1424.

[57] S. Even, A. Itai, and A. Shamir, “On the complexity of time table and multi-commodity
flow problems,” in FOCS, IEEE, 1975, pp. 184–193.

110

[58] L. R. Ford Jr and D. R. Fulkerson, “A suggested computation for maximal multi-
commodity network flows,” Management Science, vol. 5, no. 1, pp. 97–101, 1958.

[59] T. C. Hu, “Multi-commodity network flows,” Operations research, vol. 11, no. 3,
pp. 344–360, 1963.

[60] N. Garg and J. Koenemann, “Faster and simpler algorithms for multicommodity flow
and other fractional packing problems,” SIAM J. Comput, vol. 37, no. 2, pp. 630–652,
2007.

[61] S. Bojja Venkatakrishnan, In-Person Discussions at Sigmetrics Conference, 2017.

[62] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data cen-
ters in the wild,” in IMC, ACM, 2010, pp. 267–280.

[63] J. E. Hopcroft and R. M. Karp, “An n5̂/2 algorithm for maximum matchings in
bipartite graphs,” SIAM Journal on computing, vol. 2, no. 4, pp. 225–231, 1973.

[64] J. Von Neumann, “A certain zero-sum two-person game equivalent to the optimal
assignment problem,” Contributions to the Theory of Games, vol. 2, pp. 5–12, 1953.

[65] J. Chou and B. Lin, “Birkhoff-von neumann switching with statistical traffic pro-
files,” Computer Communications, vol. 33, no. 7, pp. 848–851, 2010.

[66] I. S. Duff and J. Koster, “The design and use of algorithms for permuting large
entries to the diagonal of sparse matrices,” SIAM Journal on Matrix Analysis and
Applications, vol. 20, no. 4, pp. 889–901, 1999.

[67] C. E. Koksal, R. G. Gallager, and C. E. Rohrs, “Rate quantization and service quality
over single crossbar switches,” in INFOCOM 2004. Twenty-third AnnualJoint Con-
ference of the IEEE Computer and Communications Societies, IEEE, vol. 3, 2004,
pp. 1962–1973.

[68] B. Lin and I. Keslassy, “A scalable switch for service guarantees,” in High Perfor-
mance Interconnects, 2005. Proceedings. 13th Symposium on, IEEE, 2005, pp. 93–
99.

[69] R. Cole, K. Ost, and S. Schirra, “Edge-coloring bipartite multigraphs in o (e log d)
time,” Combinatorica, vol. 21, no. 1, pp. 5–12, 2001.

[70] V. J. Rayward-Smith and D. Rebaine, “Open shop scheduling with delays,” RAIRO-
Theoretical Informatics and Applications, vol. 26, no. 5, pp. 439–447, 1992.

111

[71] Y. Azar and I. Gamzu, “Efficient submodular function maximization under linear
packing constraints,” in International Colloquium on Automata, Languages, and
Programming, Springer, 2012, pp. 38–50.

[72] I Bárány and T Fiala, “Nearly optimum solution of multimachine scheduling prob-
lems,” Szigma, vol. 15, no. 3, pp. 177–191, 1982.

[73] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the social network’s
(datacenter) network,” in Proceedings of the 2015 ACM Conference on Special In-
terest Group on Data Communication, 2015, pp. 123–137.

[74] C. Avin, M. Ghobadi, C. Griner, and S. Schmid, “On the complexity of traffic traces
and implications,” 2020.

[75] N. Farrington, A. Forencich, G. Porter, P.-C. Sun, J. E. Ford, Y. Fainman, G. C. Pa-
pen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center
networking,” IEEE Photonics Technology Letters, vol. 25, no. 16, pp. 1589–1592,
2013.

[76] I. Gurobi Optimization, “Gurobi optimizer 8.1.1,” URL http://www.gurobi.com, 2019.

[77] L. C. Lau, R. Ravi, and M. Singh, Iterative methods in combinatorial optimization.
Cambridge University Press, 2011, vol. 46.

[78] W. M. Mellette, A. C. Snoeren, and G. Porter, “Toward optical switching in the data
center,” in High Performance Switching and Routing, IEEE, 2018.

[79] N. McKeown, “The islip scheduling algorithm for input-queued switches,” IEEE/ACM
transactions on networking, vol. 7, no. 2, pp. 188–201, 1999.

[80] R Karp, “Reducibilities among combinational problems,” in Complexity of Com-
puter Computations, Plenum Press New York, 1972.

112

VITA

Liang Liu received his B.S. degree in Electronic Engineering from Shanghai Jiao Tong

University, China in 2014. Liang joined School of Computer Science, Georgia Institute of

Technology, as a Ph.D. student in August 2014. His thesis work was conducted under the

able guidance of Dr. Jun (Jim) Xu.

113

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation and Background
	Research Objective and Main Contributions
	Scheduling algorithms for single optical switch
	Scheduling problem in parallel-optical-switched networks

	Literature Survey
	Hybrid Switching Algorithms
	Optical Switch Scheduling Algorithms
	Other optical datacenter networks
	Flow scheduling algorithms in DCN

	2-hop Eclipse: adapt indirect routing in hybrid switch scheduling
	System Model and Problem Statement
	Background on Eclipse and Eclipse++
	Overview
	2-hop Eclipse
	The Pseudocode
	The Matrix Lg
	Update Lg and Lg
	Complexities of 2-hop Eclipse

	Evaluation
	Performances under Different System Parameters
	Performances under Different Traffic Demands
	Compare 2-hop Eclipse with Eclipse++

	Quantized Birkhoff-von Neumann Decomposition (QBvND)
	System Model and Problem Formulation
	The Optical Switching Problem
	The Hybrid Switching Problem

	Background on Birkhoff-von Neumann Decomposition
	Preliminaries
	The Stuffed BvND Algorithm

	Quantize BvND
	Pseudocode of QBvND
	A Modified Max-Min BvND Algorithm
	Theoretical Analysis and Quantization Unit Selection

	Closely Related Works
	Precomputed Packet Switching Algorithms
	Optical Switching Algorithms
	Computational Complexity Comparisons

	Evaluation
	Traffic Demand Matrix Lg
	System Parameters
	QBvND vs. Others for Optical Switching
	An ``Anatomic'' Comparison of Transmission Time
	QBvND vs. Solstice and Eclipse for Hybrid Switching
	Execution Time Comparison

	Best-First-Fit (BFF): Towards Partially Reconfigurable hybrid switching for data centers
	System Model and Problem Formulation
	Partial Reconfigurability
	Open Shop Scheduling Problem
	LIST: A Family of Heuristics
	Best-First-Fit (BFF)
	Evaluation
	System Parameters
	Performances under Different System Parameters
	Performances under Different Traffic Demands
	Execution time comparison of Eclipse and BFF

	Summary of the three algorithms
	Applicable condition, computational complexity, and theoretical guarantee
	Transmission Time Performance Comparison
	Using constructed traffic demand matrices
	Using recovered traffic demand matrices from real traces

	From batch scheduling algorithm to batch scheduling process
	Batch Scheduling Process
	Optical Switch Schedule Scaling
	Evaluation Results

	Line-Even Sparse Split (LESS): Traffic demand split in parallel-optical-switched networks
	MSB Problem and LESS Solution
	Matrix Split and Balance (MSB)
	Line-Even Sparse Split (LESS)
	LP-based 2-way LESS
	Combinatorial 2-way LESS

	Evaluation
	Simulation Parameters and Setup
	Under Different System Parameters
	Under Different Traffic Demands
	Sparsity Evenness of LESS
	Execution Times of LESS

	Conclusion
	Proof of NP-completeness
	Proof of Lemma 2

	References
	Vita

