

TOWARD AN INTERNET-PROTOCOL (VERSION 6)

DEPLOYABLE INFORMATION-CENTRIC NETWORKING

FRAMEWORK

A Dissertation
Presented to

The Academic Faculty

by

Laura Heath

In Partial Fulfillment
Of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
December 2014

COPYRIGHT © LAURA HEATH 2014

TOWARD AN INTERNET-PROTOCOL (VERSION 6)

DEPLOYABLE INFORMATION-CENTRIC NETWORKING

FRAMEWORK

Approved by:

Dr. Henry Owen, Co-Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

 Dr. John Copeland
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Raheem Beyah, Co-Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

 Dr. George Riley
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Russell Clark
School of Computer Science
Georgia Institute of Technology

 Dr. Yusun Chang
School of Electrical and Computer
Engnineering
Georgia Institute of Technology

 Date Approved: November 12,

2014

ACKNOWLEDGEMENTS

 I wish to thank my husband, Jeffrey Steel, and my parents, James and Nancy

Heath, for their unwavering support over the many years that it took to reach this goal. I

could not have done it without you.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

LIST OF FIGURES vii

SUMMARY viii

CHAPTER

1 Introduction 1

2 Background/Origin and History of the Problem 3

 2.1 Data Oriented Network Architecture (DONA) 5

 2.2 Named Data Networking (NDN) 8

 2.3 Publish/Subscribe Internet Project (PURSUIT) 14

 2.4 New Developments in the Internet Protocol Network 17

 2.4.1 Internet Protocol Version 18

 2.4.2 Software-Defined Networking (SDN) 20

 2.5 Summary 21

3 Layer Three Protocol Design 23

 3.1 Overall Design of an IPv6 Information-centric Networking Protocol 23

 3.2 Datagram header design 24

 3.2.1 Publisher Labels 24

 3.2.1.1 Global Publisher Labels 24

 3.2.1.2 Local Publisher Labels 25

 3.2.1.3 Anonymous or Ephemeral Publisher Labels 26

 3.2.2 Content Labels (CLs) 27

iv

 3.3 Security and Privacy 29

 3.4 Layer Two and Three: Routing and Switching Considerations 32

 3.4.1 Switching Performance 33

 3.4.2 Routing Performance and Stability 32

 3.4.3 Backwards compatibility 37

 3.4.4 Object Sizing 36

 3.5 Summary 39

4 Layer Four Protocol Design 41

 4.1 Flow control 42

 4.2 Retransmission of lost packets 44

 4.3 Reordering of packets 45

 4.4 Congestion control 47

 4.5 Summary 53

5 Performance Evaluation 55

 5.1 Application Notes 55

 5.1.1 Hardware and operating system issues 55

 5.1.2 Switching and routing issues 57

 5.1.3 Programming language and application issues 61

 5.2 Traffic generation for testing 60

 5.3 Network configuration 64

 5.4 Network performance 66

 5.4.1 TCP baseline performance 66

 5.4.2 CLIP baseline performance 67

 5.4.3 Commingled TCP and CLIP performance 69

 5.4.4 Performance in a routed network 70

v

 5.5 Comparison to Named Data Networking 72

 5.6 Summary 74

6 Conclusion 75

 6.1 Work remaining for full protocol implementation 75

 6.2 Future research 76

 6.2.1 Develop an abstraction of the transport layer for use in Python 76

 6.2.2 Investigate congestion control mechanisms in ICN network 78

 6.3 The future of the network 80

REFERENCES 82

vi

LIST OF FIGURES

Page

Figure 1: CCNx Routing 10

Figure 2: Header Format 25

Figure 3: Screen capture of a CLIP packet in Wireshark 26

Figure 4: Interior and exterior routing of CLIP datagrams 34

Figure 5: Switched network 62

Figure 6: Transmission delays for TCP and CLIP traffic on a 67
 switched-only network

Figure 7: Comparison of NDN and CLIP features 74

Figure 8: Work completed and items remaining to be accomplished 77

vii

SUMMARY

 The purpose of this research is to create a new information-centric networking

(ICN) framework and associated protocol that is implementable in the existing internet

with feasible minimal changes to the existing internet infrastructure. We create a protocol

that assigns globally unique data item names and embeds these names, plus associated

metadata, into an IPv6 header. This technique allows the use of the existing IPsec suite of

protocols to mitigate user privacy and security concerns which exist in other existing

non-implementable ICN designs. Next, we analyze the layer four functionality which

must be provided by a general-purpose transport protocol, and we give an initial

implementation which is used by our prototype. Lastly, using the Mininet network

virtualization suite, we show that using RFC-compliant IPv6 datagrams as the named

content allows information-centric routing and switching to be done using unmodified

hardware and software, and that it also ensures backwards compatibility with unmodified

networks.

viii

CHAPTER 1

INTRODUCTION

 There is a growing realization that some early design decisions while developing

the Internet have proven to be significant constraints to the performance and scaling of

the network today. In particular, there was an unspoken assumption that all

communication was host to host, and each host was one unique computer at one fixed

location. Yet today, the majority of the data transfers over the Internet are either data

distribution or provision of services—things that are not inherently (or even preferably)

single-host to single-host, point-to-point connections. A great deal of network research

and development over the last three decades has been devoted to finding ways to make a

point-to-point design function in a non-point-to-point way—such as multicasting (one to

many transmission), proxies (inserting an intermediary between two hosts in the

communications stream), NAT translation (multiple hosts sharing one routable IP

address), mirror sites (duplicate hosts in physically separate locations to serve identical

content), and more. Each of these configurations have produced a crop of complicated

work-arounds, which frequently break other services unexpectedly and lead to yet

another ad hoc patch.

 Many of these work-arounds would be unnecessary if the network could

recognize and route by data content rather than host name and location. The fundamental

problem is that the Internet socket (IP address and port) has become the (nearly)

exclusive means of identifying the endpoints of interprocess communication over the

network. This makes the IP address the so-called “thin waist” of the Internet—much

1

innovation and diversity above it (in applications) and below it (in transmission and

networking), but essentially no changes to the IP addressing scheme itself. Both

applications above it and hardware and firmware below it have been designed with

implicit or explicit dependence on the details of IP.

 There have been multiple attempts to develop a system that replaces the host-

centric interprocess communication with an information-centric one. In chapter 2, we

analyze the three most well-known of these systems: the Data Oriented Network

Architecture (DONA), the Named Data Network (NDN)/Content Centric Network

(CCNx), and the Publish/Subscribe Internet Technology (PURSUIT) program. Yet

despite the promise of improved network performance and simpler data handling, none of

these systems is in wide use today. The slow and difficult process of shifting from IPv4

to IPv6 has shown that any change at the IP level can cause many unexpected and

difficult to resolve problems. This, plus questions about cost, interoperability with legacy

systems, and the absence of an economically viable deployment strategy, are the principal

problems blocking the use of information-centric networking. Our conclusion is that,

while an information-centric network has numerous potential benefits, any actually

feasible system must be fully compatible with the current and future IP network hardware

and software infrastructure.

 We then discuss new developments in the field of software-defined networking

and the continuing roll-out of the IPv6 network worldwide have made a fundamental re-

working of the IP layer actually achievable for the first time. We specify a method of

embedding information-centric networking labels into the standard IPv6 header, which

allows information-centric networking packets to coexist on unmodified IPv6 networks.

2

Our method is shown to be fully RFC-compliant and feasible for use immediately on the

commercial internet without modifying either the network infrastructure or the operating

system of the end host. We also demonstrate how our system resolves the security and

privacy issues inherent in other ICN designs, and we show how using the standard IP

Security (IPSec) suite of protocols and a simple ephemeral publisher label system can be

used to resolve these concerns.

 We then look to the layer four requirements that a transport protocol for general

use must meet to ensure reliable, safe and performant operation, In particular, we make

comparison between our proposed method and the most common layer four system,

transmission control protocol (TCP). We show that our system inherently provides most

of the functionality needed, and we show that an initial solution to the question of

network congestion control can be implemented by borrowing the methodology used by

TCP. We conclude that our protocol is a good candidate for further development and

research.

 Next, we demonstrate an initial prototype of the protocol in a virtual network,

showing that it can be used on the unmodified Linux operating system, off-the-shelf

network virtualization software, standard software-defined network controllers and

routing protocols, and commercial hardware. This allows the network to provide

information-oriented transport services to applications, enabling access to named data

items in place of host-oriented connections. Lastly, we compare the performance of this

prototype to standard TCP for transferring short, ephemeral data items across a moderate-

sized network.

3

 We conclude with a discussion of what items remain to be resolved for this

prototype protocol to become sufficiently robust for production-grade traffic. We expect

a relatively modest investment in software development will enable us to meet the

standard Python interfaces for transport objects, which should allow us to use the CLIP

transport layer as a mix-in for higher-level applications. If successful, this would give

access to a very robust and extensive ecosystem of features and programs; of particular

note are the various cryptographic and network utilities, APIs for many production-grade

systems such as databases, and user-level programs such as browsers and media players.

Further research opportunities abound as well. We are particularly interested in the

theoretical and practical question of improving congestion control. The current practice

and methods depend explicitly on data flows being bi-directional, fixed-endpoint flows

between two active processes. This is not true for our protocol, and so we believe that

significant new findings are possible for a re-architected system.

4

CHAPTER 2

BACKGROUND/ORIGIN AND HISTORY OF THE PROBLEM

 As described in the introduction, multiple organizations have started work on

designing a new method of routing based on the identity of the information, rather than

the host identity and location. There are three principal approaches to information-

centric networking: the Data Oriented Network Architecture (DONA); the Named Data

Networking (NDN) project, also called the Content Centric Networking (CCNx)

framework; and the Publish/Subscribe Internet Technology (PURSUIT) project, which is

an extension of the Publish/Subscribe Internet Routing Paradigm (PSIRP) program.

2.1 Data-Oriented Network Architecture (DONA)

 One of the first attempts at information-centric networking was the Data-Oriented

Network Architecture (DONA)[1], which built on the work of TRIAD[2]. These

researchers’ approach to creating routable data items is to completely redesign the

Internet naming scheme, replacing the current DNS with an information-centric version.

In their terms, domains are replaced by “principals” (publishers of data, identified by a

public-private key pair). These principals assign a “label” (a unique numerical name

assigned by the principal) to each content item. The content item is then uniquely

identified by the number P:L, where P is the hash of the principal’s public key. The

routing information to the nearest copy of this data is then developed by a route handler

(RH) in each internet domain. These RHs have two primary primitives: REGISTER

(P:L), which populates the register of content item locations, and FIND (P:L), which

functions much as the current DNS lookup, by either returning the physical location of

5

the content item or forwarding the request to its next higher RH for resolution. As with

current routing protocols, register entries will be shared with parent RHs and may be

shared with peer RHs.

 Thus, the information centricity of DONA results from two main innovations: a

structured naming convention for data items, linking the principal (owner) of the data to

the data itself; and a layer-four method for resolving the content name with a layer-three

physical address (in practice, an IP address for the nearest copy of the desired data item).

The first innovation, naming data based on its publisher rather than the socket unique to a

pair of communicating host processes, has been adopted by all subsequent ICN designs in

one form or another (including our own protocol). This reflects the fact that most

networking use cases are actually a software process obtaining and operating on a desired

block of data, rather than two processes on different end hosts interacting with each other.

 The second innovation, the method of mapping the content name to the physical

address of the desired data, is more mixed. From a positive standpoint, by making

changes only in layer four, it allows the system to operate directly on an unmodified IP

network. This has three fundamentally important benefits. First, it allows any end host

with connectivity to the Internet to access the system. Any host which knows the IP

address of the root RH can resolve the physical location of its desired data, and the

system uses the standard IP routing and switching to deliver the data. This means that

there is a clear path for incremental roll-out and also guarantees that legacy point to point

traffic will not be affected by the new services offered. Second, by using unmodified

layer-three delivery methods, DONA ensures that the stability and reachability

guarantees of the current networking protocols are preserved in the new system. Third,

6

by converting the content-centric search into a point to point delivery of data over IP, the

system allows (but does not require) the use of industry standard encryption and signature

techniques to preserve user privacy and security. DONA is the only ICN prototype

available which provides these benefits, and in practice, they are absolutely necessary to

meet for real-world traffic.

 However, the content mapping scheme used in DONA has several significant

problems, which sharply limit the system’s ability to be implemented at scale. First, the

computational burden of registrations on the RHs, particularly the Tier-1 RHs, would be

very substantial. Each registration requires computationally expensive public key

cryptography to verify the legitimacy of the registrant. (Key revocation lists will also be

needed, and administering these lists has been a significant burden in other PKI

deployments.) Second, the required routing tables will necessarily be large, as the

namespace is very large and not logically linked to the physical addressing; this will only

increase in size and complexity if the data are stored in multiple physical locations to

improve speed and reliability. Both the original DONA paper and subsequent analysis at

[3] have concluded that this type of mapping construct is physically impossible to

implement at Tier-1 routers with current hardware. Third, the fact that the name is

neither human readable nor predictable from known information will likely require an

additional lookup to resolve the name of the desired content. This would require a total

of four systems of data lookups to be established, maintained, secured, and queried

(principal’s name-to-public key binding, key revocation list, file name-to-number

resolution, and physical location of the data) prior to the beginning of any data transfer.

One additional issue is that, because the data is actually delivered via a point to point

7

transmission between hosts, the system does not lend itself to the pervasive caching of

data items in the network, as envisioned by the other ICN designs, or for alternate

network delivery architectures (such as publish-subscribe or peer-to-peer). Accordingly,

this system is more akin to a content delivery network than a fundamental redesign of the

Internet routing paradigm.

2.2 Named Data Networking (NDN)

 The Named Data Networking (NDN) project [4-6], sponsored by the National

Science Foundation, is another approach to ICN. Initially, this approach abandoned IP

numbers entirely as routing primitives. Instead, routers would use a name-based routing

protocol, storing the results in a forwarding information base (FIB). Content “chunks”

are to be named using a hierarchical, human-readable format (for example, a web page

could be named /edu/gatech/ece/cap/wiki). Users send information requests,

called interests, to the router. The router maintains a Content Store of named

information, and if the router has a copy of the requested data already, it transmits the

data out on the same interface that the request arrived on. If not, it stores the interface

number in a pending interest table (PIT) and forwards the interest according to its FIB

(for example, it may have a rule that all unfilled interests for data items from

/edu/gatech/ece/cap/ are forwarded to interface n, similar to the concept of a

default gateway in IP routing). The NDN envisions that each node in the network will

have a significant amount of storage, so that a relatively high percentage of interests are

expected to be satisfied locally. Note that this is a much more ambitious redesign of

network routing than DONA, and in particular changes the architecture to a store-and-

forward concept. The routing is intended to be entirely content-centric and decentralized,

8

with each router following its own local rules for propagating interests to, and servicing

interests from, its neighbors. The NDN traffic could ride IP as its transport, but the

forwarding decisions would be made based on the data’s name and the record of interests

at each node (not the IP address of the source or destination).

 This initial approach had no routing in the network at all, with requests simply

diffusing from node to node until they met with a stored instance of the data requested[7].

Beyond a small number of nodes, however, this approach proved unworkable for two

main reasons. First, pending interests would expire (either as an explicit timeout or by

being overwritten as the table became overfilled with new interests) before they reached a

source of the data, meaning that data chunks were unreachable from some requestors.

Second, if interests propagated to every node, regardless of whether it was on a path to

the data, the pending interest tables became flooded with unnecessary entries. The

problem becomes much worse when facing a malicious user flooding the network with

spurious requests as a denial of service attack[8-11] or with attempted cache

poisoning[12]. As a result, a number of different researchers have proposed ways to

integrate IP routing into the NDN system[13-17], with the current reference system in

CCNx being the NDN Link State Routing (NLSR) protocol[18]. While this system does

improve the reachability of the network significantly, it comes at the price of abandoning

the information-centricity of the routing and forwarding decisions—the network must run

both a link-state routing protocol covering all network nodes and also maintain a PIT at

each router and switch. It also means that the concept network is, in effect, required to

ride an IP network (which must itself have all of the normal network services and

infrastructure), which opens the question of what is to be gained by information-centric

9

networking (as compared to, say, adding store-and-forward proxies or an application-

layer change such as publish-subscribe). There are additionally significant questions

about the behavior of the routing system when interest packets are lost. There is no clear

indication when (or if) the router should retransmit interests, and how this would affect

either performance or reachability[19]. We also do not know how the various attempts to

improve NDN network performance via aggregating related interests[20], tag-based

routing[21], collaborative caching of interests and data[22], bundling interests and

content packets[23], rate limiting of interest propagation[24], and other methods will

impact the stability and reachability of the network. (In contrast, we have both deep

theoretical analysis and extensive practical experience with IP, which shows us how to

guarantee routing stability and network reachability.)

 Two related issues are the question of the size of the PIT and the time it would

take to look up the name and determine its forwarding class. Even in the best case, the

PIT requires a very large number of entries, with significant churn—some researchers

estimate that to support a 20 Gbps link, the PIT would have to contain over 1.5 million

entries, with 1.4 million lookups per second, and 900,000 insert and 900,000 delete

operations per second[25]. The request then must be matched against the FIB, which

maps data chunk names to forwarding classes. These names are typically longer than IP

addresses and far less structured; they also are much more mutable (as data is moved

around the network the best source will change), which sharply increases the number of

read/write operations needed. FIB entries typically run to the tens of millions of

lines[26]. Both PIT and FIB lookups and changes are memory operations, typically using

a hash table approach[27, 28]. Note that architecture requires every switch and router in

10

the NDN network to have a very significant amount of memory (several gigabytes at

least) for the PIT and the FIB, over and above any storage for the content itself, and in

addition to the hardware resources needed for the underlying network. Attempting to

improve the performance of these memory resources is a principal thrust of ongoing

NDN research[29-31], but the best available results have been an order of magnitude

slower than line speed[32].

 By contrast, the largest IP routing tables in system today (the global,

unaggregated tier-1 BGP routing table) has approximately 522,000 entries as of this

writing, and with CIDR aggregation this becomes less than 290,000[33]. Most routers

and switches need far less than this, because they implement default routes for non-local

traffic. Because the memory requirement is so much smaller, and the address space is

carefully structured, IP routers and switches store their entire forwarding plane match set

in ternary content-addressable memory (TCAMs). These identify the best-match rule in

one clock-cycle (i.e., the forwarding decision is made before the entire packet is read off

the line, even on the fastest links). As we will show in chapter five, our proposed system

uses this already-installed infrastructure without modification, giving us an expected 10:1

speed advantage at the forwarding plane.

 A further problem surfaces when trying to internetwork NDN enclaves. The

existing, unmodified IP network infrastructure cannot recognize or route NDN datagrams

based on their names. If the network provider supplies routers that can serve both as

NDN routers and IP routers, the NDN data can traverse an OSPF or IS-IS IP network as a

type-length-value (TLV) formatted packet. However, these packets are unrecognizable to

IP-only routers; hosts who are not connected to an NDN router cannot either send or

11

Figure 1. CCNx Routing. This is an example of the compatibility issues encountered
with CCNx and the legacy IP network. While named content can circulate through
“islands” of CCNx-enabled routers, the legacy network IP routers cannot understand the
names or routing schemes. As a result, any users who are not physically connected to a
CCNx router cannot access (or even see) the named data on the CCNx network.
Additionally, CCNx cannot self-assemble into an internetwork across the legacy IP
network—the BGP routers cannot recognize or advertise CCNx routing information. The
only way to interconnect CCNx networks is to manually install a tunnel between the two
CCNx networks.

receive NDN data. Likewise, NDN networks connected through non-NDN ISPs cannot

self-assemble into an internetwork, because there is no mechanism for sending TLV

12

datagrams via BGP. Thus, to develop a fully-integrated global network (anyone can

reach anyone, as in the current design of the Internet), all routers connecting end users

must be changed, and all autonomous systems (ASs) must change their routing methods.

(A simple example of the connectivity problem is given at Figure 1.)

 NDN also raises several issues regarding trust and security. As specified, it

depends on “self-certifying” data, a cryptographic binding of the data name and data

contents to a specific key. This binding can be verified (or not) by the content routers in

the network and the end user, and the end user can use any method he wants to choose

what keys to accept. The keys themselves also can be acquired by transmitting an

interest. But there are significant concerns with this scheme. The community’s

experience with the abuse of open mail relays [34, 35] suggests that network resources

(such as cache space and interest tables) left unprotected will be exploited by the

unscrupulous, and impersonation will probably occur on a large scale. This implies that

verification of each data item will be done at many, if not all, routers in the data path. In

turn, this means that the question of which keys to accept cannot be left to the end

users—Alice may want to accept a key claiming to be from XYZ Corp. as legitimate, but

if her ISP does not, then the data will never arrive. The same holds true for her ISP’s

peers. Additionally, all of the problems with key management and revocation discussed

in relation to DONA would apply here as well. (Trying to get a key by expressing an

interest for it does not solve the security problem: one must decide if the data arriving in

response is the correct key, or a false key; this requires the key to be certified with

another key, which in turn must be certified, etc.) The only published approach which

addresses this issue is [36], which requires the content chunk names to be uniform

13

resource identifiers (URIs) that can be retrieved through the domain name system (DNS).

While this does allow cryptographic certificates for each item to be distributed and

verified, it begs the question of why one would not simply use HTTP for the data

exchange instead of reinventing a new mechanism.

 Lastly, even if data were to be successfully and effectively self-certifying, this

does not resolve the question of verifying that the user requesting the data is legitimate.

Current practice in CCNx is based on having an access control list (ACL) at each

router[37-39], mapping the access permissions between every possible user and every

possible data scope; this is likely to be impossible to implement at scale[39], even leaving

aside the question of whether the routers can be trusted to correctly and securely

implement the system. The amount and detail of data stored on the routers and switches

in NDN also raises troubling questions about privacy compromises, either by snooping

the router caches[40] or by traffic inspection[41].

2.3 Publish/Subscribe Internet Technology (PURSUIT)

 The last major ICN prototype to be discussed is the Publish/Subscribe Internet

Technology (PURSUIT) program [42], which is a further development of the

Publish/Subscribe Internet Routing Paradigm (PSIRP) program [43]. This is an EU-

funded effort which aims to create a new overarching architectural framework for

networking. As may be obvious from the name, PURSUIT changes the network service

model from request/response (like the current IP design) to publish/subscribe, and as a

result develops an information centric design based on the name of the published item.

The first prototype of this system is called Blackadder [44, 45].

14

 As with other ICN designs, PURSUIT changes the networking primitive from a

named end host to named data items. These are given statistically unique, flat (i.e., not

aggregatable) label identifiers by the publisher. The publisher then groups data items

under one or more hierarchical “scopes” (collections of data items relevant to a particular

mission, need or solution). Scopes themselves can be treated as data items that fall under

other scopes, and are named with flat label identifiers as well. Scopes serve to publish

the availability of logically-related data items, match requests with data, and then

construct and execute a delivery graph from the source to the receiver. PURSUIT

envisions that each scope will have a dissemination strategy, specifying rules appropriate

for the data in question (e.g., security policy, error control, fragmentation rules).

 The PURSUIT architecture identifies three logically distinct functions that must

be provided for each scope. First, the rendezvous function matches subscriber requests

with published data, according to scope-specific policies. (Under the PURSUIT

terminology, the data item name is called a “rendezvous identifier,” specifically

emphasizing that it is a functional tag rather than a file name, and that it is specific to a

particular scope.) Next, the topology management function determines the optimal

physical location of the data that can be used as a source and the best route for the data to

follow during transmission. Lastly, the forwarding function executes the data flow.

 In the Blackadder prototype, all three functions are implemented within the same

device, called a publish-subscribe router. The rendezvous node maintains a list of

published items and subscriber requests, matching the two as appropriate. The topology

manager maintains a current network view and, when it receives a match from the

rendezvous node, it calculates the publisher and optimal path for the request. Then it

15

sends a notice to the publisher, containing the name of the requested item and a Bloom

filter that specifies which interfaces each node in the path should use for forwarding the

datagram. The forwarding function is simply comparing the given Bloom filter to the

available outgoing interfaces at each node in the path; a match indicates that the node

should forward the datagram via that interface. (This eliminates forwarding tables in the

switches, which is seen by the Blackadder developers as a major issue in the feasibility of

future networking designs.)

 The PURSUIT project attempts to simultaneously solve multiple perceived

difficulties, many of which are outside the scope of this research. Specifically for the

purposes of this work, this system has one primary conceptual advantage: formally

separating the functions of matching data requests and data availability, physically

locating the data and calculating an optimal delivery graph, and the actual

implementation of the delivery in the network forwarding fabric. These functions have

very different requirements and operational demands, and logically separating them is the

first step to optimizing them. (Our work primarily focuses on optimizing the delivery of

the data, while simultaneously exposing the necessary metadata to higher level devices or

processes to efficiently handle content discovery and policy application.)

 Despite this major advance, we believe that the PURSUIT approach has

significant drawbacks. First, the rendezvous function as described is likely to be very

complicated to implement securely and effectively at scale. This is particularly true if

scopes are allowed to fall under more than one parent scope—the question of which

policies the sub-scope should inherit is likely to be very difficult to answer (and the

network manager is probably not the best entity to decide in any event). Note that

16

dissemination policies must be determined for every data item on the network, which

implies that the number of decisions to be made will be exceptionally large in a

production network. Second, the same concerns about reachability and routing stability

mentioned in the case of NDN would also apply to PURSUIT as well, particularly in light

of the fact that the Bloom filters used in the forwarding function have a non-zero error

rate (i.e., datagrams are sometimes forwarded through one or more incorrect interfaces in

addition to the best path interface, which unpredictably creates loops in the layer 2

topology, resulting in uncontrolled packet storms). Third, it is unclear how this system

could be extended to an internetwork, without tight coordination and exposure of a very

large amount of customer data (such as scopes and dissemination policies).

 Ultimately, these obstacles to a fully-functional network design were not able to

be overcome by the research teams involved in the project. As of spring 2014, work on

the PURSUIT project has come to an end.

2.4 New Developments in the Internet Protocol Network

 The above discussion would seem to mark “case closed” on attempts to produce

an information-centric network—despite multiple attempts, over many years by a number

of researchers, no ICN design has emerged which was feasible to implement past a

laboratory-sized network under a single, uniform network administration policy set.

However, further developments in other areas of network in the last 12-24 months have

opened intriguing new possibilities for fundamental network redesign. We believe that

the development and implementation of advances in two other areas of networking (the

design and roll-out of IPv6 and software defined networking) can facilitate a new and

improved approach to ICN. Although it is beyond the scope of this document to fully

17

describe the research behind these technologies, a brief description of the key points we

will be highlighting in the development of the protocol and implementation is worth a

short consideration.

2.4.1 Internet Protocol Version 6

 The Internet Protocol version 4 has been in widespread use since 1981 [46], and it

is fair to say that it is one of the most successful and transformative technology

inventions ever made. Initially intended as simply one research design among many

others, its combination of simplicity, flexibility and speed eventually triumphed over all

other competitor systems. IPv4 is one of the most ubiquitous standards in the world.

 However, by the late 1990s, it was clear that a new version would be required.

The main issue was due to the exhaustion of the 32-bit address space used in IPv4, which

had been made much worse by initial allocations of addresses that did not reflect the later

globalization and spread of the Internet. Once it was clear that backwards compatibility

would not be possible to achieve, the Internet Engineering Task Force (IETF) decided to

take advantage of the opportunity for a fundamental redesign of the IP header. There

were three major changes. First, the IP address length was increased to 128 bits, and the

allocation of these addresses was simplified. Subnet masks in IPv6 could be any length,

contrary to IPv4 practice, but the standards bodies also resolved that the minimum size to

be issued to network administrators would be a 64-bit network address. (This would

allow individual network administrators to subnet their networks as needed, without

forcing them to have noncontiguous IP blocks in their network or to use network address

translation to handle their addressing needs.) Second, they attempted to simplify the

header by removing obsolete or unnecessary header fields. Under IPv4, there were many

18

mandatory header fields which no longer reflected current network needs—for example,

they were used for interoperability with non-IP networking standards which are no longer

in use, or they were used for experimental protocols which were ultimately found to be

unsuitable for general use. The IPv6 standard specified only a mandatory 40-byte header,

containing only eight well-defined fields. This was designed to make the header very

easy to parse in high-speed hardware. Third, to allow for future flexibility, the IETF

added a mechanism for creating and appending new header fields if additional

functionality were to be needed, as well as clarifying the overall policy for handling new

or experimental headers in production networks.

 Our research takes advantage of this redesign in two main ways: first, the larger

address space, combined with a more systematic and flexible method of assigning

network prefixes, means that we are able to add an additional level of syntactical

meaning within the IPv6 address. We use this to make a switchable, routable identifier

for information-centric datagrams. Second, making use of the ability to add a generic

field for ancillary data in the header, we are able to make each datagram carry a

significant amount of machine-readable, highly structured metadata that makes

information centric networking possible within an RFC-compliant network. (Details of

the header structure are given in the next chapter.)

 Implementing IPv6 has been a very gradual process, with hardware and firmware

generally being made IPv6 ready in the mid-2000s, but almost all production traffic

remaining on IPv4 through the 2010s. New technologies implemented since the mid-

2000s, including the 4th Generation LTE cellular network, were built to be native IPv6,

and by some reports up to 25% of the cellular phone network traffic was native IPv6 by

19

early 2014[47]. World IPv6 Day was celebrated in June 2012[48], when most major

world Internet service providers permanently established IPv6 services for the public, and

production traffic continues to grow (although from an initially low base). The result is

that fully RFC-compliant IPv6 service is now widely available, and the remaining

obstacles to its use are being addressed rapidly by commercial providers. Consequently,

an ICN design based on IPv6 is now fully feasible to deploy.

2.4.2 Software-Defined Networking (SDN)

 The additional features of the IPv6 header makes it technically possible to include

appropriate labels for publisher and content, but without a reliable, practical means of

making the detailed forwarding decisions needed to make use of this information, there

would still be little point in proceeding. However, in recent years the development and

implementation of SDN have radically extended our ability to provide fine-grained

control of data flows in the network.

 In SDN, the header fields of each packet are compared to a set of matching rules

provided by a software controller (for example, source_address = “2001:1::1”,

source_port = “80”, protocol = “tcp”). The highest priority match is selected, and the

specified rule is executed (for example, forward the packet through interface 0). Thus,

the forwarding plane (matching packets with a specific network action) is completely

separate from the control plane (deciding how to categorize packets into forwarding

classes). Additionally, SDN allows us to write almost arbitrarily complex programs as

our network controller, including the ability to access databases or other sources of

information as part of the decision process, and to modify and propagate the detailed rule

20

sets required throughout the network automatically. Specifically for our purposes, SDN

allows us to make packet handling decisions based, not simply on network prefix, port,

and protocol, but also on the metadata we embed in the header.

 The most common open source SDN framework is provided by the Open Flow

specification[49], coordinated by the Open Networking Foundation[50] and supported by

most industry participants. Almost all current networking hardware and virtualization

software supports SDN, and open-source controllers are readily available. In particular

for our project, OpenFlow version 1.3[51], finally approved in January 2014, called for

full support for IPv6 header field matches, and in particular for the extension headers we

will use for our metadata. The first virtual switches and SDN controllers to implement

this new standard became available in spring 2014. Our research is not on SDN per se,

however, the advances achieved by SDN solutions makes it possible to execute the

detailed control requirements needed for our prototype to be successful. Prior to the

introduction of this technology, it was simply impossible to design and implement a

network which could be configured with such fine detail, and which could be modified

on the fly during production to handle the large numbers of possible flows and policies to

apply.

2.5 Summary

 In summary, there have been many attempts at resolving a long-standing

mismatch between what the Internet Protocol requires (purely host-to-host

communication) and the way that many processes actually use the network (for

interacting with named data items rather than specific end hosts). A number of research

teams have approached the issue over the last 6-10 years, but no design has arisen which

21

can actually be implemented in practice. Indeed, active research on these prototypes has

largely stalled, due to unresolved questions about scaling, security, deployment, and other

issues.

 However, advances in other areas of networking have made an entirely new

approach feasible. In the following two chapters, we will describe a way to extend the

standard IPv6 header format to incorporate all of the necessary metadata for an

information-centric network to be established on current hardware and software. We will

begin with the layer three requirements needed to fully identify the datagram by producer

and content. Then we will describe the layer three methodology for addressing the

security and privacy of both sender and receiver, and several layer three specific

technicalities. Next, we will move to layer four, and show how this proposed protocol

meets the requirements for the layer four performance, with a particular comparison to

the state-of-the-art transmission control protocol (TCP). Finally, we will show a

simplified working prototype of the protocol, demonstrating that it can, in fact, be

implemented on current (unmodified) hardware and software.

22

CHAPTER 3

LAYER THREE PROTOCOL DESIGN

3.1 Overall Design of an IPv6 Information-Centric Networking Protocol

 The first step in designing a deployable, IPv6 based ICN is to define a datagram

protocol to support the necessary data exchange and services required. We published the

proposal for this protocol (described in this chapter) at the IEEE International Conference

on Communications (ICC) as “CLIP: Content Labeling in IPv6, a Layer 3 Protocol for

Information Centric Networking” [52]. As stated in the title, this work assumes that IPv6

remains the “narrow waist” of the network, and that ICN traffic must coexist with legacy

point-to-point traffic for the indefinite future.

 There are three main areas we have addressed in developing the protocols for

converting the host-based IP framework into an ICN framework. First, there must be a

globally unique, structured way of identifying individual data items. This protocol

describes how to develop such a name and embed it into an RFC-compliant IPv6

datagram header, allowing unmodified IPv6 nodes to route datagrams by content name

(including both publisher and item name) rather than host name. Second, the security and

privacy of individual data items must be addressed. The data items must be combined

with all necessary metadata to allow any node in the network to verify the integrity of the

data and bind the entire item to a specific publisher. Additionally, there must be a

provision for concealing both the content of the data item and, if necessary, concealing

the publisher and consumer of the data from intermediate nodes. Lastly, the ICN routing

protocol needs to demonstrate that it is safe (guaranteed to converge), autonomous (does

23

not require coordination or exposure of intra-network data), and expressive (allows for

diverse policies between autonomous systems). Additionally, to be realistically

deployable, the system must be fully compatible with the current host-oriented network

routing paradigm, allowing both information-centric and legacy traffic to coexist on the

same network indefinitely without interfering with each other in any way.

3.2 Datagram header design

 The first portion of the protocol design is the IP header content. The first step in

the process was to create a globally-unique name for each content item. Similar to the

existing ICN designs, we adopted a naming convention of associating a globally-unique

publisher label (PL) with a unique content item label (CL). We then integrated this

naming convention into the IPv6 address space. Our approach was to create a large

subnet for all ICN traffic, then create individual subnets for each content publisher, and

lastly to append the content label to the interface ID and destination options header.

3.2.1 Publisher Labels

 We defined three types of PLs: global PLs, which are unique to a specific

organization or user; local PLs, which are non-routable and managed by the local

network provider; and anonymous PLs, which are designed for ephemeral use.

3.2.1.1 Global Publisher Labels

 The global publisher label (PL) will have to be assigned by a universally-

recognized organization, similar to the ways that IP addresses, MAC addresses, and AS

numbers are issued today. While this is a less-than-ideal requirement, in practice there is

no other way to ensure that the publisher label is actually unique. Indeed, as the PL will

24

become part of the globally-routed IP address, it may make most sense to have these

numbers issued in exactly the same way that IP addresses are allocated today.

Additionally, this partially resolves the problem of associating a network-level item (the

PL) with a real-world identity of a person or organization. In this work, we assume that

the length of PL is 64 bits long, and begins with 0xC. The length is chosen because the

smallest allocation of IPv6 address space to be assigned is the /64 subnet, as described in

RFC 6177 [53] and RFC 4291[54]. Thus, it is certain that there will be at least 64 bits of

address space available for assignment on any RFC-compliant network. The prefix 0xC

is used for two reasons. First, a unique subnet prefix for all ICN content (from all

publishers) makes subsequent special handling by network nodes much easier to

implement in hardware. A unique subnet prefix allows aggregation of the ICN address

space and separates it logically from the legacy point-to-point IP space, easing the

administrative overhead of policy enforcement. Second, this prefix is not currently

specified for use in any other network addressing schemes, including stateless

autoconfiguration [55] and IPv4 embedded/compatible/mapped addresses [56]. This

gives a global space of 260 unique names for publishers, while still leaving a very large

number of subnets available in each network address for legacy host names.

3.2.1.2 Local Publisher Labels

 On the link local address FE80::/10, the publisher label may be locally assigned

by the network provider. This will allow for locally produced and consumed data to be

locally administered as well. It is expected that most users, and possibly even individual

processes on local hosts, will receive ID numbers of this type for intra-network use. The

25

network provider may make arrangements to republish local data under a commercial or

organizational publisher label for any data needing global availability.

 Readers may question why we are not using the unique local addresses (FC00::/7)

defined in RFC 4193 [57] for this purpose. There are two main reasons. First, the RFC

specifically requires the remaining 40 bits of the network address to be generated

randomly and further specifies that these addresses must not be aggregated by routers. In

contrast, under this protocol, network providers would be expected to structure and

aggregate the network addressing scheme to simplify administration and logical data

flow. Second, the early experience with “site local” addressing showed that addresses

can “leak” via the application layer, particularly with mobile or multi-homed hosts [58].

This can lead to erroneously addressed packets flooding through the network. (For

example, a user would download his e-mail at work using one addressing scheme, but

attempting to use the same address from home would cause an IP number conflict on his

ISP’s network.) By using the link-local addresses, this problem is largely avoided: the

network does not route FE80::/10 addresses, so an IP address conflict could only occur if

another host on the same layer-2 switched link had both the same global ID, local ID and

local publisher ID (118 address bits total).

3.2.1.3 Anonymous or Ephemeral Publisher Labels

 Lastly, to address the need for no-cost and anonymous publisher labels, The PL

numbers beginning with 0xCFF are reserved as a type of “unlicensed spectrum” for

anonymous or ephemeral use. We foresee two main uses for addresses in this class.

First, we expect that there will be a need for ephemeral “rendezvous” points, particularly

for one-time data transfers between individuals. Second, these addresses can be used to

26

conceal the true publisher providing data to a host, as discussed under security and

privacy concerns (see below under “Security and Privacy”).

3.2.2 Content Labels (CLs)

 The last component needed for this system is a unique content item label. The

label begins with a two-byte field for timestamp or version number, assigned by the

publisher. Next, the publisher must assign a unique content item label. The question of

content naming is an area of dispute among the designers of different ICN systems, with

some systems choosing a human-readable, hierarchical naming convention (similar to the

URLs used in HTTP), while others use a cryptographically-derived self-certifying name.

Octet 0 1 2 3
0 Version Traffic class Flow label
4 Payload length Next header Hop limit
8 Source network 12

16
Source interface or Publisher Label1

20
24 Destination network 28
32 Destination interface or Publisher Label1
36

varies Hop by hop, Fragment, AH, and/or ESP header2 (as needed)

varies
Next header CL length Timestamp or version number

Content label (CL)

varies Other headers (ESP2, fragmentation, mobile IP, etc.) if needed

PAYLOAD

1. When a host is requesting a content item, the destination interface will be the Publisher Label (PL); when
a content server is replying with a content item, the source interface will be the PL
2. The ESP header may appear before or after the Content Label (CL).

Figure 2 Header format

27

Figure 3. Screen capture of a CLIP packet in Wireshark

This protocol functions equally well with either convention. (But see the discussion of

privacy and security below, where we describe why we believe that cryptographic-based

names are not desirable in practice, and how to provide the necessary binding using IPsec

protocols.)

 The CL is placed into the destinations options header field in the IPv6 datagram

as shown in Figures 2 and 3. This has three main advantages. First, the content label can

be very large—up to the size of the datagram (a minimum of 1280 bytes on any network

28

and a maximum of 232-1 bytes for a jumbogram). Second, this allows the label length to

be variable—the only system requirement is for the header to be a multiple of eight bytes

long. We expect that different types of content will have different optimal sizes for

individual data items, and this flexibility allows content owners to make an appropriate

decision for their content and operational needs. Third, the IPv6 specification states that

the destinations options header is not read or acted on during transit. This means that the

legacy network will not need any additional equipment or policy to handle ICN traffic. A

deployment of the ICN system does not require any arrangements with service providers

beyond receiving IPv6 service. However, if a network provider chose to implement an

information-centric proxy or cache, the content information would be easily available in a

standard structure. That is, they could implement this proxy or cache without the need

for deep packet inspection, statistical tests on variable length windows, etc.—and in fact,

without standing up a full ICN network.

3.3 Security and Privacy

 The next issues to be addressed are security and privacy. There are three main

security considerations that any deployable ICN system must address: key management;

the secure binding of real-world identity of the publisher, publisher label, content label,

and the content itself; and preserving the privacy of end users. As noted above, we

assume that the binding between real-world identity and PL is done when the PL is

issued. An addressing and header protocol such as this one also cannot address the

question of key distribution. We assume that this is handled by another method, such as

DNS IPSECKEY records [59] or Kerberos [60], and that a security association (SA) has

been created.

29

 Once a key has been distributed, the binding of the PL, CL, and data can proceed.

IPv6 provides a straightforward solution with the Authentication Header (AH) feature of

the IPsec suite of protocols [61]. It binds all non-mutable elements of the datagram (i.e.,

everything except the traffic class, flow label, and hop limit) with a cryptographic

signature. The signature may be based on either symmetric or public keys, and the

protocol allows for new cryptographic algorithms to be implemented in the future. This

flexibility is critical for a long-term production system, to allow for security and

performance upgrades where and when needed. Note, however, that there are some

important conceptual differences between the legacy point-to-point security association

and an ICN security association. Most importantly, the use of challenge-and-response

methods (like encrypting nonces) and mutually-constructed secrets (as in the Diffie-

Helman algorithm) is not generally possible, as there is no explicit connection between

the publisher and receiver. Additionally, in the context of this protocol, a “session” is not

an end-to-end connection between two hosts, but rather a period of authorized access to

certain CLs.

 It is also important to discuss the question of using cryptographically-generated,

or self-certifying, names as a security feature to prevent denial of service attacks. As

described in [62], under this concept publishers are identified by a fixed-length hash (P)

of their public key (assumed to be bound to their real-world identity by a DNS-type

lookup system). The data item is named by concatenating P with a label L, which is in

turn generated by cryptographically hashing the tuple <data, public key, L, metadata,

signature>. This tuple is the data item provided to a requestor. This makes it effectively

impossible to impersonate a publisher, as any node can hash the provided public key and

30

verify both P and L. This is extremely risky in a production network, however. Key

compromises are an unfortunate reality, and when (not if) they occur, every data item that

the victim has ever created must be renamed—and the new names will have no relation to

the compromised names. Such an event would be incredibly traumatic for the victim,

particularly if the compromised network cannot be shut down for overhaul. Even in the

best case, cryptographic algorithms have a finite lifespan, and production environments

typically require a transition period measured in years; during that time, both algorithms

must be supported. If names are generated by specific hash algorithms, an overlap would

seem to require duplicate copies of every data element (one using the old hash, and one

using the new) or some method of name translation for every data item. In light of these

difficulties, we do not recommend using the naming scheme to implement security

features.

 The next issue to address is the issue of privacy for the end user. ICN systems

route and cache datagrams based on the names of the publisher and content item; as a

result, anyone can determine what data the end user is accessing. This could have serious

negative consequences for the end user. This new protocol, combined with the IPsec

suite of protocols, can effectively mitigate some of these issues. Using the AH header

alone, as described above, does not provide privacy services and will leave both the

identity of the publisher and the content of the data item easily available to any observer.

This has the same privacy issues currently experienced with unencrypted internet traffic.

The remedy for this is to apply the Encapsulating Security Payload (ESP) protocol [63] in

one of three configurations:

31

• ESP in transport mode to encrypt the payload only. In transport mode,

only data that comes after the ESP header is encrypted, so in this case, the ESP

header is placed after the CL and before any transport-layer headers (including

port and protocol numbers). The AH must also be used here to bind the PL and

CL to the payload. Observers will know the PL, CL, and the approximate size of

the payload, but not the actual content. (As an aside, publishers are free to

generate CLs for their data items which might appear to be gibberish to an

outsider.)

• ESP in transport mode, covering the CL and payload. In this

configuration, the ESP header is placed in front of the CL, and ESP will conceal

all information about the CL (even its length). An observer will know that the

end host received an (approximate) amount data from a particular publisher, but

no other details are visible.

• Lastly, in cases where the user wishes to conceal the PL, CL and payload

contents, the publisher would use ESP in tunnel mode. In this mode, the entire

original packet is encrypted, and a new header generated. This new header would

have either a republisher’s PL or an ephemeral PL (as described above), and an

ephemeral CL. This will conceal the publisher, content name, and payload. This

provides the full spectrum of layer-3 security and privacy features available to

legacy network users.

3.4 Layer Two and Three: Routing and Switching Considerations

 Lastly, we must address the question of how this proposed protocol will perform

at layers two and three in the current network architecture.

32

3.4.1 Switching Performance

 As we noted in chapter one, adding metadata into the header is pointless unless

we are able to use that metadata in making datagram forwarding decisions at line speed.

In the case of our design, the requirement is to be able to read the source/destination IP

address and destinations options field, and then based on that information assign a

datagram to a forwarding equivalence class. This decision must be made and

implemented fast enough to prevent a chokepoint at the node. This is where software

defined networking comes to our aid: switches which implement the OpenFlow 1.3

standard (or later) are able to perform these matches, if given a ruleset by the SDN

controller. We will show in chapter five that we were able to use the Ryu SDN controller

and the Open vSwitch virtual switch to implement any forwarding rule or traffic

classification defined by the business logic of our controller.

 Note that, in an SDN network, there is no difference between the forwarding

plane of a layer two device and a layer three device. In traditional networks, there was a

major difference between the forwarding ability of switches and routers—switches could

only make forwarding decisions based on L2-headers (such as Ethernet MACs), but were

extremely fast; whereas routers could parse and rewrite most or all of the header fields,

but they implemented much of their functionality in software and were as a result much

slower than the hardware-only forwarding in the switches. In SDN, this distinction

disappears. The SDN controller reduces the business logic provided by the programmer

to a set of matching rules to be implemented by the forwarding plane—there is no

difference between a “switch” and a “router” in terms of forwarding speed or

functionality. Any difference between a “layer two” device and a “layer three” device

33

(e.g., whether the hop limit is decremented at the node) is solely due to the business logic

provided by the controller. Thus, we conclude that, for network nodes that implement

OpenFlow 1.3 or higher, CLIP datagrams can be forwarded at line speed. (We will

demonstrate this in chapter five.)

3.4.2 Routing Performance and Stability

 Nonetheless, there still remains the matter of network routing performance and

stability, even if the function is now done on an SDN controller rather than semi-

autonomous, independent routers in the network. An absolute prerequisite for any

networking protocol is certainty regarding routing performance and stability, especially

under high load and under realistic conditions (including the presence of malicious users

and misconfigurations). As noted above, successful internetworking requires that the

routing algorithms are safe, autonomous, and expressive; yet such a guarantee is elusive

for current ICN prototypes. As noted in chapter 2, each ICN prototype handles routing in

a different way. From a theoretical standpoint, conditions for global reachability and

stability in name-based routing have not been determined. This means that there are no

guarantees that any solution is possible, let alone feasible, at scale and with realistic

considerations of human and machine failure. From a practical standpoint, little actual

data is available on the performance and safety of these designs, particularly concerning

the effects of divergent policies on internetwork routing. In contrast, by using IP natively

for naming and routing, we are able to apply the extensive theoretical and practical

results of working with routing protocols under a very wide variety of conditions.

 In the case of interior gateway protocols, used for routing traffic within an

autonomous system, we have many choices with proven track-records and extensive

34

configuration guidelines, such as OSPF and IS-IS. All modern routing protocols have

been modified to handle RFC-compliant datagrams and hosts, so we expect no

divergence of behavior based on the data tags. Additionally, we can be certain that, if the

network’s routing protocols are successfully routing host-centric traffic, then the

information-centric traffic can also be handled by the same mechanism (i.e. the network

administrator will not be forced to deploy two separate routing protocols, and there is no

possibility of routing paradox based on the mismatch between two different routing

protocols.) As we will demonstrate in chapter five, our initial prototype behaved

identically to host-centric datagrams on our test network.

 Exterior routing protocols are more complicated, as no one has a complete picture

of the entire network and internal policies will vary quite extensively. As noted above,

the competitor ICN designs had essentially no way to address the issue of information-

based routing at this level (at best, they permitted tunneling between isolated ICN

autonomous systems). In contrast, our system can use exterior BGP to route between and

across autonomous systems. BGP has a long history of real-world deployment and the

details of configuring and troubleshooting it are well known. ICN-specific routing policy

issues (if they arise) could be addressed using the BGP Extended Communities Attribute

[64, 65]; note also that there is extensive ongoing research in methods of passing routing

and link state information from both interior and exterior gateway protocols up to the

application layer that may be useful for ICN-enabled devices (e.g. for content discovery).

An example of this system of operation is given at Figure 3.

35

Figure 4. Interior and exterior routing of CLIP datagrams. In this example, AS0001
is serving content from publisher C000:0:0:0:1. The content server listens on IP address
2001:1::C000:0:0:0:1 for CLIP datagrams. AS0001 advertises a route to subnet
2001:1::C/68 by BGP. AS0002 hears the BGP announcement and advertises the route to
its BGP neighbors. It also runs its own internal routing protocol (such as OSPF) and
determines the routes within its own network for this subnet, and it installs the
appropriate forwarding rule in its switches. Then, any host on its network can reach the
content provided by AS0001—even if AS0002 is not content-aware, the networks
automatically form an internetwork for CLIP data.

36

 Since total assurance of routing stability is an absolute prerequisite for a

production network, we believe that this alone makes our proposed ICN protocol superior

to other ICN designs. Note also that, by using RFC-compliant IP addressing, we also

gain assurance that the datagrams will not only be routable, but also switchable with

unmodified commercial hardware, including optical systems and radio links, and also

virtualized networks. The only requirement is that the network infrastructure meets IETF

standards.

3.4.3 Backwards compatibility

 The question of backwards compatibility of the ICN prototypes to date has only

been addressed in the sense of ensuring that a given ICN network can traverse an IP-

based network. That is, the ICN is either an overlay on top of the IP transport network,

or it tunnels packets from one ICN “island” to another across an IP network. (In contrast,

we use IPv6 compliant datagrams, and hence our data is fully routable and switchable by

RFC-compliant nodes. That is, if a link fails or a better route opens, an unmodified

network will automatically make the appropriate decision for forwarding our data.)

Backwards compatibility in the full sense, that is, whether hosts on an unmodified legacy

network can access ICN content and hosts on an ICN network can access data on the

legacy network, is not possible when the ICN network does not use the IP waist; non-ICN

routers will not recognize or route ICN data. By using the native IPv6 packet header

design, this protocol resolves this issue of creating a delivery path between any IPv6-

enabled host and an ICN-enabled device containing a specific named data item.

Likewise, it ensures that the legacy traffic can coexist with ICN traffic on the network.

(We demonstrate this in chapter five, where we show that CLIP datagrams and TCP

37

datagrams do not interfere with each other.) However, content discovery, whereby a host

becomes aware of the presence of a desired data item, is left to a higher-level protocol.

3.4.4 Object Sizing

 Another area of strong disagreement between ICN designs is the size of the

individual objects. The principal concern is that, by naming data objects instead of end

hosts, the number of named items to be located by the network expands by many orders

of magnitude. The smaller the size of the named data item, the worse the name-space

scaling problem becomes. Recent results indicate that it is physically impossible to route

ICN-named packets at line speed and Internet scale using current memory technology [3,

66].

 In one sense, our new protocol bypasses the problem: it is pure IPv6, and so by

definition is routed at line speed (i.e., as fast as legacy traffic is now). The content-

specific portion of the name is placed in the destinations options header and can be

ignored in transit. Our definition of a data item is a datagram, but in IPv6 the size may

notionally be anywhere from one byte to 4 GB. While the extremes are unlikely to have

any real-world application, this does demonstrate that content owners will have wide

latitude to size their objects appropriately for their operational needs under this naming

convention. For example, one would expect that bulk transfer objects could be quite

large, while streaming media content would likely be broken into very small, sequentially

accessed objects. Likewise, we expect publishers to choose CLs for their data which

group similar content together, to improve the storage and retrieval performance of their

data.

38

 In another sense, the expansion of the potential namespace is a significant

question when considering content discovery—that is, when determining the name of the

item and candidate physical locations. This is an ongoing research question in the current

(host-based) IP network as well; but also, it is clear that this cannot be solved by a layer-

three protocol. Additionally, we should make a distinction between a networking

protocol (such as this one) and a storage protocol. We would expect that content-labeled

datagrams could persist in caches or proxies for a period of time, but probably only for a

period of minutes to hours (depending on the type of information they contained) before

expiring. We expect that this, combined with aggregation of data by publisher name, will

limit the growth in name lookups.

3.5 Summary

 This chapter described the layer three design of an information-centric datagram.

We used the features included in the IPv6 standards to embed the necessary metadata for

creating a globally-unique identification of each data item created by a publisher. We

described how to use currently-available security protocols to reliably bind the publisher,

data name, and payload to a known cryptographic key, thereby ensuring that data may not

be modified en route, spoofed, or falsified. We also demonstrated a methodology for

concealing either the content of the data, or even the true identities of the publisher and

the data item name, if needed for security. We showed that these security mechanisms

are in use today in host-oriented traffic, and so can be implemented with unmodified

hardware and software. We also discussed how an unmodified, RFC-compliant IPv6

network is able to route and switch data based on the identity of the data rather than the

identity of the end host. As a result, the ICN network can co-exist with the legacy point-

39

to-point network seamlessly, allowing an incremental roll-out without further

coordination. Additionally, our protocol inherits the benefits of the proven stability and

security of the IPv6 routing framework.

 With the layer two and three issues clarified, we can now turn our attention to the

layer four issues which must be addressed for a successful implementation of production

traffic. No previous prototype of an ICN has been deployed on a medium to large scale,

and so we must change our frame of reference from a comparison of our protocol to one

of the ICN designs, to a comparison to a fully functional design. Specifically, we will

show how our protocol addresses the functionality provided by transmission control

protocol (TCP), which is the most commonly-used layer four communications protocol in

the Internet today.

40

CHAPTER 4

LAYER FOUR PROTOCOL DESIGN

 In the last chapter, we discussed the layer three design of our protocol. We

showed how an information-centric datagram is produced, transmitted, received and

parsed. We also showed existing layer three protocols implemented in every standard

networking stack can be used to mitigate or eliminate the fundamental security and

privacy concerns that are not addressed by competitor ICN designs. The CLIP design is

inherently backwards compatible, since it conforms to the current networking standards

in use and requires no network configuration changes to function.

 Although this is already much farther forward than other ICN designs, there are

still further issues to consider for a fully deployable network protocol. If we are to

propose a protocol for general purpose use, we must assume that the current software

infrastructure must be compatible with our new methodology—much like we focused last

chapter on demonstrating how to function within the currently installed network and

physical infrastructure, so we must address how our proposed protocol will meet the

existing interfaces with applications. Today, most higher-level applications (such as data

base applications or web servers) use the transmission control protocol (TCP) as an

abstraction from the actual details of data transfer. This provides four major functions,

over and above simple data transfer and multiplexing given by UDP: flow control,

retransmission of lost packets, in-order delivery of packets, and congestion control. In

this chapter, we show that our protocol can address three of the four straightforwardly,

and in fact in a much simpler and cleaner way than TCP. In the case of the last

41

(congestion control), we can currently imitate the TCP methodology, but there is good

reason to think that further research is warranted and may be able to significantly

improve system performance in a fully information-centric network environment.

4.1 Flow control

 Flow control is the methodology used to prevent inbound data flows from

exceeding the requesting host’s ability to buffer and process data. TCP is a stream-

oriented protocol, which means that the length of the data stream is formally infinite—

that is, the receiver does not know (and cannot specify) the length of the inbound data

stream, nor does the receiver know how many packets are in the data stream or what

payload size each packet has. Nonetheless, in reality buffer space is always finite, and so

the transmission protocol must provide some method for the receiver to communicate

with the sender how much receive buffer space is available at any given moment.

Additionally, any layer four protocol must cope with the situation that network speed and

processing speed may be different between sender and receiver, and that both may

change without notice during the course of transmission.

 At the TCP layer, flow control is done with sending a receive window size as

additional header data during transmission. The receiver sends a sliding window in its

outbound TCP header, indicating the number of bytes it is able to accept; the sender then

restricts itself to allowing only the specified amount of data to be in flight (that is,

transmitted by the sender but still unacknowledged by the receiver). This means that the

payload size of each datagram may vary, depending on the last acknowledgement and

window size received by the sender. In practice, this system can break down in two main

ways. First, if a datagram containing the window size update and acknowledgement is

42

lost in transit, the system can end up in deadlock, where the receiver has requested

additional data but the sender is unaware of this fact. As a result, TCP must also

implement a persist timer, which triggers when no window update or acknowledgement

has been received within a specified time. The receiver then resends an

acknowledgement packet and receive window, in an attempt to resynchronize the window

size with the sender. A second problem is known as silly window syndrome, where the

receiver advertises a very small receive window by mistake, leading the sender to

transmit datagrams with only a few bytes of data in the payload. This consumes

enormous amounts of bandwidth and processor time, due to the transmission and

processing overhead, and can lead to severe network degradation.

 By contrast, the CLIP protocol simply side-steps most of these problems. Since

the transmission is data-oriented, not connection-oriented, the receiver has total control of

the inbound data size: it only requests those data items which it is prepared to receive

(i.e., has reserved a sufficient buffer for the data item prior to requesting it). Data item

size is limited by the MTU of the link in all cases, and it may be known in more detail by

the application (e.g., the data items are fixed-length segments, representing a fixed-time

segment of an audio or video stream, or the application has received a manifest of data

items to request which include their maximum lengths). The application should simply

not request data items which it is not currently prepared to buffer—there is no operating-

system or network control needed, as the application has all the information it needs to

make this decision.

 Note also that, even though TCP may formally consider the data stream to be

infinite, higher-level protocols typically structure their data transmissions to include the

43

size of the data item, usually in the first few bytes of the transmission. (For example,

HTTP requests typically include a Content-Length field in the header of the item, to

allow the receiving process to allocate sufficient memory for the remainder of the

transmission.) This is another example of the mismatch between what is specified by the

layer three/four architecture and what is actually needed by the application layer. In the

case of CLIP, the datagram length is contained in the first 40 bytes of the IP header, and

is always less than or equal to the MTU size of the transmission link (which can be

queried by the application prior to requesting the data item). Thus, we expect that

applications will in no case be worse off by using CLIP as a transport, and if they are

content-aware when requesting a data item, they may be better off.

4.2 Retransmission of lost packets

 The Internet is designed to be a best-effort delivery system; it explicitly refuses to

provide any retransmission services in the event of a packet loss. This means that the end

hosts must have some mechanism for detecting and responding to lost packets. While

some use-cases simply abandon the lost data (e.g., streaming media), in many cases

applications require some mechanism for requesting retransmission of lost packets. In

TCP, this is done through the use of an acknowledgement of the cumulative number of

(payload) bytes received. The receiver includes this value in the header of its next

transmission to the sender. The sender is required to assume that all data was lost and

must be retransmitted, except for data which has been explicitly acknowledged by the

receiver. But the sender also has to maintain a running estimate of the round trip time

between the sender and receiver, to allow at least twice the estimated round trip time to

elapse before attempting to retransmit. Although this does work, in the sense that all lost

44

data will be retransmitted automatically, it often leads to large amounts of data being

retransmitted unnecessarily (since all data transmitted after a single lost packet will be

assumed lost as well). TCP was further modified with the ability to selectively

acknowledge some data that had been received after a missing packet[67]. More fixes

were then needed to prevent instability in the presence of duplicate

acknowledgements[68], and several modifications to the method for estimating the

correct timeout value[69, 70], especially in the presence of time-varying networks (such

as mobile networks). The end result is a system that is functional, but quite complicated

to successfully implement in a real network and which requires estimation and

assumptions about behavior for both the sender and the receiver.

 By contrast, our protocol is much simpler. The sender has no responsibilities for

detecting or correcting packet losses whatsoever. Its responsibilities end when the

datagram is transmitted; any “retransmission request” is considered to be a new request.

All responsibility is placed on the requester, to determine whether the data is still needed

after the expiration of a timer, and if so, to formulate a new request. (We will discuss the

development of this timer under the heading of congestion control, below.) By moving

the responsibility for retransmission from the sender to the receiver, our system is much

simpler and requires fewer assumptions about remote hosts; it also removes some failure

modes and attack surfaces.

4.3 Reordering of packets

 Production networks can also sometimes deliver packets out of order, or duplicate

packets and deliver more than one copy of the same packet to the receiver. In stream-

oriented protocols, such as TCP, these out of order packets must be detected and resolved

45

for the original data stream to be reconstructed. TCP uses a sequence number to indicate

the relative position of the current payload in the stream of data to be reconstructed for

the receiver. There are two issues with this methodology. First, the operating system

does not release any data to the application which requested it until the reordering is

complete. If this process requires a retransmission, delays can be quite large (especially

relative to the processor speed), and while this is happening, the application cannot

proceed with processing the partial data which is on hand. Worse, the operating system’s

receive buffer can (and often does) saturate with data, meaning that flow control

mechanism outlined above shuts off the requests for more data until the missing data is

located and the queued data is passed out of the operating system buffer up to the

application. This causes further delays once the request process restarts (again, network

delays are typically very large compared to processor speed, and TCP will take several

back-and-forth window resizing messages before stabilizing at the best available

bandwidth utilization rate). Second, and perhaps more pernicious, is the issue of security.

It is a well-known problem that if attackers can spoof the sequence number mechanism,

they can inject false data into the data stream, force the closure of the socket, or other

attacks. By randomizing the initial sequence number chosen, the TCP client can make it

more difficult for off-path attackers to implement these attacks[71, 72], but this remains

an exploitable issue[73, 74]. Fundamentally, the problem is that there is no secure

binding between the source, the sequence number and the payload. This means that there

is no method, either for the end host or any network node in between the hosts, to

positively recognize that a spoofed packet has been sent.

46

 Our protocol bypasses these problems as well. Each data item is treated as its

own entity—there is no sequencing needed. Once a datagram is processed off the

transport medium, its contents can be passed to the application which requested it. (Any

reassembly of data items into a stream or larger item must be done by the application,

which will have full information on the context and meaning of the data. The decision to

delay waiting for more data is left to the application.) The operating system does not

need to store data waiting on another packet to complete, and the application has

immediate access to all data that has been received. Likewise, since there is no concept

of a stream of data extending over multiple datagrams, there is no session which can be

hijacked, terminated, or otherwise disrupted. And as described in the previous chapter,

the protocol is designed to securely bind the metadata in the header with the payload, in a

way that can be verified both by the receiver and optionally by any other node in the

network.

4.4 Congestion control

 Network congestion is defined as a network link or node facing a traffic load so

high that its quality of service declines, usually shown by rising delay, increasing data

losses, and possibly the inability to establish new connections. Transient congestion is a

routine issue in real networks. Far more serious is the phenomenon of congestion

collapse, a situation in packet-switched networks where the network’s effective

throughput drops by several orders of magnitude and persistently remains in the low-

throughput, high-loss state. The usual culprit for congestion collapse is an overly

aggressive retransmission scheme for dropped packets. Once a loss threshold is met,

repetitive attempts at resending unacknowledged packets can overwhelm the available

47

bandwidth of a link or router, resulting in a near-total loss of effective capacity. It is a

particularly difficult problem, because in most networks the control signals travel in band

(i.e., over the same congested links or nodes), and so it can become almost impossible to

apply a remedy to the problem once it begins. Congestion collapse has been observed

multiple times in production networks, and in particular, the collapse events on the NSF-

Net between 1984 and 1987 were a primary reason for the development and publication

of the first effective TCP congestion control mechanisms[75] which were included as part

of the 4.3 BSD-Unix (“Tahoe”) distribution.

 Congestion events must be addressed through multiple means throughout the

network. Specifically for our purposes, congestion control refers to methods to prevent

excessive loads from entering the network. Congestion avoidance refers to methods used

within the network to avoid or cope with congestion, including mechanisms such as

network scheduling, random early detection (RED), active queue management, load

balancing, and various congestion notification schemes. Any feasible layer four protocol

must implement some form of highly-reliable congestion control, i.e. must have a

mechanism for automatically reducing its offered load to a level at or below the rate

capable of being processed by the network. Although many schemes for sending explicit

congestion warnings or signals to data producers have been proposed over the years, all

have suffered from the fundamental problem that congested signaling is conducted in

band, and so a congested network will be forced to drop the congestion signaling packets

along with the user data. In other words, the network is only able to reliably transmit

congestion signals when there is no congestion! In fact, the only completely certain

means of detecting congestion events is the loss of quality of service at the end points, i.e.

48

loss of packets in transit, out of order delivery events, or an increase in latency. This

means that the end points must monitor for lost, delayed, or out of order packets; if this

behavior exceeds a threshold, the end host infers network congestion and must sharply

reduce its offered load to the network. Network traffic management and control becomes

very difficult unless a very large majority (if not all) end nodes on the network use an

equivalent decision methodology for congestion control, and the principal benchmark in

existing networks is the behavior of TCP under load. So we must take a closer look at

TCP’s methodology, with an eye toward closely imitating its behavior in our methods.

 As with flow control, TCP uses a window-based approach to congestion control.

Here, the congestion window is based on the amount of data that is in flight (sent but not

acknowledged by the receiver), rather than the amount of data expected inbound. The

protocol also requires a retransmission timeout, based on a moving estimate of the round

trip time between sender and receiver[76], to detect missing packets. TCP has three

distinct stages of behavior. First, slow start, used at the beginning of a new session and

after a major congestion event is detected. In this phase, the offered load is kept

extremely low and increased very cautiously. If no congestion is detected in this phase,

the protocol transitions to a period of rapid increase in window size (resulting in a rapid

increase in transmission rates). Then, when some packets begin to be lost, the algorithm

infers it is close to the available bandwidth and slows its window-size increases sharply,

eventually plateauing at a rate close to, but just below, the highest rate that can be

processed by the network. This phase is called congestion avoidance, and it will remain

in this phase until a major congestion event is detected or the connection is closed.

49

 Interestingly, while it is common to speak of TCP as a single protocol, there are

actually a number of different TCP versions in use in production systems today, each of

which implements a somewhat different congestion control algorithm. This is also a

continuing area of research (both academic and corporate)—as a small sampling of many

recent examples, see [77-80]. The reason is that, while a protocol following these steps

will be stable under all conditions (i.e., it will not cause congestion collapse in the

network, and it will converge to a transmission rate near the available bandwidth), its

performance characteristics are extremely sensitive to small variations in when and how

to make changes to the congestion window, the physical characteristics of the network in

question (particularly latency and error rate), and the traffic patterns of the higher-level

applications using the TCP stack. In addition to multiple variations in the window sizing

algorithms and thresholds for declaring a congestion event, there are also numerous

published methods for tuning TCP to perform better over particular types of physical

links, adjust time stamps, shape TCP windowing behavior, and apply various changes to

system parameters[81]. Network devices (such as routers) and often configured

specifically to tune their performance for TCP[82, 83], and network administrators often

design quality of service (QoS) policies specifically to shape TCP flow behavior. The

result is that “TCP-like” behavior is an inexact description (at best).

 Interestingly, congestion control is also a major area of research for NDN as

well[24, 84, 85]. In this case, congestion is not simply a question of the traffic on the

link, but also consumption of space in the forwarding information base, pending interest

table, and content store. Broadly, NDN, like most store-and-forward systems, can

usually recover lost packets (whether due to congestion or to brief link outages), and so if

50

congestion is a short-term event NDN will perform well. However, under sustained

congestion, NDN’s PIT and content store become flooded and unable to store requests

long enough for the replies to return. In these cases, the network performance drops

drastically, and it is possible to lose reachability to segments of the network. Also, as

noted in chapter two, the current implementation of NDN (CCNx) has shifted to a hybrid

between routed and flood-search architectures, and very little is known about how

congestion will affect network stability. Additionally, the store-and-forward architecture

gives at least the possibility that intelligent caching will enable the network to avoid

congestion, and various initial attempts at developing such systems have been presented

[86-88].

 We draw three practical conclusions for the development of our protocol. First,

we must implement some form of congestion control, even in the simplest prototype

possible, in order to ensure that our test network will remain functional. Per the guidance

given in RFC 2914[89], our method of congestion control should be no more aggressive

in offering load to the network than TCP, and it should be at least as responsive as TCP

in backing off in response to congestion (as measured by dropped or out of sequence

packets). As we will explain further in the next chapter, we kept to the simplest possible

solution for our prototype system: we merely hard-coded the congestion control

mechanism from TCP into our traffic generator. Specifically, we used Cubic TCP (a less

aggressive variant of BIC TCP) [90-92], because it is the default version of TCP used in

our version of Linux. (However, we also ensured that our test network was not highly

loaded, so no major congestion events occurred.) This ensured that our prototype would

51

behave identically, in terms of congestion control at least, with the TCP system we were

comparing it to.

 Second, we note that we think it is very likely that our temporary solution to

providing a congestion control mechanism will perform very poorly in a production

environment, especially in comparison with TCP driven by higher-level applications such

as web servers or browsers. There are two reasons for this belief. First, the TCP

algorithms have more data available to them (in the form of a bi-directional, persistent

data flow between the end points) than our protocol does, and so we would expect that

simply importing the TCP methods directly would not give as good results. Second, TCP

is designed to begin its flows in an extremely conservative way (slow start). Very short

flows do not have time to scale up in speed, and so they remain quite inefficient and

slow. (This is one of the main reasons why higher level applications, such as web

servers, usually have a mechanism for maintaining a connection for a very long time,

even when not actively trying to exchange data with the client—it sharply reduces the

amount of time that the session spends in slow start.) Under our protocol, all data

exchanges are single datagrams, so we would expect our system to be much less

performant than a classic TCP with persistent sessions.

 Third, and more fundamentally, our system architecture explicitly separates the

data item from the connection to the physical location it is stored. We cannot assume that

all CLIP datagrams are sourced from the same physical location, even if they are

produced by the same publisher. We allow (and are expecting) the network to source

CLIP datagrams from multiple sources and to take into account network congestion

levels when forming the delivery graphs for the data. This re-thinking of the problem

52

gives us both great promise—we will be able to let the network source data from a

different physical location in response to congestion, and we will enable new options for

caching or proxying data closer to the requestors and so reduce the amount of nodes and

links transited—but also great uncertainty. As we will discuss in more detail in our

concluding chapter, we believe that there is significant scope for further research and

optimization over our current (admittedly naïve) approach to congestion control,

particularly in the possibilities of using routing and switching rules that are both

information- and congestion-aware in choosing the source and forming the delivery

graphs for CLIP datagrams.

4.5 Summary

 In this chapter, we have considered some of the necessary functionality that our

proposed protocol would have to meet in order to meet the data transmission needs of

higher-level applications, with a specific and detailed comparison to the current de facto

standard, TCP. We conclude that most of the additional functionality provided by TCP

(over and above the basic networking functionality that UDP provides) can also be easily

met by our protocol, almost by default. The main exception is the question of congestion

control. Here, we found that the existing theoretical development and the practical

experience gained in the various versions of TCP were not 100% applicable to our

methods, because the TCP results were predicated on measurements and parameters

which are only fully pertinent to connection-oriented transport methods. We showed

that, for our initial prototype, we instantiated the TCP congestion control methods, and

that this was mathematically guaranteed to be stable; however, we expect that the

performance characteristics under congestion would probably not be as good as could be

53

expected from legacy TCP. We concluded that further research is well warranted into the

issue of congestion control in an ICN design, and that potentially excellent new

opportunities exist for performance enhancements and information- and congestion-

aware routing and switching decisions could make a major difference in system

performance.

54

CHAPTER FIVE

PERFORMANCE EVALUATION

5.1 Application Notes

 Before we begin discussing the design of our prototype and test bed, it is worth

discussing the system prerequisites for implementing our system. Although IPv6 has

been specified fully since 2003[93], there are significant gaps in the completeness and

correctness of the implementations in specific areas. IPv6 only entered significant

mainstream production traffic after the exhaustion of IPv4 addresses in 2012-2013 made

it impossible to avoid the issue. As of this time (fall 2014), IPv6 traffic amounts to

roughly 4-5% of world IP traffic[94]. As a result, actually obtaining fully RFC-

compliant IPv6 service and software (as required by this protocol) is, at least temporarily,

more difficult to achieve than might be expected. In general, low-level systems are

typically compliant, whereas higher-level systems often show significant lapses or errors

in implementation. We summarize the key issues below.

5.1.1 Hardware and operating system issues

 In general, there are few remaining hardware or device driver incompatibilities

with the complete IPv6 specification. All major operating systems were updated to fully

implement IPv6 by 2006, due to both industry and government requirements. However,

due to bugs and security flaws in the initial implementations of many IPv6 network

devices and software programs, it remains common for the IPv6 functionality in both

hardware and operating systems to be disabled by default. Disabling IPv6 is also

55

commonly recommended as part of the troubleshooting process for network failures and

application crashes. As a result, it is necessary to check the system configuration to

ensure that the system to be used for this prototype has IPv6 enabled by default. The

precise details of the configurations vary significantly by operating system; we will limit

our discussion to the Linux operating system, which is the system used for our prototype.

 First, users should check that their system kernel has loaded the IPv6 modules, for

example by entering the following code at the command prompt:

test -f /proc/net/if_inet6 && echo "Kernel is IPv6 ready"

 If there is no output, the IPv6 module has been disabled. There are three places to

look for problems. First, inspect the file /etc/modprobe.d/blacklist.local

to see if IPv6 has been blacklisted. If so, remove the command and reboot your system.

Next, inspect the file /etc/modprobe.d/aliases. The following entries will

disable IPv6:

alias net-pf-10 off

alias ipv6 off

These entries should be replaced with:

alias net-pf-10 ipv6

Then reboot your system. The last place to look for problems is in the GRUB bootloader

file /etc/default/grub, where the command ipv6.disable=1 will disable

IPv6 during system boot. If it is there, remove the command, reboot your system, and re-

run the test.

56

 Next, look for IPv6 to be enabled on each interface. This is found in the

configuration files at /etc/sysctl.conf, looking for the entries:

net.ipv6.conf.all.disable_ipv6 = 1

net.ipv6.conf.default.disable_ipv6 = 1

net.ipv6.conf.lo.disable_ipv6 = 1

Change the values to zero, then run sudo sysctl -p or reboot your system to make

the changes take effect. (Note that the Mininet network emulator may append these

entries to your configuration files during installation by default, so one should re-check

your system configurations after installing it.)

 Under the appropriate RFCs, it is a requirement that, for dual-stack systems, IPv6

should be considered the primary interface (e.g. when querying the operating system for

the host address). This can cause unexpected disconnection or exceptions in applications

which were not written with IPv6 in mind. We would like to remind our readers of this

fact, so that they may be able to troubleshoot any issues which may come up after

activating IPv6 on their hosts. This is less common now, and will become progressively

less likely as software updates are completed; however, one should be aware of the

possibility.

5.1.2 Switching and routing issues

 There are similar issues with switches and routers and the not-necessarily full and

complete application and correct default configurations for IPv6. Again, the hardware,

firmware and custom operating systems on commercial routers and switches are almost

universally IPv6-compliant. However, it remains a common practice for system

administrators to disable the IPv6 functionality of their networks, both for security and

57

performance reasons. Additionally, even if they have enabled IPv6 traffic, they may not

have installed the necessary network functionality (such as DNS serving AAAA records,

DHCPv6, router advertisements, etc.) to enable plug and play operation. The issue is

even more complicated if the network’s IPv6 traffic is being tunneled through the IPv4

network, and there are many reports of ISPs using unusual configurations in their

services. Users should contact their system administrators for specific configuration

questions and to coordinate for network functions. Additionally, many networks rate

limit UDP traffic, since poorly designed UDP applications may have not installed

functioning network congestion response behavior; if so, these policies will limit the

overall effectiveness of this protocol as well.

 In this work, we are using a virtual network, provided by the network emulator

Mininet.[95, 96]. This allows us to have full control over the network parameters. Note

that this system is only IPv6-capable as of version 2.1.0. As mentioned in the previous

section, installing Mininet may modify the host’s configuration files to de-activate IPv6

system-wide, so configurations should be re-checked after installation or upgrade. The

configuration file should also be changed to increase the size of various system

parameters for IPv6 traffic. In addition, if using Mininet in a virtual machine (as

recommended in the Mininet documentation), IPv6 must be enabled on the interface(s)

being used within the VM, and a DHCPv6 server and a routing advertisement daemon

(such as radvd) must be provided, or the interfaces must be manually configured on each

host before the simulation begins (e.g., by using a configuration script). Alternately,

using a bridged network will allow DHCPv6 and router advertisements from the

computer’s external network to propagate into the virtual network. (Stateless

58

autoconfiguration should work without a DHCPv6 server being present; however, since

the VM typically generates a random MAC address for each interface, each session, there

will be no way of knowing in advance what the addresses will be. This makes

troubleshooting and configuration difficult. Additionally, these autoconfigured addresses

are link-local addresses, and so will not be visible to hosts that do not share the link.) For

our emulations, we decreased the throughput and increased the network latency to ensure

that the network effects would dominate over effects due to either virtualization or CPU

sharing.

 For the switch used in the Mininet system, we used Open vSwitch[97]. This

system fully supports IPv6 and the OpenFlow 1.3 standard as of version 2.3.0. Included

with the distribution is a basic, OpenFlow compliant controller, which will implement a

simple L2 switch. Note that the switch must be manually re-configured to use OpenFlow

1.3 after starting Mininet—the default is OpenFlow 1.0, which does not have IPv6

capability. It is worth mentioning that the version of Open vSwitch we used is also used

as the native controller on many commodity L2 switch devices, and it can be used in

place of the manufacturer’s control software on many versions of switching hardware. It

is also commonly used as a virtual switch in large data centers. This gives us a high

degree of confidence that our testbed network accurately reflects the behavior of our

protocol on production networks.

 We also used the Ryu software defined network (SDN) controller[98, 99] to

provide control of the switch. One must use version 3.14 or later, and include settings to

use OpenFlow 1.3 or later, to be IPv6 compliant. As a reminder, like all SDN controllers,

the Ryu controller does not provides network services or IPv6 specific protocols (such as

59

neighbor discover protocol or duplicate address detection) without further programming,

and the web server gateway interface (WSGI) features of the Ryu controller are not IPv6

capable as of this writing. (The reference controller included with Open vSwitch will

implement the layer two protocols needed for IPv6 out of the box, but switching to a

remote controller will disable all onboard functionality by default.) Also remember that,

when using SDN controllers, the settings on the switches (and switches serving as

routers) are done with the SDN controller, but the host configurations must be done either

via DHCPv6 and routing advertisements, or by manually configuring each host (or using

an install script).

 We looked for an IPv6 compliant software router for use in our prototype.

Unfortunately, the open source routers available for use as of the time of writing were not

fully RFC-compliant. In particular, we found no open source router which correctly

implemented parsing for the extension headers that we used for our system. (We also

found many open bug reports pertaining to implementation of routing protocols on IPv6

in these routers.) As a result, for this work we instead installed static routes via the Linux

routing module on the hosts, and programmed static routes in the switches (converting

them from layer 2 to layer 3 devices via software, as is typical of software-defined

networks). However, we should emphasize that this is a temporary problem in the open

source community. Vendor-specific, closed source hardware routers are used reliably

today on IPv6 networks, and we expect that the increasing use of IPv6 in important

networks will eventually drive improvements to the open source software routers. While

the calculation of IPv6 routes was not included in this work, the ultimate performance of

the datagram forwarding should be identical regardless of how the route was determined.

60

5.1.3 Programming language and application issues

 Once again, at the level of programming languages and specific applications, we

found that full compliance with the IPv6 specification was far from universal at this time.

Although the RFCs covering the IPv6 extension headers were published in 2003[93],

concurrent with the necessary extensions of the C programming language,

implementation in higher-level languages remains problematic. Specifically for this

project, the fact that there was only one SDN controller available which could implement

the OpenFlow 1.3 specifications needed for our protocol meant that a significant portion

of our code would be written in the Python language[99]. As a practical necessity, we

needed functionality in two major areas: a fully IPv6-compliant socket module (for

transmitting and receiving the packets), and an asynchronous I/O module (to handle

control flow within the program). Unfortunately, the Python language split into two

incompatible branches (2.X and 3.X) prior to the inclusion of the commands needed for

the IPv6 extension headers, but after the main asynchronous I/O modules had been

written in version 2.X. Most production networking systems and utilities that are written

in Python are still based on the older 2.X family. This meant that the Ryu SDN controller

was written in Python 2.7, to take advantage of the excellent performance characteristics

of the asynchronous greenlet module and a wide array of modules and programs for

features such as SSL, web sockets, DNS services, and more. The developers handled the

new requirement for IPv6 header fields by building in a packet sniffer, similar to the

Scapy program[100]. While this is functional for the controller, it is impractical for

general purpose use, since it requires the use of raw sockets and construction/parsing

packets as data streams in user space. (In general, the controller only needs to parse the

61

first packet in the flow, and it is already running with root privileges.) This left us in the

unfortunate position of having most of the necessary functionality “stranded” in Python

2.7, while the necessary interfaces to the networking stack in the operating system giving

access to the UDP extension headers—namely, the commands sendmsg() and

recvmsg() and the associated data structure msghdr—only implemented in Python

3.4. Backporting this functionality into the Python 2.X family has been ruled out by the

Python development team.

 In the long term, this issue should fade away as more functionality within Python

is ported to the Python 3.X family. In March 2014, some of the key building blocks for a

full network solution were ported to Python 3.4 release, including a new (provisional)

asynchronous I/O module (asyncio); a complete and stable ipaddress module;

many security features involving TLS, certificate handling, and hashing; and many

relevant bug fixes[101]. This means that, going forward, it should be possible to write a

CLIP-specific transport object in Python, compatible with the existing UDP and TCP

transport objects used in higher-level networking objects, such as socketserver,

which in turn access higher level abstractions such as database APIs, cryptographic

utilities, web services, DNS, and more. Conceptually, this gives us an indication of how

this protocol might eventually be used in a production environment, and it indicates that

the larger open source community is headed in the same direction as we are. For the

present, however, we were forced to implement our prototype in two parts—traffic

generation and parsing in Python 3.4, and the controller logic in Python 2.7.

62

5.2 Traffic generation for testing

 Before beginning the analysis of the network performance of the protocol, we first

had to develop a basic content server and client programs, to generate traffic flows that

could be handled within the network. Since the focus of this work is a layer three/four

network protocol, not a content distribution server optimization, we instantiated the

simplest possible data source/sinks that would exercise the network behavior.

 First, it is worth emphasizing that we are comparing our proposed protocol to

TCP (at layer four), not higher-level protocols such as HTTP. Our TCP server is a simple

design, listening for all content requests on one address and port, then creating a new

worker thread to handle each request. Each request is considered an atomic transfer (i.e.

not part of a larger stream) with no higher-level protocol actions taken and the socket

closed after each request. Our CLIP server is even simpler: UDP servers do not need to

maintain session state or wait for responses before sending, so there is no need for

threading at all. Each publisher’s data is handled by a separate process, with a distinct

IPv6 address for each publisher (although they share the same physical or virtual

interface with processes serving other publishers’ data). This could, of course, be

implemented equally as coroutines or threads within a larger server framework in a

production system, but we used separate processes which could be attached and detached

from interfaces at will. We also assume that there is no interaction between data items

(i.e., there is no need for locks in the TCP server, or interprocess communication in the

CLIP server) and all data is pre-computed data strings stored in memory (rather than, for

example, file transfers or objects on a storage array). In both systems, we assume that the

63

clients already know the data item and publisher that they wish to access (i.e., there is no

look-up mechanism implemented on this network).

 As noted in the previous chapter, congestion control and packet retransmission is

a difficult question to answer. As a first attempt at the problem, we simply hard-coded a

basic version of the same algorithm used by TCP into the client traffic generator in our

network. While this is functional in the short term, it is probably not optimal for

production traffic, as it makes implicit assumptions that all data with a given publisher

label is sourced from the same place. This is true in our test network, but probably will

not be true in production networks. To avoid biasing our results based on this open issue,

we also kept the overall network utilization low enough that congestion events were rare.

We also did not simulate packet loss in our networks. (Dropped packets were kept below

1% on all of our emulations by rate-limiting our traffic generators.)

5.3 Network configuration

 The Mininet emulator does not have the concept of simulator time—packets are

forwarded based on the overall system clock, not an internal simulator clock. As a result,

it is possible to code a nework emulation which cannot be physically instantiated (e.g.,

we may be able to code a 100 Gbps link into the emulator, but our system can only

process 100 Mbps of packets in total, across all links). We also wanted to ensure that

network effects dominated over effects due to our traffic generators, including the

congestion control question mentioned above. As a result, we reduced the per-link

bandwidth to 10 Mbps, with a delay of 10 milliseconds per link. We believe this

demonstrates accurately the relative performance of TCP and CLIP UDP in low-

congestion networks.

64

Figure 5. Switched network

 In each case, we used one host on the network as a server, with the remaining

hosts running client programs which accessed a randomly-chosen publisher-data item

pair. As noted above, the TCP server ran one process on one IP address, and spawned a

new thread to handle each client connection. The CLIP UDP server ran a separate (single

thread) process for each publisher, with one IPv6 address per publisher. This meant that

there were multiple public IP addresses on a given Mininet interface in the CLIP UDP

case. Although the IPv6 RFCs make no limit to the number of IPv6 addresses which

might be assigned to a specific interface, on our emulator there appeared to be a practical

limit of about 24 IPv6 addresses assigned to each interface. In terms of the number of

data items per publisher, we found no difference in performance for either TCP or CLIP

65

UDP, subject to the total size of the data structures in memory (i.e., the performance was

due entirely to memory and operating system issues, if the data items were accessed from

a data structure held in memory.) A diagram of our switched network is given at Figure

5.

5.4 Network performance

 We began our analysis of the protocol with a switched-only network. In this

configuration, we have one virtual host serving content, and a variable number of other

hosts requesting data items (chosen at random) from the server. We initialized the

network with a pingall command, to ensure that all MAC addresses were registered with

the switch before beginning performance evaluation. Here, we explored three main

questions: first, can CLIP datagrams be forwarded normally through an unmodified

switching fabric and the unmodified Linux operating system networking stack?

(Remember, this is not true of the NDN/CCNx and PURSUIT reference designs

discussed in chapter two.) Second, does the CLIP protocol give at least as good latency

and throughput performance as standard TCP? And last, if both TCP and CLIP

datagrams are comingled in the network, do they interfere with each other? In other

words, would allowing information-centric networking datagrams onto a legacy host-

oriented network cause service degradation to either protocol? We believe that favorable

answers to these questions form an absolute requirement for a deployable ICN system.

5.4.1 TCP baseline performance

 We begin by establishing a baseline performance benchmark in a TCP-only

scenario. In this case, the behavior of the network flows is dominated by the TCP

connection’s requirements for a three-way handshake to initiate communication and four-

66

way handshake to tear down the connection. Both the server and the client traffic

generators were coded using the sendall() method, which requires the data to be

transmitted immediately (without waiting for the ACK from the distant end) and thus

would frequently (but not always) result in a PSH packet also being emitted. (In this

network, all packets arrived in order, and packet loss was kept below 1% by rate limiting

the traffic generators.) As expected, adding a 10 msec delay for each link resulted in an

overall transmission time of at least 85 msec; in cases where one packet was lost, delays

could reach 110 msec. As we increased the number of hosts simultaneously attempting

to request data from the server, we saw modest increases in the average delay, from an

average of 90 msec with one client only, rising to 95 msec average for 23 clients

submitting requests simultaneously. This was principally due to packet queueing in the

server’s send and receive buffers. We regard this baseline as a good example of a “best

case” scenario for the current, host-oriented networking protocols. TCP has been under

continuous development and heavy use for over 40 years, and both the operating system

and the network infrastructure are highly optimized for TCP performance. The network

was lightly loaded, which led to very few retransmissions (as mentioned above, we would

expect TCP to show poor performance with retransmissions, since it would be in its slow-

start stage basically continuously with short flows such as these).

5.4.2 CLIP baseline performance

 Next, we implemented the CLIP protocol alone on the network, to verify that an

unmodified Linux operating system, unmodified switching system, and an open source

SDN controller could successfully form, transmit, receive, and parse CLIP datagrams,

and that the network could correctly classify and respond to information-centric

67

datagrams. We were fully successful in doing so. Additionally, since this protocol has

no concept of connections, there was no need for session setup or teardown. Instead, data

transmissions were normally only a single pair of datagrams. Packet loss was detected by

a simple timeout on the client—no reply matching the request by the timeout was counted

as a packet loss, and the individual request was retransmitted. There was no code needed

at all on the server for lost packets, windowing, etc.

 Performance was in line with expectations for non-connection oriented traffic.

For a single client network, average delay times were 45 msec, which was identical with

the average delay observed for ICMP datagrams generated by the ping commands used to

start the network emulation. This means that the information labelling on CLIP packets

adds no measurable delay to forwarding decisions, queues, or network card behavior—a

key performance objective for this system. Although these headers are experimental,

both the operating system and the switching infrastructure have no difficulty in

generating, matching or parsing the data fields needed. Standard open-source SDN

controllers can also be successfully programmed to produce the forwarding plane

behavior desired.

 Average delay rose only to 47 msec when the number of hosts was increased to

27. As with TCP, the increase was primarily due to datagrams queueing in the receive or

transmit buffers at the server; however, note that the rate of increase was slower with

CLIP than with TCP, as there were fewer packets in the series which would be subject to

these intermittent delays. Packet loss detection on the client was hard-coded to match the

stock TCP settings, so no difference was expected due to this factor.

68

5.4.3 Commingled TCP and CLIP performance

 The next performance question to be addressed is whether host-oriented and

information-centric datagrams can coexist on the same system and network architecture

without interfering with each other. This is necessary, because we expect that host-

oriented traffic will continue to be used for tasks that are inherently host-to-host data

flows (e.g. VoIP calls), and we further expect that no production network provider would

be willing to implement an experimental architecture without concrete assurances that the

experimental traffic would not disrupt normal network behavior.

 To test this situation, we comingled both CLIP and normal TCP on the same test

network, by running both servers simultaneously on the same host and running TCP and

CLIP client programs on the same client hosts. Specifically for this network, the server

on host 1 opened one listening socket on 2001:1::11 for TCP traffic (forking new threads

for each accepted connection request) and served TCP content requests for all 23

publishers from that IP address. At the same time, host 1 also opened CLIP listening

sockets on 2001:1::C000:0:0:1 through 2001:1::C000:0:0:23, serving content for one

publisher for each IP address. All 24 IP addresses were assigned to the same (virtual)

ethernet interface and shared the same 10 Mbps link to the switch. On the clients, each

host had one IP address, with both CLIP and TCP traffic generators sharing the IP

address, virtual interface and 10 Mbps link.

 The results for comingled traffic were virtually identical with the single-use cases

(both TCP and CLIP). Some small increases resulted occasionally due to queueing on

the interfaces’ transmit and receive buffers (which were being shared more aggressively

in this case than in the single use cases). However, this is primarily due to the overall

69

network load, rather than conflict between the protocols (either in the operating system’s

networking stack or the network itself). Overall results are given at Figure 6. We

conclude that a network made of standard networking equipment and the (unmodified)

Linux operating system can easily handle the experimental protocol we have designed,

and that the experimental traffic can be mixed with legacy traffic safely and effectively.

Figure 6. Transmission delays for TCP and CLIP traffic on a switched-only
network

5.4.4 Performance in a routed network

 For completeness, we also instantiated a routed network, to verify that the

network behavior remained consistent across network boundaries. As noted above, we

used the Linux routing module as the routing method, interconnecting two separate

network domains (2001:1::/64 and 2001:2::/64). As in the switched network, one host on

the 2001:1::/64 network served content both on TCP and CLIP UDP; however, in this

configuration, the client requesting content was on the 2001:2::/64 network. A diagram

is given in Figure 6.

70

Figure 6. Routed network.

 In software defined networks, the forwarding plane decisions are reduced to a

match on packet field entries—there is no distinction in practice between decisions based

on layer four fields (e.g. TCP or CLIP headers), layer three information (IP address and

network prefix) and layer two information (ethernet frame headers) when forwarding

datagrams. Thus, we expected no difference in performance between a routed and a

switched network, either for TCP or CLIP. This was, in fact, the case—latency remained

at an average of 89-90 msec for TCP and 44-45 msec for CLIP packets, and performance

characteristics remained identical to the previous case.

 We would like to note that, in this case, we made no distinction between handling

information-centric datagrams and host-oriented datagrams. However, if making such a

distinction was desirable—for example, directing all information-centric traffic to a

71

specific server, network appliance or cluster of computing resources—this could be done

very straightforwardly with routing. Specifically, the network administrator would

simply route based on a 68-bit network prefix rather than the 64-bit prefix shown above.

In our example, the information-centric subnetwork would be 2001:1:0:0:C/68, whereas

the traditional host-oriented subnetwork would be the remainder of the address space.

5.5 Comparison to Named Data Networking

 We began our discussion of information centric networking with an extended

analysis of the NDN approach, with a particular focus on the reference implementation,

CCNx. We concluded chapter two with the comment that we believe the flaws and

missing functionality of NDN/CCNx are so great that it is unlikely to ever be

implementable in a production environment. Now that we have completed our

development of our competitor protocol, it is worth returning briefly to compare our

design with the best-available alternate ICN design to demonstrate how much

functionality and performance capability one would gain by using our design rather than

CCNx.

 As is shown in Figure 7, we believe that we have shown a protocol that is

fundamentally much superior to the CCNx design. By meeting the same interfaces as

standard IPv6, we are able to make use of many theoretical and practical results that

CCNx is incapable of addressing: from full compatibility with current network

architecture fundamentals, such as QoS queue policies and VLANs, to an easy

implementation on standard hardware and software and full backwards compatibility with

the current IPv6 networks. We believe this will give both researchers and network

72

 NDN CLIP
Layer 2 Switching Store-and-forward at each

node, interests propagate by
flooding

Requires custom hardware
(large memory caches for PIT,
FIB, and content store)

Slower than line speed
(approx. 10x slower)

Standard datagram forwarding

No hardware or software
modifications needed, no
additional memory requirements

Line speed forwarding

Optionally, can specify different
forwarding rules for CLIP and
point-to-point datagrams

VLAN No VLAN capability
demonstrated

Fully compatible with VLANs

QoS No QoS capability
demonstrated

Normal QoS policies applied (via
SDN controller or programming
the switch/router)

Optionally, can specify different
QoS policy for CLIP and point-
to-point traffic, different
producers, or different data items

Layer 3 Routing Hybrid routing system

No stability or reachability
results

Standard routing system,
guaranteed stability

No requirement for separate
routing algorithm or table

Optionally, can maintain separate
routing table for ICN traffic

Subnetting Cannot subnet NDN traffic Normal subnetting process
Internetworking Not compatible with BGP

Does not self-assemble into
internetworks

Compatible with unmodified
BGP, self-assembles via normal
BGP advertisements

Stability guaranteed via Gao-
Rexford

Optionally, can use BGP
extended communities attributes
to pass ICN-specific information

Layer 4 Fragmentation Fragmentation method
unspecified

Application must perform MTU
discovery and fragmentation (per
IPv6 standard)

Encryption Unspecified IPSec standard

Figure 7 Comparison of NDN and CLIP features

73

administrators a clear path to pursue the potential gains of an information-centric

architecture.

 In this chapter, we compared our protocol to the best and most widely-used

transport protocol in the Internet today: TCP, which has been under intensive study and

development for four full decades. We would like to remind our readers that this is an

exceptionally ambitious comparison for a new protocol, and it is only because we believe

that our design provides features and benefits that simply cannot be compared to NDN

that we do so.

5.6 Summary

 In this chapter, we have presented a functional prototype of our information-

centric networking design. We covered the system and software prerequisites needed to

implement this design, and we highlighted several possible issues or misconfigurations

which might be problematic. We also described the programming environment needed to

develop the SDN controller and traffic generators for our testbed system. Finally, we

instantiated a simple network on the Mininet network virtualization and compared our

prototype to the industry standard TCP protocol. We concluded that our ICN system is

deployable on unmodified hardware, operating systems and software now, and that its

performance characteristics are good enough to warrant further development and

refinement.

74

CHAPTER SIX

CONCLUSION

 In this work, we began by considering the area of information centric networking

designs, developed over the last 6-10 years by various research groups. Although these

systems have many positive features, there were insurmountable problems with each of

them in the areas of routing reachability and stability, scalability, and security. In

addition, there were very large practical considerations about interoperability, the cost

and feasibility of major hardware and software changes, and backwards compatibility

with the legacy network, which prevented these designs from being feasible for

deployment.

 However, advances in the roll-out of IPv6 and the rise of software defined

networking have opened the door to a new approach to ICN, based on incorporating the

metadata needed for ICN into the standard IPv6 header and using SDN to provide the

detailed forwarding rules needed for true information-oriented networking. We were able

to implement our design on standard hardware and software, and to make use of the deep

and robust theoretical and practical results developed over four decades of work with IP.

We were able to establish a fully-functional switching and routing design, inheriting the

stability and reachability results gained from routing protocol research and practice in IP.

We presented how our design was backwards compatible with the legacy IP network and

does not require special permissions from the network provider or changes to the host’s

operating system or hardware to function. We showed that we can intermix host-oriented

and information-oriented traffic, without interference. And finally, we showed that an

information-centric transport protocol is feasible to implement, is able to meet the

application-layer requirements for reliable transport, and may be both faster and simpler

75

to implement for certain use-cases. We conclude that this system is a feasible approach

for future internet design.

6.1 Work remaining for full protocol implementation

 The title of this work is “Toward an Internet Protocol Version 6 Deployable

Information Centric Networking Framework”, and so it is worth outlining briefly why it

is “toward,” that is, what still remains to be accomplished in order for CLIP to be

considered a complete, deployable protocol. We summarize the work we have

completed, and the key items remaining to be done, in Figure 8. We believe that we have

demonstrated most of the capabilities needed for deployment of our protocol, and we

have a clear approach to achieving the remaining items. We also believe that our design,

even though in its early stages, is clearly superior to other ICN prototypes which have

been presented to the community for research and application.

6.2 Future research

 Changing the networking approach from fixed-endpoint flows to a fully

information-centric flows opens many avenues for future research. Here, we highlight a

few of the many possibilities.

6.2.1 Develop an abstraction of the transport layer for use in Python

 As noted in chapter five, the release of Python 3.4 in the summer of 2014 made a

number of key programming modules available for the first time. In particular, the

inclusion of the asyncio library (on a provisional basis), along with the full

implementation of IPv6 and the continuing improvements in the code base for many

network services and programs, makes an attractive opportunity for developing this

prototype into a developer-friendly toolset. In particular, we think that it is a high-value

proposition to develop a transport and protocol abstraction for CLIP, which would fit

well within the standard networking framework in Python. Under this abstraction, we

76

 Requirements Results or Approach
Layer 2 Performance Forward datagrams at line

speed

Commingle CLIP and
endpoint-oriented datagrams
without interference

Demonstrated in this work

Compatibility Compatible with unmodified
operating systems, switches,
and SDN controller

Demonstrated in this work

Layer 3 Routing Compatible with standard
routing protocols, stable,
reachable

No performance degradation in
comparison with endpoint-
oriented traffic

Demonstrated using Linux
routing module

Future work: Implement a
stand-alone router using OSPF
and IS-IS

Transport layer
functionality

Provide: flow control, error
checking, datagram reordering,
congestion control

Demonstrated flow control, error
checking in this work

Initial solution for congestion
control (provides network safety)

Datagram reordering is not
relevant to this protocol, as each
datagram is separately addressed

Showed that this protocol does
not delay in providing data to the
application waiting for missing
datagrams

Future research: develop better
congestion control algorithms;
investigate the benefits of
selective network caching

Internetworking Compatible with BGP

Self-assemble into
internetworks

Showed operation of BGP

Future research: Implement
internetwork with BGP

Future research: Evaluate
possibilities of extended
community attributes in BGP for
performance

Figure 8 Work completed and items remaining to be accomplished

77

would code a transport object, which handles the actual I/O, and a protocol object, which

interfaces with the transport object and handles flow control, data parsing, and similar

tasks. Higher level objects and applications would then use the protocol to read and write

data, abstracting away the specifics of the layer four and below mechanics.

 If successful, this would have a number of immediate benefits for the research

community. First, it would allow native use of a wide variety of Python libraries,

including cryptographic suites, database APIs, higher-level networking libraries (such as

web servers) and data handlers. We are particularly interested in the libraries

implementing SSL and certificate handlers, because (as described in chapter three) we

believe that any production implementation of our protocol would require the use of

cryptographic signatures as a minimum, and likely also encryption.

 Additionally, there are a wide variety of Python implementations of many

networking services, such as DNS, which are a practical necessity for more complicated

research and testing (not to mention actual production networks). We believe that there

is significant scope for applying these network services in an information-aware or even

information-focused manner, to improve performance of the network and to enable

innovative and effective network design.

6.2.2 Investigate congestion control mechanisms in ICN networks

 We wrote at some length in chapter four about how we applied the issue of

congestion control to our prototype. To reiterate, we used the TCP congestion control

algorithm in our work to date, simply because we needed a guaranteed stable algorithm in

order to produce an initial implementation. However, we realize that our system makes

some very fundamental changes to the structure of the data flows, and as a result, we

expect that there are much better approaches possible. In TCP, the decision to retransmit

(when, and how many times) is made by the sender, based both on any acknowledgement

data it may have received from the receiver, plus two different timers (to handle the

78

situation where data from the recipient has been dropped), an estimate of the round trip

time to the distant node, a record of the networking stack’s last settings before the

previous congestion events, a measurement of the line speed of its immediate network

connection, and a handful of other system parameters that may have been tuned by the

network administrator. Our method is different in a number of ways: first, the decision

to retransmit is made by the receiver (by means of sending another request) rather than

the sender. This will obviously change the dynamics of the decision, as well as what

information might be available when the decision is made. Second, we cannot assume

that the endpoint of the transmission is necessarily the same from datagram to datagram,

as we explicitly allow the network to source the data from different locations (e.g., from a

cache or proxy), so an attempt to measure the round trip time may be highly error prone.

Third, the traditional methods of tuning TCP performance, particularly window shaping

and the behavior in response to RED or other queue management methods, may produce

significantly different results on an information-centric network than on an endpoint-

oriented network. Furthermore, an information-aware network might be able to actively

avoid congestion events by intelligently staging and serving content-labeled datagrams or

alternate routing ICN content, making congestion control less difficult to achieve. Lastly,

we may be able to uncover possibilities for the network to provide certain “tuning

parameters” to the end hosts, for publishers or data which the network recognizes (either

because it has a content distribution scheme pertaining to that information, has a cached

copy of the data, or has a routing table entry covering the data and so has more

information about the network characteristics which might apply).

 For all these reasons, we expect that a back-to-basics analysis of the congestion

control mechanisms in an information-centric environment is worthwhile. Additionally,

we would expect a significant amount of learning to occur if and when this system is used

for production traffic and on heterogeneous networks.

79

6.2.3 Investigate network caching

 We believe that one of the main anticipated benefits of this information-centric

approach is to enable the effective implementation of automatic caching of data when and

where most appropriate for the data in question. Since CLIP datagrams stand on their

own (even regarding authentication and encryption), and there is no session-related

overhead or communication requirements, network engineers are free to cache data at

will. However, this system does not require large-scale caching, as NDN does; it has the

ability to “fail soft” (default to point-sourcing) if the cache is not present, full, or unable

to process the data. This allows a substantial freedom of design, as well as the possibility

of avoiding many cases of network congestion and faster recovery from link outages. As

a result, we believe that there could be significant benefit in designing a network caching

system, probably implemented either as a network appliance or as a peer-to-peer system

on end hosts. We are particularly interested in adapting the Python memcached API (a

daemonized memory cache dictionary typically used for short-term storage of database

queries for reuse by other applications), which would seem to have a relatively easy

application to the (publisher label, content label) addressing scheme we have used for

CLIP.

6.3 The future of the network

 A fully-deployed information-centric network could bring significant

performance improvements to the legacy network. We emphasize that, unlike other ICN

designs, our system facilitates information-centricity, but it does not require it—in

contrast to NDN and other systems, there is no need to change the architecture of

applications which are inherently point-to-point (such as telephony, chat, or identity

management). Nonetheless, we would envision that, if our design became common, that

there would be a wide variety of information-aware network functions, services, and

appliances that could be developed. For example, we imagine providing information-

80

aware security services, that could impose policies based on the identity of the

information, not a hypothesis based on the endpoints and protocols. We imagine the

simplification of the network, eliminating the many layers of proxies, TCP accelerators,

deep packet inspections, attempts at data deduplication, and more, which make today’s

networks so brittle and difficult to configure, manage, and secure. We imagine automatic

data caching when and where it is most beneficial, based on the physical and logical

characteristics of the network and the specific needs of the applications using the

network. We imagine networks which can help end hosts and applications make

intelligent choices about sourcing data and verifying its provenance. In short, we believe

that this protocol opens many doors to future researchers and developers, to

fundamentally improve the performance and security of the network, by better matching

the actual needs of the application to the layer three implementation done by the

networked devices today.

81

REFERENCES

[1] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, et
al., "A data-oriented (and beyond) network architecture," SIGCOMM Comput.
Commun. Rev., vol. 37, pp. 181-192, August 2007.

[2] www-dsg.stanford.edu/triad.

[3] D. Perino and M. Varvello, "A reality check for content centric networking,"
presented at the Proceedings of the ACM SIGCOMM workshop on Information-
centric networking, Toronto, Ontario, Canada, 2011.

[4] www.named-data.net.

[5] www.ccnx.org.

[6] L. Zhang, A. Afansyev, J. Burke, V. Jacobson, K. C. Claffy, P. Crowley, et al.,
"Named Data Networking," ACM SIGCOMM Computer Communication Review,
vol. 44, pp. 66-73, July 2014.

[7] C. Yi, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang, "Adaptive forwarding in
named data networking," SIGCOMM Comput. Commun. Rev., vol. 42, pp. 62-67,
2012.

[8] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and Z. Lixia, "Interest
flooding attack and countermeasures in Named Data Networking," in IFIP
Networking Conference, 2013, 2013, pp. 1-9.

[9] T. Jianqiang, Z. Zhongyue, L. Ying, and Z. Hongke, "Identifying Interest
Flooding in Named Data Networking," in Green Computing and Communications
(GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE
International Conference on and IEEE Cyber, Physical and Social Computing,
2013, pp. 306-310.

[10] Z. Li and J. Bi, "Interest cash: an application-based countermeasure against
interest flooding for dynamic content in named data networking," presented at the
Proceedings of The Ninth International Conference on Future Internet
Technologies, Tokyo, Japan, 2014.

[11] P. Gasti, G. Tsudik, E. Uzun, and Z. Lixia, "DoS and DDoS in Named Data
Networking," in Computer Communications and Networks (ICCCN), 2013 22nd
International Conference on, 2013, pp. 1-7.

[12] C. Ghali, G. Tsudik, and E. Uzun, "Network-Layer Trust in Named-Data
Networking," SIGCOMM Comput. Commun. Rev., vol. 44, pp. 12-19, 2014.

82

http://www.named-data.net/
http://www.ccnx.org/

[13] S. DiBenedetto, C. Papadopoulos, and D. Massey, "Routing policies in named
data networking," presented at the Proceedings of the ACM SIGCOMM
workshop on Information-centric networking, Toronto, Ontario, Canada, 2011.

[14] W. Kai, Z. Huachun, C. Jia, and Q. Yajuan, "RDAI: Router-Based Data
Aggregates Identification Mechanism for Named Data Networking," in Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), 2013 Seventh
International Conference on, 2013, pp. 116-121.

[15] H.-g. Choi, J. Yoo, T. Chung, N. Choi, T. Kwon, and Y. Choi, "CoRC:
coordinated routing and caching for named data networking," presented at the
Proceedings of the tenth ACM/IEEE symposium on Architectures for networking
and communications systems, Los Angeles, California, USA, 2014.

[16] J. J. Garcia-Luna-Aceves, "Name-based content routing in information centric
networks using distance information," presented at the Proceedings of the 1st
international conference on Information-centric networking, Paris, France, 2014.

[17] C. Yi, J. Abraham, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang, "On the role
of routing in named data networking," Proceedings of the 1st international
conference on information-centric networking (INC '14), pp. 27-36, 2014.

[18] A. K. M. M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhand, and L. Wang,
"NLSR: named-data link state routing protocol," Proceedings of the 3rd ACM
SIGCOMM Workshop on Information Centric Networking (ICN '13), pp. 15-20,
2013.

[19] A. J. Abu, B. Bensaou, and J. M. Wang, "Interest packets retransmission in lossy
CCN networks and its impact on network performance," Proceedings of the 1st
international conference on information-centric networking (INC '14), pp. 167-
176, 2014.

[20] X. Jiang and J. Bi, "Interest set mechanism to improve the transport of named data
networking," SIGCOMM Comput. Commun. Rev., vol. 43, pp. 515-516, 2013.

[21] M. Papalini, A. Carzaniga, K. Khazaei, and A. L. Wolf, "Scalable routing for tag-
based information-centric networking," Proceedings of the 1st international
conference on information-centric networking (INC '14), pp. 17-26, 2014.

[22] X. Yuemei, L. Yang, L. Tao, Z. Guoqiang, W. Zihou, and C. Song, "A
dominating-set-based collaborative caching with request routing in content centric
networking," in Communications (ICC), 2013 IEEE International Conference on,
2013, pp. 3624-3628.

[23] M. Almishari, P. Gasti, N. Nathan, and G. Tsudik, "Optimizing bi-directional
low-latency communication in named data networking," SIGCOMM Comput.
Commun. Rev., vol. 44, pp. 13-19, 2013.

83

[24] M. Amadeo, A. Molinaro, C. Campolo, M. Sifalakis, and C. Tschudin, "Transport
layer design for named data wireless networking," in Computer Communications
Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on, 2014, pp. 464-
469.

[25] H. Dai, B. Liu, Y. Chen, and Y. Wang, "On pending interest table in named data
networking," presented at the Proceedings of the eighth ACM/IEEE symposium
on Architectures for networking and communications systems, Austin, Texas,
USA, 2012.

[26] W. Yi, X. Boyang, T. Dongzhe, L. Jianyuan, Z. Ting, D. Huichen, et al., "Fast
name lookup for Named Data Networking," in Quality of Service (IWQoS), 2014
IEEE 22nd International Symposium of, 2014, pp. 198-207.

[27] C. Jaeyoung, H. Jinyoung, C. Eunsang, K. Hyunchul, K. Taekyoung, and C.
Yanghee, "Performance comparison of content-oriented networking alternatives:
A tree versus a distributed hash table," in Local Computer Networks, 2009. LCN
2009. IEEE 34th Conference on, 2009, pp. 253-256.

[28] W. So, A. Narayanan, and D. Oran, "Named data networking on a router: fast and
dos-resistant forwarding with hash tables," presented at the Proceedings of the
ninth ACM/IEEE symposium on Architectures for networking and
communications systems, San Jose, California, USA, 2013.

[29] F. Li, F. Chen, J. Wu, and H. Xie, "Longest Prefix Lookup in Named Data
Networking: How Fast Can It Be?," in Networking, Architecture, and Storage
(NAS), 2014 9th IEEE International Conference on, 2014, pp. 186-190.

[30] W. So, T. Chung, H. Yuan, D. Oran, and M. Stapp, "Toward terabyte-scale
caching with SSD in a named data networking router," presented at the
Proceedings of the tenth ACM/IEEE symposium on Architectures for networking
and communications systems, Los Angeles, California, USA, 2014.

[31] Y. Wang, D. Tai, T. Zhang, J. Lu, B. Xu, H. Dai, et al., "Greedy name lookup for
named data networking," presented at the Proceedings of the ACM
SIGMETRICS/international conference on Measurement and modeling of
computer systems, Pittsburgh, PA, USA, 2013.

[32] Y. Haowei, S. Tian, and P. Crowley, "Scalable NDN Forwarding: Concepts,
Issues and Principles," in Computer Communications and Networks (ICCCN),
2012 21st International Conference on, 2012, pp. 1-9.

[33] http://www.cidr-report.org/as2.0/. (31 October 2014).

[34] J. Klensin. RFC 5324 Simple Mail Transfer Protocol [Online].

[35] G. Lindberg. RFC 2505 Anti-Spam Recommendations for SMTP MTAs [Online].

84

http://www.cidr-report.org/as2.0/

[36] W. Wong and P. Nikander, "Secure naming in information-centric networks,"
presented at the Proceedings of the Re-Architecting the Internet Workshop,
Philadelphia, Pennsylvania, 2010.

[37] B. Hamdane, M. Msahli, A. Serhrouchni, and S. G. El Fatmi, "Data-based access
control in named data networking," in Collaborative Computing: Networking,
Applications and Worksharing (Collaboratecom), 2013 9th International
Conference Conference on, 2013, pp. 531-536.

[38] B. Hamdane, A. Serhrouchni, A. Fadlallah, and S. G. E. Fatmi, "Named-Data
security scheme for Named Data Networking," in Network of the Future (NOF),
2012 Third International Conference on the, 2012, pp. 1-6.

[39] B. Hamdane, A. Serhrouchni, and S. G. E. Fatmi, "Access control enforcement in
Named Data Networking," 8th International Conference on Internet Technology
and Secured Transactions (ICITST), pp. 576-581, 2013.

[40] N. Ntuli and H. Sunyoung, "Detecting router cache snooping in Named Data
Networking," in ICT Convergence (ICTC), 2012 International Conference on,
2012, pp. 714-718.

[41] T. Lauinger, N. Laoutaris, P. Rodriguez, T. Strufe, E. Biersack, and E. Kirda,
"Privacy risks in named data networking: what is the cost of performance?,"
SIGCOMM Comput. Commun. Rev., vol. 42, pp. 54-57, 2012.

[42] www.fp7-pursuit.eu/PursuitWeb/.

[43] www.psirp.org.

[44] github.com/fp7-pursuit/blackadder.

[45] G. Parisis, D. Trossen, and D. Syrivelis, "Implementation and Evaluation of an
Information-Centric Network," IFIP Networking Conference, 2013, pp. 1-9, 2013.

[46] J. Postel. RFC 791, The Internet Protocol [Online].

[47] http://www.internetsociety.org/deploy360/blog/2013/04/over-25-of-verizon-
wireless-traffic-is-now-over-ipv6/.

[48] http://www.worldipv6launch.org/.

[49] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, et al., "OpenFlow: enabling innovation in campus networks,"
SIGCOMM Computer Communication Review, vol. 38, March 2008 2008.

[50] https://www.opennetworking.org/.

[51] O. N. Foundation, "OpenFlow Switch Specification (version 1.3) ", ed, 2012.

85

http://www.fp7-pursuit.eu/PursuitWeb/
http://www.psirp.org/
http://www.internetsociety.org/deploy360/blog/2013/04/over-25-of-verizon-wireless-traffic-is-now-over-ipv6/
http://www.internetsociety.org/deploy360/blog/2013/04/over-25-of-verizon-wireless-traffic-is-now-over-ipv6/
http://www.worldipv6launch.org/
http://www.opennetworking.org/

[52] L. Heath, H. Owen, R. Beyah, and R. State, "CLIP: Content labeling in IPv6, a
layer 3 protocol for information centric networking," in Communications (ICC),
2013 IEEE International Conference on, 2013, pp. 3732-3737.

[53] T. Narten, G. Huston, and L. Roberts. RFC 6177 IPv6 Address Assignment to
End Sites [Online].

[54] R. Hinden and S. Deering. RFC 4291 IP Version 6 Addressing Architecture
[Online].

[55] S. Thomson, T. Narten, and T. Jinmei. RFC 4862 IPv6 Stateless Address
Autoconfiguration [Online].

[56] C. Bao, C. Huitema, M. Bagnulo, M. Boucadair, and X. Li. RFC 6052 IPv6
Addressing of IPv4/IPv6 Translators [Online].

[57] R. Hinden and B. Haberman. RFC 4193 Unique Local IPv6 Unicast Addresses
[Online].

[58] C. Huitema and B. Carpenter. RFC 3879 Deprecating Site Local Addresses
[Online].

[59] M. Richardson. RFC 4025 A Method for Storing IPsec Keying Material in DNS
[Online].

[60] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. RFC 4120 The Kerberos
Network Authentication Service (V5) [Online].

[61] S. Kent. RFC 4302 IP Authentication Header [Online].

[62] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker, "Naming in
content-oriented architectures," presented at the Proceedings of the ACM
SIGCOMM workshop on Information-centric networking, Toronto, Ontario,
Canada, 2011.

[63] S. Kent. RFC 4303 IP Encapsulating Security Payload (ESP) [Online].

[64] Y. Rekhter. RFC 5701 IPv6 Address Specific BGP Extended Community
Attribute [Online].

[65] S. Sangli, D. Tappan, and Y. Rekhter. RFC 4360 BGP Extended Communities
Attribute [Online].

[66] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox,
"Information-centric networking: seeing the forest for the trees," presented at the
Proceedings of the 10th ACM Workshop on Hot Topics in Networks, Cambridge,
Massachusetts, 2011.

86

[67] M. Mathis, J. Mahdavi, S. Floyd, and M. Romanow. RFC 2018, TCP Selective
Acknowledgment Options [Online].

[68] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolski. RFC 2883, An Extension to
the Selective Acknowledgement (SACK) Option for TCP [Online].

[69] D. Borman, B. Braden, V. Jacobson, and R. Scheffnegger. RFC 7323, TCP
Extensions for High Performance [Online].

[70] V. Jacobson, R. Braden, and D. Borman. RFC 1323, TCP Extensions for High
Performance [Online].

[71] S. Bellovin. RFC 1948, Defending Against Sequence Number Attacks [Online].

[72] F. Gont. RFC 6528, Defending Against Sequence Number Attacks [Online].

[73] Z. Qian and Z. M. Mao, "Off-path TCP Sequence Number Interference Attack-
How Firewall Middleboxes Reduce Security," 2012 IEEE Symposium on Security
and Privacy, pp. 347-361, 2012.

[74] Z. Qian, Z. M. Mao, and Y. Xie, "Collaborative TCP sequence number inference
attack: how to crack a sequence number in under a second," Proceedings of the
2012 ACM Conference on Computer and Communications Security (CCS '12),
2012.

[75] J. Nagle. RFC 896, Congestion Control in IP/TCP Internetworks [Online].

[76] V. Paxson, M. Allman, J. Chu, and M. Sargent. RFC 6298, Computing TCP's
Retransmission Timer [Online].

[77] X. Sun, "TCP Congestion Control Algorithm Research," 8th International
Conference on Information Science and Digital Content Technology (ICIDT), vol.
3, 2012.

[78] P. Yang, W. Luo, and L. Xi, "Towards Measuring the Deployment Information of
Different TCP Congestion Control Algorithms: The Multiplicative Decrease
Parameter," Global Telecommunications Conference (GLOBECOM 2010), pp. 1-
5, 2010.

[79] Q. Wang and D. Yuan, "An improved TCP congestion control mechanism with
adaptive congestion window," 2010 International Symposium on Performance
Evaluation of Computer and Telecommunication Systems (SPECTS), pp. 231-235,
2010.

[80] Y. Nemoto, K. Ogura, and J. Katto, "An adaptive TCP congestion control having
RTT-fairness and inter-protocol friendliness," 2013 IEEE Consumer
Communications and Networking Conference (CCNC), pp. 178-183, 2013.

87

[81] E. Weigle and W.-c. Feng, "A Comparison of TCP Automatic Tuning Techniques
for Distributed Computing," 2002.

[82] K. Avrachenkov, U. Ayesta, J. Doncel, and P. Jacko, "Optimal congestion control
of TCP flows for internet routers," ACM SIGMETRICS Performance Evaluation
Review, vol. 40, pp. 62-64, December 2012 2012.

[83] H. Wang, Z. Tian, and Q. Zhang, "Self-Tuning Price-Based Congestion Control
Supporting TCP Networks," Proceedings of the 19th International Conference on
Computer Communications and Networks (ICCCN), 2010, pp. 1-6, 2010.

[84] S. Salsano, A. Detti, M. Cancellieri, M. Pomposini, and N. Blefari-Melazzi,
"Transport-layer issues in information centric networks," presented at the
Proceedings of the second edition of the ICN workshop on Information-centric
networking, Helsinki, Finland, 2012.

[85] M. Amadeo, C. Campolo, and A. Molinaro, "Multisource data retrieval in IoT via
Named Data Networking," Proceedings of the 1st international conference on
information-centric networking (INC '14), pp. 67-76, 2014.

[86] P. Heungsoon, J. Hoseok, and K. Taewook, "Popularity-based congestion control
in named data networking," in Ubiquitous and Future Networks (ICUFN), 2014
Sixth International Conf on, 2014, pp. 166-171.

[87] J. Li, H. Wu, B. Liu, J. Lu, Y. Wang, X. Wang, et al., "Popularity-driven
coordinated caching in named data networking," presented at the Proceedings of
the eighth ACM/IEEE symposium on Architectures for networking and
communications systems, Austin, Texas, USA, 2012.

[88] J. M. Wang and B. Bensaou, "Improving Content-Centric networks performance
with progressive, diversity-load driven caching," in Communications in China
(ICCC), 2012 1st IEEE International Conference on, 2012, pp. 85-90.

[89] S. Floyd. RFC 2914, Congestion Control Principles [Online].

[90] BIC and CUBIC TCP. Available:
http://research.csc.ncsu.edu/netsrv/?q=content/bic-and-cubic

[91] W. Hua and G. Jian, "Analysis of TCP BIC Congestion Control Implementation,"
2012 International Computer Science & Service System (CSSS), pp. 781-784,
2012.

[92] J. Wang, J. Wen, Y. Han, J. Zhang, C. Li, and X. Zhang, "CUBIC-FIT: A High
Performance and TCP CUBIC Friendly Congestion Control Algorithm,"
Communications Letters of the IEEE, vol. 17, pp. 1664-1667, 2013.

[93] W. Stevens, M. Thomas, E. Nordmark, and T. Jinmei. RFC 3542, Advanced
Sockets Application Programming Interface for IPv6 [Online].

88

http://research.csc.ncsu.edu/netsrv/?q=content/bic-and-cubic

[94] Google. (2014). IPv6 Adoption. Available:
http://www.google.com/intl/en/ipv6/statistics.html

[95] www.mininet.org.

[96] B. Lantz, B. Heller, and N. McKeown, "A network in a laptop: rapid prototyping
for software-defined networks," Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks (Hot Nets-IX), October 2010.

[97] http://openvswitch.org/.

[98] http://osrg.github.io/ryu/.

[99] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, "Feature-base comparison
and selection of Software Defined Networking (SDN) controllers," World
Congress on Computer Applications and Information Systtems (WCCAIS) 2014,
2014.

[100] http://www.secdev.org/projects/scapy/.

[101] https://docs.python.org/3/whatsnew/3.4.html.

89

http://www.google.com/intl/en/ipv6/statistics.html
http://www.mininet.org/
http://openvswitch.org/
http://osrg.github.io/ryu/
http://www.secdev.org/projects/scapy/

