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Su m mary 

The objective of this project is to develop a method to generate transport theory response 

functions for non-multiplying regions in cylindrical geometry typical of pebble bed reactors 

(PBRs). This was accomplished in the three numerical steps. In the first step, the predefined 

phase space distribution of neutron particles on the boundary of a coarse mesh was first expanded 

as a multi-product of a set of orthogonal basis functions. In the second step, response functions 

for each cylindrical coarse mesh were generated by solving each local fixed source problem with 

the boundary condition imposed on one of the bounding surfaces. In the last step, a consistency 

check was performed to verify its accuracy. 

In this project, the response expansion method was implemented into the MCNP code to calculate 

the response functions for coarse meshes in the inner and outer reflectors. The results obtained as 

a superposition of response functions were compared with the continuous energy Monte Carlo 

reference calculations. The excellent agreement between the two calculations indicates that the 

response functions can reproduce the reference solutions. 



I. Introduction 

The current generation of core neutronics methods for an analysis of the pebble bed reactor 
(PBR) is based on nodal diffusion theory and utilizes homogenized cross sections and other 
physics data generated by single assembly, infinite medium transport theory calculations. One of 
the primary limitations of nodal diffusion theory is its inadequacy to treat regions in the vicinity 
of strong neutron absorbers. A prime example of this shortcoming is the controlled reflector 
region in PBRs. '1 hese regions with no neutron multiplication and strong absorption do not 
receive satisfactory treatment in the nodal diffusion model. The goal of this project is to develop a 
method to generate the response functions for these regions. The response functions can be 
accommodated into the nodal diffusion equation to provide a transport solution for regions where 
the diffusion approximation is not sufficient. 

The project consists of two phases. Phase I contains the development of 2-D work. Phase II was 
originally planed to further extend the method to 3-D. Because of funding unavailability, phase II 
has not been funded by INL. However, as requested by INL, we have generated homogenized 
cross sections for a simplified ID slab PRB problem in phase II. 

This final report is divided into four major sections. Section II contains an overview 
summarizing the objectives and work scope. Section III contains a complete description of the 
work performed in this project. Finally, Section IV highlights the project accomplishments. 

II. Project Overview 

Objective 

The objective of this project is to develop a method to generate transport theory response 
functions for non-multiplying regions in 2-D cylindrical geometry typical of pebble bed reactors 
(PBRs). The method is to be implemented into the MCNP code to obtain a local transport 
solution for each unique coarse mesh in the outer or inner region as a response to incoming 
neutrons impinging on one of the bounding surfaces. 

Work Scope 

The main scope of work involves the development of expansion functions in 2D cylindrical 
geometry, the implementation of the new expansion functions into the MCNP code, the 
generation of response functions for non-multiplying regions, the consistency check to show the 
accuracy of the response functions, and generation of homogenized cross sections for a simplified 
1-D slab PBR problem. The project consists of two phases. The phase I effort was focused on 
generation of the response functions for coarse meshes in the inner or outer reflector. The phase 
II effort was focused on generation of homogenized cross sections to account for intra-nodal 
leakages. 

III. Technical Narrative 

Task 1 	Extend the method of calculating coarse mesh response functions from 1-D slab 
geometry to 2-D cylindrical geometry 

Task Summary 



The aim of this task was to extend the method of calculating the response functions from 1 - D 
coarse meshes to 2-D cylindrical coarse meshes in both inner and outer reflectors. The main 
requirement is that this method can provide the response functions, in terms of node-averaged 
flux, surface-averaged flux and outgoing partial currents, corresponding to the incoming flux 
entering from one of the bounding surfaces. 

Work Performed 

The coarse-mesh methodology for the transport treatment of a set of selected nodes has been 
tailored to match the requirements of the CMFD method developed by INL and described in the 
proposal. INL method integrates the response matrices for the nodes necessitating transport 
treatment transparently in its formulation. As a result, Georgia Tech provides INL with response 
matrices that contain node responses to unit incoming partial currents, both in terms of node 
surface fluxes and node partial outgoing currents. The latter are needed to couple the transport-
treated node to its neighbors. 

Figure 1 illustrates the schematic configuration of a 2D PBMR400 pebble bed reactor, consisting 
of an inner reflector region, an annular fuel region and a controlled outer reflector. Let's begin 
with dividing both the outer and inner reflectors into a number of coarse meshes. The response 
functions of the coarse mesh corresponding to an incoming current from one of the adjacent 
regions can be calculated by solving the local problem below. 

Fig. 1: 2-D simplified PBMR400 model 
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with the following boundary condition 

(1) 



(ri , e9u ,a , E) = 	0i , S2, E) where (r1 , e1 ) E 	nV] } for all V, bounding V, 	(2) 

In the above equations, {if , (r B , S2 , E) is the neutron angular flux within coarse mesh i, r and 0 

are spatial variables in the cylindrical coordinate, w and 4  are angular variables. Q is the internal 
volumetric source that may also include scattering neutrons. V, represents all the sub-volume 
elements (i.e. coarse meshes). The superscripts "+" and "-"on the angular flux indicate the 
outgoing and incoming direction, respectively. 

The MCNP code has been adapted to yield the solution to the local problem of Eq. (1). In the 
source-sampling subroutine, the initial position, direction and energy of source neutrons are 
sampled based on the predefined phase-space distribution on the boundary of a coarse mesh. If 

f (r , 0, 6, E) is the predefined distribution function, the initial position, energy and direction of 
incoming neutrons are sampled from the following distribution. 

= f (r,  0 , E) 	 ( 3 ) 

In the tally subroutine, the expected value of response functions, in terms of the node-average 
flux, surface-averaged flux and partial currents crossing a coarse mesh, are tallied as the 
probability that initial neutrons and their progenies escape from the coarse mesh through a 
specific surface, scaled by a weight factor determined by the orders of the expansion and the 
location, energy and direction of the exiting neutrons. 

RJ (k),7, = 
NA 	

f, 	)w, 	 (4) 
: 

where Pc. , E,, 52, and we  are the position, energy, direction and weight of the exiting neutrons, and 

R) are the expansion functions. 

The code was tested by comparisons with results from direct MCNP simulations on 2-D 
benchmark problems. A consistency check to further verify the accuracy of the response 
functions, based on comparisons of the superposition of response functions and MCNP solutions, 
was performed upon the completion of task 2. 

Task 2 Development of 2D cylindrical expansion functions 

Task Summary 

The aim of this task was to develop an expansion scheme to approximate the angular flux on a 
coarse mesh interface in 2D cylindrical geometry. The idea behind expansion functions is the 
development of the boundary condition imposed on the node boundary as an expansion of an 
orthogonal set of basis functions in space, energy and angle. The basis functions are selected so 
that a relatively low order truncation would lead to accurate solutions inside the node. The Monte 
Carlo code MCNP allows surface-source boundary conditions in terms of isotropic and cosine 
angular distributions and uniform and linear spatial distribution. Higher orders of expansion 
would require a modification to the MCNP source code. The expansion approximation should 
guarantee conservation of particle and be able to provide the scalar flux at the incident surface. 

Work Performed 

(1) Expansion functions 



Following Mosher and Rahnema (2006)' and Forget and Rahnema (2007) 2 , one may expand the 
angular current at each interface in terms of Legendre polynomials as in Eq. (5). This is a natural 
choice, since the O th  order expansion in angle corresponds to an isotropic surface source, and the 
O th  order expansion in space corresponds to a uniform source. However, this expansion scheme 
cannot be applied to cylindrical geometry as in this project, since an isotropic angular current (i.e. 
angular flux = 1 / ,u ), leads to an infinite scalar flux on the incident surface. 

J (x, _1,0 , E) = 	I 	(x) P, (P)Pk 	P, (E) 	 ( 5 ) 
1,j,k,1 

To accomplish the goals of this task, we choose to expand the angular flux, instead of angular 
current, at each surface in terms of a set of expansion (basis) functions. 

x, E) = 	co  fik, (x, E) 	 (6) 
,k 

In the above equation, co, are expansion coefficients, and f kl (x 	E) represent expansion y 

functions. However, in order to ensure that the total number of particles (or current) is conserved, 
the expansion functions must be constructed to have the following orthogonality. 

dx $dE 	A2(n • Q) 	(x, Q, E) 	(x, Q, E) = Aukic5,' 6.  /1 6  kk' brr 
•=1>c, 

(7 ) 

z 

Fig. 2: Angular variables in a 2D cylindrical surface 

As an example, take a 2D cylindrical surface shown in Fig. 2 in which axis z is chosen to be 
parallel with the axis of the cylinder and y represents the normal direction at point r . In this case, 
the expansion functions can be written as in the following form a . 

Scott Mosher and F. Rahnema, "The Incident Flux Response Expansion Method for Heterogeneous 
Coarse Mesh Transport Problems," Transport Theory and Statistical Physics, 34, No. 6, 1-26 (2006). 

2  Benoit Forget and Farzad Rahnema, "Hybrid Coarse Mesh Radiation Transport Method for Whole Core 
Reactor Criticality Analysis," Nucl. Sci. Eng., Submitted (December 2006). 

Dingkang Zhang, Farzad Rahnema, and Abderrafi M Ougouag, "New Expansion Functions for 
Calculation of Coarse Mesh Response Functions", the 2007 ANS Annual Meeting, Boston, MA, June 24-
28, 2007 



fipr (x, S2 , E) = 	x max ](x)U (cos 8) P (cos 0) P,LE g_, , E g 1(E) 	( 8 ) 

where scaled Legendre polynomials /5,[xmin,xmax  ](x) and Chebyshev polynomials of the second 

kind U (x) are defined as: 

1-3.,[x.„xmaj(x)= P, 
r  2 (x —  x r„,„  ) 

 	1 
xmax  — 

xmin 

(9) 

and 
Uo  (x) = 1 

U, (x) = 2x 	 (10) 

Un  (x) = 2xU,,_, (x) — Un _2  (x) for n> 2 

(2) Consistency check 
The method and expansion functions developed in tasks 1 and 2 have been successfully 
implemented into the MCNP code. Generation of response functions consists of two steps. In the 
first step, the MCNP code was used to compute a reference solution, and the actual neutron 
spatial, energy and angular distributions were tallied and expanded in terms of the expansion 
functions constructed in this research. In the second step, the response functions of a coarse mesh 
associated with the incoming neutron flux at each bounding surface were generated. 

To verify the validity of the method, a 2D cylindrical benchmark problem shown in Fig. 3 was 
considered. The 2-D benchmark consists of an inner reflector region with a diameter of 2 meters 
(m), an annular fuel region of 0.85 m thickness and a 0.5 m thick controlled outer reflector 
region. There are 24 control rods each of 13 cm diameter whose centers are positioned on the 
circumference of 3.974 m diameter ring. The material compositions are listed in Table 1. 

Fig. 3: Geometric configuration of a 2D cylindrical benchmark problem 

Table 1 Material composition in each region 
Region Material Atomic Density (1024 ) 

Inner Reflector C 1.18234E-01 
U234 
U235 

1.16811E-07 
1.19359E-05 



R
e

la
ti

ve
  E

rr
or

  

I 
♦ Fast exiting patial current 

Thermal exiting patial current 
I= Fast surface-averaged flux 

Thermal surface-averaged flux I 	I 

U238 1.10859E-04 
Xe135 3.43000E-11 

Fuel 016 2.45830E-04 
Si 2.75487E-04 
Ni 1.04518E-04 
Cr 1.34381E-04 
Fe 5.07660E-04 
C 6.81785E-02 

Outer Reflector C 1.18894E-01 
Control Rod B10 3.20000E-06 

C 9.54760E-02 
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(a) coarse mesh in the outer reflector 	(b) coarse mesh in the inner reflector 
Fig. 4: Configurations of coarse meshes 

Both the outer and inner reflectors were divided into 24 coarse meshes. The geometrical 
configurations of these coarse meshes are shown in Figs. 4. The response functions, in terms of 
exiting partial currents, surface-averaged angular fluxes and node-averaged fluxes, are listed in 
Tables Al-A4. 

Surface 
Fig. 5: Relative difference between the superposition based response functions and reference 

solutions for the outer reflector coarse mesh 



To check the accuracy of these response functions, the superposition of these response functions 
was compared with the reference results computed from the continuous-energy MCNP 
simulations. The relative difference between the two solutions for the outer reflector coarse mesh 
is illustrated in Fig. 5. The detailed comparisons for both the inner and outer reflector coarse 
meshes are listed in Tables A5-A8. It can be found that the agreement between the two solutions 
is excellent. Most of the relative errors are less than 0.2%. The maximum relative difference of 
1.6% occurs on the outer surface (surface 2 in Fig. 4) of the coarse mesh in the outer reflector 
where the uncertainty of the reference solution is about 1%; however it is still within the two 
standard deviations of the reference solutions. These results indicate that the response functions 
based on the method and expansion functions developed in this work are accurate and can 
reproduce solutions to the same level as continuous energy MCNP calculations. 

Task 3 Generation of homogenized cross sections for a 1-D slab problem specified by INL 

Task summary: 
The aim of the task was to generate homogenized parameters (cross sections, discontinuity 

factors) for 1-D coarse meshes. Conventionally, the assumption of infinite media (i.e. specular 
reflection boundary condition) is used to calculate approximate spectrum for each coarse mesh 
(lattice cell) and then homogenized data are collapsed. To account for the intra-nodal leakage, the 
ratios of incoming/outgoing partial currents provided by INL were taken into account when we 
calculated the homogenized parameters. 

Work performed 

The problem is a 1-D adaptation of a realistic 2-D model of the PBMR400 pebble bed 
reactor shown in Fig. 3. The specifications for the 2-D model are based on data provided by INL 
and are representative of an equilibrium core. The 1-D benchmark is a section of the 2-D 
configuration taken along a semi-plane perpendicular to the paper and passing through the centers 
of the reactor and of one of the control rods. Its geometrical layout and its subdivision into nodes 
are illustrated in Figure 6. Reflective and vacuum boundary conditions were imposed on the left 
and right boundary of the system, respectively. The width of each region was taken to be the 
same as the corresponding radial width of the 2-D region. Material densities in each region are 
listed in Table 2. The ratios of incoming/outgoing partial currents provided by INL are illustrated 
in Table A9 in Appendix 
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Fig. 6: 1-D simplified PBMR400 models 

Table 2: Material compositions in each region (unit: 10E24 atoms/cm -3) 
Elements Inner reflector Fuel Outer reflector Control Rod 

C 1.18234E-01 6.81785E-02 1.18894E-01 9.54760E-02 
U-234 1.16811E-07 
U-235 1.19359E-05 
U-238 1.10859E-04 
Xe-135 3.43000E-11 

0 2.45830E-04 
Si 2.75487E-04 
Ni 1.04518E-04 
Cr 1.34381E-04 
Fe 5.07660E-04 
B 3.20000E-06 

A continuous energy Monte Carlo calculation was performed to calculate the neutron 
angular flux v/ (z, p, E) within each coarse mesh. To preserve various reaction rates, the 

homogenized multi-group cross section were computed by the following equations: 
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Table A10 shows the MCNP collapsed two-group cross sections as well as discontinuity 
factors for nodes 1-9. 

IV. Summary and Conclusions 

Milestone/Task 

Description 

Planned 

Completion Date 

Actual Completion 

Date 

Percent 
Complete 

Task 1: 2D extension October 17, 2006 October 17, 2006 100% 

Task 2: 2D representation 
functions 

December 17, 2006 December 17, 2006 100% 

Task 3: Cross section generation June 30, 2007 June 30, 2007 100% 

We have successfully extended the method of calculating coarse mesh response functions from 
ID slab to 2D cylindrical geometry. A set of new expansion functions, has been developed and 
implemented into the MCNP code. Unlike the Legendre expansion functions, the new expansion 
set avoids scalar flux singularity on the incident surface and at the same time ensures 
conservation of particles, i.e. the total current crossing an interface remains unchanged after 
expansion. A consistency check has been performed to demonstrate the accuracy of the method 
and the expansion functions. In addition, the MCNP code has been used to generate the 
homogenized parameters for the simplified 1-D PBR problem to account for intra-nodal leakages. 

V 



IV. 	APPENDIX:  

Table A 1: Response function of the coarse mesh in the outer reflector, in terms of exiting currents 

Incoming 
surface Group 

Exiting Currents at outgoing surfaces 
1 2 3 4 

Fast Thermal Fast Thermal Fast Thermal Fast Thermal 

1 
Fast 6.166E-01 1.086E-01 1.836E-03 1.297E-02 1.988E-04 5.156E-03 1.896E-01 4.813E-02 

Thermal 6.645E-07 8.251E-01 0.000E+00 3.513E-02 0.000E+00 5.127E-03 1.920E-07 1.051E-01 

2 
Fast 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Thermal 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

3 
Fast 1.949E-04 5.166E-03 1.840E-03 1.296E-02 6.165E-01 1.087E-01 1.896E-01 4.815E-02 
Thermal 0.000E+00 5.128E-03 0.000E+00 3.516E-02 6.778E-07 8.251E-01 1.131E-07 1.051E-01 

4 
Fast 6.605E-02 3.002E-02 9.495E-04 1.382E-02 6.604E-02 3.001E-02 6.733E-01 9.294E-02 

Thermal 3.491E-07 7.713E-02 0.000E+00 8.394E-03 2.659E-07 7.710E-02 1.909E-06 7.921E-01 

Table A2: Response function of the coarse mesh in the outer reflector, in terms of surface and node averaged fluxes 

Incoming 
surface Group 

Surface-averaged flux at outgoing surfaces 

Node-averaged flux 1 2 3 4 

Fast Thermal Fast Thermal Fast Thermal Fast Thermal Fast Thermal 

1 

Fast 3.309E+00 1.973E-01 3.156E-03 2.246E-02 3.408E-04 8.929E-03 3.680E-01 8.424E-02 1.979E+01 2.178E+01 

Thermal 2.132E-06 3.686E+00 0.000E+00 6.092E-02 0.000E+00 8.830E-03 2.957E-07 1.911E-01 1.361E-05 4.636E+01 

2 

Fast 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Thermal 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

3 

Fast 3.289E-04 8.967E-03 3.150E-03 2.242E-02 3.309E+00 1.974E-01 3.680E-01 8.429E-02 1.976E+01 2.176E+01 

Thermal 0.000E+00 8.839E-03 0.000E+00 6.107E-02 2.723E-06 3.685E+00 1.349E-07 1.909E-01 1.294E-05 4.637E+01 

4 

Fast 1.234E-01 5.217E-02 1.609E-03 2.397E-02 1.232E-01 5.226E-02 3.365E+00 1.672E-01 2.856E+01 2.684E+01 

Thermal 9.444E-07 1.402E-01 0.000E+00 1.446E-02 3.912E-07 1.404E-01 7.587E-06 3.644E+00 4.370E-05 4.227E+01 



Table A3: Response function of the coarse mesh in the inner reflector, in terms of exiting currents 

Incoming 
surface Group 

Exitin. Currents at outgoing surfaces 

1 2 3 
Fast Thermal Fast Thermal Fast Thermal 

1 
Fast 6.202E-01 9.987E-02 1.870E-01 3.718E-02 1.858E-02 3.495E-02 

Thermal 0.000E+00 7.765E-01 0.000E+00 3.964E-02 0.000E+00 1.754E-01 

2 
Fast 1.278E-01 3.091E-02 6.271E-01 5.346E-02 1.284E-01 3.083E-02 

Thermal 0.000E+00 1.317E-01 1.729E-06 7.290E-01 0.000E+00 1.318E-01 

3 
Fast 1.865E-02 3.484E-02 1.871E-01 3.713E-02 6.200E-01 9.984E-02 

Thermal 0.000E+00 1.760E-01 0.000E+00 3.946E-02 3.660E-07 7.759E-01 

Table A4: Response function of the coarse mesh in the inner reflector, in terms of surface and node averaged fluxes 

Incoming 
surface Group 

Surface-averaged flux at outgoing surfaces 
Node-averaged flux 1 2 3 

Fast Thermal Fast Thermal Fast Thermal Fast Thermal 

1 
Fast 3.310E+00 1.823E-01 3.607E-01 6.441E-02 3.171E-02 6.074E-02 1.859E+01 9.962E+00 
Thermal 0.000E+00 3.605E+00 0.000E+00 7.171E-02 0.000E+00 3.075E-01 2.489E-06 2.513E+01 

2 
Fast 2.371E-01 5.411E-02 3.293E+00 9.738E-02 2.388E-01 5.373E-02 2.053E+01 6.425E+00 
Thermal 0.000E+00 2.399E-01 4.673E-06 3.541E+00 0.000E+00 2.401E-01 2.572E-05 2.450E+01 

3 

Fast 3.184E-02 6.049E-02 3.606E-01 6.512E-02 3.310E+00 1.816E-01 1.859E+01 9.965E+00 

Thermal 0.000E+00 3.083E-01 0.000E+00 7.051E-02 2.952E-06 3.602E+00 2.541E-06 2.514E+01 



Table AS: Relative errors of the superposition method as compared to the reference solutions - exiting 
currents for the coarse mesh in the outer reflector 

Surface 1 2 3 4 
Fast 0.030% 1.285%*  0.018% 0.001% 

Thermal 0.028% 0.271% 0.058% 0.021% 
The uncertainty of the reference solution is about 1%. 

Table A6: Relative errors of the superposition method as compared to the reference solutions -surface and 
node averaged fluxes for the coarse mesh in the outer reflector 

Surface averaged flux Node 
averaged Surface 1 2 3 4 

Fast 0.010% 1.66% .  0.006% 0.267% 0.075% 
Thermal 0.030% 0.343% 0.013% 0.087% 0.083% 

The uncertainty of the reference solution is about 1%. 

Table A7: Relative errors of the superposition method as compared to the reference solutions - exiting 
currents for the coarse mesh in the inner reflector 

Surface 1 2 3 
Fast 0.130% 0.024% 0.072% 

Thermal 0.050% 0.054% 0.064% 

Table A8: Relative errors of the superposition method as compared to the reference solutions - surface and 
node averaged fluxes for the coarse mesh in the inner reflector 

Surface averaged flux Node 
averaged Surface 1 2 3 

Fast 0.081% 0.184% 0.084% 0.141% 
Thermal 0.017% 0.113% 0.066% 0.057% 



Table A9: Ratios of incoming/outgoing partial currents for nodes 1-9 

Jin/Jout 

Node # Surface g=1 g=2 

1 

Left 1.000000E+00 1.000000E+00 

Right 1.473009E+00 1.035422E+00 

2 

Left 6.788823E-01 9.657901E-01 

Right 1.317759E+00 8.604942E-01 

3 

Left 7.588642E-01 1.162123E+00 

Right 1.037572E+00 9.252947E-01 

4 

Left 9.637890E-01 1.080737E+00 

Right 9.698727E-01 9.448198E-01 

5 

Left 1.031063E+00 1.058403E+00 

Right 9.224022E-01 9.394317E-01 

6 

Left 1.084126E+00 1.064473E+00 

Right 8.473549E-01 9.370870E-01 

7 

Left 1.180143E+00 1.067137E+00 

Right 5.693668E-01 1.005693E+00 

8 

Left 1.756337E+00 9.943396E-01 

Right 7.000748E-01 9.035756E-01 

9 

Left 1.428419E+00 1.106714E+00 

Right 0.000000E+00 0.000000E+00 



Table A10: Two-group cross sections for nodes 1-9 

Cross 	sections 	(cm**-1) 

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 

Diffusion 
Coeff.  . 

Group 1 8.550E-01 9.089E-01 1.672E+00 1.622E+00 1.610E+00 1.611E+00 1.633E+00 9.234E-01 8.707E-01 
Group 2 5.137E-01 6.299E-01 1.118E+00 1.132E+00 1.137E+00 1.136E+00 1.125E+00 6.504E-01 6.265E-01 

Removal 
Group 1 1.498E-05 5.272E-03 1.832E-03 2.373E-03 2.534E-03 2.540E-03 2.323E-03 4.679E-03 8.290E-03 
Group 2 2.647E-04 2.455E-04 4.648E-03 4.299E-03 4.181E-03 4.199E-03 4.452E-03 7.440E-04 2.445E-04 

Nu•Fission 
Group 1 0.000E+00 0.000E+00 2.889E-04 3.349E-04 3.479E-04 3.482E-04 3.302E-04 0.000E+00 0.000E+00 
Group 2 0.000E+00 0.000E+00 9.015E-03 8.325E-03 8.094E-03 8.129E-03 8.628E-03 0.000E+00 0.000E+00 

Transfer 1->2 0.000E+00 5.263E-03 1.113E-03 1.500E-03 1.618E-03 1.622E-03 1.468E-03 4.657E-03 8.281E-03 

Absorption 
Group 1 1.498E-05 8.552E-06 7.187E-04 8.726E-04 9.159E-04 9.180E-04 8.550E-04 2.174E-05 9.700E-06 
Group 2 2.647E-04 2.455E-04 4.648E-03 4.299E-03 4.181E-03 4.199E-03 4.452E-03 7.440E-04 2.445E-04 

Fission 
Group 1 0.000E+00 0.000E+00 1.177E-04 1.368E-04 1.422E-04 1.423E-04 1.348E-04 0.000E+00 0.000E+00 
Group 2 0.000E+00 0.000E+00 3.707E-03 3.423E-03 3.328E-03 3.343E-03 3.548E-03 0.000E+00 0.000E+00 

Total 
Group 1 3.899E-01 3.667E-01 1.994E-01 2.055E-01 2.070E-01 2.069E-01 2.041E-01 3.610E-01 3.828E-01 
Group 2 6.489E-01 5.292E-01 2.982E-01 2.944E-01 2.933E-01 2.934E-01 2.962E-01 5.125E-01 5.321E-01 

Discontinuity 
Factors 

Left G1 7.499E-02 4.747E-02 7.782E-01 9.808E-01 1.069E+00 1.160E+00 1.378E+00 2.249E+00 2.820E+00 
Left G2 8.746E-01 8.445E-01 1.237E+00 1.128E+00 1.108E+00 1.125E+00 1.110E+00 9.866E-01 1.817E+00 
Right G1 5.098E+00 3.783E+00 1.125E+00 9.800E-01 9.066E-01 8.163E-01 5.785E-01 2.851E-01 6.378E-02 
Right G2 1.253E+00 7.330E-01 8.457E-01 8.966E-01 8.952E-01 8.832E-01 9.416E-01 8.366E-01 9.728E-02 
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Summary 

The objective of this project is to develop a method to generate transport theory response 
functions for non-multiplying regions in cylindrical geometry typical of pebble bed reactors 

(PBRs). This was accomplished in the three numerical steps. In the first step, the predefined 

phase space distribution of neutron particles on the boundary of a coarse mesh was first expanded 

as a multi-product of a set of orthogonal basis functions. In the second step, response functions 
for each cylindrical coarse mesh were generated by solving each local fixed source problem with 

the boundary condition imposed on one of the bounding surfaces. In the last step, a consistency 
check was performed to verify its accuracy. 

In this project, the response expansion method was implemented into the MCNP code to calculate 

the response functions for coarse meshes in the inner and outer reflectors. The results obtained as 

a superposition of response functions were compared with the continuous energy Monte Carlo 
reference calculations. The excellent agreement between the two calculations indicates that the 

response functions can reproduce the reference solutions. 



I. Introduction 

The current generation of core neutronics methods for an analysis of the pebble bed reactor 
(PBR) is based on nodal diffusion theory and utilizes homogenized cross sections and other 
physics data generated by single assembly, infinite medium transport theory calculations. One of 
the primary limitations of nodal diffusion theory is its inadequacy to treat regions in the vicinity 
of strong neutron absorbers. A prime example of this shortcoming is the controlled reflector 
region in PBRs. These regions with no neutron multiplication and strong absorption do not 
receive satisfactory treatment in the nodal diffusion model. The goal of this project is to develop a 
method to generate the response functions for these regions. The response functions can be 
accommodated into the nodal diffusion equation to provide a transport solution for regions where 
the diffusion approximation is not sufficient. 

The project consists of two phases. Phase I contains the development of 2-D work. Phase II was 
originally planed to further extend the method to 3-D. Because of funding unavailability, phase II 
has not been funded by INL. However, as requested by INL, we have generated homogenized 
cross sections for a simplified 1D slab PRB problem in phase II. 

This final report is divided into four major sections. Section II contains an overview 
summarizing the objectives and work scope. Section III contains a complete description of the 
work performed in this project. Finally, Section IV highlights the project accomplishments. 

II. Project Overview 

Objective 

The objective of this project is to develop a method to generate transport theory response 
functions for non-multiplying regions in 2-D cylindrical geometry typical of pebble bed reactors 
(PBRs). The method is to be implemented into the MCNP code to obtain a local transport 
solution for each unique coarse mesh in the outer or inner region as a response to incoming 
neutrons impinging on one of the bounding surfaces. 

Work Scope 

The main scope of work involves the development of expansion functions in 2D cylindrical 
geometry, the implementation of the new expansion functions into the MCNP code, the 
generation of response functions for non-multiplying regions, the consistency check to show the 
accuracy of the response functions, and generation of homogenized cross sections for a simplified 
I -D slab PBR problem. The project consists of two phases. The phase I effort was focused on 
generation of the response functions for coarse meshes in the inner or outer reflector. The phase 
II effort was focused on generation of homogenized cross sections to account for intra-nodal 
leakages. 

III. Technical Narrative 

Task 1 	Extend the method of calculating coarse mesh response functions from 1-D slab 
geometry to 2-D cylindrical geometry 

Task Summary 



The aim of this task was to extend the method of calculating the response functions from 1-D 
coarse meshes to 2-D cylindrical coarse meshes in both inner and outer reflectors. The main 
requirement is that this method can provide the response functions, in terms of node-averaged 
flux, surface-averaged flux and outgoing partial currents, corresponding to the incoming flux 
entering from one of the bounding surfaces. 

Work Performed 

The coarse-mesh methodology for the transport treatment of a set of selected nodes has been 
tailored to match the requirements of the CMFD method developed by INL and described in the 
proposal. INL method integrates the response matrices for the nodes necessitating transport 
treatment transparently in its formulation. As a result, Georgia Tech provides INL with response 
matrices that contain node responses to unit incoming partial currents, both in terms of node 
surface fluxes and node partial outgoing currents. The latter are needed to couple the transport-
treated node to its neighbors. 

Figure l illustrates the schematic configuration of a 2D PBMR400 pebble bed reactor, consisting 
of an inner reflector region, an annular fuel region and a controlled outer reflector. Let's begin 
with dividing both the outer and inner reflectors into a number of coarse meshes. The response 
functions of the coarse mesh corresponding to an incoming current from one of the adjacent 
regions can be calculated by solving the local problem below. 

Fig. 1: 2-D simplified PBMR400 model 

1.1 a 
r ar (rv ,(r,o,,,E))+ r 	 iTact) (77v,(1-,0,6,E)) 

(1) 

+a, (r, 0, E) (r , , 	E) = Q, (r,O, 55, E) + fdE' dc2' 6 (r, ,e2', E' —> 	E) (r , 0 , 	E') 
0 	4;r 

with the following boundary condition 



ti (r,/  , 0 u  , , E) = 	(r,/  , e„,O, E) where (ru  , ) E {V, n 	for all V, bounding V, 	(2) 

In the above equations, cu, (r,O, 	E) is the neutron angular flux within coarse mesh i, r and 0 

are spatial variables in the cylindrical coordinate, w and are angular variables. Q is the internal 
volumetric source that may also include scattering neutrons. V, represents all the sub-volume 
elements (i.e. coarse meshes). The superscripts "+" and "-"on the angular flux indicate the 
outgoing and incoming direction, respectively. 

The MCNP code has been adapted to yield the solution to the local problem of Eq. (1). In the 
source-sampling subroutine, the initial position, direction and energy of source neutrons are 
sampled based on the predefined phase-space distribution on the boundary of a coarse mesh. If 

f (r, 0 ,a, E) is the predefined distribution function, the initial position, energy and direction of 

incoming neutrons are sampled from the following distribution. 

= f (r 	E) 	 (3 ) 

In the tally subroutine, the expected value of response functions, in terms of the node-average 
flux, surface-averaged flux and partial currents crossing a coarse mesh, are tallied as the 
probability that initial neutrons and their progenies escape from the coarse mesh through a 
specific surface, scaled by a weight factor determined by the orders of the expansion and the 
location, energy and direction of the exiting neutrons. 

1 	N  
RJ (k)" 7" =

NA " f1 
 " (Ft. , E„ac ) w 	 (4) 

„ (=i 

where Fc  , 	, 'a and w, are the position, energy, direction and weight of the exiting neutrons, and 
- f (r Ec  a) are the expansion functions. 

The code was tested by comparisons with results from direct MCNP simulations on 2-D 
benchmark problems. A consistency check to further verify the accuracy of the response 
functions, based on comparisons of the superposition of response functions and MCNP solutions, 
was performed upon the completion of task 2. 

Task 2 Development of 2D cylindrical expansion functions 

Task Summary 

The aim of this task was to develop an expansion scheme to approximate the angular flux on a 
coarse mesh interface in 2D cylindrical geometry. The idea behind expansion functions is the 
development of the boundary condition imposed on the node boundary as an expansion of an 
orthogonal set of basis functions in space, energy and angle. The basis functions are selected so 
that a relatively low order truncation would lead to accurate solutions inside the node. The Monte 
Carlo code MCNP allows surface-source boundary conditions in terms of isotropic and cosine 
angular distributions and uniform and linear spatial distribution. Higher orders of expansion 
would require a modification to the MCNP source code. The expansion approximation should 
guarantee conservation of particle and be able to provide the scalar flux at the incident surface. 

Work Performed 

(1) Expansion functions 



Following Mosher and Rahnema (2006) 1  and Forget and Rahnema (2007) 2, one may expand the 

angular current at each interface in terms of Legendre polynomials as in Eq. (5). This is a natural 

choice, since the O th  order expansion in angle corresponds to an isotropic surface source, and the 

0tb  order expansion in space corresponds to a uniform source. However, this expansion scheme 

cannot be applied to cylindrical geometry as in this project, since an isotropic angular current (i.e. 

angular flux = 1/,u ), leads to an infinite scalar flux on the incident surface. 

J (x„11,0,E)= 	JuidP,(x)P, (P)Pk (0)I (E) 
	

( 5 ) 
1,j k 

To accomplish the goals of this task, we choose to expand the angular flux, instead of angular 

current, at each surface in terms of a set of expansion (basis) functions. 

cu(x,Q,E) = 	corfjo (x , C2,  E) 	 (6) 
1,1,k ,1 

In the above equation, ci,k, are expansion coefficients, and fo., (x, a , E) represent expansion 

functions. However, in order to ensure that the total number of particles (or current) is conserved, 
the expansion functions must be constructed to have the following orthogonality. 

Jdx idE 	cd2(7i • S2) f , kl  (x,6, E) fo ,k •, 	E) = A„}„,c5,,,8 li, kk'all' 
	

(7) 
n 6>0 

Fig. 2: Angular variables in a 2D cylindrical surface 

As an example, take a 2D cylindrical surface shown in Fig. 2 in which axis z is chosen to be 

parallel with the axis of the cylinder and y represents the normal direction at point F . In this case, 
the expansion functions can be written as in the following form a . 

Scott Mosher and F. Rahnema, "The Incident Flux Response Expansion Method for Heterogeneous 
Coarse Mesh Transport Problems," Transport Theory and Statistical Physics, 34, No. 6, 1-26 (2006). 

2 Benoit Forget and Farzad Rahnema, "Hybrid Coarse Mesh Radiation Transport Method for Whole Core 
Reactor Criticality Analysis," Nucl. Sci. Eng., Submitted (December 2006). 

Dingkang Zhang, Farzad Rahnema, and Abderrafi M Ougouag, "New Expansion Functions for 
Calculation of Coarse Mesh Response Functions", the 2007 ANS Annual Meeting, Boston, MA, June 24-
28, 2007 
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where scaled Legendre polynomials ./3‘  [xmi ,„xmax  ](x) and Chebyshev polynomials of the second 

kind Ui  (x) are defined as: 
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— x i  
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m 	n
) 	

N 

and 

U 0  (x) =1 

U, (x) = 2x 

U (x) = 2xU,_, (x)— U n _ 2 (x) forn2 

(2) Consistency check 
The method and expansion functions developed in tasks 1 and 2 have been successfully 
implemented into the MCNP code. Generation of response functions consists of two steps. In the 
first step, the MCNP code was used to compute a reference solution, and the actual neutron 
spatial, energy and angular distributions were tallied and expanded in terms of the expansion 
functions constructed in this research. In the second step, the response functions of a coarse mesh 
associated with the incoming neutron flux at each bounding surface were generated. 

To verify the validity of the method, a 2D cylindrical benchmark problem shown in Fig. 3 was 
considered. The 2-D benchmark consists of an inner reflector region with a diameter of 2 meters 
(m), an annular fuel region of 0.85 m thickness and a 0.5 m thick controlled outer reflector 
region. There are 24 control rods each of 13 cm diameter whose centers are positioned on the 
circumference of 3.974 m diameter ring. The material compositions are listed in Table 1. 

Fig. 3: Geometric configuration of a 2D cylindrical benchmark problem 

Table 1 Material composition in each region 
Region Material • 	-24 Atomic Density (10 	) 

Inner Reflector C 1.18234E-01 
U234 
U235 

1.16811E-07 
1.19359E-05 

(9) 

(10) 



IME Fast exiting patial current 
MIN Thermal exiting patial current 
NM Fast surface-averaged flux 
MO Thermal surface-averaged flux 

R
e

la
t i

ve
  E

rr
o

r  

-0.5% 

2.5% 

2.0% 

0.0% 

0.5% 

1.5% 

1.0% 

U238 1.10859E-04 
Xe135 3.43000E-11 

Fuel 016 2.45830E-04 
Si 2.75487E-04 
Ni 1.04518E-04 
Cr 1.34381E-04 
Fe 5.07660E-04 
C 6,81785E-02 

Outer Reflector C 1.18894E-01 
Control Rod B 1 0 3.20000E-06 

C 9.54760E-02 
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4 • 	2 
3 

(a) coarse mesh in the outer reflector 	(b) coarse mesh in the inner reflector 
Fig. 4: Configurations of coarse meshes 

Both the outer and inner reflectors were divided into 24 coarse meshes. The geometrical 
configurations of these coarse meshes are shown in Figs. 4. The response functions, in terms of 
exiting partial currents, surface-averaged angular fluxes and node-averaged fluxes, are listed in 
Tables A 1 -A4. 

2 

2 3 4 

Surface 
Fig. 5: Relative difference between the superposition based response functions and reference 

solutions for the outer reflector coarse mesh 



To check the accuracy of these response functions, the superposition of these response functions 
was compared with the reference results computed from the continuous-energy MCNP 
simulations. The relative difference between the two solutions for the outer reflector coarse mesh 
is illustrated in Fig. 5. The detailed comparisons for both the inner and outer reflector coarse 
meshes are listed in Tables A5-A8. It can be found that the agreement between the two solutions 
is excellent. Most of the relative errors are less than 0.2%. The maximum relative difference of 
1.6% occurs on the outer surface (surface 2 in Fig. 4) of the coarse mesh in the outer reflector 
where the uncertainty of the reference solution is about 1%; however it is still within the two 
standard deviations of the reference solutions. These results indicate that the response functions 
based on the method and expansion functions developed in this work are accurate and can 
reproduce solutions to the same level as continuous energy MCNP calculations. 

Task 3 Generation of homogenized cross sections for a 1-D slab problem specified by INL 

Task summary: 
The aim of the task was to generate homogenized parameters (cross sections, discontinuity 

factors) for 1-D coarse meshes. Conventionally, the assumption of infinite media (i.e. specular 
reflection boundary condition) is used to calculate approximate spectrum for each coarse mesh 
(lattice cell) and then homogenized data are collapsed. To account for the intra-nodal leakage, the 
ratios of incoming/outgoing partial currents provided by INL were taken into account when we 
calculated the homogenized parameters. 

Work performed 

The problem is a 1-D adaptation of a realistic 2-D model of the PBMR400 pebble bed 
reactor shown in Fig. 3. The specifications for the 2-D model are based on data provided by 1NL 
and are representative of an equilibrium core. The 1-D benchmark is a section of the 2-D 
configuration taken along a semi-plane perpendicular to the paper and passing through the centers 
of the reactor and of one of the control rods. Its geometrical layout and its subdivision into nodes 
are illustrated in Figure 6. Reflective and vacuum boundary conditions were imposed on the left 
and right boundary of the system, respectively. The width of each region was taken to be the 
same as the corresponding radial width of the 2-D region. Material densities in each region are 
listed in Table 2. The ratios of incoming/outgoing partial currents provided by INL are illustrated 
in Table A9 in Appendix 
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Fig. 6: 1-D simplified PBMR400 models 

C 

Table 2: Material compositions in each region (unit: 10E24 atoms/cm -3) 
Control Rod  
9.54760E-02 

Elements Inner reflector 
1.18234E-01 6.81785E-02 

Fuel Outer reflector 
1.18894E-01 

U-234 1.16811E-07 
U-235 1.19359E-05 
U-238 1.10859E-04 

Xe-135 3.43000E-11 
0 2.45830E-04 
Si 2.75487E-04 
Ni 1.04518E-04 
Cr 1.34381E-04 
Fe 5.07660E-04 
B 3.20000E-06 

A continuous energy Monte Carlo calculation was performed to calculate the neutron 
angular flux tit (z, p,E) within each coarse mesh. To preserve various reaction rates, the 

homogenized multi-group cross section were computed by the following equations: 
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Table A10 shows the MCNP collapsed two-group cross sections as well as discontinuity 
factors for nodes 1-9. 

IV. Summary and Conclusions 

Milestone/Task 

Description 

Planned 

Completion Date 

Actual Completion 

Date 

Percent 
Complete 

Task 1: 2D extension October 17, 2006 October 17, 2006 100% 

Task 2: 2D representation 
functions 

December 17, 2006 December 17, 2006 100% 

Task 3: Cross section generation June 30, 2007 June 30, 2007 100% 

We have successfully extended the method of calculating coarse mesh response functions from 
1D slab to 2D cylindrical geometry. A set of new expansion functions, has been developed and 
implemented into the MCNP code. Unlike the Legendre expansion functions, the new expansion 
set avoids scalar flux singularity on the incident surface and at the same time ensures 
conservation of particles, i.e. the total current crossing an interface remains unchanged after 
expansion. A consistency check has been performed to demonstrate the accuracy of the method 
and the expansion functions. In addition, the MCNP code has been used to generate the 
homogenized parameters for the simplified 1-D PBR problem to account for intra-nodal leakages. 



IV. 	APPENDIX:  

Table Al : Response function of the coarse mesh in the outer reflector, in terms of exiting currents 

Incoming 
surface Group 

Exiting 
2 

Currents at outgoing surfaces 
1 3 4 

Fast Thermal Fast Thermal Fast 
1.988E-04 

Thermal Fast Thermal 

1 
Fast 6.166E-01 1.086E-01 1.836E-03 1.297E-02 5.156E-03 1.896E-01 4.813E-02 
Thermal 6.645E-07 8.251E-01 0.000E+00 3.513E-02 0.000E+00 5.127E-03 1.920E-07 1.051E-01 

2 
Fast 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 
Thermal 0.000E+00 0.000E+00 0.000E+00 

1.840E-03 
0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

3 
Fast 1.949E-04 5.166E-03 1.296E-02 6.165E-01 1.087E-01 1.896E-01 4.815E-02 
Thermal 0.000E+00 5.128E-03 0.000E+00 3.516E-02 6.778E-07 8.251E-01 1.131E-07 1.051E-01 

4 
Fast 6.605E-02 3.002E-02 9.495E-04 1.382E-02 6.604E-02 3.001E-02 6.733E-01 9.294E-02 
Thermal 3.491E-07 7.713E-02 0.000E+00 8.394E-03 2.659E-07 7.710E-02 1.909E-06 7.921E-01 

Table Al: Response function of the coarse mesh in the outer reflector, in terms of surface and node averaged fluxes 

Incoming 
surface Group 

Surface-averaged flux at outgoing surfaces 

Node-averaged flux 1 2 3 4 

Fast Thermal Fast Thermal Fast Thermal Fast Thermal Fast Thermal 

1 

Fast 3.309E+00 1.973E-01 3.156E-03 2.246E-02 3.408E-04 8.929E-03 3.680E-01 8.424E-02 1.979E+01 2.178E+01 

Thermal 2.132E-06 3.686E+00 0.000E+00 6.092E-02 0.000E+00 8.830E-03 2.957E-07 1.911E-01 1.361E-05 4.636E+01 

2 

Fast 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

Thermal 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

3 

Fast 3.289E-04 8.967E-03 3.150E-03 2.242E-02 3.309E+00 1.974E-01 3.680E-01 8.429E-02 1.976E+01 2.176E+01 

Thermal 0.000E+00 8.839E-03 0.000E+00 6.107E-02 2.723E-06 3.685E+00 1.349E-07 1.909E-01 1.294E-05 4.637E+01 

4 

Fast 1.234E-01 5.217E-02 1.609E-03 2.397E-02 1.232E-01 5.226E-02 3.365E+00 1.672E-01 2.856E+01 2.684E+01 

Thermal 9.444E-07 1.402E-01 0.000E+00 1.446E-02 3.912E-07 1.404E-01 7.587E-06 3.644E+00 4.370E-05 4.227E+01 



Table A3: Response function of the coarse mesh in the inner reflector, in terms of exiting currents 

Incoming 
surface Group 

Exiting Currents at 

2 

outgoing surfaces 

1 3 
Fast Thermal Fast Thermal Fast Thermal 

1 
Fast 6.202E-01 9.987E-02 1.870E-01 3.718E-02 1.858E-02 3.495E-02 

Thermal 0.000E+00 7.765E-01 0.000E+00 3.964E-02 0.000E+00 1.754E-01 

2 
Fast 1.278E-01 3.091E-02 6.271E-01 5.346E-02 1.284E-01 3.083E-02 

Thermal 0.000E+00 1.317E-01 1.729E-06 7.290E-01 0.000E+00 1.318E-01 

3 
Fast 1.865E-02 3.484E-02 1.871E-01 3.713E-02 6.200E-01 9.984E-02 

Thermal 0.000E+00 1.760E-01 0.000E+00 3.946E-02 3.660E-07 7.759E-01 

Table A4: Response function of the coarse mesh in the inner reflector in terms of surface and node averaged fluxes 

Incoming 
surface Group 

Surface-averaged flux at outgoing surfaces 
Node-averaged flux 1 2 3 

Fast Thermal Fast Thermal Fast Thermal Fast Thermal 

1 
Fast 3.310E+00 1.823E-01 3.607E-01 6.441E-02 3.171E-02 6.074E-02 1.859E+01 9.962E+00 
Thermal 0.000E+00 3.605E+00 0.000E+00 7.171E-02 0.000E+00 3.075E-01 2.489E-06 2.513E+01 

2 
Fast 2.371E-01 5.411E-02 3.293E+00 9.738E-02 2.388E-01 5.373E-02 2.053E+01 6.425E+00 
Thermal 0.000E+00 2.399E-01 4.673E-06 3.541E+00 0.000E+00 2.401E-01 2.572E-05 2.450E+01 

3 
Fast 3.184E-02 6.049E-02 3.606E-01 6.512E-02 3.310E+00 1.816E-01 1.859E+01 9.965E+00 
Thermal 0.000E+00 3.083E-01 0.000E+00 7.051E-02 2.952E-06 3.602E+00 2.541E-06 2.514E+01 



Table A5: Relative errors of the superposition method as compared to the reference solutions - exiting 
currents for the coarse mesh in the outer reflector 

Surface 1 2 3 4 

Fast 0.030% 1.285%*  0.018% 0.001% 
Thermal 0.028% 0.271% 0.058% 0.021% 

The uncertainty of the reference solution is about 1%. 

Table A6: Relative errors of the superposition method as compared to the reference solutions -surface and 
node averaged fluxes for the coarse mesh in the outer reflector 

Surface averaged flux Node 
averaged Surface 1 2 3 4 

Fast 0.010% 1.66% *  0.006% 0.267% 0.075% 
Thermal 0.030% 0.343% 0.013% 0.087% 0.083% 

The uncertainty of the reference solution is about 1%. 

Table A7: Relative errors of the superposition method as compared to the reference solutions - exiting 
currents for the coarse mesh in the inner reflector 

Surface 1 2 3 
Fast 0.130% 0.024% 0.072% 

Thermal 0.050% 0.054% 0.064% 

Table A8: Relative errors of the superposition method as compared to the reference solutions - surface and 
node averaged fluxes for the coarse mesh in the inner reflector 

Surface averaged flux Node 
averaged Surface 1 2 3 

Fast 0.081% 0.184% 0.084% 0.141% 
Thermal 0.017% 0.113% 0.066% 0.057% 



Table A9: Ratios of incoming/outgoing partial currents for nodes 1-9 

Jin/Jout 

Node 	it Surface g=1 g=2 

1 

Left 1.000000E+00 1.000000E+00 

Right 1.473009E+00 1.035422E+00 

2 

Left 6.788823E-01 9.657901E-01 

Right 1.317759E+00 8.604942E-01 

3 

Left 7.588642E-01 1.162123E+00 

Right 1.037572E+00 9.252947E-01 

4 

Left 9.637890E-01 1.080737E+00 

Right 9.698727E-01 9.448198E-01 

5 

Left 1.031063E+00 1.058403E+00 

Right 9.224022E-01 9.394317E-01 

6 

Left 1.084126E+00 1.064473E+00 

Right 8.473549E-01 9.370870E-01 

7 

Left 1.180143E+00 1.067137E+00 

Right 5.693668E-01 1.005693E+00 

8 

Left 1.756337E+00 9.943396E-01 

Right 7.000748E-01 9.035756E-01 

9 

Left 1.428419E+00 1.106714E+00 

Right 0.000000E+00 0.000000E+00 



Table  Al 0: Two-group cross sections for nodes 1-9 

Cross 	sections 	(cm**-1) 

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 

Diffusion 
Coeff.  . 

Group 1 8.550E-01 9.089E-01 1.672E+00 1.622E+00 1.610E+00 1.611E+00 1.633E+00 9.234E-01 8.707E-01 
Group 2 5.137E-01 6.299E-01 1.118E+00 1.132E+00 1.137E+00 1.136E+00 1.125E+00 6.504E-01 6.265E-01 

Removal 
Group 1 1.498E-05 5.272E03 1.832E-03 2.373E-03 2.534E-03 2.540E-03 2.323E-03 4.679E-03 8.290E-03 
Group 2 2.647E-04 2.455E-04 4.648E-03 4.299E-03 4.181E-03 4.199E-03 4.452E-03 7.440E-04 2.445E-04 

Nu•Fission 
Group 1 0.000E+00 0.000E+00 2.889E-04 3.349E-04 3.479E-04 3.482E-04 3.302E-04 0.000E+00 0.000E+00 
Group 2 0.000E+00 0.000E+00 9.015E-03 8.325E-03 8.094E-03 8.129E-03 8.628E-03 0.000E+00 0.000E+00 

Transfer 1->2 0.000E+00 5.263E-03 1.113E-03 1.500E-03 1.618E-03 1.622E-03 1.468E-03 4.657E-03 8.281E-03 

Absorption 
Group 1 1.498E-05 8.552E-06 7.187E-04 8.726E-04 9.159E-04 9.180E-04 8.550E-04 2.174E-05 9.700E-06 
Group 2 2.647E-04 2.455E-04 4.648E-03 4.299E-03 4.181E-03 4.199E-03 4.452E-03 7.440E-04 2.445E-04 

Fission 
Group 1 0.000E+00 0.000E+00 1.177E-04 1.368E-04 1.422E-04 1.423E-04 1.348E-04 0.000E+00 0.000E+00 
Group 2 0.000E+00 0.000E+00 3.707E-03 3.423E-03 3.328E-03 3.343E-03 3.548E-03 0.000E+00 0.000E+00 

Total 
Group 1 3.899E-01 3.667E-01 1.994E-01 2.055E-01 2.070E-01 2.069E-01 2.041E-01 3.610E-01 3.828E-01 
Group 2 6.489E-01 5.292E-01 2.982E-01 2.944E-01 2.933E-01 2.934E-01 2.962E-01 5.125E-01 5.321E-01 

Discontinuity 
Factors 

Left G1 7.499E-02 4.747E-02 7.782E-01 9.808E-01 1.069E+00 1.160E+00 1.378E+00 2.249E+00 2.820E+00 
Left G2 8.746E-01 8.445E-01 1.237E+00 1.128E+00 1.108E+00 1.125E+00 1.110E+00 9.866E-01 1.817E+00 
Right G1 5.098E+00 3.783E+00 1.125E+00 9.800E-01 9.066E-01 8.163E-01 5.785E-01 2.851E-01 6.378E-02 
Right G2 1.253E+00 7.330E-01 8.457E-01 8.966E-01 8.952E-01 8.832E-01 9.416E-01 8.366E-01 9.728E-02 
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