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SUMMARY 

  

 Redox-active ligands can act as electron reservoirs to deliver redox equivalents 

and impart multi-electron functionality to 3d metals that typically undergo only one 

electron redox events.  Previous work in the Soper lab generated several well-defined 3d 

metal complexes with redox-active ligands including [Co(apPh)2]
−, and MnBr(isqPh)2.  

These complexes have been shown to facilitate 2e– C–C bond forming reactions.  

Furthermore, key intermediates in the catalytic cycles were isolated and characterized 

demonstrating the redox-active ligands ability to store and deliver electrons is essential 

for catalytic function. 

 A new synthetic protocol has been developed to generate a previously reported 

iron complex containing redox-active ligands (FeIIICl(isqPh)2). The new synthetic route is 

higher yielding and more reproducible.  FeIIICl(isqPh)2 was able to catalyze the 

homocoupling of PhMgBr using O2 as the terminal oxidant to form new C–C bonds.  

Ligand redistribution precluded the isolation and identification of key intermediates in the 

catalytic cycle. 

 A previously known N-heterocyclic carbene with two phenol arms was metallated 

with cobalt forming a new complex (CoII((tBuPhO)2NHC)THF).  The resulting 

CoII((tBuPhO)2NHC)THF complex formed an electron transfer series in which the first 

oxidation was metal centered and the second oxidation was ligand centered.   The ability 

of CoII((tBuPhO)2NHC)THF to span multiple electrons was utilized for catalytic cross-

coupling of alkyl halides with PhMgBr.  However, the yield of the reaction was low.  

Mechanistic studies revealed that reductive elimination to the N-heterocyclic carbene 

hindered the cross-coupling yield. 
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 CoII((tBuPhO)2NHC)THF was found to activate C–O bonds in ether nitriles 

delivering an alkyl nitrile to aryl Grignards to form new C–C bonds.   The reaction was 

not general to other C–O bonds that lacked a nitrile functional group, but was general to 

aryl Grignard reagents.  Mechanistic studies suggest that η2-chelation of the nitrile might 

aid in C–O bond activation. 

 Attempts were made to utilize CoII((tBuPhO)2NHC)THF for C–H bond activation 

and oxygen atom transfer.  However, conditions were not found to facilitate either 

reaction.  A new [FeIII((tBuPhO)2NHC)Cl2]
− complex was synthesized.  

[FeIII((tBuPhO)2NHC)Cl2]
− was shown to cross-couple alkyl halides to PhMgBr with an 

order of magnitude higher yields than CoII((tBuPhO)2NHC)THF.  Oxygen atom transfer 

with [FeIII((tBuPhO)2NHC)Cl2]
− was also pursued with limited success.  Although cross-

coupling yields are much higher at [FeIII((tBuPhO)2NHC)Cl2]
−, the lack of an X-ray 

structure has hindered mechanistic insight. 

 To carry out difficult multielectron reactions that require more than 2 redox 

equivalents such as O2 reduction or nitrogen fixation, synthesis of a redox-active 

pacman-type ligand was pursued.  The most challenging step of the synthetic procedure 

involved cross-coupling two 5-bromo-1,2-diaminebenzene to an activated xanthene.  

This step was accomplished and lays the foundation for a redox-active pacman ligand. 
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Chapter 1 

1 1 
Introduction 

 

 

1.1 Significance of cross-coupling reactions in forming new C–C bonds 
 

 The ability to take two simple molecules and selectively make a new C–C bond 

to form a more complex system is a powerful tool for a synthetic chemist.  In fact, five 

Nobel Prizes have been awarded for C–C bond forming reactions: The Grignard reaction 

(1912), the Diels-Alder reaction (1950), the Wittig reaction (1979), olefin metathesis 

(2005), and palladium-catalyzed cross couplings in organic synthesis (2010).1  The 

Nobel prize in 2010, shared by Dr. Richard F. Heck, Dr. Ei-ichi Negishi, and Dr. Akira 

Suzuki, was awarded for demonstration of palladium as a catalyst to cross-couple two 

separate molecules to form a new C–C bond.  From its humble beginnings in the late 

sixties,2-4 palladium catalysts have become are an indispensible tool to couple C–C 

bonds in industrial settings. They are crucial for the production of pharmaceuticals 

(Taxol®5 and Morphine6), herbicides (Prosulforon®7), monomer for electronic resins 

(Cyclotene®8), as well as in academic settings such as being a major step in (+)-

dynemicin A9 synthesis and Pumiliotoxin A10 just to give a few examples. 
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Scheme 1-1. Mechanism of typical Negishi Palladium-catalyzed cross-coupling reaction 

 

1.2 Palladium catalyzed C–C bond forming cross-coupling reactions 
 

 What allows palladium to selectively couple C–C bonds?  The answer is best 

illustrated by the mechanism of Negishi palladium-catalyzed cross-coupling of 

organozinc and aryl halides (Scheme 1-1).  As shown in Scheme 1-1 a Pd0 complex 

first undergoes oxidative addition with an aryl halide leading to a PdII complex bound to a 

halide and an aryl fragment.  Transmetallation of the organozinc with the palladium 

bound halide leads to a PdII complex with two organic fragments.  From here reductive 

elimination forms the C–C bond and reduces the PdII back to Pd0, allowing the cycle to 

repeat.  The ability of palladium to catalytically form new C–C bonds stems from its 

propensity to undergo two electron redox transformations.11  Palladium shares this 
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Figure 1-1. Abundance of elements in earth's crust (U.S. Geological Survey 
Fact Sheet 087-02 courtesy of the U.S. Geological Survey) 

functionality with many other late 4d and 5d metals (e.g. Ru, Ir, and Pt).  A transition 

metal that undergoes two electron transformations provides the basis for selective 

catalyzed C–C bond forming reactions using a metal catalyst, by avoiding one e− radical 

pathways.  A tremendous amount of work has gone into understanding the mechanism 

and scope of palladium catalyst in C–C bond forming reactions.12-22  Knowledge of this 

well-defined catalytic system allows for catalyst design to optimize a wide array of cross-

coupling reactions.23 

 For all of the reactions that palladium (and other 4d and 5d metals) can catalyze 

it still has two significant drawbacks.  First is the great expense of precious metals.  

Palladium is rare and therefore precious (Figure 1-1).24  At the time of this thesis the 

market value of 1 troy oz (~31 g) of palladium was $700.00 USD.25  Although the catalyst 

loading of palladium complexes are generally low (0.5 mol % in the commercial 
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production of Prosulforon®)26 they still represent a significant initial cost especially on 

industrial scales where products are produced at hundreds of tons per year.26  The 

second large drawback is the toxicity of palladium complexes.  While the toxicity is not 

as much of a concern in fine chemicals or herbicides, it presents a risk and challenge in 

fragrance, dye, and medicinal chemistry.  The pharmaceutical industry estimates that 

22% of all reactions carried out in the development and production of active 

pharmaceutical ingredient (API) use a palladium catalyst.27  In the pharmaceutical 

industry the acceptable limit of palladium remaining in the API is usually 10 ppm.27  It is 

so important to remove the palladium catalyst that several techniques are employed to 

recover or remove the catalyst such as heterogenization (biphasic catalysis, supported 

liquid-phase catalysis, nonionic liquid solvents (NAILS), and perfluorinated solvents),28 

nanofiltration, and the application of temperature-dependent multi-component solvent 

systems(TMS systems) or switchable-polarity solvents (SPS).29  This adds another layer 

of cost to using palladium catalysts. 

1.3 Late 3d metals and C–C bond forming reactions 
 

 Given the drawbacks of using 4d and 5d metals to catalyze C–C bond forming 

reactions, opportunities abound for transitions metals that are non-toxic, cheap and can 

carry out difficult C–C cross-coupling reactions.  Late 3d transition metals are both 

cheap and environmentally benign.  In fact, manganese (metalloezymes including 

arginase, glutamine synthetase and glycosyltransferases in bone formation), iron 

(oxygen transport and storage in haemoglobin and myoglobin) , cobalt (vitamin B12), and 

copper (metalloezyme acting as an oxidases in the reduction of molecular oxygen) are 

essential micronutrients for human function; nickel, although not an essential 

micronutrient, is consumed (~75 µg/day) in a normal diet due to its role in plant 

biochemistry to catalyze the hydrolysis of urea.11, 30  Not only are these metals cheap 
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and environmentally benign (except nickel, which is very toxic above the amount 

normally consumed in a daily diet)31-32 they have also demonstrated the ability to 

catalyze cross-coupling C–C bond forming reactions.33-40  However, late 3d metal 

catalysts suffer from a lack of mechanistic details that hinders their roles as industrially 

relevant catalysts.   

 A nickel phosphine complex made by Kumada et al. reported in 1972 catalyzes 

the coupling of alkenyl halides and Grignard reagents.41  From this discovery, nickel 

complexes have been used to carry out Negishi coupling and Suzuki–Miyaura 

reactions.33, 42  Beyond cost, nickel catalysts have some distinct advantages over 

palladium.  Nickel catalysts excel at cross-coupling reactions involving secondary alkyl 

halides, which prove sluggish in palladium catalyzed systems.43  However, the 

mechanism of nickel catalysts are much more complicated than that of palladium.  While 

it is true that some reactions catalyzed by nickel proceed through oxidative addition to a 

NiI complex to generate a NiIII complex followed by transmetallation and subsequent 

reductive elimination, this is an incomplete picture of the mechanistic details.33  Kochi in 

1980 demonstrated the complexities of nickel catalyzed cross-coupling.  During the 

reaction Ni0, NiI, NiII, and NiIII were detected and both closed-shell and radical 

mechanisms were operative.44  This complexity lead to a mixture of homocoupling and 

cross-coupling products.  Additionally, this lack of a well-defined mechanism hinders 

attempts to rationally design new nickel catalysts.  Finally, nickel is also highly toxic in 

the zero oxidation state (Ni0).  This means that even though most nickel catalysts are 

NiII, care must be taken to remove nickel from APIs or consumer products due to the 

possibility of Ni0 being present.   

 Copper catalyzed C–C bond forming reactions date back to 1901 where 

pioneering work by Ullmann et. al. discovered homocoupling of aryl reagents using 
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copper metal.45  This Ullmann coupling consisted of homocoupling two aromatic halides 

(iodobenzene or bromobenzene) and copper metal to form a new C–C bond with CuX2 

as the byproduct.  In the following century after the discovery of the Ullmann catalyst, 

copper complexes have been able to couple C–N, C–P, C–O, C–S, and C–Se bonds, 

demonstrating a large scope of reactivity.37  However, as was the case with nickel, 

copper catalyzed reactions suffer from a lack of detailed mechanistic insight.  In fact, 

Beletskaya and Cheprakov in a 2004 Coordination Chemistry Review article state "The 

most essential drawback of copper assisted cross-coupling chemistry as a whole is a 

complete lack of understanding of the effect of ligands. The catalytic systems are usually 

being developed by random trials."37  This lack of predictability leaves copper catalysts 

unable to replace palladium catalysts.  However, recent progress in elucidating key 

intermediates (CuIII) in the copper catalyzed C–C cross-coupling mechanism should 

begin to aid catalyst design and optimization.46   

 Significant recent progress has been made in the development of manganese, 

iron and cobalt protocols for selective cross coupling.35-36, 38, 40, 47-49  While it is beyond the 

scope of this thesis to explain all the ways that manganese, iron, and cobalt salts can 

form new C–C bonds, it is necessary to show that, like nickel and copper, the 

mechanisms of these reactions are still largely unknown.  For instance, while Gosmini 

and co-workers were able to cross-couple aryl halides with activated olefins in moderate 

to good yields using a cobalt salt (Scheme 1-2), it is clear from their proposed catalytic 

cycle that the cobalt oxidation state and complex are still unknown.36  The ambiguity in 

the identity of the active species slows the design of new catalysts.  For instance, 

knowing if Co0 or CoI is responsible for activation of the aryl halide, in the above 

mentioned reaction, would aid in  designing ligands that stabilize that specific cobalt 

oxidation state.  Two separate reasons have hindered insight into the mechanism of late 
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Scheme 1-2. Cobalt-catalyzed direct conjugate addition to activated and proposed 
mechanism adapted from ref [32].  

 

 

3d metals; first, identification of the intermediates in these reactions has been 

challenging due to their transient nature and to the paramagnetism of the generated 

complexes, second, late 3d transition metals typically undergo 1e‒ transformations, e.g. 

FeII/FeIII or CoII/CoIII leading to unselective and radical type reactivity.  To make the 

catalytic cycles mirror palladium, mechanisms are often proposed that invoke atypical 

high and low oxidation states. This would undoubtedly introduce significant energetic 

barriers.50  Both the high energetic barrier to achieve said oxidation states and the 

relative instability of the resulting complexes argues against their involvement.  A further 

complication arising in the use of late 3d metals is potential contamination of the starting 
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Scheme 1-3.  Oxidation states of the amidophenolate ligand. 

 

metals salts with metal impurities that act as the true catalyst.  This was demonstrated 

by Buchwald in 2009 where FeCl3 purchased and used as received from several 

suppliers included trace copper (~10 ppm) contamination which was actually responsible 

for previously reported cross-coupling reactions.51  For instance, N-arylation of pyrrazole 

with aryl iodide was originally reported as catalyzed by 10 mol % FeCl3,
52 however, 

analytically pure FeCl3 (99.99%) at 10 mol % lead to only a 9 % yield whereas 5 ppm 

Cu2O lead to a 77 % yield and was the true catalyst in the cross-coupling reaction. 

1.4 Redox-active ligands 
 

 One approach to elaborating 2e– chemistry at late 3d transition metals is to 

employ a ligand that is capable of acting as the electron reservoir, supplying electrons to 

avoid high or low oxidation states.  This requires ligands that have the ability to be 

oxidized or reduced at modest potentials and electronic communication between metal 

and ligand.  Ligands meeting this criteria have been known for over 40 years and are 

commonly referred to as redox-active or non-innocent.  In 1964 Gray et al. proposed that 

certain dithiol ligands on nickel, platinum, and palladium were able to support a radical 

charge that was significantly mixed with the metal orbitals.53  Following these pioneering 

studies, numerous other such ligands were identified as being able to support ligand 

centered radicals.  This include the ortho chelating amidophenolates54, catecholates55, 
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Scheme 1-4. Bond distances for the amidophenolate, the 1 e– oxidized iminosemiquinonate, 
and the 2e− oxidized iminobenzoquinonate bound to palladium.  The red bond distances 
represent elongation of the bond compared to the amidophenolate.  The blue bond distances 
represent contracted bonds. 

and diimines.56  As a prototypical example (Scheme 1-3), dianionic o-amidophenolates 

can be oxidized twice first generating a monoanionic seminquinonate radical and then 

the neutral iminobenzoquinone.  Typically crystallographic, spectroscopic, and magnetic 

data along with theoretical modeling are used to assign the oxidation states of the metal 

and the ligand.57-62  For example, crystallographic data from several amidophenolate 

ligated metals show clear changes in bond lengths that correspond to the ligand 

oxidation state (Scheme 1-4).63-64  The fully reduced amidophenolate ligand shows the 

bonds lengths of the aryl ring to be aromatic (all bond lengths 1.39 ± 0.01 Å) however 

when the complex is oxidized there is a clear loss of aromaticity and a significant 

contraction of the C–N bond and C–O bond, which now more closely resembles a 

double bond. 
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Scheme 1-5.  a) Oxidative addition of Cl2 to a ZrIVcomplexe with redox-active ligands acting as 
an electron reservoir. b) Disproportionation of 1,2-diphenylhydrazine to azobenzene and 
aniline catalyzed by [Zr0(N2O2)(THF)3].  

 

1.5 Redox-active ligands on metals: A well-defined platform for catalysis. 
 

 The past decade has seen a rediscovery of redox-active ligands as electron 

reservoirs for 3d metal catalysts.  Heyduk and co-workers in 2005 demonstrated 

oxidative addition of Cl2 to a ZrIV complex with two redox-active 2,4-di-tert-butyl-6-tert-

butylamidophenolate(ap) ligands.65  As shown in Scheme 1-5, ZrIV has a d0 electron 

configuration, so the ligands act as electron reservoirs supplying the two electrons 

needed to oxidatively add Cl2 to ZrIV. The oxidation state of the zirconium in the product 

ZrIVCl2(isq)2 (isq = 2,4-di-tert-butyl-6-tert-butyliminosemiquinone) is unchanged because 

each ligand is oxidized by 1e– (Scheme 1-5 a).65  A related zironcium redox-active ligand 
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Scheme 1-6.  Electron transfer series of (iPrPDI)Fe and its role in the catalyzed hydrosylation 
of alkenes with tertary silanes.  

 

complex  [Zr0(N2O2)(THF)3] (N2O2 = N,N‘-bis(3,5-di-tert-butyl-2-phenoxy)-1,2-

phenylenediamide) produced by Heyduk and co-workers has been shown to catalyze 

the 2e– disproportionation of diphenylhydrazine to azobenzene and aniline (Scheme 1-5 

b).66  This further demonstrates the utility of using redox-active ligands as an electron 

reservoir to impart new reactivity to 3d metals in a well-defined system. 

 Berben and Myers were able to catalytically convert CO2 into a carbonate salt 67 

using aluminum(III) and a redox-active ligand (2,6-diisopropyl-N-(pyridin-2-

ylmethyl)aniline (IP), which can adopt three states: neutral(IP), singly reduced (IP–), and 

doubly reduced (IP2–)).68  In this system 2 equiv of AlIII(OH)(IP–)2reversibly bind CO2 with 

a loss of water to make a dimetallic complexes with a bridging carbonate.  Subsequent 

reduction of the two Al complexes (2 [AlIII(IP2–)2]
–) release carbonate and in the presence 

of an oxygen atom donor regenerates then starting complex  AlIII(OH)(IP–)2. 

 Chirik and co-workers demonstrated the commercial viability of redox active 

ligand containing catalysts with an iron complex featuring a redox-active pincer-type 

ligand.  The selective anti-Markovnikov hydrosilylation of alkenes using tertiary silanes 
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Scheme 1-7. Catalytic aerobic homocoupling of PhMgBr by MnIIIBr(isqPh(iPr)2)2.  

 

 

was performed on a kilogram scale using only 0.007 mol% catalyst loading of with the 

redox-active catalyst (iPrPDI)Fe(N2)2 (Scheme 1-6).61, 69 

1.6 Redox-active amidophenolate ligands on 3d metals to carry out 2e– 
transformations in C–C bond forming reactions. 

  

 Previous work in the Soper lab has led to the development of 3d metal redox-

active ligand supported catalysts for C–C coupling and aerobic alcohol oxidations.  

Using a [MnIII(Br4cat)2]
– (Br4cat2– = tetrabromo-1,2-catecholate) complex, Rolle et al. was 

able to catalytically (0.2 mol % catalyst loading) and selectively carry out the 2e– 

dehydrogentaion of tetrabromo-1,2-catechol to form tetrabromo-1,2-benzoquinone using 

dioxygen as the oxidant.70  Although aerobic catechol oxidations with metal-quinone 
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complexes are known,71-72 Rolle was able to elucidate key aspects of the mechanism.  

The selective oxidation of catechol is an overall 2e– process under the reaction 

conditions used, but it proceeds through 1e– steps involving both ligand and metal based 

redox events.  Furthermore, binding of the catechol to the metal happens prior to the O2 

reaction and facilitates an intramolecular redox process.  A related complex, 

[MnIII(apPh(iPr)2)2]
– ([apPh(iPr)2]2– = 2,4-di-tert-butyl-6-(2,6-

diisopropylphenylamido)phenolate), catalyzes homocoupling of aryl Grignards (72 % 

yield) under 1 atm of O2 using 5 mol % catalyst loading.73  Although 3d metals have 

been known to catalyze these reactions, Rolle's work clearly shows the 2e− mechanism 

involved.34, 74-76  A reaction between MnIIIBr(isqPh(iPr)2)2 (isqPh(iPr)2 = 2,4-di-tert-butyl-6-(2,6-

diisopropylphenylimino)semiquinonate) and 1 equiv of PhMgBr quantitatively lead to 0.5 

equiv of biphenyl and [MnIII(apPh(iPr)2)2]
–  which clearly shows the reductive elimination half 

of the catalytic cycle where the ligands are reduced instead of the metal center.  A 

reaction between [MgBr][MnIII(apPh(iPr)2)2] (generated in situ from MnIIIBr(isqPh(iPr)2)2 and 2 

equiv of PhMgBr) and O2 lead to doubly oxidized MnIIIBr(isqPh(iPr)2)2.  The use of 2-(3-

buten1-yl)phenyl magnesium iodide as a substrate did not lead to the radical induced 

cyclized product, suggesting the coupling reaction occurs without the intermediacy of 

free radicals.  Combining the two individual steps makes a well-defined catalytic cycle 

that demonstrates selective and concerted 2e– process can be accomplished at 

manganese and applied to the homocoupling of Grignard reagents (Scheme 1-7). 
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Scheme 1-8. Cobalt catalyzed cross-coupling of an aryl organozinc reagent with ethyl 
bromide.  

 

 Further evidence for the capacity of redox-active ligand to effect organometallic 

2e– steps at later first row metals was obtained by Smith et al. in cross-coupling of ethyl 

bromide with aryl and alkylzinc halides.77  Staring with [CoIII(apPh)2]
− (apPh2− = 2,4-di-tert-

butyl-6-(phenylamido)phenolate), exposure of this cobalt complex to ethyl bromide lead 

to a stable alkyl cobalt complex.  A solid state structure of the alkyl cobalt complex 

shows an axial ethyl group bound to a CoIII center and two singly oxidized ligands, 

CoIII(Et)(isqPh)2 (isqPh = 2,4-di-tert-butyl-6-(phenylimino)semiquinone).  This alkyl 

complex generates a new C–C bond in the presence of an aryl organozinc reagent and 

produces the cross-coupled product.  Together the two reaction steps comprise a well-

defined catalytic system for Co Negishi-type cross coupling.  In sum, the catalytic 

pathway to generate new C–C bonds closely resembles the palladium catalyzed Negishi 

reaction (Scheme 1-8) in which pseudo-oxidative addition of C–X bond leads to a doubly 
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Scheme 1-9. Proposed mechanism of the Berry-pseudo rotation needed to cross-couple 
ethyl bromide with PhZnBr using [CoIII(apPh)2]

– .  

 

oxidized metal complex followed by addition of a carbanion results in reductive 

elimination to make a new C–C bond and regenerate the starting catalyst.  However the 

C–C coupled products were only obtained in low yields ca. (15%) that reflect the low 

yields of C–C reductive elimination reactions.  Strategies to address the low C–C 

coupling yields are presented in Chapters 2 and 3 of this thesis. 

 Recent advances have made the strategy of combining redox-active ligands with 

3d metals to impart 2e– functionality for C–C bond forming reactions an interesting area 

of research.  However, only a handful of redox-active ligand based complexes have 

been utilized as catalysts and the chemical space of these kinds of reactions remains 

largely unknown.  Furthermore, questions and opportunities arise from the research 

already done.  For instance, oxidative addition to the [MnIII(apPh(iPr)2)2]
– is challenging 
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even though the redox potentials for [MnIII(apPh(iPr)2)2]
– (−0.85 V and −0.29 V vs Fc+/Fc) 

are very similar to that of the analogous [CoIII(apPh(iPr)2)2]
– (−0.80 V and −0.33 V vs 

Fc+/Fc).73, 78  The reported [CoIII(apPh)2]
– is able to carry out oxidative addition and 

reductive elimination reactions in concerted 2e– steps, however it suffers from low cross-

coupling yield (~15%).  However, because it is a well-defined catalyst, problem areas 

can be indentified and tested in a systematic way.  Dr. Smith in her doctorial thesis, 

concluded that the product from oxidative addition of ethyl bromide to [CoIII(apPh)2]
– leads 

to a square pyramidal complex [CoIII(Et)(apPh(iPr)2)2] that must undergo a Berry-pseudo 

rotation after the addition of the carbanion to allow the organic fragments to arrange cis 

to one another and allow reductive elimination to occur (Scheme 1-9).79  It is this 

isomerization that seems to be limiting the yield.  

1.7 Thesis hypothesis and goals. 
 

 The [MnIII(apPh(iPr)2)2]
– complex demonstrated an high affinity 2e– reduction 

chemistry.  For instance, [MnIII(apPh(iPr)2)2]
– can catalytically homocouple PhMgBr and, in 

a separate reaction, catalytically dihydrogenate catechol.  In both reactions the terminal 

oxidant was O2.  However, the [MnIII(apPh(iPr)2)2]
– complex was unable to oxidatively add 

alkyl halides, a step need for cross-coupling.  The [CoIII(apPh)2]
− complex was able to 

oxidatively add alkyl halides quantitatively.  However, reductive elimination of the alkyl 

fragment was challenging.  This thesis explores the question, can an [FeIII(apPh)2]
− 

complex both oxidatively add alkyl halides and reductively eliminate organic fragments to 

produce a well-defined cross-coupling catalyst for C–C bond formation (Chapter 2).  

Subsequently, the lessons learned from the manganese, iron, and cobalt 

amidophenolate systems are used to design new redox-active ligands.  A new redox-

active ligand featuring two phenol arms attached to an N-heterocyclic carbene bound to 

cobalt (CoII((tBuPhO)2NHC)(THF)) was synthesized and demonstrated the ability to 
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cross-couple alkyl halides and aryl Grignards to form new C–C bonds (Chapter 3).  

Furthermore, this new CoII((tBuPhO)2NHC)(THF) complex can activate C–O bonds in 

ether nitriles (Chapter 4).  Chapter 5 will explore expanding the scope and utility of 

CoII((tBuPhO)2NHC)(THF) toward difficult C–H bond activation and oxygen atom 

transfer.  Additionally, synthetic work towards a new redox-active complex  

Na[FeIII((tBuPhO)2NHC)Cl2] will be discussed and its ability to catalyze C–C bond 

forming reactions will be explored.  Finally, synthetic work towards a redox-active 

pacman-type ligand that can deliver 6 redox equivalence will be discussed in Appendix 

A. 
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Chapter 2 

2 2 

Development of Redox-Active Ligand FeCl (isqPh)2 
Complex as Well-defined Catalyst for Aerobic 

Homocoupling of Grignard Reagents 
 
 

2.1 Introduction 

2.1.1 Iron salts for cross-coupling and homocoupling reactions and their 
mechanisms 

 
 Iron catalyzed cross-coupling and homocoupling reactions have recently been 

reviewed.1-3   Iron salts such as FeCl3 and FeBr2, can catalyze the homocoupling of 

Grignards4-5 and the cross-coupling of Grignards to alkenyl electrophiles (ethylene 

bromide),6 aryl electrophiles (chloro and iodobenzene),7 and alkyl halides.8-9  However, 

the mechanism of these transformations remains unclear.  For instance, Kochi 

speculated that a soluble reduced iron species, either FeI or Fe0, was the active catalyst 

in the cross-coupling reaction of ethyl bromide and ethyl magnesium bromide.6  Although 

the oxidation state and coordination environment could not indentified, evidence for a 

concerted 2e− process, included the high conversion  (>95 %) and the stereoselectivity 

seen between cis-propenyl bromide and methyl magnesium bromide to generate cis-

butene-2 exclusively Equation 1.  However, Bogdanovic and co-workers have 

suggested a completely different mechanism, in which a FeII(MgCl)2 complex is the 

active catalyst in homocoupling and cross-coupling reactions.10-11  Unfortunately, 
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because no isolated or well-characterized iron containing complex was observed in 

either study the mechanism for cross-coupling or homocoupling using FeCl3 or FeBr2 is 

unknown.  The problem with the lack of mechanistic detail limits rational ligand design.  

For instance, if an FeI species is the active catalyst then ligands that support low-valent 

metals should increase reactivity.  However, electron rich low-valent iron complexes are 

difficult to isolate and study due to the high reactivity of low-valent iron complexes, and 

the intermediacy of paramagnetic species during catalysis limits the utility of NMR and 

X-ray diffractometry measurements.3  

2.1.2 Redox-active ligands as an electron reservoir for well-defined iron catalyst 
 

 One attractive strategy to generate well-defined 3d metal complexes that are 

catalytically active, is the use of redox-active ligands to act as an electron reservoir.  As 

shown in Chapter 1, several redox-active ligands have been used to generate well-

defined 3d metal catalysts.12-14  Chirik and co-workers were able to isolate the oxidative 

addition of biphenylene to (iPrPDI)Fe(N2).
15  Based on spectral evidence and solid state 

structure of the well-defined (iPrPDI)Fe(N2) catalyst, both the metal and ligand were 

oxidized by one e− in the final product Scheme 2-1.  This catalyst demonstrates how a 

redox-active ligand on a 3d metal can make a well-defined catalyst for mechanistic 

Scheme 2-1. Oxidative addition of biphenylene to (iPrPDI)FeII(N2) 
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investigation.  However, C–C bond forming reactions are unexplored with iron 

complexes containing redox-active ligands. 

 

2.1.3 The amidophenolate ligand as a redox active ligand on 3d metals 
 
 Another interesting redox-active ligand is the amidophenolate ligand.  The 

amidophenolate ligand [apPh]2− can be oxidized twice in two, 1 e− steps to produce the 

iminosemiquinonate [isqPh]− and the iminobenzenequinonate [ibqPh] (Scheme 2-2).16  

Furthermore, the amidophenolate ligand has frontier orbitals that favorably mix with the 

frontier metal orbitals in manganese, iron, and cobalt to allow for electron movement 

throughout the metal containing complex.17-19  Stable complexes of MnBr(isqPh)2 and 

[Co(apPh)2]
− have been prepared and shown to effect C–C bond forming reactions.20-21  

As described in Chapter 1, MnBr(isqPh)2 is capable of catalytically homocoupling PhMgBr 

using O2 as the terminal oxidant.20  However, cross-coupling remains challenging.  

[Co(apPh)2]
− has recently been explored for C–C bond forming reactions involving ethyl 

bromide and PhZnBr.20, 22-23  [Co(apPh)2]
− oxidatively adds alkyl halides such as ethyl 

bromide but is sluggish at reductive elimination of the ethyl fragment to a carbon 

nucleophile.  In this context, it seems reasonable that L2Fe (L = [apPh]2− or [isqPh]−)  

complexes might be candidates for C–C coupling.  Furthermore, we hypothesize that 

FeIIICl(isqPh)2 will serve as a stable platform for detailed mechanistic study.  Earlier 

Scheme 2-2.  The amidophenolate ET series. 
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Scheme 2-3. New synthetic procedure of FeIIICl(isq)2. 

 

efforts at producing the L2Fe analogs of MnBr(isqPh)2 and [Co(apPh)2]
− yielded only 

intractable mixtures of reactants and products.  Presented herein are the syntheses of 

new L2Fe complexes that exhibit significantly enhanced stability, and mechanistic 

studies of their use for Kumada-type C–C cross coupling.  Limitations of the catalysts, 

including lack of cross-coupling and ligand redistribution are discussed. 

2.2 Results 

2.2.1 Synthesis  and characterization of FeIIICl(isqPh)2 
 
 The synthesis of FeIIICl(isqPh)2 in modest yield was previously reported from the 

reaction of 2 equiv of 3,5-di-tert-butylamidophenol, 4 equiv of triethylamine, and FeCl3 in 

methonal refluxed in air for 1 h.24  In my hands, this procedure sometimes afforded the 

desire complex FeIIICl(isqPh)2, but the reaction was not consistently reproducible.  In air, 

a significant amount of the tris ligated iron complex, FeIII(isqPh)3 was formed.  The 

FeIII(isqPh)3 complex has been previously reported.18  The reported synthetic protocol to 

generate FeIII(isqPh)3 involves the deprotonated ligand [apPh]2− (5 equiv) and FeCl2 • 4 

H2O in MeOH under reflux in air for 1 h.  Improved yields and reproducibility were 

achieved by the reaction of 2 equiv of 3,5-di-tert-butylamidophenolate, generated in situ 

from 4 equiv NaOMe, with FeCl3 under a N2 atmosphere which immediately afforded a 

purple solution.  After 15 min of stirring, 2 equiv of NOBF4 were added and the solution 

turned dark green.  Subsequent filtration through a porous frit lead to isolation of 
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2.2.2 Preparation of an ET series from reduction of FeCl(isqPh)2 
 

 The accessbility of two reductions in the CV led us to speculate that reduced 

variants of FeIIICl(isqPh)2 might be accessible.  By parallel to the [Co(apPh)2]
− and 

MnBr(isqPh)2 ET series, we hypothesized that species such as [FeIIICl(apPh)(isqPh)]− and 

[FeIIICl(ap)2]
2− might be accessed (Scheme 2-4).  The synthetic method to produce 

FeIIICl(isqPh)2 involves the deprotonated closed shell ligand [apPh]2− reacting with FeIIICl3.   

This implies that [FeIIICl(apPh)2]
2− is the initial complex formed prior to NOBF4 addition in 

the above mentioned reaction.  The purple solution, from  the reaction of deprotonated 

3,5-di-tert-butylamidophenol and FeCl3 turns green over the course of hours even in an 

inert atmosphere dry box.  The resulting green solution contained a mixture of 

FeIII(isqPh)3, and FeIIICl(isqPh)2, as evidenced by ESI–MS.  Filtration to remove NaCl and 

removal of the solvent in vacuo produces a purple powder that turns green over the 

course of 24 h under N2 to afford  the FeIII(isqPh)3 complex Figure 2-2 a.  Preparation of 

60 µM solution of the purple material in THF for UV-vis experiments gave FeIII(isqPh)3 

presumably by ligand redistribution.  This could be avoided through the use of a 0.5 mm 

path length cuvette, because higher concentrations (6 mM, [Fe]) gave more stable 

solutions of the reduced iron complex.  Metathesis reactions to generate M[Fe(apPh)2], M 

= bis(triphenylphosphine)iminium (PPN+) or tertbutylammoniun (TBA+) were performed, 

but an increase in the stability in either the solution or solid state was not observed. 

However, addition of 2 equiv of pyridine to a THF solution of the purple material 

Scheme 2-4. Proposed ET series of FeIIICl(isqPh). 
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a) 

 
b) 

 
Figure 2-2. UV–vis absorption sepectra in THF using a 0.50 mm pathlength cuvette for  a) a 
reaction between isolated Na[FeIII(apPh)2] (purple line) and air to produce FeIII(isqPh)3 (green 
line) b) exposure of isolated Na[FeIII(apPh)2] (purple line) to 1 equiv of 2,3,4,5,6,6-
hexachlorocyclohexa-2,4-dien-1-one to produce FeIIICl(isqPh)2 (green line).  

increased the stability of the solution (1 day) and the solid state complex (3 weeks).  
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Na[Fe(apPh)2]
O2[FeIII(isqPh)3] [FeIIICl(isqPh)2]

O2, Cl

2 NOBF4, Cl
(2)

Cl+

Single crystals of the putative pyridine adduct were obtained from diffusion of pentane 

into a concentrated THF solution, but  attempts to mount the air-sensitive crystals on the 

X-ray diffractometer led to dissolution of the of purple crystals in both Paratone–N and 

silicone grease.   

 All direct methods for determining the structure or identity of the reduced iron 

compound have been unsuccessful, but some insights regarding the formulation of the 

purple material comes from its chemical reactivity.  Addition of 1 equiv of a Cl+ reagent 

(2,3,4,5,6,6-hexachlorocyclohexa-2,4-dien-1-one) to the purple solution resulted in an 

immediate color change to green producing FeIIICl(isqPh)2 quantitatively (Figure 2-2 b).  

The purple powder in a solution of THF and MgCl2, when exposed to dry air for limited 

amounts of time (5 s), would also immediately turn green, quantitatively generating 

FeIIICl(isqPh)2.  A summary of the conversion of the reduced iron species by various 

oxidants is shown in Equation 2.   

 

2.2.3 Aerobic homocoupling of aryl Grignards using FeIIICl(isqPh)2 
 
 Reactivity of 1 with 2 equiv of PhMgBr produced a purple solution and a 40 % 

yield of the homocoupled product biphenyl.  Again the purple solution was only observed 

(stable) when concentrated (6mM, FeIIICl(isqPh)2 in THF), necessitating the use of  a 0.5 

mm path length cuvette.  In dilute solution, addition of 2 equiv of PhMgBr to 1 lead to a 

yellow solution and featureless absorption spectrum.  The purple solution produced is 

different than that of isolated Na[FeIII(apPh)2] (Figure 2-3 a).  Furthermore, the resulting 
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a) 

 
b) 

 
Figure 2-3.  UV-vis spectra collected in a 0.54 mm path length in THF for a) comparison of 
the isolated Na[Fe(apPh)2] (dark purple) and the purple solution generated from the reaction 
between FeIIICl(isqPh)2 and 2 equiv of PhMgBr (light purple) b) exposure of FeIIICl(isqPh)2  
(dark green line) to 2 equiv of PhMgBr (purple line) followed by exposure to air (light green 
line). 

purple solution when exposed to air regenerated FeIIICl(isqPh)2 (98 % yield, Figure 2-3 
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Scheme 2-5. Proposed mechanism of aryl Grignard homocoupling via FeIIICl(isqPh)2 using O2 
as the terminal oxidant. 

 

b).   The combination of the PhMgBr coupling reaction (Equation 3) and the O2 

oxidation (Equation 4) comprise a complete cycle for aerobic homocoupling of PhMgBr, 

as shown in Scheme 2-5. When the reaction is run catalytically ( 5 mol % of 1) in air the 

biphenyl yield, after 6 h, is 45 % demonstrating a turnover number (TON) of 4.5.  When 

the reaction is carried out in an inert atmosphere at 5 mol % loading of 1 the yield of 

biphenyl is decreased to 20% or 2 TON vs. 1.   



36 
 

 Cross-coupling of alkyl halides and either alkyl or aryl Grignards was attempted. 

For example,  octylmagnesium bromide and 1-chlorohexane were reacted using 5 mol % 

of 1 for 24 h at room temperature.  This reaction produced only homocoupled product 

hexadecane, suggesting the alkyl halide functions as a sacrificial oxidant.  To probe this 

reaction, ethyl bromide was addd to the purple solutions of the putative Na[Fe(apPh)2] 

complex, affording immediate conversion to the FeIII(isqPh)3 complex.  

  

2.3 Discussion 

2.3.1 Synthesis and characterization of FeIIICl(isqPh)2 and Na[Fe(apPh)2] 
 
 Problems with reproducibility in the published procedure for the preparation of 

FeIIICl(isqPh)2 necessitated the development of a new synthetic protocol that used a 

chemical oxidant (NOBF4) for the controlled oxidation and synthesis of FeIIICl(isqPh)2.  

Beyond increasing the yield and purity of FeIIICl(isqPh)2, this protocol also provided a way 

to study the reduced iron complex , which based on parallels to MnBr(isqPh)2 and 

[Co(apPh)2]
−  is here formulated as Na[Fe(apPh)2].    Chemical characterization of the 

reduced species was difficult because of its extreme air-sensitivity and its proclivity for 

ligand redistribution in dilute solutions.  The reduced iron complex, in the solid state, is 

stable for only 24 h under N2 at −30 °C.  The decomposition product in all cases was the 

FeIII(isqPh)3 complex.  This oxidation and ligand redistribution was also seen when FeCl3 

and deprotonated [apPh]2− were reacted in air.   

 This ease of oxidation and ligand redistribution also precluded structural analysis 

but evidence for the presence of an [FeIII(apPh)2] core comes from reactivity studies.  A 

summary of the reactivity of the reduced iron species is shown in Equation 2.  The 

reduced iron complex can be quantitatively converted to FeIIICl(isqPh)2 using either air or 

2 equiv of chemical oxidant in the presence of halide.  When a halide is not present the 

tris complex is formed exclusively.  In sum, these reactions suggest that Na[FeIII(apPh)2], 
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Na[FeII(isqPh)(apPh)] or  Na[FeI(isqPh)2] could be the chemical identity of the purple 

solution.  However, the oxidation  state of the ligand and metal remain unknown. 

2.3.2 C–C bond forming reactions using FeIIICl(isqPh)2 
 
 The putative [Fe(apPh)2]

− did not react with alkyl halides including methyl iodide to 

give oxidative addition products.  This prevented cross-coupling from occurring in this 

system.   Interestingly, FeIIICl(isqPh)2 catalytically homocouples PhMgBr to generate 

biphenyl using alkyl halide as a terminal oxidant.  When FeIIICl(isqPh)2 is exposed to 2 

equiv of PhMgBr a purple solution is generated with concommitent production of 

biphenyl, suggesting that transmetallation and reductive elimination from FeCl(isq)2 is 

viable. However, the resulting purple solution is different than that of the independently 

generated [Fe(apPh)2]
− as seen in Figure 2-3 a. Together these results imply that 

FeIIICl(isqPh)2  is reduced twice, but the reduced iron complex from this reaction has not 

been identified perhaps rationalizing the disparate reactivity with alkyl halides noted 

above. The re-oxidation step can also be accomplished with O2.  When the purple 

solution generated from the reaction between FeIIICl(isqPh)2  and 2 equiv of PhMgBr are 

exposed to air for 5 s, FeIIICl(isqPh)2  is regenerated at 98 % yield, but longer times afford 

FeIII(isqPh)3 as the dominant product.  Together, these reactions comprise catalytic cycles 

for biphenyl using chemical oxidants, including O2.  For instance, at 5 mol % catalyst 

loading of FeIIICl(isqPh)2  a 45 % yield of biphenyl is achieved over the course of 6 h. 

 While both the MnBr(isqPh)2 and [Co(apPh)2]
−  ET series complexes have been 

isolated and characterized, the high spin d5 electron configuration of FeIII bound to weak 

field ligands ([apPh]2−) does not produce any ligand field stabilization energy.  This leds to 

ligand redistribution and the prevention of fully characterizing the reduced iron complex.   
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2.4 Conclusions 
 
 A new synthetic procedure has been developed for the preparation of 

FeIIICl(isqPh)2.  While the new complex can catalytically homocouple PhMgBr using O2 as 

the terminal oxidant, the yields are less than that of previously reported iron salts, such 

as FeCl3 and FeBr2.  It was believed that this system could shed light of the mechanism 

of Grignard homocoupling reactions, however, the instability of the reduced iron complex   

Na[Fe(apPh)2] prevents detailed mechanistic study. However, it is clear that ligand 

redistribution must be avoided to produce a well-defined catalyst.  Work towards this 

goal is shown in Chapter 3. 

2.5 Methods 

2.5.1 General considerations 
 
 Unless otherwise noted, all manipulations were performed under anaerobic 

conditions using standard vacuum line techniques, or in an inert atmosphere glove box 

under purified nitrogen.  UV–visible absorption spectra were acquired using a Varian 

Cary 50 spectrophotometer.  Unless otherwise specified, all electronic absorption 

spectra were recorded at ambient temperatures in 1cm quartz cells.  All mass spectra 

were recorded in the Georgia Institute of Technology Bioanalytical Mass Spectrometry 

Facility. 

2.5.2 Methods and materials 

 Anhydrous dichloromethane and pentane solvents for air- and moisture-sensitive 

manipulations were purchased from Sigma-Aldrich, further dried by passage through 

columns of activated alumina, degassed by at least three freeze-pump-thaw cycles, and 

stored under N2.  Anhydrous tetrahydrofuran (THF) purchased from Sigma-Aldirch was 

further dried  by stirring over Na (s) in the presence of benzophenone until a dark purple 
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color was achieved (~1 day), followed by THF removal in vacuo and stored under N2.  

The ligand (2,4-di-tert-butyl-6-(lphenylamino)phenol (H2apPh) was prepared by literature 

methods and all characterization data matched those referenced.25  Anhydrous FeCl3 

was purchased from Strem Chemical, Inc.  All other chemicals were purchased from 

Sigma-Aldrich and used as received. 

 

Synthesis of [FeCl(isqPh)2] (1) 

 In a procedure modified from literature,26 a 20 mL scintillation vial was charged 

with anhydrous FeCl3 (0.081 g. 0.5 mmol), a Teflon stir bar, H2apPh (0.297 g, 1 mmol), 

and 0.5 M NaOMe in MeOH (4 mL, 2 mmol) to afford a dark purple solution.  After 1 min 

of stirring NOBF4 (0.161 g, 1 mmol) was added and the solution turned dark green with 

the evolution of a colorless gas.  Caution: NO gas is generated during the reaction and 

proper ventilation is required.  After an additional minute of stirring, the solvent was 

removed in vacuo to generate a dark green powder.  The collected dark green solid was 

dissolved in THF (5 mL) and filtered through a fine Buchner funnel and the filtrate was 

dried in vacuo to generate [FeCl(isqPh)2] (0.299 g, 89% yield) UV–vis (CH2Cl2) λmax, nm 

(ε, M−1, cm−1): 290 (1.8 x 104), 455 (0.82 x 104), 760 (0.78 x 104); (THF) λmax, nm (ε, M−1, 

cm−1): 290 (1.6 x 104), 455 (0.77 x 104),  740 (0.73 x 104). 

 

Synthesis of Na[Fe(apPh)2] (2) and Na[Fe(apPh)2(py)2] (3)  

 A 20 mL scintillation vial was charged with anhydrous FeCl3 (0.162 g. 1 mmol), a 

Teflon stir bar, H2apPh (0.594 g, 2 mmol), and 0.5 M NaOMe in MeOH (8 mL, 4 mmol) to 

afford a dark purple solution.  After 1 min of stirring, the solvent was removed in vacuo to 

generate a dark purple powder.  The collected dark purple solid was dissolved in THF (5 

mL) and filtered through a fine Buchner funnel and the filtrate was dried in vacuo to 
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generate Na[Fe(apPh)2] (0.629 g, 94% yield).  Pyridine (54 µL, 0.6 mmol) was added to 2 

(0.2243 g, 0.3 mmol) in 2 mL of THF and layered with 15 mL of pentane and stored at 

−30°C for 2 days to generate dark green crystals 3.   

 

Catalytic Homocoupling of PhMgBr    

 In a representative procedure, a 20 mL scintillation vial was charged with 1 

(2mM), 2M PhMgCl in THF (4mM), and 5 mL of THF under N2 and fitted with a telfon 

lined cap.  The reaction was monitored in a quartz, 0.5 mm path length cuvette and a 

greased # 9 glass stopper with UV–vis spectroscopy (300–1000 nm).  Yield of the iron 

species was determined by the absorption peak at 740 nm with ε = 7300 M−1, cm−1.  To 

determine the biphenyl yield the solution (400 µL) was quenched with HCl in ether (100 

µL) and analyzed with GC-MS using decane as an internal standard and compared to a 

calibration plot.  Oxidation of the resulting reduced iron species was accomplished by 

opening the cuvette to ambient air for 30 s followed by resealing. 
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Chapter 3 

3 3 
New Cobalt Electron-Transfer Series Featuring Redox-
Active Pincer-Type N-Heterocyclic ligand for C–C Bond 

Forming Reactions 

 

 

3.1 Introduction 
 

 The use of redox-active ligands as electron reservoirs for multielectron 

transformations at 3d metals has become an increasingly versatile tool to mimic 4d and 

5d metals.1-6  The ability of the ligand to store electrons allows for species to be stable 

over an atypically wide range of oxidation states, permitting detailed studies of catalytic 

mechanisms and new reactivity at 3d metals.  For example, Chirik and co-workers 

recently used an Fe catalyst supported by a pincer-type redox-active ligand to achieve 

the industrially relevant selective anti-Markovnikov addition of sterically hindered tertiary 

silanes to alkenes.7 Our lab has demonstrated the ability of a square-planar redox-active 

ligand [CoIII(apPh)]– complex to mediate C–C cross-coupling between alkyl halides and 

aryl Grignards, in the process demonstrating the ability of a redox-active ligand to 

mediate oxidative addition and reductive elimination at a 3d metal center.3-4  However, 

only low yields of the cross-coupled product 10-15% were obtained with [CoIII(apPh)]– due 

to low yielding C–C reductive elimination that apparently stems from slow formation of 

cis-[Co(apPh)2(R)2].  
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Scheme 3-1. Protonated and deprotonated version of 1,3-bis(3,5,-di-tert-
butylphenol)dihydroimidazolium chloride. 

 

 To address this issue, and to expand the library of redox-active ligated 3d metal 

complexes, we pursued the development of new chelating redox-active ligands.  

Diphenolated imidazolyl-carbene ligands have recently been used to support a variety of 

metals (Mn, Ir, Zn, V, Ti).8-19   The tridentate, pincer-type N-heterocyclic carbene 1,3-

bis(3,5,-di-tert-butylphenol)dihydroimidazolium chloride [(tBuPhO)2NHC]Cl ligand 

(Scheme 3-1) was chosen to address the challenges in C-C coupling with the 

[CoIII(apPh)]– complex.  The [(tBuPhO)2NHC]Cl is cationic in its protonated state, 

however, upon deprotonation of both hydroxyl groups and the carbene the ligand 

becomes dianionic [(tBuPhO)2NHC]2-. The tridentate pincer-type [(tBuPhO)2NHC]2- binds 

in a meridional orientation and the strong σ-donating character disfavors bis-ligated 

complexes, which allows for vacant axial and equatorial sites that can potentially 

accommodate cis binding of substrates. Although the ligand has not been definitively 

shown to support a radical, its similarity to the known amidophenolate ligand warrants 

further investigation.20  Work by Bercaw and co-workers, using a similar ligand 1,3-bis(2-

hydroxy-5-tert-butylphenyl)imidiazolium chloride, bound to IrIII could be oxidized twice.  

Oxidizing the IrIII(NHC) complex led to either an IrV complex or an IrIV ligand radical 

complex; however, the identity of the doubly oxidized complex could not be ascertained.   
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Figure 3-1. Proposed structure of CoII(tBuPhO)2NHC. 

 To understand the behavior of [(tBuPhO)2NHC]2- as a ligand, a Co complex 

bearing the [(tBuPhO)2NHC]2- was chosen Figure 3-1.  Reported here, is the first 

isolated and characterized redox-active ET series bearing a [(tBuPhO)2NHC]2- ligand 

bound to cobalt.  The ability of this new complex to span multiple redox states is used for  

C–C coupling including Kumada cross-coupling and homocoupling of aryl Grignard 

reagents. Limitations of the CoII((tBuPhO)2NHC)THF as a cross coupling catalyst are 

discussed in the context of an unexpected degradation pathway. 
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method analysis in oxygen-free THF-d6 gives a µeff = 2.37 for 1 which is in-between the 

calculated spin only values of 1.73 for S = 1/2 and 2.82 for the S = 1. Cobalt can have 

significant contribution from the angular momentum term L leading to a higher ueff than 

expected 

for the spin-only value, so we have assigned 1 as having one unpaired electron (S = 

1/2).
21  Single crystals suitable for X-ray diffraction were obtained from slow diffusion of 

pentane into a THF solution containing 1 at –30 °C over 24 hours (Scheme 3-2 b).  The 

crystal structure of 1 shows a square planar arrangement of the tridentate 

[((tBuPhO)2NHC)]2‒ ligand and THF trans to the carbene, giving the complex 

approximate C2v symmetry.  Selected bond lengths for 1 are shown in Scheme 3-2 c.  

Complex 1 shows an average C–C bond length of 1.394 Å for both phenol rings.   This is 

 

Figure 3-2. UV–vis spectra of complexes 1, 2, and 3 in THF solutions at 22 °C. 
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consistent with aromaticity as seen in comparable [apPh]2− ligands bound to 3d metals 

where the average C–C bond distance in the phenol ring is 1.39-1.41 Å.22  Complex 1 

has a very short C–Co bond length of 1.789(3) Å.  This much shorter than the next 

shortest C–Co bond length of 1.941 Å.23  The O–C bond lengths of 1.339(4) Å and 

1.335(3) Å in the phenols are typical for complexed phenolates.22  For instance, the C–O 

bond length in the closed-shell fully reduced amidophenolate ligand bound to Co 

([CoIII(apPh)2]
−) is 1.353(3) Å.24  The Co–O bond length of 1.816(2) Å is shorter than 

those in comparable CoII phenolate complexes (typical Co–O bond length of 2.10-1.91 

Å).25-28   The contraction of the C–O is due to the geometric constraints of the pincer-type 

architecture and the C–O bond distance is best described as a C–O single bond.3  The 

C–C bond in the imidizole linker is saturated as shown by the bond length between the 

two carbons in the ring of 1.516 Å, which is indicative of a single bond.  The combined 

data are consistent with a low-spin d7 CoII center bound to a fully reduced tridentate 

[((tBuPhO)2NHC)]2‒ lignad with two aromatic phenolates as depicted in Scheme 3-2 a.  
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Scheme 3-3. a) [Co((tBuPhO)2NHC)(THF)2]
+ (2) b) Solid-state structure of 

[CoIII((tBuPhO)2NHC)(THF)2]BPh4 (2) drawn with 50 % probability ellipsoids.  Hydrogen and 
counter ions omitted for clarity. 

3.2.3 Synthesis and characterization of [Co((tBuPhO)2NHC)(THF)2]BF4  
 

 Addition of 1 equiv of AgBF4 to a THF solution containing 1 immediately 

generated a green solution.  Filtration and drying in vacuo gave a green powder.  

Crystals suitable for X-ray diffraction were grown from a metathesis reaction between 

the green powder and Na[B(Ph)4] in THF.  The resulting green solution was layered with 

pentane at –30 °C for 24 h to precipitate green crystals of  

[Co((tBuPhO)2NHC)(THF)2](BPh4) (2).  The solid-state structure of 2 shows a cationic, 

quasi-square pyramidal arrangement of the [(tBuPhO)2NHC]2‒ ligand and two THF 

molecules in axial and equatorial positions about cobalt with a [BPh4]
‒ counter ion with 

approximate Cs symmetry.  The UV–Vis spectrum of 2 shows a charge transfer bands at 

434 nm (ε = 3100 M−1, cm−1), 747 (ε = 2700 M−1, cm−1), and 878 (ε = 2000 M−1, cm−1)  in 

THF (Figure 3-2).  Evan’s method analysis in oxygen-free THF-d6 gives a µeff = 2.96  of 

2 suggesting a S  = 1 spin state. 

    

3.2.4 Synthesis and characterization of [Co((tBuPhO)2NHC)(THF)3](PF6)2 
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Scheme 3-4. a) [Co((tBuPhO)2NHC)(THF)3]
2+ (2) b) Solid-state structures of 

[CoIII((tBuPhO)2NHC)(THF)3](PF6)2 (3) drawn with 50 % probability ellipsoids.  Hydrogen and 
counter ions omitted for clarity. 

 

 The addition of 2 equiv of [N(PhBr-p)3]PF6  to a CH2Cl2 solution containing 1 lead 

to an immediate color change to green.  The green solution was filtered and dried in 

vacuo to produce a green powder.  Dissolution in THF followed by layering with pentane 

afford green single crystals suitable for X-ray diffractometry, which shows a dicationic, 

octahedral arrangement of the [(tBuPhO)2NHC]2‒ ligand and three THF molecules in 

meridian arrangement about cobalt with approximate C2v symmetry (Scheme 3-4 a).  

Evan’s method analysis in oxygen-free THF-d6 gives a µeff = 2.51.  Complex 3 has an µeff 

= 2.51 larger than the spin only case of 1.73, and like 1 is assigned a spin state of S = 1/2 

with one unpaired electron.    The UV–Vis spectrum of 2 shows charge transfer bands at 

436 nm (ε = 2700 M−1, cm−1), 456 (ε = 2700 M−1, cm−1), 585 (ε = 1000 M−1, cm−1), 805 (ε 

= 1700 M−1, cm−1), and 874 (ε = 1600 M−1, cm−1)  in THF (Figure 3-2).  Complex 3 shows 

a similar broad absorption spectra around 800 nm as seen in complex 2.  
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3.2.5 Metrical parameters for the assignment of metal and ligand oxidation states  
of complexes 2 and 3 

 

   A comparison of the metrical parameters for 1, 2, and 3, shown in Figure 3-4, is 

informative. Using 1, CoII bound to a closed-shell fully reduced [(tBuPhO)2NHC]2− ligand, 

as a reference point, the respective bond lengths in complexes 2 and 3 can be 

compared.   Complex 2 has an average C–C bond length of 1.398 Å which is similar to 

the average C–C bond length seen in 1 (1.394 Å), demonstrating that both phenolate 

rings are aromatic.  Therefore the oxidation is metal centered to generate a CoIII.  The 

consequence of metal centered oxidation is observed in the Co–O and Co–C bonds.  
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Figure 3-4. Selected bond lengths (Å) of the CoNHC electron-transfer series (red bond 
lengths represent contracted bond lengths and blue represents elongated bond lengths vs 1).  
Hydrogen, THF, and counter-ions have been omitted for clarity. 
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the C–O bond is most consistence with a C=O.  Further evidence for the assignment of 

C=O comes from the IR spectra where a CO stretching frequency at 1681 cm–1 and it’s 

overtone at 3326 cm–1 are indicative of a C=O stretch. Both IR bands are lacking in 

complexes 1 and 2.  The Co–O bond distances of 3 (1.825(3) Å and 1.818(3) Å) are 

comparable to 1 and implies a lack of oxidation at the metal center consistent with CoII.  

Complex 3 is thus more similar to a bis-quinone complex [CoII(tBuPhO•)2NHC]2+.32  Taken 

together, complex 1, 2, and 3 form an new ET series capable of spanning 2e− as shown 

in Scheme 3-5. 

 

3.2.6 Cross-coupling reactions of aryl Grignard and alkylhalide 
 

 Cross-coupling of 1-bromohexane and PhMgBr was accomplished using 5 mol% 

of 3 under N2 in THF for 1 hour and led to yield of 38% cross-coupled product Ph–Hx vs  

3 or 1.2 % vs PhMgBr (Equation 1). Biphenyl was obtained as a byproduct in 26% 

yields vs. the PhMgBr reactant. The cross-coupled product represents 3x increase in 

yield vs metal compared to the previously reported [CoIII(apPh)]1– complex.33  The high 

yield of the homocoupled product biphenyl suggested 1-bromohexane could be 

functioning as a sacrificial oxidant, evidenced by observation of hexane at the end of the 

reaction.  Increasing the catalyst loading of 1 to 10 mol % for the reaction in Equation 1 

yielded 60% of 1-phenylhexane cross-coupling product vs. metal and a 6% overall yield 

 

Scheme 3-5.  Electron-transfer series of [Co(tBuPhO)2NHC(THF)n+1]
n+ complexes: 1 

CoII((tBuPhO)2NHC)(THF), 2 [CoIII((tBuPhO)2NHC)(THF)2]
+, 3 [CoII((tBuPhO•)2NHC) (THF)3]

2+. 
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of 1-phenylhexane along with 43% of the biphenyl homocoupling product vs Grignard.  If 

3 equiv of triphenylphosphine were added to the reaction of 1 the yield of cross-coupling 

increases to 10 % vs. the organic reactants (100 % vs. 1).  The biphenyl production is 

also increased to 62% vs. the PhMgBr reactant.  After 24 hrs 1 has degraded and no 

metal containing species are observed via ESI–MS spectroscopy.  However, ligand 

degradation was observed in ESI–MS, where a peak of 563.6 m/z was assigned to the 

alkylated ligand (563.4 m/z) as shown in Equation 2.  This ligand degradation was also 

observed with other alkyl halides (ethyl bromide, 1-bromooctane).  In all three cases no 

metal containing species was observed by ESI–MS, the crossed coupled product 

between the ligand and the alkyl halide were the only identifiable peaks. Phenyl from the 

Grignard reagent was never incorporated into the ligand.  However when an aryl halide 

(bromobenzene or iodobenzene) and octyl magnesium bromide were reacted in  the 
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Scheme 3-6. PhLi homocoupling via reductive elimination using 3 to generate 25 % 1 and 
10 % Ph–Ph. 

 

presence of 10 mol % of 1, both an alkylated and arylated ligand were formed (Equation 

3). 

3.2.7 Reductive elimination and oxidative addition studies 
 

 A reaction between 3 and 2 equiv of PhMgBr gives a 50% yield of biphenyl and a 

metal species with a UV–vis spectrum that is distinct from 1, 2, or 3.  A reaction of 3 with 

2 equiv of PhLi leads to a smaller yield (10%) of biphenyl but generated 1 in a 25% yield.  

The observation of biphenyl and 1 suggest 2 e– reductive elimination is viable (Scheme 

3-6), however the low yields of homocoupled product and the new unknown metal-

containing species highlights the potential for off cycle reactions.  To probe off cycle 

pathways in reductive elimination, 1 was titrated with PhMgBr.  On addition of 2.0 equiv 

of PhMgBr, the CoII((tBuPhO)2NHC)THF concentration was reduced to 19% of it's initial 

concentration, as determined by UV–vis spectroscopy.  Addition of 3.0 equiv of PhMgBr 

resulted in a complete loss of absorbance at 420 nm and a 35% yield of biphenyl.  When 

methanol was added to quench the Grignard, 65% of 1 was regenerated as judged by 

UV–vis.   

 Oxidative addition to complex 1 was attempted using ethyl bromide (EtBr) or 

methyliodide (MeI) in a 1:1 ratio.  However, neither alkyl halide induced a color change 

of the aforementioned 1 within 24 hrs, however in the case of MeI, a reaction is 
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observed in the course of 7 days that lead to a green solution.  The UV–vis spectra 

shows a loss of absorption at 420 nm and broad feature at 650 nm (ε = 500 M–1, cm–1).  

No metal containing peaks could be identified by ESI−MS. Furthermore, the solid 

powder produced did not yield single crystals.   

3.3  Discussion 
 

 To improve the cross-coupling ability of [CoIII(apPh)2]
–, a cobalt complex with 

available cis sites and redox-active ligands was desired.  A tridentate N-heterocyclic 

carbene with two phenol arms was chosen to accomplish these goals. Addition of a the 

deprotonated [(tBuPhO)2NHC]2– ligand to CoCl2 lead to a square planer complex with the 

[(tBuPhO)2NHC]2– coordinated in a meridional fashion with a THF trans to the carbene 

CoII((tBuPhO)2NHC)(THF) 1.  This allowed for two vacant axial positions and a labile 

equatorial THF.  This satisfies the first objective of obtaining available cis sites on a 

cobalt complex.  The CV of 1 shows three oxidation waves assigned to the formal 

oxidation of the metal center to CoIII, CoIV, and CoV.  However, experimentally, these are 

unlikely do to how exceedingly rare and unstable CoIV and CoV complexes are.34  This 

suggests that the ligand is acting as an electron reservoir which avoids high oxidation 

states of cobalt, and gives evidence that the second objective could be accomplished.  

 Complex 1 is best described as a CoII bound to a triply deprotonated tridentate 

meridional bound [(tBuPhO)2NHC]2– with one THF bound trans to the carbene.  The X-

ray crystal structure reveals the ligand to be in the fully reduced closed-shell dianionic 

form.  The 1 and 2 e− oxidized forms of 1, a new ET series as shown above Scheme 

3-5, are best described as metal oxidation (complex 2) followed by a re-reduction of the 

metal concomitant with a 2e– oxidation of the ligand (complex 3).   In contrast, the 

(CoIII(apPh)2]
− ET series when oxidized is only oxidized at the ligands and remains CoIII in 

the ET series.  The (iPrPDI)Fe0(CO)2 ET series, produced by Chirik and co-workers, also 
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Scheme 3-7 A simplified MO diagram for complex 2. 

 

shows the same interesting redox chemistry.  For instance, a 1 e− oxidation of   

(iPrPDI)Fe0(CO)2 affords an FeI complex ((iPrPDI)FeI(CO)2]
+) and 1 e− reduction lead to an 

FeI complex with a doubly reduced ligand ([(iPrPDI2-)FeI(CO)2]
−).35 

 Assignment of the spin states for complexes 1 and 3 is straightfoward.  In the 

case of 1 a low spin d7 CoII bound to a closed shell ligand in an square planar field has 

one unpaired e−, and in agreement with this prediction the measured maganetic moment 

observed µeff = 2.37  leads to an assigned spin state of S = 1/2.  Complex 3 has a 

maganetic moment µeff = 2.51  and a spin state of S = 1/2.  Assuming the CoII center in 3 

is also in a strong ligand field, there are a total of three spins to account for, one on the 

metal and two on the radical ligands, giving possible S = 1/2 and S = 3/2 spin states. The 

experimentally observed moment of µeff = 2.51 implies that a ligand spin couples 
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antiferromagnetically with the metal.  Complex 2 has a magnetic moment µeff = 2.96  and 

a spin state of S = 1. A  spin state of S = 1 precludes a high spin assignment which 

would be S = 2 for a d6 Co in a square pyramidal field.  This is in agreement with how 

rare high spin octahederal CoIII complexes are.36  A simple molecular orbital (MO) 

diagram (Scheme 3-7) offers a possible explaintion.  If complex 2 has a square 

pyramidal geometry, as seen in the solid state, then both high spin and intermediate spin 

complex seem unlikely due the the large energy difference between the HOMO and 

LUMO which arises from molecular overlap of the ligand and THF molecules with the dz2 

and dx2-y2 exclusively (Scheme 3-7 b).  However, if a trigonal bypramidal geometry is 

adopted in solution (Scheme 3-7 a) then the energy difference between the dx2-y2 and dxz 

orbitals decreases and the two orbitals (dx2-y2, dxz) become nearly degenerate.  

Furthermore, the gap between the dz2 and  dx2-y2 and dxz orbitals becomes large due to 

the strong σ-donation from the carbene to the dz2 orbital, precluding it from being 

occupied.  This arrangement gives rise to the intermediate spin S = 1 observed in 

complex 2.  A similiar square planar intermediate spin CoIII complex CoIII(apPh)(isqPh).has 

also been reported.3  In this system, an intermediate spin S = 1 CoIII ion is 

antiferromagnetically coupled with the ligand radical [isqPh]− yielded an S  = 1/2 spin state. 

 Given the ability of this new electron-transfer series to span mutliple oxidation 

states, Kumada-type cross coupling was attempted (PhMgBr and 1-bromohexane 

(HxBr)) with 5 % mol or 10% of 3 or 1 respectively.  In all cases, cross-coupled product 

were low (1.4 - 10%) and homocoupled products were high (26 %).   There are several 

possiblilities to explain the high homocoupled product compared to the cross-coupled 

product (Scheme 3-8).   
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Scheme 3-8. Proposed cross-coupling catalytic cycle mechanism between PhMgBr and 1-bromohexane in the presences of 1
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 Pathway A consists of a carboanion (Ph–) first binding to the cobalt, followed by oxidative 

addition then reductive elimination to regenerate complex 1.  The first oxidation potential of 

complex 1 is much more positive of (–0.35 mV vs Fc+/Fc) than that of the cobalt 

bisamidophenolate species (–1.4 mV) which can oxidatively add alkyl halides.3  Accordingly, 

oxidative addition of alkyl halide does not happen with complex 1 except in the case of 

methyliodine which takes 7 days to produce a color change.  But binding an aryl nucleophile 

should make the complex much more reducing and might initiate an oxidative addition reaction 

with HxBr.  To probe this assumtion 1 equiv of triphenylphosphine or pyridine were added, and 

an increase in both the homocoupled and cross-coupled product yields were observed.   

Although the imposed steric congestion upon addition of P(Ph)3 or pyridine can not be ruled out 

as the driving force for increased coupling.  Oxidative addition of the alkyl halide to complex 1 

with a bound aryl (Co–Ph) then leads to complex 3 with two cis organic products positioned to 

carry out C–C bond forming cross-coupling.  Pathway A is slow compared to the other pathways 

as evidenced by the low amount of cross-coupling that is achieved.  

 Pathway B is proposed to explain the increase in homocoupled product biphenyl 

compared to cross-coupled Ph-Hx. Here transmetalation between PhMgBr and Hx− lead to 

HxMgBr and Co(Ph)2((tBuPhO•)2NHC), as evidenced by hexane present in the solution after a 

MeOH quench.  Then reductive elimination could occur to regenerate 1 and produce biphenyl. 

Reactions with isolated 3 and 2 equiv of PhMgBr lead to a homocoupled yield of 50 % 

demonstrating the viability of this proposed step. However, the stoichiometric reactions produce 

and an unidentified metal species.  In contrast, addition of 2 equiv of PhLi to 3 gives 25 % yield 

of biaryl and 25 % of complex 1 as judged by UV–Vis.  This pathway must be very fast given the 

high yields and competing pathways.     

 Pathway C represents a decomposition pathway that might occur under these 

conditions.  The observation of the alkylated and arylated [tBuPhO)2NHC(R)]+ (Equation 2 and 
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Equation 3) ligand suggests that CoII(Ph)(Hx)(tBuPhO•)2NHC), generated by oxidative addition, 

might be prone to C–C reductive elimination to the carbene carbon in the ligand or alkyl 

migration.  Consistent with this hypothesis, no metal containing species were observed by ESI 

after the reaction.  Presumably because the metal byproduct would be a dissolved form of CoII
.  

The migration of an alkyl to the carbene carbon of the NHC ligand has been shown in an 

analogous structure ZnCl(CH2Ph)((tBuPhO)2NHC)THF reported by Dagorne and co-workers.10  

The ZnCl(CH2Ph)((tBuPhO)2NHC)THF complex decomposed upon heating to transfer the 

benzyl group to the carbene.  Furthermore, CoIICl2 is know to homocouple Grignards, which 

could also explain the large increase in biphenyl yield compared to Ph-Hx.37  Pathway C must 

be faster than Pathway A but significantly slower than pathway B to allow both a high yield of 

homocoupled product and keep the complex intact long enough for cross-coupling of the 

PhMgBr  and the 1-bromohexane. 

 While this mechanism explains most of the observed results it can not encompass all the 

reactivity present.  For instance, alkyl halides, aryl halides and alkyl Grignards couple to the 

carbene ligand, however, aryl Grignards do not.  Furthermore, if HxMgBr is generated in 

solution then cross-coupling of this alkyl Grignard (Hx-Hx) should be obseverd, however, Hx-Hx 

is not observed at the end for the reaction. Lastly, it cannot be ruled out at this time that a purely 

radical mechanism is driving the cross-coupling and homocoupling reactions, although this 

seems unlikely given that lack of diversity in the corresponding organic products e.g. no 

branched alkanes.   

 The new CoII((tBuPhO)2NHC)THF ET series is able to span mulitple electrons and has 

available cis sites for coupling reactions.  However, oxidative addition could not be 

accomplished in the stoichiometric reactions between 1 and alkyl halides. Although 

CoII((tBuPhO)2NHC)THF ET series can cross-couple 1-bromohexane to PhMgBr under catalytic 
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conditions, the yields 10 % is low.  Interaction with the ligand hinders cross-coupling and 

ultimately the utility of this ET series towards Kumada-type coupling. 

 

3.4 Conclusion 
 

 Utilizing cobalt and the redox-active 1,3-bis(3,5,-di-tert-butylphenolate)dihydroimidazol-

2-ylidene [(tBuPhO)2NHC]2– produces a new electron-transfer series spanning 3 accessible 

oxidation states.  Solid-state structures of the three isolated complexes reveals oxidation events 

occuring at both the metal and ligand.  The [Co((tBuPhO)2NHC)(THF)n+1]
n+ series can be used 

for homocoupling (carbanions) or cross-coupling of (alkyl halides (sp2) and aryl Grignards (sp3)), 

forming C–C bonds using the ligand as an electron reservior, but the C–C bond forming yields 

are low.  Further work is focused on exploring the mechanistic aspects of the cross-coupling 

reaction in hopes of overcoming the challenges presented here. 

3.5 Methods 

3.5.1 General considerations 
 

 Unless otherwise noted, all manipulations were performed under anaerobic conditions 

using standard vacuum line techniques, or in an inert atmosphere glove box under purified 

nitrogen.  UV–visible absorption spectra were acquired using a Varian Cary 50 

spectrophotometer.  IR spectra were obtained using attenuated total reflection (ATR) with a 

diamond plate on a Thermo-Scientific Nicolet 4700 Fourier-transform infrared 

spectrophotometer.  All NMR spectra were acquired on a Varian Mercury 300 spectrometer 

(300.323 MHz for 1H) at ambient temperature. Chemical shifts are reported in parts per million 

(ppm) relative to TMS, with the residual solvent peak serving as an internal reference. Solution 

state magnetic moments were determined by Evans’ NMR method.38-39  Unless otherwise 
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Table 3-1 Crystollographic data and parameters for complexes CoII((tBuPhO)2NHC)(THF) 1, 
[CoIII((tBuPhO)2NHC)(THF)2]BPh4 2, and [CoII((tBuPhO•)2NHC)(THF)3](PF6)2 3. 

 

specified, all electronic absorption spectra were recorded at ambient temperatures in 1cm 
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quartz cells.  All mass spectra were recorded in the Georgia Institute of Technology 

Bioanalytical Mass Spectrometry facility.  Cyclic voltammetric measurements were made using 

a CH Instruments CHI620C potentiostat in a three component cell consisting of a platinum disk 

working electrode, a platinum wire auxiliary electrode, and a non-aqueous AgNO3/Ag reference 

electrode. All electrochemical experiments were performed in CH3CN with 0.1 M [nBu4N][PF6] 

as the supporting electrolyte. Electrochemical data are referenced and reported to Fc+/Fc as an 

internal standard. Elemental analyses were performed by Atlantic Microlab, Inc., Norcross, GA.  

All analyses were performed in duplicate, and the reported compositions are the average of the 

two runs.   

 Single crystals of [Co((tBuPhO)2NHC)], [Co((tBuPhO)2NHC)](BPh4), and 

[Co((tBuPhO)2NHC)](PF6)2 suitable for X-ray diffraction analysis were coated with Paratone N, 

suspended in a small fiber loop and placed in a cooled nitrogen gas stream at 173 K on a 

Bruker D8 APEX II CCD sealed tube diffractometer. Diffraction data for [Co((tBuPhO)2NHC)], 

[Co((tBuPhO)2NHC)](BPh4), and [Co((tBuPhO)2NHC)](PF6)2 was collected using graphite 

monochromated Cu Kα (λ = 1.54178 Å) radiation. Data were measured using a series of 

combinations of phi and omega scans with 10 second frame exposures and 0.5° frame widths. 

Data collection, indexing and initial cell refinements were all carried out using APEX II 

software.40 Frame integration and final cell refinements were done using SAINT software.41  The 

final cell parameters were determined from least-squares refinement on 55151 reflection for 

Co((tBuPhO)2NHC), 98957 reflection for [Co((tBuPhO)2NHC)](BPh4), and 59074 for 

[Co((tBuPhO)2NHC)](PF6)2. The structure was solved using direct methods and difference 

Fourier techniques using the SHELXTL program package.42 Hydrogen atoms were placed in 

their expected chemical positions using the HFIX command and were included in the final 

cycles of least-squares with isotropic Uij’s related to the atoms ridden upon. All non-hydrogen 
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atoms were refined anisotropically. Details of data collection and structure refinement are 

provided in Table 1. 

3.5.2 Methods and materials 

 Anhydrous dichloromethane and pentane solvents for air- and moisture-sensitive 

manipulations were purchased from Sigma–Aldrich, further dried by passage through columns 

of activated alumina, degassed by at least three freeze-pump-thaw cycles, and stored under N2.  

Anhydrous tetrahydrofuran (THF) purchased from Sigma–Aldirch was further dried  by stirring 

over Na(s) in the presence of benzophenone until a dark purple color was achieved (~1 day), 

followed by THF removal in vacuo and storage under N2.  The ligand (N,N’-Bis(2-hydroxy-3,5-di-

tert-butylphenyl)ethylenediamine = H4enap/ap) was prepared by literature methods and all 

characterization data matched those referenced.43  All chemicals were purchased from Sigma–

Aldrich and used as received. 

Synthesis of 1,3-bis(2-hydroxy-3,5-di-tert-butylphenyl)imidazolium chloride 

([(tBuPhO)2NHC]Cl)  

 In a modified procedure from literature,44 a 500 mL round bottom flask was charged with 

H4enap/ap (2.00 g, 4.27 mmol), NH4Cl (0.224 g, 4.57 mmol), triethyl orthoformate (0.710 mL, 4.27 

mmol), stir bar and 75 mL of isopropanol.  The resulting green solution was refluxed at 120 °C 

for 4 hours producing a golden solution.  Removal of solvent in vacuo produced a white powder.  

Recrystallization from anhydrous ether gave a white crystalline product of [(tBuPhO)2NHC]Cl 

(1.75 g, 76% yield). All characterization data matched those referenced.12 

Synthesis of Co((tBuPhO)2NHC)THF (1) 

 A 20 mL scintillation vial was charged with anhydrous CoCl2 (0.0649 g, 0.5 mmol), a 

Teflon stir bar, [(tBuPhO)2NHC]Cl (0.257 g, 0.5 mmol), and 0.5 M NaOMe in MeOH (3 mL, 1.5 
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mmol) to afford an orange solution.  After an additional minute of stirring, the solution was 

removed in vacuo to generate an orange powder.  The collected orange powder was dissolved 

in THF (5 mL) and filtered through a fine Buchner funnel and the filtrate was dried in vacuo to 

generate Co((tBuPhO)2NHC)THF (0.275 g, 90% yield) UV–vis (THF) λmax, nm (ε, M–1, cm–1): 430 

(5.3 x 103) Anal. Calc. for C35H53CoN2O3Na0.5Cl0.5: C, 66.00; H, 8.23; N, 4.40. Found: C,65.89; 

H, 8.44; N, 4.43%. FTIR (ATR): 2947(m), 2899(m), 2866(m), 1506(s), 1478(m), 1447(m), 

1389(m), 1358(m), 1325(s), 1283(m), 1270(m), 1240(m), 1200(m), 1159(m), 1076(m), 1051(m), 

914(m), 894(m), 869(m), 836(m), 756(m), 699(m), 643(m), 605(m), 578(m), 545(m), 512(m), 

466(m), 434(m), 419(m) cm –1. 

 

Synthesis of [Co((tBuPhO)2NHC)(THF)2]BF4 (2) 

 A 20 mL scintillation vial was charged with 1 (0.103 g, 0.164 mmol), a Teflon stir bar, 

THF, and AgBF4 (0.032 g, 0.164 mmol) to afford a dark green solution.  After 5 min of stirring, 

the green solution was layered with pentane and stored at –30 °C for 24 hours to collect green 

crystals of  [Co((tBuPhO)2NHC)(THF)2]BF4 (0.105 g, 83% yield).  Single crystals suitable for X-

ray analysis were generated from the methasis reaction between a THF solution containing 2 

and NaB(Ph)4.  The resulting green solution was filtered and layered with pentane to generate 

crystals of [Co((tBuPhO)2NHC)(THF)2]B(Ph)4 UV–vis (THF) λmax, nm (ε, M–1, cm–1): 434 (3.1 x 

103), 747 (2.7 x 103), 878 (2.0 x 103). The report analysis is for 

[Co((tBuPhO)2NHC)(THF)2.65)]BF4 • 0.2 AgBF4. Anal. Calc. for C39H58BCoF4N2O4 • (THF)0.65 • 

(AgBF4)0.2: Calc., 58.75; H, 7.49; N, 3.29. Found: C, 58.40; H, 7.84; N, 3.63%.   FTIR (ATR): 

3054(m), 2953(m), 2902(m), 2865(m), 1588(m), 1556(m), 1478(m), 1440(m), 1388(m), 1359(m), 

1311(m), 1241(m), 1200(m), 1124(m), 1071(m), 1026(m), 913(m), 843(m), 733(s), 700(s), 

647(w), 625(m), 610(w), 580(w), 543(w), 518(w), 498(w), 471(w), 446(w, 400(w) cm –1. 
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Synthesis of [Co((tBuPhO•)2NHC)(THF)3](PF6)2 (3)  

 A 20 mL scintillation vial was charged with N(C6H4Br-p)3 (0.0799 g, 0.166 mmol), a 

Teflon stir bar, NOPF6 (0.032 g, 0.178 mmol), and CH2Cl2 (5 mL) to afford a dark blue solution.  

Safety Caution: NO gas is generated and proper ventilation is required!  After 15 min of stirring, 

1 (0.046 g, 0.075 mmol) was added to generate a brown/green solution.  The collected 

brown/green solid was washed with MeCN (2 x 5 mL) through a fine Buchner funnel and the 

filtrate was dried in vacuo, taken up in THF (2 mL), filtered again through Celite, layered with 

pentane, and stored at –30 °C to generated green crystals of [Co((tBuPhO•)2NHC)(THF)3](PF6)2  

(0.064 g, 81% yield) UV–vis (THF) λmax, nm (ε, M–1, cm–1): 436 (2.7 x 103), 456 (2.7 x 103), 585 

(1.0 x 103), 805 (1.7 x 103), 874 (1.6 x 103). The report analysis is for 

[Co((tBuPhO•)2NHC)(THF)3](PF6)2. Anal. Calc. for C35H52CoF12N2O3P2: C, 46.83; H, 5.84; N, 

3.12. Found: C,46.48; H, 6.14; N, 3.34% FTIR (ATR): 3326 (w), 2956(m), 2905(m), 2872(m), 

1681(w), 1627(w), 1592(m), 1531(w), 1484(s), 1352(m), 1309(m), 1284(m), 1266(m), 1239(m), 

1195(m), 1159(m), 1117(m), 1059(m), 1024(w), 1007(w), 948(w), 902(w), 818(s), 739(m), 

711(w), 694(w), 650(w), 556(s), 493(s), 436(w), 416(w). 

Production of homocoupled product Ph–Ph.    

 In a representative procedure, a 20 mL scintillation vial was charged with 1 (0.500 mL, of 

a 1.60 mM stock solution in THF), PhMgBr (0.082 mL, of a 0.2 M stock solution in THF), and 5 

mL of THF under N2 and fitted with a telfon lined cap.  The reaction was monitored by UV–vis 

spectroscopy (300-1000 nm).  Yield of the cobalt species was determined by the absorption 

peak at 430 nm with ε = 5300 M–1, cm–1.  To determine the biphenyl yield the solution was 

analyzed with GC-MS using decane as an internal standard and compared to a calibration plot.   
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Production of cross-coupled product Ph–Ph.   

  In a representative procedure, a 5 mL volumetric flask was charged with 1 (0.500 mL, of 

a 1.60 mM stock solution in THF), 1-bromohexane (0.289 mL, of a 0.28 M stock solution in 

THF), PhMgBr (0.412 mL, of a 0.2 M stock solution in THF), and  filled to the line with THF 

under N2.  The solution was immediately transferred to a 20 mL scintillation vial charged with a 

stir bar and fitted with a teflon lined cap.  The reaction was allowed to stir for 24 hours at room 

temperature.  Yield of the cobalt species was determined by the absorption peak at 430 nm with 

ε = 5300 M–1, cm–1.  To determine the yield of  both homo and cross-coupled products, the 

solution was analyzed with GC-MS using decane as an internal standard and compared to a 

calibration plot.   
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Chapter 4 

4 4 
CoII((tBuPhO)2NHC)THF Mediated C–O Activation 

 
 

4.1 Introduction 

4.1.1 Utility and prevalence of C–O activation 
 
 Almost all natural products contain carbon-oxygen bonds, in the form of alcohols, 

ester, and ethers.1  For instance, lignin, a natural polymer found in plants ((C31H34O11)n), 

is a paper industry byproduct yielding 50 million tons per year as waste.2  Lignin has C–

O bonds in the form of alcohols, phenols, and ethers.  Ethers represent the largest 

functional group in lignin.3-4  Developing a catalyst to selectively activate the C–O bonds 

in lignin could turn this industrial waste product into a valuable chemical feed stock.  For 

instance, depolymerization of lignin via C–O activation would led to the production of 

simple aromatics such as benzene, toluene, and xylene.  Global production of benzene, 

largest source from catalytic reforming of naphthas distilled from crude oil, is estimated 

at 40.2 million metric tonnes annually.5-6  Therefore, strategies that can activate these 

C–O bonds remain a worthy goal.   However, selective C–O bond activation in lignin has 

not yet been realized.  Direct cross-coupling of C–O by transition metals is difficult due to 

the relatively inert C–O bond.  This is not due to thermodynamics because the bond 

dissociation energy (BDE) of C–O bonds in aryl or alkyl ethers is roughly the same as for 

C–Cl bonds.  For instance, butyl ether has a BDE of 85 kcal/mol for the C–O bond vs. 83 

kcal/mol for the C–Cl bond in 1-chloropentane.7  While many protocols have been 

devised for cross-coupling reactions involving C–Cl substrates,8-12 comparatively less is 

known about ether C–O bond activation and coupling.  In fact, because C–O bonds are 
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inert, alkyl and aryl ethers are used as protecting groups for alcohols.  The ether linkage 

functions to prevent reactivity at oxygen centers.13  Alcohols can be converted to methyl, 

aryl, and prenyl ethers to name a few.  For instance, conversion of an alcohol group to 

methoxymethyl ether (MOM) renders the new ether linkage unreactive towards: 

nucleophiles (NaOMe, NaCN); Grignards; oxidants (OsO4, O3 at -50 °C, KMnO4 at pH7); 

reductants (Na (s), Al(Hg)); and temperature (<350 °C).13 Many strategies exist to 

remove the different ether protecting group, i.e. to cleave the C–O bonds, such as acidic 

and basic conditions, hydrogenolysis, reductive or oxidative cleavage, and 

photochemical cleavage.13-14  However, these strategies can only convert the ether to an 

alcohol.  Thus far, there does not exist a general atom economical method for direct C–

O activation that avoids the simple conversion of the ether to an alcohol.   

 To date, examples of metal mediated C–O bond activation have mostly focused 

on aryl C–O bond cleavage.  Work done by Chatterjee and co-workers involving a 

heterogeneous Rh/C catalyst in super critical CO2 lead to the cleavage of aryl ether 

bonds in diphenyl ether.15  Several homogenous and heterogeneous Ni complexes have 

recently been shown to cleave aryl C–O bonds.16-24  Sergeev and co-workers developed 

a heterogeneous Ni catalyst that could cleave the C–O bond in diphenyl ether under 1 

bar H2 and only 0.25 mol % catalyst loading.25  Shi and co-workers have developed 

several homogeneous Ni catalysts for the cleavage of C–O bond followed by cross-

coupling to a nucleophilic carbon.2  Recently two papers by, Fan and co-workers have 

shown FeCl3 can catalytically cleave secondary Csp3–O bonds and form new Csp3–Csp3 

and Csp3–Csp bonds.26-27  For example, Fan, et. al. demonstrated that 0.5 mol % FeCl3 

were able to carry out allylic alkylation of an ether, 1-(1-methoxypropyl)naphthalene, 

using allyltrimethylsilane to form 1-(hex-5-en-3-yl)naphthalene (Scheme 4-1 a).  This 

reaction is general to most secondary carbons at the C–O linkage, but could not cross-

couple primary carbons.  Interestingly, when a cyclopropyl group was attached to the 
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Scheme 4-1. C–O bond activation and cross-coupling using FeCl3, a) Allylic alkylation of 
ether with allylTMS, b) α-arylation of nitrile using TMSCN and an FeCl3 catalyst. 
 

 

carbon bound to oxygen, no ring opening event was observed.  This suggests a 

concerted C–O bond activation.  Fan was also able to catalytically form α-aryl nitriles 

compounds by C–O activation of an ether followed by addition of cyanide (Scheme 4-1 

b).  However, this reaction could not activate primary C–O ethers.  To the best of my 

knowledge, no examples exist of primary Csp3–O ether bond activation in a well-defined 

cross-coupling reaction.  Furthermore, in the few systems that can cross couple ethers 

there is a general lack of mechanistic understanding of how these reactions occur.   

While the authors suggest that FeCl3 acts only as a Lewis acid in the in the above 

mentioned reactions, the reaction does not work with other Lewis acids such as FeCl2, 

Fe(acac)2, BF3, or ZnCl2,  The reaction is also extremely solvent dependent.  Using 

CH2Cl2 as the solvent results in a 99 % yield, but no cross-coupling is observed in THF, 

EtOAc or DMF.  When  toluene, benzene, CHCl3, and 1,2-dichloroethane were used the 

yield decreased to 60 %.  When FeCl3 • 6H2O was used as a catalyst only a 46 % yield 

was realized, however all reaction were run in ambient atmosphere.  Even if the reaction 

is purely Lewis acid catalyzed, the metal coordination environment is unknown.  
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Determining the metal coordination environment and mechanistic steps involved in C–O 

bond activation will aid in rational ligand design.  

 This chapter explores the catalytic cross-coupling of a nitrile containing ether (3-

butoxypropanenitrile) and Grignard substrates via C–O bond activation using 

Co((tBuPhO)2NHC)THF as the catalyst.  This represents the first primary Csp3–O 

activation followed by C–C bond formation.  Mechanistic studies suggest that nitrile 

binding is important for C–O activation by cobalt. 

 

4.2 Results 

4.2.1 C–O bond activation and cross-coupling 
 
 A reaction between 3-butoxypropanenitrile and PhMgBr with 5 mol % of 

CoII((tBuPhO)2NHC)(THF) 1 in THF under N2 at 70 °C for 1 hour lead to 70 % of the 

cross-coupled product 3-phenylpropanenitrile Equation 1.  When the reaction is run at 

room temperature the yield was decreased to 38 %.  At colder temperatures (-30 °C) the 

yield was 27 %.  When no metal is present, no cross-coupling was detected.  When 

CoBr2, at 5 mol % loading, was used as the catalyst a 10 % yield of 3-

phenylpropanenitrile was observed.  Increasing or decreasing the amount of Grignard 

used in the catalytic reaction dramatically reduced the yield.  For instance, increasing or 

decreasing the equiv of PhMgBr used by 25 % lead to a 75 % reduction in product. 

4.2.2 Scope of nucleophiles for cross-coupling 
 
 Several aryl Grignard reagents were screened for C–C coupling with ether nitrile 

(Figure 4-1).  The ratio of analyte (cross-coupled product or homocoupled product) vs. 



 

in

G

b

b

so

g

d

h

in

H

co

Figure 4-1. C
a Grignard re
as the ratio o
from the GC-

nternal stand

Grignard reag

een determ

oiling points

olvent syste

roups were

imethylphen

omocoupling

n either the 

However, ele

oupling yield

Cross-couplin
eagent and 3-
of area of ana
-MS trace of t

dard (decane

gents used 

ined.  Isola

s >300 °C, 

em for colum

e tolerated 

nyl magne

g, but still al

ortho or par

ectron withd

d.    

ng and homoc
-phenylpropa

alyte vs area o
the crude rea

e) allows for

and their re

ation of the 

which prec

mn chromat

on the a

esium bro

lowed cross

ra position d

drawing grou

81 

coupling yield
nenitrile using
of decane (int

action mixture

r some qual

spective pro

resulting ar

clude distilla

tography.  B

aryl Grignar

omide, o-t

s-coupling to

did not incre

ups (halide)

ds generated f
g 1 as the cat
ternal standar
 after 24 hour

itative comp

oducts since

ryl nitrile ha

tion, and di

Both electro

rd.  Steric

tolylmagnes

o occur.  Elec

ease the yie

) in the met

from the cata
talyst.  The yi
rd) in arbitrary
rs. 

parison betw

e isolated yie

as been diffi

ifficulty in fi

n donating 

c crowding 

sium brom

ctron donatin

eld of cross-

ta position 

lytic reaction 
ield is reporte
y units derive

ween the diff

elds have no

icult due to 

nding a sui

and withdra

at C–Mg 

mide) disfa

ng groups (O

coupled pro

increased c

of 
ed 
ed 

ferent 

ot yet 

high 

itable 

awing 

(2,6 

avors 

OMe) 

oduct.  

cross-



82 
 

Table 4-1. Reactions between various ether nitriles and PhMgBr catalyzed by 1. 

PhMgBr+
5 mol % CoII((tBuPhO)2NHC)THF

N2, THF, 70 °C, 4 hrs.

Ether

n.r.

70 %

5 %

n.r.

N

N

N

N

O
N

O

N

O

N

O
N

Ether

Desired product Yield

Ph
Nn

4-butoxybutanenitrile

3-butoxybutanenitrile

3-butoxypropanenitrile

Entry

1

2

3

4

2-butoxyacetonitrile

 

 The reaction was not general to other nucleophilic aryl complexes.  Reactions of 

3-butoxypropanenitrile with PhLi, PhZnCl, or PhB(OH)2 did yield any observable cross-

coupling products under the reaction conditions outlined in Equation 1.   Alkyl Grignard 

reagents (octylmagnesium bromide, pentylmagnesium bromide) were also unsuccessful 

at cross-coupling. 

4.2.3 Scope of ether nitriles used for C–O activation 

 
 Changes to the ether nitrile produced interesting results as summarized in Table 

4-1.  Decreasing the carbon count between the nitrile (2-butoxyacetonitrile) and ether 

lead to no cross-coupling.  Adding an additional carbon between the nitrile and ether (4-

butoxybutanenitrile Table 4-1, entry 4) did not cross-couple with PhMgBr.  However, 

octanedinitrile, was observed by GC-MS (Equation 2).  In addition to primary C–O 
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Scheme 4-2. Synthesis of 3-butoxybutanenitrile 

 

 

 

 

bonds, secondary carbon centers cross-coupled but only produced a 5 % yield of the 

aryl nitrile. The compound 3-butoxybutanentirile was formed from the reaction between 

3-butenenitrile and butanol using a solid organic base (benzyltrimethylammonium 

hydroxide, triton B) (Table 4-1).  This reaction was originally reported to yield the anti-

Markovnikov addition product 4-butoxybutanenitrile.28   However, the only 

characterization that the authors used for identification was boiling point and refractive 

index.  Using 1H, 13C NMR and GC-MS, lead to an assignment of 3-butoxybutanentirile 

as the major product as seen in Figure 4-2. A reaction between 3-butoxybutanenitrile 

and PhMgBr using 1 as the catalyst at 10 mol % loading lead to cross-coupling to 

produce 3-phenylbutanenitrile in poor yield.  The majority of 3-butoxybutanenitrile 

remained, unreacted, at the end of reaction. 
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Figure 4-2. 1H NMR spectrum of 3-butoxybutanenitrile in CDCl3 at 25 °C. 

 Interestingly, when 1 equiv of 1, 3-butoxypropanenitrile, and PhMgBr are reacted 

in THF under N2, both Ph− and 3-butoxypropanenitrile can be seen bound to 1 in the 

ESI-MS spectrum; both the mass and isotopic pattern match the spectrum generated.  

When the reaction is run catalytically, 10 mol % of 1, after 24 hr 3-butoxypropanenitrile is 

still bound to the metal center, again judged by ESI-MS. 
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a) 

 
b) 

 
Figure 4-3. UV–vis absorption sectrum collected at 22 °C in THF (a)  Bromoacetonitirle 10 
min after addition to 1 (blue line);  3-bromopropanenitrile 12 hr after addition to 1 (red line) (b) 
3 days after addition of: bromoacetonitrile (blue line), chloroacetonirile (green line), and 3-
bromopropanenitrile (red line) to 1. 
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4.2.4 Oxidative addition of halide nitriles 
 
 When any of the above mentioned ether nitriles (Table 4-1) are added either 
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stoichiometrically or in excess no oxidative addition occurs between the ether nitrile and 

CoII((tBuPhO)2NHC)THF. Butoxide is a poor leaving group, this prompted the 

investigation of better leaving groups such as halides.  When bromoacetonitrile is added 

to CoII((tBuPhO)2NHC)THF the solution immediately changed color from orange to dark 

green with a broad peak at 650 nm (Figure 4-3 (a) blue line).  After three days the peak 

at 650 nm shifts to 675 nm and an additional broad peak appears at 820 nm (Figure 4-3 

(b) blue line). When an orange solution of 1 in THF was exposed to 1 equiv of 3-

bromopropanenitrile the solution turned green over the course of  12 hr  (Figure 4-3 (a) 

red line).  The green solution has a broad peak at 690 nm with a shoulder at 617 nm.  

After 3 days, the epsilon value tripled and the spectrum was red shifted by 10 nm 

(Figure 4-3 (b) red line).  In the both reactions, the initially formed green solutions are 

similar and both show a large broad peaks around 680 nm.  Addition of chloroacetonitrile 

effects a similar conversion to a green solution over 20 mins, but the UV–vis spectrum is 

different (Figure 4-3 (b) green line).  Over the course of several days the reaction 

between bromoacetonitrile or 3-bromopropanenitrile with 1 led to different UV–vis 

spectrum (Figure 4-3 (b)).   None of the above mentioned spectra share any UV–vis 

absorption features with the isolated doubly oxidized Co complex, 

[CoII((tBuPhO•)2NHC)(THF)]2+, Chapter 3 of this thesis. 

 Addition of 1.4 equiv of PhMgBr to the green solution containing 1 and 

bromoacetonitrile lead to 2-phenylacetonitrile and 50 % regeneration of 

CoII((tBuPhO)2NHC)THF as evidenced by appearance of a characteristic UV–vis 

absorption at 420 nm. 
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4.3 Discussion 

4.3.1 Scope of reactivity of 1 for C–O activation 
 
 FeCl3 can activate secondary C–O bonds to form new C–C bonds.  Presented 

here is the first primary Csp3–O bond activation followed by the generation of a new C–C 

bond.  Furthermore, 1 can deliver alkyl nitriles to aryl compounds (Figure 4-1) via C–O 

bond activation.  Delivery of nitriles is advantageous due to their presence in natural 

products.  Nitriles are present in cyanogenic glycosides and bisindole alkaloids, which 

have been shown to have antitumor behavior and act as part of organisms defense 

mechanism.29  It is therefore no surprise that several pharmaceutical products PPAR-

gamma-active triterpenoid (2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid) which is 

used to combat acute promyelocytic leukemia, contain nitriles.30  Furthermore, nitriles 

function as precursors to a vast array of functional groups including, amines,31 amides,32 

esters,33 and ketones.34  All of these factors make delivery of a nitrile an attractive goal 

for cross-coupling reactions.   

 CoII((tBuPhO)2NHC)THF was able to catalytically activate a primary Csp3–O in 3-

butoxypropanenitrile followed by cross-coupling to an aryl Grignard to produce an aryl 

nitrile compound.  The reaction was tolerant of a wide variety of aryl Grignard reagents.  

Steric bulk at the nucleophilic carbon did not prevent cross-coupling, however it did 

decrease Grignard homocoupling.  Although the ortho- and para- methoxy Grignards 

increase the nucleophilicity at the Mg bound carbon, the relative yields of the cross-

coupled product were much lower.  Halides ortho or meta to the Mg bound carbon lead 

to the largest increase in cross-coupling yield.  Since halides are ortho and para 

directing it is unusual that both ortho and meta halides on the ring increase the cross-

coupling yield.  It is difficult to propose a mechanism that is consistent with all of these 

observations.  Although cross-coupling is general to aryl Grignards, cross-coupling does 
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Scheme 4-3. The proposed structures of η2-bound ether nitriles to 1.  

 

not occur with alkyl Grignards or other nucleophiles such as PhLi or PhZnBr.  It is 

surprising that PhLi cannot cross-couple with the ether nitrile, due to its increased 

nucleophilicity.  Although that is in line with ortho- and para- methoxyphenyl magnesium 

bromide, which should also increase the nuclephilicity at the C bound to Mg, having a 

lower cross-coupling yield.  The aryl organozinc, on the other hand, is less nucleophilic 

than PhMgBr and was not competent for cross-coupling.  Again it is difficult to propose a 

mechanism that encompass these results. 

 Stoichiometric oxidative addition of 1 with ether nitriles was unsuccessful due to 

butoxide being a poor leaving group. In the case of bromo or chloro acetonitrile, the 

electrophilicity of the α-carbon increased due to both the electronegativity of the halide 

and the adjacent nitrogen which is only one carbon away.  This seems to allow for facile 

oxidative addition, making even chloro a good leaving group.  In the case of 3-

bromopropanenitrile, the α-carbon's electrophilicity is only slightly effected by the nitrile 

due the increased chain length.  Also, as seen in chapter 3 of this thesis, thus far no 

alkyl halides has oxidatively added to the CoII((tBuPhO)2NHC)THF complex independent 

of Grignard addition.   Also, diphenyl ether or dibutyl ether did not undergo C–O 

activation (Chapter 5).  Therefore, it is reasonable to believe that nitrile coordination to 

the metal facilitates C–O bond activation. 

 Interestingly, the number of carbons between the oxygen and the nitrogen plays 

a large role in C–O activation pathway.  If the nitrile binds in a η1 fashion through the 
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nitrogen then the differences between the ether nitriles studied (Table 4-1) become less 

obvious. If η2-binding of the nitrile is necessary for C–O activation then decreasing the 

number of carbons, 2-butoxyacetonitrile, would decrease C–O activation due to inability 

of both the nitrile and oxygen to bind to Co simultaneously Scheme 4-3.    Increasing the 

chain length between the oxygen and nitrogen, 4-butoxybutanenitrile, should reduce the 

steric strain of the binding of 4-butoxybutanenitrile.  However, 4-butoxybutanenitrile did 

not cross-couple, and instead generated the homocoupled product Equation 2.   

 

4.3.2 Proposed catalytic cycle of C–O activation and cross-coupling using 1 as 
the catalyst 

 
 A proposed catalytic cycle as shown in Scheme 4-4 begins with 

CoII((tBuPhO)2NHC)THF as a pre-catalyst.  The first step involves Grignard binding to 

the metal center [CoII((tBuPhO)2NHC)Ph]−.  It could also be the case that the ether nitrile 

binds first; however, there is no color change observed when any ether nitrile is added.  

Only the addition of Grignard changes the color of the solution.  Grignard addition 

increases the nucleophilicity of Co and allows C–O activation of the ether nitrile, which 

leads to oxidative addition and loss of n-butoxide, which is seen as butanol when the 

reaction is quenched with MeOH.  After oxidative addition has occurred the organic 

fragments are positioned for reductive elimination leading to the desired product and 

regeneration of the starting catalyst.  This proposed mechanism explains why 2-

butoxyacetonitrile does not cross-couple due to η2-binding of the nitrile not having 

enough flexibility to allow for the oxygen to bind to the metal. The ether nitrile 4-

butoxybutanenitrile not being able to cross-couple is more troubling.  If the mechanism 

above is correct then an additional carbon between nitrogen and oxygen should be 

poised to make a better bidentate ligand by relieving the steric strain with 3-

butoxypropanenitrile.  Although cross-coupling did not occur, homocoupling of the two 
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Scheme 4-4. Proposed catalytic cycle for the generation of 4-phenylbutanenitrile from 3-
butoxypropanenitrile and PhMgBr using 1 as the catalyst. 

 
 

nitrile fragments did.  This implies that C–O bond activation and oxidative addition are 

still occurring, however this mechanism becomes more complicated. 

 

4.4 Conclusion 
 
 This novel C–O bond activation represents a gateway into a variety of new 

possibilities.  The use of an inexpensive and environmentally benign redox-active ligand 

bound to a 3d metal to cleave an unactivated ether could be used to turn industrial 

waste, such as lignin, to a useful chemical feed stock. The reaction between ether 
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nitriles and Grignards using catalytic amounts of 1 is still limited in scope. Finding 

conditions that expand this reactivity to other nucleophilic carbon centers remains a 

significant goal.  One way to address this issue it to increase the nucleophilicity at cobalt 

using auxiliary electron donating ligands, such as triphenylphosphine.  Furthermore, 

identifying the reason nitrile groups aid in oxidative addition could lead to other functional 

groups that mimic this binding motif.  Finally, more mechanistic studies could elucidate 

more opportunities to expand the scope of substrates and include other ethers. 

 

4.5 Materials and Methods 

4.5.1 General 
 
 Unless otherwise noted, all manipulations were performed under anaerobic 

conditions using standard vacuum line techniques, or in an inert atmosphere glove box 

under purified nitrogen. All NMR spectra were acquired on a Varian Mercury 300 

spectrometer (300.323 MHz for 1H) at ambient temperature. Chemical shifts are 

reported in parts per million (ppm) relative to TMS, with the residual solvent peak serving 

as an internal reference.  All mass spectra were recorded in the Georgia Institute of 

Technology Bioanalytical Mass Spectrometry Facility.  Anhydrous tetrahydrofuran (THF), 

and pentane solvents for air- and moisture-sensitive manipulations were purchased from 

Sigma–Aldrich, and further dried by passage through columns of activated alumina, 

degassed by at least three freeze–pump–thaw cycles, and stored under N2 prior to use. 

In a septum capped round bottom flask, n-butanol was dried over 3 Å molecular sieves 

under N2 for 24 hr and sparged with N2 for 1 hour prior to use. The compound 4-

butoxybutanenitrile was prepared according to literature methods.35  All characterization 

data matched those referenced.  All other chemicals were purchased from Sigma–

Aldrich and used as received. 
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4.5.2 Synthesis 
 
Synthesis of 2-butoxyacetonitrile 

 A three-neck round bottom flask was charged a stir bar, and freshly cut Na (s) 

(2.0 g, 0.086 mol) in an inert atmosphere glove box.  A reflux condenser was attached to 

the three-neck round bottom flask and all opening were sealed with rubber septa.  The 

reaction flask was removed from the glove box and kept under N2 using a Schlenk line.  

A round bottom flask was charged with n-butanol (40 mL) and molecular sieves and 

capped with a rubber septum.  After 24 hrs in the presence of molecular sieves, n-

butanol was sparged with N2 for 1 hour and then transferred by cannula to the round 

bottom flask containing the Na (s).  The Na/n-butanol mixture was stirred and heated to 

reflux until all the Na was consumed.  Chloroacetonitrile (5.2 mL, 82.1 mmol) was added 

slowly over the course of 10 mins to produce a dark solution.  The reaction was allowed 

to reflux with stirring for 24 hrs and then cooled to room temperature.  The reflux 

condenser was replaced with a distillation head and the dark solution was fractionally 

distilled in vacuo to produce 2-butoxyacetonitrile as a colorless oil (0.501 g, 4.42 mmol, 

5% yield).  1H NMR (300 MHz, CDCl3, δ): 4.23 (s, 2H), 3.57 (t, J = 7 Hz, 2H), 1.59 (quin, 

J = 7 Hz, 2H), 1.38 (sex, J = 7 Hz, 2H), 0.92 (t, J = 7 Hz, 3H).  13C  NMR (300 MHz, 

CDCl3): 116.31, 71.71, 56.31, 31.24, 19.11, 13.80.  HRMS (ESI) Calcd for C6H10NO: [M] 

= 112.0762 m/z. Found 112.0759 m/z.  
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Synthesis of 3-butoxybutanenitrile 
  

 The synthesis of 3-butoxybutanenitrile is from a modified version in literature.28  A 

three-neck round bottom flask with a reflux condenser was charged with n-butanol 

(18.00 mL, 196 mmol), benzyltrimethylammonium hydroxide (triton b) (2.50 mL, 14.2 

mmol) and a magnetic stir bar.  The solution was cooled to 0 °C with an ice bath and 

but-3-enenitrile (16 mL, 198 mmol) was added slowly over the course of 30 mins.  After 

addition of the nitrile the solution was allowed to warm to room temperature and stirring 

continued for 36 hrs.  At the end of 36 hrs, the solution was washed with water and the 

organic layer was removed and distilled in vacuo to produce 3-butoxybutanenitrile as a 

clear liquid (9.021 g, 63.8 mmol, yield  33 %) 1H NMR (300 MHz, CDCl3, δ): 3.69 (p, J =  

6.0 Hz, 1H), 3.46 (qt, J = 9.0, 6.4 Hz, 2H), 2.49 (dd, J = 5.8, 1.5 Hz, 2H), 1.54 (ddt, J = 

11.4, 8.4, 6.4 Hz, 2H), 1.44 – 1.32 (m, 2H), 1.28 (d, J = 6.2 Hz, 3H), 0.91 (t, J = 7.3 Hz, 

3H).13C NMR(75 MHz, CDCl3) δ 117.61, 71.02, 68.93, 31.85, 24.89, 19.74, 19.22, 

13.81.HRMS (ESI) Calcd C8H15NO: [M] = 142.1232 m/z.  Found 142.1234 m/z. 

 

Cross-coupling reaction between phenyl magnesium bromide and 3-

phenylpropanenitrile 

 In a representative procedure, a scintillation vial was charged with a magnetic stir 

bar, 5 mL of THF, decane (0.005 mL, 25 µmol, (internal standard)), 2-butoxyacetonitrile 

(2.28 mL (165 µmol) of a 0.07244 M stock solution) and 1 (0.500 mL (8.26 µmol) of a 

0.01653 M stock solution).  PhMgBr (0.826 mL (165 µmol) of a 0.200 M stock solution) 

was added turning the orange solution dark green.  The vial was capped and stirred for 

24 hr.  After 24 hr the solution was quenched with 1 mL of dried MeOH.  
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Chapter 5 

5 5 

Reactions studies of CoII((tBuPhO)2NHC)THF and 
synthesis of Na[FeIII((tBuPhO)2NHC] and future 

directions 

 

 

5.1 Introduction 
 

 As shown in Chapter 3 of this thesis, CoII((tBuPhO)2NHC)THF was able to 

generate new C–C bonds via cross-coupling that proceeds through palladium-like 2e– 

organometallic steps.  For example, CoII((tBuPhO)2NHC)THF was able to cross-couple 

1-bromohexane with PhMgBr to form hexylbenzene in a novel demonstration of 

Kumada-type C–C coupling at a well-defined base metal catalyst.  The 

CoII((tBuPhO)2NHC)THF complex is believed to undergo oxidative addition, 

transmetallation, and reductive elimination in a fashion similar to palladium catalyzed 

cross-coupling reactions.  The oxidative addition and subsequent reductive elimination 

are 2e– redox steps, but the [CoII((tBuPhO)2NHC)] catalyst can be oxidized by 2e–  

without a change in oxidation state at the cobalt center, because the redox-active ligand 

acts as an electron reservoir.  In Chapter 4 of this thesis, the reactivity was expanded to 

include a novel C–O bond activation for cross-coupling of aryl Grignard reagents with 

ether nitriles.  This reaction demonstrates the potential of this complex to perform 

fundamentally new 2e– redox catalysis. Presented in this chapter are efforts to utilize this 

ligand-derived 2e– redox capacity for other reactions, including C-H bond activation, and 

oxygen atom transfer. 
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5.1.1 Expanding the scope of [M((tBuPhO)2NHC)] (M = Co, Fe) toward C–H 

activation and oxygen atom transfer 

 The past 10 years have seen an exponential rise in palladium methods for the 

selective activation and functionalization of C–H bonds.1-4  Atom-economic routes to C–

C bond forming reactions starting from unactivated C–H bonds is especially desirable in 

the context of sustainable (green) transformations.5  Because most C–C bond forming 

reactions involve C–X bonds, C–H bonds must first be functionalized by substitution of 

hydrogen for X (where X = N, O, S, Cl, Br).6  This activation step increases the reactivity 

and selectivity at a desired carbon.  However, this procedure introduces extra synthetic 

steps and waste and selective functionalization can be challenging for many substrates.  

Although C–H bond activation with palladium has been known for over four decades, 

selective C–H bond activation has been difficult to achieve.7-8  A major problem with C–H 

bond activation, under mild conditions, has been poor regioselectivity.9-13  For example, 

Pd(OAc)2 activates the C–H bond in benzene in the presence of NaNO2 and HOAc at 

100 °C to generate both nitrobenzene and phenylacetate (in a 1:1 ratio).14  
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Pioneering work from Sanford and co-workers elaborated a new method for selectively 

activating aryl C–H bonds using a palladium catalyst (Scheme 5-1 a).15-16  This strategy 

involves combining the substrate and ligand into one.  For example, combining pyridine 

and benzene in the form of 2-phenylpyridine allows the nitrogen to bind to the metal 

center and exposes only two C–H bonds to the palladium.  The proposed mechanism 

Scheme 5-1. a) A reaction between 3-methyl-2-phenylpyride and diphenyliodate catalyzed 
by Pd(OAc)2 to produce 2-([1,1'-biphenyl]-2-yl)-3-methylpyridine.16  b) proposed mechansim 
for C–H bond activation at PdII (L = ancillary ligands). 

a) 

 

b) 
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involves 2-phenylpyridine binding to PdII and electrophilic C–H bond activation (Scheme 

5-1 b).15  Then 2e− oxidation of PdII to PdIV permits for reductive elimination to produce a 

substituted 2-phenylpyridine and regenerate the starting PdII catalyst.17   

 Recently, Fujita and co-workers have demonstrated analogous C–H bond 

activation reactivity using CoBr2.
18    As shown in Scheme 5-2, the C–H bond on 2-

phenylpyridine with 2-octyne to produce the ortho-dialkenylated product (74 % yield) and 

the mono-alkenylated product.18  The reaction only proceeds in the presence of a 

phosphine ligand and under a very reducing environment (stoichiometric amounts of 

methyl magnesium chloride) at 100 °C for 12 hours.  The yields are good, but the overall 

mechanism is still not known.  Also, the oxidation state of the metal catalyst is unknown.  

Shi and co-workers expanded this reactivity to include using Grignard reagents to cross-

couple to the 2-phenylpyridine (Scheme 5-2 b).19  Their mechanistic studies seem to 

Scheme 5-2. C-H activation of 2-pheynlpyridine using Co salts in the presence of a) alkyne 
b) Grignard reagent to generate the mono and disubstituted aryl. 
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preclude a radical mechanism, leading the authors to favor a 2e−, CoI/CoIII catalytic 

cycle. 

 Since CoII((tBuPhO)2NHC)THF can be oxidized by 2e−, it was hypothesized that 

this complex might be able to activate C–H bonds.  While 2-phenylpyridine is an 

attractive substrate for C–H bond activation, the CoII((tBuPhO)2NHC)THF electron 

transfer (ET) series has an affinity for oxygen atoms, as evidenced by the fact that all 

three oxidation states of CoII((tBuPhO)2NHC)THF contain THF as a ligand.  Therefore, 

oxygen containing ether moieties could be better directing groups for the 

CoII((tBuPhO)2NHC)THF ET series. 

 Metal mediated oxygen atom transfer reactions are essential redox steps in 

chemical processes ranging from energy conversion and storage,20-21 to in vivo 

processing of cytotoxic materials,22-23 and the production of industrial chemicals.24-25  As 

illustrated in Equation 1, delivery of an oxygen equivalent from an oxo metal species is 

a 2e– redox processs at the metal center.  Inspired by biological oxo-transfer, the past 

two decades have seen significant progress in the development of later 3d metals for 

oxo transfer catalysis.26  However, complexes containing multiply bonded metal oxygen 

fragments with base metals later than group 8 are rare due to lack of vacant d orbitals 

with π symmetry to stabilize the M–O linkage.27  This is the so called "oxo wall" which 

states that d electron counts higher than five in an octahederal complex will be unable to 

stabilize the oxygen atom p-orbitals.27  Since metals in groups 9, 10, 11, and 12 have 

high energetic barriers to generate d4 oxidation states, they are no longer stable towards 
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Scheme 5-3. Proposed C-H activation reaction between 2-phenyl pyridine and iodosobenzene 
diacetate catalyzed by CoII((tBuPhO)2NHC)THF 

 

H2O2 or O2.
27  Although there are serveral group 9 metals that have metal oxo bonds 

(IrV(O)(mesityl)3
28

 and  PtIV(O)29) which do not break the “oxo wall” rule due to 

coordination geometries and ligand choice that allow for vacant d orbitals with π 

symmetry.  Furthermore, work done by Nocera et. al. using a thin film Co–Pi (Pi = 

methylphosphonate) catalyst demonstrated H2O oxidation, where a CoIV=O complex is 

believed to be an intermediate, in O2 production.21, 30-32   

 The multielectron redox capacity of CoII((tBuPhO)2NHC)THF complex makes it 

an interesting candidate for oxygen atom transfer.   I therefore set out to evaluate 

oxygen atom transfer to/from CoII((tBuPhO)2NHC)THF, with the aim of preparing and 

characterizing unusual oxo intermediates and/or developing new cobalt-catalyzed oxo 

transfer cycles to an organic substrate. 

5.2 Results 

5.2.1 Attempts at C–H bond activation with CoII((tBuPhO)2NHC)THF  

 

 Attempting to mimic C-H bond activition seen in PdII systems, 2-phenylpyridine  

and iodosobenzene diacetate (PhI(OAc)2) were reacted in the presence of a catalytic 

amount of CoII((tBuPhO)2NHC)THF (10 mol %) for 24 hr (Scheme 5-3).  The desired 

product was not observed in either reaction.  However, ESI–MS analysis showed a peak 
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Scheme 5-4  .Reactions between ethers and PhMgBr using CoII((tBuPhO)2NHC)THF.  

 

at 690 m/z which corresponds to the molecular weight of the starting 

CoII((tBuPhO)2NHC)THF complex and 2-phenylpyridine. No other metal containing 

species was observed by ESI. Although product was not dectected, several other peaks 

were present in the GC-MS trace, however, they could not be assigned to any oxidized 

2-phenyl pyrinde complex.  Using 2,3,4,5,6,6-hexachlorocyclohexa-2,4-dien-1-one 

(HCP) as a 2e− oxidant, a Cl+ reagent, a reaction between 2-phenylpyridine and HCP in 

the presence of either CoII((tBuPhO)2NHC)THF or [CoIII((tBuPhO)2NHC)THF2]
+ lead to 

an immediate color change to green and a very small amount (<< 1 %) of 2-(2-

chlorophenyl)pyridine as judged by GC-MS.  In a separate reaction m-CPBA was used 

as the oxidant, replacing PhI(OAc)2 in Scheme 5-3.  Unfortunately, no C–H bond 

activation followed by cross-coupling was observed.   

 Since the [Co((tBuPhO)2NHC)(THF)n+1]
n+ ET series, Chapter 3 of this thesis, has 

an affinity for ethers (in the form of THF), we proposed that an ether might be a better 

chelation ligand to direct a C–H bond towards the metal center.  To test this theory 

several ethers were chosen and tested for C–H bond activation (Scheme 5-4).  
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Exposure of CoII((tBuPhO)2NHC)THF to the ethers in Scheme 5-4 did not lead to a color 

change.  Adding PhMgBr lead to an immediate color change and the production of 

biphenyl.  However,  no cross-coupling between the ether and aryl Grignard was 

observed by GC-MS.  

 

5.2.2 Stoichiometric reactions of CoII((tBuPhO)2NHC)THF with O–atom transfer 

reagents 

 

 Attempts were made to oxidize CoII((tBuPhO)2NHC)THF using meta-

chloroperoxybenzoic acid (m-CPBA) and iodosylbenzene (PhIO).  Dissolving 

CoII((tBuPhO)2NHC)THF in CH3CN affords an orange solution with several new low 

intensity peaks at 542 nm, 589 nm, and 778 nm, which are not present when 

CoII((tBuPhO)2NHC)THF is dissolved in THF.  Exposure of this orange solution to 1 

equiv m-CPBA results in a decrease in the intensity of the peak at 423 nm by 50 % 

(Figure 5-1 b) with a commensurate increase in the 542 nm, 589 nm, and 778 nm peaks 

during the first 30 seconds of the reaction.  Over the course of an hour, the peaks at 

423, 589 and 778 nm decrease to produce a broad low intensity peak at 750 nm in a 

UV–vis spectrum corresponding to a green solution.  In contrast, when 0.5 equiv m-

CPBA was added no increase in any peaks were noticed after an hour.  The solution still 

remained a light orange (Figure 5-1 a) and after an hour, the solution turned green, and 

the spectra matched that obtained with 1 equiv of m-CPBA after one hour.  Addition of 3 

equiv of m-CPBA to the CoII((tBuPhO)2NHC)THF containing solution immediately turned 

green and no increase in absorbance was seen (Figure 5-1 c).  
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Figure 5-1 UV-Vis spectra of a reaction between CoII((tBuPhO)2NHC)THF and m-CPBA in 
CH3CN.  Red line represents CoII((tBuPhO)2NHC)THF in CH3CN prior to m-CPBA addtion.  
Orange line represents 30 sec after m-CBPA addition.  Green line represents 60 mins after 
m-CPBA addition. a) 0.5 equiv  of m-CPBA. b) 1 equiv of m-CBPA c) 3 equiv of m-CPBA. 

 



106 
 

The peak at 428 nm is converted to a shoulder which is not seen when stoichiometric or 

substoichiometric amounts of m-CPBA is used.  When CoII((tBuPhO)2NHC)THF was 

reacted with 1 equiv of PhIO in THF, a similar color change from orange to green  

occurred over the course of 60 mins at ambient temperature. However, the two oxidants, 

PhIO and m-CPBA, produced two different absorption sepctra.  The UV-Vis spectrum of 

the PhIO reaction with CoII((tBuPhO)2NHC)THF showed a loss of the peak at 423 nm 

and a new low absorbance peak at 671 nm.  However when 10 equiv of PhIO is added 

to CoII((tBuPhO)2NHC)THF the absorption spectra generated matches that of 3 equiv of 

m-CBPA.  ESI−MS analysis of all three reactions in Figure 5-1 contained 

CoII((tBuPhO)2NHC)THF, however, there were no m/z peaks indicative of a metal oxo 

species.  Attempts to grow crystals of the green solution produced only an amorphous 

powder.   

 To test oxygen atom transfer to an organic substrate, CoII((tBuPhO)2NHC)THF, 2 

equiv of an organic substrate, and  2 equiv of an oxygen atoms transfer reagent (m-

CPBA) were allowed to react for  24 hours in THF under N2 (Table 5-1).  The result in all 

cases studied, as judged by   GC-MS, did not lead to oxygen atom transfer (Table 5-1), 

except in the case of triphenylphosphine (P(Ph)3) and tri(p-tolyl)phosphine (P(tol)3) 

where the amount of O=P(Ph)3 or O=P(tol)3 did not exceed the control, in which no metal 

was present.   
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No by-product of the oxygen atom transfer reagents was observed by GC-MS.  The 

CoII((tBuPhO)2NHC)THF complex remains in the final solution as judged by ESI and 

MALDI, however, the amount could not be quantified.

 
 

Table 5-1.  Oxygen atom transfer to organic substrates using CoII((tBuPhO)2NHC)THF 
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5.2.3 [Fe((tBuPhO)2NHC)Cl2]
− and [Fe((tBuPhO)2NHC)]+ synthesis and 

characterization 

 

 Iron with redox-active ligands has already been shown to be of interest in both 

the FeIII(apPh)2, Chapter 2, and the (iPrPDI)Fe(N2)2 complex from the Chirik group.33  

Generating the [FeIII((tBuPhO)2NHC)]+ complex could not only expand the reactions that 

the NHC ligand could afford, its designed to remedy many of the challenges seen with 

the [FeIII(apPh)2]
−

 including ligand rearrangement, and ease of oxidation.  The 

[Fe((tBuPhO)2NHC)]+ ET series is also a better candidate for metal-oxo chemistry.  For 

example, previously reported FeIV=O complexes could oxygenate olefins34, P(Ph)3
35, 

sulides36, and alkanes37. To this end, [Fe((tBuPhO)2NHC)]+ will be synthesized and 

tested for chemistry requiring 2e− transformations, such as selective C-C bond forming 

reactions and oxygen atom transfer.  

 A solution of FeCl3 in CH3CN was added to a yellow, MeOH solution of 

deprotonated [(tBuPhO)2NHC]2- to immediately afford a purple solution.  

The resulting purple solution was filtered, dried, taken up in THF, filtered and dried again 

to afford a purple powder in moderate (47 %) yield.  ESI–MS showed a parent ion peak 

at 602.2 m/z with an isotopic splitting pattern matched that for the [(tBuPhO)2NHC]2- 

 

Figure 5-2.  Proposed structure of [FeIII((tBuPhO)2NHC)Cl2]−. 
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bound to one iron metal with two chlorides associated (calculated 602.21 m/z).  

Assuming that the ligand is still reduced, the complex is best thought of as FeIII bound in 

a tridentate fashion to [(tBuPhO)2NHC]2-, with two chlorides bound to iron to give an 

overall anionic complex Na[FeIII((tBuPhO)2NHC)Cl2] (Figure 5-2).  The UV-Vis spectrum 

of the purple Na[Fe((tBuPhO)2NHC)Cl2]
 complex shows a peaks at 428 nm and 500 nm 

(Figure 5-3).  The peak at 428 nm is reminiscent of the 423 nm peak seen in the 

CoII((tBuPhO)2NHC) complex (Chapter 3 of this thesis).  Repeated attempts to obtain 

single crystals of the Na[Fe((tBuPhO)2NHC)Cl2] complex did not yield X-ray quality 

crystals.  The absence of X-ray data precludes assignment of the ligand oxidation state 

but based on the aforementioned data formulation as a cationic, square pyramidal  FeIII 

complex bound to a [(tBuPhO)2NHC]2− in a tridentate fashion with two chlorides is 

 

Figure 5-3. UV-vis absorption sepctrum for [FeIII((tBuPhO)2NHC)Cl2][Na] in THF at room 
temperature. 
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Figure 5-5. Solid-state structure of [((tBuPhO)2NHC)H3][FeCl4] shown with 50% probability 
ellipsoids.  Hydrogen atoms omitted for clarity. 

silver oxidized product.  Oxidation of the [Fe((tBuPhO)2NHC)Cl2]
− complex using 1 equiv 

of WCl6 in CH2Cl2 lead to a new red solution that deposited red crystals suitable for solid 

state analysis from a solution of CH2Cl2 layered with pentane.  The resulting crystal 

structure showed a fully protonated and reduced [(tBuPhO)2NHC]+ with [FeCl4]
− as the 

counter ion (Figure 5-5).   
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Figure 5-6. Cyclic voltammogram of [FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 in CH3CN 
containing 0.1 M [nBu4N][PF6] at a 10 mm Pt electrode. Temperature: 25 °C. a) Scan rate: 
0.100 V•s-1. b) Scan rate: 0.500 V•s-1. 
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Figure 5-7.  UV-vis absorption sepctrum for [FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 in THF at 
room temperature. 
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 To produce a halide free version of Na[FeIII((tBuPhO)2NHC)Cl2] addition of 

FeIII(ClO4)3 to the deprotonated ligand ([(tBuPhO)2NHC]2- in MeOH, yielded a purple 

solution.  This new complex has a UV-Vis with a two peaks at 342 nm and 532 nm 

(Figure 5-7).  ESI–MS shows an isotopic splitting pattern and 594.4 m/z consistent with 

an iron bound to one [(tBuPhO)2NHC]2− ligand and two associated methanols 

[FeIII((tBuPhO)2NHC)(MeOH)2]
+ (594.4 m/z).   The open circuit potential for 

[FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 is at -0.39 V which is the same open circuit potential 

as Na[Fe((tBuPhO)2NHC)Cl2].  The [FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 complex shows 

no reversible peaks when the potential window covers ~ 4.0 V at a scan rate of 100 mVs-

1 (Figure 5-6 a).  The [FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 shows two oxidation events 

above the open potential at 0.07 and 0.69 V.  There are also two irreversible reduction 
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events negative of the open circuit potential at -1.02 and -1.31 V.  However, when the 

scan rate is increased to 500 mVs-1 and the potential window is narrowed, two quasi-

reversible oxidation waves are seen at -0.31 and 0.09 V (Figure 5-6 b).   

 Attempts were made to chemically oxidation [FeIII((tBuPhO)2NHC)(MeOH)2]ClO4.  

Exposure of [FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 to 1 or 2 equiv of AgBF4 gives a distinct 

color change from purple to green in both cases.  With 1 equiv of AgBF4 the UV-Vis 

spectrum showed a blue shift of both peaks to 393 nm and 556 nm.  When 2 equiv of 

AgBF4 were used the peak at 393 nm remained, however, a new peak at 500 nm 

appeared with the disappearance of the peak at 556 nm.  Numerous attempts to obtain 

single crystals of the oxidation products yielded only amorphous powders.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



115 
 

Table 5-2. Cross-coupling yields of PhMgBr and 1-bromohexane in the presence of 
[FeIII((tBuPhO)2NHC)Cl2]− under N2 or aerobic conditions. 

 

     Equiv vs [Fe] used Yield % vs organic1 TON vs [Fe] 

Entry Condition PhMgCl HxBr Ph-Ph Ph-Hx Ph-Ph Ph-Hx 

1 N2 0.6 0.6 79 13 0.23 0.08 

2 N2 1.2 1.2 80 20 0.48 0.25 

3 N2 3 3 67 22 1.00 0.66 

4 N2 6 6 59 25 1.77 1.50 

5 Air 0.6 0.6 81 14 0.24 0.08 

6 Air 1.2 1.2 81 19 0.48 0.23 

7 Air 3 3 69 23 1.03 0.69 

8 Air 6 6 71 22 2.13 1.32 
 

1Yields determined by GC-FID using decane as an internal standard. 

5.2.4 [Fe((tBuPhO)2NHC)(MeOH)2]
+ catalyzed cross-coupling of alkyl halides and 

Grignards 

 

 Given the similarities of [Fe((tBuPhO)2NHC)Cl2]
−  to CoII((tBuPhO)2NHC)THF 

attempts were made to utilize this new iron complex for Kumada-type cross-coupling of 

aryl Grignard reagents and alkyl halides.  As summerized in Table 5-2, the 

[Fe((tBuPhO)2NHC)Cl2]
− complex was reacted with PhMgBr in the presence of alkyl 

halides at room temperature under N2 and aerobic conditions.  At 16 % catalyst loading 

of Na[Fe((tBuPhO)2NHC)Cl2] 25 % yield of the desired cross-coupled product 

(hexylbenzene, Ph-Hx) was achieved.  This represents 1.5 TON vs 

Na[Fe((tBuPhO)2NHC)Cl2].  Also of interest, the ratio of undesired homocoupling vs 
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Table 5-3. Cross-coupling yields of PhMgBr and 1-bromohexane in the presence of 
[FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 under N2 or aerobic conditions. 

 

   Equiv vs [Fe] used Yield % vs organic1 TON vs [Fe] 

Entry Condition PhMgCl HxBr Ph-Ph Ph-Hx Ph-Ph Ph-Hx 

1 N2 1 1 33 2 0.17 0.02 

2 N2 2 2 41 4 0.41 0.08 

3 N2 5 5 51 10 1.27 0.47 

4 N2 10 10 50 12 2.49 1.17 

5 Air 1 1 31 2 0.15 0.02 

6 Air 2 2 40 4 0.40 0.08 

7 Air 5 5 52 9 1.29 0.47 

8 Air 10 10 51 12 2.54 1.18 

 

1Yield determined by GC-FID using decane as an internal standard 

cross-coupling is nearly 1:1 vs [Fe((tBuPhO)2NHC)Cl2]
− under N2.  Under aerobic 

conditions the ratio of Ph-Ph to Ph-Hx is 2:1.  Under an atmosphere of air the 

[Fe((tBuPhO)2NHC)Cl2]
− appears to be acting like FeCl(isqPh)2 (Chapter 2) in which the 

Fe complex is reduced by reductive elimination of 2 equiv of Grignard and then oxidized 

by O2 to reform the complex as evidenced by the homocoupling yields of nearly 50% 

(Table 5-3, entry 7-8).  

 When [FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 was used as the catalyst in the above 

reaction under the same conditions a lower yield of cross-coupling product, Ph-Hx, 

(Table 5-3) and a higher yield of the homocoupled, biphenyl, was observed.  Under both 

N2 and air, the ratio of homocoupled product to cross-coupled product was 2.5:1.   
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5.2.5 [FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 reactivity with oxygen transfer reagents 

 

 The [FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 complex was reacted with an oxygen 

transfer reagent (m-CBPA) and several organic substrates.  A smaller list of substrates 

was chosen in comparison to CoII((tBuPhO)2NHC complex.  In all cases no oxygenated 

substrate was seen except in the case of P(Ph)3 were the amount of O=P(Ph)3 did not 

exceed the control reaction in which no metal was present (Table 5-4).  Color changes 

were observed in every reaction except in the case of P(PH)3.  All of the other reactions 

changed color from purple to orange upon addition of m-CBPA.  No identifiable metal 

containing product remained at the end of the reaction as judged by ESI.  Furthermore, 

no single crystal was attained from the reaction solution.  
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Table 5-4. Oxygen atom transfer reactions to oragnic substrates in the presence of 
[FeIII(tBuPhO)2NHC)(MeOH)2]ClO4. 
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5.3 Discussion 

5.3.1 CoII((tBuPhO)2NHC)THF C–H bond activition and oxygen atom transfer 

reactions 

 

 2-phenylpyridine was chosen as initial target for C–H bond activation for several 

reasons.  First, the proposed mechanism of action in the palladium catalyzed case 

involves a nitrogen binding to the metal center, positioning one C–H bond adjacent to 

the metal.15  The compound 2-phenylpyridine therefore, requires open cis sites at the 

metal center.  The CoII((tBuPhO)2NHC, with its available cis sites, is a better candidate 

for C–H bond activation compared to the FeIII(isq)2Cl, Chapter 2, and the [Co(ap)2]
− 

complexes previously studied in the Soper Lab which have to undergo isomerization to 

access cis sites.38  Second, CoII((tBuPhO)2NHC readily binds THF trans to the carbene.  

The nitrogen in 2-phenylpyridine would displace the solvent and bind to the metal center, 

which was observed by ESI–MS.  

Under these conditions, no evidence of C–H bond activation by 

CoII((tBuPhO)2NHC was observed.  However, a distinct orange to green color change 

was noticed on addition of several different oxidants including PhI(OAc)2, m-CPBA, or 

HCP. The resulting green solution is not just a doubly oxidized version of the 

CoII((tBuPhO)2NHC)THF.  The doubly oxidized complex  

[CoII((tBuPhO•)2NHC)THF](PF6)2 has an intense (2000 ε) broad peak at 850 nm 

(Chapter 3) which is not present in the reaction between CoII((tBuPhO)2NHC)THF and 

oxygen atom transfer reagents.  This could imply a new intermediate or a more 

complicated reaction between the oxidant and the CoII((tBuPhO)2NHC)THF.  

Additionally, the reaction between HCP and 2-phenylpyridine in the presence of 

CoII((tBuPhO)2NHC)THF did produce a very small amount (<< 1 %) of 2-(2-
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chlorophenyl)pyridine.  While this could mean that under optimized conditions 

CoII((tBuPhO)2NHC)THF is able to activate the C–H bonds, the small amount of 2-(2-

chlorophenyl)pyridine seen may also be the result of other routes e.g. a radical 

mechanism.  Much more work needs to be done to determine if CoII((tBuPhO)2NHC)THF 

can reproducibly activate C–H bonds in the presence of 2-phenylpyridine and HCP or an 

alternative oxidant.   

Another parameter to explore is the effect of free rotation between the pyridine 

and phenyl moieties.  While this rotation does not hinder C–H bond activation in the 

palladium system, in the cobalt system described here the steric bulk at cobalt in the 

complex CoII((tBuPhO)2NHC)THF might prevent the C–H bond to have direct contact 

with the metal center.  A more rigid system such as benzo[h]quinoline, which has also 

been used previously in palladium systems, might increase the possibility of C–H bond 

activation using the CoII((tBuPhO)2NHC)THF complex by holding the C–H bond towards 

the metal. 

 The use of pyridine in the 2-phenylpyridine was designed to hold the C–H bond 

directly at the metal center.  This system works well for palladium based catalysts. But 

given the propensity of the CoII((tBuPhO)2NHC)THF complex has demonstrated affinity 

to bind ethers (in the form of THF) we speculated other ethers might be capable as the 

directing ligands for C–H bond activation in the cobalt system.  To this end, several 

ethers were selected and tested for C–H bond activation Scheme 5-4.  Unfortunately, 

none of the alkyl and aryl ethers chosen yielded products that have undergone C–H 

bond activation.     

 Cobalt complexes that are known to activate C–H bonds are generally proposed 

to be Co0 species generated in situ from CoII/CoIII precursors in a very reducing 
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environment (e.g. 100 equiv. of methyl magnesium bromide).18  In this regard, it might be 

interesting to pursue the isolation of very reduced analogs of CoII((tBuPhO)2NHC)THF, 

such as the a [Co0((tBuPhO)2NHC]2- dianion. 

 Several cobalt based catalyst are known to transfer oxygen atoms.39-41  For 

instance, a cobalt bound to a dianionic tetradentate macrocycle was able to oxidize 

styrene using PhIO.40  Additionally, work done by Nocera et. al. demonstrated a CoIV=O 

complex was present during H2O oxidation.32  Therefore, attempts were made to transfer 

an oxygen atom, from oxygen atom transfer reagents, to organic substrates including 

phoshpines, alkanes, alkenes, and aryls.  The substrates chosen (Table 5-1) have all 

been shown to accept oxygen atoms from base metal complexes.  Using iron complexes 

as a guide for oxygen atom transfer, substrates were chosen based on what previous 

iron complexes were able to achieve.  For example, FeIV=O complexes could oxygenate 

olefins34, P(Ph)3
35, sulfides36, and alkanes37  The organic substrates also represent 

varying degrees of difficulty towards oxidation.  For instance, thermodynamic 

calculations place the oxygenation of P(Ph)3 at a much more thermodynamically 

favorable value as compared to the oxygenation of alkanes.26  Although no oxygen atom 

transfer catalysis was observed, CoII((tBuPhO)2NHC)THF underwent color changes.  

These color changes were dependent on the amount of m-CPBA added.  When 1 equiv 

of m-CPBA was used an intermediate was observed as shown in Figure 5-1.  The 

intermediate disappeared over the course of an hour to generate a green solution.  

When 0.5 equiv m-CPBA was used only half of the starting complex was lost.  In the 

case where 3 equiv m-CPBA was used no intermediate was observed and the solution 

immediately turned green.  The identity of the green solution has not yet been 

determined.  Running the reaction at low temperature might allow for the stabilization or 

isolation of the intermediate between CoII((tBuPhO)2NHC)THF and 1 equiv of m-CPBA. 
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5.3.2 Na[Fe((tBuPhO)2NHC)Cl2] synthesis and reactivity 

 

 The reaction between FeCl3 and deprotonated [(tBuPhO)2NHC]2- lead to a purple 

powder.  The purple powder had an isotopic splitting pattern  and molecular weight that 

matched the calculated m/z for [Fe((tBuPhO)2NHC)Cl2]
−.  Although many attempts were 

made to generate a single crystal of sufficient quality for solid state analysis, conditions 

have not been identified to produce a single crystal of sufficient quality.   However, upon 

oxidation of [Fe((tBuPhO)2NHC)Cl2]
− with 1 equiv of WCl6 a red crystal of sufficient 

quality was generated.  The X-ray crystallographic data shows a fully protonated and 

demetallated [(tBuPhO)2NHC]+ complex with [FeCl4]
− as the counter ion.   The oxidant 

WCl6, a strong oxidant, has been known to chlorinate organic substrates.42  In this case 

the WCl6 chlorinated the iron in [Fe((tBuPhO)2NHC)Cl2]
− to form [FeCl4]

−.  Although other 

oxidants were tried, AgBF4 and NOBF4, no other crystals were obtained.  

 The Na[Fe((tBuPhO)2NHC)Cl2] shows an quasi-reversible oxidation wave at 0.24 

V and an irreversible oxidation wave at 0.75 V.  If Na[Fe((tBuPhO)2NHC)Cl2] is 

formulated as containing an FeIII, then both oxidation are most likely ligand centered. 

The Na[Fe((tBuPhO)2NHC)Cl2] complex also shows two irreversible reductions at -1.2 

and -1.5 V, which are assigned to metal reductions.  It seems that the irreversibility of 

the oxidation and reduction waves are due to the bound chlorides displacing from the 

iron complex.  Furthermore, the CV clearly shows the ability of 

Na[Fe((tBuPhO)2NHC)Cl2] to span multiple oxidations.  While the oxidation state of the 

metal and ligand in Na[Fe((tBuPhO)2NHC)Cl2] cannot be unambiguously assigned, the 

CV  suggests that both the ligand  and metal are involved in the redox chemistry of the 

complex. 
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 Although the solid state structure has not yet been determined, reactivity studies 

were performed.  Cross-coupling was achieved between PhMgBr and 1-bromohexane 

using 15 mol % Na[Fe((tBuPhO)2NHC)Cl2]
 as the catalyst.  The cross-coupled product 

yield was low (25 %) but was significantly higher than that seen using 

CoII((tBuPhO)2NHC)THF (4 % yield of cross-coupled product, Chapter 3).  Additionally, 

the Na[Fe((tBuPhO)2NHC)Cl2]
 demonstrates selectivity towards the cross-coupled vs 

homocoupled product.  In the case of CoII((tBuPhO)2NHC)THF the dominant organic 

product was homocoupled product (ratio 10:1 of homocoupled to cross-coupled). 

However, in the case of Na[Fe((tBuPhO)2NHC)Cl2]
 the ratio of homocoupled to cross-

coupled product was nearly 1:1.  When the reaction was run under aerobic conditions 

cross-coupling was still achieved however the reaction produced more homocoupled 

product than cross-coupling (~ 2:1).  This mimics the reactivity seen in Chapter 2, where 

FeCl(isqPh)2 was able to homocouple PhMgBr using O2 as the terminal oxidant.  The 

increase in cross-coupling to form new C–C bonds warrants further investigation into 

both the coordination environment and oxidation state of the  Na[Fe((tBuPhO)2NHC)Cl2].  

Understanding both of those conditions would help to elucidate a mechanism that will aid 

in further rational redox-active ligand design.   

5.3.3 [Fe((tBuPhO)2NHC)(MeOH)2]ClO4 synthesis and reactivity 

 

 To test whether or not the irreversible peaks seen in the cyclic voltammogram 

where due to the halides, a halide free analog of Na[Fe((tBuPhO)2NHC)Cl2] was 

synthesized [FeIII((tBuPhO)2NHC)(MeOH)2]ClO4.  The synthetic procedure to 

[FeIII((tBuPhO)2NHC)(MeOH)2]ClO4  was achieved using the same condition to generate 

Na[Fe((tBuPhO)2NHC)Cl2]. The UV-Vis spectrum of [FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 

is completely different from the [Fe((tBuPhO)2NHC)Cl2]
− complex.  The CV shows a 
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similar open potential vs [Fe((tBuPhO)2NHC)Cl2]
− (-0.39 V vs -0.40 V), however 

[FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 shows two quasi-reversible oxidation waves, at -0.31 

V and 0.09 V.  The second quasi-reversible oxidation wave at -0.31 is similar to the first 

quasi-reversible oxidation wave seen with [Fe((tBuPhO)2NHC)Cl2]
−.  Both oxidation 

peaks for [FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 are quasi-reversible in contrast to 

[Fe((tBuPhO)2NHC)Cl2]
− where the second oxidation is irreversible.  This can be 

ascribed to the labile of the Cl− ligands in Na[Fe((tBuPhO)2NHC)Cl2 ]. 

 Although CV data suggests the [FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 complex 

remains intact during oxidation and reduction, isolation of the oxidized/reduced materials 

has been complicated by the [FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 forming amorphous 

solids.   However, cross-coupling reactions were attempted using 

[FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 as the catalyst.  As seen in Table 5-3, cross-

coupling between PhMgBr and 1-bromohexane did occur.  The cross-coupling yield is 

less than what is seen using the Na[Fe((tBuPhO)2NHC)Cl2]
 complex and produces more 

homocoupled product (Ph-Ph).  The main difference between 

[FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 and Na[Fe((tBuPhO)2NHC)Cl2] is the presents of 2 

bound chlorides in the latter complex. Having the halide already bound to the metal 

center seems to be a requirement to increase the yield of cross-coupled product.  The 

halides bound in the complex Na[Fe((tBuPhO)2NHC)Cl2] could occupy binding sites on 

the metal center that aid in directing reactivity toward cross-coupling and away from 

undesired side reactions such as homocoupling of PhMgBr or cross-coupling of the alkyl 

halide and the ligand.  This result is perplexing due to the large amounts of halide in 

solution during the reaction when using either Fe complex.  The reaction is insensitive to 

an oxidizing environment.  When the reaction is run in either N2 or ambient atmosphere 

the organic products were the same.   Furthermore, the ratio of homocoupled to cross-
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coupled product was 2.5:1 whereas the [Fe((tBuPhO)2NHC)Cl2]
− complex has a 1:1 ratio 

of products.  This complex is not as selective for cross-coupling and does not seem to 

use O2 as an oxidant to increase Ph-Ph as seen with [Fe((tBuPhO)2NHC)Cl2]
− and 

FeIIICl(isqPh)2 (Chapter 2).    

 High valent FeIV=O complexes have been very successful at oxygen atom 

transfer reactions to challenging organic substrates such as unactivated alkanes.43  We 

proposed the ability of  [FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 to support ligand radicals 

would make it a prime choice for oxygen atom transfer, catalysis, however, conditions 

have not been found that allow such a reaction to occur using [Fe((tBuPhO)2NHC)Cl2]
− 

as the catalyst. 

 

5.4 Conclusion 

5.4.1 Scope of reactivity of CoII((tBuPhO)2NHC)THF 

 

 The CoII((tBuPhO)2NHC)THF was unable to activate a C–H bond or transfer an 

oxygen atom to an organic substrate.  In the case of C–H bond activation, cobalt has 

been known since the 1950’s to activate C–H bonds but the use of high pressure, high 

temperature, and stoichiometeric amount of Co2(CO)8 were required.44-45  In addition, 

most C–H bond activition cobalt catalyst are Co0 complexes. The mechanism for C–H 

bond activition by Co0 is complicated as both a radical mechanism46 and concerted 

CoI/CoIII mechanism have been reported.19, 47-49  While a well-defined catalyst such as 

CoII((tBuPhO)2NHC)THF could shed light on the mechanism of C–H bond activation at 

cobalt, thus far conditions have not yet been found to allow C–H activation.  It might be 
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that a reduced CoII((tBuPhO)2NHC)THF complex, such as [Co0((tBuPhO)2NHC)THF]2-, 

would be a better candidate for ligand assisted C–H activation. 

 In the case of oxygen atom transfer, CoII((tBuPhO)2NHC)THF was unable to 

deliver an oxygen atom to an organic substrate.  Interestingly, a distinct color change 

was noticed when CoII((tBuPhO)2NHC)THF was in the presence of an oxygen atom 

donor.  This seems to imply that an interaction between CoII((tBuPhO)2NHC)THF  and 

an oxygen atom is possible and that the lack of oxygen atom transfer could be due to the 

conditions used, i.e. temperature, oxidant, and cobalt complex oxidation state.  Cooling 

the reaction down might decrease the rapid reaction between CoII((tBuPhO)2NHC)THF 

and oxygen atom transfer reagents.  The triply oxidized complex 

[CoIII((tBuPhO•)2NHC)THF]3+, which has yet to be isolated, might have the best chance 

of oxygen atom transfer, since the ligand could support electron deficient cobalt.     

5.4.2 [FeIII((tBuPhO)2NHC)]+ synthesis and reactivity 

 
 The synthesis of Na[FeIII((tBuPhO)2NHC)Cl2] is very reproducible, however 

conditions have not yet been found to generate a single crystal of sufficient quality for X-

ray crystallography.  The Na[FeIII((tBuPhO)2NHC)Cl2] demonstrated by cyclic 

voltammetry implies that ligand is involved in the redox chemistry due to the four redox 

event observed.  The irreversibility seen in the CV is believed to be due to chlorides 

bound to the metal center.  This was remedied by synthesizing the halide free 

[FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 complex.  The CV of 

[FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 shows two quasi-reversible oxidation peaks and 

shares the same open potential of the Na[FeIII((tBuPhO)2NHC)Cl2].  Although a single 

crystal for X-ray crystallography has not yet been produced further attempts should be 

tried. 
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 The cross-coupling reactivity between PhMgBr and 1-bromohexane using Na 

[FeIII((tBuPhO)2NHC)Cl2] as the catalyst showed promise.  The reaction in catalytic (1.5 

TON vs Na[FeIII((tBuPhO)2NHC)Cl2]) and demonstrates selectivity towards cross-

coupling vs homocoupling.  This is a marked improvement vs the 

CoII((tBuPhO)2NHC)THF reactivity from Chapter 3.   Decomposition of the ligand, as 

seen in Chapter 3, via cross-coupling of the alkyl halide to the carbene has not been 

explored in either Na[FeIII((tBuPhO)2NHC)Cl2] or [FeIII((tBuPhO)2NHC)(MeOH)2]ClO4.  

This might also hinder the cross-coupling ability of Na[FeIII((tBuPhO)2NHC)Cl2].   

Although the reactivity is, thus far, limited to C–C bond forming reactions, it warrants 

further investigation into the mechanism.  Once a definitive structure of 

[FeIII((tBuPhO)2NHC)(MeOH)2]ClO4 has been determine and the ET series confirmed 

more mechanistic studies should be carried out to elucidate the steps involved in C-C 

bond formation.  This information will serve to guide further ligand design and will 

provide insight into work towards oxygen atom transfer.  

 

5.5 Methods 

5.5.1 General considerations 

 

 Unless otherwise noted, all manipulations were performed under anaerobic 

conditions using standard vacuum line techniques, or in an inert atmosphere glove box 

under purified dinitrogen. All NMR spectra were acquired on a Varian Mercury 300 

spectrometer (300.323 MHz for 1H) at ambient temperature. Chemical shifts are reported 

in parts per million (ppm) relative to TMS, with the residual solvent peak serving as an 

internal reference.  UV–visible absorption spectra were acquired using a Varian Cary 50 

spectrophotometer. Unless otherwise specified, all electronic absorption spectra were 
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recorded at ambient temperatures in 1 cm quartz cells.  All mass spectra were recorded 

in the Georgia Institute of Technology Bioanalytical Mass Spectrometry Facility. Cyclic 

voltammetric measurements were made using a CH Instruments CHI620C potentiostat 

in a three component cell consisting of a platinum disk working electrode, a platinum 

wire auxiliary electrode, and a non-aqueous AgNO3/Ag reference electrode. Unless 

otherwise noted, all electrochemical experiments were performed in CH3CN or THF with 

0.1 M [nBu4N][PF6] as the supporting electrolyte. Electrochemical data are referenced 

and reported to Fc+/Fc as an internal standard. Elemental analyses were performed by 

Atlantic Microlab, Inc., Norcross, GA. All analyses were performed in duplicate, and the 

reported compositions are the average of the two runs. Anhydrous acetonitrile (CH3CN), 

tetrahydrofuran (THF), and pentane solvents for air- and moisture- sensitive 

manipulations were purchased from Sigma–Aldrich, further dried by passage through 

columns of activated alumina, degassed by at least three freeze–pump–thaw cycles, and 

stored under N2 prior to use. Methanol (anhydrous, 99.0%) was purchased from 

Honeywell Burdick & Jackson, and used as received.  The ligand 2,4-di-tert-butyl-6-(2,6-

diisopropylphenylimino) benzoquinone ([(tBuPhO)2NHC]C]) was prepared by the method 

outlined in chapter 3 of this thesis. Iodosylbenzene was prepared according to literature 

procedures and prepared fresh monthly.50  All other chemicals were purchased from 

Sigma–Aldrich and used as received. 

 

5.5.2 Na[Fe((tBuPhO)2NHC)]   synthesis 

 

 A scintillation vial with a magnetic stir bar was charged with [(tBuPhO)2NHC]Cl 

(0.257 g, 0.5 mmol) and 3 equiv of 0.5 M sodium methoxide in methanol (3 mL, 1.5 

mmol) in 5 mL THF.  The solution immediately turned bright yellow and was stirred for 
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10 mins.  A solution of FeCl3 (0.0812 mg, 0.5 mmol) in 5 mL CH3CN was added to the 

yellow deprotonated [(tBuPhO)2NHC]2- solution to generate an immediate color change 

to  purple.  The solution was allowed to stir for 15 mins.  The purple solution was filtered 

through a Celite plug, and the filtrate was dried in vacuo and then taken up in THF.  The 

purple THF solution was filtered through a Celite plug, the solvent was removed from the 

filtrate leaving a purple residue of the title complex [Fe((tBuPhO)2NHC)Cl2]Na in 47% 

yield (0.1495 g). ESI-MS (m/z): [Fe((tBuPhO)2NHC)Cl2]
−  Calcd: 602.2, Found: 602.2.  

Elemental analysis: [(tBuPhO)2NHC][FeCl2((tBuPhO)2NHC)] C62H91Cl2FeN4O4  Anal. 

Calcd: C = 68.75, H = 8.47, N = 5.17 Found: C = 68.32, H = 8.41, N = 5.21. 

5.5.3 X-ray crystallography  

A single crystal of [((tBuPhO)2NHC)][FeCl4] suitable for X-ray diffraction analysis 

was coated with Paratone N, suspended in a small fiber loop and placed in a nitrogen 

gas stream at 173 K on a Bruker D8 APEX II CCD sealed tube diffractometer. Diffraction 

data for [((tBuPhO)2NHC)][FeCl4] was collected using graphite monochromated Cu Kα (λ 

= 1.54178 Å) radiation. Data were measured using a series of combinations of phi and 

omega scans with 10 second frame exposures and 0.5° frame widths. Data collection, 

indexing and initial cell refinements were all carried out using APEX II software.51 Frame 

integration and final cell refinements were done using SAINT software.52  The final cell 

parameters were determined from least-squares refinement on 54,393 reflection for 

[((tBuPhO)2NHC)][FeCl4]. The structure was solved using direct methods and difference 

Fourier techniques using the shelxtl program package.53 Hydrogen atoms were placed in 

their idealized chemical positions using the HFIX command and were included in the 

final cycles of least-squares with isotropic Uij’s related to the atoms ridden upon. All non-
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hydrogen atoms were refined anisotropically. Details of data collection and structure 

refinement are provided in Table 5-5. 
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Table 5-5.  Crystallographic data and structure parameters for [(tBuPhO)2NHC][FeCl4]. 

Complex [((tBuPhO)2NHC][FeClO4] 

Empirical formula C31H45Cl4FeN2O2 

Formula weight 675.34 

T (K) 173(2) 

Crystal system Orthorhombic 

Space group Pnma 

Unit Cell dimensions  

a (Å) 11.648(4) 

b (Å) 30.874(10) 

c (Å) 9.621(3) 

α (o) 90 

β (o) 90 

γ (o) 90 

V (Å3) 3460(2) 

Z 4 

Dcalc (g/cm3) 1.296 

Absorption coefficient (mm-1) 0.773 

Crystal Size (mm) 0.16 x 0.09 x 0.05 

θ range for data collection (o) 2.22 to 27.48 

Index ranges -15≤=h≤=15 

 -40≤=k≤=40 

 -12≤=l≤=12 

Reflections collected 54393 

Reflections unique 4045 

Goodness of fit on F2 1.006 

R [I>2σ(l)] 0.06 

wR2 (all data) 0.2044 
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5.5.4 General reaction for C–H bond activation 

 

  In a representative example, a scintillation vial with a magnetic stir bar and 1 mL 

of THF was charged with 0.500 mL of a 16.4 mM solution of CoII((tBuPhO)2NHC)THF in 

THF, followed by the addition of 2.28 mL of a 72.2 mM solution of 2-phenylpyridine in 

THF.  After 5 mins of stirring, 0.826 mL of a 0.04 M solution PhMgBr in THF was added 

to the solution After 24 hours of stirring at room temperature a 0.400 mL aliquot of the 

solution was quenched with methanol (0.100 mL) and tested by GC-MS. 

5.5.5 General reaction for oxygen atom transfer 

 

 A scintillation vial with a magnetic stir bar and 1 mL of CH3CN was charged with 

0.500 mL of a 8.23 mM solution of CoII((tBuPhO)2NHC)THF in CH3CN (0.050 g in 10 ml 

of CH3CN), followed by the addition of 0.500 mL of a 16.46 mM solution of P(Ph)3  in 

CH3CN.  After 5 mins of stirring, 0.237 mL of a 34.8 mM solution of m-CPBA in CH3CN 

was added to the solution.  After 24 hours of stirring at room temperature a 0.400 mL 

aliquot of the solution was quenched with methanol (0.100 mL) and tested by GC-MS. 
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Chapter 6 

6  

Conclusions and Future Directions 

 

 

 Redox-active ligands can act as an electron reservoir to impart multiple electron 

redox events at metal centers prone to one electron transformation.  This allows for the 

development of well-defined 3d metal complexes to carry out C–C bond forming 

reactions.  My graduate work was aimed at catalyzing C–C bond formation at well-

defined 3d metal catalyst using redox-active ligands.  To achieve this goal previously 

reported complexes and new complexes containing 3d metals bound to redox-active 

ligands were synthesized and tested for C–C bond forming reactivity.  

 Several redox-active ligand containing complexes were synthesized including 

(FeIIICl(isqPh)2,CoII((tBuPhO)2NHC)THF, and [FeIII((tBuPhO)2NHC)Cl2]
–) and tested for 

C–C bond forming reactivity.  All of the complexes showed varying degrees of C–C 

coupling.  FeIIICl(isqPh)2 could homocouple PhMgBr to biphenyl with moderate yields (45 

%) using O2 as the terminal oxidant, however this complex was not competent at cross-

coupling. CoII((tBuPhO)2NHC)THF could activate C–O bonds for subsequent cross-

coupling to aryl Grignards forming new C–C bonds.  As an example, 3-

butoxypropanenitrile reacted with PhMgBr using CoII((tBuPhO)2NHC)THF as the catalyst 

to produce 3-phenylpropanenitrile in 70 % yield.  Kumada coupling was less successful, 

cross-coupling between PhMgBr and 1-bromohexane using 10 mol % of 

CoII((tBuPhO)2NHC)THF produced Ph–Hx (1.4 % yield) and biphenyl (26 % yield).   
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FeIII((tBuPhO)2NHC)Cl2]
– was more successful at Kumada coupling, producing a 25 % 

yield of cross-coupled product (Ph–Hx) and an 80 % yield of homocoupled product (Ph–

Ph) from the reaction of PhMgBr and 1-bromohexane at 15 mol % catalyst loading.

 To explain the resulting yields shown above attempts at generating ET series of 

the three catalysts were pursued to elucidate intermediates in their respective catalytic 

cycles.  While the CoII((tBuPhO)2NHC)THF ET series was isolated and characterized 

neither iron ET series has been generated, isolated and completely characterized.  This 

should be the focus of future work, especially in the case of [FeIII((tBuPhO)2NHC)Cl2]
–, 

where cross-coupling yields are 25 %.  The benefit to generating the ET series is 

demonstrated by the CoII((tBuPhO)2NHC)THF complex.  The ET series allowed 

mechanistic investigation into the ligand degradation pathway that prevents Kumada 

coupling.  Furthermore, by noticing that all three complexes in the cobalt ET series had a 

proclivity for oxygen (in the form of THF), other ethers where test for reactivity, in the 

hopes that an ether could direct reactivity at a particular bond.  This lead to the discovery 

of C–O activation using ether nitriles as directing groups, this kind of reactivity would 

have not been explored if the ET series was not isolated and characterized.  Exploration 

of nitrile directed C–O bond activation should also be continued.  Thus far 

CoII((tBuPhO)2NHC)THF can only activate ether nitriles, however other nitrile containing 

substrates are unexplored.  This could lead to a new strategy for C–H bond activation 

and should be the focus of future studies. 

 Additionally, FeIIICl(isqPh)2,CoII((tBuPhO)2NHC)THF, and 

[FeIII((tBuPhO)2NHC)Cl2]
– are unable to carry out stoichiometric oxidative addition of 

alkyl halides.  One attractive strategy that could alleviate this problem is extending the π 

system of the N-heterocyclic carbene.  This would decrease the π back donation of the 

metal d orbitals to the NHC making the metal center more electron rich.1-2 Therefore I 
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Figure 6-1 Proposed ligands to increase electron density at the metal center. 

propose that future work pursue this strategy by making analogous cobalt ET series of 

the ligands shown in Figure 6-1. Both ligands have been previously published but cobalt 

complexes based on the ligands in Figure 6-1 are unknown.3-4 

 In sum, redox-active ligands on 3d metals can function as well-defined catalysts 

for C–C bond forming reactions.  Studies that elucidate the mechanism that allow for C–

C bond forming reaction should be pursued.  Furthermore, ligands that increase the 

electron density at the metal center should be explored. 
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Appendix A. 

A A 

Work Towards a Pacman Type Redox-Active Ligand 

 

 

A.1 Introduction 
A.1.1 Pacman Type Ligands 
 

 Whereas this thesis has focused on the application of redox-active ligands for 

multielectron chemistry at a single base metal, nature has developed alternative 

strategies to catalyze multielectron redox reactions required for nitrogen fixation and 

water oxidation. To carry out these multielectron redox reactions nature employs 

enzymatic systems such as nitrogenase,1 hydrogenase2-3, photosystem II,4-5 and 

cytochrome c oxidase, that use multiple metal centers working in concert.6  By working 

cooperatively, the bimetallic centers can alter the reactivity of substrates and direct the 

timing and redox potential of the redox equivalents.7  Dinuclear metal center complexes 

have been pursued to mimic the reactivity of enzymatic systems or to model their 

intrinsic behavior.8-13  Furthermore, dinuclear metal center complexes can be used to 

catalytically convert small molecules.  For instance, the thermodynamic reduction 

potential for the catalytic four e– oxidation of O2 to H2O is 1.23 V vs. NHE if all four e– 

and protons are delivered in a concerted manner.  If the reaction proceeds via two 2 e– 

steps, producing either H2O2 or HO2, then the overall thermodynamic potential is 

increased to 1.65 V and 1.763 V respectively.  Cofacial bis(cobalt) diporphyrin could 

deliver, electrocatalytically, the 4 e– in a concerted manner to O2 and avoid the two 2 e– 

reduced intermediates.  The cofacial arrangement enforced by the pacman ligand allows 
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the concerted interaction of O2 and both metal centers.7, 14  Other pacman complexes 

containing two metals exhibit increased reactivity compared to their monometal 

counterparts or generated new reactivity.  For instance, a dinuclear CuI complex 

synthesized by Bouwman and co-workers can reductively couple CO2 to oxalate.15  

 Pacman ligands, a subset of dinuclear metal center complexes, have two metals 

connected by a linker, or backbone, in such a way to allow either metal-metal bonding or 

a space between metals that allows single element bridging, referred to as bite angle.7, 16  

A representative example of the basic ligand configuration is shown in Figure A-1.  In 

this complex two modified nickel porphyrin moieties are linked by a rigid anthracene 

spacer.17  Pacman ligands typically involve anthracene, dibenzofuran, biphenylene or 

xanthene as the backbone moieties.  The backbone serves two roles: first, it provides a 

chemically inert linker that holds the two metal containing moiety in a cofacial 

arrangement; second, it is the source of the bite angle i.e. the distance between 

attachment sites on the linker as shown in Scheme A-1.  

 

Figure A-1. A pacman ligand with bis(Ni(II)oxocorrole) and an anthracene backbone. 
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The space between metal centers in crucial for small molecule activation.  If the metals 

are too close together, they preclude small molecule binding.  Additionally, if they are 

space to far apart they will act in concert on the small molecule. The spacer, in the case 

of biphenylene, can also provide a certain amount of translational freedom to the cofacial 

metals which is believed to aid in small molecule activation.7  The metal containing 

macrocycles can range from porphyrins and modified porphyrins to Schiff-base 

calixpyrrole.7, 18  

 The overall geometric design of pacman ligands allows small molecules to 

interact with both metals. This feature allows the concerted delivery of multiple electrons.  

Delivering multiple electrons avoids high energy intermediates that prevent the 

economical transformation of inert small molecules, N2, O2, and H2O, to chemically 

useful feed stocks.    

 

A.1.2 Redox-Active Pacman Type Ligands 
 

 Incorporating redox-active ligands into the pacman scaffold can carry out difficult 

reactions such as H2O oxidition.  A dinuclear Ru redox-active pacman ligand (Figure 

Scheme A-1. Distance between the typical binding sites for macrocyclic ligands of several 
pacman ligand linkers. 
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A-2) was able to electrocatalytically (1.92 V) oxidize water with TONs of 33500. 19-20  The 

two redox-active ligands in close proximity to one another allow for delivery of 4 redox 

equivalents and the specific geometrical constraints aid in the oxidiation of H2O.  

Cofacial bis(porphyrins) are the protoypical pacman ligand.  Cofacial bis(porphyrins) 

pacman-type ligands can support a variety of metals including Cu,21 Ni,17 Zn,21 Fe,22 Ru23 

and Co.7, 22  The porphyrin based redox-active ligands have been shown catalyzed O2 

reduction.7  Furthermore, work by Nocera et.al. demonstrated oxygen atom transfer to 

organic substrates via a cofacial diiron porphyrin complex using visible light and O2 at 

the terminal oxidant.24   

 

Figure A-2. A redox-active pacman ligand consisting of an anthracene 
backbone and bis(Ru(terpyridine)(3,5-ditertbutylcatechol)) 
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 Ammonia production is estimated to be 150 million tonnes annually and 

consumes 1 % of the world total annual energy supply.25-26  Ammonia is produced by the 

Haber-Bosch process which converts N2 to NH3, referred to as nitrogen fixation.27  

Nitrogen fixation is difficult because N2 requires 6 e– and 6 H+ to produce 2 equiv of NH3.  

Industrially, a heterogeneous iron catalyst is used but requires high temperatures and 

pressures to catalytically produce NH3.
27  The CoII((tBuPhO)2NHC)THF complex, 

Chapter 3, can be oxidized by 3 e–.  For this complex to deliver the 6 e– required to 

convert N2 to NH3, two CoII((tBuPhO)2NHC)THF complexes must be combined in a 

pacman-type ligand  (Figure A-3).  The two [(tBuPhO)2NHC)]2- macrocycles can each be 

oxidized by 2 e–, delivering a total of  4 e–.  This combined with a 3d metal could provide 

up to six redox equivalences in a concerted manner to carry out the difficult reaction of 

nitrogen fixation that could avoid the high temperatures and pressures currently used in 

industry.   This chapter shows the progress made toward realizing a new redox-active 

pacman type ligand. 

 

Figure A-3. Proposed redox-active pacman complex 
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A.1.3 Retrosynthetic analysis of Redox-Active Pacman Type Ligands 
  

 To generate a redox-active pacman type ligand a retrosynthetic analysis was 

employed (Scheme A-2).  The final complex features two redox-active ligand 

macrocycles ([tBuPhO)2NHCBz]2- bound to a Co where each arm is connected by an 

anthracene backbone (complex 1).  Complex 1 is achieved by metallation of ligand 1; 

Step 1 in the retrosynthetic analysis.  This step was proposed to follow metallation of the 

Scheme A-2. Retrosynthetic analysis of redox-active pacman ligand with 
bis(Co((tBuPhO)2NHCBz)) and an anthracene backbone. 
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parent macrocycle; a deprotonated pincer ligand [tBuPhO)2NHC]2− can be directly 

metallated with CoCl2 as described in Chapter 3.  The bis(NHC) anthracene complex 

(Step 2) can be prepared by a procedure from Chapter 3 from the reaction of 6,6'-(1,2-

phenylenebis(azanediyl))bis(2,4-di-tert-butylphenol)1,8-anthracene and triethyl 

orthoformate to generate the bis(NHC) compound.  The conversion of bis(phenyl 

diamine)1,8 anthracene to bis6,6'-(1,2-phenylenebis(azanediyl))bis(2,4-di-tert-

butylphenol)-1,8-anthracene in Step 3 is accomplished via a condensation reaction with 

3,5-ditertbutyl catechol.28  Reduction of nitro groups to amines (Step 4) has good 

literature precedence.29-32  Step 5 represents the largest challenge.  There are several 

examples of cross-coupling to an activated anthracene,33-40 but fewer examples of 

multiple cross-coupling reactions to activated anthracene involving a functionalized 

beznene.41-42  It was anticipated that determining the right catalyst and conditions 

needed to facilitate multiple cross-coupling at a single reagent would require extensive 

screening. Conversion of 1,8-dichloroanthracene to the diboronic ester in Step 6 follows 

a previously published procedure via Pd cross-coupling with 5,5,5',5'-tetramethyl-2,2'-

bi(1,3,2-dioxaborinane) to form 1,8-bis(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)anthracene 

followed by acidic work up to generate anthracene-1,8-diyldiboronic acid.19  

 The precursors to Step 5 in the retrosynthetic analysis are either literature 

compounds or easily synthesized.  However, little literature precedence exist for the 

dicoupling of functionalized aryls to activated anthrancenes.  Therefore, this chapter is 

focused on the synthetic protocol to achieve Step 5. 

A.2 Results 
  

A.2.1 Attempts at Anthracene Backbone Pacman Type Ligand 

A.2.1.1 Cross-coupling Attempts Using Anthracene Nucleophiles and Substituted 
Aryl Halides 
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 A total of four anthracene dinucleophiles were chosen (Scheme A-3 a).  Two 

anthracene dinucleophiles were synthesized from literature procedures, anthracenyl-1,8-

diboronic acid (ANT(B(OH)2)2)
19 and 1,8-bis(neopentylglycolatoboryl)anthracene 

Scheme A-3. Aryl nucleophiles and protected and non-protected amines used for cross-
coupling.  
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(ANT(B(OR)2)2).
19  Two new anthracene dinucleophiles were synthesized: 1,8-

bis(chloromangesio)anthracene (ANT(MgCl)2) and anthracene-1,8-dizincchloride 

(ANT(ZnCl)2).  ANT(B(OR)2)2 was obtained from a reaction between 1,8-

dichloroanthracene and bis(neopentylglycolate)diborane in the presence of a Pd0 

catalyst (Pd2(dba)3), base (NaOAc), and ligand (2-dicyclohexylphosphino-2',4',6'-

trisisopropylbiphenyl = xPhos) at 90 °C under N2 for 48 hours.  Subsequent 

recrystallization lead to a 68 % yield of the desired ANT(B(OR)2)2 as yellow needles.  To 

produce anthracenyl-1,8-diboronic acid, the borate esters of ANT(B(OR)2)2 were 

converted to boronic acids in the presence of diethanolamine in isopropanol for 3 hours 

followed by an excess of 1 M HCl (70 % yield).  ANT(MgCl)2 was made from activating 

2.5 equiv Mg (s) with 1 drop of 1,2-dibromoethane in THF and adding the 1,8-

dichloroanthracene followed by heating for at 100 °C for 6 hours.  During the course of 

the reaction, the Mg (s) shavings turn black and reduced in volume which is followed by 

the solution turning from yellow to colorless.  Once cooled to room temperature, the 

solution is filtered to remove excess Mg (s).  Iodometric titrations indicate the desired 

ANT(MgCl)2 was obtained in a yield of 70 %.  When the solution is quenched with MeOH 

the only remaining product is anthracene, as judged by NMR and GC-MS.  However, 

anthracene is known as a Mg0 transfer reagent.43  When magnesium anthracene 

(MgC14H10•3THF) is formed an insoluble blue material precipitates out.  This was not 

seen in the 1,8-dichloroanthracene reaction.  However, it could not be ruled out as a 

possible product.  Nevertheless, given the ease of synthesis, the ANT(MgCl)2 would be 

screened as an anthracene dinucleophile.  To make the ANT(ZnCl)2 complex 1,8-

dichloroanthracene was reacted with 2 equiv of Zn dust and a catalytic amount of I2 in 

THF.  Upon quenching an aliquot with MeOH, the major product was anthracene with 

lesser amounts of 1,8-dichloroanthrancene and chloroanthracene.   
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 Three aryl halide complexes with protected nitrogens and one aryl halide with 

primary amines were chosen to cross-couple with the above mentioned 

anthracenedinucleophilies. 5-bromo-1,2-dinitrobenzene (diNBBr), 5-chloro-1,2-

dinitrobenzene (diNBCl), and 5-bromo-1,2-diaminebenzene (diABBr) were commercially 

available (Scheme A-3 b).  The complex 5-bromo-2,1,3 benzothiadiazole (BTdiZBr) was 

made by a literature procedure.44   

 With both coupling partners in hand, attempts were made to generate the diaryl 

substituted anthracene compound.  In a typical reaction, an anthracene dinucleophile 

and 2 equiv of an aryl halide were heated for up to 48 h.  The reaction was cooled and in 

the case of Grignard or organozinc anthracene the crude product was tested using GC-

MS and ESI for the desired product without further purification.  In the case of the 

ANT(B(OR)2)2 and ANT(B(OH)2)2, after heating and cooling, the solution was washed 

with 3x H2O and the organic phases combined and tested using GC-MS and ESI.  The 

results of the cross-coupling reactions are listed in Table A-1.  In all cases the desired 

disubstituted anthracene was not observed.  Anthracene was seen as a product in all 

reactions.  Interestingly, entry 1 and 4 from Table A-1 and entry 2 from Table A-2 showed 

a mass of 538 m/z as the major product.  The desired product 1,8-di(1,2-

dintirobenzene)anthracene has a mass of 510 m/z.  Since all three reactions use 

different catalyst and different anthracene dinucleophiles, the resulting 538 m/z peak 

might be of interest even though it is not the desired product.  The identity of the 538 m/z 

has not been determined.  The monosubstituted anthrancene was also not seen in any 

reaction. 
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Table A-1. Reactions between anthracenedigrignard or diorganozinc and aryl halides catalyzed by Pd or Ni. 

Entry Aryl dinucleophile Aryl halide Catalyst (mol %) Solvent  Base Temperature °C Time hrs Result1

1 ANT(ZnCl)2 diNBCl PdCl2(P(Ph)3)2  (5) THF N.A. 80 16 N.P. 

2 ANT(MgCl)2 diNBCl PdCl2(P(Ph)3)2  (5) THF N.A. 100 24 N.P. 

3 ANT(MgCl)2 BTdiZBr Ni(acac)2/PPh3 (10)2 THF N.A. 100 24 N.P. 

4 ANT(MgCl)2 diNBBr Ni(acac)2/PPh3 (10)2 THF N.A. 100 24 N.P. 

5 ANT(MgCl)2 BTdiZBr NiCl2 /I2 (10)2 xylene N.A. 140 36 N.P. 

The reactions are carried out on a 4.0 mmol scale with 2 equiv of aryl halide under N2.  At the end of the reaction the solution 
was cooled and tested without further purification. 1Products determined by ESI, MALDI and NMR.  2 20 mol % of PPh3and 1 
equiv I2 was added to the reaction. 
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Table A-2. Reactions between aryl borate esters or boronic acid and aryl halides catalyzed by Pd. 

Entry 
Aryl 

dinucleophile 
Aryl 

halide Catalyst (mol %) Solvent (ratio) Base 
Temperature 

°C Time hrs Result1

1 ANT(B(OR)2)2 diABBr Pd(dppf)Cl2 (1) dioxane K2CO3 90 24 N.P. 

2 ANT(B(OR)2)2 diNBCl Pd(OAc)2 (5) 
EtOH/DMA 

(1:1) K2CO3 80 48 or 24 N.P. 

3 ANT(B(OH)2)2 diNBCl Pd2(dba)3 (10) toluene K3PO4 80 48 N.P. 

4 ANT(B(OH)2)2 diNBCl PdCl2(P(Ph)3)2  (5) DMSO K2CO3 100 24 N.P. 

5 ANT(B(OH)2)2 diABBr Pd(PPh3)4 (10) 
dioxane/H2O 

(10:1) K2CO3 110 24 N.P. 

6 ANT(B(OH)2)2 BTdiZBr Pd(OAc)2 (1) THF/H2O (10:1) K2CO3 100 24 N.P. 

7 ANT(B(OH)2)2 BTdiZBr Pd(OAc)2 (1) 
EtOH/DMA 

(1:1) K2CO3 120 1 N.P. 

The reactions are carried out on a 4.0 mmol scale with 2 equiv of aryl halide under N2.  At the end of the reaction the 
solution was cooled quenched with H2O and the organic layer removed.  1Products determined by ESI, MALDI and NMR.   
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Scheme A-4. A reaction between anthracenedihalides and protected amine nucleophiles.
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Figure A-4. Chosen dihalidexanthenes and diamine nucleophiles for cross-coupling. 
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Table A-3. Reaction conditions and results between dihalide xanthene and borate ester diamines catalyzed by Pd. 

Entry 
Aryl 

dinucleophile 
Aryl halide 

(equiv) Catalyst (mol %) 
Solvent 
(ratio) 

Base 
(equiv) 

Temperature 
°C Time hrs Result1 

1 XANdiBr DiABzBpin (2) Pd(dppf)Cl2 (5) 
dioxane/H2O 

(10:1) K2CO3 (5) 100 72 N.P. 

2 XANdiBr DiABzBpin (2) Pd(dppf)Cl2 (5) dioxane K2CO3 (5) 100 24 N.P. 

3 XANdiBr DiABzBpin (2) Pd(dppf)Cl2 (5) dioxane K2CO3 (5) 100 72 N.P. 

4 XANdiBr DiABzBpin (2) Pd(dppf)Cl2 (5) toulene Ba(OH)2 (5) 90 24 N.P. 

5 XANdiI DiABzBpin (2) Pd(dppf)Cl2 (5) 
dioxane/H2O 

(10:1) K2CO3 (5) 100 24 N.P. 

6 XANdiI DiABzBpin (3) Pd(dppf)Cl2 (20) 
dioxane/H2O 

(10:1) K2CO3
 (5) 130 48 XANdi(diABz)

1 Products determined by ESI, MALDI and NMR.  
25 equiv of K2CO3 were used.  
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A.2.1.2 Cross-coupling Attempts Using Anthracene Halides and Nucleophilic aryl  
Protected Amines 

 

 The two complexes 1,8-dichloroanthracene or 1,8-diiodoanthracene were used 

as the anthracene halide due to easy of synthesis (1,8-dichloroanthracene) or 

commercial availability (1,8-diiodoanthracene).  Converting BTdiZNr to a Grignard 

reagent was accomplished by exposure of BTdiZNr to activated Mg (s) at 80 °C giving a 

79 % yield as determined by MeOH quench and NMR analysis.  A reaction between 

either dichloro- or diiodo- anthracene and 2.5 equiv of benzo[c][1,2,5]thiadiazol-5-yl 

magnesium bromide (BTdiZMgBr) in THF at r.t. or 100 °C did not lead to cross-coupled 

product, nor did any of the reactions in Scheme A-4 show the monosubstituted product.   

 

A.2.2 Synthesis of Xanthene Backbone Pacman Type Ligand 
  

 Switching the backbone from anthracene to xanthene immediately gave 

improvement.  A reaction between 4,5-dibromo-2,7-di-tert-butyl-9,9-dimethyl-9H-

xanthene (XANdiBr) and 2 equiv of 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)benzene-1,2-diamine (diABzBpin) lead to the monosubstituted xanthene and a small 

amount of the disubstituted product as judged by ESI (entry 1 in Table A-3).  The 

amount of disubstituted product was not sufficient for isolation.    Encouraged by the 

result, the parameters were varied until the desired product was achieved (40 % yield, 

entry 6 Table A-3).  The reaction that ultimately led to disubstituted xanthane (4,4'-(2,7-

di-tert-butyl-9,9-dimethyl-9H-xanthene-4,5-diyl)bis(benzene-1,2-diamine) = 

XANdi(diABz)) complex involved replacing the bromides with iodines, increasing the 

catalyst loading, increasing the equivalents of diABzBpin from 2 to 3, increasing the 

temperature to 130 °C, and running the reaction for 48 hr.  After washing the solution 3x 

with water, the crude organic layer showed a high resolution mass spectrum of 534.3359 
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m/z vs the calculated mass for XANdi(diABz) = 534.33587 m/z . Attempts to isolate 

XANdi(diABz) as a HCl salt have been unsuccessful.  Excess phenylenediamine and 

benzo[c][1,2,5]thiadiazole could be sublimed off, however this alone was insufficient at 

producing pure XANdi(diABz).  Isolation of XANdi(diABz) was challenging because of its 

propensity to irreversibly bind the silica or alumnia column materials.  Nevertheless, a 

separation protocol was developed. Separation involved column chromatography on 

silica gel using a series of increasingly polar solvents ending with MeOH as the final 

eluent.  This produced the desired compound (XANdi(diABz) as the last analyte-

containing fraction.  The overall synthetic procedure is shown in equation 2. 

  

 

 

A.3 Discussion 
  

 Step 5 is challenging due to the requirement of two cross-coupling event 

involving functionalized aryl reagents to one substrate.  While several systems can 

cross-couple two substrates on to an activated anthracene,19, 33-34, 37-39, 45-46 to the best of 

my knowledge there are no examples of cross-coupling 2 1,2-dinitrobenzene or 1,2-

diaminebenzene to an activated anthracene.  A significant challenge to Step 5 is the 

multitude of synthetic protocols available for Pd and Ni coupling. Therefore, several 

different activated anthracenes and xanthenes; palladium and nickel catalysts; and 
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activated, functionalized aryls were screened to address this problem.  Discussed here 

are the challenges and synthetic protocols pursued that eventually led to conditions that 

completed Step 5.   

A.3.1 Cross-coupling attempts anthracene 
 

 Anthracene is an attractive backbone for a pacman type ligand for three reasons. 

First, it is chemically inert.7  Second, it is cheap to synthesize on a large scale.  1,8-

dichloroanthracene is easily made from inexpensive and commercially available 1,8-

dichloro-9,10-anthraquinone.35  This process is also amenable to scale up where up to 

78 g of 1,8-dichloroanthracene can be produced in good yield (88 %).  Third, modifying 

the 1,8-dichloroanthracene is relatively straight forward providing a range of cross-

coupling platforms and subsequent cross-coupling reactions.  For instance, both halides 

on ANTCl2 can be substituted for o-xylenes and porphyrins. 32-33, 36-38, 40, 42-4423  It was 

believed that one of these platforms would allow a double cross-coupling event with 

activated and functionalized aryl compounds to occur.  

A.3.1.1 Cross-coupling attempts at nucleophilic anthracene (ANT(MgCl)2, 
ANT(ZnCl)2, ANT(B(OH)2)2, ANTB(OR)2)2) 

   

 Although ANT(ZnCl)2 was been previously prepared,41 it has not been isolated or 

characterized, and was used in situ.  Therefore a new synthetic procedure was 

developed and employed.  Although the conversion of ANTCl2 to ANT(ZnCl)2 was not 

complete, cross-coupling was attempted.  However a reaction between ANT(ZnCl)2 and 

diNBCl did not produce the desired product.  The ANT(MgCl)2 synthetic procedure lead 

to a 95 % conversion of ANTCl2 to ANT(MgCl)2 and allowed for screening of several 

different activated aryls and catalysts (Table A-1).  Generally, Grignard and organozinc 

reagents react with primary amines, however nitro groups are tolerant of Grigards, 
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organozincs, and Suzuki cross-coupling reactions and act as protected amines.47-49  

Another way to protect 1,2-diaminebenzene involves conversion of the diamines to 

thiadiazole (BTdiZBr Scheme A-3 b).50  This protected amine has been shown to 

tolerate cross-coupling reactions including Grignard reagents.51-54  Furthermore, 

conversion of the thiadiazole complex to diaminebenzene is a known literature 

procedure.55  Therefore, dinitro or benzo[c][1,2,5]thiadiazole halides were employed.  

However, neither the ANT(MgCl)2 or ANT(ZnCl)2 cross-coupled with the protected 

amines in the presence of either a palladium (PdIICl2(P(Ph3)2) or nickel (Ni(acac)2 or 

NiCl2) catalyst (Table A-1).  

 Both ANT(B(OH)2)2 and ANT(B(OR)2)2 were prepared from literature procedures.  

The boronic acids have enhanced reactivity (aryl cross-coupling) compared to borate 

esters however pinacol boronic esters are still very commonly used especially in Miyaura 

borylation reactions due to pinacol boronic esters being tolerant of ambient atmosphere 

and chromatographic purification.56  Both ANT(B(OH)2)2 and ANT(B(OR)2)2 are tolerant 

of many solvents, unlike ANT(MgCl)2 or ANT(ZnCl)2 where only THF, o-xylene or ethers 

could be employed.  Most palladium based cross-coupling protocols cannot tolerate 

primary amines as functional groups.   In fact, the Buckwald-Hartwig amination exploits 

primary amines ability to cross-couple with carbon nucleophiles to form new N-C bonds 

in the presence of a palladium catalyst.57-59 Therefore, to avoid reactions between 

amines and carbon nucleophilies, primary amines generally must be protected.  To this 

end, diNBCl, diNBBr, and BTdiZBr were used as coupling partners.  However, a few 

examples exist of Suzuki cross-coupling with a primary amine functional groups that 

avoid forming new N-C bonds.60-62 For instance, in the synthesis of a hangman porphyrin 

xanthene (HPX) complex a borate ester diamine benzene was directly cross-coupled to 

a bromoxanthene.63   
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A.3.1.2 Cross-coupling attempts at dihalide anthracene 
 

 Starting with the dihalide anthracene requires that the coupling partner be 

nucleophilic.  Converting 5-bromo-2,1,3-benzothiadiazole to a Grignard reagent was the 

most straightforward way to turn the protected diamine into an aryl nucleophile.  

However, neither ANTI2 or ANTCl2 cross-coupled with benzo[c][1,2,5]thiadiazol-5-yl 

magnesium bromide using either an palladium or nickel catalyst (Scheme A-4). 

A.3.2 Cross-coupling of a borate ester aryl diamine and dihalidexanthane 
  

 Using diiodoxanthane and 3 equiv diABzBpin lead to the desired product 

(XAN(diABz)2).  The system required to carry out this cross-coupling is harsh, 3 equiv 

diABzBpin, 5 equiv of base, 20 mol % catalyst loading at 130 °C for 48 hours.  The 

halide is also important for cross-coupling to occur.  The XANdiBr lead to 

monosubstituted product.  Interestingly, using a better base (Ba(OH)2, entry 4, Table A-3) 

did not lead to the desired product and K2CO3 was the preferred base when used in a 

large excess (5 equiv).  Solvent choice was also important.  The dioxane/H2O (10:1) 

solution proved to be the best solvent however different ratios of dioxane to H2O have 

not been explored.  Temperature was also crucial in the synthesis of XAN(diABz)2.  At 

100 °C in a sealed bomb only the monosubstituted product was isolated, however when 

the reaction temperature was increased to 130 °C the major product was XAN(diABz)2.  

Although isolation by column chromatography is difficult, due to the four primary amines, 

isolation was achieved by silica gel column chromatography using several different 

solvents (vide infra). 
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A.4 Conclusion 
  

 Given the cost of anthracene and the wide variety of dihalides and dinucleophiles 

available, work should continue to elucidate conditions that would make anthracene the 

backbone in the proposed pacman ligand. While the cost of catalyst and XANdiI2 make 

this system less desirable than anthracene, XANdiI2 is the only complex where cross-

coupling has been achieved.  Production of XAN(diABz)2 completes Steps 6 to 4 in an 

overall 28 % yield.  Only two more synthetic steps are required to synthesis the desired 

ligand 1.  However achievement of Step 3 will require scale up of XAN(diABz)2 due to 

the low yielding nature of the condensation reaction between 3,5-di-tert-butylcatechol 

and the XAN(diABz)2.  Regardless, a significant challenge has been overcome in the 

progress toward a redox-active pacman-type ligand based on the [(tBuPhO)2NHC]2- 

moiety. 

A.5 Materials and Methods 
 

General consideration 

 Unless otherwise noted, all manipulations were performed under anaerobic 

conditions using standard vacuum line techniques, or in an inert atmosphere glove box 

under purified nitrogen. All NMR spectra were acquired on a Varian Mercury 300 

spectrometer (300.323 MHz for 1H) at ambient temperature. Chemical shifts are 

reported in parts per million (ppm) relative to TMS, with the residual solvent peak serving 

as an internal reference.  All mass spectra were recorded in the Georgia Institute of 

Technology Bioanalytical Mass Spectrometry Facility. Anhydrous toluene, 

tetrahydrofuran (THF), and pentane solvents for air- and moisture-sensitive 

manipulations were purchased from Sigma–Aldrich,further dried by passage through 

columns of activated alumina,degassed by at least three freeze–pump–thaw cycles, and 
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stored under N2 prior to use. Dimethylsulfoxide, dimethylformamide, diethyl ether, 1,4-

dioxane, methanol (MeOH), ethanol (EtOH), and xylene were purchased from Sigma–

Aldrich, degassed by nitrogen sparge for 20 mins and stored under N2 until used.  

Distilled H2O was degassed by nitrogen sparge for 20 mins and stored under N2 until 

used.  The compounds 1,8-dichloroanthracene,64 anthracene-1,8-diyldiboronic acid,19 

1,8-bis(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)anthracene,19 4-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)benzene-1,2-diamine,63 5-bromobenzo[c][1,2,5]thiadiazole,65 and 2,7-

di-tert-butyl-4,5-diiodo-9,9-dimethyl-9H-xanthene66 were prepared according to literature 

methods.  All characterization data matched those referenced.  All other chemicals were 

purchased from Sigma–Aldrich and used as received. 

Synthesis of 1,8-bis(chloromangesio)anthracene 

 A dried round bottom flask was charged with a magnetic stir bar,20 mL of THF 

and magnesium shavings (0.123 g, 5.0 mmol).  1,2-dibromoethane (150 µL, 1.7 mmol) 

was added with stirring.  After effervescence ceased, 1,8-dichloroanthracene (0.224 g, 

0.9 mmol) was added and the solution was stirred for 24 hours to produce 1,8-

bis(chloromangesio)anthracene yield 95 %.  Yield was determined by MeOH quench of 

the resulting di-Grignard to generate anthrancene.  The ratio of anthrancene to 1,8-

dichloroanthracene , as judged by 1H NMR, was used to determine yield of the reaction. 

 Synthesis of 1,8-dizinchlorideanthracene 

 A dried thick-walled glass bomb with a Knotes valve was charged with a 

magnetic stir bar, 1,8-dichloroanthracene (0.800 g, 3.2 mmol), Zn (dust) (0.422 g, 6.4 

mmol), 1 crystal of I2, LiBr (0.282 g, 3.2 mmol) and 40 mL of THF under N2.  The bomb 

was sealed and heated to 80 °C for 12 hr with stirring to produce a 50 % yield of the title 
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complex.  Yield of the di-organozinc reagent was determined by quenching an aliquot of 

the solution with MeOH and measured the amount of anthracene generated by GC-MS. 

Synthesis of benzo[c][1,2,5]thiadiazol-5-yl magnesium bromide 

 A dried round bottom flask was charged with a magnetic stir bar, Mg shavings 

(0.074 g, 3.0mmol) and 10 mL THF under N2.  Then, 1,2-dibromoethane (50 µL, 0.5 

mmol)  and 1 crystal of I2 was added.  After effervescence ceased, 5-

bromobenzo[c][1,2,5]thiadiazole (0.538 g, 2.5 mmol) was added.  The reaction was then 

stirred for 48 hrs to yield 79 % of the title complex.  Yield was determined by MeOH 

quench of the resulting Grignard to generate benzo[c][1,2,5]thiadiazole.  The ratio of 

benzo[c][1,2,5]thiadiazole to 5-bromobenzo[c][1,2,5]thiadiazole, as judged by 1H NMR, 

was used to determine yield of the reaction. 

Typical cross-coupling procedure 

 In a representative procedure, a dried thick-walled glass bomb with a Knotes 

valve was charged with a magnetic stir bar, 1,8-bis(5,5-dimethyl-1,3,2-dioxaborinan-2-

yl)anthracene (1.02g, 2.4 mmol), 4-bromobenzene-1,2-diamine (1.34 g, 7.2 mmol), 

Pd(dppf)Cl2 (0.196 g, 0.24 mmol), and K2CO3 (0.828 g, 6.0 mmol).  The bomb was 

evacuated and refilled with N2 3x.  Nitrogen sparged dioxane (20 mL) was transferred by 

cannula and the bomb was sealed.  The reaction was heated with stirring to 90 °C for 24 

hr.  After 24 hr the reaction was cooled, and diethyl ether (~60 mL) was added.  The 

organic layer was 3x washed with H2O.  The organic layer was then run in GC-MS to 

determine product composition.   
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Synthesis of 4,4'-(2,7-di-tert-butyl-9,9-dimethyl-9H-xanthene-4,5-diyl)bis(benzene-

1,2-diamine) 

 A dried thick-walled glass bomb with a Knotes valve was charged with a 

magnetic stir bar, 2,7-di-tert-butyl-4,5-diiodo-9,9-dimethyl-9H-xanthene (1.01 g, 1.75 

mmol), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene-1,2-diamine (1.23 g, 5.27 

mmol), Pd(dppf)Cl2 (0.287 g, 0.35 mmol), and K2CO3 (1.21 g, 8.75 mmol).  The bomb 

was evacuated and refilled with N2 3 times.  Nitrogen sparged 1,4-dioxane/H2O (40 mL, 

ratio (10:1)) was transferred by cannula and the bomb was sealed.  The reaction was 

heated with stirring to 130 °C for 48 hr.  After 48 hr the reaction was cooled, and diethyl 

ether (~60 mL) was added.  The organic layer was 3x washed with H2O.  The organic 

layer was dried and taken up in a minimum amount of CH2Cl2.  Isolation was achieved 

by column chromatography.  To a 30 cm x 3 cm glass column with a porous frit was 

added 50 g of silica gel in CH2Cl2 and topped off with 1 cm of sand.  The CH2Cl2 solution 

containing the desired product was loaded, by aliquots, to the column.   Methylene 

chloride was run through the column until the eluent no longer contained analytes, as 

judged by TLC.  The eluent was then changed to CH2Cl2/NEt3 (ratio 5/2) and run through 

the column until the eluent no longer contained analytes, as judged by TLC.  The column 

was then washed with CH2Cl2 (300 mL) to remove any excess NEt3.  Finally, the eluent 

was changed to MeOH and fractions were collected.  The last analyte-containing 

fractions removed from the column were the desired product.  The like fractions were 

combined and dried in vacuo to produce a brown solid of the title complex  (0.356 g, 40 

% yield).  1H NMR (300 MHz, CDCl3) δ 7.36 (d, J = 2.4 Hz, 2H), 7.20 (d, J = 2.4 Hz, 2H), 

6.80 – 6.69 (m, 4H), 6.61 (d, J = 7.9 Hz, 2H), 3.30 (s, 8H), 1.71 (s, 6H), 1.34 (s, 18H). 

13C NMR (75 MHz, CDCl3) δ 145.81, 145.14, 134.08, 134.05, 130.67, 130.07, 129.20, 
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125.83, 121.76, 121.05, 119.73, 115.88, 35.15, 34.62, 32.24, 31.71. HRMS (ESI) Calcd 

for C35H42N4O: [M]  = 534.33587 m/z. Found = 534.3359 m/z. 
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