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Abstract

Protocol software is often difficult, cumbersome, and expensive to implement and test
in today’s computing environments. To reduce this difficulty, several things are done:
communications software is commonly subdivided into layers and organized into a protocol
graph; it is developed within a protocol or networking subsystem; and it is often ported rather
than developed from scratch. Inherent differences in the multitude of protocol subsystems
offer a dizzying array of features, functionality, and drawbacks; their differences often
reduce the portability and efficiency of protocol code. In this paper, we consider the
differences in subsystems and their effect on the portability and performance of protocol
implementations. We propose an approach for combining the “better” features of protocol
subsystems by constructing protocol graphs composed of protocols residing in different
subsystems.
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1 Introduction

Protocol software can be difficult, cumbersome, and expensive to develop and test. In practice, several
techniques are used to reduce this complexity. First, protocol code is subdivided into layers or modules
and organized into a graph structure representing how those modules are combined to provide commu-
nication services. Second, protocols are developed within programming environments or subsystems
(such as BSD [14], Streams[2, 22], or the x-Kernel[18, 11]) which provide an overall protocol model and
offer organized, consistent access to operating system resources. Third, protocol code is often ported
from one subsystem to another rather than developed from scratch.

A protocol’s implementation is generally tightly coupled with the subsystem in which it is developed.
Each subsystem places fundamental constraints on the structure of a protocol implementation and how
it interacts with the subsystem; each subsystem offers its own unique advantages and disadvantages.
This has two effects:

1. Protocol implementations today typically reside entirely within a single subsystem. The protocol
users and developers are thus constrained by the features and drawbacks of that subsystem.

2. Introducing a new protocol implemented in some subsystem into another subsystem involves a
tedious "porting” process that is made more difficult by protocol subsystem differences.

Current trends indicate that no one protocol subsystem or operating system will prevail. In fact,
these problems are becoming exacerbated as new operating systems (e.g., [15]) and accompanying
protocol subsystems are deployed.

In this paper we address the two issues above by allowing protocol implementations to span multiple
subsystems; we call the resulting implementations multi-subsystem architectures. This allows the
protocol programmer to take advantage of the “better” features (e.g., configurability and performance)
of each protocol subsystem. In addition, the possibility of multiple subsystem protocol implementations
eliminates the need to port protocols from subsystem to subsystem, thus allowing for easier introduction
of new protocols.

Examples of multi-subsystem protocol implementations are shown in Figure 1. Figure 1a shows a
transition architecture incorporating IPv6[4] written in Streams but not yet ported to BSD. We expect
this type of architecture to allow faster adoption of new protocols. Figure 1b shows an environment
supporting high performance coupled with dynamic protocol configuration. Since BSD purports better
performance1 than Streams, portions of the protocol graph not requiring configuration are kept within
the BSD subsystem. To support dynamic configuration (i.e., selection) of compression algorithms 1 and
2, those parts of the graph reside in Streams. Instead of sacrificing overall performance by implementing
all protocols within Streams, or sacrificing dynamic configurability by implementing all protocols in
BSD, the protocol programmer can construct a multi-subsystem protocol graph combining both features.

The contributions of this paper are twofold. First, we further study the factors described above moti-
vating our multi-subsystem architecture. We do this through a case study involving the implementation,

1We examine this issue later in the paper.
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Figure 1: Multi-Subsystem Protocol Graph Examples

porting and analysis of a protocol suite in the context of three protocol subsystems: BSD, Streams, and
the x-Kernel. Second, we propose a general approach that can be used to construct multi-subsystem
protocols. We describe our experiences implementing and testing multi-subsystem protocol graphs
using our approach.

The rest of the paper is organized as follows. The next section contains some background material
including the definition of some terminology and a discussion of related work. Section 3 introduces
our case study. Section 4 discusses the three protocol subsystems we considered from the viewpoint of
protocol portability. Section 5 considers the performance aspects of protocol subsystems in the context
of our case study. Section 6 introduces our adapter-based approach to constructing multi-subsystem
protocol graphs and describes our experience in the design and implementation of one such adapter.
The paper is concluded in Section 7

2 Background

2.1 Terminology and Definitions

For the purposes of this paper, a protocol is a software module that corresponds to an implementation
of a traditional, monolithic protocol like TCP. Alternatively, it may correspond to an implementation
of a single, atomic protocol function (e.g., header checksumming) intended for use in conjunction with
other protocols. This latter type, referred to as a micro-protocol, is outlined in [18]. Protocols typically
execute within the context of a protocol subsystem, which organizes operating system resources like
buffers and timers in a manner which eases the burden of protocol development. Protocols are arranged
using a graph structure (commonly referred to as a protocol graph) representing how they are combined
to provide communication services. Figure 1 provides examples of protocol graphs. Nodes in this graph
represent protocol implementations and edges represent their interconnection; they are oriented such
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that protocols are connected to from above and below. Further, users are generally situated at the top
and access the protocol graph through application-interface protocols; the actual, physical subnetwork
is generally situated at the graph’s bottom.

Protocols interact or interface with the subsystem and other protocols to provide communication
services to other protocols or users; they may manipulate data, add or remove protocol headers. Protocols
are invoked both by the subsystem and other protocols. Portability, finally, is a qualitative measure of
how difficult it is to take protocol source code developed for one subsystem and place or compile it
within another subsystem.

2.2 Related Work

Current protocol research focuses primarily on performance in the context of a single subsystem
by either proposing new, alternative subsystems or improving the performance of existing protocol
implementations. These approaches limit the choices a protocol programmer has by requiring that the
protocol graph be contained entirely within one subsystem. Further, approaches that introduce new
subsystems only add to the protocol portability problem. We survey current research and classify it on
how it relates to portability and the interplay between the subsystem and protocol performance.

In the Base subsystem [9], the authors directly address the protocol portability problem. Recog-
nizing the expense and difficulty of developing OSI protocols for several different IBM platforms (and
accompanying protocol subsystems), the authors sought to eliminate the protocol portability problem
by shifting the focus to the subsystem instead. They created a portable subsystem supporting protocol
development. Once they ported their subsystem to a target platform, their protocol implementations
could run virtually unmodified. Unfortunately, protocol programmers are restricted to Base and must
accept its (possible) restrictions for the sake of portability.

Bodhi et al [16] face many of the same problems that obstruct protocol portability by addressing
the problems encountered when trying to port a user-level threads package from operating system to
operating system. They propose that all operating systems support a specific set of thread-related
primitives that would greatly reduce the job of porting user-level threads packages. Their work is
analogous to ours in that the task of porting a user-level threads package is similar to the that of porting
protocol code: both are highly dependent on the types, flavors, and interfaces of the underlying services
which they depend.

Thekkath et al [26] partially address one factor that makes protocol development difficult, namely,
location of protocols inside the kernel. They argue that protocols and accompanying protocol subsystems
should be developed as user-space modules. Their research focused on moving the BSD subsystem out
of the kernel and into user-space. In doing so, they have taken the approach of porting the subsystem
rather than porting the protocol code.

The x-Kernel work [18, 11] recognized the difficult nature of implementing protocols and addresses
the problem by developing a subsystem with an explicit goal – the reduction of complexity of protocol
programming without hampering performance. Streams [22, 2] sought to replace the traditional UNIX

3



method for connecting processes to terminals or network devices with a flexible, consistent subsystem
supporting modular protocols. These approaches improve performance and reduce implementation
complexity at the expense of portability and flexibility.

Still another approach to protocol implementation is the use of a special purpose protocol pro-
gramming language and compiler. Morpheus ([1]) and YANC ([21]) apply complimentary approaches.
Morpheus provides a general protocol compiler for implementing traditional network and transport
protocols while YANC focuses on aiding the development of portable network applications. Under-
neath each language (and closely tied to it) resides an accompanying subsystem. As with many of the
approaches already mentioned, they focus on the subsystem to address the protocol code portability
problem. Once the subsystem has been ported, protocol code portability comes for “free”. Performance
gains are obtained through subsystem and compiler efficiency.

A substantial body of research focuses on interoperability through protocol conversion [10, 13].
Using this approach, interoperability is achieved by converting the protocols spoken by one or both of the
communicating entities through gateways and intermediaries. Auerbach describes a protocol converter
toolkit [3] while Calvert introduces protocol adaptors [5]. Although it is a related approach, protocol
conversion focuses on a protocol’s output (headers, messages, etc.) rather than on the environments in
which protocols may operate.

Measuring and improving protocol implementation efficiency are the approaches taken in another
area of protocol research. Papadopoulos and Parulkar [19] and Kay and Pasquale [12] focus on measuring
operational TCP/IP implementations in order to gain a better understanding of protocol performance
issues. Partridge and Pink [20] examine and improve the performance of UDP/IP within the context of
the BSD subsystem. They focus on implementation efficiency rather than subsystem issues. Clark et al
[6] examine implementation efficiency in isolation of the subsystem rather than in conjuncture. In each
case, comparisons to other subsystems were not explored.

Finally, the work in [7, 8] addresses protocol interoperability concerns by proposing multi-protocol
architectures in which two entities communicate by mixing and matching supported protocols until they
have a common subset. Indeed, their work provides some of the motivation for our work in addressing
protocol portability problems and multi-subsystem protocol architectures, as they propose to achieve
interoperability by porting protocol implementations to as many machines and subsystems as possible.
Reducing the complexity and difficulty of porting protocol implementations reduces the complexity and
difficulty of achieving interoperability.

3 The Case Study

The insight and analysis presented in this paper is derived, in part, from a case study in which we first
implemented a set of AppleTalk protocols in Streams and then ported them to the x-Kernel and BSD
subsystems 2. The AppleTalk protocol family was chosen (over, say, TCP/IP) since it is not biased
towards or against any of the subsystems that our case study covers3. The AppleTalk protocols also
provide a broad set of real user services similar to the Internet family of protocols and are in widespread

2Please refer to [25] for more information on AppleTalk.
3Indeed, if the AppleTalk protocol architecture is biased towards any networking subsystem, it is biased towards that contained

within the Macintosh operating system.
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use. We are, therefore, confident that it provides us a reasonable “platform” for considering subsystems
and their effects on portability and performance. We chose the Streams, x-Kernel, and BSD subsystems
because they represent a good combination of commercial and research subsystems. They offer a variety
of features and development environments common to many subsystems.

We implemented several AppleTalk protocols during the course of our case study. The Datagram
Delivery Protocol (DDP) provides traditional network layer datagram services. It is the foundation of
the AppleTalk protocol family. The AppleTalk Transaction Protocol (ATP) provides sequenced, reliable
delivery of transaction requests and replies and serves as the basis for distributed file and print services.
We also implemented several supporting protocols: AppleTalk Echo Protocol (AEP), Routing Table
Maintenance Protocol (RTMP), and the Name Binding Protocol (NBP).

Our case study proceeded in three phases. In the first phase we implemented the AppleTalk protocols
in Streams and ported this implementation to both the BSD subsystem and to the x-Kernel4. Next we
considered the performance of the AppleTalk protocols in the context of the various subsystems. Finally,
we implemented our adapter design of the multi-subsystem architecture by combining our protocol
implementations from different subsystems through the use of adapters.

It should be emphasized that the case study was used to guide our thinking and to validate our
proposals. Our aim is to provide a general understanding of the issues; we believe that this case study
provided an appropriate framework for such an understanding.

4 Protocol Subsystems and Portability Concerns

Subsystems shape the design and implementation of protocols by defining and imposing an overall
protocol model, and a set of support services on the protocol programmer. In this section we discuss
each of these two aspects with particular emphasis on their effects on the portability of protocol
implementations.

4.1 Protocol Models

Each subsystem implicitly or explicitly defines a protocol model which greatly influences the way
in which a protocol is implemented. The protocol model defines a protocol’s interfaces, a process
architecture, and defines protocol graph connectivity options. Because there is such a wide disparity
in how various subsystems approach these aspects of the protocol model, their differences can cause
considerable portability barriers. We consider each of these three aspects next.

4.1.1 Protocol Interfaces

The protocol model dictates how a protocol interfaces both to the subsystem and to other protocols. It
defines both the syntactic and semantic aspects of each interface and the information that passes across

4Our version of the x-Kernel ran in user-space in the SunOS environment.
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it. Typical protocol interfaces include those for opening and closing a session and sending and receiving
data. Porting between subsystems first involves matching protocol interfaces in one subsystem to their
corresponding interfaces in another, and then converting between their syntax and semantics. We found
the following aspects of the protocol interface structure to be important:

Layer Modeling Portability problems are compounded when a subsystem imposes several distinct
models. For example, BSD defines a three “layer” protocol model, drawing distinctions between
network-interface protocols (e.g., Ethernet), application-interface protocols (e.g., Sockets), and ev-
erything else. When porting a protocol from Streams to BSD, one must first decide if the protocol
to be ported is a network interface protocol, a user-subsystem interface protocol, or something else.
In contrast, Streams and x-Kernel define one, single protocol model which dictates the design and
implementation of all protocols implemented within each respective subsystem.

Control Interactions Protocol models may draw a distinction between control information (e.g.,
options and addressing information) and data. Subsystems often define specific control interactions
independent of the particular protocol; protocols are generally free to augment protocol-specific control
operations with those specific to a particular protocol. For example, BSD defines over twenty separate
control interactions (e.g., status and address inquiries) while Streams defines roughly ten (e.g., inter-
module flow control and protocol graph operations); x-Kernel defines none5. When porting protocols,
the protocol programmer must match control operations where appropriate and implement those required
by the new subsystem. For example, when porting from Streams to BSD, one may be required to add
functionality necessary to handle those control operations defined by BSD but not Streams.

Passing Information How data and control information are passed between protocols and the sub-
system is another source of portability problems. For example, BSD defines three separate protocol
control interfaces; which interface is used depends on the control information’s origin. The x-Kernel
defines a single control interface used for all control interactions. In Streams control information is
passed in-band through normal data interfaces; information originating from “users” (or upper proto-
cols) is distinguished from that coming from lower protocols. During the porting process, the protocol
programmer must make decisions about where data and control information enter a protocol in its native
subsystem and compare and convert to those conventions defined by the subsystem that he or she is
porting to.

Timing and Event Services In addition to more traditional protocol interfaces (e.g., open, close, send,
and receive) protocol models can also define interfaces used for timing and event services. The manner in
which each subsystem supports such functionality (e.g., connection timeouts) directly affects protocol
portability and indirectly affects performance. The BSD subsystem defines two separate protocol
timeout interfaces, each called at periodic intervals. Streams defines service queues and accompanying
interfaces which can be scheduled for near-periodic execution. x-Kernel supports a general threaded

5The x-Kernel does define a control interface but places no minimal requirements.
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approach whereby a protocol programmer can fork a thread to execute a well-defined function at some
future time. During our case study, we found that porting a protocol written to one of these styles to
another is problematic. Each style has its own performance implications as well. Non-determinism in
Streams service queues can affect protocol throughput (e.g., those using sliding windows and timeouts)
because a given protocol may not be able to send data as quickly as that allowed by the protocol
specification. BSD timeout resolution (200 and 500 ms), on the other hand, may be too fine or too
coarse for a particular protocol causing similar problems.

Implicit Interfaces and Conventions Protocol models often define implicit interfaces through the
attachment of conventions to the manner in which control and data information are processed. These
implicit interfaces or conventions are not generally well-specified and are only discernible by examining
sample code or supporting documentation. For example, protocol models often define conventions for
the allocation and disposal of buffers as well as those for byte alignment. Buffer conventions generally
specify whether the caller or callee should free previously allocated buffers. Streams mandates that the
last or bottom-most protocol free buffers; BSD specifies a mix between both parties; x-Kernel explicitly
specifies that the caller free all resources.

4.1.2 Process Architecture

The manner in which protocol entities, like messages, layers, connections, buffers, and timers, are
bound to the underlying unit of scheduling is often referred to as a process architecture. Many different
styles exist including vertical and horizontal; within these styles can exist heavy-weight processes
(in the traditional UNIX sense) or light-weight processes and threads (See [23] for an overview of
process architectures and subsystems. For the sake of compatibility, we utilize their taxonomy.). In
vertical process architectures, a thread or process escorts a message through the protocol graph within
a single address space. Protocols invoke one another through synchronous function calls. In horizontal
process architectures, protocols encapsulate one or more threads or processes: each looping through
a continuous cycle of message reception, protocol processing, and message generation. Message
generation and reception is generally asynchronous in nature with little or no coordination between
protocols.

The BSD subsystem utilizes a single-threaded vertical process architecture in which protocol pro-
cessing is performed in the context of the initiating user or at software interrupt. The x-Kernel utilizes
a thread-per-message vertical process architecture where each message is escorted through the protocol
graph by its own thread. Lastly, Streams utilizes a combination of both horizontal and vertical process
architectures: Streams supports a vertical process architecture via its put functions and a horizontal
process architecture via its service queues.

Process architecture differences can impose serious portability problems; for example, converting
protocols coded to a vertical process architecture (where protocols invoke one another via synchronous
function calls) to a horizontal, message-oriented process architecture may require extensive code mod-
ifications. Alternatively, converting from a vertical thread-per-message process architecture (e.g.,
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x-Kernel) to that in BSD or Streams poses problems as well. For example, consider the act of converting
between network layer and physical layer addresses (commonly called ARP’ing). In BSD and Streams,
the general approach is to first initiate an ARP request, then save protocol state information, and return.
At some future point in time (upon the reception of an ARP reply or at the expiration of a timer), the
packet is sent. In a thread-per-message process architecture, no state information need explicitly be
saved; after initiating an ARP request, a thread simply need suspend itself for some period of time after
which it can continue processing. The code to save state and continue processing at a later time is
generally very subsystem-specific and thus non-portable.

Process architecture differences can also impose serious performance problems. For example,
horizontal process architectures can suffer performance penalties due to excessive context switching due
mainly to their asynchronous nature [17]. On the other hand, they may perform better in environments
that can effectively reduce this overhead [24].

4.1.3 Protocol Graph

Layering is such a fundamental concept in communications architectures that it is pervasive throughout
their specification and implementation. First, protocol families like the Internet, OSI, and AppleTalk
subdivide the task of communications into layers and corresponding protocols. Second, protocol and
protocol family implementations have generally conformed to this principle by subdividing and layering
their corresponding protocol code into protocol graphs. Third, subsystems have generally enforced the
notion of layering by providing overall support for protocol graph construction. Variations in how the
protocol graph is constructed and accessed may also pose portability and performance problems.

Protocol graphs may be constructed (and possibly destroyed) at several points in time: at protocol
development time, at compile time, and at run-time. Protocol graphs may also be accessed differently.
For example, a protocol graph may simply be hard coded at development-time whereby protocols
directly invoke one another via function reference; alternatively, the protocol graph may be constructed
at compile or run-time with protocols invoking one another via function pointer deferencing. How each
protocol obtains function pointers, in the latter case, may also differ.

The protocol graph is fixed at development time in the BSD. Protocols are generally coded with
explicit assumptions about their position in the protocol graph and reference their neighbors through
explicit function calls. Consequently, the BSD subsystem supports little change to the protocol graph.
The Streams subsystem supports the dynamic creation, modification, and destruction of protocol graphs
through the exchange of control messages and function pointer dereferencing. Protocols can re-situate
themselves on top of or below other protocols at any time. The mechanism for building6 protocol
graphs combines both subsystem directives (in the form of control messages) and protocol code support.
The x-Kernel supports the creation of the protocol graph at compile-time; no mechanisms exist for
its modification or manipulation without first stopping all communication and re-compiling and re-
instantiating the x-Kernel. Protocol graphs are also built using a combination of subsystem directive
and protocol code support in the x-Kernel.

6In this case, building a protocol graph includes its modification and destruction.
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Porting protocol code between subsystems of each type (those supporting differing notions of
the protocol graph) can also be difficult and time-consuming. Porting BSD protocols (which may
explicitly assume their position in the protocol graph) to other subsystems (where these assumptions
are not appropriate) involves identification and conversion of each explicit reference to neighboring
protocols. The porting difficulty is compounded if a protocol makes explicit assumptions about the
services provided by its neighbors. For example, because TCPBSD

7 assumes that it always operates
over IPBSD, it passes a partially filled IP header (containing processing options) when it invokes IPBSD.
Therefore, porting TCPBSD to a subsystem supporting dynamic protocol graph construction and in
which the protocol programmer may place TCP over some non-IP protocol will involve a fair amount
of modification.

Porting from a subsystem that supports some flexibility in protocol graph construction to one which
does not (e.g., x-Kernel or Streams to BSD) also involves a fair amount of conversion or modification
and may result in a reduction of services offered by a particular protocol. For example, if a newly
defined protocol family specifies that its protocol graph be modifiable at run-time, porting a conforming
implementation to the BSD subsystem would be difficult. The protocol programmer would be faced with
the difficult task of providing dynamic protocol graph configurability in BSD without subsystem support
or hard-coding each possible configuration. Alternatively, one could provide reduced communication
services by supporting a subset of all possible configurations.

4.2 Support Services

In order to reduce the complexity of protocol development, subsystems often offer generic support
services in the form of buffers and timers. These services are usually provided in a protocol independent
manner meaning that they are not specific to any one protocol or protocol family. We discuss some of
the more common services and their effects on protocol portability below.

Buffers Because communication protocols require memory buffers in varying sizes as well as the
ability to arbitrarily combine them into “messages” without unnecessary data copying, most subsys-
tems provide a special purpose memory management facility. How each subsystem approaches the
implementation of this facility is another source of portability barriers.

All three subsystems provide roughly equivalent functionality such that porting protocol implemen-
tations between them offers no serious impediments. They do differ significantly, however, in their
syntax. Unfortunately, since most protocols add, remove, and inspect headers stored in buffers, these
differences require tedious and time-consuming conversion. Further, some subsystems (namely the
x-Kernel) isolate the protocol programmer from the actual implementation details while others (BSD
and Streams) require the protocol programmer have extensive knowledge of its implementation. For
example, the x-Kernel provides such a convenient library of functions for buffer manipulation that the
protocol programmer need not be aware of its actual implementation structure. Consequently, porting
BSD and Streams protocols to the x-Kernel is somewhat simpler in this aspect.

7Our notation denotes the subsystem a protocol is developed in as a subscript; for example, TCPBSD denotes the protocol TCP
implemented within the BSD subsystem.
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Messages, containing user data and protocol headers, are generally passed between protocols and
the subsystem as arguments to protocol interfaces. Subsystems often impose conventions regarding the
“shape” of messages. For example, in Streams, the first buffer in a message usually contains control
and protocol options; in BSD, the first buffer in a message may contain both control and options as well
as a user data and protocol headers; in the x-Kernel, protocol programmers convey control and options
information using message “attributes”. Porting between subsystems with differing conventions as to
the shape of messages first involves their identification followed by their conversion. These conventions
are not generally well-specified8 and are usually poorly documented.

Other Support Services While a general buffer facility is the most common support service that
subsystems offer, many do provide others. For example, BSD provides protocol independent routing
table, packet queue, and timer support; the x-Kernel provides efficient multiplexing9 and event (or timer)
support. Streams, on the other hand, only provides support for generic packet queueing. Differences in
subsystem support services introduce both syntactic and semantic porting problems. If two subsystems
provide support for efficient multiplexing, their conversion is primarily a syntactic one. If one is
porting a protocol from a subsystem providing such service to one that does not, one is forced to
develop new code to support that lost functionality. For example, when porting protocols utilizing the
x-Kernel’s multiplexing services to Streams, one must add the necessary multiplexing code. On the
other hand, when porting from Streams to the x-Kernel, the protocol programmer need not modify
existing multiplexing code to use that provided by the x-Kernel.

5 Protocol Subsystems and Performance Concerns

In this section we present the results from the second phase of our case study, in which we explore the
interplay between subsystems and protocol performance. We do so by measuring the time necessary
to send and receive packets through separate AppleTalk protocol graphs implemented within Streams,
BSD, and the x-Kernel. The three measurement environments10 are shown in Figure 2. We took all
measurements on a Sun SPARCstation-LX running SunOS 4.1.3C.

We took all our protocol and protocol graph measurements in loopback mode whereby a client and
server residing on the same machine exchanged packets11. Data packets traversed the entire protocol
graph with the exception of the network interface protocol (ethernet in BSD, ethernet and NIT in
Streams, and ethernet, NIT, and our adapter protocol in the x-Kernel). All measurements were taken
while the machine was in single-user mode with almost no system processes running. We took the
average over multiple samples with a 95% confidence interval of at most 10% of measured values.
Because our protocols have not been extensively tuned, these results measure the relative impact that a
subsystem has on an implementation, more than raw performance.

First we present measurements of the send and receive processing time for the DDP and ATP Ap-
pleTalk protocols, and the Transport Layer Interface (TLI) and Sockets application-interface protocols.

8Indeed, one can hardly convey a convention using function prototypes in which the argument is simply a data pointer to a
message block.

9Multiplexing and de-multiplexing involve the translation between protocol header information (e.g., connection or port number)
and internal protocol state information associated with a user or higher layer protocol.

10The NIT protocol module (in the STRATALK and XKATALK protocol graphs) is necessary in order to gain access to the
Ethernet device. Further, in the XKATALK protocol graph, we must also make use of our adapter protocol concept in order for
protocols coded within the x-Kernel to send and receive ethernet packets. We elaborate in more detail on their use in a subsequent
section.

11Although our protocols were measured in loopback mode, they are fully functional and have been tested over a network
against each other, native Macintosh implementations, and routers. The source code is available via the WWW at
http://www.cc.gatech.edu/computing/Telecomm/playground/playground.html
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We obtained these measurements by placing appropriate code at all entry and exit points for each proto-
cols. By recording the entry and exit time, and their difference, we can measure the protocol processing
time necessary to send or receive a packet. We average these values over 20 to 30 thousand packets.
The code used to measure the protocol entry and exit times is sufficiently simple that it presents almost
no impact on protocol execution time. Further, we use the hardware’s high resolution clock, which
provides at least microsecond accuracy. Figure 3 lists these measurements for BSD and Streams.

50

100

150

200

250

300

DDP Send DDP Recv ATP Send ATP Recv

Pr
ot

oc
ol

 T
im

e 
(u

se
cs

)

Protocol Send/Recv

Protocol/Subsystem Performance

BSD Protocols
STR Protocols

XK Protocols

0

500

1000

1500

2000

Sockets/BSD TLI/Streams

Se
nd

/R
ec

v 
Ti

m
e 

(u
se

cs
)

Application Interface

Application Interface Performance

Sockets
TLI

Figure 3: Protocol Timings (usecs)

Measurements for the two application-interface protocols, TLI and Sockets, were performed dif-
ferently. We wrote a simple client program that sent 10 � 000 30-byte packets to itself using a protocol
graph consisting of only the DDP protocol. By measuring the total elapsed time measured by the
client and subtracting the total protocol execution time (confirmed using separate tests), we were able
to calculate the amount of time spent between the user program and DDP, i.e., the time spent in the
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application-interface protocols. Since the amount of time spent in user mode is negligible, the remaining
time represents that necessary to to perform the write() or read() system call, copy data to or from the
kernel, traverse the kernel’s socket layer or stream head and enter the protocol. Because users of both
subsystems cannot avoid any of these parts, measuring its total impact is sufficient for our comparison.
Our measurement of BSD/Sockets roughly corresponds with that found in [19]; we know of no similar
measurements for TLI/Streams. Unfortunately, we were unable to measure this impact in the context of
the x-Kernel because no such “standard” application-interface exists for its user-space implementation.

Our measurements demonstrate that, on the average, BSD and the x-Kernel outperform Streams for
simple datagram-oriented protocols (such as DDP) and to a lesser degree for more complex, transaction-
oriented protocols (such as ATP). BSD is similar to the x-Kernel in performance for ATP, while more
efficient for DDP. The disparity (for Streams) is due, in part, to the fact that Streams protocols must
spend considerable time and code unpacking and packing TLI messages. During the process of porting
from Streams to BSD we noticed that several hundred lines of code could be attributed to this task. The
disparity (for the x-Kernel) is primarily due (we believe) to data copying necessitated by the x-Kernel’s
message interface12 and the overhead imposed by the underlying threads package (SunOS LWP). As
the amount of protocol processing increases (in more complex protocols like ATP, for example) this
disparity becomes less of an impact.

Part of the disparity of Streams can also be attributed to the usage of service queues which add
context-switch overhead to protocol processing. Also contributing is overhead involved in allocating
and deallocating Streams buffers when compared to BSD mbufs and the x-Kernel BufferPool. To get an
idea of the performance impact of buffer manipulation, we measured the time necessary to allocate and
free 10 � 000 buffers in each subsystem. We chose a buffer size13 roughly equivalent to an “average” size
AppleTalk header or Streams TLI message header. We calculated the values in much the same manner
as earlier tests, taking multiple samples and averaging over the range of values. We measure the time to
both allocate and deallocate together rather than separating them because all subsystem must eventually
free previously allocated buffers. Therefore, lumping the two measurements together still allows us to
compare the overall impact of buffer manipulation. The results, depicted in Figure 4, are somewhat
startling with a disparity of almost 8 : 1 between the x-Kernel/BSD and Streams. Part of this disparity
results from the fact that the mbuf structure contains room for a small amount of data (usually sufficient
for a few protocol headers) while the strbuf structure does not. Allocating a strbuf entails the retrieval
of a free strbuf and the allocation and attachment of a data buffer. x-Kernelbuffer data is preallocated
and cached so little cost is incurred when allocating and deallocating.

We also conclude that a significant performance degradation can be attributed to application-interface
protocol processing. Although this fact is nothing new, what surprised us was that the performance
penalty when using TLI dwarfs that of Sockets (over 6 : 1) and accounts for as much as 95% of
the protocol processing for our Streams protocol graph. Obviously, given current operating system
architectures, some portions of this delay, mainly copying to and from the kernel as well as context
switching overhead, are unavoidable.

One could argue that this impact (along with buffer allocation and de-allocation overhead) is more a
matter of implementation efficiency rather than architectural or subsystem limitations. To some degree,

12Messaging, in version 3.2 of the x-Kernel hides all knowledge of its implementation behind an abstract data type; while
convenient for programming, performance can suffer because protocols must copy headers out of the message instead of accessing
them directly. A future version of the x-Kernel is supposed to offer more efficient alternatives.

13For BSD, we allocated a single 128 byte mbuf structure; for Streams, we allocated a 64 byte message block; for the x-Kernel,
we allocated a 64-byte BufferPool block.

12



10

20

30

40

50

60

70

80

90

BSD/Mbuf Streams/Strbuf XK/BufferPool

Bu
ffe

r a
llo

c/
fre

e 
Ti

m
e 

(u
se

cs
)

BSD/Mbuf
STR/Strbuf

XK/BufferPool

Figure 4: Buffer Alloc/Free Timings (usecs)

this argument is accurate. However, there are a few items worth mentioning that are indirectly related to
the subsystem architecture rather than the level it has been tuned. Streams horizontal process architecture
limits the ability to keep pointers to TLI message blocks because the protocol programmer does not
know when lower layer protocols have finished their processing. Within the vertical process architecture
of BSD and the x-Kernel, we can assume that resources are no longer in use when we return from a
lower-layer invocation. This difference lets us keep copies of structures around rather than performing
an expensive allocation/deallocation for each packet. Second, the basic structure of an mbuf (which
includes enough space for several protocol headers and data so that an additional memory allocation can
potentially be avoided) directly translates into better performance regardless of the amount of subsystem
tuning that has occurred. For interface protocol processing, similar conclusions can be drawn. The fact
that TLI overhead dwarfs that of Sockets indicates that some amount of tuning can be performed14.
However, the very nature of TLI (involving message allocation, packing, and unpacking) suggests that
its performance will never be on par with Sockets.

6 Adapter-Based Multi-Subsystem Architectures

Following the motivation developed so far in this paper, we now discuss an approach that would allow
us to build protocol graphs spanning multiple subsystems. We first describe some general aspects of
our proposed approach and then describe our experience with it in the context of the case study.

14Indeed, correspondence with engineers from Sun indicate that TLI in SunOS has not been extensively tuned.
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6.1 General Approach

We assume that the relevant subsystems co-exist in the same operating system kernel (much like BSD and
Streams co-exist within many Unix kernels while the x-Kernel can run in user-space). Since supporting
easy portability is of concern to us we adopt an approach that does not require changing protocol
implementations designed to work within a single-subsystem environment. Rather we introduce a
new protocol module, the subsystem adapter, which allows protocols to interconnect across subsystem
boundaries. Adapter protocols are situated at or on the boundary between subsystems for which they
provide adaptation services. For example, Figure 5a depicts an adapter protocol (labeled ’A’) situated
between two protocols in two distinct subsystems. A more detailed look at the adapter protocol is shown
in Figure 5b.

An adapter protocol design and implementation must satisfy one or both of the following properties:

1. If the multi-subsystem configuration is being used to avoid having to port protocols among
subsystems, then either "ready-made" adapter protocols must be available or the implementation
of a new adapter protocol must be considerably simpler than the process of protocol porting.

2. If the multi-subsystem configuration is being used because it is desired for performance or other
reasons15, then the adapter protocol must not represent a significant performance overhead and/or
must not affect the desired subsystem feature(s).
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Figure 5: Adapter Protocol Design

Adapter protocols share some features with application interface protocols (such as TLI and Sockets).
Both types of protocol provide an interface from outside a protocol subsystem to within. While
application interface protocols are generally relegated to the “top” of protocol graphs and provide an
interface between the subsystem and the greater system in which it is embedded, adapter protocols exist

15such as the configurability features of Streams.
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at any point in the protocol graph where subsystem boundaries are crossed. Adapter protocols are also
similar to the virtual protocols defined in the x-Kernel research [18]. Both work transparently within a
protocol graph. They do not produce or consume protocol headers nor communicate with remote peers.
Like virtual protocols, an adapter need not have a remote peer. Subsystem adapters are also similar in
nature to protocol adaptors defined by Calvert [5] except that subsystem adapters do not alter or convert
protocol headers, but instead provide subsystem adaptation services.

Adapter protocols reside in the subsystems between which they operate. The manner in which
an adapter protocol is integrated into each subsystem depends on the subsystem in question. In
general, adapter protocols operate by presenting themselves as (or proxying for) the protocols (and
subsystems) for which they provide adaptation services. For example, in Figure 5a, the adapter protocol
situated between ATPSTR and DDPBSD presents itself as DDP to ATP and the Streams subsystem while
simultaneously presenting itself as ATP to DDP and the BSD subsystem. Separate adapter protocols
are necessary for each pair of subsystems. For example, the adapter protocol used between Streams and
BSD would not be applicable to a protocol graph spanning Streams and x-Kernel.

The main purpose of an adapter protocol is to understand the protocol model imposed by each
subsystem and to provide adaptation or conversion services between them. In particular, they must be
capable of supporting all relevant control and data interfaces, process architecture, buffer conventions,
and support services for each subsystem. In many cases, protocols and subsystems may be sufficiently
different that certain translations may not be possible. For example, a protocol in one subsystem may
not support certain parameter negotiation required by a protocol in another subsystem. If both protocols
are sufficiently robust, interconnection may still be possible. In others cases, interconnection may be
impossible if that parameter negotiation is important for the fundamental operation of one protocol. In
this instance, the adapter protocol is faced with a fundamental choice: it can return an error when a
particular translation is not possible, or it may return success despite the fact that the translation did not
occur and is not possible. The choice depends on the nature of the translation, its importance, and its
side-effects.

Because each adapter protocol performs similar operations and shares a common design, their
implementation presents a good candidate for the object-oriented development techniques of inheritance
and specialization. That is, once one implements a generic adapter protocol for a given pair of
subsystems, only a small amount of specialization is necessary for any two protocols in those subsystems.
For example, once our adapter protocol in Figure 5(a) is coded, only a small amount of code is necessary
for it to adapt between ATPSTR and DDPBSD. This specialization is necessary because each protocol
(although still conforming to the BSD and Streams subsystems) approachs argument and option passing
differently. In future work we plan to take a closer look using inheritance and specialization as an
implementation methodology.

6.2 A BSD-Streams Adapter Protocol

We implemented a BSD-Streams adapter protocol16 allowing for the interconnection of AppleTalk’s
ATP and DDP across subsystem boundaries. We coded our adapter protocol in such a way that it could

16During the course of our research we implemented three adapters: BSD-Streams, x-Kernel-Streams, and x-Kernel-BSD. We
focus on one adapter, BSD-Streams, because it is representative of all our adapter protocols.
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be used when providing both ATPSTR �	� DDPBSD and ATPBSD �
� DDPSTR services. In all cases,
the use of our BSD-Streams (and our x-Kernel-Streams and x-Kernel-BSD as well) adapter protocol
satisfied our first requirement: namely, no existing protocol implementation should require modification
in order to build multi-subsystem protocol graphs. We next highlight the operation of our BSD-Streams
adapter protocol. We examine the effect of adapters on protocol performance in the next subsection.
First, we discuss some aspects of one of our adapter implementations.

Adapting Disparate Protocol Models The first job of our BSD-Streams adapter protocol is to translate
between the protocol models imposed by Streams and BSD. Because BSD defines several different
protocol models, our adapter protocol bases its decision (as to which protocol model to convert to) on
the protocols it interconnects. For example, since we are providing adaptation services between two
protocols (ATP and DDP) which are not network-interface protocols nor application interface layer
protocols, the choice was fairly obvious. Had we decided to implement an adapter protocol between
DDPSTR and a BSD network-interface protocol, our adapter protocol would have had to convert between
a different BSD protocol model.

Next, our BSD-Streams adapter protocol had to translate the protocol interfaces of each subsystem.
For example, BSD’s data input and output functions roughly corresponded to Streams’s read and
write functions. Data entering from the Streams-subsystem enters a Streams compatible read or write
interface; likewise, data entering from the BSD subsystem enters a BSD compatible input or output
function. Control flow, on the other hand, is not so easy to translate. Recall that control information, in
BSD, flowed through differing interfaces based on its origin; in Streams, all control information flowed
in-band. When converting control information originating in Streams and destined for BSD, our adapter
protocol had to make a decision as to which BSD interface to use. All control information flowing in
the other direction (from BSD to Streams) utilizes the same interface.

The Streams subsystem sometimes invokes inter-module flow control (via subsystem-specific control
messages) because it utilizes an asynchronous, message-passing style of protocol invocation. This
feature is necessary so that a Streams protocol can throttle higher or lower layer protocols. Inter-module
flow control occurs in two forms: per-module (via high/low water marks on queues) and per-protocol-
graph (via flush control messages). Because BSD does not provide (nor require) equivalent functionality,
our adapter protocol does not attempt to translate inter-module flow control when data arrives from
Streams towards BSD. Inter-module flow control is supported in one direction only – from BSD to
Streams. As data flows toward the Streams subgraph, the adapter protocol examines the incoming
queue of its adjacent Streams protocol; if it is full, the adapter protocol will queue the data.

In order for our BSD-Streams adapter protocol to properly function, it must reside in both subsystems.
Consequently, an entry is placed in the BSD protocol switch table as well as the Streams configuration
table. For Streams, it registers its Streams compatible interfaces and data structures (e.g., open, close,
and streamtab structure); for BSD, it registers its BSD compatible interfaces (e.g., usrreq, input, and
protosw structure). When the BSD subsystem is initialized at kernel boot time, our adapter protocol is
initialized along with any other BSD protocol. Likewise, when the Streams protocol graph is constructed,
our adapter protocol is dynamically linked in.
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Adapting Disparate Process Architectures If the two subsystems, between which an adapter protocol
operates, support a common process architecture then that adapter protocol’s operation is somewhat
simplified. Unfortunately, BSD and Streams differ slightly in their process architectures. Recall
that BSD utilized a vertical process architecture while Streams utilized a combination of vertical and
horizontal. When packets arrive from Streams, our adapter protocol unbundles them and invokes
the appropriate BSD protocol function. When packets arrive from BSD and are headed for Streams,
our adapter protocol creates a TLI message, and passes it on to the appropriate Streams protocol; an
interesting side-effect occurs. When BSD protocol function invocations finish, an error value (eventually
becoming the UNIX errno variable) is returned. This error message (failure or success) eventually
cascades back to the user. In Streams no such immediate error feedback is returned. Therefore, when
a return value does enter the adapter protocol, it progresses no further. In affect, when data leaves the
BSD subsystem and enters Streams our adapter protocol returns success (setting the BSD return value
to 0) even though it does not know the eventual fate of that packet. Alternatively, when a Streams error
message enters the adapter protocol, it also progresses no further.

Lastly, we mention functionality that our adapter protocol does not need to perform. Recall that
subsystems often provide support services (e.g., routing table and multiplexing support). Unlike the task
of porting protocols, adapter protocols need not provide any such translation between differing subsystem
support services because all protocols in multi-subsystem protocol graphs continue to operate within
the subsystem for which they were originally coded. Because original protocols remain unmodified,
the use of adapter protocols should have no effect on established operational properties like correctness,
conformance, or interoperability.

DDP

ATP

Streams BSD

Ether

NIT

A

TLI

DDP

ATP

Streams BSD

Ether

TLI

A

ATP

DDP

BSDStreams

Sockets

NIT

A

Ether

ATP

DDP

x-Kernel

Ether

BSD

A (Kernel)

(User)

Streams

NIT

(STRBSD) (STRBSD’) (BSDSTR) (XKSTR)

Figure 6: Multi-Subsystem Protocol Graphs

Our adapter protocols allowed us to construct the multi-subsystem configurations of the AppleTalk
protocol architecture shown in Figure 6. The BSDSTR configuration maintains DDP in the Streams
subsystem with the rest of the protocol graph in the BSD subsystem while the XKSTR configuration
maintains ATP in the x-Kernel with the rest of the protocol graph residing in Streams. The resulting
protocol graphs were fully tested for inter-operability with our previous single-subsystem implemen-
tations (BSDATALK, STRATALK, and XKATALK depicted in Figure 2), with other multi-subsystem
protocols, and with the native Macintosh protocol implementations.
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We constructed two variations of the STRBSD (STRBSD and STRBSD’) protocol graphs. Their
difference involves the manner in which Streams protocols access network interface protocols in SunOS.
Since Streams protocols cannot directly access network interface protocols (e.g., ethernet) in SunOS
(because the latter are coded within the BSD subsystem), they must utilize the network interface tap
(NIT) pseudo-device to do so17. Because our adapter protocol appears as DDP to Streams, and because
of our goal not to modify existing protocol software, DDP is normally linked on top of the NIT pseudo-
device when that protocol graph is first constructed. However, in a STRBSD multi-subsystem protocol
graph, the services of the NIT device are not necessary because DDPBSD can access the network interface
natively since it resides within the BSD subsystem. For completeness though, we measured STRBSD
with and without NIT in the protocol graph. Our measurements showed little, if any, difference between
the two variations.

6.3 Multi-subsystem Protocol Graph Performance
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We conducted our performance measurements on the various protocol graphs we were able to construct
(see Figures 6 and 2) using a simple client and server. The client requests a null transaction be performed
by the server and measures the elapsed time. The server simply receives the transaction request and
immediately sends a fixed length reply. Separate tests were conducted, each consisting of the client
invoking 10 � 000 transactions. Each transaction request consisted of a small, 45 byte packet while
replies ranged from 578 (1 packet) to 4624 (8 packets) bytes. As before these test were conducted in
loopback mode. The results are depicted in Figure 7.

Our results clearly demonstrate that different protocol graphs do indeed produce different results.
Not surprisingly, the native BSD protocol graphed performed best. Somewhat surprising was the fact

17In affect, the NIT module can be thought of as a primitive adapter protocol because it performs limited translation services
between the Streams and BSD subsystems.
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that the native and hybrid x-Kernel protocol graphs performed worst; the Streams protocol graphs fared
slightly better. We attribute the poor performance of the x-Kernel protocol graphs to the underlying
threads package (SunOS LWP) rather than the x-Kernel. Also surprising was the fact that the BSDSTR
graph out-performed the STRBSD graph. This difference can be attributed to the poorer performance
of TLI (also affecting the native Streams protocol graph) when compared to Sockets. The STRBSD
graph utilizes TLI (since a Streams protocol is “on top”) whereas the BSDSTR graph utilizes Sockets
(since a BSD protocol is “on top”). Recall from Figure 3 the substantial difference in the performance
of Sockets and TLI.

Further, our results demonstrate that some multi-subsystem protocol graphs offer the best of both
worlds. The BSDSTR protocol graph successfully combines the performance of the BSD subsystem
with the dynamic protocol graph configurability of Streams. Using a BSDSTR approach, one could
build protocol graphs avoiding the poorer performance of TLI yet still benefitting from the ability to
change the Streams portion of the protocol graph at run-time. The relative performance of the three
multi-subsystem protocol graphs (STRBSD, BSDSTR, and XKSTR) does present interesting questions,
however. Why do some multi-subsystem protocol graphs perform better than others? What, if any,
performance overhead is introduced by adapter protocols? We explore these questions below.

Adapter Protocol Performance In order to assess the performance impact introduced by adapter
protocol use, we conducted tests designed to measure the protocol processing time required to provide
adaptation services between the subsystems. As before, we placed code at all relevant entry and exit
points and recorded the arrival and departure times for each packet. We then utilized our client and
server from previous tests and performed 10 � 000 transactions. Figure 8 presents our results. The poor
performance of the x-Kernel-Streams (vs. the BSD-Streams and Streams-BSD adapters) is a result of
several things. First, the XKSTR protocol graph straddles the user/kernel boundary so context-switching
costs creep into the performance of the x-Kernel-Streams adapter protocol. The BSDSTR and STRBSD
protocol graphs and associated adapter protocols reside entirely within the kernel so this cost does not
creep into adapter protocol performance measurements. Second, the performance of the SunOS LWP
threads library creeps into the x-Kernel-Streams adapter protocol measurements as well.

We draw several conclusions about the performance of adapter protocols.

1. From Figure 8, one can clearly see that the cost of going from BSD to Streams exceeds its opposite.
We attribute this disparity to the fact that transforming from Streams to BSD requires no data copy
because BSD’s buffer facility supports the importation of data without copying while Streams
does not. Transformations to and from the x-Kernel also entails data copying due to the fact that
the x-Kernel resides in user-space on SunOS systems. However, the x-Kernel buffer facility does
support the importation of data without copying. Therefore, if the x-Kernel resided in the space
protection domain as Streams and BSD, data-copying costs would not affect its performance.

2. Transformation costs are dependent on the individual protocols in question and their position in
the protocol graph. For example, at first we hypothesized that all BSD to Streams transforma-
tion should be equivalent; all Streams to BSD transformations likewise. Our results do show
that both Streams to BSD transformations performed similarly (145 and 128 usecs). However,
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BSD-Streams transformations did not. We attribute the performance difference in BSD-Streams
transformations to the overhead involved in copying data from BSD mbufs to Streams strbufs.
In the BSDSTR protocol graph, the BSD-Streams translation copies less data than a similar
translation in STRBSD graph due to its “higher” (less data and headers have been added to the
packet) position in the protocol graph. Likewise, the position at which adaptation services occur
in relation to fragmentation/reassembly services may also affect performance. In order to reduce
adaptation overhead, one would want to perform adaptation services after reassembly on the
receiving side and before fragmentation on the sending side.

3. We conclude that the overhead introduced by adapter protocol usage is fairly consistent and
increases linearly with the number and size of packets. The overhead is not fixed, however, due
to the fact that data copying is necessary for all BSD-Streams transformations.

7 Conclusion

Protocol subsystems can have a profound effect on the structure and capabilities of protocol imple-
mentations. Differences among subsystems can also influence the protocol porting process and, as a
byproduct, can influence the ease of adoption of new protocols. In this paper we have investigated
issues arising from differences in subsystems and their effects on protocol portability and performance.
We use the resultant understanding to motivate the desirability, in certain situations, of protocol graphs
spanning multiple subsystems. We propose a possible adapter-based approach to constructing such
protocol graphs and report on our experience of constructing adapter-based implementations within the
context of our case study. Our experiments indicate that the approach has promise, in particular it can
increase flexibility and protocol code reuse with a modest performance cost.
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