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1 Introduction

Krang is a 19 degree of freedom robot with actuators along three different major axes with a unique
physical structure. Moreover, in comparison to most robots on which kinematics is studied, Krang is
neither a stationary robot with a fixed base nor is it a legged humanoid for which somewhat a standard
has been established. Still, we would like the kinematics for Krang to be easy to understand, regenerate
and implement. To this end, we choose the well-established Denavit-Hartenberg (DH) parameterization.

In the following, we will describe the DH parameterization for Krang. To do so, we will first present
a refresher on DH and the specific rules we follow. With the advantage of DH being adopted for the last
60 years comes the disadvantage that different interpretations arose within the standard over the years.
We follow one of the most popular and well-documented interpretations, and also describe it here.

After the tutorial, we will focus on the specific parameterization of Krang in three sections: wheels
to torso, torso to left arm and torso to right arm. We separate the kinematics in this way because (1)
the lower body of Krang, from wheels to the torso module, is significantly different than the upper body
and (2) once lower body is established, left and right arms are quite similar to each other.

Lastly, we will discuss the inverse kinematics for the arms. The discussion will be mostly based on [2]
where we will delve into the details of the technical work and relate it to the Krang’s parameterization.

2 Denavit-Hartenberg Parameterization

In general, DH parameterization has two major steps: assigning frames to the actuators and deciding
on the transformations between the frames. Remember that the goal of this exercise is to create a
kinematic map for Krang to relate the joint positions and velocities we control with the behavior of the
end-effectors. We first begin with assigning frames.

2.1 Assigning the frames

There are 3 cases in assigning coordinate frames to the modules. In all cases, the z-axis is aligned with
the axis the module moves on and the direction can be chosen arbitrarily. The three cases are:

1. zi−1 and zi are not coplanar: Figure 1 delineates this case where the module axes are not
coplanar. In this case, there exists a unique line segment perpendicular to both zi−1 and zi that
connects them and is the shortest available segment. We define xi colinear to this line and the
origin oi is placed in the intersection of xi and zi.

2. zi−1 is parallel to zi: In this case, there is not a unique line segment and we can choose oi
anywhere along zi. Once oi is fixed, xi is along the common normal of zi−1 and zi, either pointing
towards zi−1 or the opposite direction.

3. zi−1 intersects zi: xi is perpendicular to the plane defined by zi−1 and zi, and the origin oi can
be placed anywhere on zi although mostly placed at the intersection of zi and xi.

In addition to the module frames, we also need to add a tool frame which usually uses the same z-axis
as the last module frame. After choosing the z-axis, the same rules can be followed for the x-axis.

Another important point to keep in mind is the indexing of the frames. Modules are indexed from 1
and frames are indexed from 0. Frame 0 is the world coordinates that do not change with the module
angles. Moreover, frame 0 is placed at the center of module 1, frame 1 is at module 2 and etc. This
convention ensures that the frames share the same indices with the modules that move them.
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Figure 1: Frames assigned to actuators and the parameters {α, θ, a, d} (From [1])

Lastly, the explanation in this section is mostly based on the excellent treatment by Spong et al. [1]
and we suggest studying that reference. Also, the three cases described above indeed arise in Krang and
we will describe their details further in the document. Now, having assigned frames to each module (and
the end-effector), we go on to parameterize the transformations between the frames.

2.2 Parameterizing the transformations

Let oixiyizi and ojxjyjzj be the origin and axes of the ith and jth frames, fi and fj respectively. Let T ij
be the 4× 4 homogeneous transformation matrix that represent fj with respect to fi. For instance, the
coordinates P j of a point P in frame fj can be transformed to the coordinates in frame fi by: P i = T ijP

j .

Our goal is now to define the transformation matrix T ij between the frames defined in the previous
section. We use four main parameters as described in the table below:

Symbol Definition
ai The distance along xi from oi to the intersection of the xi and zi−1 axes
di The distance along zi−1 from oi−1 to the intersection of the xi and zi−1 axes.
αi The angle between zi−1 and zi measured about xi.
θi The angle between xi−1 and xi measured about zi−1.

Let’s define T i−1
i given the parameters ai, di, αi and θi:

T i−1
i = Rotzi,θiTranszi,diTransxi−1,aiRotxi−1,αi

(1)

the matrix Rotz,θ is a rotation around an axis z about θ radians and the matrix Transz,d is a translation
along an axis z for d units. We can look at Figure 1 and imagine a point P i in the fi coordinate frame,
and move it towards the (i− 1)thframe step by step. Now, the equation to get P i−1 is:

P i−1 = Rotzi−1,θiTranszi−1,diTransxi,aiRotxi,αiP
i (2)

where we do the following steps by matrix multiplication from right to left to get P i−1:

1. Rotate the point around xi for αi degrees so that zi and zi−1 are parallel.
2. Move the point ai displacement along xi (right). Now, if we imagine oi moving with the point, it

should coincide zi−1, and zi and zi−1 are colinear now.
3. Move the point di displacement along zi−1 (down). Now, again, if we imagine oi is moving, it

should councide oi−1. Now, the only difference between the two frames is the rotation around zi−1.
4. Rotate the point around zi−1 for θi degrees so that xi and xi−1 are parallel.
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The advantage of the DH parameterization and the factorization of the transformations into 4 basic
operations is the simple closed-form expression for T i−1

i (note: c and s stand for cos and sin):

T i−1
i =


cθi −sθicαi

sθisαi
aicθi

sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

 (3)

Next, we discuss Krang’s coordinate frames and determine the DH parameters based on its structure.

3 Krang Parameterization

The purpose of DH parameterization is to attain the transformations between successive modules’ co-
ordinate frames. However, inherently, DH requires an ordering of the modules: which module do you
start with? For Krang, we start with the wheels and fix a frame f0 with the y0 frame aligned with the
vertical of the room and x0 and z0 moving with the wheel axis. This allows us to add an additional
transformation from the room origin to the robot position and orientation easily. Next, we explain the
parameterization for the lower body of Krang.

3.1 Lower body

Figure 2 shows the frames assigned to the modules. There are a few points to note here. First, the two
wheels are treated as a single module, as well as the two waist modules. Second, the notation is that
θ values control the rotations about the z axes between the successive modules. The θ1 and θ2 values
are based on the imu reading, qimu, and the waist modules’ angle, qw, respectively. Next, we justify the
placement of frames 1, 2 and the arm base frames 3l and 3r.

Figure 2: The base frames and the joint angles from the side view
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The z-axis of the first modules, z1, is parallel to z0 so this frame falls into the second case where we
place the x-axis of the ith frame along the common normal zi−1 and zi, just as x1 is placed. Secondly,
the frame 2 is an interesting case because the z-axes of the torso module and the waist modules are
non-planar. In this case, we take the shortest unique line that is perpendicular to both z1 and z2 and
place x2 along that line. Lastly, we discuss the arm modules. An important note is that we assume:

The z-axis of a horizontal arm module is away from the end-effector and the z-axis of a
vertical arm module is towards the rounded covers with the “Schunk” labels.

Given this choice, the z-axes of both arms intersect with the z-axis of the torso module and we have the
third case where we place the x-axes perpendicular to the plane created by the intersecting z-axes. Note
that we choose the y-axes to be vertical because this convention helps with the arm frames later on.

Having fixed the frames, now we discuss the parameterization. Frame by frame, we will create the DH
table in Table 1 where we have noted the controlling parameters values. We start with the transformation
between frames 0 and 1, which is induced by the wheel motion. First, note that there is a mechanically
induced offset θo1 between the base of the robot and the x1 axis. Secondly, the only way to determine
the angle of the base with respect to the room vertical, y0, is the imu reading, denoted as qimu. Using
the two values, the θ1 variable is computed as: π/2− qimu− θo1. We also have L1 as the distance between
the wheel axes and the waist modules, and d1 is zero because both frame origins are through the middle
of the robot.

Table 1: DH Parameters for the Lower Body
Frames ai αi di θi

0-1 L1 0 0 π/2− qimu − θo1
1-2 L2 −π/2 0 π/2− qw + θo1
2-3l 0 −π/2 -L3 π + qtor
2-3r 0 −π/2 -L3 qtor

Next, we look at the transformation between frames 1 and 2. Here, qw, the waist modules’ angle
controls the θ2 variable, with a constant offset of −(π/2+θo1). Note that while qw in a clockwise rotation,
θ2 decreases, and we zero the waist modules when the spine and the base are parallel. The distance
between the two z-axes is L2 as shown in Figure 2 and the z1 axis has to rotate −π/2 radians about x2
to be paralel to z2.

The last two transformations in the lower body are between the torso, f2, and the first modules in
the arms, f3l and f3r. There is a few details here. First, because the x3s and z2 intersect, the variables
a3s are zero and the distance of the spine L3 expresses itself in the di column. Second, for both arms
with the opposite x-z axes, the rotation about x3s from z3s to z2 is −π/2. Lastly, although the rotation
difference between x2 and x3r is only the torso’s movement, qtor, there is an offset of π for the left arm.

3.2 Upper Body

Figure 3 shows the frames for the left arm with the accompanying link lengths. In this section, we will
describe two transformations: (1) from a horizontal module to a vertical one and (2) from a vertical
module to horizontal one. Once these two types are established, the rest of the transformations are
merely repetitions. Moreover, note that, the transformations for the two arms are also the same because
after the difference in the base frames, f3l and f3r, the arms are identical and we can use the same
parameterization with different variables. Note that all the DH parameters for the left arm is in Table
2 and we will only describe the first two rows.

Now, we describe the transformation from f3l to f4l - this is the horizontal to vertical case. Although
the origin of f3l is not denoted in Figure 3, it is at the intersection of y3 and z3l. Given that the z-axes
intersect, this transformation falls into the third case where we automatically have a4l to be zero. The
distance between the x-axes is negative L4 since the translation is along z3l, looking away from the
end-effector. Note that there is a π radians rotation (plus or minus) around xi for all the rotations in
the arms since the z-axes change from horizontal to vertical and vice versa. Lastly, the rotation of f4l is
controlled by the joint rotation qL0 .
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Figure 3: The left arm frames, the torso and the base of the right arm

The second important transformation is from f4l to f5l and this one is relatively simpler because the
two frames share the same origin. Since they share an origin, there are no translations and we have
already covered the rotation around the x-axes. The z-axis rotation is also similar in that it is the joints
movement: qL1 . One important detail that is specific to this joint only is the θbend variable which is used
to take care of a bend in the bracket between the first and second modules. The ability to include such
deformations in the kinematic model easily is one of the advantages of the DH parameterization.

Table 2: DH Parameters for the Left Arm
Frames ai αi di θi

3l-4l 0 -π/2 −L4 qL0
4l-5l 0 π/2− θbend 0 qL1
5l-6l 0 -π/2 −L5 qL2
6l-7l 0 π/2 0 qL3
7l-8l 0 -π/2 −L6 qL4
8l-9l 0 π/2 0 qL5
9l-10l 0 π −L7 qL6

3.3 Kinect

In this section, we describe the two transformations that relate the shoulder bracket frame to the Kinect
frame. Clearly, this relationship is vital to use visual input for manipulation, interaction and etc. Figures
4 and 5 show the two Solidworks images with the annotated distances. In the following we define the
two transformations: (1) from bracket to Kinect hinge and (2) from hinge to Kinect 3D sensor.

Figure 4: The three frames in play and the transformation from the bracket to the Kinect hinge

The transformation Thb is governed by the three variables δbx = 11.13, δby = 9.84 and θ, the hinge
angle. Given these three variables, we can write the transformation as:

Thb =


cos(θ) − sin(θ) 0 11.13
sin(θ) cos(θ) 0 9.84

0 0 1 0
0 0 0 1

 (4)
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Note that one can check the validity of this transform by evaluating the transformation of a point P b

at the origin at the frame b and observing that the translation [δbx; δby; 0] returns a point with position
x and y axis values in frame h. A similar test can be done for the rotation. See the kinematics/tests
folder for more.

The transformation T kh is simpler in the sense that we only need to take into account a change in
axes and translation but not a rotation. Note that here we also have a translation along the arms, in
the x direction of the Kinect frame since the 3D sensor is off the center of the robot. The variables δhx ,
δhy and δhz can be seen in Figure 5 (Note that the axes in this frame belong to hinge frame although we
will use the switched ones in Kinect frame):

Figure 5: The transformation between the Kinect hinge and the 3D sensor lens

With these measurements, the transformation T kh can be written as where we get the 1.5 cm for the
z-axis by subtracting 20.2/2 from the given 11.60 to use the center of the hinges as fh:

T kh =


0 0 1 5
0 1 0 −4.25
−1 0 0 1.5
0 0 0 1

 (5)

We can apply a similar test by thinking of a point Ph at the origin of fh and observing that (1) the xk
value is positive as expected, (2) the yk value is position, and (3) the zk is negative since the hinge is
located “behind” the sensor.
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