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Abstract. Investigators working in both terrestrial and marine systems hypothesize that 
prey defenses are better developed in tropical than in temperate habitats because tropical 
consumers are more active and diverse. To investigate the hypothesis that chemical defenses 
are more potent in tropical than in temperate seaweeds, we conducted 38 feeding assays 
involving seven genera of algae. We offered tropical and temperate sea urchins the choice 
of a temperate alga from North Carolina or a closely related tropical alga from the Bahamas. 
Plants were freeze-dried, ground to a fine powder, embedded in agar, and presented in 
congeneric pairs (North Carolina species vs. Bahamian species), or same-species pairs, to 
the temperate urchin Arbacia punctulata and the tropical urchin Lytechinus variegatus. For 
the genera we tested (the red alga Amphiroa, the green alga Udotea, and the brown algae 
Dictyopteris, Dictyota, Lobophora, Padina, and Sargassum), we documented a general 
pattern in which the mean amount of North Carolina seaweeds eaten was approximately 
twice that of their Bahamian congeners. Dictyota was an exception to the overall pattern, 
in that mean consumption of temperate and tropical species was equivalent. In addition to 
showing a latitudinal difference in seaweed palatability, we found that some species ex
hibited significant, between-population variation in herbivore resistance on a local scale. 
The most notable example was Dictyota menstrualis from North Carolina. When collected 
from a shallow inshore site, this species was significantly more palatable than tropical 
species of Dictyota in four of six contrasts. When collected from a deeper offshore site, it 

. was significantly less palatable than the tropical species in four of six contrasts. Thus, for 
this species, the between-population variance in palatability within a geographic region 
(North Carolina) bracketed the variance in palatability that we found among species and 
between regions. 

Feeding assays with both temperate and tropical urchins produced similar results, in
dicating that choices were made based on fundamental characteristics of the algae rather 
than on greater familiarity with local prey species. To see if chemical defenses could explain 
the differences in herbivore resistance that we noted using freeze-4ried algae, we tested 
the effects of lipid-soluble and water-soluble extracts from each alga on urchin feeding by 
incorporating extracts into a standard palatable food. We also measured protein content and 
percent ash-free dry mass of the seaweeds in order to correlate urchin feeding preferences 
with these measures of food quality. Lipophilic chemical extracts explained urchin pref
erences in 9 of 15 (60%) North Carolina-Bahamas contrasts. Water-soluble extracts, protein 
content, and percent ash-free dry mass generally did not account for feeding patterns seen 
in the original assays. Our results support the general hypothesis that tropical seaweeds 
have stronger chemical defenses than temperate seaweeds. For some ~enera, however, 
smaller-scale local variability in herbivore resistance within a species <~ be as striking as 
overall latitudinal differences. r 
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INTRODUCTION 

Tropical plants are hypothesized to have stronger 
defenses against herbivory than temperate plants due 
to the perceived increase in grazing intensity at lower 
latitudes (Levin and York 1978, Vermeij 1978, Fenical 
1980, Gaines and Lubchenco 1982, Faulkner 1984, Hay 
and Fenical 1988, Coley and Aide 1990, Hay 1991). 

I Manuscript received 27 April 1995; revised 12 January 
1996; accepted 30 January 1996; final version received 26 
February 1996. 

2 Address correspondence to this author. 

Grazing on tropical coral reefs is thought to be more 
intense than in any other marine or terrestrial com
munity (Carpenter 1986, Hay 1991, Hay and Steinberg 
1992), and herbivory by reef fishes (reviewed by Horn 
1989, Hay 1991) is thought to have selected for in
creased chemical and morphological defenses among 
tropical seaweeds (Hay 1981, 1991, Gaines and Lub
chenco 1982, Steneck 1986, Duffy and Hay 1990, Hay 
and Steinberg 1992, Paul 1992). Tropical algae gen
erally produce more kinds, and higher concentrations, 
of secondary metabolites than do temperate plants 
(FenicaI1980, Faulkner 1984), and many of these com-
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pounds have been found to deter a variety of marine 
herbivores (reviewed by Hay and Fenical 1988, Hay 
1991, Paul 1992). 

Along with herbivory, predation pressure also is hy
pothesized to increase with decreasing latitude. Sup
porting evidence for both phenomena comes from a 
wide range of terrestrial and marine systems, and in
cludes temperate-tropical comparisons of the second
ary metabolites of sponges and sea cucumbers (Bakus 
and Green 1974), protective shell architecture of gas
tropods (Vermeij 1978), predation by ants on wasp lar
vae (Jeanne 1979), predation by marine fish on gastro
pods (Bertness et al. 1981), predation on sessile biota 
in rocky intertidal habitats (Menge and Lubchenco 
1981), predation on marine decapod crustaceans (Heck 
and Wilson 1987), and insect damage and levels of 
phenolics in forest trees (Coley and Aide 1990). These 
diverse studies suggest that the intensity of herbivory 
and predation is greater, and levels of prey defense are 
possibly higher, in tropical than in temperate habitats. 

Very little direct, experimental evidence exists, how
ever, to support the hypothesis that temperate prey are 
really more susceptible to consumers, or that tropical 
prey have more strongly developed defenses. Numer
ous findings suggest the need to more rigorously in
vestigate the hypothesized latitudinal trend in prey de
fenses, or susceptibility to consumers. For example, 
although antiherbivore defense is often seen as the 
"raison d' etre" of plant secondary metabolites (Herms 
and Mattson 1992), not all seaweed secondary metab
olites act as feeding deterrents, the deterrent effects of 
compounds are not always consistent against different 
herbivores, and secondary metabolites can have func
tions other than defense against herbivores (Hay and 
Steinberg 1992, Paul 1992, Steinberg and Van Altena 
1992, Schmitt et al. 1995). Thus, latitudinal patterns 
in the occurrence of secondary metabolites need not 
be related to patterns in antiherbivore defense alone. 
The idea that herbivorous fishes exert much greater 
selective pressure on tropical than on temperate sea
weeds could be an artifact caused by a general lack of 
knowledge about the ecology of temperate herbivorous 
fishes (Choat 1982, Horn 1989). Additionally, the im
pact of marine herbivores everywhere is undeniably 
patchy (Hay 1981, 1985, 1991, Gaines and Lubchenco 
1982, Carpenter 1986, Lewis 1986, Schiel and Foster 
1986, Morrison 1988, Steinberg et al. 1995), and such 
local and regional variability could ultimately over
whelm the proposed general differences between tem
perate and tropical latitudes. 

There are also studies suggesting that herbivores re
spond to plant nutritional quality as well as defensive 
characteristics (Mattson 1980, Horn and Neighbors 
1984, Duffy and Paul 1992, Hay et al. 1994). Plant 
quality may even alter the effectiveness of chemical or 
structural defenses (Duffy and Paul 1992, Hay et al. 
1994); hence, attractive, as well as deterrent, charac
teristics of plants must be considered in determining 

how plants coexist with herbivores. Scientists cannot 
interpret a higher incidence of secondary compounds 
in tropical vs. temperate algae as greater defense of 
tropical algae without documenting the deterrent ef
fects of the compounds and also considering the nu
tritional value of the plants. Direct data are needed on 
the relative susceptibility of temperate vs. tropical 
plants to herbivores, not simply on plant characteristics 
that are assumed to function as defenses against con
sumers. 

The goal of our study was to experimentally inves
tigate the susceptibility to herbivory of similar temperate 
vs. tropical algae, and to take a first step in delineating 
mechanisms that produce the feeding patterns we doc
umented. We addressed the following questions regard
ing a broad range of seaweed taxa: (1) Are tropical sea
weeds less palatable to generalist herbivores than their 
temperate relatives? (2) If so, is this pattern due to chem
ical defenses? (3) Do temperate and tropical algae differ 
in their nutritional value, and does this help to explain 
any latitudinal trends in palatability? 

METHODS 

Rationale and general approach 

Seaweed resistance to herbivores can vary due to 
chemical, structural, morphological, and other plant 
characteristics (Duffy and Hay 1990, Hay 1991, Hay 
and Steinberg 1992). Because previous speCUlation on 
temperate-tropical differences in plant susceptibility to 
herbivores has focused mainly on chemical defenses 
(Levin and York 1978, Fenical 1980, Hay and Fenical 
1988, Coley and Aide 1990), and because many com
mon herbivores such as parrotfish and sea urchins are 
able to consume even very tough, calcified seaweeds 
(Steneck and Adey 1976, Morrison 1988), we chose to 
test primarily chemical aspects of the seaweeds we 
studied. Thus, we destroyed any morphological differ
ences between plants by freeze-drying and grinding 
them to a fine powder before they were embedded in 
an agar matrix and presented to herbivores. Addition
ally, logistical constraints imposed by comparing plants 
from sites separated by "" 1200 km prevented us from 
using fresh, living plants in our feeding assays. 

For most assays, seaweed tissues from North Car
olina and from the Bahamas were paired by genus (e.g., 
a North Carolina Sargassum with a Bahamian Sargas
sum) and presented to the temperate sea urchin Arbacia 
punctulata or the tropical sea urchin Lytechinus var
iegatus. Two seaweeds (Lobophora variegata and Udo
tea cyathlformis) grew in both regions, and thus al
lowed within-species contrasts. As a reasonable limit 
on the number and type of possible feeding experi
ments, we conducted only within-species or within
genera feeding contrasts. We chose sea urchins as test 
organisms because they are generalist feeders that com
monly influence algal community structure (Lawrence 
1975, Carpenter 1986, Lessios 1988) and exhibit clear 
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food preferences in the field and laboratory (Lawrence 
1975, Vadas 1977, Hay et a1. 1986). After assaying the 
palatability of freeze-dried, finely ground algal tissues, 
we treated a standard palatable food with lipophilic or 
water-soluble extracts from these same algal tissues and 
compared these foods in urchin assays. We used these 
assay results to determine whether or not chemical de
fenses could explain the initial differences we observed 
in palatability. We also measured protein content and 
percent ash-free dry mass of each alga as a proxy for 
nutritional value, and attempted to correlate herbivore 
preference with these aspects of plant quality. 

Algal collections 

Tropical algae were collected from five Bahamian 
islands during a research cruise aboard the RV Colum
bus Iselin from 16 August to 6 September 1993. The 
collection sites (n = 8) were < 1 m to 30 m in depth 
and spanned a wide variety of subtidal habitats, from 
mangrove channels to deep reef walls. At each site, we 
attempted to collect every abundant seaweed that might 
also occur in North Carolina, or have a congener oc
curring there. Temperate algae were collected subti
dally from four different sites, including an inshore 
rock jetty (0-3 m depth; see Hay 1986 for a site de
scription) and several hardbottom reefs (17-33 m 
depth; see Miller and Hay 1996 for site descriptions) 
off the North Carolina coast during September and Oc
tober 1993. By spreading our collections over depths 
of 1-33 m and across 4-8 sites within each region, we 
hoped to achieve collections that were crudely repre
sentative of each region, rather than of any particular 
site within a region. Algae from both temperate and 
tropical regions were kept in coolers or in flowing sea
water for :s 12 h after collection, until the plants were 
sorted, cleaned of epibiota, and wet-frozen (-20°C). 
When algae from shipboard freezers were returned to 

the lab, they were transferred to a -70°C freezer to 

minimize changes in algal secondary chemistry. All 
feeding experiments and subsequent work took place 
at the Institute of Marine Sciences in Morehead City, 
North Carolina, USA. 

Before freezing the algae, we took voucher samples 
of each collection and preserved them in 10% formalin 
for species identification. Thin-layer chromatography 
(TLC) was performed on extracts from fresh plants and 
on extracts from the freeze-dried material we used in 
feeding assays. These TLC results could be used to 
check for qualitative differences in plant secondary me
tabolites due to chemical decomposition during storage 
or processing (see Cronin et a1. 1995). Crude lipophilic 
extracts were obtained by extracting plants, or freeze
dried tissue, in 1: 1 methanol: dichloromethane 
(MeOH: DCM). Three separate TLC plates spotted 
with these extracts were then run in three different 
sol vent mixtures (1: 1 ether: hexanes, 100% ether, and 
19: 1 ether: methanol) to visualize a range of polarities 
of algal metabolites, examined under UV light, and 

charred with sulfuric acid. See the Appendix for a more 
detailed description of the TLC work on each species 
used in this study, and current knowledge of each spe
cies' secondary chemistry. 

Urchin feeding assays using "artificial algae" 

We prepared test food by freeze-drying a portion of 
each algal collection and grinding it into a fine powder 
in a small coffee grinder. Powdered algae were recon
stituted in agar at a standard dry mass/volume ratio of 
0.10 g alga/mL artificial food (this was reduced to 0.05 
g/mL for Lobophora variegata because the gel would 
not set properly with this alga at the higher concentra
tion). Processing algae into agar-based foods limited 
the variables potentially differing between tropical and 
temperate plants to algal chemistry and food value (i.e., 
morphological variability was removed and dry 
mass/volume ratios were made equivalent). It is, how
ever, unlikely that morphology or structure of the live 
plants differed much between seaweeds from North 
Carolina and the Bahamas, because we compared only 
species within the same genus. For several of the genera 
we examined, the naturally occurring dry mass/volume 
of live plants is greater than that we can create in our 
agar-based foods (M. E. Hay, unpublished data), be
cause the agar will not set properly when natural dry 
mass/volume ratios are used. Although dry mass con
centrations can differ somewhat between congeneric 
seaweeds (M. E. Hay, unpublished data), we equalized 
the amount of algal tissue per volume for our test foods. 

A typical procedure for making assay foods con
sisted of boiling 0.36 g of agar in 10 mL of distilled 
water, then adding a slurry of 2 g of powdered alga in 
8 mL of room temperature distilled water. We poured 
this warm mixture into one section of a flat, rectangular, 
formica mold with two lengthwise slits cut out of it. 
Beneath the mold was a window screen to which the 
food would become attached as it cooled. A second 
mixture made with a different alga was poured into the 
second, parallel, section of the mold. In this manner, 
two agar-based foods made from different species or 
populations of algae were attached to a screen that we 
sliced into strips, each of which contained equal 
amounts of both choices. For a typical food strip, each 
choice would cover 8 X 8 squares of the screen mesh 
(see Hay et a1. 1994 for an illustration of the mold and 
the food it produced). 

We offered the test foods to individual urchins 
housed in perforated, plastic l-L containers that were 
kept in flowing seawater tables and cleaned frequently. 
Before each assay, urchins were fed a mixture of pal
atable green and red algae for 7-24 h; these algae were 
removed immediately before the assay began. After 
placing food strips with 30-60 separate urchins, we 
checked them periodically and attempted to remove 
strips when about half of either choice was eaten. Al
lowing urchins to feed beyond this point could obscure 
their relative preference between the two foods. We 
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tried to avoid monitoring the urchins too frequently, 
because this could disrupt urchin feeding. Assays ran 
for variable periods, ranging from 3 to 23 h. We gen
erally started an assay during the afternoon, checked 
urchins 1-1.5 h after the beginning, and then once ev
ery 2-3 h until an adequate sample size (15-20 urchins, 
each with one strip) was obtained, usually late at night. 
The next morning, we removed the remaining strips, 
often obtaining additional, useful replicates, although 
several replicates may have been untouched or com
pletely eaten by this time. Preferences between test 
foods are obscured if most of both foods, or very little 
of either, is eaten. Therefore, we excluded from the 
final analyses those replicates for which < 10% or 
>90% of the total available surface area of the food 
was consumed. This resulted in sample sizes of 14-50 
urchins for the various assays. 

We measured the amount of agar-based food con
sumed by counting the number of window screen 
squares completely revealed by urchin grazing (see Hay 
et al. 1994 for an elaboration on methods). Partially 
uncovered squares were not considered eaten. Differ
ences between North Carolina and Bahamian algae in 
numbers of squares eaten were statistically analyzed 
by Wilcoxon signed-ranks tests because the data rarely 
were normally distributed. Based on the hypothesis that 
tropical seaweeds should be more resistant to herbivory 
and, thus, should be eaten less than their temperate 
relatives, we used directed P values as recommended 
by Rice and Gaines (1994). This procedure has less 
power than a traditional one-tailed test, but it allows 
for statistical evaluation of differences in the direction 
opposite that predicted. 

In addition to testing North Carolina vs. Bahamian 
algae, we also conducted a few intraspecific compar
isons of seaweeds collected from different sites within 
a geographic region. This provided the opportunity to 
examine how algal susceptibility to herbivory varied 
at local, as well as broad, geographic scales. For ex
ample, we conducted a paired-choice assay with two 
separate collections of North Carolina Dictyota men
strualis, one from a shallow inshore jetty, the other 
from a 17 m deep rock ledge 8 km offshore. Such 
intraspecific comparisons were possible for five spe
cies. In these cases, we report two-tailed P values from 
Wilcoxon signed-ranks tests. 

Most of our data was generated using the sea urchin 
Arbacia punctulata, which is found primarily in tem
perate waters. To address the possibility that temperate 
herbivores prefer temperate seaweeds due to previous 
conditioning, we repeated a number of assays using the 
tropical urchin Lytechinus variegatus, which had been 
shipped to North Carolina from tropical habitats near 
Key Largo, Florida. We placed the urchins in flowing 
seawater tables, maintained water temperature at 25°C, 
and allowed the animals = 1 wk to recover from transit 
before starting our assays. Our methods were identical 
to those used in Arbacia assays, except that we offered 

Lytechinus greater total amounts of test food because 
of their larger body size. 

Feeding assays using algal extracts 

To determine whether or not algal chemistry (crude 
lipophilic or water-soluble extracts) could explain the 
differential susceptibility of North Carolina vs. Baham
ian algae, we took extracts from species from feeding 
assays in which Arbacia showed significant, or near 
significant (P dir = 0.100 in one case), preferences for 
one alga over the other. Chemical extracts from the 
freeze-dried, powdered algae were incorporated into 
agar strips containing the palatable alga Ulva sp. and 
were retested with Arbacia (see Hay et al. 1994 for 
methods). 

For assays with lipophilic crude extracts, freeze
dried algal material was extracted with I: I ethyl ace
tate: methanol, spun in a centrifuge, and the superna
tant collected. This was repeated three times with ali
quots totaling 50 mL of solvent. The amount of algal 
material extracted (2 g for most seaweeds; I g for Lo
bophora) was equivalent to the amount of freeze-dried 
Ulva onto which the algal extract would be coated. 
After the initial extraction, solvents were removed by 
rotary evaporation and the ether-soluble portion of the 
residue was removed in ether. Lipophilic extracts of 
North Carolina and Bahamian species were then dis
solved in ether and mixed separately into freeze-dried, 
powdered Ulva. Ether was removed from the extract
Ulva mixture by rotary evaporation, and the resulting 
powdered Ulva (now coated with the extract) was used 
in the standard recipe for feeding assays described in 
the previous section. The assays used 30-60 Arbacia 
and typically ran for 1-6 h (except for one Dictyota 
extract assay that ran for 21 h due to slow feeding by 
the urchins). Final sample sizes ranged from 17-53 
urchins. 

Although considerable research has implicated li
pophilic, or nonpolar, secondary metabolites as the ma
jor source of seaweed chemical defenses in tropical and 
subtropical algae (Hay and Fenical 1988, Hay 1991, 
Paul 1992, Steinberg and van Altena 1992), we wished 
to test the water-soluble components of the seaweeds 
in this study for the sake of thoroughness and exper
imental rigor. Water-soluble extracts were obtained by 
three successive extractions of 2 g offreeze-dried, pow
dered algae (I g of Lobophora) with 10 mL of distilled 
water. Water-algal slurries were spun in a Centra-7 
Centrifuge for 20 min at 2800 rpm, and the supernatant 
solution was collected. When necessary, we filtered 
these extracts to remove residual particulates, treating 
both species in a pair similarly. Extracts were frozen 
at -70°C and placed in a Savant Speed Vac for several 
hours until the volumes of water were reduced to <8 
mL. The extracts (pl.us enough distilled water to equal 
8 mL) were mixed separately into 2 g of Uiva sp. (I 
g for Lobophora extracts). A boiled agar-water mixture 
(10 mL HP + 0.36 g agar) was added to each extract-
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Ulva mixture, and the foods were poured into the mold 
as described previously. 

The North Carolina collection of Dictyota menstru
alis from 8 km offshore was depleted before we had 
performed two of our planned comparisons using wa
ter-soluble extracts: D. menstrualis (8 km offshore 
North Carolina) vs. D. caribea (Acklins Island, Ba
hamas), and D. menstrualis (8 km offshore North Car
olina) vs. D. mertensii (Stocking Island, Bahamas). In 
order to complete these assays, we used water-soluble 
extracts from samples and residues that had previously 
been used to obtain the ether-soluble (i.e., lipophilic) 
extracts. These samples were processed as described, 
except that trace amounts of organic solvents were re
moved from the water extracts under vacuum, and the 
extracts were frozen at -70°C, freeze-dried, and dis
solved in distilled water before we added them to the 
Ulva. 

Phlorotannins are the major class of relatively polar 
(i.e., water-soluble), algal metabolites known to deter 
some herbivores (Steinberg 1988, Van Alstyne and Paul 
1990, Steinberg 1992, but see Steinberg and van Altena 
1992). Efficient extraction of these compounds usually 
requires methanol/water mixtures; therefore, our water 
extraction probably undersampled these compounds. 
Also, incorporating water-soluble extracts into an agar
based food and then immersing the food in seawater 
may allow compounds to leach out of the test food. 
However, most algal phlorotannins (if they were in our 
extracts) appear to bind to agar and remain in the food 
without rapidly being lost to the surrounding water. 
Steinberg (1988) demonstrated the grazing-deterrent 
effects of algal phlorotannins by incorporating them 
into agar and using assays similar to ours, and pointed 
out that, unlike low molecular mass compounds such 
as phloroglucinol, high molecular mass phlorotannins 
remained in agar quite well and could be tested in this 
manner. However, to minimize leaching by these, or 
other water-soluble, compounds, we attempted to run 
the feeding assays as quickly as possible. We used 40-
45 Arbacia that had been maintained on palatable fresh 
seaweeds except for a 5-8 h period of starvation before 
the assays, which we began only in the late evenings 
(a time when we observed urchins to feed most ac
tively). Within 1 h, we almost always obtained a suf
ficient number (> IS) of replicates in which urchins 
had consumed between 10% and 90% of the total 
amount of food; this short assay duration should have 
minimized dissolution of water-soluble feeding deter
rents. Similar extraction and assay procedures have 
been used to demonstrate water-soluble feeding deter
rents in other seaweeds (E. Cole, M. E. Hay, N. Lind
quist, and M. Deal, personal communication). 

Nutritional quality 

We measured percent ash-free dry mass and protein 
content of the algae to determine whether or not feeding 
assay results could be explained by these measures of 

food quality. Percent ash-free dry mass was obtained 
by drying samples of freeze-dried, powdered algae 
(three replicates from each collection) for 24 h at 60°C, 
then placing them in an ashing oven at 460°C for a 
minimum of 7 h. Subtracting the mass of the ash from 
the total dry mass and then dividing by the total dry 
mass yielded percent ash-free dry mass for each alga. 
We measured algal protein content using the methods 
of Bradford (1976) against a bovine serum albumin 
(BSA) standard. Freeze-dried, powdered algal samples 
(four replicates from each collection) were digested in 
1 M NaOH for 24 h before the addition of Bradford 
reagent and subsequent analysis with a Sigma multi
well reader spectrophotometer. 

RESULTS 

Feeding assays using "artificial algae" 

If no geographic trend in palatability were to exist, 
we would expect to see North Carolina algae eaten 
more than Bahamian algae in =50% of our assays. Our 
findings contrast strongly with this expectation. When 
10 pairs of temperate and tropical seaweeds, repre
senting six genera of red, green, and brown seaweeds 
(not including Dictyota), were incorporated into agar
based diets and fed to Arbacia, North Carolina species 
were consumed in greater quantities than their Baham
ian congeners in nine of the 10 assays (Fig. lA). Six 
of these differences were statistically significant (Pdir 

::; 0.05, Wilcoxon signed-ranks test). For the single 
case in which the Bahamian choice was preferred, the 
difference was small and nonsignificant (Pd>r = 0.997; 
Fig. lA). 

Contrasts among species within the brown algal ge
nus Dictyota are presented separately because they 
made up the majority of our assays (18 of 28 total) and 
produced highly variable results. Figs. 1 B-D show con
trasts of three North Carolina collections of Dictyota 
vs. 6 spp. of Dictyota from the Bahamas. North Car
olina Dictyota menstrualis from the shallow, inshore 
jetty was always consumed more than Bahamian spe
cies, with four of the six comparisons being statistically 
significant (Pdir < 0.05, Wilcoxon signed-ranks test; 
Fig. lB). In stark contrast, when D. menstrualis was 
collected from a 17 m deep reef 8 km offshore, urchins 
consumed less of this collection than of the six tropical 
species, again with four of the six contrasts differing 
significantly (Pdi' < 0.01, Wilcoxon signed-ranks test; 
Fig. 1 C). In contrast to these strong, but opposing, 
patterns for D. menstrualis collected from two different 
locations in North Carolina, D. ciliolata from North 
Carolina was not consistently more or less palatable 
than the Bahamian species (Fig. ID). It was signifi
cantly more palatable in one case, significantly less 
palatable in another case, and showed small and non
significant differences in the four remaining contrasts. 

To determine whether or not North Carolina sea
weeds were, in general, more palatable to Arbacia than 
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FIG. I. Feeding eX + I SE) by the sea urchin Arbacia punctulata when offered congeneric pairings of temperate vs. 
tropical seaweeds that had been freeze-dried, ground to a fine powder, and mixed into an agar matrix. (A) Species contrasts 
from six genera of red, green, and brown algae, not including Dictyota. (B) Contrasts of Dictyota menstrualis from inshore 
North Carolina with 6 spp. of Dictyota from the Bahamas. (C) Contrasts of Dictyota menstrualis from 8 km offshore North 
Carolina with 6 spp. of Dictyota from the Bahamas. (D) Contrasts of Dictyota ciliolata from inshore North Carolina with 6 
spp. of Dictyota from the Bahamas. All P values are directed (-y/o. = 0.8, see Rice and Gaines 1994), with the expectation 
that tropical algae are less palatable than temperate algae. *Pdi,"; 0.05; **Pdi,"; 0.01; ***Pdi,"; 0.001. Sample sizes are 
given at the base of each pair of bars. 

were related Bahamian seaweeds, we pooled the mean 
amount eaten per assay for all North Carolina species 
within a genus, and for all Bahamian species within a 
genus (see Fig. 2). The genera means for North Car
olina and the Bahamas were then treated as separate, 
independent comparisons. This procedure avoided 
problems of independence and also gave equal consid
eration to each genus, without biasing the data in favor 
of genera we had sampled more intensively (particu
larly Dictyota, which made up 18 of 28 total contrasts). 
Using the data shown in Fig. 2, we compared the con
sumption of North Carolina and Bahamian congeners 
and found a statistically significant (Pdi, = 0.0175, n 
= 7; Wilcoxon signed-ranks test) pattern: temperate 

seaweeds were more palatable to the temperate urchin 
(Fig. 2). In six of seven within-genera contrasts, North 
Carolina seaweeds were consumed in greater amounts 
than related Bahamian seaweeds. On average, Arbacia 
ate about twice as much temperate as tropical algae. 

In addition to comparing seaweeds from different 
geographic regions, we also conducted a limited num
ber of contrasts comparing the same species collected 
from separate sites within a geographic region (Fig. 3). 
For three of the five species we examined, Arbacia 
feeding differed significantly between two populations 
of the same species within a geographic region. As 
examples, North Carolina Dictyota menstrualis from 
an inshore jetty was consumed about four times more 
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FIG. 2. General pattern of Arbacia feeding for the seven 
genera where intrageneric comparisons could be made be
tween temperate and tropical species or collections. For Dic
tyopteris, Amphiroa, and Padina, assays consisted of only one 
temperate and one tropical species. For the other genera, 
where contrasts among several species had been assayed, the 
bars represent mean results (+ I SE) using each separate entire 
assay (i.e., bars in Fig. I) as one independent sample. The 
number at the base of each pair of bars indicates the number 
of separate assays within each genus. Urchins significantly 
preferred temperate over tropical algae (Pdh = 0.0175, Wil
coxon signed-ranks test, n = 7). 

than the same species growing on an offshore North 
Carolina reef at a depth of 17 m; Lobophora variegata 
from a 27 m deep North Carolina reef with clear water 
was eaten about four times more than the same species 
growing on a 17 m deep North Carolina reef with turbid 
water (Fig. 3). These results indicate that considerable 
variation in palatability can also occur between local 
populations of a single species. The dramatic difference 
in palatability of Dictyota menstrualis from the inshore 
jetty vs. the offshore reef, coupled with some morpho
logical differences between plants from these two sites 
(offshore reef plants commonly had proliferations 
along blade margins, whereas those from the inshore 
jetty did not), suggested that the two samples might 
have been different species rather than different pop
ulations of this taxonomically difficult group. However, 
consultation with an expert in algal taxonomy (Dr. Su
zanne Fredericq) and qualitative analyses of secondary 
metabolites both indicated that we were dealing with 
a single species. D. menstrua lis differs from other local 
species of Dictyota in producing a specific qualitative 
combination of diterpenes (pachydictyol A, dictyol E, 
and dictyodial) (Cronin et al. 1995). Plants from both 
the inshore jetty and offshore reef did produce these 
compounds, although concentrations appeared to be 
higher in plants from offshore (G. Cronin, personal 
communication; see Appendix). 

To see if the preference of Arbacia for temperate 
over tropical seaweeds (Fig. 2) was due to its greater 

familiarity with temperate species or to temperate sea
weeds being fundamentally more palatable, we re
peated 10 of our initial assays using the tropical urchin 
Lytechinus variegatus. We asked if Lytechinus pre
ferred tropical seaweeds with which it was more fa
miliar, or if its preferences were similar to those of 
Arbacia. We chose assays representing each genus in 
which Arbacia had shown a statistically significant 
preference, as well as three contrasts in which Arbacia 
showed no statistically significant preference. In eight 
of these 10 cases, the pattern of food choice was similar 
for both the temperate and the tropical urchin (Table 
I). We found no indication that Lytechinus from the 
tropical environment of Key Largo, Florida ate more 
tropical than temperate algae. In fact, there was a sig
nificant, positive correlation between the feeding 
choices of the two urchin species (r = 0.791, Ptwo-tlliled 

= 0.0045, Fisher's r to z; Fig. 4), suggesting that both 
urchins were responding to fundamental plant qualities 
rather than to differential familiarity with either tem
perate or tropical seaweeds. One particularly important 
case is the intraspecific comparison of inshore and off
shore Dictyota menstrualis from North Carolina (see 
asterisk in Fig. 4). The possibility existed that the Ar
bacia we collected from the same jetty as the inshore 
alga preferred inshore to offshore algal material due to 
previous experience; however, Lytechinus also pre
ferred inshore to offshore D. menstrualis, but could 
have had no previous experience with either popula
tion. This suggests that the preference was due to in
herent characteristics of the algae. 

Urchins could have been differentiating between 
foods on the basis of negative (e.g., chemical defenses, 
low food value) or positive qualities (e.g., high food 
value, feeding stimulants) of the seaweeds. We at
tempted to examine these qualities separately by as
saying the effects of chemical extracts on urchin feed
ing and by measuring food value (protein and % ash-

[] North Carolina Amount Eaten (%) 
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Dietyota pulehella 

Dietyota pulehella 

Dictyota menstrualis 

Lobophora variegata 

Amphiroa beauvolsii 

Sargassum filipendula 

'~~' :;;;;::;;=::' ::::::;=:;;;"" ~--" 
* shallow algal plain 

L1~16 .2<~~~~~~/j~0'~~~ mangroves 
V/:%%/77)F-f shallow algal plain P= 0.088 

.. Skm offshore * * 
:::}::'::,:::::;:,: inshore f---; 

Ltillt21[jsIk±mjotffsih~or~e~~~-I * * * 
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FIG. 3. Arbacia punctulata feeding (X + I SE) assays 
comparing conspecific collections of seaweeds from different 
sites within a geographic region. Site designations are located 
adjacent to or within each bar. Sample sizes are given at the 
base of each pair of bars. P values are two-tailed (Wilcoxon 
signed-ranks test). 
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TABLE I. Results of Lytechinus variegatus feeding assays testing freeze-dried, powdered algae in an agar matrix. Direction 
of feeding is symbolized by arrows: I, % North Carolina (NC) alga eaten> % Bahamian alga eaten; l % North Carolina 
alga eaten < % Bahamian alga eaten. All P values (Wilcoxon signed-ranks test) are directed. 

Amount eaten Lytechinus assays Arbacia assays 
(%) 

Species contrast (Mean ± 1 SE) Pdir n Pdir n 

Udotea cyathiformis (NC) vs. 45.5 ± 6.8 0.0721 30 0.0941 25 
U. cyathiformis (Bahamas) 27.1 ± 5.5 

Lobophora variegata, "brown blade" (NC) vs. 84.8 ± 3.7 <0.0001 I 24 <0.0001 I 27 
L. variegata "zonate blade" (Bahamas) 13.0 ± 4.3 

Sargassum jilipendula (NC) vs. 56.1 ± 7.1 0.1191 27 0.0131 22 
S. hystrix (Bahamas) 37.2 ± 6.9 

S. jilipendula (NC) vs. 42.9 ± 6.8 0.0871 28 0.9971 32 
S. polyceratium (Bahamas) 25.5 ± 5.5 

Dictyopteris hoytii (NC) vs. 55.9 ± 6.4 0.031 I 28 0.0411 24 
D. justii (Bahamas) 31.5 ± 6.3 

Padina gymnospora (NC) vs. 48.0 ± 7.3 0.8951 24 0.0281 42 
P. jamaicensis (Bahamas) 53.7 ± 6.3 

Amphiroa beauvoisii (NC) vs. 40.1 ± 6.5 0.421 I 30 0.0121 27 
A. fragilissima (Bahamas) 33.0 ± 7.0 

Dictyota menstrualis (inshore NC) vs. 58.8 ± 6.7 <0.0001 I 26 <0.00011 23 
D. bartayresiana (Bahamas) 14.8 ± 3.4 

D. menstrualis (offshore NC) vs. 20.0 ± 6.3 0.00011 18 0.7781 17 
D. bartayresiana (Bahamas) 53.7 ± 6.4 

D. menstrualis (inshore NC) vs. 47.0 ± 5.1 <0.00011t 18 O.007lt 14 
D. menstrua lis (offshore NC) 1.6 ± 0.8 

t Direction of the intraspecific contrast of D. menstrualis from inshore and offshore North Carolina was defined as follows: 
I, % inshore alga eaten> % offshore alga eaten. P values in this case are two-tailed. 

free dry mass), and then determining whether or not 
these data provided a consistent explanation for the 
patterns we observed in urchin feeding choices. In oth
er words, did species that were avoided in the agar
based assays yield chemical extracts that reduced feed-
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FIG. 4. Plot of the difference in mean amount of temperate 
vs. tropical seaweed eaten (% North Carolina algae minus % 
Bahamian algae) by Arbacia punctulata and Lytechinus var
iegatus in equivalent assays. Points represent each of the 10 
species contrasts tested with both herbivores. The * indicates 
the assay involving Dictyota menstrualis from inshore vs. 
offshore North Carolina, in which we computed the difference 
as % inshore minus % offshore alga eaten. 

ing on palatable food, and did low-preference algae 
contain lower food value (i.e., lower protein content 
and ash-free dry mass)? 

Effects of seaweed extracts on urchin feeding 

Thin-layer chromatograms (TLC) of the seaweeds 
used in this study did not suggest obvious changes in 
algal metabolites between algae soon after collection 
and algae that had been freeze-dried and stored at 
-70°C, with the exception of the Bahamian collection 
of Udotea cyathiformis (Appendix). Considering the 
chemical instability of metabolites of this genus 
(Faulkner 1986, Paul and Fenical 1986), and the fact 
that extract tests were conducted as long as S mo after 
assays of freeze-dried algae, we did not include tests 
of Udotea extracts in our analysis of the role of chem
ical defense in generating the feeding patterns on agar
based algal diets. 

When we tested whether or not lipid-soluble or wa
ter-soluble extracts from North Carolina vs. Bahamian 
seaweeds could have caused the significant feeding 
choices we documented using the powdered algae in 
agar (Fig. I), we found that effects of lipid-soluble 
extracts could explain ""'60% of the significant feeding 
choices we observed (Fig. SA) and that effects of water
soluble extracts explained little, if any, of our initial 
feeding data (Fig. SB). In 10 of IS assays with lipo
philic extracts, feeding differences were in the same 
direction as occurred using powdered algae as foods 
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(Fig. SA). In all nine of the assays where extracts sig
nificantly differed (or nearly so; Pd;, = 0.069 in one 
case) in their effects on feeding, changes were in the 
direction predicted if the less palatable algal food had 
been avoided because of the plant's lipid-soluble chem
ical defenses. The majority (six of eight) of the statis
tically significant contrasts in these assays involved 
Dictyota. This is not surprising, given the rich second
ary chemistry this genus is known to possess (Faulkner 
1993, and his previous reviews cited therein) and the 
documented herbivore deterrence of several Dictyota 
secondary metabolites (Hay et al. 1987 a, b, 1988a, Hay 
and Steinberg 1992, Duffy and Hay 1994, Cronin and 
Hay 1996a, b). Only one of IS contrasts of water-sol
uble extracts generated a significant difference between 
the algal pair, and this was in a direction opposite that 
predicted from the original assay using the powdered 
algal material (Fig. 5B). In the case of D. menstrualis 
vs. D. alternans (bottom of Figs. SA and B), the effect 
of the water-soluble extracts coincided with patterns in 
feeding on the powdered algal material, but the effect 
was not significant (Pdi, = 0.070); however, there was 
a significant, and apparently larger, effect of the lipo
philic extracts (Pd;, < 0.001). Given that water-soluble 
compounds should dissolve out of agar-based food 
more readily than lipid-soluble compounds, and that 
phlorotannins may have been inefficiently harvested by 
our extraction procedures, the assays of water-soluble 
extracts could be overly conservative. However, this 
type of assay is commonly used to show that water
soluble phlorotannins from brown seaweeds function 
as feeding deterrents (Steinberg 1985, 1988, Steinberg 
and van Altena 1992), and dissolution of compounds 
in our water-soluble extracts was minimized by running 
the assays for only I h. 

To evaluate the general relationship between urchin 
preferences for powdered algae in agar and for Ulva
based diets treated with lipophilic extracts of these al
gae, we calculated a correlation coefficient for these 
two variables. First, so that the general pattern would 
not be overwhelmed by the numerous Dictyota assays, 
we condensed the Dictyota results into a single mean 
(i.e., difference in tropical vs. temperate food eaten) 
for the agar-based algal assays, and a corresponding 
mean for effects of the extract when placed in Ulva
based food. A positive correlation occurred, although 
it was not statistically significant for this small sample 
size (r = 0.698, Ptwo-ta;led = 0.135; Fisher's r to Z, n = 

6). A much stronger case for the importance of lipo
philic chemistry in explaining original differences in 
palatability comes from analysis of the Dictyota con
trasts alone (r = 0.928, Ptwo-tailed < 0.0001, Fisher's r 
to Z, n = 10). D. menstrualis (8 km offshore North 
Carolina), the only temperate plant that was extremely 
unpalatable in "artificial alga" form, always yielded 
extracts that were very unpalatable (Fig. SA). 

In contrast to these results for lipophilic extracts, a 
correlation using the effects of water-soluble extracts 

was both nonsignificant and negative whether we an
alyzed the results by genera (r = -0.420; Ptwo-taded = 
0.438; n = 6), considered only Dictyota assays (r = 

-0.389, Ptwo-taded = 0.279, n = 10), or treated all assays 
as separate data points (r = -0.351; Ptwo-taded = 0.186; 
n = IS). 

Nutritional quality 

Table 2 summarizes the results of protein and percent 
ash-free dry mass measurements of all the algae we 
examined in this study. Neither protein content nor 
percent ash-free dry mass of the freeze-dried, powdered 
algae was a good predictor of herbivore preference in 
our feeding assays, considering both inter- and intra
specific contrasts. Urchins did not tend to consume 
more of the food that had higher percentages of either 
protein or percent ash-free dry mass. If protein or per
cent ash-free dry mass was unrelated to feeding pref
erence, then one might expect urchins to choose higher 
content algae in about half of the feeding trials and to 
avoid them in about half of the trials. This is what we 
found for both protein and percent ash-free dry mass. 
In only 15 of 34 assays using Arbacia and powdered 
algae in agar (interspecific and intraspecific contrasts) 
were protein contents of the preferred algae greater than 
those of the less eaten choice. Ash-free dry masses were 
even less explanatory (13 of 34 contrasts). We could 
not detect any correlation between differences in 
amount of agar-based algae eaten and either the dif
ferences in algal protein content (all assays separately: 
r = 0.017, Ptwo-ta;led = 0.927, n = 34; Dictyota assays 
alone: r = 0.170, Ptwo-ta;led = 0.652, n = 10; genera 
averages: r = 0.055, Ptwo-ta;led = 0.918, n = 7) or dif
ferences in percent ash-free dry mass (all assays sep
arately: r = 0.020, Ptwo-tailed = 0.905, n = 34; Dictyota 
assays alone: r = 0.307, Ptwo-ta;led = 0.402, n = 10; 
genera means: r = 0.024, Ptwo-tailed = 0.961, n = 7). 
Results from Lytechinus assays also do not suggest that 
urchins were selecting on the basis of either protein 
content (r = 0.205, Ptwo-tailed = 0.580, Fisher's r to Z, n 
= 10) or percent ash-free dry mass (r = 0.148, P two-

tailed = 0.694, Fisher's r to Z, n = 10) of the food pre
sented to them. 

DISCUSSION 

This study provides a direct test of the hypothesized 
latitudinal gradient in seaweed palatability and chem
ical defenses (Fenical 1980, Hay 1981, Hay and Stein
berg 1992). We documented a general pattern in which 
algae from the Bahamas were less palatable to urchins 
than were closely related algae from North Carolina 
(Figs. lA and 2, Table 1), even though all plants had 
been processed into artificial foods that were morpho
logically identical. Algae of the genus Dictyota did not 
support this trend (Fig. IB-D), but a single population 
of North Carolina Dictyota accounted for nearly all 
exceptions to the general pattern. Out of the many tem
perate and tropical species we compared, we found only 
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TABLE 2. Protein content and percent ash-free dry mass of freeze-dried, finely ground sea
weeds used in urchin feeding assays. NC, North Carolina. 

Protein Ash-free 
(% dry mass) dry mass (%) 

Alga Location of collection (mean ± I SE) (mean ± 1 SE) 

Vdotea cyathiformis 40 km offshore, NC 0.81 ± 0.25 24.0 ± 0.10 
V. cyathiformis Crooked Island, Bahamas 0.39 ± 0.21 17.4 ± 0.17 
U. looensis Stocking Island, Bahamas 2.8 ± 0.07 25.0 ± 0.17 
U. dixonii Highbourne Key, Bahamas 1.2 ± 0.12 32.3 ± 0.08 
Lobophora variegata, 40 km offshore, NC 4.1 ± 0.16 45.5 ± 0.33 

"brown blade" 
L. variegata, 8 km offshore, NC 3.5 ± 0.13 39.5 ± 0.33 

"brown blade" 
L. variegata, Crooked Island, Bahamas 4.3 ± 0.15 58.6 ± 0.17 

"brown blade" 
L. variegata, Sweetings Key, Bahamas 4.3 ± 0.35 51.0 ± 0.38 

"zonate blade" 
Sargassum jilipendula 40 km offshore, NC 3.2 ± 0.21 58.0 ± 0.05 
S. jilipendula inshore North Carolina 4.3 ± 0.21 59.4 ± 0.15 
S. hystrix Sweetings Key, Bahamas 2.9 ± 0.20 53.4 ± 0.35 
S. polyceratium Highbourne Key, Bahamas 3.0 ± 0.26 50.4 ± 0.12 
Dictyopteris hoytii 40 km offshore, NC 5.2 ± 0.28 61.4 ± 0.95 
D. justii Acklins Island, Bahamas 3.0 ± 0.10 62.8 ± 0.35 
Padina gymnospora inshore North Carolina 3.0 ± 0.13 48.2 ± 0.21 
P. jamaicensis Acklins Island, Bahamas 1.5 ± 0.21 35.2 ± 0.13 
Amphiroa beauvoisii 40 km offshore, NC 1.7 ± 0.07 19.1 ± 0.18 
A. beauvoisii 8 km offshore, NC 2.0 ± 0.27 19.9 ± 0.03 
A. fragilissima Sweetings Key, Bahamas 1.3 ± 0.22 19.6 ± 0.27 
Dictyota menstrualis inshore North Carolina 2.5 ± 0.23 47.8 ± 0.04 
D. menstrualis 8 km offshore, NC 1.3 ± 0.22 49.3 ± 0.29 
D. ciliolata inshore North Carolina 2.6 ± 0.20 53.2 ± 0.14 
D. alternans Acklins Island, Bahamas 1.0 ± 0.11 46.3 ± 0.11 
D. mertensii Stocking Island, Bahamas 1.1 ± 0.15 51.2 ± 0.19 
D. caribea Acklins Island, Bahamas 0.74 ± 0.09 36.2 ± 0.13 
D. cervicornis Acklins Island, Bahamas 0.17 ± 0.17 52.9 ± 0.17 
D. bartayresiana Sweetings Key, Bahamas 2.0 ± 0.12 51.7 ± 0.04 
D. pulchella shallow algal plain, 3.0 ± 0.26 61.8 ± 0.06 

Sweetings Key, Bahamas 
D. pulchella mangrove channel, 0.85 ± 0.19 50.8 ± 0.15 

Sweetings Key, Bahamas 
D. pulchella deep wall reef, Acklins 1.8 ± 0.11 44.3 ± 0.31 

Island, Bahamas 

this one population of temperate alga that was less 
palatable and more chemically defended than most of 
its tropical congeners (Figs. 1 and 5). We found nu
merous Bahamian seaweeds that were avoided in favor 
of their temperate relatives (Fig. 1). 

separated sites within each region and spanned a broad 
range of depths and habitats, much of this local vari
ance should have been incorporated into our assays. 
That such variation did not prevent us from docu
menting the between-region pattern suggests that the 
between-region differences are large and relatively 
consistent. 

Although several species exhibited considerable 
within-region variance in their palatability to herbi
vores (Figs. 1 and 3), this did not overwhelm our ability 
to document a strong between-region pattern, with tem
perate algae, as a group, being significantly more pal
atable (Fig. 2). Given that our collections from both 
North Carolina and the Bahamas came from 4-8 widely 

Although we contrasted only one temperate (North 
Carolina) with one tropical (the Bahamas) region, there 
are several reasons to suspect that our findings may be 
representative of general differences between temper
ate and tropical seaweeds. First, studies of grazing rates 

~ 

FIG. 5. Arbacia punctulata feeding (X + SE) on agar containing freeze-dried Viva treated with (A) lipophilic crude 
extracts from the temperate vs. tropical species and (B) water-soluble extracts from these same temperate vs. tropical species. 
Significance level of original assays using freeze-dried, powdered algae is indicated by asterisks to the left of species names. 
Arrows to the right of the bars represent directions of extract assays (left-hand arrows) and directions of corresponding 
original assays (right-hand arrows). i indicates that urchins ate more of the North Carolina than of the Bahamian choice. 
J. indicates that urchins ate less of the North Carolina than of the Bahamian choice. All P values are directed, with the 
expectation that algal extracts affect feeding in the same direction as freeze-dried algal tissue. Lobophora variegata is the 
"brown-bladed" form. Shadings are as in Figs. 1-3. 
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on tropical reefs worldwide have consistently docu
mented very high rates of plant removal relative to 
those seen in temperate habitats (Hatcher and Larkum 
1983, Carpenter 1986, review by Hay 1991). Second, 
overviews by natural products chemists (Fenical 1980, 
Faulkner 1993 and earlier reviews cited therein) have 
consistently noted the greater diversity and concentra
tion of bioactive metabolites in tropical than in tem
perate marine organisms. Third, ecological studies of 
tropical seaweeds have consistently found that many 
produce lipophilic chemical defenses against herbi
vores (reviewed by Hay 1991, Hay and Steinberg 1992, 
Paul 1992). 

All of the above patterns suggest that our North Car
olina-Bahamas contrast may be representative of tem
perate-tropical contrasts in general; however, this 
broader assumption should be treated as a hypothesis 
rather than a conclusion. To illustrate this point, initial 
findings that tropical brown seaweeds produced fewer 
polyphenolics than temperate seaweeds appeared to be 
well established based on data contrasting temperate 
vs. tropical areas of the Pacific (Steinberg 1989, 1992, 
Steinberg and Paul 1990). However, recent findings of 
high phenolic concentrations in numerous brown sea
weeds from the tropical Caribbean indicate that this 
supposedly temperate-tropical pattern does not hold 
for the temperate Atlantic vs. tropical Caribbean (Tar
gett et al. 1992). Expanding studies like ours to include 
more temperate and tropical sites will allow a more 
rigorous evaluation of the latitudinal pattern in seaweed 
palatability and chemical defenses that we document 
for our sites and that we hypothesize occurs more 
broadly. 

Seaweed secondary metabolites previously had been 
reported to increase with decreasing latitude (Fenical 
1980, Faulkner 1984, Hay and Fenical 1988). This pat
tern was assumed to indicate greater chemical defenses 
in tropical compared to temperate seaweeds (Vermeij 
1978, Fenical 1980, Faulkner 1984, Paul 1992), but no 
studies had determined that tropical plants were actu
ally less palatable than their temperate relatives, or that 
the geographic variation in algal secondary metabolites 
actually affected plant susceptibility to herbivores. In 
this study, differential effects of lipophilic extracts 
from temperate vs. tropical seaweeds (Fig. 5) appeared 
to explain more than half of the feeding choices we 
observed; interestingly, this included a few cases in 
which urchins avoided a North Carolina seaweed, Dic
tyota menstrualis from offshore. Water-soluble ex
tracts, protein content, and ash content appeared to 
have little, if any, effect on herbivore feeding choices 
in our assays. In roughly half the cases we examined 
(for three of six genera), lipophilic, but not water-sol
uble, chemical defenses significantly affected urchin 
selectivity (Fig. 5). This is consistent with other spec
ulation that nonpolar metabolites often appear to be 
more important in antiherbivore defense than polar, wa
ter-soluble compounds (Paul and Hay 1986, Steinberg 

and Paul 1990, Steinberg and van Altena 1992). Al
though we did not identify individual compounds in 
the lipophilic extracts of our seaweeds, there are pre
vious reports of specific metabolites and their deterrent 
effects on herbivory for several of the algae we ex
amined (Hay 1991, Paul 1992). See the Appendix for 
information on the secondary metabolites in these sea
weeds. 

Some studies have suggested that herbivores, in
cluding sea urchins, can select among prey on the basis 
of nutrient value, defined by both the absolute nutrient 
value of the food (protein and nitrogen; see Horn and 
Neighbors 1984, Renaud et al. 1990) and the ability of 
the herbivore to utilize those nutrients (Lawrence 1975, 
Vadas 1977, Horn and Neighbors 1984; nitrogen lim
itation reviewed by Mattson 1980). In this study, we 
found little evidence that either protein content or per
cent ash-free dry mass of the algal foods was consis
tently affecting urchin feeding preferences (Table 2). 
Renaud et al. (1990) hypothesized that urchins used 
positive cues (i.e., protein content) to select among 
high-preference seaweeds, and negative cues (i.e., 
chemical defenses) to select among low-preference sea
weeds. Because all the algae we studied appear to be 
relatively low-preference for generalist herbivores 
(Hay 1984, Paul and Hay 1986, Hay et al. 1986, 1987a), 
such a hypothesis might explain the lack of correlation 
between feeding preferences and either protein or ash 
content of the food. Neighbors and Horn (1991) found 
that seaweeds eaten by two temperate, herbivorous fish
es were, in general, not nutritionally better than sea
weeds that were avoided, and they suggested that traits 
such as secondary metabolites may be of primary im
portance for several seaweeds in their study. Our results 
point to lipophilic chemical defenses as a major mech
anism generating as much as 60% of the differences in 
palatability between North Carolina and Bahamian sea
weeds; however, =40% of the feeding patterns we ob
served remain unexplained. 

For those temperate-tropical contrasts in which nei
ther lipophilic nor water-soluble extracts produced 
feeding differences similar to what we saw using the 
freeze-dried seaweeds in agar, several explanations are 
feasible. First, during the time between assays testing 
agar-based algal foods and assays testing extracts in 
Ulva and agar-based foods, metabolites responsible for 
the palatability differences could have broken down. 
Little is published regarding the effects of various ex
traction or storage procedures on individual algal com
pounds (see Cronin et al. 1995), but compounds that 
are stable in plant tissues can become labile following 
extraction (W. Fenical, personal communication), and 
volatile compounds may be lost during freeze-drying, 
as in some species of Dictyopteris (Hay et al. 1988b). 
Our extraction procedures also may not have removed 
some of the bioactive compounds responsible for the 
feeding differences. For example, phlorotannins are 
water-soluble, but they extract poorly using water alone 
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(P. Steinberg and N. Targett, personal communication), 
so our assays may fail to adequately assess their effects. 
As one possible example, Lobophora variegata from 
the Bahamas was much less palatable than L. variegata 
from North Carolina (Figs. lA and 2), and Bahamian 
collections have extremely high concentrations ofphlo
rotannins compared to those from North Carolina (Tar
gett et al. 1995). Alternatively, chemical defenses oc
casionally may be based on synergistic effects between 
different chemicals (Berenbaum and Neal 1985) or be
tween chemical and structural (e.g., calcium carbonate) 
plant traits (Hay et al. 1994). If our extraction proce
dures separated compounds that act synergisticaly in 
plant tissues, this also could have diminished our abil
ity to demonstrate chemical deterrents to feeding. 

In addition to the overall differences in palatability 
of North Carolina and Bahamian seaweeds, we ob
served several instances of intraspecific, local vari
ability in resistance to grazing (Fig. 3). A few previous 
experimental studies have shown that grazing pressure 
correlates well with either inter- or intraspecific algal 
resistance to herbivory within a habitat or region (Hay 
et al. 1983, Hay 1984, 1985, Paul and Fenical 1986, 
Paul and Van Alstyne 1988, Van Alstyne 1988, Coen 
and Tanner 1989, Cronin and Hay 1996a), suggesting 
that plant defenses and distributions may develop in 
response to herbivory on a local scale as well as the 
hypothesized geographic scale. Plant populations may 
differ in palatability due to genetic divergence (from 
selective removal of susceptible individuals in heavily 
grazed habitats) or induction of increased defenses 
(Harvell 1990, Baldwin 1990, Cronin and Hay 1996a). 
Two marine brown algae, including Dictyota, have been 
shown to induce increased levels of chemical defenses 
in response to herbivory or clipping (Van Alstyne 1988, 
Yates and Peckol 1993, Cronin and Hay 1996a), but 
numerous other attempts to demonstrate induction in 
both brown and green algae have suggested that in
duction is rare in seaweeds (Paul and Van Alstyne 1992, 
Paul 1992, Steinberg 1992, 1994, 1995). Because sea
weeds often are attacked by large, generalist grazers 
(e.g., fishes and urchins) that can rapidly consume en
tire plants, several authors have concluded that sea
weeds in areas impacted by these herbivores need to 
be adequately defended at all times and, thus, tend to 
have constitutive, rather than inducible, defenses (Paul 
and Van Alstyne 1988, Paul 1992, Steinberg 1992, 
1994). Additionally, physical stresses alone, such as 
desiccation and UV exposure, can result in intraspecific 
differences in algal resistance to herbivores (Renaud 
et al. 1990, Cronin and Hay 1996b). 

Given that both physical and biological factors can 
affect seaweed susceptibility to herbivores, and that we 
did not investigate these factors in our study, we decline 
to speculate on causes for most of the intraspecific 
differences we found (Fig. 3). In the case of Dictyota 
menstrualis from North Carolina (Fig. lB, C), however, 
we provide a reasonable hypothesis that the striking 

difference in palatability between offshore and inshore 
populations could be driven by environmental differ
ences, including herbivory and factors influencing algal 
productivity ("productivity potential" sensu Steneck 
and Dethier 1994; see also Bryant et al. 1983, Herms 
and Mattson 1992). Observations of algal morphology 
show that plants from our offshore site typically have 
numerous proliferating growths along blade margins, 
suggestive of amp hi pod grazing damage, whereas in
shore plants have intact blades, indicating little, if any, 
amphipod grazing. Herbivore damage may be extreme
ly costly for offshore algae due to turbid, low light 
conditions, necessitating stronger defenses (see Bryant 
et al. 1983, Coley et al. 1985, Tuomi 1992, Steneck 
and Dethier 1994). Dictyota menstrualis, which exhib
ited strong among-site differences in palatability, has 
recently been shown to induce increased levels of 
chemical defenses in response to amphipod grazing 
(Cronin and Hay 1996a). Although the mechanisms 
generating between-population differences in our study 
were not investigated, it is clear that large intraspecific 
differences in algal resistance to herbivory can occur 
over relatively short distances. 

Few experiments have focused on testing hypotheses 
about temperate-tropical patterns in seaweed defenses. 
Several previous studies attempted to compare poly
phenolics (a water-soluble class of algal compounds) 
in temperate and tropical brown algae (Steinberg 1989, 
Steinberg et al. 1991, Van Alstyne and Paul 1990), 
because polyphenolic production was thought to be 
higher in temperate than in tropical brown algae (in 
contrast to the general patterns we found for lipophilic 
chemical defenses). This apparent pattern was initially 
interpreted as the result of phlorotannins being inef
fective defenses against tropical herbivorous fishes, but 
data on this hypothesis are contradictory. Steinberg et 
al. (1991) reported that reef fish in Australia did not 
discriminate between algae of high-phenolic (temper
ate Sargassum) and low-phenolic (tropical Sargassum) 
content. There were, however, measurable, stress-in
duced changes in levels of polyphenolics during trans
port and handling of the live plants prior to the assays, 
with unknown consequences. In contrast, Van Alstyne 
and Paul (1990) found that tropical reef fishes were 
deterred from feeding by phenolic-rich extracts from 
temperate brown algae, but not by phenolic-poor ex
tracts from tropical brown algae. However, suscepti
bility of the temperate vs. tropical plants (as opposed 
to extracts) was not tested. The possibilities that non
polar chemical defenses were stronger in tropical than 
in temperate algae, or that the algae differed in nutritive 
value, were not evaluated. Additionally, recent work 
in the Caribbean has shown that tropical brown sea
weeds can be rich in phenolics (Targett et al. 1992), 
without apparent effect on herbivore digestive effi
ciency (Targett et al. 1995). Thus, there is little evi
dence that phlorotannins consistently function as de
fenses against tropical herbivores (or even temperate 
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ones; Steinberg and van Altena 1992). Expectations for 
the role of phlorotannins in defending temperate vs. 
tropical algae are unclear. 

In addition to the geographic patterns we demon
strated, Gaines and Lubchenco (1982) hypothesized 
that herbivory in the tropics has also affected the evo
lution of both algal size and morphology. Similarly, 
Steneck (1986) used paleontological data and morpho
logical characteristics of encrusting coralline algae to 
argue that tropical herbivores have acted as strong se
lective agents shaping the evolution of corallines, with 
the result that algal forms resistant to herbivores are 
now more dominant in tropical than in temperate hab
itats. 

Terrestrial as well as marine ecologists have hy
pothesized that a latitudinal gradient in plant defense 
has evolved in response to differential grazing pressure. 
For example, early investigators reported that alkaloid 
production was more common in tropical than in tem
perate plants (Levin 1976) and claimed that alkaloids 
from tropical plants were more toxic to plant enemies 
than alkaloids from temperate plants (Levin and York 
1978). However, toxicity to ecologically relevant her
bivores was not directly tested. Instead, toxicity was 
inferred from chemical structures, using a general 
structure-toxicity relationship based on pharmacolog
ical studies. Unfortunately, recent investigations indi
cate that neither pharmacological data nor assumed 
structure-function relationships are reliable predictors 
of toxicity or deterrency to ecologically relevant her
bivores (Hay and Fenical 1988, Bernays 1991, Bryant 
et al. 1991, Bernays and Cornelius 1992, Hay and 
Steinberg 1992). As a second example, extraftoral nec
taries of plants attract ants that protect them from insect 
herbivores (Janzen 1966, reviewed by Bentley 1977). 
Plants with extraftoral nectaries are more diverse and 
abundant in the tropics, suggesting a greater need for 
defense there. More recently, research in terrestrial sys
tems has shown that insects consume greater amounts 
of leaf area in tropical broad-leaved forests than in 
temperate forests, and that plants in tropical habitats 
tend to be tougher and to contain more condensed tan
nins and crude fiber than plants in temperate habitats 
(Coley and Aide 1990). 

All of these patterns are consistent with the hypoth
esis that herbivory is greater in the tropics and has 
selected for increases in plant defenses; however, al
ternative hypotheses remain. For example, although a 
large percentage of tropical plants produce allegedly 
toxic alkaloids, temperate plants may produce different 
classes of compounds that are equally deterrent to her
bivores. Additionally, insects may consume greater 
amounts of foliage in tropical than in temperate zones 
because tropical plants are actually less defended and, 
thus, more palatable than temperate plants. Experi
ments offering terrestrial herbivores choices of tem
perate vs. tropical plants would be interesting. 

In both terrestrial and marine systems, studies cor-

relating large-scale within-latitude patterns of herbiv
ory with plant defenses give additional support to the 
hypothesis that between-latitude differences in herbiv
ory could have selected for stronger plant defenses in 
the tropics. In Australia, for example, the historical 
absence of large, tree-browsing herbivores is associated 
with the absence of extraftoral nectaries among many 
Acacia species (a genus typically possessing extraftoral 
nectaries), indicating a link on a geographic scale be
tween the level and type of grazing pressure and the 
level of plant defense (Brown 1960). Additionally, a 
long history of intense herbivory by urchins and other 
grazers in temperate Australia appears to have selected 
for increased chemical defenses (i.e., elevated concen
trations of polyphenolics and greater occurrence of 
nonpolar secondary metabolites) in Australian as op
posed to North American brown algae (Estes and Stein
berg 1988, Steinberg and van Altena 1992, Steinberg 
et al. 1995). Thus, although other environmental factors 
must be considered (Bryant et al. 1983, Coley et al. 
1985, Herms and Mattson 1992), it appears that greater 
herbivory in tropical vs. temperate systems has resulted 
in defensive traits being more common or more highly 
developed among tropical plants in both marine and 
terrestrial systems. 

In conclusion, despite local intraspecific variability 
such as that seen in Dictyota menstrua lis, a large-scale 
geographic trend in palatability is apparent between 
seaweeds from temperate North Carolina waters and 
seaweeds from the tropical Bahamas. This is partially 
explained by lipophilic algal chemistry, and supports 
the hypothesis that tropical algae have developed stron
ger chemical defenses to withstand higher levels of 
grazing by tropical herbivores. However, some of the 
differences in herbivore resistance were not explained 
adequately by the algal secondary chemistry that we 
tested, stressing the need to consider palatability as the 
whole of many plant characteristics acting in concert. 
Finally, we caution against broadly generalizing this 
apparent latitudinal pattern before further investiga
tions of seaweed palatability and chemical defenses are 
conducted in geographic regions beyond the two areas 
we sampled. 
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APPENDIX 

Udotea cyathiformis (Bahamas and North Carolina). The 
genus Udotea produces bioactive but unstable sesquiterpenes 
and diterpenes (Faulkner 1986), two of which, udoteal and 
flexilin, can deter feeding by herbivorous reef fishes in the 
Pacific (Paul 1987, Paul et aL 1988). Flexilin and a related 
sesquiterpene from U. cyathiformis significantly deter feeding 
by fishes, an urchin, and an amphipod from the Caribbean 
(Hay et aL 1994). Our TLCs of fresh plant extracts from 
Crooked Island, Bahamas show several nonpolar UV -active 
spots (Rr = 0.38-0.54, I: I hexane: ether) that do not appear 
in TLCs of samples of freeze-dried material, indicating some 
breakdown of algal metabolites for this collection. 

U. dixonii, prev.flabellum (Bahamas). TLCs show the pres
ence of a UV -active spot (Rr = 0.5, I: I hexane: ether). No 
major differences were apparent between fresh and freeze
dried samples. Udoteal, the major metabolite of freshly ex
tracted U. flabellum, is unstable. Udoteafuran, a minor prod
uct, and a complex mixture of the hydrates of udoteatrial were 
found in ethanol-preserved U. flabellum (Faulkner 1984). A 
collection of U. flabellum from the Bahamas contained two 
dialdehydes, including petiodial, which had earlier been iso
lated from Mediterranean U. petiolata (Faulkner 1986, Paul 
and Fenical 1986). 

U. looensis, prev. cyathiformis (Bahamas). TLCs show the 
presence of a nonpolar UV -active spot (Rr = 0.64, I: I hexane: 
ether) similar to that of the UV -active spot in U. cyathiformis 
TLCs. No chemical investigations of this species have been 
published since its recent taxonomic separation from U. cy
athiformis (Littler and Littler 1990). 

Lobophora variegata, "zonate decumbent-" and "brown 
decumbent-" bladed forms (Bahamas and North Carolina). 
TLCs show very few nonpolar metabolites, with several 
UV-active polar spots (Rr = 0.13, baseline, ether). TLCs of 
extracts of fresh and freeze-dried material were similar. Coen 
and Tanner (1989) suggested that L. variegata may possess 

secondary compounds that could explain differential herbi
vore resistance among the species' different morphs. Paul and 
Hay (1986) found this to be a low-preference alga for reef 
fishes in field assays, probably due to chemical defense. Ca
ribbean populations contain very high levels of polyphen
olics, which do not appear to affect local herbivores (Targett 
et aL 1992, 1995). 

Amphiroa fragilissima (Bahamas). TLCs of extracts of 
fresh and freeze-dried algae reveal no major differences and 
show two purple-staining spots (Rr = 0.68,0.93, 19: I ether: 
MeOH) and slight UV activity (Rr = 0.39,0.86, 19: I ether: 
MeOH). Secondary chemistry of this genus is poorly known. 
In Belize, this species escapes fish grazing when it grows in 
association with the chemically defended Stypopodium zona Ie 
(Littler et aL 1986), suggesting that it is palatable to reef 
fishes. 

A. beauvoisii (North Carolina). Few spots suggestive of 
unique secondary metabolites appear on TLC plates, whether 
extracts are from live plants or freeze-dried materiaL 

Padina jamaicensis (Bahamas). For this collection, TLCs 
of fresh algal extract were not performed. TLCs of freeze
dried plant extract indicated polar UV activity of com
pound(s) on the baseline in 19: I ether: MeOH. This species 
is well-known for its morphological plasticity. It grows as an 
herbivore-resistant turf in heavily grazed areas, but rapidly 
switches to an upright, fan-shaped form when herbivores are 
removed (Lewis et aL 1987). Chemical defenses have not 
been documented, but other members of the genus appear to 
have some chemical defenses; specific compounds have not 
been identified (Renaud et aL 1990). 

P. gymnospora (North Carolina). TLCs of extracts from 
fresh and freeze-dried algae were similar and show UV ac
tivity on the baseline in 19: I ether: MeOH. Previous work 
suggests this alga is chemically defended from herbivory (Re
naud et aL 1990), but attempts to isolate the secondary chem-
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istry have been inconclusive (M. E. Hay, personal commu
nication). 

Dictyopteris justii (Bahamas). UV activity is apparent on 
and immediately above the baseline for TLCs (19: I ether: 
methanol) of extracts from fresh and freeze-dried material. 
This genus is known to produce aromatic hydrocarbon rings 
as well as terpenes (Hay and Fenical 1988). Dictyopterenes 
A and B from Caribbean D. delicatula have deterred herbiv
orous reef fishes but not amphipods (Hay et al. 1988b). 

D. hoytii (North Carolina). Except for some UV activity at 
the baseline (19: I ether: MeOH), we did not observe any 
spots suggestive of prominent secondary metabolites in our 
TLCs, using extracts of fresh and freeze-dried plants. 

Sargassum hystrix (Bahamas). TLCs show a UV -active spot 
at Rr = 0.5 and at the baseline (19:1 ether: methanol), but 
otherwise little in the way of secondary chemistry. No major 
differences in TLCs were apparent between extracts of fresh 
and freeze-dried seaweed. 

S. polyceratium (Bahamas). Very little interesting second
ary chemistry was revealed by our TLCs for this collection. 
We could find no major changes between TLCs of extracts 
of fresh and freeze-dried algae. 

S. jilipendula (North Carolina). TLCs using extracts of 
fresh and freeze-dried material revealed slight UV activity 
on the baseline (19: I ether: MeOH), but no obvious spots 
indicating unique secondary metabolites. 

Dictyota pulchella, prevo divaricata (Bahamas). The genus 
Dictyota is well-known to produce a diversity of secondary 
metabolites, mostly terpenoid compounds (Faulkner 1984, 
1986, 1987, 1988, 1993), many of which have been shown 
to deter herbivores in laboratory and field studies (reviewed 
by Hay 1991, Hay and Steinberg 1992; updated by Duffy and 
Hay 1994, Cronin and Hay 1996a). Many new diterpenes 
recently have been isolated from the species D. divaricata 
(Faulkner 1993). Our TLCs of extracts (from fresh and freeze
dried plants) of D. pulchella showed numerous UV-active 
spots in the nonpolar region (reddish brown-staining spots at 
Rr = 0.26 and 0.32, and nonstaining spots at Rr = 0.5 and 
0.68, I: I ether: hexanes). Collections from separate sites in 
the Bahamas exhibited differences; e.g., TLCs of extracts 
from a mangrove channel collection showed two purple-stain
ing spots (Rr = 0.56,0.42 [UV], I: I ether: hexanes) that were 
not evident in TLCs of samples from a deep reef wall col
lection. 

D. bartayresiana, prevo bartayresii (Bahamas). The major 
metabolite of this species is pachydictyol A (Norris and Fen
ical 1982), a documented feeding deterrent to macroherbi
vores and some mesograzers (Hay 1991, Duffy and Hay 1994; 
but see Hay et al. 1990). Extract of D. bartayresiana in the 
Pacific deterred feeding by the surgeonfish Zebrasoma fla
vescens (Wylie and Paul 1988). Our TLCs of fresh and freeze
dried algae showed UV activity at Rr = 0.65 (ether), although 
a distinct spot suggestive of pachydictyol A was not obvious. 

D. cervicornis (Bahamas). TLCs showed the presense of a 
purple-staining UV spot (Rr = 0.26, I: I ether: hexanes) and 
several UV -active spots (Rr = 0.13,0.39, I: I ether: hexanes). 
No major changes in TLCs were noted between fresh and 

freeze-dried algal samples. Chemical defenses have been pro
posed to explain the resistance to herbivory of D. cervicornis 
in field assays (Littler et al. 1986, Paul and Hay 1986). Cer
vicol, a secodolastane, is a metabolite of this species (Faulk
ner 1987), as are other dolastane-type and secodolastane-type 
diterpenes, including isolinearol and isolinearol acetate 
(Faulkner 1988). Dictyol B acetate was isolated from D. cer
vicornis at 0.04% dry mass, but the compound did not affect 
the behavior of the gastropod Littorina sp. (Targett and 
McConnell 1982). However, dictyol B acetate has been shown 
to deter a temperate urchin, fish, and amphipod (Cronin and 
Hay 1996b), as well as tropical reef fishes (Hay et al. 1990). 

D. caribea, prevo indica (Bahamas). Our TLCs do not in
dicate major changes between extracts of fresh and freeze
dried material, and show several spots indicative of secondary 
metabolites (reddish brown-staining, UV-active spot at Rr = 
0.85, ether; purple-staining spot at Rr = 0.39, two pink-stain
ing spots at Rr = 0.61 and 0.71,1:1 ether:hexanes). Com
pounds isolated from the seaweed D. indica include two C-14 
epimers: dictyotriol A and dictyotriol B (Faulkner 1986), and 
diterpenes: amijol, dictinol, dictindiol, and dictintriol (Faulk
ner 1993). Investigations into possible antiherbivore func
tions of these metabolites have not been published. 

D. mertensii, prevo dentata (Bahamas). A UV-active spot 
(Rr = 0.70, 19: I ether: MeOH) and a purple-staining spot (Rr 
= 0.6, 19: I ether: MeOH) are present on TLC plates of both 
fresh and freeze-dried samples. Dictyol H is a known me
tabolite of D. dentata from Barbados (Faulkner 1986). It sig
nificantly deters feeding by herbivorous reef fish (Hay et al. 
1988a). 

D. alternans, prevo Dilophus alternans (Bahamas). TLCs 
of both fresh and freeze-dried tissue show strong UV activity 
at Rr = 0.68. Nothing has been published on chemistry of 
this species, but it was a low-preference alga for reef fishes 
in the Florida Keys and may possess chemical defenses (Paul 
and Hay 1986). 

D. menstrualis, prevo dichotoma (North Carolina). Major 
metabolites of this species are the diterpene alcohols dictyol 
E and pachydictyol A, which deter feeding by fish, urchins, 
and some amphipods (reviewed by Hay and Steinberg 1992; 
updated by Duffy and Hay 1994, Cronin and Hay 1996a, b). 
Although TLCs provide only the crudest measure of quan
titative data, our TLCs suggested that D. menstrualis from 
offshore North Carolina contained greater concentrations of 
these two compounds than did plants from inshore North 
Carolina (G. Cronin, personal communication). Cronin et al. 
(1995) showed that dictyol E and pachydictyol A were stable, 
but dictyodial, another metabolite of both D. menstrualis and 
D. ciliolata, decomposed during freeze-drying or extended 
storage. 

D. ciliolata (North Carolina). The major metabolites of D. 
ciliolata are dictyol B acetate and pachydictyol A (Cronin et 
al. 1995). Dictyol B acetate deters feeding by Caribbean reef 
fishes (Hay et al. 1990), as well as temperate fishes, urchins, 
and some amphipods (Duffy and Hay 1994, Cronin and Hay 
1996a, b). Our TLCs do not show appreciable changes be
tween samples of fresh and freeze-dried plants. 




