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SUMMARY 

As buildings age, retrofits are becoming an increasingly important topic for the ever-

growing and aging existing building stock.  Following construction, a building's energy 

footprint typically remains relatively stagnant, effectively locking-in that building's energy 

usage for its lifetime.  With 50% of America’s building stock built before 1980 and only 

0.5–1% of existing buildings retrofitted annually, it is essential to reduce guesswork and 

make building energy retrofits more accessible to reduce the energy footprint of the 

building sector.  Building retrofits are plagued by a lack of original design documentation 

and general uncertainty regarding the building's envelope composition and integrity.  The 

goal is this work is to utilize the power of transient heat transfer modeling to non-

intrusively characterize the thermal properties of a building's envelope to inform energy 

modeling, facade design, and project appraisal.  This thesis presents a literature survey of 

the state-of-the-art in in-situ thermal testing, a thermal characterization methodology to 

non-destructively identify representative thermal properties for existing building 

envelopes, a simulation-based study to verify the thermal characterization method, two 

physical experiments to validate the thermal characterization method, and a proof-of-

concept machine learning approach to classify in-service assemblies via the proposed 

thermal characterization methodology.  This dissertation is designed to bridge the gap 

between the discrete procedures of building audits and building energy modeling processes 

to enable a better understanding of existing building envelopes and reduce guesswork from 

envelope retrofits. 
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CHAPTER 1: INTRODUCTION 

In the developed world, buildings are built not only to protect occupants and their 

belongings from rain and sun; modern buildings are built to provide a comfortable 

conditioned space for occupants.  Spaces are often conditioned at the cost of burning fuels 

for heat or utilizing electrical energy to compress refrigerants for cooling.  Regardless of 

the mode, space conditioning is achieved by utilizing energy to generate indoor conditions 

irrelevant to exterior conditions.  The conditioned spaces that the modern world has come 

to expect in buildings come at the cost of energy, and often at the primary energy source, 

greenhouse gas emissions.  While space conditioning is a major contributor to global 

climate change, it is important to note that people have come to expect indoor spaces to be 

conditioned and comfortable, so it is nearly impossible to decouple space conditioning and 

expectations of comfort from buildings.  Instead, it is more practical to focuses more on 

the reduction of thermal loads to reduce the energy need of space conditioning.   

 The US Department of Energy reports that 42% of energy use in buildings is a result 

of thermal losses through a building’s thermal envelope (DOE, 2012; EIA, 2012).  Building 

envelopes serve as the primary barrier between the indoor conditioned space and exterior 

environment, so it is important to design envelopes thoughtfully and carefully to minimize 

energy losses.  To better understand the relationship between a material and its relationship 

with conductive heat transfer, thermal resistance, or R-value, can be utilized to understand 

the insulating performance of a material.  Everett Schuman, director of the Penn State 

Housing Research Institute, first developed R-value in 1945 to quantify the insulating 
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performance of various insulation materials on the market (Straube, 2007).  As Schuman 

proposed it, R-value was intended to represent the performance of a layer of material, as 

opposed to the performance of an entire assembly.  There are two large assumptions made 

when applying R-value to a whole assembly: (1) All modes of heat transfer will be assumed 

to be represented as conductive heat transfer, and (2) the assembly operates in steady-state 

conditions.  The first assumption can be addressed by understanding that assembly R-

values are subject to the temperature and environmental conditions at which the assembly 

is tested, as material thermal conductivity, convection, and thermal radiation are all 

dependent on environmental factors.  This means that R-values may change slightly 

depending on the situation; however, R-values are meant to be an estimation tool.  

Secondly, R-values are designed to represent steady-state conductive performance.  

Steady-state conditions are rarely established in in-service assemblies, therefore, thermal 

mass must be considered alongside thermal resistance when calculating heat transfer 

through an assembly (Childs et al., 1983). 

Utilizing modern simulation tools, the transient thermal performance of an assembly 

can be computed for design cases by specifying material layer ordering and inputting the 

thermal properties of each material.  This makes accounting for assembly thermal mass a 

fairly trivial task to most designers.  This process is, however, nowhere near as trivial when 

working with in-service or historic buildings.  In these cases, assumptions on materials and 

construction methods can be approximated based upon the year of construction and local 

building code, if applicable.  With energy codes being established as recently as 1992 and 

various uncertainties related to material degradation and condition, estimating assembly 
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composition can be very difficult with older buildings (Shankle et al., 1994).  This problem 

compounds further with 68% of the US building stock constructed before 1990 (IEA, 2019; 

National Renewable Energy Laboratory, 2019), and only 0.5-1% of existing buildings are 

renovated annually (Architecture 2030, 2018).   

With the United States’ aging in-service building stock, existing buildings must 

be rehabilitated to guarantee their performance for years to come.  In practice, it is difficult 

to work with existing buildings due to missing documentation and uncertainties in the 

composition and integrity of a building’s envelope.  To solve this problem, destructive or 

non-destructive forensic testing is employed during the building retrofit and repair process.  

One method of testing the thermal performance of an existing building is via R-value 

testing, where an existing building envelope is instrumented with sensors and performance 

is measured.  Currently, the state of the art for assessing the thermal performance of an as-

built assembly is through in-situ R-value testing, as described in ASTM C1155 “Standard 

Practice for Determining Thermal Resistance of Building Envelope Components from the 

In-Situ Data” (ASTM, 2013b).  One major limitation of this practice is the fact that it 

glosses over the uncertainties of thermal mass and instead prioritizes R-value 

measurement.   

1.1 Research Questions 

In conclusion, thermal losses and gains through building envelopes represent slightly 

less than half of a building's annual energy usage.  Few buildings in the United States are 

being renovated each year, and the US building stock is aging.  To address this problem 
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and enable envelope retrofits, it is suggested that non-destructive testing be deployed on 

existing building envelopes to better understand their performance, enabling more 

informed retrofit decision-making.  For this technique, the current state of the art is 

governed by ASTM C1155, “Standard Practice for Determining Thermal Resistance of 

Building Envelope Components from the In-Situ Data.”  Unfortunately, this standard 

focuses primarily on thermal resistance and does not provide a methodology to infer an 

assembly’s thermal mass.  Fortunately, the Sum of Least Squares Technique proposed in 

ASTM C1155 does provide an inverse modeling platform to infer thermal mass and 

thermal resistance via non-intrusive temperature and heat flux measurements.   The goal of 

this dissertation research is to expand this methodology to infer thermal mass alongside 

thermal resistance in a non-intrusive manner.  In subsequent chapters, various transient 

heat transfer algorithms will be evaluated for this application, the problem and sensor 

layout will be reformulated for non-intrusive measurement, and the improved methodology 

will be verified via simulation and validated via experiments.  This research will be 

structured to address the following questions: 

1) Which methods apply to compute the effective thermal properties of an existing 

building envelope assembly? 

2) Can the sensors and methods from the state-of-the-art methods be utilized to non-

destructively infer thermal mass and thermal resistance? 

3) How can the proposed inverse modeling approach be verified against existing 

simulation workflows and validated for field deployment? 
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4) How long must an assembly be instrumented with sensors to infer thermal mass 

and thermal resistance? 

5) What is the impact of thermal mass on envelope heat transfer, and is it required that 

thermal mass be measured alongside thermal resistance? 

6) How can the measurement of thermal mass and thermal resistance be made 

beneficial to those without the specialized knowledge to simulate transient heat 

transfer?   

Each of these questions seeks to develop and further enable the applicability and 

relevance of transient thermal characterization.  Each of these questions will be addressed 

in detail in subsequent chapters.   

1.2 Significance 

This dissertation proposes a model to compute the effective thermal properties of a 

building envelope assembly in a non-destructive and non-intrusive manner.  This work 

aims to bolster existing methods and testing workflows currently utilized for in-situ R-

value testing of envelope assemblies to encompass thermal mass alongside thermal 

resistance.  The goal of this work is to provide a non-destructive diagnostic tool to better 

understand the in-service thermal performance of assemblies to enable retrofits and allow 

for a more detailed understanding of our existing built environment.   

1.3 Thesis Structure 
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This dissertation is designed to address each of the research questions posed in Section 

1.1.  Chapter 1 serves as the introduction and motivation to the work.  Chapter 2 is a review 

of the current state of the art and an abridged literature review of methods to solve the 

transient conduction problem.  This chapter also tests these various methods to motivate 

transient conduction algorithm selection.  Chapter 3 is a chapter on research methods, 

where the transient conduction algorithm is described in detail, the Bayesian inference 

algorithm is described and motivated, and the proposed thermal characterization 

methodology is described in detail.  Chapter 4 is a simulation-based verification of the 

proposed methodology, where the proposed thermal characterization methodology’s 

performance is validated against simulation test cases.  Chapter 5 is an experimental 

validation of the proposed thermal characterization methodology.  Chapter 6 presents a 

proof-of-concept machine learning methodology to classify envelope assemblies, built 

upon the proposed thermal characterization methodology.  Finally, Chapter 7 concludes 

with a reflection on the developments made within this dissertation and answers each of 

the research questions this dissertation set out to address. 
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CHAPTER 2: LITERATURE REVIEW 

In Chapter 1, the importance of better understanding the performance of existing 

envelope assemblies was motivated.  Thermal losses through envelopes represent a large 

fraction of energy usage in buildings, and the US building stock is continually aging and 

is rarely experiencing retrofits.  To address this problem, in-situ thermal testing can be 

utilized to better understand the thermal performance of existing, in-service building 

envelopes.  This chapter seeks to explore the state of the art in in-situ thermal testing and 

address methods to include thermal mass into existing in-situ testing methods.   

2.1 State of the Art in In-Situ Envelope Thermal Testing 

With the relative importance of in-situ testing understood, it is important to understand 

how in-situ testing is currently conducted. At this time, there are two main ASTM standards 

governing in-situ R-value testing—ASTM C1155 “Standard Practice for Determining 

Thermal Resistance of Building Envelope Components from the In-Situ Data” and ASTM 

C1046 “Standard Practice for In-Situ Measurement of Heat Flux and Temperature on 

Building Envelope Components” (ASTM, 2013b, 2013a).  Per their names, ASTM C1155 

addresses the process to compute in-situ R-values from sensor data, and ASTM C1046 

governs the sensor implementation required to collect the in-situ thermal data.  These two 

standards build upon each other to enable in-situ R-value testing.  Similarly, there is an 

equivalent ISO standard entitled: ISO 9869 “In-situ measurement of thermal resistance and 

thermal transmittance.”  This ISO standard is very similar to ASTM C1155 and contains 

very similar methods, therefore, this standard will not be discussed in detail.   
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2.1.1 An Abridged Summary of ASTM C1155 

ASTM C1155 standardizes the practice of in-situ R-value testing for in-service 

assemblies.  This standard provides two techniques for calculating R-value from sensor 

data—the Summation Method and the Sum of Least Squares Technique, with the former 

Summation Method being the more popular and more addressed method within the 

standard.   

2.1.1.1 Summation Method 

The Summation Method was first proposed by Modera et al. in their conference paper 

titled “Determining The U-Value of A Wall from Field Measurements of Heat Flux and 

Surface Temperatures” (Modera et al., 1985).  The equation for the summation is displayed 

below: 

	
𝑅!"" =

∑ %𝑇#$,& − 𝑇#',&((
&)*

∑ �̇�#$,&(
&)*

	 ( 1 ) 

From Eq. 1, an inference can be made regarding the effective thermal resistance of the 

candidate assembly.  In this equation, 𝑅!"" is the effective thermal resistance in W/m2, and 

𝑇#$ and 𝑇#% is a vector of interior and exterior surface temperatures, respectively, measured 

from the candidate assembly in °C.  In the original paper, this equation was proposed under 

the assumption that thermal mass and environmental conditions are periodic, causing any 

transient effects of thermal mass to wash out of the equation as increasingly large 

timescales of data were used in the summation.  In the real world, this assumption differs 

slightly from real environmental conditions, which may cause this R-value to be skewed 
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via the effects of thermal mass.  This problem is further exacerbated when considering that 

most citations to ASTM C1155 in research and development are often about the 

Summation Method (FluxTeq, 2016; Hukseflux, 2021; Sujatmiko et al., 2016).  ISO 9869 

also has an equivalent version of the summation method called the Average Method.  The 

Average method is identical to the Summation Method.   

One advantage of the summation method is its non-invasive instrumentation 

requirements.  The summation method only requires that sensors be placed on the exterior 

and interior surfaces of an envelope, which allows for testing in occupied or in-service 

buildings.  An instrumentation diagram for the summation method is displayed in Figure 

2.1. 

	

Figure 2.1  A diagrammatic representation of the Summation Method’s instrumentation 
requirements.   
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2.1.1.2 Sum of Least Squares Method 

To address the influence of thermal mass, ASTM C1155 provides a second method, 

the Sum of Least Squares (SLS) technique.  This method, originally proposed by Beck, 

Petrie, and Courville in 1991, solves a partial differential equation via finite difference 

approximations to account for the impact of thermal mass on R-value while minimizing an 

objective function to match simulation results to measured data (J. V Beck et al., 1991).  

This method utilizes the following two equations:  

	 	 𝜕
𝜕𝑥 -𝑘

𝜕𝑇
𝜕𝑥/ = (𝜌𝐶+)

𝜕𝑇
𝜕𝑡
	, with �̇� = −𝑘

𝜕𝑇
𝜕𝑥

 
 ( 2 ) 

 
	

𝑆𝑆𝐸 =77%𝑇8,,$ − 𝑇,,$(
-	𝑊.,,

(

,)*

/

$)*

+	77%�̇�0,1; − �̇�0,$(
-	𝑊2,̇ ,

4

0)*

/

$)*

	 ( 3 ) 

Where Eq. 2 is solved under the exterior and interior surface temperature boundary 

conditions via finite differencing.  The corresponding nodal temperatures and heat flux 

values are then utilized in Eq. 3, where the weighted sum of squared error is computed and 

the Gauss linearization algorithm is utilized to minimize model/measured error (J. V. Beck 

& Arnold, 1977).  One important note on Eq. 3 is that the 𝑚 and 𝑛 subscripts correspond 

to the internal layers of the assembly, indicating that this method requires the temperature 

and heat flux sensors to be built inside of the assembly.  A diagram of Beck et al.’s proposed 

sensor layout is displayed in Figure 2.2. 
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Figure 2.2  A diagrammatic representation of the SLS Method’s sensor layout for a 
sample roof assembly (J. V Beck et al., 1991).   

 

  In Figure 2.2, the SLS Method proposes an instrumentation layout with sensors inside 

of the assembly.  For experimental constructions, this is a fair to assume that sensor can be 

placed inside of an assembly during construction.  However, the least squares technique, 

at least how it is expressed in ASTM C1155 and in Beck et al.’s, is incompatible with in-

service that currently do not contain sensors inside of the assembly.  It is possible to install 

sensors inside of an existing assembly via drilling and installing probe sensors, however, 

this may not be appliable in historic or in-service buildings where assemblies cannot be 

disturbed. 

2.1.2 An Abridged Summary of ASTM C1046 

ASTM C1046 provides a significant amount of context related to the selection, usage, 

and installation of temperature and heat flux sensors for in-situ measurement of envelope 

assemblies.  This standard is extensive; however, the key takeaways of this standard as 

they related to ASTM C1155 are as follows: 
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• Heat flux and temperature sensors must have a lower thermal time constant than 

the envelope assembly being instrumented in non-steady-state conditions. 

• A single measurement site is not representative of an entire building.  Infrared 

thermography should be used to identify similar sites. 

• Infrared thermography should be used to identify defects, thermal bridging, 

convective loops, and air leakage in assemblies.   

o In the case of defect measurement, the measurement should take place 

at the center of the defective area.   

o Alternatively, when instrumenting an assembly outside of areas with 

defects, measurement is recommended to occur with defects or thermal 

bridging as far away as possible (e.g. at the exact center of the cavity in 

a stud wall construction). 

o When instrumenting an assembly with a suspected convective loop or 

air leakage (visible via thermal imaging), it is recommended to 

instrument at the top, middle, and bottom of the assembly and average 

their results.   

• To reduce rapid thermal fluxation due to environmental factors, heat flux 

transducers and temperature sensors on the interior or exterior surfaces of an 

assembly can be placed under a layer of additional, low thermal mass material.  

The impact of this material’s thermal resistance should be removed after 

assembly thermal resistance is computed.   

2.1.3 An Abridged Summary of ISO 9869-1 
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ISO 9869-1 is the international counterpart to ASTM C1155 and ASTM C1046.  This 

standard is entitled: “In-Situ Measurement of Thermal Resistance and Thermal 

Transmittance.”  This standard governs sensor usage, calibration, installation, and analysis 

of in-situ thermal data to compute thermal resistance (ISO, 2014).  ISO 9869-1 proposes 

three methods to compute in-situ thermal resistance: (1) the Average Method, (2) the 

Average Method with Storage Effects, and (3) the Dynamic Method. 

2.1.3.1 Average Method 

In short, the Average Method is the ISO 9869-1 version of ASTM C1155’s Summation 

Method.  The Average Method’s equation is exactly that of the Summation Method 

displayed in Eq. 1. 

2.1.3.2 Average Method with Storage Effects 

Acknowledging that the Average Method may fail to compute effective thermal 

resistance on high mass assemblies, ISO 9869-1 proposes the Thermal Mass Correction 

Factor.  The thermal mass correction factor is calculated and implemented with the 

following equations: 

	 	
𝑅#$,& = 7𝑅5

&6*

5)*

	 𝑅𝑠𝑜,𝑘 = ! 𝑅𝑗
!

𝑗=k+1
 

 
( 4 ) 

Where 𝑘 is the layer number, ordered from 1 to 𝑁 with 1 as the interior surface and 𝑁 

as the exterior surface.  Utilizing these factors, the thermal mass factors for each layer 𝑘 

can be computed with the following: 
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Where 𝐶& is the thermal mass, or thermal capacitance, of each layer, and 𝑅 is the total 

assembly thermal resistance.  With the thermal mass factors computed for each layer, the 

interior and exterior thermal mass correction factors for the assembly can be computed 

with the following summations: 

	 	
𝐹#$ =7𝐹#$,&

4

&)*

	 𝐹"# = ! 𝐹"#,%

!

𝑘=1
 

 
( 7 ) 

These thermal mass correction factors can then be applied to the average method in the 

following way: 

	 	

𝑅!"" =
∑ *𝑇#$,$ − 𝑇#%,$,(
$)*

∑ �̇�#$,$(
$)*

 

	

, for the first 24 hours. 

 

( 8 ) 

	
	 	

𝑅!"" =
∑ *𝑇#$,$ − 𝑇#%,$,(
$)*

∑ �̇�#$,$(
$)* − (𝐹#$ 	𝛿𝑇#$ +	𝐹#%	𝛿𝑇#%)Δ𝑡

 

	

, after the first 24 hours. 

 

( 9 ) 

Where 𝛿𝑇$ is the difference between internal averaged temperature over the 24 h prior 

to the reading 𝑘 and internal averaged temperature averaged over the first 24 h of the 

analysis period, 𝛿𝑇! is the difference between external averaged temperature over the 24 h 

prior to the reading 𝑘 and external averaged temperature averaged over the first 24 h of the 

analysis period, and Δ𝑡 is the time interval between readings in seconds. 
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While the thermal mass correction factor does augment the average method, this 

approach has one major drawback—The composition of the assembly must be known to 

compute the thermal mass correction factors.  From a practical perspective, there may be 

no reason to perform an in-situ thermal resistance test if the assembly’s materiality is 

already known; thermal resistance could be approximated utilizing estimated material 

properties of the assembly’s known layering.  Due to this limitation, the thermal mass 

correction factor may not have much utility when assembly composition is unknown.   

2.1.3.3 Dynamic Method 

The dynamic analysis method is the final method to compute thermal resistance, 

located within the appendices of ISO 9869-1.  This method is built upon the assumption 

that the heat flow rate is a function of all temperatures at that time and at all preceding 

times.  In short, the dynamic analysis method is a sophisticated method to simulate transient 

conduction based upon the following equation:  

	 	�̇��-.,- =
𝑇/-,- − 𝑇/0,-

𝑅
+ 𝐺1�̇�/-,- − 𝐺2�̇�/0,-

+�𝑃. � � 𝑇/-,-(1 − 𝛽.)𝛽.(𝑖 − 𝑗)
-31

45-36

�
.

+�𝑄. � � 𝑇/0,-(1 − 𝛽.)𝛽.(𝑖 − 𝑗)
-31

45-36

�
.

 

( 10 ) 

Where 𝐺*, 𝐺+, 𝑃,, 𝑄,	and 𝛽, are coefficients which represent the dynamic thermal mass 

characteristics of the assembly, which can be computed by minimizing the difference 

between �̇�;$, and the measured �̇�$, similar to objective function present in Eq. 3.   
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Without going into additional detail on this algorithm, the representation of thermal 

mass as a combination of unitless coefficients obscures the physical nature of the 

assembly’s thermal mass.  This method’s goal primary goal is to approximate thermal 

resistance, with the influence of thermal mass’s impact being considered but its estimation 

being an afterthought.  This is considered to be a major drawback of this method—thermal 

resistance and a collection of non-informative coefficients unfortunately provide no 

additional context on an assembly’s thermal properties compared to the traditional average 

method.   

2.1.4 Key Takeaways from the State of the Art 

While ASTM C1155 and ISO 9869-1 do have significant shortcomings, both of these 

standards provide a foundation for in-situ thermal characterization to estimate thermal mass 

and thermal resistance.  Regardless of the method, ASTM C1046 and ISO 9869-1’s 

guidance applies to any in-situ thermal measurement.  Both ASTM C1155 and ISO 9869-

1 do, however, have significant shortcomings.  Both standards focus primarily on the 

summation/average method for thermal resistance calculation, which ignores the influence 

of thermal mass.  This is unfortunate, as envelope assemblies are rarely subject to steady-

state conditions and thus thermal mass has a thermal impact in most typical conditions.   

While the summation and average methods do ignore thermal mass, ASTM C1155 does 

address thermal mass intuitively via the Sum of Least Squares Technique.  This differs in 

comparison to ISO 9869-1’s dynamic method and thermal mass correction factors, where 

thermal mass is non-intuitively represented as cumbersome, application-specific 
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coefficients as opposed to a parameter with physical meaning.   While the SLS technique 

does have shortcomings for non-destructive measurement, e.g. requiring sensors to be 

installed inside the assembly, this inverse modeling approach does provide a flexible 

platform to develop techniques atop.  For example, the SLS Technique as per the standard 

suggests that the user estimate the assembly’s thermal mass values; however, this inverse 

modeling approach does provide the flexibility for thermal mass to be inferred alongside 

thermal mass via the optimization approach.  For brevity, the inference of thermal 

resistance and thermal mass will be referred to as transient thermal characterization in this 

dissertation.     

Additionally, the problem and sensor layout can most likely be reformulated to remove 

the need for sensors located inside of the candidate assembly.  This is a major shortcoming 

of ASTM C1155’s SLS Technique, as it is often not possible or not preferable for 

destructive thermal probes to be placed inside of an in-service assembly.  Addressing this 

problem would allow for this method to be relevant for historic buildings and buildings 

where destructive measurement is not possible.   

2.2 Transient Conduction Numerical Modeling Techniques 

Building upon ASTM C1155’s SLS technique, different approaches can be utilized to 

bolster this technique’s performance and applicability.  At its core, the SLS technique is an 

inverse model—a model that calculates, from a set of observations or measurements, the 

factors that produced them.  In the case of engineering modeling, an inverse model utilizes 

an optimization algorithm to tune physical parameters to minimize error between measures 
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and simulated data.  This is the basis of the SLS technique—this approach simulates 

transient conduction via finite differencing and minimizes an objective function.  In this 

approach, transient conduction is computed thousands, if not tens of thousands of times, 

while an optimization algorithm minimizes an objective function.  Due to the number of 

simulations required, it is necessary to select the proper transient heat transfer model to 

ensure computation accuracy and efficiency for the inverse model.  To address transient 

model selection, a review and evaluation of transient conduction modeling approaches was 

conducted within this section.   

It should also be noted that a similar case could be made for the selection of the 

optimization algorithm.  Fortunately, extensive reviews on this topic exist within literature 

(J. V. Beck & Arnold, 1977; Bierlaire, 2015; Fister et al., 2013; Q. Li, 2017; Tian et al., 

2014; Venter, 2010; Yao et al., 2011) and therefore will be outside of the scope of this 

dissertation’s literature review. 

2.2.1 Finite Difference Method 

One of the most frequently implemented models to evaluate the thermal performance 

of an envelope component is the finite difference method (FDM).  THE FDM is a method 

to solve differential equations by approximating derivatives via finite-difference.  The 

FDM in building envelope research is known by many names, such as Resistance-

Capacitance (RC) models, 2R1C models, 3R2C models, etc., but the common naming 

characteristic is the R and C.  Each of these models is defined by a finite volume 

discretization which, in 1D, reduces the problem to an analogous electrical circuit model, 
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with thermal resistance modeled as a resistor, thermal storage modeled as a capacitor, 

temperatures modeled as voltages, and heat fluxes modeled as currents all within an 

electrical circuit network.  One of the major advantages of RC models is that each 

parameter within the model has a physical meaning (Wang & Xu, 2006), allowing for a 

user to anticipate the computed result.   

RC models were first proposed by Lorez and Masy and have been widely utilized since 

(Hudson & Underwood, 1999; Lorenz & Masy, 1982).  The model Lorez and Masy 

produced has one capacitor for the lumped thermal capacitance of the building envelope 

and two resistors representing two halves of the envelope’s total thermal resistance.  While 

Lorez and Masy represented the entire building’s envelope with one lumped network, 

researchers have adopted this methodology to represent buildings, rooms, and individual 

envelope components (Bénard et al., 1992; Cui et al., 2018).  Over time, more lumped 

capacitance methods appeared, distributing thermal resistances and thermal capacitances 

among more components to produce more accuracy than the baseline 2R1C method 

(Bénard et al., 1992; Fraisse et al., 2002; Fux et al., 2014; Kummert et al., 1996).  Sample 

networks of 2R1C and 3R2C networks can be seen below in Figure 2.3.  While 3R2C and 

higher-order RC models show more promise of accurately representing an opaque 

assembly’s thermal performance, the process does still require costly iterative solvers to 

solve coupled differential equations.   
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Figure 2.3  (a) A network representation of a 2R1C model.  (b) A network representation 
of a 3R2C model. 

While the node count in an RC network is a debated topic, Antonopoulos and Koronaki 

determined that the summed capacitance values in RC models are inadequate for precise 

solutions (Antonopoulos & Koronaki, 1998).  Before this work, Antonopoulos and 

Koronaki stated that assembly capacitance was typically calculated as the sum of the 

envelope components’ capacitances, which they referred to as apparent capacitance.  They 

showed that another term, known as effective capacitance, should be solved from 

measurement data and utilized for future calculations.  The effective capacitance they 

proposed differed in value from the lumped, apparent capacitance term, since effective 

capacitance represented the effective thermal properties of a complex assembly as one 

single thermal mass term. 

  The lumped capacitance method is a frequently used physics-based model used for 

inverse modeling due to its small computational overhead and simple implementation.  

Similar to its forward modeling approaches, there are lumped capacitance inverse models 

to predict indoor conditions (R. Kramer et al., 2013; R. P. Kramer & van Schijndel, 2012), 

façade performance (Alshatshati, 2017), and even heat transfer coefficients (Anderson & 

Singh, 2006; Mohamed, 2008).   

a) b)
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Similar to the simplified RC models (2R1C, 3R2C, etc.), there are also RC models with 

higher RC discretization counts, sometimes referred to as Finite Volume Method (FVM) 

models.  Technically, all RC thermal models are simplified FVM models, however, FVM 

models in published building conduction literature are either multi-dimensional or have 

higher discretization counts than simple RC models.   An example of a FVM problem 

discretization is displayed in Figure 2.4. 

	

Figure 2.4  A screenshot of a discretized wall assembly in WUFI (Ramos et al., 2010) 
and its representative thermal circuit. 

In Figure 2.4, a length-discretized wall assembly from WUFI is shown alongside its 

representative thermal circuit.  It should be noted that the thermal circuit seen in this finite 

volume problem is simply a longer, more discretized version of the RC model thermal 

circuits highlighted in Figure 2.3.  This is precisely the difference between lumped 

capacitance models and finite difference models; lumped capacitance models represent an 
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entire assembly as a “lumped capacitance” and resistance, while finite difference models 

are a collection of discrete elements modeled as discrete capacitor-resistor combos.  

Two widely recognizable softwares in the building industry that employ the finite 

volume method are EnergyPlus’s finite difference method conduction algorithm (Tabares-

Velasco et al., 2012) and WUFI (Ramos et al., 2010).  Tabares-Velasco states that the finite 

volume method was added to EnergyPlus as an optional solver that was capable of handling 

the temperature and state dependency phase change materials into envelope simulations 

while also simulating temperatures throughout a multi-layered assembly.  WUFI, similarly, 

utilizes finite volumes to address the highly non-linear problem of hypothermal transport 

through building envelope assemblies.   

The finite volume method is also used frequently in literature, with it being used for 

roofs (Al-Sanea, 2003; Kumar & Kaushik, 2005), obstructions within envelopes (Zhu et 

al., 2012), façade optimization (L. P. Li et al., 2008; Ozel, 2011), and whole-building 

simulation (Koo et al., 2014; Luo et al., 2008; Yang et al., 2018).   

2.2.2 Finite Element Method 

 Rather than lumping material together to form a thermal resistance network, opaque 

components are discretized and solved over through the finite-element method (FEM).  The 

finite element method is based upon reformulation of governing partial differential 

equations as integrals, known as the “weak form”(J. N. Reddy & Gartling, 2010).  These 

weak form integrals can then be approximated via linear algebra to evaluate heat transfer, 

meaning problems can be solved through matrix operations rather than iterative algorithms.  
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This means that computational time for finite elements is directly proportional to the 

number of elements, meaning that fine meshes with many elements can result in 

disproportionately long solution times (Segerlind, 1976).  FEM’s typical solution time 

makes it an unlikely candidate for inverse modeling procedures, but a simplified, speed-

optimized finite element approach could make finite elements an attractive candidate due 

to their robust numerical stability and high accuracy. 

The finite element method is often utilized for its ability to solve 2-dimensional heat 

transfer and is showing up more and more to evaluate the performance of phase-change 

materials in building envelopes (Alawadhi, 2008, 2012; Hasse et al., 2011).  While this is 

a useful tool to evaluate the performance of phase-change materials, phase change 

materials are currently rarely found outside of lab settings.  In the future, these models may 

become more popular for assessments, but only after phase-change materials see 

widespread market adoption. 

 Another frequent use of the finite element method is for hygrothermal modeling of 

facades.  Hygrothermal models solve coupled systems of equations to model heat, 

moisture, and sometimes air transfer through elements, with finite element hygrothermal 

models becoming increasingly more widespread (Janssen et al., 2007; Khoshbakht et al., 

2009; Lü, 2002; Pallin et al., 2017).  There is even a current push to add moisture transport 

into the US DOE’s popular THERM tool to expand its capability as a dynamic façade 

component evaluation tool (Curcija & Pallin, 2018).  Hygrothermal finite element models 

typically utilize computationally expensive nonlinear solvers to deal with the drastic 

nonlinearity of moisture equations (Khoshbakht et al., 2009).   
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Finite element models seem to be less frequented in inverse modeling due to their large 

computational requirements.  This does not entirely stop the method’s use, as it was first 

used in 1978 by Krutz et al. to characterize the thermal properties of a heated rod (Krutz et 

al., 1978).  Krutz et al. showed that this inverse finite element method model can predict 

thermal properties with much success in 1D.  This work was followed by Tseng et al. in 

1995 who developed a 2D finite element inverse which showed much promise (Tseng et 

al., 1995).  Finite element inverse modeling was not directly applied to the building 

industry until van Schijndel utilized COMSOL to characterize the hygrothermal properties 

of a façade with marginal accuracy (van Schijndel, 2009).  Regardless of the experiment’s 

accuracy, van Schijndel emphasized the importance of their method and potential for future 

façade characterization applications, i.e. thermography.  Another relevant application of 

inverse modeling with finite elements was Aïssani et al.’s characterization of insulation 

compression defects via 3D finite elements (Aïssani et al., 2016).  This work was complex 

and computationally expensive but has relevance and novelty for applying inverse 

modeling to envelope defects. 

2.2.3 Conduction Transfer Function and Response Factor Models 

The conduction transfer function (CTF) and response factor methods are currently the 

most widely used means of solving heat conduction problems within the field of building 

energy modeling (X. Q. Li et al., 2009).  These methods allow for the computation of heat 

transfer by relating current output to past outputs via time-invariant coefficient matrices.  

The first proposition of a transfer function is the thermal response factor created by Mitalas 

and Stephenson (Mitalas & Stephenson, 1967).  The conduction transfer function method 
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allows for transient heat transfer to be computed through the use of time-series 

temperatures and fluxes without the need for finite differencing or repetitive matrix 

inversion via pre-calculated coefficient vectors.  Peavy (Peavy, 1977), Hittle and Pedersen 

(D C Hittle & Pedersen, 1981), Seem (Seem, 1987), and Li et al. (X. Q. Li et al., 2009) all 

developed methods to calculate coefficient vectors for layered wall assemblies, two-

dimensional thermal bridging, and even entire rooms.  Utilizing these procedures, CTFs 

became the go-to method for modern energy simulation after being implemented in DOE-

2 (Koschenz, 1999; York & Cappiello, 1981), TARP (Walton, 1983), and BLAST 

(Douglas Carl Hittle, 1979), which are all predecessors of modern EnergyPlus.  Due to the 

two programs merging to form EnergyPlus, the CTF method also became the standard 

method to calculate conductive heat transfer in building energy simulation (DOE, 2021a; 

R. Strand et al., 1999; R. K. Strand, 2001). 

Building off of the widespread usage of the CTF method, Spitler et al. developed the 

Radiant Time Series Method as a simplified alternative to the heat balance method popular 

in energy simulation (Spitler et al., 1997).  Within this proposed method, a closed-form 

solution for the CTF method was developed, called the Conduction Time Series Method 

(Spitler & Fisher, 1999).  The Conduction Time Series method has also been referred to in 

the literature as the Periodic Response Factor method.  Regardless of the naming, this 

method generates a singular coefficient vector representing the transient thermal 

performance of an assembly, referred to as a Conduction Time Series (CTS) factor, 

building off of the multiple complex CTFs present within the transport function method.  

After being published in the 1989 edition of the ASHRAE Handbook (ASHRAE, 1989), 
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the process became a popular method to calculate building thermal loads.  The CTS 

method, as Spitler and Fisher propose, utilizes a vector of time-dependent response factors 

known as the conduction time series.  A sample conduction time series factor is displayed 

in Figure 2.5.  

	

Figure 2.5  A plot of a sample internal surface conduction time series factor. 

The CTS coefficients shown in Figure 2.5 represent the percentage of steady-state heat 

transferred through a surface from the past to the present.  In a way, the CTS shows which 

percentage of the current and past steady-state heat fluxes are transmitted at the current 

time timestep.  For example, the interior surface of an assembly represented by the CTS in 

Figure 2.5 would experience 0% of the steady-state heat transfer from this hour, 0.5% of 

the steady-state transfer from 1 hour ago, 0.75% of the steady-state transfer from 2 hours 

ago, and so on.  While the conduction time series and conduction transfer function differ 

in implementation, both methodologies are fundamentally similar—heat transfer is 

evaluated via a vector of coefficients computed from assembly layering and thermal 

properties.   
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To utilize the CTS method, the building element’s total R-value or U-factor must be 

known, alongside a vector of CTS coefficients representing the thermal mass of the 

element.  While the CTS of coefficients contains more variables than the thermal 

capacitance term of lumped capacitance method, this CTS vector can accurately simulate 

the effects of thermal mass compared to apparent thermal capacitance.  This method also 

only requires a single computation of the CTS and can be utilized without the need for 

matrix inversion or iteration, unlike the finite element and finite difference methods.  The 

one major downfall of the CTS method is the need for a vector of coefficients rather than 

a singular coefficient to represent thermal mass, similar to ISO 9869’s dynamic method. 

While transfer functions are a widely popular method for thermal modeling, they are 

not as frequently used in inverse modeling.  J.E. Braun used a mix of transfer functions and 

lumped capacitance models to create an inverse model of indoor temperature and 

characterize building envelopes for many years (Braun & Chaturvedi, 2002; Cai & Braun, 

2012; Lee & Braun, 2016), and is one of the only authors to have utilized conduction 

transfer functions for explicit façade characterization.   

Since transport functions are the primary forms of conduction heat transfer calculation 

in DOE2, BLAST, and EnergyPlus, most calibration and inverse modeling exercises in 

these energy modeling programs can be reformulated for calibration of facades.  This 

means that the body of research on energy modeling calibration is all relevant and can be 

applied to characterize a building’s façade using thermal loads, energy usage, and modeled 

surface temperatures.  (Chaudhary et al., 2016; Haberl & Bou-Saada, 1998; Heo et al., 

2012; T. A. Reddy, 2006; Royapoor & Roskilly, 2015; Yoon et al., 2003).   
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2.3 Comparison of Transient Conduction Calculation Approaches 

Formal testing and peer review are the basis on which the scientific process stands.  

Without regulated testing or standardized references, immense model complexity can stand 

as a major barrier to verifying a scientific approach’s validity.  This problem also plagues 

building energy simulation, where models frequently employ complex, spatially defined 

zonal models to simulate heat transfer and energy usage at the building or urban scale.  At 

such a scale, it can become difficult to diagnose model discrepancies due to the infinitely 

large combinations of model inputs and vast interconnectivity of model branches, 

independent solvers, and coupled heat transfer modes.  To address this problem, the 

American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) 

sponsored research project 1052-RP to develop standardized analytical tests to verify the 

performance EnergyPlus’s building envelope simulation approach (Henninger & Witte, 

2011).  This project developed a software toolkit and 16 analytical tests to verify 

EnergyPlus’s envelope heat transfer simulation models.  As stated in a retrospective 

publication by Witte, Henninger, and Crawley, “[ASHRAE 1052-RP] tests cover a variety 

of building envelope mechanisms including conduction, convection, solar gains, shading, 

infiltration, internal gains, radiant transfer, and ground coupling.” (Witte et al., 2016).  

Building off of this work, the ASHRAE 1052RP toolkit and its reference simulations 

provide a unique opportunity to compare many of the heat transfer calculation approaches 

highlighted in the chapter against a baseline in a controlled environment.   

As stated by Witte et al., the goal of ASHRAE 1052RP is to develop a test suite to 

evaluate the performance of energy modeling software for a variety of usage cases.  
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ASHRAE 1052RP is a combination of many different solutions approaches for the physics-

based equations solved in energy modeling software, so the project was structured as a 

series of case studies simulating various building physics phenomena on the component 

scale.  The relevant case studies present within ASHRAE 1052RP are as follows: 

• Test #4: Transient Conduction with Step Response 

• Test #5: Transient Conduction with Sinusoidal Response and Multi-Layered 

Assembly 

These two ASHRAE 1052RP tests, Test #4 and Test #5, respectively referred to as 

Transient Conduction 2 and 3 (TC2 and TC3) in the toolkit, are relevant to the performance 

assessment of transient heat transfer computation approaches.  Utilizing these two transient 

conduction tests, various transient heat transfer algorithms can be simulated for the given 

scenarios and compared against the ASHRAE 1052RP baseline. To compare the various 

techniques, a 50-node Galerkin finite element model (J. N. Reddy & Gartling, 2010), a 20-

node finite volume model, a 4R3C lumped capacitance model (DOE, 2021a), and transport 

function model (Spitler & Fisher, 1999) were implemented in MATLAB and simulated for 

both 1052RP test cases.  This testing was designed to compare the performance of each of 

these algorithms to aid in model selection for subsequent sections of this dissertation.   

To compare the performance of each of these models relative to the reference ASHRAE 

1052RP analytical solutions, root-mean-square error (RMSE) was utilized.  RMSE can be 

computed via the following equation:  
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𝑅𝑀𝑆𝐸 = C∑ (𝑦$ − 𝑦E$)0

$)*
𝑛

	
( 11 ) 

Where 𝑦 is the measured value, 𝑦# is the modeled value, and 𝑛 is the total number of 

data points.  RMSE is advantageous due to its ubiquitous usage in scientific computing and 

generalizability regarding variable dataset sizes.  It is a strong metric for comparing the 

relative performance of two models against one another. 

2.3.1 TC2: Transient Conduction with Stepped Responses 

In the ASHRAE 1052RP toolkit, the first relevant test is a simulation of a single-layered 

wall assembly with two different step responses on the exterior ambient temperature.  The 

exterior convection coefficient for the assembly was set to 10.22 W/m2-K, the interior 

convection coefficient for the assembly was 3.076 W/m2-K, infrared radiation was 

neglected, the interior ambient temperature was held constant at 20°C, and the wall 

assembly was comprised of one material with a thermal resistance of 0.714 m2-K/W and a 

thermal mass of 125 kJ/K.  In this case study, the exterior ambient temperature is stepped 

up from 20°C to 70°C and held at that temperature for approximately 2159 hours.  After 

this long period, the exterior ambient temperature undergoes a step response from 70°C to 

-30°C.  While the original case study holds the exterior ambient temperature at 70°C for 

approximately 86 days to approach the steady-state response of the assembly, this is an 

unnecessarily long period to allow the assembly to warm up.  This unnecessarily long 

period was reduced to 105 hours for ease of analysis, computational time, and visualization 

for the case study simulated in this work.  Shortening this long, stationary period should 

not have any effect on the transient performance of the assembly during the step-up and 
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step-down periods.  All simulations were also simulated with a warm-up time of 72 hours 

before the analysis period to allow for each transient algorithm to “warm-up” from each 

model’s respective initial conditions. 

With these environmental conditions and material properties as inputs, the four 

transient heat transfer algorithms were simulated and compared to the ASHRAE 1052RP 

baseline.  Due to the diverse nature of the heat transfer algorithm formulations, different 

options were utilized for each formulation.  For the four heat transfer algorithms, the 

following options were implemented for this test case: 

• For the finite element method, 50 1-dimensional nodes were simulated and 

solved via the Galerkin finite element method. 

• For the finite volume method, 25 1-dimensional nodes were simulated and 

solved via the Crank-Nicholson method. 

• For the lumped capacitance method, the one-layered assembly was modeled 

with a 4R3C network.  This network was solved with MATLAB’s ODE45 

differential equation solver with variable time-stepping. 

• For the conduction transport function approach, the assembly was modeled in 

the Oklahoma State University’s PRF/CTF Generator tool to generate the 

transfer function (Iu, 2002).  This transfer function was utilized in the TC2 

simulation. 

Utilizing these options and model setups, the test case was then run and compared against 

the ASHRAE 1052RP baseline.  These results can be seen below in Figure 2.6. 
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Figure 2.6  Four plots displaying the performance of different transient heat transfer 
algorithms for the ASHRAE 1052RP TC2 Step-Response test. 

From the above figure, the performance of transient finite element, transient finite volume, 

4R3C (lumped capacitance), and conduction time series methods can be seen compared 

against the ASHRAE 1052RP baseline.  Each of the methodologies closely match the 

results of the reference data, indicating strong transient performance in response to drastic 

changes in environmental conditions.  Each algorithm matches the reference data for the 

“step-up” region of the plots; however, the finite volume and 4R3C models appear to be 

slightly under-predict heat gain during the warm-up period.  The FVM also appears to have 

over-predicted the heat flux by approx. 1.40 W/m2  during the steady-state regime.  Once 

again, all four algorithms display performance closely matching the reference assembly for 

the “step-down” portion of the test, with FVM and 4R3C models once again lagging the 
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reference data during the transient regime.  Additional results of this test can be viewed in 

Table 2.1.   

Table 2.1  A tabulated performance summary of heat transfer algorithms for ASHRAE 
1052RP Test TC2. 

Model Type Root-Mean Squared 
Error (W/m2) 

Computation Time 
(Seconds) 

Finite Element 0.934 0.147 
Finite Volume 1.52 0.244 

RC Model 2.44 0.229 
Conduction Time Series 0.757 0.00448 

From Table 2.1, the performance of each respective transient heat transfer algorithm can 

be assessed in further detail.  All four algorithms displayed low RMSE values with the 

reference dataset, with cumulative RMSE errors all below 2.00 W/m2 for the test case.  

While accuracy is important when assessing models, another important facet of model 

performance is computational speed.  When considering the tens-of-thousands of times a 

model will be computed in an inverse modeling problem, incremental speed increases 

compound to become much more impactful.  When viewing the speed of all four of the 

tested models, all four formulations computed the 165 hours of data in under 1 second.  

While all four models are relatively efficient, the two models that stand out the most are 

the finite element model and the transfer function model, which are computed in 147 and 

4.48 milliseconds, respectively.  With this information, the transport function approach 

seems to be a strong candidate for inverse modeling; however, it should be noted that the 

transport function for this assembly was generated manually via the PRF/CTF Generator 

tool.  There currently is no existing methodology to translate a transport function back to a 

list of material properties, which makes inverse modeling utilizing transport functions or 
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conduction time series vectors a near-impossible task.  In light of this information, the 

transient 1D finite element method becomes the most relevant methodology for inverse 

modeling. 

2.3.2 TC3: Transient Conduction with Sinusoidal Response 

The second relevant ASHRAE 1052RP case study is “Test TC3 - Transient 

Conduction, Sinusoidal Driving Temperature and a Multi-Layer Wall.” As the title 

suggests, this test simulates the transient heat transfer performance of multi-layered 

assembly subjected to sinusoidal environmental conditions.  The multi-layered assembly 

was exposed to a sinusoidal exterior temperature which ranged from -15°C to 15°C with a 

period of 24 hours.  The exterior convection coefficient for the assembly was set to 10.22 

W/m2-K; the interior convection coefficient for the assembly was 3.076 W/m2-K, the 

interior ambient temperature was held constant at 20°C; and the multi-layered assembly 

was comprised of three materials with thermal resistances of 0.7143 m2-K/W, 0.5 m2-K/W, 

and 0.5 m2-K/W, respectively.  The layers of the assembly also had thermal capacitance 

values of 35 kJ/K, 0.5 kJ/K, and 40 kJ/K, respectively per layer.  This test case was 

simulated for 176 hours with the ASHRAE 1052RP toolkit and was compared against 

MATLAB implementations of the transient finite element method, the transient finite 

volume method, the 4R3C lumped capacitance method, and the conduction transfer 

function method.  As with Test TC2, custom options were applied to each implemented 

heat transfer approach.  Algorithm options are the same between Test TC2 and TC3, but it 

should be noted that the transport function was re-simulated with the PRF/CTF Generator 
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to match the new three-layer assembly.  The results of Test TC3 are displayed in Figure 

2.7. 

	

	

Figure 2.7  Four plots displaying the performance of different transient heat transfer 
algorithms for the ASHRAE 1052RP Test TC3. 

From the above figure, the performance of transient finite elements, transient finite volume, 

lumped capacitance, and conduction time series methods can be seen compared against the 

ASHRAE 1052RP baseline for Test TC3.  As with Test TC2, all of the methodologies 

closely match the results of the reference data, indicating strong transient performance in 

response to drastic changes in environmental conditions.  Each algorithm matches the trend 

of the ASHRAE 1052RP reference data; however, a minor overprediction can be seen with 

the FEM and FVM approaches.  As with the TC2 test, FVM and the RC model appear to 
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be lagging the reference data in the transient regime, which is the entire duration of the 

entire TC3 test.  Despite these minor issues, each of the models appear to match the heat 

flux at the interior surface of the 1052RP reference data closely.  Additional results of this 

test can be viewed in Table 2.2. 

Table 2.2  A tabulated performance summary of heat transfer algorithms for ASHRAE 
1052RP Test TC3. 

Model Type Root-Mean Squared 
Error (W/m2) 

Computation Time 
(Seconds) 

Finite Element 0.181 0.112 
Finite Volume 0.598 0.985 

RC Model 0.298 0.239 
Conduction Time Series 0.0653 0.00516 

 Once again, the finite element and transfer function methods differentiate themselves 

due to low RMSE values and computation times.  These results mirror that of TC2, where 

all algorithms appear to be sufficiently accurate for inverse modeling, but finite elements 

and transfer function methods drastically out-perform finite difference and lumped 

capacitance methods in terms of computational speed.  The low speeds of finite volume 

and lumped capacitance methods are due to the low numerical stability of both approaches.  

From testing, it was noted that both approaches seem to become unstable with Fourier 

numbers less than 0.5.  To account for this, both approaches handle this problem 

similarly—the lumped capacitance approach lowers the model’s Fourier number via 

adaptive timestep throttling, where MATLAB’s ODE45 solver adaptively adjusts 

individual timesteps to maintain numerical stability.  The explicit implementation of the 

finite difference method utilized also reduces timesteps to maintain stability; however, this 

approach lacks an adaptive time-stepping approach and instead adjusts every timestep 
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throughout the simulation period.  Regardless of the timestep-altering approach, both the 

finite difference method and lumped capacitance methods struggle with numerical stability 

which is reflected in their computation times.  

2.4 Concluding Remarks 

 In conclusion, 67 papers were evaluated within this literature review, all with different 

approaches and different applications.  The literature review showed that certain modeling 

approaches performed well for specific tasks and not for others.  Due to the number of 

thermal model typologies available, each must be classified for users to choose the correct 

approach for their problem.  A tabulated, subjective scorecard for each modeling 

methodology is displayed in Table 2.3.  

Table 2.3  A tabulated summary of reviewed heat transfer modeling techniques. 

Model Type 
Relative 

Computation 
Speed 

Relative 
Model 

Accuracy 

Relative 
Inverse 

Modeling 
Potential 

Approx. 
Implementation 
Time (Hours) 

Finite Element  2 3 3 35 
Finite Volume 2 2 2 4 
RC Model 1 2 3 10 
Conduction Time Series 3 3 1 1 

From the above table, subjective scores for each transient heat transfer algorithm can 

be evaluated for many different criteria.  From the previous section, finite element and 

transfer function method approaches both compute heat transfer with relatively low 

computational overhead and high accuracy.  It is also noted that the transport function 

method does not lend itself to an inverse modeling process due to the additional step of 

inferring thermo-physical properties from the inferred transfer function.  Another 
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important factor to consider is the ease of implementation for each approach.  This data 

was approximately timed from the implementation of each method in the previous section.  

It should be noted that all of the approaches were adapted from published methods reported 

in technical reports and books.  This implementation barrier can be overcome if these 

algorithms were released as open-source material, which would significantly reduce the 

implementation time of even the most complicated of approaches.   
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CHAPTER 3: THEORY 

To evaluate the potential to characterize buildings’ façade performance, a transient 

thermal model was developed.  This model computes the heat transfer and surface 

temperature of the interior and exterior surfaces of the building element, allowing for 

comparison with the measured sensor data.  A summary of the modes of heat transfer 

computed within this model can be seen graphically in Figure 3.1. 

	

Figure 3.1  A graphical representation of the heat transfer modes influencing façade 
performance, which can be reduced to a simplified system with the use of a surface 

temperature measurement. 

In the above figure, a variety of modes of heat transfer are displayed.  Shortwave 

radiation, longwave radiation, and convection heat exchange with the outdoor environment 

all interact with exterior surfaces of the façade, transient conduction occurs through the 

façade element, and combined longwave radiation and convection with the indoor 

environment occurs the façade’s interior surface.  Balancing all of these modes heat 

transfers among their respective surfaces can provide the interior and exterior surface 
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temperatures of the façade element, which in turn can be utilized to characterize the thermal 

properties of the façade element in 1D.  This approach is very similar to that outlined in 

ASTM C1155.    

Computing the various modes of heat transfer on the exterior of a façade element is no 

simple task; numerous environmental and local variables contribute to heat transfer.  This 

complexity motivates the usage of the heat balance approach seen everywhere in building 

physics.  While it may seem like a monumental task to characterize the thermal 

performance of a façade under all of these time-dependent factors and heat balancing, the 

task can be drastically simplified with the usage of a surface temperature measurement.  

Shortwave radiation, environmental longwave radiation, and local convection all 

contribute to the exterior surface temperature of the façade element, meaning that they can 

be represented in the exterior surface temperature of the façade.  If all forms of exterior 

heat transfer are represented as a surface temperature, the complexity of the heat balance 

approach can be avoided and applied as a simple temperature boundary condition in a 1D 

transient conduction problem.  Interior surface heat transfer can also be simplified as a 

combined longwave-convection heat transfer coefficient since most interior partitions can 

be assumed to be the temperature of the interior air.  An illustration of this simplification 

can be seen in the latter half of Figure 3.1.  

In the following sections, the simplified modeling framework proposed in Figure 3.1 

are explored in further detail.  Descriptions of the unsteady conduction computation, 

interior boundary conditions, characterization objective function, and Bayesian inference 

workflow are all displayed to provide context into the thermal characterization 
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methodology.  The theory is consistent with that which is utilized for thermal 

characterization throughout subsequent chapters of the dissertation. 

3.1 Transient Conduction 

In the early sections of this work, many different methods to compute transient 

conduction were proposed and reviewed.  There are many different candidate methods 

shown here, but the method selected was a transient, Galerkin implementation of the finite 

element method (FEM).  This FEM implementation was reduced to its most basic 

operations implementation and optimized for speed.  As a result of these incremental 

changes, the implementation of the FEM utilized within this work can compute annual 

transient conduction at speeds in the tens of milliseconds, nearly as fast as tested 

implementations of the CTF method implemented in modern energy modeling software.  

FEM is also a very attractive method for this application due to its robust numerical 

reliability at many different timestep intervals. 

Since this work is focused on the application of the FEM rather than research on the 

FEM, this section will focus purely on the numeric implementation and process of this 

FEM approach.  This approach is an adaptation of Lawrence Berkley National Laboratory’s 

HygroThermFEM engine, which is a fully transient implementation of the Galerkin finite 

element method (Vidanovic et al., 2021).  This engine has been heavily validated and is at 

the core of THERM 8.0’s transient heat transfer and moisture calculation engine.  Due to 

the scope of this work and the associated computational overhead, all moisture-related 

components were omitted from this implementation of the HygroThermFEM engine. 
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 If more information is needed on the background and details of the FEM, one should 

reference a book such as The Finite Element Method in Heat Transfer and Fluid Dynamics 

by Reddy and Gartling (J. N. Reddy & Gartling, 2010), which was referenced many times 

during the formulation of this engine. 

3.1.1 Basis of Formulation 

To begin, the goal of this finite element implementation is to approximate a solution 

the two-dimensional Fourier-Biot equation.  This equation is as follows: 

	 𝜌𝐶+	
𝜕𝑇
𝜕𝑡 =

𝜕
𝜕𝑥 -𝑘88

𝜕𝑇
𝜕𝑥/ +

𝜕
𝜕𝑦 -𝑘99

𝜕𝑇
𝜕𝑦/ + �̇�	 ( 12 ) 

	

Eq. 12 will be solved under appropriate boundary and initial conditions.  It should be 

noted that this implementation is an adaptation of a two-dimensional finite element 

workflow, and thus includes y-coordinates.  For this application, it is suggested to utilize y 

coordinates with infinitesimal differences (i.e. of the order of 10^-25).  These small 

differences in y-coordinates temperature variability in the y-direction, effectively making 

the solution pseudo-one dimensional calculation in the x-direction.  For additional context, 

a diagram displaying the coordinates on a sample wall section is displayed in Figure 3.2. 



43 

 

	

Figure 3.2  A sample envelope assembly section with cartesian coordinates displayed. 

This numerical solution of this initial-boundary problem will be solved in a two-step 

process.  The first step is a special discretization and development of the weak form through 

finite elements.  The second step is a spatial approximation of the time-dependent 

temperature field across the simulated case.  The finite element discretization is described 

first below in Section 3.1.2. 

3.1.2 Finite Element Spatial Discretization  

One foundation of the FEM is the distinction between nodes and elements.  This 

implementation of the finite element method utilizes linear elements that each contain four 

nodes at element corners.  An element is a collection of nodes that are connected by edges, 

and nearly all operations are done at the element-by-element level.  A 2D example of the 

relationship between nodes and elements can be seen below in Figure 3.3. 
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Figure 3.3  A representation of nodes and elements in 2D. 

In the above figure, nodes are denoted as numbers near points, and elements are 

denoted as numbers inside of a circle.  Nodes bound the corners of each element, and nodes 

are shared between neighboring elements.  In this implementation, each node is provided 

a cartesian x- and y-coordinate, and each element contains an individual specific heat, 

density, and thermal conductivity.  While nodes are denoted a global-coordinate location 

on the cartesian plane, nodes are also provided local coordinates on a local element plane 

centered at each element.  This plane is denoted by 𝜂 and 𝜉.  A sample of this local 

coordinate system can be seen below. 

	

Figure 3.4  A representation of local element coordinates using Element 1. 
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From Figure 3.4, a singular finite element in the associated local coordinate system can 

be seen.  This element is comprised of edges denoted by 𝛤, and an area denoted by 𝛺.  It 

should also be noted that all element operations within this implementation act in a 

counterclockwise direction beginning at the bottom left node, which is denoted as Node 1 

in Element 1.  Nodes locations in the local coordinate system are referred to as Gauss 

points, which are at a Gauss quadrature distance 𝐸 from the local origin.  A Gauss 

quadrature distance of *
√.
	with an associated Gauss integration weight of 1 was utilized for 

the rectangular elements in this implementation.  The local coordinates of the nodes are as 

follows: 

	
	 𝜉 = [−𝐸 +𝐸				+𝐸 −𝐸]	 ( 13 ) 

	
	 𝜂 = 	 [−𝐸 −𝐸				+𝐸 +𝐸]	 ( 14 ) 

	

Where local coordinates are measured in a counterclockwise direction from the top left.  

These local coordinates can then be used to compute the shape, or interpolating, functions 

for the rectangular element.  The shape functions for each Gauss point in the element can 

be computed by the following: 

	
	

𝛹 = 0.25 P

	(1 − 𝜉)(1 − 𝜂)	
(1 + 𝜉)(1 − 𝜂)
	(1 + 𝜉)(1 + 𝜂)
	(1 − 𝜉)(1 + 𝜂)	

Q			 ( 15 ) 

	

The next step is to find the partial derivatives of the shape function with respect to ξ 

and η.  These partial derivatives can be computed by the following: 
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𝜕𝛹
𝜕𝜉 = 0.25 P

−(1 − 𝜂)	
		(1 − 𝜂)
			(1 + 𝜂)
−(1 + 𝜂)	

Q		 ( 16 ) 

	
	

𝜕𝛹
𝜕𝜂 = 0.25 P

−(1 − 𝜉)
−(1 + 𝜉)
				(1 + 𝜉)
				(1 − 𝜉)	

Q		 ( 17 ) 

	

Using the above partial derivates, the partial derivatives of the local coordinates with 

respect to the global coordinates can be computed.  This operation is shown in Eq. 18–21. 

	
𝜕𝑋
𝜕𝜉 = 	𝑋

𝜕𝛹
𝜕𝜉 	 ( 18 ) 

	

		
𝜕𝑋
𝜕𝜂 = 𝑋

𝜕𝛹
𝜕𝜂 		 ( 19 ) 

	

		
𝜕𝑌
𝜕𝜉 = 𝑌

𝜕𝛹
𝜕𝜉 	 ( 20 ) 

	

		
𝜕𝑌
𝜕𝜂 = 𝑌

𝜕𝛹
𝜕𝜂 	 ( 21 ) 

	

An infinitesimal area in one coordinate system can be transformed into another by the 

following equation, where the 2 by 2 matrix on the right-hand side is referred to as the 

Jacobian and denoted by 𝐽: 

	
	

⎣
⎢
⎢
⎢
⎡
𝜕𝛹
𝜕𝜉
𝜕𝛹
𝜕𝜂 ⎦
⎥
⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎡
𝜕𝑋
𝜕𝜉 (*,*)

	
𝜕𝑌
𝜕𝜉 (*,*)

	
𝜕𝑋
𝜕𝜂(*,*)

𝜕𝑌
𝜕𝜂(*,*) ⎦

⎥
⎥
⎥
⎤

P

𝜕𝛹
𝜕𝑋
𝜕𝛹
𝜕𝑋

Q		 ( 22 ) 
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Using matrix transformation, the partial derivative of the shape function with respect 

to the global coordinates can be computed with Eq. 23.  This Jacobian can be utilized to 

transform between local and global coordinate systems, as shown below.  It should be noted 

that the process shown below should be computed for each row-column index combination. 

	
	

⎣
⎢
⎢
⎢
⎡
𝜕𝛹
𝜕𝑋($,5)
𝜕𝛹
𝜕𝑌 ($,5)⎦

⎥
⎥
⎥
⎤
	= 𝐽6*

⎣
⎢
⎢
⎢
⎡
𝜕𝛹
𝜕𝜉 ($,5)
𝜕𝛹
𝜕𝜂 ($,5)⎦

⎥
⎥
⎥
⎤
		 ( 23 ) 

	

Additionally, it should also be noted that elemental areas (i.e. 	

𝑑𝑥𝑑𝑦) can be transformed between element and global coordinate systems via: 

	 𝑑𝑥𝑑𝑦 = 𝑑𝑒𝑡	(𝐽)𝑑𝜉𝑑𝜂	 ( 24 ) 

Utilizing this equality, the conductance and mass matrices for the element can be 

written.  The element conductance can be computed by the following: 

	
	

𝐾!< = ^ 𝑘 -
𝜕𝜓
𝜕𝑥

𝜕𝜓
𝜕𝑥 +

𝜕𝜓
𝜕𝑦

𝜕𝜓
𝜕𝑦/𝑑𝑥𝑑𝑦=!

= ^ 𝑘 -
𝜕𝜓
𝜕𝑥

𝜕𝜓
𝜕𝑥 +

𝜕𝜓
𝜕𝑦

𝜕𝜓
𝜕𝑦/ 𝑑𝑒𝑡	(𝐽)𝑑𝜉𝑑𝜂=!

	 ( 25 ) 

	

Where k is the element thermal conductivity, det(𝐽) is the determinant of the Jacobian, 

and /0
/1

 and /0
/2

 are the partial derivatives of the shape function with respect to the global 

coordinates.   

Integrals defined over a rectangular element Ω! can be numerically evaluated using the 

Gauss-Legendre formula: 



48 

 

	
^ 𝑓(𝜉, 𝜂)	𝑑𝜉𝑑𝜂	
=!

= ^ ^ 𝑓(𝜉, 𝜂)	𝑑𝜉𝑑𝜂	
*

6*
≈77𝑓%𝜉> , 𝜂?(

4

?)*

(

>)*

*

6*
𝑊>𝑊?	 ( 26 ) 

Where f(𝜉, 𝜂) is an arbitrary function being integrated along a rectangular element and 

𝑊3 and 𝑊4 are the corresponding Gauss weights (specified to be 1 in this two-point 

formulation and can thus be ignored).  Combining Gauss-Legendre formula shown in Eq. 

26 with Eq. 25, the element conductance calculation can be expressed in matrix form: 

	
𝐾!< = 𝑘 @

𝜕𝛹
𝜕𝑋

𝜕𝛹
𝜕𝑋

.

+
𝜕𝛹
𝜕𝑌

𝜕𝛹
𝜕𝑌

.

A𝑑𝑒𝑡(𝐽)	 ( 27 ) 

This matrix formulation provides a workable framework to numerically compute 

conductance matrix for each respective element.  A similar methodology can be utilized to 

compute the element mass term, which is represented in Eq. 28. 

	
𝐶!< = ^ 𝜌𝐶+	𝜓(𝑥, 𝑦)𝜓(𝑥, 𝑦)	𝑑𝑥𝑑𝑦

=!
= ^ 𝜌𝐶+	𝜓(𝑥, 𝑦)𝜓(𝑥, 𝑦) 𝑑𝑒𝑡(𝐽) 𝑑𝜉𝑑𝜂

=!
	 ( 28 ) 

Combining Eq. 28 with the equality of the Gauss-Legendre formula, the mass matrix 

can be computed: 

	
	 𝐶!< = 𝜌𝐶+	𝛹	𝛹. 𝑑𝑒𝑡(𝐽)	 ( 29 ) 

	

Where	𝜌 is the element density, 𝐶5	is the element specific heat, 𝛹 is the shape function 

matrix, and det(𝐽) is the determinant of the Jacobian.  As with Eq. 27, this matrix 

formulation of the elemental mass term provides a work-able computation footing to 

calculate each the mass of each respective element. 
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Since this process is to compute the mass and conductance matrix for a singular 

element, the procedure computing using Eq. 13–29 should be repeated for each finite 

element and assembled into a global conductance and mass matrices.  Due to the 

formulation of element numbers and coordinates present within this implementation, the 

global conductance and mass matrices can be generated as follows: 

𝐾@A

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐾*	(*,*) 𝐾*	(*,-) 𝐾*	(*,B)
𝐾*	(-,*) 𝐾*	(-,-) 𝐾*	(-,B)
𝐾*	(B,*) 𝐾*	(B,-) 𝐾*	(B,B) + 𝐾-	(*,*)

𝐾*	(*,C) 0 0
𝐾*	(-,C) + 𝐾*	(*,*) 														0														 														0														
𝐾*	(B,C) + 𝐾-	(*,-) 𝐾-	(*,B) 𝐾-	(*,C)

𝐾*	(C,*) 𝐾*	(C,-) 𝐾*	(C,B) + 𝐾-	(-,*)
0 0 𝐾-	(B,*)
0 0 𝐾-	(C,*)

𝐾*	(C,C) + 𝐾-	(-,-) 𝐾-	(-,B) 𝐾-	(-,C)
𝐾-	(B,-) 𝐾-	(B,B) + 𝐾B	(*,*) 𝐾-	(B,C) + 𝐾B	(*,-)
𝐾-	(C,-) 𝐾-	(C,B) + 𝐾B	(-,*) ⋱ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

	( 30 ) 

	

Eq. 30 displays the methodology for the formation of the global conductance matrix 

for this implementation of the FEM.  The same procedure can be applied to the element 

mass matrices to form the global mass matrix.  Following the generation of the global mass 

matrix, a lumped global mass matrix is made by summing the mass matrix rows and placing 

the sums in a diagonal matrix.  The generation of the lumped mass matrix is optional, as 

the “lumping” step is only present to increase matrix inversion speed in subsequent steps.  

This process can be seen in the following: 

	
	

𝐶<D,+ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡7𝐶@A	(*,$)

0

$)*

0 						0						

0 7𝐶@A	(-,$)

0

$)*

0

0 0 ⋱ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

	 ( 31 ) 

	

3.1.3 Convective and Radiative Boundary Conditions 
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Following the generation of the global conductance and mass matrices, the next step is 

to generate boundary conditions for the appropriate elements.  For the rectangular finite 

elements utilized in this implementation, boundary conditions influence the finite element 

system along a node’s edge.  Due to this, boundary condition elements and their respective 

shape functions are treated as boundary elements, which have differing calculation 

processes than rectangular elements.  While the element makeup is different, this process 

also starts with the generation of local coordinates and a shape functions.  The local 

coordinate system and shape function for a boundary condition line element can be seen 

below. 

	 𝜂EF = [−𝐸 +𝐸	]	 ( 32 ) 
	

	
𝛹EF = 0.5 d

%1 − 𝜂EF	(*,*)( %1 − 𝜂EF	(*,-)(
%1 + 𝜂EF	(*,*)( %1 + 𝜂EF	(*,-)(

e			 ( 33 ) 

	

Due to the simplified nature of the line element compared to a rectangular element, the 

Jacobian and determinant of the Jacobian are quite simple to compute for a line element.  

The equation for the determinant of the Jacobian for line elements can be seen below: 

	 𝑑𝑒𝑡(𝐽EF) = 0.5f𝛥𝑥- + 𝛥𝑦-		 ( 34 ) 
	

For this due to the nature of boundaries in this implementation, boundary conditions 

are treated as edge heat fluxes, which can be computed with the following equation: 

	
�̇�! = h 𝛹EF

G!
�̇�H	𝑑𝑠 = h 𝛹EF

G!
�̇�H 𝑑𝑒𝑡(𝐽EF) 𝑑𝑠	 ( 35 ) 
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Where �̇�! is the heat flux applied to the element, 𝛹78  is the boundary element shape 

function, and �̇�9 is the boundary heat flux.  𝑞9 can also be adapted to represent a convection 

or radiation heat flux with the usage of a convection or radiation film coefficient.  This is 

show in Eq. 36. 

	 �̇�H = ℎ(𝑡)(𝑇(𝑡)# − 𝑇I(𝑡))	 ( 36 ) 

Where ℎ is the heat transfer coefficient that can represent linearized radiation or 

convection film coefficient, 𝑇# is the element surface temperature, and 𝑇: is the ambient 

temperature.  This surface temperature can be converted to elemental temperatures with 

the following relationship. 

	 𝑇#(𝜂, 𝑡) = 𝛹EF𝑇(𝑡)	 ( 37 ) 

Similar to Eq. 26, there is a Gauss-Legendre relationship to approximate line integrals 

as a summation: 

	
h 𝑓(𝜂)	𝑑𝑠	
G!

= ^ 𝑓(𝜂)	𝑑𝑠	
*

6*
≈7𝑓(𝜂>)

4

?)*

𝑊>	 ( 38 ) 

Combining this with Eq. 35, 36, and 37 results in:  

	 �̇�! = ℎ(𝑡)𝛹EF 	𝛹EF. 	𝑑𝑒𝑡(𝐽EF)	𝑇(𝑡)		 − 	ℎ(𝑡)	𝑇(𝑡)	𝛹EF 	𝑑𝑒𝑡(𝐽EF)		 ( 39 ) 

This equation can further be broken down into terms which are analogous to the 

conductance and mass matrices: 

	 �̇�! = 𝐻(𝑡)	𝑇(𝑡) − 	𝐹(𝑇)		 ( 40 ) 
	

	 𝐻(𝑡) = ℎ(𝑡)𝛹EF 	𝛹EF. 	𝑑𝑒𝑡(𝐽EF)		 ( 41 ) 
	

	 𝐹(𝑡) = ℎ(𝑡)	𝑇I(𝑡)𝛹EF	𝑑𝑒𝑡(𝐽EF)		 ( 42 ) 
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𝐻(𝑡) is a term called the boundary conductance, and is analogous to the element 

conductance computed above.  F(𝑡) also has a name, it is called the boundary condition 

force term.   

In this formulation, the boundary condition heat transfer coefficient can be made to be 

represent convection or radiation.  The process is same for both, and both can be included 

in the finite element solution by adding the 𝐻(𝑡) and 𝐹(𝑡) terms together for both after 

each respective calculation.    Boundary conditions must be recomputed at each timestep 

at each applicable surface since film coefficients and temperatures are consistently 

changing in most practical scenarios.  These coefficients also must be applied into a global 

boundary condition matrix in combination with mass and conductivity matrices.  In this 

FEM implementation, nodes are indexed in increasing order from the interior façade 

element surface to the exterior surface.  Due to this, the indoor boundary condition matrices 

will be populated into the first indices of the global boundary condition conductance and 

force matrices, and exterior boundary conditions will be added into the final indices.  This 

process is displayed below: 

	
	

𝐻@A(𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐻$0	(*,*)(𝑡) 𝐻$0	(*,-)(𝑡)
𝐻$0	(-,*)(𝑡) 𝐻$0	(-,-)(𝑡)

0
0 		

⋯								 0
⋯								 0

0 0 0
⋱

0
⋮ ⋮

0 0

𝐻'DJ	(*,*)(𝑡) 𝐻'DJ	(*,-)(𝑡)
𝐻'DJ	(-,*)(𝑡) 𝐻'DJ	(-,-)(𝑡)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

	 ( 43 ) 
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𝐹@A(𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐹$0	(*)

(𝑡)
𝐹	$0	(-)(𝑡)

0
⋮
0

𝐹'DJ	(*)(𝑡)
𝐹'DJ	(-)(𝑡)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

	 ( 44 ) 

	

3.1.4 Element Temperature Calculation 

To compute the elemental temperature of a general finite element, the following 

backwards difference equation can be utilized: 

	 𝐶
∆𝑡 %𝑇

(𝑡 + 1) − 𝑇(𝑡)( + (𝐾 + 𝐻)	𝑇(𝑡 + 1) = 	𝐹(𝑡 + 1)	 ( 45 ) 

Rearranging this equation and converting it to the matrix notation utilized here, the 

following equation can be upon: 

	
𝑇(𝑡 + 1) = -𝐾@A +

𝐶<D,+
∆𝑡 + 𝐻@A(𝑡 + 1)/

6*

o
𝐶<D,+
∆𝑡 	𝑇(𝑡) + 𝐹@A(𝑡 + 1)p	 ( 46 ) 

	

Where  𝑇(𝑡) is a vector of nodal temperatures at the current timestep, 𝐾;< is the global 

conductance matrix, 𝐶<=>5 is the lumped mass matrix, 𝐻;< and 𝐹;< are boundary 

conditions, and	𝑇(𝑡 + 1) is a vector of nodal temperatures at a next timestep.  If standard 

SI units are used for all FEM calculations, the unit of each timestep will be in units of 

seconds.   

It should also be noted that initial temperatures must be applied for the starting 

timestep, and the solution may take time to transition from these starting conditions to a 

viable solution.  This is referred to as the “warm-up period”.  To reduce the impact of 
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starting conditions, it is suggested that nodal initial temperatures be initialized with their 

steady-state temperatures at the starting conditions.  The impact of the “warm-up period” 

can also be minimized by starting the simulation a few hours or days before the period of 

interest, depending on the thermal mass of the assembly.   

3.2 Characterization Procedure and Objective Function 

In this work, a two-stage characterization procedure is proposed: The first stage 

involves instrumentation of the real building, and the latter stage is an optimization-based 

inverse heat transfer computation.  The proposed non-destructive sensor layout is 

summarized graphically below in Figure 3.5. 

	

	
Figure 3.5  The proposed sensor layout for in-situ thermal characterization method 

proposed within this work. 

In the above figure, the proposed sensor layout can be seen.  Temperature sensors are 

located on the exterior surface, interior surface, and within the indoor space, and a singular 

heat flux sensor is placed on the interior surface of the assembly.  The surface-mounted 

sensors must be mounted at the same position on the assembly to capture heat transfer 
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occurring perpendicular to the assembly’s face.  This instrumentation approach differs 

from that of ASTM C1155’s SLS method, as it allows for characterization without the need 

for sensors to be located inside the assembly, and instead locates sensors on the assembly’s 

surfaces and within the indoor space.   

With the assembly’s performance measured through the proposed sensor layout, 

optimization can be used to determine the representative thermal properties of a façade 

element via the minimization of an objective function.  The objective function and 

optimization statement is displayed within Eq. 47. 

	

For the façade element 
of interest, minimize: 𝑆𝑆𝐸 = 𝑊7̇ ∗���̇�𝑖 − �̇�i�(𝑅, 𝐶)�

2
.

951

+𝑊: ∗�	�𝑇𝑠𝑖,𝑖 − 𝑇�𝑠𝑖,𝑖(𝑅, 𝐶)�
2

.

951

 ( 47 ) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜:  
0 < R ≤ 100	 ;

&3<
=

 	 	 	

 0 < 𝐶>? ≤ 1000 @A
<

 	 	 	
	

Where �̇� is measured surface heat flux at the interior surface of the assembly, 𝑇#$ 	is 

measured surface temperature at the interior surface of the assembly,	 �̇�(	is the simulated 

interior heat flux, 𝑇;#$ is the simulated surface temperature of the interior-facing surface, 𝑅 

is the effective thermal resistance of the modeled homogeneous layer, 𝐶 is the effective 

thermal capacitance of the modeled homogeneous layer, 𝑖 is the timestep of 

simulation/measurement, n is the total number of timesteps present in the characterization, 

and 𝑊?̇ and 𝑊A are the weights for heat flux and temperature, respectively.  In this case, 

weights for both heat flux and temperature were set to be equal at 0.5 each to avoid biasing 

one metric over the other.   
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In plain terms, this objective function represents the difference between measured and 

modeled heat flux and surface temperatures on the interior-facing surface of an envelope 

assembly.  Selection of different thermal resistances and thermal mass values result in 

modeled values which may be nearer or farther away from measured performance.  

Optimization algorithms can be employed to minimize the error between simulated and 

measured performance through search for the optimum combination 𝑅 and 𝐶 which 

minimize error.  When optimum values are located, the optimum 𝑅 and 𝐶 are considered 

to be representative of a thermal analog for the measured assembly; an assembly which 

mirrors the heat transfer performance of the measured assembly.   

The objective function is similar to that of ASTM C1155’s SLS technique but was 

adapted for the proposed sensor layout.  One major difference between the proposed 

method compared to ASTM C1155’s SLS is the alteration of boundary conditions for the 

conduction problem.  The SLS method utilizes temperature boundary conditions on the 

interior and exterior surfaces of the assembly of interest, while this approach utilizes the 

measurement of a temperature boundary condition on the exterior-facing surface and a 

convective boundary condition on the interior surface.  Combined convection and thermal 

radiation film coefficient can be approximated utilizing the ASTM C1155 Summation 

method with the interior surface temperature sensor, the heat flux sensor, and the 

temperature sensor measuring the indoor air temperature.   

  The transient heat transfer is handled via the aforementioned FEM approach, where 

the heat transfer through a homogeneous layer of material that serves as an analog of the 

layered in-situ facade element.  Any of the surveyed heat transfer algorithms could be 
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utilized; however, special care must be taken to maintain numerical stability due to the 

convective boundary condition. 

 To evaluate characterization performance, RMSE was utilized to compare ground-

truth data to thermal characterizations.  The equation for RMSE is displayed as Eq. 11 in 

the previous chapter. 

Another equation to evaluate characterization performance is normalized root-mean-

square error (NRMSE).  One major advantage of NRMSE over RMSE is the ability to be 

displayed as a percentage, allowing for interpretation as an absolute accuracy metric as 

opposed to a relative accuracy metric like RMSE.  The equation for NRMSE is as follows: 

	
	 𝑁𝑅𝑀𝑆𝐸 =

𝑅𝑀𝑆𝐸
𝑦,H8 − 𝑦,$0

	 ( 48 ) 

Where 𝑦>91 and 𝑦>$, are the maximum and minimum of the measured data, 

respectively.   

3.3 Bayesian Inference  

To characterize the thermal performance of assemblies via simulation, the simulation 

inputs must be computed.  This is typically referred to in the literature as parameter 

estimation or parameter inference.  Since the goal of this characterization optimization 

statement in Eq. 47 is to minimize the sum of squared error between simulated and 

measured heat fluxes across all timesteps, this characterization task can be approached with 

a variety of deterministic and stochastic approaches.  For this research, Bayesian inference 

was selected due to its robust statistical underlying and prevalence in the literature.   
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In short, Bayesian inference is a methodology that allows for the inference of unknown 

parameters to update a model based upon measured data.  To motivate this process, 

consider the following equation: 

	 𝑦 = 𝑦E(𝜃) + 	𝜖		 ( 49 ) 

Where 𝑦 is an array of measured data, 𝑦W(𝜃) represents an array of computed model 

results, 𝜃 is a vector of unknown model inputs, and 𝜖 represents error or model discrepancy 

of the form of 𝜖~𝑁(0, 𝜎!BB+ ).  In the case of this application, 𝑦 represents sensor data from 

the measured assembly, and 𝑦W(𝜃) represents the modeled performance of the assembly.   

Utilizing this framework, the goal of this characterization process can be restated so that 

the process infers the model inputs which result in the model closely matches measured 

values.  Bayesian inference calibrates the model in a stochastic fashion, allowing for 

interpretation of the inferred parameters to address modeling concepts such as model 

overfitting, certainty of results, and prior expectation.  One of the most important aspects 

of Bayesian inference is the modeler’s prior expectation of the inference’s result.  This 

concept can be illustrated via Bayes’ Rule in Eq. 50. 

	
𝑝(𝜃|𝑦) =

𝑝(𝑦|𝜃)	𝑝(𝜃)
𝑝(𝑦) 		∝ 	𝑝(𝑦|𝜃)	𝑝(𝜃)	 ( 50 ) 

Where 𝑝(𝜃) represents the prior distribution, which is a distribution motivated by the 

modeler’s expectation of the results; 𝑝(𝑦|𝜃) represents the likelihood function of the 

measured phenomenon; 𝑝(𝜃|𝑦) represents the posterior distribution, which is an updated 

form of the prior distribution in light of the measurement data; and 𝑝(𝑦) is the 

normalization factor.  Bayes’ rule can also be rewritten as a simpler proportionality 
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statement, which at high-level states: the posterior distribution is proportional to the 

likelihood function multiplied by the prior distribution.  A more literal interpretation of 

Bayes’ rule states that this framework allows for the updating of prior expectations in light 

of new knowledge, which in this case is measured data.  One of the major hurdles of 

Bayesian inference is the difficulty of computing the normalization constant,  𝑝(𝑦) (Laine, 

2008).  For most practical cases, the computation of the normalization constant requires 

special Markov Chain Monte Carlo (MCMC) algorithms, such as Metropolis-Hastings 

(MH) (Hastings, 1970; Metropolis et al., 1953), Adaptive Metropolis (AM) (Haario et al., 

2001), Delayed-Rejection (DR) (Peskun, 1973; Tierney & Mira, 1999), and Delay-

Rejection Adaptive Metropolis (DRAM) (Haario et al., 2006).  For this work, the DRAM 

algorithm by Haario et al. was employed for parameter estimation of the homogeneous 

thermal equivalent layer.   

3.4 Chapter Conclusion 

In conclusion, the methodologies and computational procedures described within this 

chapter provide the basis of a foundation to infer the effective thermal properties of an as-

built building envelope assembly.  Three major pieces of the transient characterization 

workflow were proposed within this chapter: 1) The transient conduction algorithm, 2) The 

sensor layout and characterization objective function, and 3) Bayesian Inference.  These 

three aspects overlap and work together to enable thermal characterization of as-built 

envelopes. 
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First off, this chapter began with the proposal of a transient finite element heat transfer 

algorithm.  This implementation of the finite element method was adapted from THERM 

8.0 and optimized for speed and accuracy to enable rapid computation heat transfer within 

the stable and accurate framework of finite element heat transfer.  Alongside the direct 

application to this thesis work, the finite element workflow displayed within Section 3.1 is 

also widely applicable to many different use cases within the field of thermal engineering.  

Throughout the literature survey and background reading conducted to formulate this 

methodology, it was noted that there are few works present within the literature that directly 

inform readers on the implementation of finite elements for the computation of transient 

heat transfer. This was one of the main motivations for displaying such detail; the hope is 

that this work may become a useful tool to reduce the uncertainty and specialized 

knowledge required to implement transient finite elements.   

Secondly, this chapter displayed a heat transfer-based objective function to enable 

thermal characterization of building envelopes. This objective function utilizes the 

transient finite elements proposed within this chapter to compute the transient heat flux 

occurring at the interior surface of the envelope element.  Utilizing this heat flux, the sum-

of-squared error between the simulated and measured fluxes can be computed, allowing 

for an optimization algorithm, or a Bayesian inference algorithm, to be introduced to 

minimize the objective function, allowing for the simulated assembly to closely mirror the 

thermal performance of the candidate in-situ assembly. 

Finally, a Bayesian inference workflow was motivated and proposed.  Bayesian 

inference provides the opportunity to stochastically characterize the thermal performance 
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of façade assemblies, leveraging the proposed finite element workflow and objective 

function.  The main goal for the utilization of Bayesian inference is to reduce uncertainty 

and provide a clear, well-represented understanding of the measured assembly’s 

performance, under measurement and sensor uncertainty.  Haario et al.’s MATLAB 

DRAM toolbox was utilized within this work to enable Bayesian characterization.  

Leveraging these three tools, it is now possible to characterize the thermal performance 

of as-built building envelopes.  In subsequent chapters, these workflows will be utilized to 

characterize envelopes from measured data.  This workflow can be applied to simulation 

studies and field data alike to better understand the transient thermal performance of as-

built assemblies. 
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CHAPTER 4: SIMULATION-BASED VALIDATION 

Within this chapter, a simulation-based study will be conducted to verify the 

performance of the proposed transient characterization workflow and better understand the 

workflow’s intricacies within a controlled simulation environment.  This entire chapter 

characterizes envelope assemblies which are simulated in EnergyPlus to verify the 

methodology’s performance against known envelope assemblies.   

4.1 Pilot Simulation Study Parameters 

In this section, the parameters for an initial simulation-based pilot study are explored.  

This pilot study aims to be a proof-of-concept application of the Bayesian characterization 

workflow outlined in Chapter 3. 

4.1.1 Assessment Building 

  To evaluate the performance of the inverse modeling procedures proposed in Chapter 

3, a sample characterization exercise was applied to a simulated building.  Usage of a 

simulated building allows for pilot verification of the approach in absence of real-world 

uncertainty.  This data is also advantageous, since it mimics that of a real building 

assessment, while the thermal properties of the façade assembly are known.  For this 

analysis, the DOE/IECC 2015 single-family reference building was utilized (Mendon et 
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al., 2015).  A screenshot of this building’s energy model geometry is displayed in Figure 

4.1. 

	

Figure 4.1  A view of the single-family reference building’s geometry. 

  This building was selected because of its window-to-wall ratio, which is approx. 14% 

compared to the medium office reference building’s window-to-wall ratio of 30%.  This 

building also has significantly lower radiant loads, compared to other DOE/IECC reference 

building models.  

To test the computational portion of the characterization workflow, the South-facing 

wall of the first was characterized with the proposed transient characterization 

methodology.  Simulation of this building within EnergyPlus allows for surface 

temperatures of the interior and exterior and heat fluxes to be measured with controlled 

certainty and environmental factors, which acts as a stand-in for instrumentation and data 

collection on a real building.  This measured data is also quite useful for this early-stage 

testing since it is free of measurement and calibration error characteristic of real-world 

experimentation.   
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In this exercise, the EnergyPlus virtual building was simulated for the Hartsfield-

Jackson Atlanta TMY3 EnergyPlus weather file (DOE, 2021b).  Exterior surface 

temperatures, interior heat fluxes, and interior air temperatures were measured from the 

model in 10-minute increments.  Measured data from the first week of April for the 

simulation was separated into 48-hours of training data for characterization and 52 hours 

of evaluation data to characterize the simulated assembly and evaluate model performance. 

4.1.2 Modeling Approach 

The surrogate single-layer assembly was characterized to match its simulated heat flux 

with the measured interior heat flux.  This was approached using finite elements and the 

open-source DRAM-based Bayesian inference MATLAB toolbox available at 

http://helios.fmi.fi/~lainema/dram/ (Haario et al., 2006).  One of the main benefits of 

Bayesian inference is its speed and ability to conclusively infer a distribution of possible 

thermal resistance and thermal capacitances, rather than a single deterministic result.  This 

allows for resultant posterior distributions to be evaluated to determine the certainty and 

accuracy of the stochastic thermal characterization.   

In this study, relevant envelope thermal properties (effective thermal resistance and 

effective thermal capacitance) were inferred via Bayesian inference.  The DRAM 

algorithm was used for the MCMC simulation and was allowed to run for 10,000 function 

iterations to allow for chain convergence as well as chain mixing.  Within the Bayesian 

inference workflow, the transient finite element routine highlighted in previous sections 

was used.  The finite elements are solved in 1D, allowing for observation of each node’s 
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temperature.  For this characterization exercise, the façade element was given an arbitrary 

thickness of 0.3 m discretized into 50 finite element nodes along the assembly’s thickness.  

Testing found that characterization solutions converged upon the same thermal resistances 

and thermal capacitances regardless of surrogate assembly thickness.  While assembly 

thickness was not found to influence characterization accuracy, the number of simulated 

nodes was found to have influence.  Through testing, it was found that 50 nodes struck a 

balance between execution time and FEM accuracy.   

Alongside the selected heat transfer model, another modeling consideration for the 

Bayesian inference technique is the selection of quantified uncertainties and prior 

distributions.  Since the data utilized in this test are simulation results, synthetic, controlled 

noise was added to the data to simulate measurement uncertainty which would be present 

in a physical experiment.  To account for this, temperature measurements were assumed to 

be from a T-type thermocouple with a measurement tolerance of ±1.00°C (Omega 

Engineering, 2019).  Little information could be located regarding heat flux sensor 

accuracy, so heat flux measurements were assumed to have a measurement tolerance of 

±0.250 W/m2.  Both of these measurement errors were assumed to be normally distributed 

and were applied to all flux and temperature measurements via normally distributed Monte-

Carlo sampling.   

The secondary major consideration for Bayesian inference is the selection of a prior 

distribution to serve as an input to the MCMC algorithm.  While the literature tends to 

disagree on the selection of prior distributions in light of no prior knowledge (Box & Tiao, 

1973; Gelman et al., 2013; Tarantola, 2005), it is suggested that non-informed prior be 
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utilized for starting the Bayesian inference search.  For the cases where no prior is known 

for the Bayesian inference, a prior with infinite variance was employed to start the model 

without biasing results (Laine, 2008). 

4.1.3 Wall Characterization Simulation Pilot 

  Utilizing the data provided via EnergyPlus simulation of the reference building, a 

multitude of tests can be run.  In this work, the constructions simulated in EnergyPlus are 

sample constructions found in ASHRAE Fundamentals Chapter 18 (ASHRAE, 2013).  

Buildings with a low mass wall and a high mass wall were selected from the sample 

constructions, simulated in EnergyPlus, and characterized using the proposed methodology 

to simulate a real building assessment and test the methodology.  The definitions of low 

and high mass walls can be seen in Table 4.1.   

	
Table 4.1  ASHRAE Fundamentals wall assemblies utilized within the building 

simulation (ASHRAE, 2013). 

Layer Number 
(Number Ext. to Int.) 

Low Mass Wall 
(Wall #13) 

High Mass Wall 
(Wall #63) 

1 25mm Stucco (F07) 200mm Heavyweight 
Concrete (M15) 

2 13mm Fiberboard 
Sheathing (G03) 

89mm Batt 
Insulation (I04) 

3 89mm Batt 
Insulation (I04) 

89mm Batt 
Insulation (I04) 

4 16mm Gypsum 
Board (G01) 

16mm Gypsum 
Board (G01) 

	

Using the walls shown in Table 4.1, two characterization trials were run and analyzed.  

Both assemblies were simulated in the EnergyPlus virtual building and assessed for the 
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south-facing floor façade during a sample period in spring.  These assemblies were 

assessed using the proposed transient characterization exercise and compared to measured 

and steady-state heat transfer values.  Assemblies were characterized for 48 hours of 

training data measured at a frequency of every 10 minutes.   

4.2 Simulation Pilot Characterization Results 

4.2.1 Low Mass Wall Thermal Characterization 

 The first trial was conducted for Wall #13 utilizing 48 hours of heat flux measurements 

taken at 10-minute intervals.  This “audit” was conducted on the first week of April 

simulated from an Atlanta TMY3 file for the building’s southern face.  The results of this 

study are presented below. 

	

Figure 4.2  Plotted time-series interior heat gain from a 48-hour Bayesian 
characterization of a low mass wall (Wall #13). 

0 20 40 60 80 100
Time (hrs)

-6

-5

-4

-3

-2

-1

0

1

In
te

rio
r H

ea
t G

ai
n 

(W
/m

2 )

Low Mass Wall - Spring Assessment

Training Region Simulated Characterization 95% Confidence Interval



68 

 

From the above figure, the performance of the finite element characterization can be 

seen.  This exercise characterized the façade element correctly for the spring simulation 

period with an RMSE of 0.308 (0.136, 0.688) W/m2 with the values in parentheses denoting 

the 95% confidence interval for the RMSE.  The 95% confidence interval for each timestep 

is also displayed within the plot, with the characterization appearing to have an uncertainty 

of approximately 1 W/m2 due to the synthetic measurement error applied to the data.  

Despite this noise, the mean value of the characterization closely matches the simulated 

reference data.  Alongside these results, the posterior distributions for the inferred 

parameters can be analyzed.  Histograms of parameters are plotted in Figure 4.3. 

	

Figure 4.3  Histograms of posterior distributions of the Bayesian inference parameters 
characterized in the spring low-mass wall (Wall #13) characterization. 
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From the above figure, prior and posterior distributions for the inference parameters of 

thermal resistance and thermal mass can be visualized via histograms.  Due to the Gaussian 

prior and likelihood function (native to this DRAM implementation), both generated 

posterior distributions are Gaussian-like in shape.  Due to the intrusion of error in the 

modeling, these posterior distributions are not exactly Gaussian and are instead represented 

by a non- Kernel Density Estimation (KDE) plotted as the thick black line.  Utilizing this 

non-parametric fit, confidence intervals can be readily computed for inference posterior.  

Computation of a confidence interval is extremely important, as it provides a convenient 

metric to specify certainty bounds in the results of the characterization exercise.  The 

inference posterior values resulting from this Bayesian characterization are 2.14 (2.11, 

2.17) m2-K/W and 18.0 (17.3, 18.7) kJ/m2-K, with the values in the paratheses representing 

the lower and upper bounds of the computed non-parametric confidence interval.   

Since the implementation of the transient finite element model was the most time-

consuming task within this work, the transient thermal characterization was also compared 

to the Summation Method’s steady-state characterization approach. Utilizing the spring 

simulation present in this subsection, the Summation Method can be applied to evaluate 

the time-series performance of a traditional R-value test that ignores thermal mass 

fluctuations.  The performance of this steady-state R-value test is shown in Figure 4.4. 
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Figure 4.4  Plotted time-series interior heat gain from a traditional steady-state 
characterization for a low-mass wall (Wall #13) during a spring simulation period. 

From Figure 4.4, the plotted interior heat gain of the steady-state thermal 

characterization can be viewed.  These results represent a traditional ASTM C1155 steady-

state R-value test, which neglects thermal mass under the assumption that thermal mass’s 

effects are periodic.  Due to this assumption, an approximate three-hour lag can be seen 

between the simulated steady-state interior heat gain and the reference, measured heat gain.  

Along with the phase difference in both signals, the steady-state characterization 

overpredicts the effect of the peaks of the heat gain signal.  In the real assembly, these peak 

magnitudes are most likely buffered by the assembly’s thermal mass.  Despite the phase 

and magnitude discrepancies of the signals, the steady-state characterization generally 

displays the trend of the reference data but does not perform as well as the fully transient 

thermal characterization.  A summary of results for the low-mass assembly characterization 

is summarized in Table 4.2. 
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Table 4.2  Tabulated transient thermal characterization results for a low-mass wall     
(Wall #13). 

Test Case 
Thermal Resistance 

(𝑅),  
m2-K/W 

Lumped Thermal 
Capacitance (𝐶>?), 

kJ/m2-K 

Ref/Model 
 RMSE, W/m2 

Ref/Model 
 NRMSE, % 

Simulated 
Assembly 
(Wall #13) 

2.13 16.8 N/A N/A 

Transient 
Characterization 2.14 (2.11, 2.17) 18.0 (17.3, 18.7) 0.308 (0.136, 

0.688) 
6.79% (3.00%, 

15.2%) 
Steady-State 

Characterization 1.93 (1.83, 2.02) N/A 1.24 (1.19, 1.29) 27.3% (26.2%, 
28.4%) 

	

From Table 4.2, the results of the characterization exercise for the low-mass wall can 

be seen.  The transient single-layer wall characterized has a similar thermal resistance to 

the reference wall, with a percentage difference of less than 1% for the mean inferred 

thermal resistance.  This relative size of this percentage error and similarity of results 

suggest that the wall’s insulating value was properly characterized through this procedure.  

The 95% confidence interval also provides values near the mean and “actual” thermal 

resistance values, indicating high model confidence in the results. 

4.2.2 High Mass Wall Thermal Characterization 

The second trial run was run for Wall #63 utilizing 48 hours of heat flux measurements 

taken at 10-minute intervals and the same spatial and environmental conditions as the low 

mass wall characterization exercise.  The results of this study are presented below. 
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Figure 4.5  Plotted interior heat gain from a Bayesian characterization for a high mass 
wall (Wall #63) with 48 hours of training data. 

In the above figure, the performance of the transient Bayesian characterization routine 

is displayed.  The exercise characterized the high mass wall for a sample simulation in 
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uncertainty bound, the Bayesian characterization routine characterized the reference data 

high certainty, producing RMSE values of 0.229 (0.149, 0.435) W/m2 and NRMSE values 

of 5.19% (3.38%, 9.87%).  Due to this low RMSE and a visual inspection of the assembly’s 
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the characterization.  Histograms of the prior and posterior distributions produced by this 

Bayesian characterization exercise can be visualized in Figure 4.6. 

	

Figure 4.6  Histograms of prior and posterior distributions of the Bayesian inference 
parameters characterized in the spring high-mass wall (Wall #63) characterization. 
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Alongside the results of the transient characterization, a steady-state characterization 

was also performed for the high-mass assembly.  The results of the steady-state R-value 

characterization are displayed in Figure 4.7. 

	

Figure 4.7  Plotted time-series interior heat gain from a steady-state summation method 
characterization for a high-mass wall assembly (Wall #63). 
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experience exists to extend the practice to heavier construction.” (ASTM, 2013b).  

Regardless, the Summation Method displayed in Eq. 1 was applied under the assumption 

that an inspector may not know the construction of the assembly without destructive 

testing.  It is still important to understand the performance of steady-state characterization, 

even if the practice is not suggested by ASTM.   

Due to the high mass of the candidate assembly, ASTM C1155 does not suggest steady-

state characterization to high-mass assemblies, and the results displayed in Figure 4.7 

further reinforce this warning.  The results of the high-mass wall steady-state 

characterization do not remotely follow the trend, shape, or magnitude of the reference 

signal.  This discrepancy is a result of the neglected thermal capacitance, or thermal mass, 

term which is completely ignored in steady-state characterization.  One redeeming factor 

of this characterization is the ability to measure thermal resistance, which was measured at 

3.58 (3.58, 3.59) m2-K/W.  This thermal resistance closely mirrors that of the transient 

characterization, providing confidence in the steady-state approach’s ability to characterize 

thermal resistance.  A summary of results for both high-mass assembly characterization is 

summarized in Table 4.3. 

 

 

 

 



76 

 

	
Table 4.3  Tabulated transient thermal characterization results for a high-mass wall. 

Test Case 
Thermal Resistance 

(𝑅),  
m2-K/W 

Lumped Thermal 
Capacitance (𝐶>?), 

kJ/m2-K 

Ref/Model 
 RMSE, W/m2 

Ref/Model 
 NRMSE, % 

Simulated 
Assembly 
(Wall #63) 

3.78 427 N/A N/A 

Transient 
Characterization 3.82 (3.74, 3.91) 37.2 (34.3, 40.1) 0.229 (0.149, 

0.435) 
5.19% (3.38%, 

9.87%) 
Steady-State 

Characterization 3.58 (3.58, 3.59) N/A 0.938 (0.91, 
0.965) 

21.3% (20.6%, 
21.9%) 

	

From Table 4.3, the results of the characterization exercise for the low-mass wall can 

be seen.  The transient single-layer wall characterized has a similar thermal resistance to 

the reference wall, with a percentage difference of less than 1% for the mean inferred 

thermal resistance.  This relative size of this percentage error and similarity of results 

suggest that the wall’s insulating value was properly characterized through this procedure.  

The 95% confidence interval also provides values near the mean and “actual” thermal 

resistance values, indicating high model confidence in the results. 

4.3 Exploring Characterization Time Requirements 

In preliminary testing, the assessment length, or length of the training dataset, was 

found to be a limiting factor for characterization performance.  In an ideal scenario, training 

data would be measured for as long as possible, i.e. 7+ days to allow for a sufficient training 

set.  ASTM C1046 states, “[Characterization] requires obtaining data over long periods, 

perhaps several days, depending on the type of building component and on temperature 

changes.” (ASTM, 2013a), but does not specify the length of assessment required.  To 
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further understand the length of assessment required to properly characterize an assembly, 

each assembly was simulated to find the length of training time required.  Walls #1–66 

from ASHRAE Fundamentals were simulated in EnergyPlus and characterized for an 

assessment starting from the first day of April for a DOE/IECC medium office reference 

building located in Atlanta, Georgia (Deru et al., 2011).  Reference building models were 

simulated with the Hartsfield-Jackson Atlanta TMY3 EnergyPlus weather file (DOE, 

2021b).  Prior distributions were generated via the methodology described in Section 4.1.2.  

Walls were characterized with training sets ranging in length from 1 hour up to 96 hours, 

with each characterization recording the mean RMSE value computed for a validation 

dataset of 8 days.  Mean RMSE values less than 1.00 W/m2 were deemed to be an 

“appropriate characterization”, providing a metric to determine the minimum training time 

required for a diverse set of envelope assemblies.   

In addition to characterizing the length of time required to appropriately characterize 

typical envelope assemblies, this exercise also provides a convenient venue to generate a 

prior distribution database to accompany ASHRAE’s wall database present in ASHRAE 

Fundamentals Chapter 18 (ASHRAE, 2013).  The resultant posterior distributions of each 

assembly characterization can be aggregated into a database, allowing for a straightforward 

selection of prior distributions for future studies.   
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4.4 Evaluating Training Dataset Length Requirements 

Per the exercise described in Section 4.3, an experiment was run to understand the 

length of time a façade element must be instrumented for proper characterization.  This test 

simulated all 66 ASHRAE fundamentals wall assemblies with varying lengths of training 

data.  All assemblies were characterized on the south-facing façade of the EnergyPlus 

medium office model simulated for an Atlanta TMY3 file.  Walls were characterized for 

measured datasets ranging in length from 1 to 96 hours, and the minimum training set 

length required to achieve a characterization RMSE value of less than 1.00 W/m2 for each 

wall.  The result of this experimental study is shown below in Figure 4.8. 

 		

Figure 4.8  A histogram visualizing the training length required to achieve an appropriate 
wall characterization. 
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depending on the wall’s construction type and thermal properties, as suggested in ASTM 

C1046.  This leads to a distribution of required training lengths, each specific to a wall’s 

type and construction. 

When viewing the data as a histogram, the plot takes the shape of a positive-skewed 

distribution, with a mean of 25.5 hours and a standard deviation of 12.5 hours.  This 

histogram’s shape is most likely a result of the dataset’s entries—e.g. a majority of walls 

within the dataset were low-to-medium mass wall constructions and a small “tail” of 

constructions tended towards higher thermal mass.  This conclusion is also validated via a 

qualitative view of the dataset.   

 Another important piece of information regarding this dataset must be addressed 

before further analysis can be conducted.  From a fundamental standpoint, this ASHRAE 

wall dataset is a sample of a larger population and therefore should not be interpreted as a 

population.  Each assembly in this dataset represents a single assembly type and is not 

representative of that assembly’s number of occurrences in the US or global existing 

building stock.  Despite this drawback, this dataset can be utilized to approximate the 

amount of training data required to characterize most assembly types.  To identify this time 

requirement, the 95th percentile was computed from this data to evaluate the amount of 

time series training data required to characterize most assemblies.  From testing, it was 

noted that the 95th percentile would provide context for the data requirements for most 

assemblies, except for less common assemblies with excessive thermal mass, e.g. tilt-up 

concrete constructions.  The 95th percentile for the dataset displayed in Figure 4.8 was 

computed to be 48.1 hours, which is rounded down to 48 hours for practical purposes.  This 
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means that 48 hours of measurement data is sufficient to characterize the majority of the 

ASHRAE fundamentals walls.    

4.5 Discussion 

This study shows the promise of characterizing façades utilizing transient finite element 

heat transfer.  The results for both transient thermal characterizations displayed strong 

model agreement with reference datasets and low RMSE values.  Transient NRMSE values 

for transient characterizations of Walls #13 and #63 were computed at 6.79% (3.00%, 

15.2%) and 5.19% (3.38%, 9.87%) , respectively.  These mean NRMSE are both near 

below 10% NRMSE from the reference data, indicating strong characterization 

performance.  Additionally, inferred thermal resistances were near that of the simulated 

assemblies, with percent errors of 7.51% and 1.06% for Wall #13 and Wall #63, compared 

against their reference simulated assemblies.  Error bounds for inferred thermal resistances 

were also quite narrow, with Wall #13 having an inferred thermal resistance of 2.14 ± 

1.40% m2-K/W and Wall #63 having a value of 3.82 ± 2.23% m2-K/W.  These narrow 

tolerance bounds indicate high certainty levels of inferred thermal resistance, providing 

additional information about the characterization’s reliability compared to a single, 

deterministic value. 

While all simulated transient models had good agreement with measured data and 

thermal resistance was found to be adequately characterized, thermal capacitance was not 

always found to be near the lumped thermal capacitance value of the real multi-layer wall.  

The transient thermal characterization trials showed characterized found capacitances with 
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relative differences of 7.14% and 91.3% for the spring characterization of the low-mass 

assembly and high-mass assembly, respectively.  This appears to be an issue with high-

mass assemblies, which mimics the discrepancies of summed thermal capacitance and 

effective thermal capacitance described by Antonopoulos and Koronaki (Antonopoulos & 

Koronaki, 1998).  These results suggest that effective thermal capacitance is not the same 

as summing the thermal mass of every layer in a multi-layered assembly.  Effective thermal 

capacitance represents the complex interactions between various thermal capacitances and 

thermal resistances of the multi-layered wall without the need to simulate the complexity 

of each layer.  This result also indirectly shows that the thermal mass of each layer in an 

assembly cannot be simply added up and modeled as a single layer; a thermally equivalent 

wall must be found instead when modeling the homogenous analog of a layered assembly. 

Another important finding from this study was the relative impact of uncertain film, or 

convection and radiation, coefficients utilized for the transient characterization.  Static film 

coefficients for both simulation pilots were approximated via the summation method, 

however, film coefficients are environmentally-dependent and varied over time in the 

reference simulation.  It was also noted that coefficients tended to change drastically during 

periods of peak heat transfer, which are the regions with the highest discrepancy in Figure 

4.2 and Figure 4.5.  Due to this, it is suggested that, in real-world experimentation and field 

deployment, a material with a more static thermal resistance be added at the interior 

surface, atop the temperature and heat flux sensors.  A good candidate for this material is 

a thin layer of board insulation, which will provide a more static resistive boundary 

condition that is agnostic of thermal and environmental fluctuations.   
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In addition to the successful thermal characterizations, another aspect of this research 

aims to determine the amount of training data required for the characterization of a typical 

façade element.  ASTM C1046 suggests that façade elements be characterized utilizing 

several days of data depending on the construction, but does not suggest a specific length 

of instrumentation (ASTM, 2013a).  All 66 of the ASHRAE fundamentals assemblies were 

simulated and characterized, leading to a variety of required training dataset lengths, 

alongside the generation of a database of prior distributions for each assembly.  When 

plotted in a histogram, this temporal data took the form of a positive skewed normal 

distribution with a mean of 25.5 hours and a standard deviation of 12.5 hours.  When the 

95th percentile of this data was computed, it was found that 48.1 hours of data was required 

to characterize most typical wall constructions.  This result puts a specific number to the 

suggestion proposed in ASTM C1046; slightly more than two days of data is needed to 

adequately characterize a façade element.  It should be noted that this was found via 

simulation of the ASHRAE fundamentals walls, which are typical non-residential 

constructions.  Non-residential walls tend to employ more massive materials (CMU, cast 

concrete, heavy insulation) than residential construction, so low-mass residential 

constructions can most likely be characterized with fewer data.  While the minimum 

requirement of 48.1 hours of measurement data was found, it must be stressed that this is 

a minimum requirement.  Any additional data provides the opportunity to improve the 

characterization and to have an additional dataset to verify the characterization’s 

performance.  Regardless, this minimum required measurement length is practical 
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guidance that more assessment professionals should consider when quantifying envelope 

performance.  

These results of this study motivate the applicability and validity of thermal 

characterization usage in the built environment.  Utilizing surface temperatures and heat 

flux measurements, any type of opaque façade element can be simulated to understand its 

performance.  While this work was able to characterize the thermal performance of a 

typical façade element, the hope is that this procedure is used more often in the future to 

understand the impact of underperforming and unknown façade elements.  This 

methodology was also developed with the aspiration of characterizing defects in a 

framework that is relevant to assessing their impacts via energy modeling.   

4.6 Chapter Conclusion 

In conclusion, this chapter proposed and verified a methodology to instrument in-

service building envelope assemblies and characterize their performance via Bayesian 

inference.  This procedure uses transient finite elements in a Bayesian inverse modeling 

workflow to identify thermally equivalent materials representing the complexity of thermal 

mass and thermal resistance in multi-layer assemblies.  This procedure was quite successful 

when tested, characterizing low and high mass walls with RMSE values below 1 W/m2.  

These results also highlighted the shortcomings of steady-state characterization techniques 

which ignore the effects of thermal mass.  This work also put a number to the ASTM C1046 

suggestion to “[Obtain] data over long periods, perhaps several days” to characterize a 

façade element.  It was found that collecting data for a little over two days is sufficient to 
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characterize most typical non-residential constructions, giving specific guidance for the 

instrumentation process of assessment professionals. 

The robustness and proven performance of this characterization process provide a 

vehicle for building professionals and researchers to understand more about how as-built 

building envelopes perform in the real world.  While this work is extremely successful on 

simulation test cases, the workflow requires field testing for validation in future studies.  

Applying this method in the real world will also allow for imperfect or moisture-laden 

assemblies to be characterized and understood, which is a reality whole-building 

simulation packages like EnergyPlus fail to reproduce. 

This study is a fundamental step in the process of detecting, characterizing, and 

understanding the as-built performance of facades in existing buildings.  With the 

methodology’s performance now verified against state-of-the-art energy simulation, field 

studies can be run to verify the methodology’s real-world performance.  This represents a 

strong foundation to begin understanding for in-situ building envelope measurement 

beyond R-value.  
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CHAPTER 5: EXPERIMENTAL VALIDATION 

In this chapter, an abridged description of the sensors and equipment utilized, 

equipment calibration, and two physical experiments will be presented.  This section aims 

to experimentally validate the methodology’s performance in the field.   

5.1 Equipment Selection 

Thermal characterization requires the measurement of heat flux and surface 

temperatures.  These metrics can be measured in a variety of ways; however, the selected 

methods for this application are (1) surface temperature measurements via mounted 

thermistor and (2) heat flux measurements via a heat flux transducer.  Thermistors were 

selected due to their measurement flexibility (specialized boards and equipment are not 

required for measurement, unlike thermocouples), and heat flux transducers were selected 

due to their wide availability and analog nature.  Because both sensors produce analog 

outputs, both sensors can be measured with a standard analog-to-digital converter (ADC).  

More details on the selected data acquisition (DAQ) platform, ADC, and sensors will be 

outlined in subsequent sections.  

5.1.1 Data Acquisition System 

Since it was known that measurement must be taken on both the interior and exterior 

surfaces of an assembly, there are two options for connecting sensors to the DAQ: (1) one 
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DAQ with long runs of wire between the DAQ and sensors, sized so that the sensors can 

travel through doors or windows to reach the opposite side of the assembly, or (2) two 

DAQs, each on the exterior and interior sides of the building, with relatively short runs of 

wire between the DAQ and sensors.  For practicality, the latter was selected, requiring two 

data acquisition platforms.   

Now that it is known that two DAQs will be utilized for experimentation, more practical 

concern arose—Will these two DAQs need to be connected to two different computers?  

How will the DAQs be powered?  Will the exterior DAQ and associated computer be able 

to withstand the outdoor environment?  After significant research and background reading, 

the Arduino platform seemed to address all of these concerns.  An Arduino microcontroller 

is an embedded system that can be operated without the need for an on-site computer 

connection.  Certain Arduino specifications are also designed to be powered via a battery 

and are compact enough to be housed in a weatherproof enclosure.  The Arduino platform 

also has many open-source libraries and available breakout boards for interfacing with 

many different types of sensors.  Due to all of these benefits, an Arduino MKR Zero was 

selected as a data acquisition platform.  This specific model of Arduino also provides other 

benefits for data acquisition, such as a built-in microSD input, a built-in 12-bit ADC, LiPo 

battery inputs, and a low power draw.  These features make the Arduino MKR Zero a 
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strong data acquisition system for this application1.  A photo of the utilized Arduino MKR 

Zero is displayed in Figure 5.1.   

	 	

Figure 5.1  An Arduino MKR Zero. 

5.1.2    Analog-to-Digital Converter Selection 

With the selection of the Arduino MKR Zero, the board has a built-in 12-bit ADC.  Due 

to the Arduino MKR line’s operating voltage of 3.3 V, this built-in ADC has an estimated 

resolution of 1.61 mV.  This resolution may be high enough for thermistors, however, most 

heat flux transducers on the market produce outputs in the 1-10 microvolt range.  Because 

of this, an ADC breakout board was sourced and implemented for sensor measurement.  

For this application, an external breakout board utilizing a Texas Instruments ADS1115 

chip was procured.  The ADS1115 is a 16-bit ADC with a programable gain of 16 and a 

 

1 At the time of writing, the Arduino Pro Portenta H7 Lite Connected was released.   This 
microcontroller is designed to be the new Arduino flagship for IoT applications, with many of the 
same features are the Arduino MKR line.  On top of the MKR line’s features, this microcontroller also 
has built-in radio frequency communication; a built-in 16-bit ADC; and a standby current draw in the 
microamp range, allowing for long lifespans on battery power.  If this work were to conducted after 
the release of the Portenta H7 Lite, this would have been the chosen microcontroller for this 
application.  It should be noted, however, that many of these features of the Portenta H7 Lite were 
augmented onto an Arduino MKR Zero via external breakout boards.   
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default sampling rate of 128 SPS.  Utilizing the full gain and accounting for noise, the 

ADS1115 has an effective resolution of 7.81 uV (Texas Instruments, 2019).  A sample 

photo of an ADS1115 breakout board is displayed in Figure 5.2. 

	

Figure 5.2  An ADS1115 breakout board. 

5.1.3    Thermistor Selection 

Since these thermistors were required for measuring surface temperatures, priority was 

given to thermistors that were flat and could be affixed to a surface via adhesive or tape.  

Thermistors come in a variety of shapes, from probes to surface-mounted thermistors 

meant for circuit board mounting.  For this application, the TEWA TTT6-10KC8-9-25 

thin-film negative temperature coefficient (NTC) thermistor was selected.  This thermistor 

is designed for interfacing with flat surfaces and is covered in a Kapton coating to reduce 

electrical interference and weatherproof the sensor (see Figure 5.3).  These sensors have a 

working temperature range of -30°C to 120°C and have a 10 kOhm resistance at 25°C.  

Because they are NTC thermistors, these thermistors decrease in resistance as temperatures 

increase and increase in resistance as temperatures decrease.  This phenomenon was 

measured and calibrated as described in later sections.  
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Figure 5.3  A photo of the thin-film thermistor utilized. 

5.1.4    Heat Flux Transducer Selection 

The final sensor procured was the heat flux sensor.  There were many available options 

for these sensors, however, the selected sensor was a FluxTeq PHFS-09e differential 

thermopile.  This sensor is based on the Seebeck Effect, where the differential thermopile 

generates a voltage proportional to the heat flux traveling through it.  Another advantage 

of the PHFS-09e is that it is a thin-film heat flux sensor, shielded from moisture and 

electrical contact via a Kapton film, similar to the selected thermistor.  A photo of the heat 

flux sensor is shown below.    

	

Figure 5.4  A photo of the heat flux sensor utilized. 
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5.2 Sensor Application and Usage 

The goal of this section is to provide context on the mathematical operations required 

to measure heat fluxes and temperatures via the respective sensors.   

5.2.1 Thermistor Usage 

Thermistors, by definition, are classified as resistive temperature devices, sometimes 

referred to as RTDs.  RTDs change their resistance under the influence of temperature, 

allowing for that resistance to be correlated to a temperature value.  For a DAQ to measure 

resistance, the resistor must be placed into a configuration allowing for that resistance to 

be calculated.  There are two popular methods to measure resistance: the voltage divider 

circuit and the Wheatstone bridge (Ekelof, 2001).   The Wheatstone bridge was selected 

due to its potential to reduce offset and temperature errors, which can often make accurate 

measurement via voltage divider circuitry difficult.  The Wheatstone bridge circuit is 

displayed below in Figure 5.5. 

	

Figure 5.5  A diagram of the Wheatstone bridge circuit. 
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From the above circuit diagram, a view of a the Wheatstone bridge is displayed.  VC 

represents the supplied voltage, 𝑉D represented the measured voltage, 𝑅*E. represent 

resistors of fixed voltages, and 𝑅1 represents the resistor of unknown resistance, which is 

a thermistor in this application.  Based upon this circuit arrangement, the resistance of the 

thermistor can be computed via the following equation: 

	
𝑅8 =

𝑅-	𝑉# − (𝑅* + 𝑅-)	𝑉K
𝑅*	𝑉# + (𝑅* + 𝑅-)	𝑉K

𝑅B		 ( 51 ) 

From Eq. 51, the unknown resistance can be computed as a function of 𝑉D.  𝑅*, 𝑅+, and 𝑅. 

should be known precision resistors.  While 𝑉# should be a known excitation voltage, it is 

recommended that it also be measured at the same time as 𝑉D to guarantee accuracy and 

completeness of measurement.   

With the resistance of the thermistor known, this resistance must be correlated to a 

temperature value.  Resistance-Temperature correlation can be done via the Steinhart–Hart 

equation (Steinhart & Hart, 1968).  This equation is displayed in Eq. 52. 

	 𝑇8 = (𝐴 + 𝐵 𝑙𝑛(𝑅8) + 𝐶(𝑙𝑛(𝑅8))B)6*		 ( 52 ) 

Where 𝑇1 is the temperature of interest; 𝑅1 is the thermistor resistance; and 𝐴, 𝐵, and 𝐶 are 

the Steinhart-Hart coefficients which are experimentally determined.  These coefficients 

can be computed via least-squares curve fit.   

5.2.2 Heat Flux Sensor Usage 

Thermopiles generate voltage under the influence of heat flux due to the Seebeck Effect 

(FluxTeq, 2020).  This voltage can be correlated to a heat flux via an experimentally-
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determined Seebeck coefficient.  From the PHFS-09e sensor manual, the following 

equation can be found:  

	 �̇� = (0.00334		𝑇 + 	0.917)	𝑆𝑐	𝑉𝑔	 ( 53 ) 

From Eq. 53, the equation for converting the heat flux sensor’s measured voltage to a 

heat flux is displayed.  In this equation, 𝑉D is the measured voltage produced by the 

thermopile in V, 𝑆F is the calibration Seebeck coefficient provided via the manufacturer, 𝑇 

is the temperature at the location of the heat flux sensor in °C, and �̇� is the measured heat 

flux in W/m2-K.  It should be noted that FluxTeq does not recommend that these 

thermopiles be calibrated by the user due to the precise equipment required.  Because of 

this recommendation, the factory calibration values for the heat flux sensors utilized in this 

research were utilized.   

5.3 Sensor Calibration and Uncertainty Quantification 

5.3.1 Thermistors 

To correlate thermistor resistances to measured temperatures, a laboratory calibration 

was required.  Calibration of the three thermistors took place at the Georgia Tech 

Manufacturing Related Disciplines Complex.  Thermistors were calibrated per ASTM 

E644, “Standard Test Methods for Testing Industrial Resistance Thermometers” (ASTM, 

2019).  Testing occurred in an water thermal bath with a Lauda Ecoline E100 circulating 

thermostat (NIST, n.d.).  A photo of the calibration setup is displayed in Figure 5.6. 
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Figure 5.6  A photograph of the thermistor calibration setup. 

From the above photo, the thermistor calibration setup is displayed.  Water was 

circuited via the Lauda E100, and thermistor measurements were compared against a  

calibrated platinum resistance thermometer.  This thermometer was reported to have a 

measurement tolerance of ±0.006°C at 0°C.  The reference thermometer was measured via 

an HP 34401A desktop multimeter, which was reported to have a measurement tolerance 

of 0.010% for resistance measurements.  All three thermistors were calibrated for 

temperatures ranging between 6.80°C and 69.5°C.  The circulating thermostat employed 

for this calibration unfortunately did not have cooling capabilities, so this set of calibrated 

thermistors should not be deployed at temperatures below 6.80°C.  If deployment in 

temperatures below 6.80°C is required, these thermistors should be recalibrated with a 

circulating thermostat with cooling capabilities.  This, however, is outside of the scope of 
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this thesis work, and special care was made to avoid deployment in low-temperature 

scenarios. 

  Post calibration, the Steinhart–Hart coefficients for each of the calibrated thermistors 

were computed.  Coefficients were computed via MATLAB’s nonlinear curve fitting 

function.  A sample calibration curve for Thermistor 1 (which is the thermistor attached to 

the outdoor-facing side of assemblies) is displayed in Figure 5.7. 

	

Figure 5.7  A graphical display of a calibrated thermistor curve compared to the 
calibration data. 

In Figure 5.7, the deterministic calibration for Thermistor 1 is displayed.  Coefficients 

for the Steinhart-Hart equation were determined via the non-linear least squares curve 

fitting toolbox in MATLAB.  The graph in Figure 5.7 shows a deterministic calibration; 

however, this calibration can be approached as a stochastic problem when accounting for 
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uncertainties of other equipment.  Possible sources of uncertainty accounted for were: the 

reference thermometer, the reference thermometer’s multimeter, the utilized Arduino and 

its associated ADC, and resistors utilized in the Wheatstone bridge.  Uncertainties can be 

propagated mathematically with the following formula (Peralta, 2012): 

	
𝑠B = £¤

𝜕𝑓
𝜕𝑥
¥
2

𝑠𝑥2 +	¤
𝜕𝑓
𝜕𝑦
¥
2

𝑠𝑦2 +	¤
𝜕𝑓
𝜕𝑧
¥
2

𝑠𝑧2	 ( 54 ) 

From the above equation, the propagation of uncertainties from a function, f, can be 

calculated.  x, y, and z are independent, uncorrelated variables and s represents the standard 

deviation of each variable.  Utilizing this equation with Eq. 52 and Eq. 53 allows for the 

uncertainty in each temperature sensor to be computed.  The sensor calibration coefficients, 

alongside their computed accuracies are displayed in Table 5.1. 

Table 5.1  Tabulated thermistor calibration and uncertainty-related metrics. 

Test Case 
Mean 

Steinhart-Hart 
Coefficient, A 

Mean 
Steinhart-Hart 
Coefficient, B 

Mean 
Steinhart-Hart 
Coefficient, C 

Calibration-Fit 
RMSE Value 

(°C) 

Sensor 
Uncertainty 

Standard 
Deviation at 
25°C (°C) 

Thermistor 1 8.12E-4 2.65E-4 1.38E-7 0.0707 0.190 

Thermistor 2 8.35E-4 2.60E-4 1.56E-7 0.0787 0.180 

Thermistor 3 8.42E-4 2.59E-4 1.62E-7 0.0782 0.182 

	

5.3.2 Heat Flux Sensors 

While the calibration and uncertainty quantification process was an extensive effort for 

thermistors, the process was much more straightforward for the heat flux sensors.  The heat 
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flux transducers procured were calibrated by the manufacturer before their shipment.  This 

means that these sensors need not be recalibrated and could be utilized with the 

manufacturer-provided Seebeck coefficient and its related uncertainty.  The heat flux 

sensor’s uncertainty was propagated using Eq. 53 and Eq. 54.  From the calculation, the 

chosen heat flux sensor, thermistor, and ADC selection result in an uncertainty standard 

deviation of 0.9758 W/m2 at 0 W/m2 and 25°C.   

5.4 Experimental Design - Atlanta 

To validate the real-world performance of the proposed transient characterization 

methodology, a physical experiment was designed.  The goal of this experiment was to 

display the performance of the characterization methodology on an in-service assembly.  

For this experiment, the façade of a 1920s multifamily building in Atlanta was utilized as 

a test case.  A photo of this building is displayed in Figure 5.8. 
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Figure 5.8  A photograph of the building where experimentation occurred. 

From the photo, an overview photo of the building can be seen.  This building was a 

multifamily building built in the 1920s, which housed 18 individual units.  Testing occurred 

on the façade of the first-floor apartment, which is the right half of the building, divided 

along the downspout near the middle of the photo.  Due to the presence of a basement, the 

first floor is represented by the third window, if counting downwards from the roof.  

With this building being from the 1920s, inferences can be made regarding the wall 

assemblies.  Due to this building being built in the early-1900s, it can be anticipated that 

these walls were constructed of structurally-bonded bricks.  Below is a photo of the 

brickwork, for reference: 
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Figure 5.9  A photograph of the building’s brickwork pattern. 

From the above photo, the brickwork can be seen.  Based upon the pattern, this 

assembly appears to be a common bond, where headers bricks are laid with the short side 

facing outwards and two layers of stretcher bricks are laid side to side.  While these walls 

appear to be one brick length thick (or two brick widths thick), the true number of brick 

layers is unknown.  It was noted by the building owner that the interior walls of this 

building were uninsulated and comprised of plaster interior finish; however, not much else 

was known of the walls’ composition.  All that can be inferred is that this is a mass masonry 

assembly.   

Because of the uncertainties in this wall’s composition, there can be significant 

guesswork related to this wall’s thermal performance.  This assembly is also interesting 

from a thermal mass perspective, since it is a mass wall and most likely would not be 
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characterized well with R-value alone.  To characterize this wall’s performance, sensors 

were deployed on this assembly.  Similar to the sensor layout proposed in Figure 3.5, 

thermistors were deployed on the interior-facing and exterior-facing surfaces of the 

assembly, and a heat flux sensor was deployed on the interior-facing surface of the 

assembly.  It was noted that temperature or airflow-related shifts in the interior surface film 

(convection) coefficient created difficulties for the methodology, so a ½ inch square of 

expanded polystyrene (EPS) covered the interior surface of the assembly, with a third 

temperature sensor on the exterior of that EPS covering.  A figure display of this sensor 

layout is displayed in Figure 5.10. 

	

Figure 5.10  A diagram displaying the sensor layout utilized in this experiment. 

From the above figure, an overview of the experimental sensor layout is displayed.  

Photographs of the actual sensor implementation are displayed in Figure 5.11 and Figure 

5.12. 
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Figure 5.11  A photograph of the exterior surface temperature sensor.   

 

 

Figure 5.12  A photograph of the interior surface sensors and EPS board.   
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From Figure 5.11 and Figure 5.12, the installed experimental equipment can be seen.  

Before sensor installation, the interior and exterior surfaces of the assembly were assessed 

via a thermal camera to identify thermal bridges or other anomalies.  No anomalies were 

identified at this measurement spot, so the position was marked.  To align the exterior and 

interior sensors, a rare earth magnet was attached to the exterior marking via double-sided 

tape.  An analog compass was utilized to identify the corresponding planar position on the 

interior surface of the assembly.  Once both positions were marked, the sensors and EPS 

board were affixed to the wall via double-sided carpet tape.  With the sensors installed, 

data collection could begin.  With the sensors installed, data was collected at 5-minute 

increments over 5 days.  Experimentation occurred between March 28th, 2021 to April 1st, 

2021.  There was no precipitation during this time, and the building was in service during 

the entire measurement period.   

5.5   Experimental Thermal Characterization - Atlanta 

As mentioned in the previous section, a sample envelope section was characterized in 

an Atlanta multifamily building.  The 100 hours of data were measured in 5-minute 

increments between 3/28/2021–4/1/2021.  This data was split into 48 hours of training data 

and 52 hours of validation data.    

For the Bayesian calibration, the DRAM MCMC algorithm was utilized allowed to run 

for 10,000 function iterations to allow for chain convergence as well as chain mixing.  

Thermistor measurements were estimated to have a normally distributed uncertainty 

according to their respective values in Table 5.1.  A normally distributed uncertainty of the 
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form N(0, 0.9758) W/m2 was also applied to all heat flux measurements.  For the input 

prior distribution, a non-informative prior was utilized due to the unknown composition of 

the assembly.  Priors for both   This modeling input airs on the side of conservatism, to 

avoid influencing the Bayesian characterization when the assembly’s composition is 

unknown.   

Utilizing all of this information, the transient characterization was conducted.  A 

diagram of the time series results is displayed in Figure 5.13. 

	

Figure 5.13  Plotted interior heat gain from a Bayesian characterization for the Atlanta 
characterization experiment. 

From the above figure, the performance of the Bayesian characterization is displayed.  

This characterization was performed utilizing the 48 hours of training data (highlighted in 

red), then was assessed over 52 hours of validation data.  During the training period, it can 

be noted that the characterization required approximately 20.0 hours of time before it began 

to capture the impact of the assembly’s thermal mass.  This is due to the assembly being a 
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mass wall, and the simulation transitioning from its initial conditions during the simulation 

“warm-up period”.  After this “warm-up period”, the characterization begins to closely 

match the measured data, with a validation period RMSE value of 0.805 (0.475, 1.30) 

W/m2.  With these results in consideration, this same equipment can be employed for a 

steady-state characterization via the Summation Method.  The results of this steady-state 

characterization are displayed in Figure 5.14. 

	

Figure 5.14  A graph of the time series measured interior-surface heat gain compared to 
the steady-state. 

From Figure 5.14, the steady-state characterization is displayed.  Viewing this as time-

series data, it can be noted that the steady-state characterization vaguely matches the 

measured data in magnitude, but the peaks and troughs of the measured data tend to lag the 

steady-state characterization by approximately 11 hours.  This is due to the absence of 

thermal mass in the steady-state characterization.  Despite the differences in magnitude and 

occurrence of the heat flux peaks, this steady-state characterization did capture a thermal 
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resistance value of 0.561 (0.554, 0.569) m2-K/W, with the mean value within 3% of that 

measured via the transient characterization.  This shows that there is still value in steady-

state characterization, however, thermal mass plays a large role in time series performance, 

especially in (suspected) mass walls.   

Alongside the time series portion of characterization, the transient characterization of 

the assembly’s thermal mass and thermal resistance can be viewed.  These 

characterizations can be viewed through histograms and trace plots.  The trace plots of the 

Markov chains’ iterations are displayed below in Figure 5.15. 

	

	
Figure 5.15  The Markov chain trace plot of thermal resistance and thermal mass for the 

Atlanta wall characterization. 

          
0.2

0.3

0.4

0.5

0.6

0.7

R
es

is
ta

nc
e 

(m
2 -K

/W
)

Markov Chain Trace Plot

Markov Chain
95% Confidence Interval

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Markov Chain Iterations

300

400

500

600

700

800

Th
er

m
al

 M
as

s 
(k

J/
m

2 -K
)  



105 

 

From the above figure, the trace plots for both thermal resistance and thermal mass are 

displayed.  From the trace plots, it can be noted that the Markov chain for thermal resistance 

appears to have converged to a stationary distribution near iteration number 200, while 

thermal mass took much longer—approximately 450 samples to converge.  Following this 

convergence, the Markov chains converged to values of 0.546 (0.503, 0.595) m2-K/W for 

thermal resistance and 636 (554, 715) kJ/m2-K for thermal mass.  These Markov chains 

can be viewed in histogram formats in Figure 5.16. 

	

	
Figure 5.16  Histograms of the posterior distribution of the Bayesian inference 

parameters characterized in the Atlanta wall characterization. 

From Figure 5.16, the distribution of characterized thermal mass and thermal resistance 

can be visualized via a histogram.  The convergence of the Markov chain is apparent via 
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the distributions sampled around 0.546 (0.503, 0.595) m2-K/W for thermal resistance and 

636 (554, 715) kJ/m2-K for thermal mass, and the starting point (before chain convergence) 

is visible via the long, low occurrence number tail of the kernel density estimation.  Another 

feature of this characterization is that the measured thermal resistance and thermal 

capacitance are unlike that of any other wall in the ASHRAE Fundamentals wall database.  

The wall with the nearest thermal properties is Wall #66, which is single layer of 

uninsulated 300mm heavyweight concrete.  This suggests that this assembly may be a 

similar uninsulated mass wall. 

Each of the values for this wall’s in-situ characterization are tabulated within Table 5.2 

Table 5.2  Tabulated thermal characterization results for tested Atlanta wall. 

Test Case 
Thermal Resistance 

(𝑅),  
m2-K/W 

Lumped Thermal 
Capacitance (𝐶>?), 

kJ/m2-K 

Ref/Model 
 RMSE, W/m2 

Ref/Model 
NRMSE, % 

Transient 
Characterization 

0.546 (0.503, 
0.595) 636 (554, 715) 0.805 (0.475, 

1.30) 
8.99% (5.3%, 

14.6%) 
Steady-State 

Characterization 
0.561 (0.554, 

0.569) N/A 4.69 (4.62, 4.77) 52.4% (51.6%, 
53.3%) 

5.6 Experimental Design - Cloquet 

To further test the proposed methodology, a dataset from the project Wall Upgrades for 

Deep Residential Energy Renovation (DE-LC-000L048) was utilized.  This project was a 

joint project between Pacific Northwest National Laboratory, Oak Ridge National 

Laboratory, and the University of Minnesota.  Through this project, retrofit wall assemblies 

were constructed and instrumented at the Cloquet Residential Research Facility (CRRF) 

located at the University of Minnesota’s Cloquet Forestry Center.  Constructed walls were 
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instrumented with temperature, moisture, and heat flux sensors and were exposed to 

outdoor conditions for up to 1.5 years, depending on the wall’s project phase.  For this 

application, the south-facing cellulose drill-and-fill wall was selected.  Photos of this wall 

and its construction are displayed in Figure 5.17. 

	 	

a) The cellulose insulation contractor 
with the completed drill-&-fill wall 

before sealing and cladding reinstall. 

b) The finalized drill-and-fill wall test 
panel. 

Figure 5.17  Photographs of the cellulose drill-and-fill wall installation at the CRRF.               
(Photo Credit: Patrick Huelman) 

After construction, this wall was monitored for 1.5 years up to the point of writing.  

This wall remained in service, and data were collected remotely in five-minute increments.  

Temperature sensors and moisture probes were located throughout the wall and a heat flux 

sensor was placed on the interior-facing surface.  Below is a diagram of this wall’s material 

layering and sensor layout.   
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Figure 5.18  A diagram of the drill-and-fill wall assembly composition and sensor layout.   

For this experiment, temperature sensors in positions 1 and 6 were utilized, alongside the 

heat flux sensor at position 1 and another thermocouple measuring indoor ambient air 

temperatures within the test bay.  T-type thermocouples were utilized, therefore an 

uncertainty of ±1.00°C was assumed (Omega Engineering, n.d.).  Similar to the Atlanta 

experimental study, a FluxTeq PHFS-09e differential thermopile was utilized to measure 

heat flux.  The PHFS-09e was used with a Campbell Scientific CR1000x 24-bit data logger.  

Propagating datalogger and sensor uncertainty for this sensor results in a heat flux 

measurement uncertainty of ±0.686 W/m2 (assuming coverage factor of k=1.96 for a 95% 

confidence interval).  
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Utilizing the data from this wall assembly, the transient performance of this assembly could 

be characterized (excluding the influence of the cedar siding, due to TC-6’s location in the 

assembly).  Temperature and heat flux data from midnight January 22, 2021 to midnight 

January 26, 2021 was utilized for the Bayesian thermal characterization.  This 

characterization was conducted utilizing 10,000 Markov chain iterations with the DRAM 

and an informative prior.  Due this assembly being of known composition, a prior for Wall 

#11 from the ASHRAE Wall database was utilized.  Additional information of the 

production of this prior can be found in Section 4.3.  The results of this characterization 

are displayed in the subsequent section. 

5.7 Experimental Thermal Characterization - Cloquet 

As previously stated, thermal data from the Cloquet drill-and-fill wall was utilized for 

thermal characterization.  48 hours of data from the start 01/22/21 to the end of 1/23/21 

was utilized for model training, then the model was evaluated utilizing 48 hours of data 

from 1/24/21 to 1/25/21.  The results of this characterization are displayed below: 
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Figure 5.19  Plotted interior heat gain from a Bayesian characterization for the Cloquet 
drill-and-fill characterization experiment. 

From the above figure, the transient characterization for the drill-and-fill wall is 

displayed.  It can be noted that the measurement data does appear to have consistent noise 

across the entire measurement period.  This noise is attributed to the on-off switching of 

the bay’s resistance heater, which was set to maintain a setpoint of 22.2°C.  Regardless of 

this noise, the characterization did fit the trend of the measured data, producing a measured-

characterization RMSE value of 1.34 (1.23, 1.45) W/m2. 

Viewing the wall’s characterization, a few things can be noted in Figure 5.19.  First off, 

the warm-up period is present but ends near the 4-hour mark, indicating this is an assembly 

with a lower thermal mass than that evaluated in the Atlanta experiment.  Additionally, this 

characterization does have issues matching the peaks and troughs of the measured heat 

flux.  This phenomenon is due to the free-floating film coefficient present on the interior 

surface of the assembly, which was computed to be approx. 4.79 W/m2-K via the 
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Summation Method.  The Atlanta experiment utilized a piece of board insulation to act as 

a stable resistive boundary condition, compared to the temperature- and environmental-

dependent film coefficient utilized here.  Regardless, the computation and application of 

an average film coefficient allows for an assembly to be characterized, however, the 

characterization may underpredict the peaks and troughs of the time-dependent heat 

transfer due to film coefficient averaging.   

Alongside the time-dependent heat flux, thermal masses and thermal resistances were 

inferred at each step of the 10,000 Markov chain iterations.  Trace plots for the parameter 

estimations are displayed in Figure 5.20. 

			

Figure 5.20  Trace plots of the Bayesian inference parameter Markov chains in the CRRF 
Drill-and-Fill characterization. 
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From Figure 5.20, the convergence of the Markov chains can be seen.  Chains for 

thermal resistance appear to begin converging near iteration #50, and chains for thermal 

mass converge near iteration #150, which is much faster than that for the Atlanta 

experiment.  This thermal resistance and thermal mass converged to values of 2.38 (2.37, 

2.39) m2-K/W and 13.7 (12.0, 15.4) kJ/m2-K, respectively.  The histogram of characterized 

thermal resistances and thermal masses can be visualized in Figure 5.21. 

	

Figure 5.21  Histograms of prior and posterior distributions of the Bayesian inference 
parameters characterized in the CRRF Drill-and-Fill wall characterization. 

From Figure 5.21, the histograms of the inferred thermal mass and thermal resistance 

values are displayed.  Based upon the shape of the histograms, it can be inferred that the 

prior and posterior thermal mass values are similar in shape and mean value.  Alternatively, 
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converging near a value of 2.38 (2.37, 2.39) m2-K/W.  This is due to minor differences in 

composition between the idealized prior distribution, Wall #11 in this case, and the real 

composition of the in-service assembly.   

Alongside the transient characterization, there is also value in comparing these results 

to the steady-state characterization.  Utilizing the summation method, the steady-state R-

value was computed to be 2.33 (2.32, 2.34) m2-K/W.  With this R-value, the steady-state 

characterization’s interior-facing heat flux was computed.  This plot is displayed in  

	

Figure 5.22  A graph of the time series measured interior-surface heat gain compared to 
the steady-state for the CRRF Drill-and-Fill assembly. 

From the above figure, the steady-state characterization for this assembly can be 
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the trend of the measured data while overpredicting some peak heat flux values and 

underpredicting others.  This is due to the absence of thermal mass; however, this 

characterization is quite strong otherwise.   

Summarizing both of the characterizations, the following table can be generated: 

Table 5.3  Tabulated thermal characterization results for tested CRRF Drill-and-Fill wall. 

Test Case 
Thermal Resistance 

(𝑅),  
m2-K/W 

Lumped Thermal 
Capacitance (𝐶>?), 

kJ/m2-K 

Ref/Model 
 RMSE, W/m2 

Ref/Model 
NRMSE, % 

“Similar” 
Assembly 
(Wall #11) 

2.17 9.40 N/A N/A 

Transient 
Characterization 2.38 (2.37, 2.39) 13.7 (12, 15.4) 1.34 (1.23, 1.45) 9.12% (8.34%, 

9.90%) 
Steady-State 

Characterization 2.33 (2.32, 2.34) N/A 2.38 (2.32, 2.45) 16.2% (15.7%, 
16.6%) 

 

5.8 Chapter Conclusion 

In conclusion, the real-world performance of the transient characterization approach 

was validated in this chapter.  This chapter displayed an experimental case study on a real 

in-service assembly; motivated the equipment selection, usage, calibration, and uncertainty 

quantification; addressed modeler inferences when testing an assembly of unknown 

composition; and validated the usage of a Bayesian inference approach to characterize 

transient thermal performance.  The equipment displayed in this chapter was selected, 

procured, and deployed to validate this research.  This equipment was funded via the 

Georgia Tech-Oak Ridge National Laboratory Collaboration seed grant, which made this 
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experiment possible.  This experiment was also made possible via the Georgia Tech 

College of Engineering, which granted access to calibration equipment to calibrate 

temperature sensors.  Post-calibration, the uncertainty of all equipment was quantified, and 

equipment was deployed on a 1920s multifamily building in Atlanta.  The composition of 

this building was inferred to possibly be a brick mass wall with minimal insulation, which 

was supported by experimental data.  Data was collected for 100 hours, and the transient 

performance of this assembly was characterized via Bayesian inference.  The thermal mass 

and thermal resistance of this assembly were measured to be 636 (554, 715) kJ/m2-K and 

0.546 (0.503, 0.595) m2-K/W, respectively. These values are unlike any assembly present 

in the ASHRAE wall database, which suggests that there may be a deficiency in the 

database’s entries related to existing, insulation-deficient assemblies.   

To further validate this methodology, a low-mass, insulated assembly was 

characterized in Cloquet, Minnesota.  This assembly was characterized in late January 

2021in the depths of the Minnesota winter.  This drill-and-fill assembly was built as an in-

service test panel at the University of Minnesota Cloquet Residential Research Facility 

(CRRF) in collaboration with Pacific Northwest National Laboratory and Oak Ridge 

National Laboratory.  Utilizing this sensor data, this assembly was characterized with an 

RMSE value of 2.38 (2.32, 2.45) W/m2 during the 48-hour validation period.  Thermal 

resistance and thermal mass were characterized to be 2.38 (2.37, 2.39) m2-K/W and 13.7 

(12.0, 15.4) kJ/m2-K, respectively.  These inferred thermal properties are near the 

expectation for the assembly, which was thought to be similar to ASHRAE Wall #11 in 

thermal performance.   
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While this chapter focused primarily on the technical aspects of these findings, there is 

a significant impact associated with this experimental work.  These experiments confirm 

the validity of transient thermal characterization, allowing for confidence in utilizing this 

methodology in a variety of field applications under the influence of diverse weather 

conditions.  Whether this is applied to a low mass or a high mass assembly in a hot or cold 

climate, this methodology displayed the potential to characterize transient thermal 

performance.  This methodology performs under uncertainty with real sensor data, 

allowing for thermal mass to be captured alongside thermal resistance in R-value testing to 

gather a better understanding of as-built assembly performance.   
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CHAPTER 6: PREDICTING ASSEMBLY CONSTRUCTION FROM 

IN-SITU CHARACTERIZATION RESULTS 

With 50% of the aging US building stock constructed before 1980 (IEA, 2019), there 

are a significant number of buildings requiring energy retrofits in the coming future.  

Throughout this dissertation, transient thermal characterization has been posed as a 

solution to better understand in-situ envelope performance.  This methodology, based upon 

that of ASTM C1155, has been proposed, verified, and validated in previous chapters; 

however, thermal characterization does fall short of providing information related to the 

assembly’s materiality.  While thermal characterization does have applicability to generate 

model inputs for thermal modeling, Building Energy Modeling (BEM), or retrofit decision 

making, this testing data can serve another purpose—classification.  Machine Learning 

(ML) classification algorithms, such as K-nearest neighbors (KNN) (Altman, 1992), 

random forests (Breiman, 2001), and neural networks (Wan, 1990), can be utilized to 

correlate parameters to classes, which can be adapted for application in building envelopes.  

Research utilizing ML classification algorithms in the building sector is becoming more 

popular in the building industry; however, the bulk of these applications are mostly 

relegated to computer vision and geometry reconstruction applications (K. Chen, Reichard, 

Akanmu, et al., 2021; K. Chen, Reichard, Xu, et al., 2021; Deeb & LeWinter, 2018; Park 

& Guldmann, 2019; Rakha et al., 2018).  While geometry reconstruction and feature 

recognition do provide context to a building’s structure, these advances are limited when 

predicting the detailed composition inside of an envelope assembly. 
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Presently, there are a few methods to gather information on an envelope assembly—

(1) destructive testing  (Jasiński et al., 2019; Liñán et al., 2015), (2)  thermography (Barreira 

& de Freitas, 2007; Garrido et al., 2022; Taylor et al., 2014), and (3) ultrasound or 

penetrating radar techniques (Dhekne et al., 2018; El Masri & Rakha, 2020; Liñán et al., 

2015; Protiva et al., 2011; Sévigny & Fournier, 2017).  The non-destructive methods of 

infrared thermography and radar-based techniques display promise of identifying wall 

structure (e.g. stud patterns and structural members can be identified); however, these 

techniques provide no context on the layering of individual materials or thermal 

performance of the assembly.  Currently, the only method to identify materiality of 

assemblies is via destructive testing, such as sample drilling or borescope drilling.  The 

major downside of this approach is its destructive nature, where testing requires damaging 

the assembly.  Each of these modern testing techniques can provide some form of context 

on an assembly or structure, but at that time of writing this paper, no modern in-situ testing 

techniques can provide material layering detailing for an envelope assembly.  ML can be 

utilized alongside in-situ thermal testing to infer assembly make-up.  Measured thermal 

resistance values, along with effective assembly thermal capacitance values measured from 

transient thermal characterization, can be leveraged alongside ML techniques to infer 

assembly make-up.  The details of this procedure will be described in subsequent sections.   

6.1 Classification Framework 

This chapter proposes a proof-of-concept methodology to infer the materiality of a 

building envelope assembly from in-situ testing data.  This framework utilizes effective 
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thermal metrics computed via in-situ envelope characterization to classify an assembly’s 

materiality. Figure 6.1 showcases the proposed methodology’s framework below. 

	

Figure 6.1  The proposed methodology framework for construction inference from in-situ 
thermal data.    

	

From Figure 6.1, the proposed classification framework is displayed.  This framework 

has three major stages: (1) thermal characterization, (2) classification, and (3) interpretation 

of results.  This methodology specifically utilizes in-situ thermal data, namely effective 

thermal resistance and effective thermal mass, alongside a visual indication of assembly 

cladding, to infer the materiality of the candidate assembly.  This model is built such that 

the input thermal resistance and thermal mass can be stochastic or deterministic, with 

stochastic inputs of N size producing N number of classifications and deterministic inputs 

producing singular, deterministic outputs.  From there, the N outputs can be presented as 

percentages, which can be examined and grouped to infer the assembly’s construction 

make-up.   
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6.1.1 Classification Model and Model Training Data 

For the task of mapping input data to a classification, many multi-dimensional 

classification algorithms can be utilized.  When accounting for the categorical data for 

cladding, alongside the thermal resistance and thermal mass features, this becomes a 

mixed-feature classification problem, which narrows the number of applicable 

classification algorithms.  Support vector machines, neural networks, decision trees, and 

KNN algorithms are examples of classification algorithms that can be applied to this 

problem.  For this proof-of-concept model, a KNN classifier will be utilized for its ease of 

computation and easy model interpretation for this proof-of-concept work.  

To train the classification model, an input dataset is required.  This dataset must be 

representative of the diverse set of in-service assemblies in the built environment, such that 

most assemblies which a user may interact with should be present in the training dataset.  

For this work, the ASHRAE wall database present in Table 16 and Table 18 in the 

ASHRAE Handbook of Fundamentals: Chapter 18 (ASHRAE, 2021) was utilized as a 

starting point.  The ASHRAE Fundamentals database is a collection of typical new 

construction wall assemblies with their associated material layering and material thermal 

properties.  In total, 66 wall assemblies are represented in this database.  Two examples of 

wall assemblies from this database are displayed in Table 6.1.   
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Table 6.1  Two example assemblies with layer IDs from the ASHRAE Fundamentals 
Assembly Database. 

Layer 
Number 

(Ext. to Int.) 
Wall #13 Wall #63 

1 25mm Stucco 
(F07) 

200mm 
Heavyweight 

Concrete (M15) 

2 
13mm 

Fiberboard 
Sheathing (G03) 

89mm Batt 
Insulation (I04) 

3 89mm Batt 
Insulation (I04) 

89mm Batt 
Insulation (I04) 

4 16mm Gypsum 
Board (G01) 

16mm Gypsum 
Board (G01) 

From Table 6.1, two example wall assemblies, Wall #13 and Wall #63, from the 

ASHRAE Fundamentals assembly database are shown.  The layer ID located in 

parentheses should also be noted, as these layer IDs correspond to a list of material thermal 

properties based on ASHRAE Fundamentals Chapter 26 material data.  In total, this 

assembly database comprises 66 typical wall assemblies which range from stud walls to 

CMU and tilt-up concrete constructions.   

While the ASHRAE fundamentals database provides a diverse set of wall assemblies 

to train the classification model with, there is a major limitation of this dataset—this 

assembly database is designed for new construction applications.  Because of this dataset’s 

application towards new construction, uninsulated or historic constructions are not 

represented in the dataset.  This omission can potentially be a challenge, as 42% of 

residential wall assemblies in the United States are uninsulated (National Renewable 
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Energy Laboratory, 2019).  Due to this, there is a high likelihood that one may encounter 

assemblies not represented in the ASHRAE Fundamentals assembly database.   

To address this shortcoming, 19 additional wall constructions were generated and 

appended to the ASHRAE Fundamentals assembly list.  These additional assemblies were 

designed to represent assemblies typically found in in-service buildings including: 

• Uninsulated structural masonry walls. 

• Uninsulated non-structural masonry walls. 

• Uninsulated stud cavity walls. 

• Stud walls with continuous insulation. 

Each of these additional assemblies is composed of materials from the ASHRAE 

Fundamentals material list, so no additional materials were added to the database.  In total, 

the edited construction dataset comprised 85 wall constructions, which are intended to 

represent a majority of constructions that would be encountered in a retrofit scenario.   

With the 85 assembly classes identified, the effective thermal resistance and effective 

thermal capacitance of each assembly were required for model training and testing.  To 

address this, each of the 85 assemblies was simulated in EnergyPlus for the TMY3 weather 

file of Atlanta, Georgia, and characterized utilizing Bayesian inference.  To generate 

distinct training and testing datasets, walls were characterized during two different periods: 

(1) during the simulated first week of April, and (2) during the simulated second week of 

December.   
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For the two seasons, each assembly was stochastically characterized, providing 2,000 

samples of effective thermal resistance and thermal capacitance for each of the 85 

assemblies.  These characterizations serve as a synthetic dataset since the model will be 

trained and evaluated based upon physics-based modeling simulating the real world.  A 

scatter plot of each of the characterized effective thermal resistance and effective thermal 

mass values for each of the 85 assemblies are plotted in Figure 6.2.  It should be noted that 

each shape and color corresponds to an individual assembly, with 2,000 data points plotted 

for each of the 85 assemblies.  These were then separated into two datasets for model 

training and validation. 

	

	
Figure 6.2  A scatter plot of thermal mass and thermal resistance values for the wall 

assembly dataset.    

 

 

 

 

 

0 1 2 3 4 5 6
Effective Thermal Resistance (W/m2-K)

0

200

400

600

800

1000

Ef
fe

ct
iv

e 
Th

er
m

al
 M

as
s 

(k
J/

m
2 -K

)

Wall Database Thermal Characteristics



124 

 

6.2 Model Training and Testing 

6.2.1 Dataset Preparation 

As previously mentioned, effective thermal resistance, effective thermal capacitance, 

and material information from visual inspections will be utilized within the classification 

model.  Thermal resistance and thermal capacitance will be input into the model as numeric 

features, both of which differ greatly in magnitude.  Due to the difference, both features 

were scaled via standard score normalization, also known as a z-score normalization.  The 

equation for this scaling is shown below: 

	 𝑦� =
𝑦 − 𝜇(𝑦)
𝜎(𝑦) 	 ( 55 ) 

Where 𝑥 is a numeric feature, 𝜇(𝑦) is the mean of feature’s sample, 𝜎(𝑦) is the standard 

deviation of feature’s sample, and	𝑦i is the standard score normalized feature.  The 

normalization can be applied to both of the numeric features, allowing for scaling of these 

features to be of similar orders of magnitude.  Feature scaling is especially important for 

distance-based algorithms such as KNN, where differing orders of magnitude between 

features can skew results and bias the model toward higher magnitude features.   

Alongside numeric features, a categorical feature corresponding to cladding material 

was also utilized in the model.  The goal of this feature is to encode information of an 

assembly’s cladding material into the classification algorithm.  This information can be 

easily determined via a photograph or visual inspection of the assembly.  This feature is 

meant to distinguish relevant assemblies from irrelevant assemblies based upon cladding 
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material.  For example, if a wall with a brick cladding is instrumented, tested, and 

classified, the classification algorithm should logically not suggest that the assembly is 

constructed with wood siding.  Encoding the exterior cladding information allows for the 

model to implicitly reduce the number of potential assemblies, which is especially 

important in the highly populated region of thermal mass values below 150 kJ/m2-K as 

displayed in Figure 6.2. 

To encode categorical features such as cladding material in a format usable for a 

machine learning algorithm, special care must be taken. The cladding feature is a 

categorical, non-ordinal feature, so the popular One-Hot Encoding (OHE) method was 

utilized to encode categorical variables into numeric data (W. Chen, 2016).  OHE operates 

by transforming a list of N unique categories and M samples into a matrix of size M-by-N 

where every column corresponds to a specific category.  When a category is selected for a 

given sample, that specific category will be denoted with a one, and all other categories 

will be zeros.  An example of the OHE is shown in Table 6.2.   

Table 6.2  An example visualization of One-Hot Encoding (OHE) for usage on 
categorical features. 

Baseline Categorical 
Variable  One-Hot Encoded Dummy Variable 

 Cladding 
Category   “Brick” “Wood 

Siding” “Stucco” 

Sample 1 “Brick” 

® 

Sample 1 1 0 0 

Sample 2 “Wood 
Siding” Sample 2 0 1 0 

Sample 3 “Stucco” Sample 3 0 0 1 

Sample 4 “Brick” Sample 4 1 0 0 

6.2.2 Model Selection and Training 
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The KNN classification model that was utilized in this study is considered to be a lazy 

learner, as it does not learn from training data, but instead evaluates new model inputs 

against the training data for classification.  In short, KNN calculates the distance between 

the candidate data and every datapoint within the training set.  Once every distance is 

computed, the distances and their associated class labels are ordered from nearest to 

farthest, and the mode label of the first K-nearest data points is reported.  One large 

advantage of KNN is that the model is explainable.  Model parameters such as the distance 

function and the K-number of nearest neighbors can be tuned to increase KNN accuracy.  

To address modeler bias in model tuning, MATLAB’s built-in hyperparameter optimizer 

was utilized to identify the optimum distance metric and best number of neighbors for the 

spring synthetic training dataset.  The results of this model training and parameter tuning 

are shown in Table 6.3. 

	 	

a) The hyperparameter solution space. b) A graphical display of the hyperparameter 
optimizer’s convergence.   

Figure 6.3  Two graphs displaying the hyperparameter optimization for the KNN model. 
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any number of neighbors below 15 for these three distance metrics also produced similar 

results.  This phenomenon is also shown in the asymptotic present after evaluation number 

6 in the classification error versus evaluation number graph.  While results were similar for 

these three metrics, the hyperparameter optimizer’s best-observed parameter pair is that of 

a standardized Euclidean distance metric with 11 nearest neighbors.  Because this 

parameter set was the optimum value, this set was selected for the proof-of-concept model 

evaluation and deployment.  

6.2.3 Model Testing 

With the model trained and optimized on the spring dataset, the model was evaluated 

on the winter dataset for testing.  This testing dataset comprised 85,000 testing samples, 

with 1,000 occurrences of each of the 85 walls simulated in EnergyPlus and characterized 

for winter climatic conditions.  To evaluate model performance, the results of this testing 

set were evaluated via the standard metrics of Precision, Recall, and the F1-Score, which 

is also known as the Sørensen–Dice coefficient (Dice, 1945).  The equations for each of 

these testing metrics are shown in Eq. 56–58. 

	 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐶𝑜𝑟𝑟𝑒𝑐𝑡	𝐶𝑙𝑎𝑠𝑠	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐶𝑙𝑎𝑠𝑠	𝑆𝑎𝑚𝑝𝑙𝑒𝑠 	 ( 56 ) 

	 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐶𝑜𝑟𝑟𝑒𝑐𝑡	𝐶𝑙𝑎𝑠𝑠	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐶𝑙𝑎𝑠𝑠	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 	 ( 57 ) 

	 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2	 × 	𝑅𝑒𝑐𝑎𝑙𝑙	 × 	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

	 ( 58 ) 

From the above equations, the F1-score can be computed.  It should be noted that the 

class macro-averaging scoring approach is utilized due to the large number of classes 

present in this classification model.  The results of this testing are shown in Table 6.3. 
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Table 6.3  Testing performance metrics for the KNN classification model. 

Metric Macro-Averaged 
Score (%) 

Standard Deviation 
of Score (%) 

Precision 95.8% 18.7% 

Recall 94.1% 20.6% 

F1-Score 94.6% 19.5% 

Table 6.3 showcases testing metric scores.  It should be noted that all scores lie near an 

average value of approximately 95%, indicating robust model performance for the testing 

set.  While the testing set scoring metrics display strong performance, the non-zero standard 

deviation of scores suggests the occurrence of misclassification.  For example, the F1-

score’s standard deviation of 19.5% indicates that there are discrepancies in F1-scores 

between classes.  When viewing these classification results in detail, it can be seen that 3 

classes are never predicted by the model.  While these misclassifications are technically a 

problem, these misclassifications are not drastically impactful from a practical 

perspective—e.g. two walls contain the same materials yet one wall has an air space and 

the other does not, or two similar walls with two inches of continuous insulation are 

misclassified a similar wall with a double stud construction rather than continuous 

insulation.  Regardless of these discrepancies in three classes, the model fulfills the goal of 

classifying the general construction of an assembly.   

6.3 Classification Model Spot Validation 

With the model being trained and tested on synthetic datasets, it is important to validate 

the classification model with real-world data.  To validate the classification model’s 
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performance, the characterization results from the Atlanta case were utilized.  A photo of 

the Atlanta wall assembly is shown in Figure 6.4.   

 

Figure 6.4  A photograph of the Atlanta case study wall.    

This building was constructed around 1920 in Atlanta, Georgia, and was confirmed to 

be an uninsulated, brick mass wall via a previous renovation within the unit.  This wall was 

instrumented with temperature sensors on the interior and exterior surfaces of the assembly, 

and an additional heat flux sensor was installed on the interior-facing surface of the wall.  

100 hours of thermal data were recorded from the in-service assembly between 3/28/2021 

and 4/1/2021, and this data was utilized to characterize the thermal properties of the 

assembly via Bayesian inference.  The thermal performance of this assembly was 

characterized with a measured/simulation RMSE value of 0.624 W/m2 over 100 hours.  A 

histogram of the characterized effective thermal resistance and effective thermal 

capacitance values for the assembly are displayed in Figure 6.5. 
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Figure 6.5  Histograms of the characterized thermal resistance and thermal mass for the 
Atlanta wall.    

From Figure 6.5, it can be noted that the assembly was characterized to have a mean 

thermal resistance of 0.546 W/m2-K with a standard deviation of 0.0294 W/m2-K and a 

mean thermal capacitance of 636 kJ/m2-K with a standard deviation of 43.7 kJ/m2-K.  This 

assembly was characterized via 10,000 Markov chain iterations, allowing for 10,000 

discrete predictions of assembly composition.  Utilizing this data alongside the cladding 

information, which was identified as brick via visual inspection, this assembly was 

classified via the proof-of-concept KNN classification model.  Each of the Markov chain 

iterations was input into the classification model, which produced 10,000 predictions for 

the assembly’s composition.  The results of this classification are shown in Table 6.4. 
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Table 6.4  Assembly classification predictions for the Atlanta brick wall. 

Wall ID Percentage of 
Predictions (%) 

Wall #72 98.0% 
Wall #71 1.70% 
Wall #70 0.300% 

From these results, all of the Markov chain iterations were classified to be a brick mass 

wall, with Wall #70 being two bricks thick, Wall #71 being three bricks thick, and Wall 

#72 being four bricks thick.  In short, these predictions all suggest that this assembly is an 

un-insulated brick mass wall.  This prediction aligns with the ground truth information 

provided via the building manager, thus verifying the real-world validity of this KNN 

assembly classification algorithm.    

6.4 Chapter Conclusion 

In conclusion, the composition of building envelope assemblies can be predicted via 

in-situ thermal data and basic material identification.  This paper developed an assembly 

dataset and proposed, trained, tested, and validated a proof-of-concept K-nearest neighbors 

classification model to predict wall assembly material composition via effective thermal 

resistance, effective thermal mass, and cladding material identification.  This classification 

model was trained and tested to produce an average F1-score of 94.6% via synthetic 

datasets generated from physics-based simulation.  This model was then verified via 

characterization of a 1920s mass wall that was tested in Atlanta, Georgia, where it correctly 

classified a 100-year-old, in-service wall assembly.  This classification further suggests 

that this classification model has real-world validity with the potential to be deployed 

alongside current state-of-the-art in-situ thermal measurement techniques.  This work 
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enables retrofit stakeholders and decision-makers to non-destructively assess the make-up 

of in-service assemblies to inform envelop retrofit decisions, all without damaging or 

disturbing the assembly. 

For future work, this classification model should be further evaluated to identify 

additional features or sources of data that may increase its performance and usability for 

non-technical audiences.  Furthermore, work should be conducted to identify alternative 

classification algorithms, such as neural network or deep learning-based approaches which 

may provide additional value above the simplistic K-nearest neighbors approach utilized 

in this work.  Finally, additional work should be conducted to guarantee the validity of this 

methodology in diverse climatic conditions with differing construction types.  

  



133 

 

CHAPTER 7: CONCLUSION 

In conclusion, the US building stock is aging and few existing buildings are renovated 

or retrofitted annually.  To enable retrofits, in-situ thermal testing, like R-value testing, can 

be employed to understand and model the thermal performance of an in-service assembly.  

One limitation of steady-state R-value testing is the omission of thermal mass, which 

causes modeling discrepancies of up to 27.3% for low mass assemblies and up to 52.4% 

for high mass assemblies when ignored.  To support the characterization of thermal mass 

alongside thermal resistance testing, a methodology adapted from ASTM C1155’s Sum of 

Least-Squares technique was proposed utilizing Bayesian inference and transient finite 

element heat transfer modeling.  This methodology was verified via EnergyPlus 

simulations and validated via two real-world case studies on in-service wall assemblies.  

Transient thermal characterization allows for an existing assembly of unknown 

composition to be characterized and modeled in a non-destructive manner without 

disturbing the assembly.  This characterization data can additionally be utilized with 

machine learning classification algorithms, such as K-nearest neighbors classifiers, to 

predict an assembly’s composition and material makeup via characterized thermal mass, 

characterized thermal resistance, and the cladding material of the assembly.  This 

characterization framework was verified via testing on a synthetic dataset with an average 

F1-Score of 94.6% and was validated via the previously mentioned real-world case study 

that occurred in Atlanta, Georgia.  This work represents a comprehensive body of work 
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related to in-situ transient thermal characterization and applications of this data to further 

inform non-destructive evaluation of building envelopes and enable envelope retrofits.   

7.1 Research Questions Revisited 

Alongside the developments made in transient characterization and assembly 

classification, this dissertation also set out to answer a series of questions.  Each of these 

questions has been implicitly answered in respective chapters or case studies, but the 

answers to each are as follows: 

1) Which methods apply to this compute the effective thermal properties of an existing 

building envelope assembly? 

Through the literature survey present in Chapter 2, multiple thermal characterization 

and heat transfer calculation methods were evaluated.  Two standards governing this 

practice are ASTM C1155 and ISO 9869-1.  Both standards focus on an identical method 

for calculation of thermal resistance titled the “Summation Method” in ASTM C1155 and 

the “Average Method” in ISO 9869-1.  Outside of this method prioritized in both standards, 

ASTM C1155 presents the “Sum of Least Squares Technique”, which is an inverse 

problem approach to compute the effective thermal resistance and effective thermal 

capacitance of a single-material homogeneous layer with equivalent thermal performance 

to a complex, multi-layered envelope assembly.  This method is strong as it computes 

thermal resistance and thermal capacitance rather than coefficients or correction factors 

representing an assembly.  While this method is strong, the SLS method requires that 

sensors be built or probed inside of an assembly based upon the parameterization of the 
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heat transfer problem as proposed by the method.  Building upon the SLS method, it is 

possible to pose this heat transfer problem to allow for thermal characterization without the 

need for sensors to be located inside of the assembly.   

Outside of the standards governing thermal characterization, an abridged review of 

approaches to simulate transient conduction was also conducted.  For all of the methods 

reviewed, transient finite element heat transfer modeling stood apart, striking a balance 

between execution time, accuracy, and inverse modeling potential.  This does not 

necessarily mean that this algorithm is the best heat transfer algorithm, but instead means 

that the finite element method is best suited for inverse modeling of envelope thermal mass 

and thermal resistance in a 1-dimensional space.   

2) Can the sensors and methods from the state-of-the-art methods be utilized to non-

destructively infer thermal mass and thermal resistance? 

ASTM C1155’s sum of least squares method utilizes heat flux sensors and two 

temperature sensors to characterize the effective thermal resistance of an assembly.  One 

issue with this method is that “Compare [temperatures and heat fluxes] to measurements 

at the interior nodes where independent measurements are available.”  This means that the 

ASTM C1155 SLS method requires temperature and heat flux sensors to be located inside 

of the assembly, presumably installed during construction or via destructive 

instrumentation. 

To address this issue with the ASTM C1155 SLS method, the problem was 

reformulated from a heat transfer problem with two temperature boundary conditions to a 



136 

 

1D heat transfer problem with one temperature boundary condition and one convective 

boundary condition.  This approach is summarized in Figure 3.5.  The advantage of this 

approach is that an assembly can be characterized by placing temperature and heat flux 

sensors on its surfaces, as opposed to located sensors inside of the assembly.  One major 

disadvantage of this approach is that convection, or film coefficient, on the interior surface 

of the assembly now must be known; however, this coefficient can be approximated via 

ASTM C1155’s summation method or ISO 9869-1’s average method.   

3) How can the proposed inverse modeling approach be verified against existing simulation 

workflows and validated for field deployment? 

This inverse modeling approach was validated via EnergyPlus simulations of two 

multi-layered envelope assemblies.  These two assemblies were characterized with mean 

RMSE values of 0.308 (0.136, 0.688) W/m2 and 0.229 (0.149, 0.435) W/m2, respectively.  

Additionally, characterized effective thermal resistances were within 1% of that which was 

modeled in the simulation.   

To verify this inverse modeling approach, two case studies were conducted on in-

service assemblies to verify real-world performance.  The first case study was conducted 

on a wall assembly within a 1920s multifamily building located in Atlanta, Georgia.  This 

experiment utilized calibrated equipment to measure temperatures and heat flux values for 

the 100-year old mass wall assembly, and the assembly was characterized with 48 hours of 

training data and produced a simulation/measured RMSE value of 0.805 (0.475, 1.30) 

W/m2 over the 48-hour validation period.  A second case study was undertaken through an 
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independent dataset provided by Pacific Northwest National Laboratory.  This dataset was 

collected from a stud wall test panel insulated with drill-and-fill blown cellulose insulation 

in Cloquet, Minnesota.  This assembly was characterized with 48 hours of training data 

and produced a simulation/measured RMSE value of 1.34 (1.23, 1.45) W/m2 over the 48-

hour validation period.  With these two experiments occurring in two differing climates 

(mixed-humid and very cold) and the two assemblies characterized differing drastically in 

composition (100-year old mass brick wall versus a newly-constructed insulated stud wall), 

these results suggest that this transient characterization methodology does have real-world 

validity.  Additional testing should be conducted in other climates to further confirm the 

real-world validity of the method.   

4) How long must an assembly be instrumented with sensors to infer thermal mass and 

thermal resistance? 

To answer this question, 66 different wall assemblies were modeled and characterized 

with variable amounts of training data.  These 66 assemblies were exacted from ASHRAE 

Fundamentals Chapter 18: Nonresidential Cooling and Heating Load Calculations.  This 

chapter includes a list of typical building envelope materials, thermal properties of each 

material, and a list of 66 typical new construction wall assemblies designed to represent a 

majority of new construction wall assemblies in the western world.  Each of these 

assemblies was simulated in EnergyPlus and characterized with time series training data 

spanning from 1 hour to 96 hours of data with a 48-hour validation dataset.  Each of these 

assemblies was characterized, and it was found that the lower 95th percentile of data 

required was approximately 48 hours of training data for this simulation case study.  These 
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results suggest that sensors should log a minimum of 48 hours of in-situ thermal data to 

characterize an assembly.  In practice, this is the functional minimum of data required—It 

is suggested that a validation dataset also be recorded to confirm the validity of the transient 

characterization. 

5) What is the impact of thermal mass on envelope heat transfer, and is it required that thermal 

mass be measured alongside thermal resistance? 

To address this question, the computed normalized root-mean-squared error values for 

each of the four characterization trials were analyzed.  In each of these trials, transient and 

steady-state characterizations were conducted and characterization/reference NRMSE 

values were computed for each characterization.  Across all four characterized assemblies, 

NRMSE was on average 3.06x larger for the steady-state characterizations compared to the 

transient characterizations.  This steady-state/transient characterization error also appeared 

to become larger with more thermally-massive assemblies, with the lowest mass assembly 

having a steady-state error 1.28x larger than transient error, and the highest mass assembly 

having a steady-state error 4.83x larger than the transient characterization.  These findings 

suggest that ignoring thermal resistance does have an impact on modeled thermal 

performance, even in assemblies traditionally thought of as being “low mass”. 

6) Can the measurement of thermal mass and thermal resistance be made beneficial to those 

without the specialized knowledge to simulate transient heat transfer?   

In Chapter 6, a proof-of-concept machine learning methodology was proposed to 

classify assembly composition from effective thermal resistance, effective thermal mass, 
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and the cladding material of an assembly.  This classification model was trained and tested 

via a synthetic dataset generated via EnergyPlus simulations.  This proof-of-concept 

methodology was designed to utilize the K-nearest neighbors classifier and produced a 

macro-averaged F1-score of 94.6%.  This model was also applied to the Atlanta 

experiment, where the machine learning model predicted the assembly’s composition as 

being 77.6% an un-insulated structural brick mass wall and 22.4% an insulated structural 

brick mass wall.  These results align with the assembly’s true composition, which is an 

uninsulated structural brick with a plaster interior surface finish.   

While the machine learning approach displayed in Chapter 6 is a proof-of-concept, this 

machine learning application displays the potential to develop into an innovative approach 

to non-destructively characterize an assembly’s composition via thermal testing.  

Significant further work should be conducted to improve the machine learning algorithm’s 

performance, and additional in-situ testing data will be required to transition the model’s 

training dataset from a synthetic dataset to one informed by physical testing of diverse 

assemblies across diverse climatic conditions.   

7.2 Future Work 

Due to the scope of this work, future work can take many forms.  First, additional work 

should be conducted to apply the thermal characterization workflow to envelope defects, 

such as thermal bridging or moisture-laden assemblies.  It is believed that this approach 

can be applied to these assemblies, but defects and their vast multi-dimensional complexity 

were deemed outside of the scope of this work.  This work should be first conducted via 
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test panels with known defects, then evaluated within the field on real deteriorating or 

failing envelope assemblies. 

Secondly, additional work should be conducted to bolster the classification model 

proposed within Chapter 6.  This KNN classification model was designed to be a proof-of-

concept approach to classify assembly materiality; however, additional work should be 

conducted to generate datasets based upon real data as opposed to the synthetic dataset 

utilized to train and test the model.  Additionally, the KNN model was selected due to its 

ability to be explained, not based on its performance.  KNN is considered to be a “lazy 

learner” and does not actually learn any information from the training data; instead, KNN 

simply classifies based upon the nearest datum from the training set.  Because KNN does 

not actually learn from data, it is suggested that this problem be revisited via a sophisticated 

classification approach that does learn and identify patterns through data.    

Thirdly, the thermal characterization method proposed within the dissertation is a 

physics-based model which informs a Bayesian inference algorithm for parameter 

estimation.  Future work should be conducted to approach this problem from a deep 

learning point of view.  Utilizing early developments in model-free methods, it may be 

possible to identify effective thermal resistance, effective thermal capacitance, and 

assembly materiality via deep learning or a combination of mixed-fidelity modeling to 

remove the need for the computationally costly Bayesian inference approach.  

Additionally, future research should be conducted to replace the transient finite element 

heat transfer model with a data-driven model rather than a physics-based model, which 

would drastically speed up execution times while still maintaining usage of the Bayesian 
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inference workflow.  Examples of these types of data-driven modeling approaches can be 

found within the field of computation finance, where governing equations for underlying 

phenomena are often unknown.   

Finally, future work should be conducted to apply this thermal characterization 

workflow in the field to identify how it can add value to building audits and retrofits.  As 

discussions on how to address our aging, poorly-performing building stock are on-going, 

the need to understand the in-situ thermal performance of our building’s envelopes will 

continue to become more important.  
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APPENDIX A:  EFFECTIVE THERMAL PROPERTIES OF ASHRAE 

FUNDAMENTALS WALL ASSEMBLIES 

After characterizing every wall assembly in the ASHRAE Handbook of Fundamentals 

wall database, it was noted that the resulting characterization information can be utilized.  

Every wall was characterized stochastically via Bayesian inference, which produces a 

distribution thermal resistances and thermal masses (via Markov chains).  This data can 

potentially serve as a prior distribution database, where the user makes an inference 

regarding a wall’s composition and selects the wall from the database that most closely 

represents their expectation of the wall’s composition.  The list of characterized thermal 

masses and thermal resistances are tabulated below. 

Table A.1  A table of stochastic effective thermal properties for all walls in the ASHRAE 
Fundamentals Wall Database. 

Wall ID 

Mean Effective 
Thermal 

Resistance, 
m2-K/W 

Standard 
Deviation of 

Effective Thermal 
Resistance, 

m2-K/W 

Mean Effective 
Thermal 

Capacitance, 
kJ/m2-K 

Standard 
Deviation of 

Effective Thermal 
Capacitance, 

kJ/m2-K 

Wall #1 2.14 2.42E-02 15.2 0.932 

Wall #2 3.82 4.42E-02 16.7 0.189 

Wall #3 2.12 4.87E-03 38.5 3.82 

Wall #4 3.87 1.27E-02 57.0 2.92 

Wall #5 3.74 1.30E-02 2.43 0.491 

Wall #6 3.79 1.86E-02 16.8 0.29 

Wall #7 2.08 1.23E-02 35.1 1.03 

Wall #8 3.94 1.92E-02 53.9 6.37 

Wall #9 2.10 1.08E-02 15.7 2.45 
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Wall ID 

Mean Effective 
Thermal 

Resistance, 
m2-K/W 

Standard 
Deviation of 

Effective Thermal 
Resistance, 

m2-K/W 

Mean Effective 
Thermal 

Capacitance, 
kJ/m2-K 

Standard 
Deviation of 

Effective Thermal 
Capacitance, 

kJ/m2-K 
Wall #10 3.87 1.94E-02 15.4 0.46 

Wall #11 2.19 3.21E-02 19.2 0.684 

Wall #12 3.98 1.63E-02 17.4 0.246 

Wall #13 2.13 8.54E-03 16.8 2.37 

Wall #14 3.94 1.42E-02 16.1 0.244 

Wall #15 1.32 1.22E-02 23.7 1.06 

Wall #16 2.17 1.54E-02 23.6 0.396 

Wall #17 2.95 6.10E-02 21.0 1.31 

Wall #18 4.65 2.98E-02 19.6 0.536 

Wall #19 1.73 7.33E-03 126 3.81 

Wall #20 2.55 5.30E-03 113 0.81 

Wall #21 1.56 4.95E-03 46.3 2.89 

Wall #22 2.40 9.43E-03 39.7 1.17 

Wall #23 2.35 4.20E-03 33.1 0.601 

Wall #24 4.13 2.29E-02 26.6 1.65 

Wall #25 3.18 1.42E-02 33.8 0.364 

Wall #26 5.69 5.11E-02 29.4 1.24 

Wall #27 1.53 3.08E-03 126 0.933 

Wall #28 2.32 1.15E-02 102 2.13 

Wall #29 2.61 7.77E-03 80.8 1.60 

Wall #30 4.37 1.65E-02 55.1 1.14 

Wall #31 1.40 4.90E-03 215 4.49 

Wall #32 2.18 1.01E-02 174 3.40 

Wall #33 1.21 3.83E-03 190 3.25 

Wall #34 1.98 1.26E-02 146 3.42 
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Wall ID 

Mean Effective 
Thermal 

Resistance, 
m2-K/W 

Standard 
Deviation of 

Effective Thermal 
Resistance, 

m2-K/W 

Mean Effective 
Thermal 

Capacitance, 
kJ/m2-K 

Standard 
Deviation of 

Effective Thermal 
Capacitance, 

kJ/m2-K 
Wall #35 1.77 3.86E-03 299 3.93 

Wall #36 2.58 1.23E-02 258 5.51 

Wall #37 1.51 5.19E-03 647 9.73 

Wall #38 2.31 9.58E-03 647 9.73 

Wall #39 2.37 9.12E-03 228 3.60 

Wall #40 4.23 1.65E-02 141 2.17 

Wall #41 2.31 4.49E-03 40.8 0.890 

Wall #42 4.20 1.35E-02 32.0 0.428 

Wall #43 2.69 2.81E-02 54.2 8.14 

Wall #44 4.42 2.46E-02 39.3 2.14 

Wall #45 2.12 8.12E-03 46.0 2.00 

Wall #46 3.88 6.36E-02 35.0 10.8 

Wall #47 0.794 9.61E-04 81.9 0.464 

Wall #48 1.05 4.36E-03 92.1 0.600 

Wall #49 1.33 5.64E-03 152 5.39 

Wall #50 1.30 7.45E-03 43.3 2.49 

Wall #51 2.15 2.32E-02 34.5 0.439 

Wall #52 2.10 3.30E-03 33.8 0.645 

Wall #53 3.98 1.67E-02 26.8 1.41 

Wall #54 2.01 1.06E-02 122 2.60 

Wall #55 3.43 3.38E-02 92.1 3.56 

Wall #56 1.36 2.10E-03 283 3.38 

Wall #57 2.15 6.23E-03 235 2.63 

Wall #58 2.30 6.15E-03 74.8 1.37 

Wall #59 4.03 1.06E-02 47.8 0.722 
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Wall ID 

Mean Effective 
Thermal 

Resistance, 
m2-K/W 

Standard 
Deviation of 

Effective Thermal 
Resistance, 

m2-K/W 

Mean Effective 
Thermal 

Capacitance, 
kJ/m2-K 

Standard 
Deviation of 

Effective Thermal 
Capacitance, 

kJ/m2-K 
Wall #60 1.87 6.29E-03 396 4.54 

Wall #61 4.62 3.35E-02 992 8.41 

Wall #62 2.00 3.26E-03 47.6 0.998 

Wall #63 3.78 2.20E-02 36.6 3.21 

Wall #64 3.33 1.30E-02 55.8 2.40 

Wall #65 6.71 3.65E-02 71.6 2.91 

Wall #66 0.159 1.19E-04 622 1.06 
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APPENDIX B:  SUPPLIMENTS TO THE ASHRAE 

FUNDAMENTALS WALL DATASET 

When designing a dataset to classify assemblies from their effective thermal mass and 

thermal resistance, it was noted that the ASHRAE Fundamentals Chapter 18 wall dataset 

lacked some wall constructions which are representative of in-service assemblies.  These 

types of assemblies are not present in the ASHRAE Fundamentals database since this list 

of walls is designed to be representative of new construction applications.  To address this 

issue, 19 additional wall assemblies were generated via the material data already present 

within ASHRAE Fundamentals.  A list of the supplemental assemblies and their effective 

thermal characterizations are present in Table B.1 and Table B.2. 

Table B.1  Material data for supplemental existing building walls. 

Wall ID Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 

Wall #67 F01 M03 F02      

Wall #68 F01 M05 F02      

Wall #69 F01 M01 F02      

Wall #70 F01 M01 M01 F02     

Wall #71 F01 M01 M01 M01 F02    

Wall #72 F01 M01 M01 M01 M01 F02   

Wall #73 F01 M01 F04 M01 F02    

Wall #74 F01 M01 G03 F04 G01 F02   

Wall #75 F01 F11 G02 F04 G01 F02   

Wall #76 F01 F08 G03 F04 G01 F02   

Wall #77 F01 F10 G03 F04 G01 F02   
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Wall ID Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 

Wall #78 F01 M01 I01 G03 I04 G01 F02  

Wall #79 F01 F11 I01 G02 I04 G01 F02  

Wall #80 F01 F08 I01 G03 I04 G01 F02  

Wall #81 F01 F10 I01 G03 I04 G01 F02  

Wall #82 F01 M01 I01 I01 G03 I04 G01 F02 

Wall #83 F01 F11 I01 I01 G02 I04 G01 F02 

Wall #84 F01 F08 I01 I01 G03 I04 G01 F02 

Wall #85 F01 F10 I01 I01 G03 I04 G01 F02 

 

Table B.2  Thermal characterization data for supplemental existing building walls. 
. 

Wall ID 

Mean Effective 
Thermal 

Resistance, 
m2-K/W 

Standard 
Deviation of 

Effective Thermal 
Resistance, 

m2-K/W 

Mean Effective 
Thermal 

Capacitance, 
kJ/m2-K 

Standard 
Deviation of 

Effective Thermal 
Capacitance, 

kJ/m2-K 

Wall #67 0.412 3.40E-04 77.6 0.220 

Wall #68 0.186 1.70E-04 139 0.335 

Wall #69 0.116 1.20E-04 135 0.382 

Wall #70 0.232 3.99E-04 307 2.71 

Wall #71 0.347 2.02E-04 467 0.787 

Wall #72 0.462 2.68E-04 621 1.03 

Wall #73 0.386 2.39E-04 289 0.320 

Wall #74 0.474 2.30E-04 22.3 0.0766 

Wall #75 0.532 4.58E-04 26.9 0.142 

Wall #76 0.441 5.70E-04 34.9 2.78 

Wall #77 0.447 2.88E-04 18.3 0.149 

Wall #78 2.96 7.33E-03 22.0 0.176 
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Wall ID 

Mean Effective 
Thermal 

Resistance, 
m2-K/W 

Standard 
Deviation of 

Effective Thermal 
Resistance, 

m2-K/W 

Mean Effective 
Thermal 

Capacitance, 
kJ/m2-K 

Standard 
Deviation of 

Effective Thermal 
Capacitance, 

kJ/m2-K 
Wall #79 3.02 1.22E-02 26.4 0.347 

Wall #80 2.95 4.98E-03 46.3 1.17 

Wall #81 2.93 2.27E-02 21.4 1.87 

Wall #82 3.78 2.89E-02 23.8 1.13 

Wall #83 3.85 1.41E-02 28.6 0.672 

Wall #84 3.86 4.98E-02 66.9 2.10 

Wall #85 3.76 6.32E-02 23.0 0.357 

 


