
A Systematic Process for Adaptive Concept

Exploration

A Thesis
Presented to

The Academic Faculty

by

Janel Nicole Nixon

In Partial Ful�llment
of the Requirements for the Degree

Doctor of Philosophy

School of Aerospace Engineering
Georgia Institute of Technology

December 2006

A Systematic Process for Adaptive Concept

Exploration

Approved by:

Prof Dimitri N. Mavris
Committee Chair
School of Aerospace Engineering
Georgia Institute of Technology

Prof. Daniel P. Schrage
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Neil Weston
School of Aerospace Engineering
Georgia Institute of Technology

Prof. Roshan J. Vengazhiyil
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Ms. Kelly Cooper
Program Manager
O�ce of Naval Research

Date Approved: 14 November 2006

To my mother, Catherine L. Nixon, for her love, encouragement, and

support

iii

ACKNOWLEDGEMENTS

I'd like to begin by extending my thanks to the members of my committee. First

and foremost, I'd like to thank my advisor, Dr. Dimitri Mavris. I can say with the

utmost certainty that I would've never ventured on this journey had it not been for a

heavy dose of convincing from "Doc". I am so grateful for all the opportunities I've

been given, and all the lessons I've learned from Dr. Mavris, both inside and outside

the classroom. I know the learning doesn't stop here, and I look forward to learning

more. I feel privileged to have Dr. Daniel Schrage and Dr. Neil Weston on my com-

mittee, who both bring a considerable amount of experience in aerospace engineering

and military systems design. I'd also like to thank Dr. Roshan Vengazhiyil for con-

tributing his extensive expertise in statistics. Finally, I am extremely grateful to Ms.

Kelly Cooper of the O�ce of Naval Research (ONR), who has been instrumental in

providing me with valuable research opportunities over the years.

The research I've done with ONR has been exciting and challenging, and I've

learned so much from the people I've worked with there. In addition to Ms. Cooper,

I'd also like to thank Mr. Bruce Wintersteen and Mr. Todd Heidenreich, who, I can

honestly say, taught me everything I know about naval architecture.

The Aerospace Systems Design Lab at Georgia Tech has provided a wonderful

environment for growth and learning. I can not possibly name all the ASDLers who

have given me advice, guidance, and support throughout my (many) years of graduate

school, but I am thankful for the network of contacts, friends, and experiences ASDL

has provided me.

I couldn't possibly forget my family, who have given me unconditional love and

iv

support throughout my life. To my grandmother, Doris Lumetta, who was instru-

mental in raising me. Her legendary cooking brought us all together as a family, and

because of that I'm blessed with some wonderful memories from my early years. I

said my good-byes much earlier than everyone else, but because of that, I promise to

always remember you the way you'd want to be remembered.

To Mac and Denise McManus: You have always welcomed me into your home

with open arms, and have always been there when I need someone to talk to. Your

overwhelming graciousness has helped me tremendously in this journey. Thank you

for loving me as if I were your own.

To my ATL family: Sarah Keith, Mike Zentner, Sharon Carroway, Scott Duncan,

Maggie Garret, and Ty Haber. I am so lucky to have found such a wonderful group

of friends to share my downtime. And I can't forget my excommunicated ATL family

members: Pete and Barbara DeBaets. I miss your company, but I look forward to

many visits. Then there's Simon, Gauss, and Emma, who somehow always make the

stress seem to disappear.

Most importantly, I have to thank Jack Zentner. I certainly couldn't have done

this without you giving me encouragement, guidance, and support when it was most

needed. Thank you helping me indulge in my strange desire to buy dilapidated old

houses, and sharing my vision of what they will look like when we're done with them.

I look forward to tackling our latest project together, and to many more years of your

companionship.

Janel Nixon

v

Contents

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

SUMMARY . xiii

I BASIS FOR THE CREATION OF A SYSTEMATIC DESIGN
SPACE EXPLORATION PROCESS 1

1.1 Introduction . 1

1.2 Motivation - Large Scale, Complex Systems 2

1.2.1 Design for Capability - A New Paradigm in the Design of Large
Scale Engineering Systems 5

1.2.2 Naval Surface Ship Design 9

1.3 The Need for a More E�cient and Re�ned Approach 17

1.4 Research Focus . 22

1.4.1 Scope . 22

1.4.2 Research Questions and Hypotheses 22

1.4.3 A Validation and Veri�cation Strategy for this Work 23

1.5 Organization of this Dissertation . 24

II A LITERATURE REVIEW OF CURRENT TECHNIQUES FOR
DESIGN SPACE EXPLORATION OF COMPLEX PROBLEMS. 25

2.1 Research Objectives . 25

2.2 Narrowing Down Alternatives . 26

2.3 Surrogate Models . 28

2.3.1 Selecting Designs of Experiments 29

2.3.2 Fitting a Model . 38

2.4 Current Techniques for Addressing the Complex Design Problem . . 44

2.4.1 Techniques for Large Scale Problems 45

vi

2.4.2 Techniques for Problems with Mixed Categorical and Contin-
uous Variables . 54

2.4.3 Techniques for Problems with Infeasible Design Space 57

III RESEARCH QUESTIONS AND HYPOTHESES 64

3.1 Removing Gaps Between the Needs and the Currently Available Re-
sources . 64

3.2 Research Questions and Hypotheses 66

3.3 Research Objectives . 68

IV ASSUMPTIONS IN THE DESIGN PROCESS 75

4.1 Assumptions that Reduce the Scope of the Problem 75

4.2 Assumptions Involved in Creating a Surrogate Model 78

V A SYSTEMATIC PROCESS FOR ADAPTIVE CONCEPT EX-
PLORATION . 81

5.1 Selection of a Design of Experiments for Systematic Experimentation 84

5.2 Finding the Root Cause of Infeasible Space 87

5.3 Determining which Auxiliary Analyses are Necessary 93

5.3.1 Demonstration of the Impact of Design Variable Ranges on
the on the Signi�cance of Auxiliary Analyses 95

5.4 Isolating Signi�cant Factors . 99

5.5 Power Projection using Iterative Space Filling Designs 107

5.6 Automating the Process . 118

VI FITTING A MODEL USING SPACE-GENERATED DATA . . 121

6.1 Selecting an Appropriate Model-Fitting Technique 121

6.2 Dealing with Outliers . 124

6.3 Verifying the Surrogate Model . 127

VII DEMONSTRATION OF THE SPACE APPROACH 131

7.1 Locating Infeasible Space . 132

7.2 Screening . 137

7.2.1 Identifying the Functional Form of the Surrogate Model . . . 139

vii

7.3 Power Projection . 141

7.4 Model Fitting and Veri�cation of Model Accuracy 142

7.5 Comparing the Results to Other Techniques 144

7.6 Alternative Approaches Attempted 151

7.6.1 Fold-Over Designs . 151

7.6.2 Optimized Designs for Power Projection 160

VIII ENGINEERING APPLICATION: THE DESIGN OF THENAVY'S
LITTORAL COMBAT SHIP . 166

8.1 Background of the Littoral Combat Ship 166

8.2 Performance of Traditional Method Applied to the LCS Problem . . 169

8.3 Exploration of the Design using the Systematic Process for Determin-
ing Appropriate Modeling Assumptions 179

IX CLOSURE . 186

9.1 Revisiting the Research Questions and Hypotheses 186

9.2 Conclusions . 189

9.3 Recommendations for Future Work 191

Appendix A � DATA FROM THE ASSET EXAMPLE 192

Appendix B � SOURCE CODES AND INSTRUCTIONS FOR AP-
PLYING THESE TOOLS TO OTHER PROBLEMS 198

REFERENCES . 285

viii

List of Tables

Table 1 Attributes of Popular Designs of Experiments 32

Table 2 Traditional Qualitative Analysis of Alternatives 77

Table 3 Quantitative Analysis of Alternatives 77

Table 4 Systematic Fractional Replicate Design for Four Variables 89

Table 5 Identifying 2-D Constraints Using the Systematic Fractional Repli-
cate Design . 91

Table 6 25-Run Distance-Based Design for Five Factors 110

Table 7 Input Ranges for the Pendulum Example 132

Table 8 Replacement Points and Constraint Locations for the Two Infeasible
Combinations . 136

Table 9 Input Variables for the Design of the LCS 170

Table 10 ASSET Responses . 171

Table 11 34-Run Cotter Design for ASSET 193

Table 12 34-Run Cotter Design with Acceptable Replacements for Failed Cases.
193

Table 13 ASSET Responses from the Cotter Design 194

Table 14 Cotter Contrasts for ASSET Example 195

Table 15 ASSET Inputs with Signi�cant Interaction Values 195

Table 16 Contrasts for Interaction Terms for ASSET Example 197

ix

List of Figures

Figure 1 Paradigm Shifts in the Design Process [Adapted from Hirokawa and
Fujita (2002)] . 7

Figure 2 Surface Ship Design Spiral [141] 10

Figure 3 ASSET Design Synthesis [102] . 11

Figure 4 Family of Sea-Basing Concept Ships [81] 13

Figure 5 Reduced Range Approach for Dealing with Infeasible Regions of the
Design Space . 59

Figure 6 Iterative Approach for Dealing with Infeasible Space 60

Figure 7 Step-Back Methods for Dealing with Infeasible Space 62

Figure 8 Method of Sliding Levels . 63

Figure 9 Total Number of Terms in a Cubic Model for a Given Number of
Variables . 82

Figure 10 Variability in the Period of the Pendulum Given Small Variable
Ranges . 97

Figure 11 Variability in the Period of the Pendulum for Increased Ranges on
L and r . 98

Figure 12 Power Projection into Partitioned Design Space 112

Figure 13 Existing Design Points in Two Signi�cant Dimensions 113

Figure 14 First Iteration of Power Projected Space Filling Design 115

Figure 15 Second and Third Iterations of the Power Projected Space Filling
Design . 116

Figure 16 Flowchart for Selecting Appropriate Tools and Techniques for Cre-
ating a Surrogate Model . 122

Figure 17 Demonstration of Traditional Treatment of Outliers 126

Figure 18 Removing Outliers Using a Properly Fit Model 126

Figure 19 Depiction of the Pendulum and Its Associated Variables 133

Figure 20 Graphical Depiction of the Series of Points Tried in the Step-Back
Process for the θ − ω Plane . 137

Figure 21 Three Subsets of Parameter Space in Which Power is Projected . . 141

x

Figure 22 R2 Plots for Period, Time to Equilibrium, and Number of Oscilla-
tions . 143

Figure 23 Error Distributions on the Responses 145

Figure 24 R2 Plot Generated Using Stepwise Regression Instead of SPACE-
Generated Model . 146

Figure 25 Pareto Plots for Period, Time to Equilibrium, and Number of Oscil-
lations . 148

Figure 26 R2 Plots Generated Using the Traditional Approach 149

Figure 27 Resulting Error Distributions from the Traditional Approach . . . 149

Figure 28 R2 Plot for Period Generated Using Traditional Space Filling Runs
with the SPACE-Generated Model 151

Figure 29 Layered Factorial Designs with a Centerpoint 153

Figure 30 Pareto Plot from First-Iteration Fractional Factorial 154

Figure 31 Pareto Plot from Second-Iteration Fold Over Design 155

Figure 32 Pareto Plot from Third-Iteration Fold Over Design 157

Figure 33 Pareto Plot from Fourth-Iteration Fold Over Design 158

Figure 34 Pareto Plot from Fifth Iteration Fold Over Design 159

Figure 35 Final Pareto Plot for Complete Data Set 161

Figure 36 Multiple Layers of Factorial Designs with a Centerpoint 162

Figure 37 Fit Results Using Optimized Design in Place of Iterative Space Fill-
ing Design . 164

Figure 38 Fit Results Using an Existing Augment Tool 164

Figure 39 The Littoral Combat Ship . 167

Figure 40 Pareto Charts for the First 4 LCS Responses 172

Figure 41 Pareto Charts for the Last 4 LCS Responses 173

Figure 42 R2 Plots for First 4 Responses Generated Using Traditional Methods 175

Figure 43 R2 Plots for Last 4 Responses Generated Using Traditional Methods 176

Figure 44 Error Distributions for the First 4 Responses 177

Figure 45 Error Distributions for the Last 4 Responses 178

Figure 46 R2 Plots for First 4 Responses Generated Using the SPACE Ap-
proach . 181

xi

Figure 47 R2 Plots for Last 4 Responses Generated Using the SPACE Approach 182

Figure 48 Error Distributions for First 4 Responses Using the SPACE Ap-
proach . 183

Figure 49 Error Distributions for Last 4 Responses Using the SPACE Approach 184

xii

SUMMARY

Complex systems design is currently undergoing a paradigm shift toward

Design for Capability. In this new paradigm, fewer vehicles are called on to perform

a greater number of missions than ever before. As a result, solutions must be more

robust to operational uncertainties while maintaining the ability to perform a greater

number of tasks. Due to the nature of this goal, top-level needs are well known

while speci�c vehicle requirements are poorly de�ned. This presents a combinatorial

problem in which there are unlimited potential solutions from which to choose a

subset of assets that can meet the stated needs. In order to downselect from the vast

number of alternative solutions, designers often rely on qualitative methods because

there are simply not enough resources available to thoroughly investigate all the

potential solutions. However, qualitative information is often based on preconceived

notions about what the design should look like, or partial derivatives. With this kind

of static information, there is no reliable way to extrapolate how a particular solution

might behave in a di�erent environment or in uncertain operating conditions.

For this reason, the ideal is to base concept selection on parametric, quantitative

data so that informed, unbiased decisions can be made. However, this kind of in-

formation can be expensive and di�cult to obtain, which is one reason quantitative

analyses are traditionally reserved for optimization or more detailed design after a

concept has been selected.

This thesis presents a method for streamlining the process of obtaining and in-

terpreting quantitative data for the purpose of creating a low-�delity modeling and

simulation environment. By providing a more e�cient means for obtaining such infor-

mation, quantitative analyses become much more practical for decision-making in the

xiii

very early stages of design. However, in capability-based design, where the solution

space is essentially unrestricted, we are faced with several common challenges to the

creation of quantitative modeling and simulation environments. Namely, a greater

number of alternative solutions imply a greater number of design variables as well as

larger ranges on those variables. This translates to a high-dimension combinatorial

problem. As the size and dimensionality of the solution space gets larger, the number

of physically impossible solutions within that space greatly increases. Thus, the ratio

of feasible design space to infeasible space decreases, making it much harder to not

only obtain a good quantitative sample of the space, but to also make sense of that

data. This is especially the case in the early stages of design, where it is not practical

to dedicate a great deal of resources to performing thorough, high-�delity analyses

on all the potential solutions. To make quantitative analyses feasible in these early

stages of design, a method is needed that allows for a relatively sparse set of infor-

mation to be collected quickly and e�ciently, and yet, that information needs to be

meaningful enough with which to base a decision.

The method developed to address this need uses a Systematic Process for Adap-

tive Concept Exploration (SPACE). In the SPACE method, design space exploration

occurs in a sequential fashion; as data is acquired, the sampling scheme adapts to

the speci�c problem at hand. Previously gathered data is used to make inferences

about the nature of the problem so that future samples can be taken from the more

interesting portions of the design space. Furthermore, the SPACE method identi�es

those analyses that have signi�cant impacts on the relationships being modeled, so

that e�ort can be focused on acquiring only the most pertinent information.

The SPACE method uses a four-part sampling scheme to e�ciently uncover the

parametric relationships between the design variables and responses. Step 1 aims

to identify the location of infeasible space within the region of interest using an

initial set of sample data. The reason for doing so is twofold: �rst, this allows for

xiv

those regions to be accounted for in the resulting parametric representation of the

space, and secondly, those infeasible regions can then be avoided while subsequently

sampling the design space. Using the sample data from the previous step, Step 2

identi�es those auxiliary analyses that have the biggest impact on the relationships

being investigated. Only those analyses that are most signi�cant are performed when

acquiring additional sample data. Step 3 also uses the initial data set from Step

1 to infer which terms are insigni�cant to the relationship between design variables

and responses. Then, to resolve which of the remaining e�ects are truly signi�cant,

more sample data is collected. After the truly signi�cant e�ects are identi�ed, Step

4 projects more sampling power into the most signi�cant dimensions of the design

space in order to obtain a set of information that provides a maximum amount of

information from a relatively small set of data points. The knowledge acquired up

to this point regarding the systems behavior is then utilized to create an informed

surrogate model that better re�ects the systems signi�cant relationships.

The results show that the combination of a tailored data set, and an informed

model structure work together to provide a meaningful quantitative representation

of the system while relying on only a small amount of resources to generate that

information. In comparison to more traditional modeling and simulation approaches,

the SPACE method provides a more accurate representation of the system using fewer

resources to generate that representation. For this reason, the SPACE method acts as

an enabler for decision making in the very early design stages, where the desire is to

base design decisions on quantitative information while not wasting valuable resources

obtaining unnecessary high �delity information about all the candidate solutions.

xv

Chapter I

BASIS FOR THE CREATION OF A SYSTEMATIC

DESIGN SPACE EXPLORATION PROCESS

1.1 Introduction

In the design of a new system, every concept that is not explored, every scenario

that goes unaccounted for, or every variable held �xed amounts to an assumption.

Altogether, the design process is loaded with these kinds of assumptions, which are

necessary to keep the design e�ort manageable. However, the entire outcome of a

design study can easily be discredited by someone who questions even just one of those

many assumptions. If the idea or initiative has adversaries, the list of assumptions is

the �rst place they will look to �nd ammunition. If these assumptions are not backed

by some documented logical progression, then they are susceptible to attack.

Qualitative analyses have traditionally dominated the early stages of the design

process. There is the perception that qualitative analyses are more practical than

quantitative analyses, which are typically viewed as too cumbersome and expensive

for conceptual decision-making. However, qualitative analyses are prone to the risk

that the designer has preconceived notions as to what the �nal design should look

like. Though this is often favorably referred to as �engineering intuition�, these kinds

of assumptions can unfairly bias the design and prematurely exclude more optimal

solutions. At the same time, the decision maker usually relies on partial derivatives

that are static, and thus, can not extrapolate how changes in the mission might

a�ect the system. Hence, qualitative analyses ignore uncertainty, rely on partial

information, and are built on assumptions.

1

For this reason, Modeling and Simulation are needed to allow for e�cient, yet

accurate quantitative analyses in the early design stages. For large, complex problems,

assumptions are required to keep the scope of the design study practical, even for

quantitative analyses. However, quantitative analyses allow for those assumptions

to be iteratively veri�ed and/or re�ned so that we can make inferences from the

information that becomes available. These inferences are inherently more robust to

uncertainty, and provide a more sound basis for decision making than qualitative

assumptions.

This thesis presents a Systematic Process for Adaptive Concept Exploration (SPACE),

which enables the designer to collect quantitative information in an e�ective, e�cient

manner that is blind to any prejudices or biases that the designer might have. This

task is accomplished through the use of an automated, sequential process that makes

maximum use of the information available at any given time in order to infer what

additional information is needed. The process guides the collection of new data so

that obtained information provides maximum utility, and unnecessary computations

are avoided. As a �nal result, this process yields a set of quantitative data that pro-

vides the designer with a complete set of information which can be used to explore

the design space and make informed, unbiased design decisions.

1.2 Motivation - Large Scale, Complex Systems

Hazelrigg (2000) de�ned engineering as a �ve part process that requires the engineer

to �rst understand the customer's requirements. Next, the engineer must gather

all those design alternatives that might potentially meet those requirements. Third,

the engineer must pare down those alternatives to a select few that hold the most

promise so that those designs can be more accurately modeled and assessed. Fourth,

the engineer must optimize the concept(s) in order to select a single design, and

�nally, a production system must be designed that can bring the selected concept to

2

reality. Throughout this entire process, the engineer must also consider the product's

life cycle. Thus, this requires the engineer to not only forecast the future context

within which the product will be used, but to also predict the product's performance

in that context with reasonable con�dence.

The work in this thesis focuses on the third step of this process, starting with a

cursory look at how assumptions a�ect the process of down-selecting design alterna-

tives. A more in depth treatment is given to the process of modeling those alternatives

for the purpose of acquiring information about those designs to make well-informed

design decisions.

For complex systems, in particular, the alternative solutions available early in the

third step of this process can be innumerable. Yet, the choices made at these initial

stages will have a profound e�ect on the �nal outcome. It is for this reason that

the importance of justifying design decisions and assumptions is gaining attention.

Decision-making tools that come from Integrated Product/Process Design (IPPD) are

being applied to the initial stages of design for the purpose of evaluating alternatives

[42, 45, 46, 76, 104]. The basic intent shared by all of these tools is to logically whittle

down the number of design possibilities to some number that can be reasonably

explored without prematurely ruling out designs that hold potential. To do so, these

tools can either rely on qualitative or quantitative information with which to make

comparisons between alternatives. While often quick and e�cient, analyses based on

qualitative information can bias the results, which is why more objective, physics-

based comparisons are desirable.

In order to enable physics-based design decisions, the goal is to gain enough infor-

mation about the relationship between speci�c design variables, and their resultant

outputs so that the behavior of the concept can be fully represented in a parametric

fashion. For large scale, complex systems, it can require a great deal of expense or dif-

�culty to manipulate these variables for the purpose of uncovering these relationships.

3

When this is the case, models are often used to simulate, characterize, or explore the

system. Typically, for engineering applications, a complex computer simulation code

is used to model these relationships. Sometimes, however, even these codes can be

too complex and time intensive to enable the large number of calculations that are

needed to understand the many complex relationships that exist in large scale engi-

neering systems. For this reason, it is oftentimes desirable to replace these complex

simulation codes with a simpler representation that is only applicable to the region

of interest in the design space. If, for example, we have a complex computer code

that can simulate any aircraft, we can greatly simplify that simulation by extracting

only those relationships that apply to the speci�c concept we're interested in, say

for instance, a �ghter aircraft. Typically, this simpli�ed surrogate model is created

by assuming certain variables to be insigni�cant to the concept of interest and then

assuming �xed values for those variables. Doing so has the e�ect of reducing the

dimensionality of the design problem. In essence, surrogate models take some rel-

atively small set of experimental data, and use it to �t an equation that serves as

an approximation of the relationship between the inputs (those variables that have

the greatest bearing on the particular concept) and the outputs. When used in place

of the original simulation, it allows for much faster approximations to be made, so

that more candidate design points can be evaluated. Because more "ground" can be

covered, surrogates provide a means of infusing more knowledge into the early design

process so that more informed decisions can be made.

The surrogate model itself is built upon many initial decisions (design variable

ranges, region of interest, etc.), estimates (e.g. standardized material strength prop-

erties), and assumptions (e.g. the assumption that certain variables can be neglected

or the assumption that there is a linear relationship between the inputs and outputs)

in combination with some physics-based or historical data. Though many have stud-

ied, critiqued, and compared various di�erent techniques for �tting surrogate models,

4

there has generally been a lack of attention paid to the importance of the most basic

building blocks of those simpler models. Thus, the �nal design of the system hinges

on the assumptions, estimates, and decisions made throughout the process.

The appropriateness of a particular modeling assumption is dependent on the

concept being investigated. Take the example in which it is desired to model the

motion of a stone falling a short distance. In this example, it is perfectly acceptable

to assume that gravity is the only signi�cant force on the stone, so we can simply

use Newton's second law to model the motion with su�cient accuracy. Alternatively,

if we were to model the motion of a falling feather, the assumption that we made

for the stone is no longer a valid one. Here, drag plays a predominant role on the

behavior of the feather, which means that a very complex aerodynamics analysis must

be used in conjunction with Newton's second law in order to adequately model the

feather's behavior1. For much more complex systems, it is not always so easy to see

which assumptions are appropriate for particular concepts. This thesis provides a

systematic method for determining which assumptions are appropriate for the given

concept, and when more thorough computational analyses are warranted. As a result,

this method yields more accurate surrogate models that require far less experimental

data to build. Since this initial experimental data is often costly to acquire, this saves

time and money, making it more feasible to obtain physics-based information in the

initial stages of design.

1.2.1 Design for Capability - A New Paradigm in the Design of Large
Scale Engineering Systems

The way that large scale systems are designed is currently undergoing a new para-

digm shift. Before we discuss this new paradigm and explore what is driving it, it

might be useful to start at the beginning and de�ne what a paradigm is, and what

causes a paradigm shift. In addition, it seems advantageous to take a look at past

1This example was adapted from one given by Hall (2000).

5

paradigms; by understanding where it is that we're moving from, perhaps we can

better understand what it is that we're moving toward.

The original concept of a scienti�c paradigm was �rst introduced by Thomas

Kuhn, who de�ned a paradigm as a set of concepts, presuppositions, beliefs, theories,

habits, standards, principles and methods that are accepted or taken for granted by

the scienti�c community [83]. Education in a particular scienti�c �eld is also based

on the paradigm of the time. Kuhn (1962) maintained that there are anomalies for

all paradigms that are brushed aside as acceptable levels of error, or simply ignored

and dealt with. When new problems of interest begin to present new di�culties, the

existing paradigm may encounter some challenges [77].

If a scienti�c paradigm drives the current state of education and practices in a

�eld, then what drives a paradigm shift? Hirokawa and Fujita (2002) theorized that

paradigm shifts are due to the co-evolution of theories, means and applications. In

this formulation, an example of the theories might be the computational algorithms

in programming and optimization. Thus, by this example, as newer optimization

schemes have been continuously developed, the number of theories available for opti-

mizing various types of problems has thereby increased. The means can be de�ned as

the resources available for solving the problem, such as manpower or computational

capabilities like speed and memory. Finally, the applications are those new design

problems that require new and innovative solutions. None of these three necessarily

leads or causes the others, but the progress of each is essential to the others, forming

a mutual push/pull relationship. Figure 1 depicts how these paradigms progress with

the state of simulation capabilities and the scope of the problem being considered.

The horizontal access is directly related to the theories available, while the vertical

access is directly dependent on the means. Their relationship with each other and

with new applications, can be visualized as an evolution of paradigms.

In the �rst paradigm, Design for Performance, the typical goal was to optimize

6

Figure 1: Paradigm Shifts in the Design Process [Adapted from Hirokawa and Fujita
(2002)]

7

some single performance criterion without much consideration for trade-o�s with other

criteria. Consider, for example, the early history of aircraft design, in which the X

series of aircraft were built by Bell. Each new design had a speci�c, sole purpose in

mind: to �y faster, farther, or higher. For this type of goal, the point-design approach

is usually suitable, because the designer can iterate on a single or handful of designs

until the desired performance criterion is met.

As focus shifted toward Design for A�ordability, the new challenge was how to

strike a balance between a�ordability and performance. Interestingly enough, designs

that are considered to be a�ordable are ones that have several attractive performance

characteristics (take the example of a commercial aircraft that has a long range and

simultaneously has a large passenger capacity). Thus, this paradigm evolved from

the onset of multi-objective problems. Oftentimes, these objectives compete with one

another, meaning that an improvement in one area often leads to a degradation in

another (going faster, for example, usually translates to reduced range or increased

cost). Thus, the point-design approach was no longer practical for making those kinds

of trade-o�s, and there was a paradigm shift toward the use of computer simulation

and Monte Carlo methods. These tools allow the designer to create a much larger

number of candidate designs in order to better visualize which design characteristics

yield the best compromise designs.

Today, many design problems are not only multi-objective, but they are often

multi-mission as well. Borer (2005) shows that today, fewer vehicles are being ex-

pected to carry out a greater number of missions. Since each mission has its own

distinct competing objectives, multi-mission vehicles essentially have an added layer

of complexity. They have even more competing objectives, and the best solution

might not be a pure-breed vehicle, such as a �ghter aircraft, or carrier. Instead, a

hybrid solution might be best, requiring the designer to delve into uncharted territory.

This new paradigm re�ects a shift in focus away from speci�c vehicle requirements

8

(such as speed, range, etc). Instead, the new focus is being shifted toward �eet capa-

bilities (for example, the ability to get X amount of cargo from point A to point B

quickly and e�ciently). Thus, this re�ects a new paradigm of Design for Capability.

In this new paradigm, the scope of the problem is greatly expanded and the number

of design alternatives and potential solutions to the problem grows.

In response to this apparent paradigm shift, the National Science Foundation

(NSF) has formed a Blue Ribbon Panel to explore opportunities and advancements

for Simulation-Based Engineering Sciences (SBES) [105]. In particular, the panel ac-

knowledged that there exists �a host of technologies on the horizon that we cannot

hope to understand, develop, or utilize without simulation�. �Many of these technolo-

gies are critical to the nation's continued leadership on science and engineering.� One

such example is given in the next section, which outlines how the Navy's vision for a

future capabilities necessitates the need for advancements in SBES.

1.2.2 Naval Surface Ship Design

Naval vessels are typically large-scale, multipurpose vehicles having con�icting re-

quirements under various forms of uncertainty. For the design of such complex sys-

tems, it was customary in the past to revert to a mode of query-and-response that

resembled a trial and error approach to design. This approach takes on the charac-

teristics of an iterative design spiral due to the requirements �ow-down and feedback

necessary in these complex systems [89]. Being that ship design �ts the category of

large-scale, complex systems, it readily lends itself to this design-spiral class of ap-

proaches, and naval architects have traditionally referred to the design spiral as the

icon of the ship design process [58, 85, 129, 135]. Figure 2 portrays a visual represen-

tation of this design spiral, in which the spokes de�ne each of the major disciplines,

and the spiral represents the sequential manner in which each discipline is individually

9

Figure 2: Surface Ship Design Spiral [141]

considered, with iterations continuing until con�icts are resolved [141]. This formu-

lation of the design process is indicative of design for performance. Thus, analyses

in the di�erent disciplines are iterated upon until some performance criterion is met;

this usually involves the goal of going faster and/or farther. This widely adopted de-

piction of the ship design process also provides the foundation for the Navy's current

Advanced Surface Ship Evaluation Tool (ASSET) as can be seen in Figure 3.

Tools like ASSET have depended on computational advances to provide platforms

for ship design, but they have historically only focused on design analysis, and have

not been exploited as an aid in the design process itself [9]. However, as focus has

shifted toward a new paradigm of design for a�ordability, designers have begun to

recognize that the traditional design spiral has some shortfalls in its ability to support

concurrent engineering. For one, in a design-spiral type of analysis, where there is an

iterative feedback exchange of requirements between various subsystems, it becomes

10

Figure 3: ASSET Design Synthesis [102]

11

a challenge to uncover functional relationships between the inputs and outputs. Mul-

tiple authors share the view that ship design is indicative of other complex design

problems, and must be adapted to the opportunities made available by computer

advances [9, 90]. Such advances make it possible to use a physics-based model to

e�ectively sample information about the system, enabling probabilistic and robust

design. In particular, probabilistic techniques can address many of the concerns asso-

ciated with the design of multipurpose vehicles having con�icting requirements, and

can o�er insight into the relationships between the inputs and outputs. They can also

provide fast analysis tools so naval architects can better work with combat system

engineers to make more informed design decisions.

In the past, naval vessels were designed for �ghting major naval battles in the

open ocean. Present day threats, however, are of a di�erent nature, and are mostly

associated with rogue nations and terrorist cells. To deal with these new threats,

the United States Navy is considering the concept of a Sea Base that extends from

twenty-�ve to two hundred �fty nautical miles from shore. When operating in this

region, power can be projected ashore through the use of multiple surface and air

assets [44]. The success of the response is primarily a function of the agility, speed,

and reach of these assets, all of which need to work together as part of a joint network,

one which involves multiple branches of the military. In and of itself, the sea base

refers to a doctrine of expeditionary warfare with the goal of maintaining a swath of

ocean as a secure and sustainable logistic base from which to project power. It does

not, however, refer to a particular ship, �eet, or set of technologies, though the basic

elements of a notional sea base have been outlined. These elements are depicted in

Figure 4. Each vehicle that makes up this concept will likely include a greater number

of systems than in the past, and have more competing objectives. Thus, the Navy's

current Sea-Basing initiative represents one example of the paradigm shift toward

design for capability.

12

Figure 4: Family of Sea-Basing Concept Ships [81]

The general goal of Sea-Basing is essentially to create a �eet of ships that act as

a network that allows power to be projected to the target quickly and adequately.

This re�ects a new emphasis on the necessity of integrated and inter-operable joint

war-�ghting capabilities for allowing joint forces to meet the full range of military

operations and challenges of the future. For this reason, a new protocol was developed

speci�cally for identifying, assessing, and prioritizing joint military capability needs.

This document is called the Joint Capabilities Integration and Development System

(JCIDS), and it aims to establish the linkage between the joint concepts, the analysis

needed to identify capabilities required to execute the concepts, and the systems

delivering those capabilities [27]. Thus, it streamlines the process of translating an

overarching goal into individual vehicle requirements. These requirements include

compatibility considerations; as in Sea-Basing, the ships must be compatible with all

of the systems in the network with which they will interact. This includes not only

13

other ships, but also other aircraft, vessels, weapons, and even docking ports. These

ships must be also robust to uncertainties in operating conditions, all while having

multiple, competing performance objectives. Thus, it is evident that the design of

such a system of multipurpose vehicles presents some unique challenges that push the

limits of current practice.

A ship can take on an innumerable array of forms, from a sleek cruise ship, to

a �oating fortress for defense, or even an elongated boxed structure for transporting

cargo. Ships can also use various modes for physical support in addition to the

traditional hydrostatic support, in which the craft uses the buoyant force of water

for support. One such mode is aerostatic support, in which the ship sits above the

surface on a self-induced cushion of air. Hydrodynamic support is another example,

in which the ship uses a hydrofoil, located beneath the surface, to lift the vessels hull

out of the water in much the same way that a airfoil provides lift to an airplane. In

addition to these options, a designer must also choose between a traditional, single hull

con�guration, called a monohull, or a multi-hull con�guration such as a catamaran

or trimaran. [50]

All of these con�guration options are justi�ed by widely varied performance cri-

teria which typically require a ship to carry a designated amount of payload, usually

comprising of cargo, weaponry, and people. At the same time, there may be limits

imposed on the size and shape of the ship by conditions in which it must operate, or

the ports in which it must dock [135]. The Littoral Combat Ship (LCS), for example,

must operate in the littorals, so there are limits imposed on the maximum amount

of draft that the LCS can have. In addition, for both aircraft and ship design, there

are several di�erent types of design processes, each driven by the degree of novelty

involved in a proposed solution. On one end of this novelty spectrum is a design

that is nothing more than a modi�cation of an already-built design. On the other

end are those vehicles that represent technologically revolutionary designs. For these

14

advanced con�gurations, the design process involves bigger push for research into new

technologies [9].

Warships in particular have some interesting problems are attached to their design

[21]. For instance, Tupper (1996) notes many examples for which there is a trade-

o� between �exibility and redundancy for warships. Typically, they are much larger

than aircraft, have more people on board, contain more systems, and have a longer

service life. For ships that require mine countermeasures, or landing pads for aircraft,

maneuverability will be a key design requirement. However, there is a cost associated

with providing a ship with a high level of maneuverability, and a high degree of

maneuverability is considered uneconomic for long haul ships. Another trade-o�

typically addressed in ship design is reduced crew size through new technology and

increased automation. It is easy to conclude that automation is bene�cial if the costs

of doing so are less than the overall costs associated with having a crew to do the

same task. However, the line becomes blurred for warships, which do not earn in the

commercial sense, and oftentimes do not have clear de�nition of the level and types

of use that will be required. Also, the mission of a warship may not be well de�ned.

If the ship is to operate between speci�c ports, then the required cargo handling

capabilities will be fairly clear. For warships, however, there is some uncertainty

as to the situations that may arise, and the ship might need to rely on its own

equipment for loading and unloading. Ships, especially warships, can be exposed to

a vast array of conditions and other unusual circumstances, many of which may not

be anticipated in advance, requiring designers to make other similar trade-o�s for

speed, survivability, and cost [135]. All of these considerations add to the complexity

of warships.

The cost, e�ort, and time that would be required to build a prototype for some-

thing as involved as a naval vessel would be too great. Though scale models are still

used in the design process, computer models have emerged as the favorite method

15

for predicting the capabilities of various alternative ship designs. The availability of

validated computational tools allows an increased number of alternative designs to

be considered at a reduced cost [140]. Computers are increasingly making it possi-

ble to perform many individual calculations that could not otherwise be undertaken.

For instance, ship motion prediction tools and �nite element analyses enable design

optimization techniques to be applied to this complex �eld [135]. In addition, many

of these analysis tools across various disciplines can be combined to form a computer

aided design system where the outputs from one discipline are automatically fed to

another discipline. ASSET is a good example of this kind of computer aided design.

Even with the tools available, the sheer complexity of most Naval design problems

is great. In particular, three common characteristics seem to emerge in many ship

design problems. Together, these three characteristics present a challenge to the

current paradigm, and necessitate the need for new solutions to be explored.

1. Large Scale Problem - Generally speaking, as the number of missions grows,

the vehicle design process becomes larger. There are usually more alternatives to

consider, and more design variables involved, leading to a vast amount of design space

that needs to be explored. As a result, more resources are needed to assess alternatives

and uncover the functional relationships between the variables and responses.

2. Categorical and Continuous Variables - Another hurdle often encountered

in ship design is the presence of categorical design variables in addition to the vast

array of continuous variables. Categorical variables appear in ship design to de�ne

characteristics like the number or type of engines, propeller type, material type, num-

ber of machinery rooms or deckhouse levels, number of aircraft on board, etc. Though

categorical variables have been studied extensively, the combination of continuous and

categorical variables adds to the complexity of data mining.

3. Infeasible Space - A third common hurdle in ship design is the presence

of infeasible regions in the design space due to the complexity of the ship design

16

problem. Infeasible space makes it hard to maintain the integrity of the model, as it

often compromises the trial data gathered.

None of these three hurdles are restricted to ship design alone; they have presented

themselves in many other applications. As such, techniques for addressing all of these

characteristics have been addressed at some point in the literature. What makes the

ship design problem unique, however, is that all three of these hurdles often occur

simultaneously. Existing literature only explores how to address each of these issues

individually, and many of the suggested solutions are not compatible with the other

hurdles. As a result, it is not clear how to approach problems that exhibit two or

more of these characteristics at the same time.

Thus, a new approach is needed; one that is simultaneously robust to all three

hurdles. While the naval ship design problem is the primary motivating problem,

the needs dictated by the new paradigm shift will also exert great in�uence over the

development of such an approach. Thus, the primary goal will be to deliver a solution

that addresses the speci�c challenges of the ship design problem, and is also robust

for all other complex design problems. At the same time, the solution should align

with the current paradigm shift by enabling more knowledge to be brought forward.

1.3 The Need for a More E�cient and Re�ned

Approach

The Sea-Basing problem presents a unique and complex design challenge. There

exists a large set of capabilities that need to be met; here the term, capability, refers to

something completely di�erent than requirements. Instead, capabilities refers to those

highest-level needs that can't be met by a particular ship or even a �eet of a particular

ship. These needs can only be met by creating a family of concepts, in which each

member of that family provides a speci�c set of functions that contribute to the total

capability of the system as a whole. What makes this problem challenging, however, is

17

that capabilities are more open-ended than requirements. If a requirement is to design

a ship that can travel at 28 knots, then the corresponding capability that the ship

provides is the ability to get from point A to point B is some certain amount of time.

The other way around, however, it is not always obvious which requirements should

be used to meet the capability. For instance, if we want to get from point A to point

B in a set amount of time, we might consider an aircraft, ship, missile, submarine, etc,

depending on the speci�c situation. Thus, by specifying desired capabilities rather

than speci�c design requirements, there is more freedom in selecting a solution. The

bene�t to this is that no potential solutions are excluded by the requirements, so

there is a greater possibility of �nding the best possible solution. On the other hand,

one of the big drawbacks to capability-driven design is that the number of potential

solutions can be nearly in�nite. Essentially, this becomes a combinatorial problem,

where many possible concepts can be combined to meet the capabilities in various

ways.

With practically unlimited possibilities for how to provide the capabilities, it is

important to ensure that none of the potential solutions are ruled out prematurely.

The only way to guarantee that this does not happen is to provide unbiased, quanti-

tative analyses of the alternative concepts. Yet, for a combinatorial problem of this

nature, it is infeasible to analyze every possible alternative in detail.

The challenges presented by such large complex problems in conjunction with

the paradigm shift toward design capability necessitate a more e�cient and re�ned

approach. This need has been identi�ed from within the Navy [23], with Captain N.

Doerry citing needs for:

1. Increased force level modeling and integration with war-game simulations

2. Better and faster survivability and operational e�ectiveness

3. The ability to base design decisions on quantitative predictions

18

4. Analysis tools that can analyze performance accurately, cheaply, and quickly

This thesis intends to address the third and fourth needs identi�ed by Captain Doerry.

By providing accurate and e�cient quantitative predictions, we gain the ability to

analyze more potential concepts, increasing the chance that the best solution will be

identi�ed. Thus, these needs must be met in order to make design for capability a

feasible objective.

What enablers are necessary to meet these needs? In order to be able to base

design decisions on quantitative predictions, we need to be able to perform a Monte

Carlo sample of the entire design space using a quantitative analysis tool. Quantita-

tive tools such as ASSET, however, are not fast enough to allow for a direct Monte

Carlo sampling of the entire design space. This would require an extremely large

number of simulations, and there is not enough time to run all of those simulations

using ASSET. Surrogate modeling techniques make Monte Carlo design space sam-

pling possible, because they provide a fast approximation of the original quantitative

analysis tool. As a result, the sampling process is sped up signi�cantly by using the

surrogate stand-in in place of the time consuming original analysis.

What roadblocks exist today that are preventing these needs from being met? In

the previous section, three hurdles that were identi�ed that are speci�cally inherent

to the ship design problem. However, these hurdles can also be viewed as a direct

consequence of capability-based design. In capability-based design, the design is not

restricted, and therefore more alternatives, and more design space must be considered.

As a result, the ranges on the design variables get larger, and the number of discrete

options increases. Thus, the design space grows in both size and dimension. In turn,

the increased design space actually exacerbates the infeasible space problem. As

the design space gets larger, the edges of that space become more extreme, and the

potential for infeasible combinations of design variables increases.

19

So, to recap, capability-based design drives an increase in the size and dimen-

sionality of the problem, causing an increase in variable ranges and the number of

discrete options. In turn, the increased size and dimensionality of the space increases

the likelihood that infeasible regions exist within that space. This roadblock was

also identi�ed by the Blue Ribbon Panel on SBES, who state that we �must over-

come di�culties inherent in mulitiscale modeling, the development of next-generation

algorithms, and the design and implementation of dynamic data-driven application

systems�.

Many tools and techniques are available for streamlining the design process and

providing quantitative predictions through the creation and use of surrogate mod-

els. Additionally, some techniques have been developed speci�cally for addressing

the design hurdles that have been identi�ed. However, the literature search shows

that none of these currently available techniques are suitable for addressing all these

hurdles simultaneously.

Today's design problems, with their increasing size and scope, are continuously

pushing the limits of these tools and techniques. To keep up with the evolving chal-

lenges, new methods are continuously being created. As a result, many authors have

spent a great deal of e�ort toward comparing these methods for the purpose of pick-

ing which is the best method available [11, 33, 49, 53, 89, 128, 146]. However, in

this ongoing e�ort to pit these methods against one another, it seems that the most

important contributor to the success of any one method has been overlooked: the

assumptions that form the basis of those methods. When comparing results given

by one method against another, it seems that most authors fail to address how the

assumptions that were fed into those individual methods might have a�ected their

outcome. With this in mind, the goal of this thesis is not to create yet another new

method that aims to be better than all the others, but rather, to create a process

20

for obtaining a quick, reliable estimate of performance that can be used as a �rst-

iteration quantitative assessment of a concept for the purpose of identifying potential

solutions.

Thus, a new approach is needed that allows the designer to quickly assess many

alternative concepts without having to rely on qualitative assumptions to simplify

the process. By identifying promising concepts earlier on, more e�ort can be directed

to the analysis of those concepts, thereby focusing valuable time and resources where

they are needed most. It is important to point out that the goal of such an approach

should not be to create the best possible surrogate model with the best predictive

capability possible for analyzing the concept. Rather, the goal should be to enable the

designer to obtain meaningful quantitative data that can be used to assess a concept,

despite having extremely limited resources for assessing individual alternatives.

To meet these goals, the surrogate modeling process needs to be made more e�-

cient and robust to the design challenges presented. To accomplish this, the resulting

process will:

• Speed up the initial sampling process: By identifying the most signi�cant

design variables and most important auxiliary analyses early on, more e�ort

can be focused on obtaining the most valuable information. In doing so, the

amount of e�ort that is wasted on unnecessary analyses can be minimized.

• Consider the entire range of candidate space: By maintaining all feasible

regions of the design space, the chance of excluding an interesting region of

that space can be minimized. Thus, it is necessary to �nd a way to account for

infeasible space that does not result in some of the feasible space being excluded

as well. At the same time, the infeasible space must be accounted for so that

the surrogate model can accurately model that infeasible space.

21

• Create a more meaningful surrogate: By combining the information re-

garding which variables are signi�cant, and the location of infeasible space, the

resulting surrogate model will not only have good predictive capabilities, but it

will also provide the designer with valuable information about what is driving

the design: how do the inputs a�ect the outputs, what causes a design to be

infeasible, where does interesting behavior occur?

1.4 Research Focus

1.4.1 Scope

This thesis presents a method that is intended to be used in the Modeling and Simu-

lation process. Speci�cally, a new method is presented for the intelligent collection of

data to be used for �tting a surrogate model which can then be used to simulate the

system. Though this thesis provides some discussion of methods that may be used

to �t a surrogate model to the data, this discussion is purely intended to help guide

the user in selecting an option for �tting a surrogate to the data collected using the

method presented. It is not intended to present any new methods for �tting surro-

gates. Further, there is no discussion of how to optimize or evaluate the design using

the surrogate. Information on doing so can be found in references [63, 19, 98, 99, 121].

1.4.2 Research Questions and Hypotheses

The initial literature search was driven by two overarching research questions. The

�ndings of this literature search then led to a more speci�c set of research questions

and corresponding hypotheses that are presented in Chapter 3.

R.Q. 1 How do the assumptions, estimates and commitments made in

the early stages of the design process impact the �nal outcome

of the design?

R.Q. 2 Is there a way to maximize the amount, value, and reliability of

22

acquired knowledge so that better, more informed decisions and

commitments can be made earlier in the design process?

1.4.3 A Validation and Veri�cation Strategy for this Work

Throughout this work, a relatively simple example problem is used to demonstrate

ideas, provide examples, and develop and test the methods. The example problem

chosen was that of a pendulum oscillating in two dimensions. Even though the pendu-

lum is not usually considered to be a complex system, it provides a good representative

problem for demonstrating the ideas and concepts that are central to this thesis. This

is due to the fact that the pendulum can be modeled with a very simplistic equa-

tion that relies on many assumptions, or it can be modeled to in�nite complexity,

accounting for such things as drag, material stress, rotation of the earth, etc. This

characteristic makes the pendulum example a good candidate for demonstrating the

concept that certain assumptions are valid in certain situations, but as characteristics

of the design change, those assumptions may become invalid. Thus, the pendulum

example will be constantly referenced to demonstrate the basic concepts and ideas

developed in this dissertation. The equations used to model the pendulum problem

for this demonstration were taken from The Pendulum - Rich Physics from a Simple

System, by Nelson and Olsson (1985).

After the SPACE method is fully developed, the motivating problem will be used

to verify that the method performs the intended functions. Since the ship design

problem was identi�ed as one that embodies the complex design problem, it will be

used to verify that the method is functioning as planned. Speci�cally, the veri�cation

problem will be that of a Littoral Combat Ship (LCS). This problem was chosen

because it is one that has provided many design challenges in the past, all of which

were outlined in Section 1.2.2. Many traditional techniques have been applied to this

problem, none of which adequately addresses these challenges. Thus, if the newly

23

developed method can overcome these challenges, and provide more e�cient and

accurate results than the traditional alternatives, this will validate that the SPACE

method has met its objectives.

1.5 Organization of this Dissertation

This thesis is divided into nine chapters. Chapter 1 introduces the motivation for the

work and states the overarching research questions. The overarching Naval goals are

introduced in order to demonstrate the higher-level challenges of the problem. These

are then related to more speci�c challenges presented by individual ship design. Chap-

ter 2 provides the background research of existing techniques available for Modeling

and Simulation. Chapter 2 also explores those existing techniques that might be uti-

lized to address the primary research question above. Chapter 3 explores the gaps

that still exist between what is needed, and what is provided by existing techniques.

It then goes on to formulate some more speci�c research questions that arose from

the literature search, and presents some hypotheses to those questions. Chapter 4

de�nes the two types of assumptions that are commonly made in the design process.

Chapter 5 outlines the development of the SPACE approach, and provides theory as

to why certain approaches were selected. Chapter 6 provides some guidelines for how

the data generated by the SPACE approach may be used to �t a surrogate model.

It also demonstrates the e�ect that outliers can have on the model-�tting process.

Chapter 7 gives a detailed overview of how that SPACE approach is applied using

the pendulum example. Chapter 8 validates the applicability of the new method by

applying it to the motivating problem, and Chapter 9 provides closing remarks, along

with recommendations for future work.

24

Chapter II

A LITERATURE REVIEW OF CURRENT

TECHNIQUES FOR DESIGN SPACE

EXPLORATION OF COMPLEX PROBLEMS.

2.1 Research Objectives

Driven by the current motivating problem, and the corresponding research questions,

a literature search was performed with the intent of uncovering the standards of

the current paradigm, as well as the methods available for addressing the stated

challenges. Chapter 1 described the motivating problem. In relation to the chart

displayed in Figure 1, this motivating problem is essentially the application. The

other components that drive paradigm shifts are the means and theories. In all

reasonableness, the means (computer speeds, time available for the study, etc.) are

usually beyond the control of the designer. Thus, this thesis will not explore ways

of increasing computational capabilities or resources; they will be considered to be

�xed. That leaves the theories. One might think of such theories as tools that enable

knowledge to be brought forward. To accomplish this task, these tools must enable

knowledge to be acquired and utilized in an e�cient and meaningful way. Thus,

this Chapter explores all of the methods available for acquiring knowledge about the

system with the intent of making informed decisions.

Recall that the goal of this thesis is to create a process rather than picking (or

creating) a �best� method for creating surrogate models. As such, the objective of

this research is to compile a list of commonly used methods and their attributes for

the sake of learning the strengths and weaknesses of each. This is done, not with

25

the intent of reaching some conclusion as to which is the superior choice, but rather,

to create a foundation for deciding which method is most suitable for the particular

problem.

2.2 Narrowing Down Alternatives

Even with the availability of advanced sizing and synthesis tools, the task of designing

complex systems can be daunting. For one, the sheer number of design possibilities

can be nearly in�nite, and even the most advanced tool will only enable a very

small fraction of these possibilities to be modeled. This is compounded with the fact

that oftentimes, these sizing and synthesis codes are treated as black-boxes, where

the designer has no way of knowing exactly how certain variables a�ect the design

outcome.

One of the most challenging and crucial steps of the design process is to simply

narrow down the list of possible design alternatives to a manageable set of options that

hold the most promise. To accomplish this, the �rst step is to de�ne the requirements

that will be used to guide and evaluate the overall con�guration arrangement [112].

The requirements have a great impact on the amount of design options left available

to the designer, and in general, more strict requirements lead to a greater degradation

in design freedom. Thus, the goal in de�ning requirements should be to select those

that equate to the greatest capability while not overly restricting the design space.

One of the major challenges for designers is interpreting the actual requirements

[113]. Oftentimes, people think of requirements as referring only to functional perfor-

mance and physical characteristics, where functional performance characteristics are

capacity measures like power, strength, or speed, and physical characteristics pertain

to such issues as size, weight, or shape. However, these are not the only requirements

in the design of complex systems; Dieter (2000) de�nes and di�erentiates these from

other types of requirements. These include complimentary performance requirements

26

that address the robustness, reliability, economy, and maintenance issues through-

out the useful life of the design. Environmental requirements are concerned with

two aspects, how the environment a�ects the design, and how the design a�ects the

environment. These refer to operational conditions, and green design, respectively.

There may also be some aesthetic requirements. In naval applications, for instance,

the "appearance of military power" has traditionally been viewed as an important

design requirement [44, 21, 50]. Finally, there are cost requirements, which enter into

every aspect of the design process.

The designer must determine how all these requirements equate to speci�c engi-

neering characteristics, and which design options are left open by these requirements.

Usually, the number of possible design options is still very large, and the designer

must narrow down those options to a select few that will be investigated further. To

ensure the best designs are chosen for further development, one can map the relation-

ship between the requirements and the speci�c vehicle attributes. In doing so, the

designer can gain valuable insight into the problem such as which requirements drive

the design, what kind of trade-o�s need to be considered, and whether technologies

should be pursued. This kind of valuable information is key in narrowing down the

design options to a few baseline concepts.

After the baseline concepts are de�ned, the designer must then identify the im-

portant design variables, or inputs that are able to be directly controlled by the

experimenter. Whether or not a design meets the requirements is dictated by certain

responses, or outcomes of the experiments. Thus, the important design variables are

the ones that have the greatest e�ect on those responses. An input's impact is in part

dependent on the ranges over which it is varied, as well as any interactions it may

have with other inputs. Thus, in conducting an experiment, it is important to select

both the right combination of design variables, and the appropriate ranges, as these

two elements essentially de�ne the area of design space that will be investigated.

27

2.3 Surrogate Models

Once the design alternatives have been narrowed to a manageable number, a surrogate

model can be used to further explore the remaining design space. A surrogate model

is a simpler model of an original code that uncovers important relationships, and

allows a more thorough exploration of the design space. Usually, the design space

is explored via a Monte Carlo simulation, in which enough samples of the design

space are taken to provide a thorough representation of the space. If the synthesis

and sizing code is expensive to run, then a surrogate model can provide the data

more e�ciently. So often, a good surrogate model is de�ned as one that accurately

represents the original code for the modeled portion of the design space. But it is

important to remember that no matter how good the simulation capabilities are, if

the wrong concepts were selected at the beginning, the resultant design will cost more

and possibly have inferior capabilities.

To create a surrogate model, a set of experimental data is needed to gain some

information about the behavior of the system. Computer experiments are commonly

used in engineering design problems like semiconductor, aerospace, and other �elds

that employ accurate deterministic simulators. The purposes of computer experi-

ments vary; they might be thought of as "function mining" in analogy to data min-

ing. The goals include approximation, interpretation and visualization [6]. In other

words, a common objective for computer experiments is to approximate the functions

of the synthesis and sizing code in order to �t a cheaper predictor of the output to the

data. This cheaper predictor is an interpretation of the original code, referred to as

a surrogate model or metamodel. It represents a usable and functional relationship

between the inputs and outputs that, while not as precise as the original computer

model, serves as a su�cient approximation. It usually represents only a select por-

tion of design space, and only models certain variable relationships thereby having

reduced scope in comparison to the original computer code. Thus, a surrogate model

28

usually trades accuracy and scope for greater computational speed and e�ciency.

In turn, this surrogate model can be used to run probabilistic analyses, like Monte

Carlo simulations, where a very large number of trials are run in order to gain enough

information to visualize the design space.

In creating a metamodel, there are four distinct tasks. The �rst task, which was

described above, is to select an appropriate baseline design, and de�ne the important

variables and responses based on the requirements that have been identi�ed. The

next task is to de�ne or choose a Design of Experiments (DoE), the experimental de-

sign that de�nes which trials will be run to generate data. Design of the experimental

problem implies the intelligent selection of a series of inputs at which to run the com-

puter code. Here, the primary goal is to gather the greatest amount of knowledge

about the design space in as few runs as possible. The second task involves choosing

a model to represent the data, such a polynomial equation, a network of neurons,

etc. The next task is to �t the selected model to the observed data, thereby creating

the surrogate model. Finally, this model must be validated, in order to verify that

the selected model is su�ciently accurate. After these steps are completed, the re-

sulting metamodel can then serve as a replacement, or representation of the complex

computer code, enabling faster approximations for probabilistic analysis, like Monte

Carlo simulations.

For each of the four tasks outlines above, there is a vast array of options available.

Over the years, many techniques have been created or modi�ed to address various

types of problems. An overview of the most common of these is presented below.

2.3.1 Selecting Designs of Experiments

With the design variables and their ranges selected, the next step in creating a sur-

rogate model is to design a set of experiments for the purpose of gathering as much

information as possible about the design space from a practical number of trial runs.

29

The number of trials will depend on some combination of the number of inputs being

varied, the desired accuracy of the surrogate, and the amount of time and resources

available. Obviously, there is some trade-o� to be made here, as resources often limit

the number of trials that can be performed. So, for a limited number of trials, the

designer must choose between reducing the number of inputs so that a few inputs

can be accurately modeled, or keeping all the inputs at the expense of reduced ac-

curacy. To rectify this issue, designers often employ what is known as a screening

design, which is a minimum set of runs with the sole purpose of determining which

design variables (or combinations of design variables) have the biggest impacts on the

responses. The goal here is not to gain enough data to create a surrogate model, but

to determine the relative impacts of the design variables so that the least important

variables can be left out of the remainder of the analysis in order to achieve greater

accuracy in modeling the most important e�ects.

After the set of design variables is narrowed down to a manageable number, the

next step is to generate the Design of Experiments (DoE) that will be used to gather

the information needed to �t an accurate surrogate model to the data. There are

multiple computer packages available that employ algorithms to generate 'best' DoEs

based on the users choice of sample sizes, model, ranges on variables, and other con-

straints. However, users often treat these computer packages as black boxes without

a good understanding of the criteria being used to generate the design [101].

There are many types of DoEs available, each with di�erent purposes, drawbacks

and advantages. Choosing the best one requires a certain understanding of the type

of problem and the goals of the particular experiment. For instance, Giunta et al

(2003) make the distinction between classical DoE techniques that were originally

developed for �eld and laboratory experiments that possess sources of random error,

and modern DoE techniques developed for deterministic computer experiment. They

note that classical DoE approaches such as Full and Fractional Factorial designs,

30

Box-Behnken, and Central Composite Designs typically have sample points located

at the extremes of the design space. Doing so allows for more reliable model �tting in

the presence of random error sources. Whereas for modern DoE methods involving

repeatable computer experiments, space �lling designs such as quasi-Monte Carlo

sampling, orthogonal array sampling, and Latin hypercubes are better suited for

modeling trends [54, 119, 128]. These designs take samples from the interior of the

design space in order to minimize bias error, the error caused when the estimated

functional form of the actual response trend di�ers from the functional form of the

estimated trend. Several authors have proposed various space �lling DoEs speci�cally

for the purpose of performing deterministic computer experiments, including Latin

Hypercube designs [96, 66, 133, 110, 147] and Orthogonal Arrays [132, 107].

With so many options available, the task of selecting the right DoE can be daunt-

ing, especially because there isn't a de�nitive 'best design' for any particular class

of problem. The �nal selection should depend on the speci�c attributes of each

DoE in conjunction with the nature of the design problem. What follows is a brief

overview of the basic types of DoEs available, along with some of their advantages

and disadvantages. These attributes will be revisited later in this thesis to justify any

recommendations.

2.3.1.1 Experimental Designs

Table 1 depicts some generalized attributes of various types of DoEs. These attributes

were compiled from various references, based on the conclusions reached by several

authors [17, 98, 11, 7, 30, 101]. In general, each of the attributes listed in the column

on the left of this table can be considered to be a positive quality. Before delving

into the descriptions of each individual type of DoE, it may be helpful to �rst give a

detailed description of what is meant by each of the attributes listed in the table.

Experimenter can specify number of runs This refers to the amount of control

31

Table 1: Attributes of Popular Designs of Experiments

32

the experimenter has over the speci�cation of the number of runs. Given some

assumed model, can the experimenter specify the number of trial runs?

May be used to �t a wide array of models Denotes whether a speci�c type of

DoE is capable of being designed to �t a wide array of model types (linear,

quadratic, cubic).

Design is model independent This is di�erent from the previous attribute in that

it refers to whether or not a particular model must be assumed before the DoE is

created. Thus, if a DoE possesses certain desirable attributes for the assumed

model, and that assumed model turns out to be wrong, does the DoE still

possess those desirable attributes for a newly assumed model (without having

to add more points).

Supports both discrete and continuous variables Can a design be created for

any (reasonable) combination of continuous and discrete variables (at various

discrete levels)?

Orthogonal For the assumed model, an orthogonal design will have no correlation

between the e�ect estimates.

Computationally cheap to generate If readily available statistical packages or

programs allow the design to be quickly generated, then the design is considered

to be computationally cheap to generate.

Lends well to being sequentially built If additional runs can be added to the

design after the fact without degrading the bene�cial properties of that design, it

is considered to be a good candidate for sequential experimentation. In addition,

designs that allow for newly gathered knowledge to be used in selecting new

points are considered to be exceptional candidates for sequential design.

33

Represents all portions of the design space Does the design scatter trial points

in such a way that all portions of an input's range are equally represented? Are

there large unsampled regions in the interior of the design space that will require

interpolation?

Does not require extrapolation This attribute is somewhat related to the previ-

ous, but it refers more to whether the range of each input is represented in its

entirety, so that the model is not forced to extrapolate in making estimates for

the extremes of the design space.

Can handle constraints on the design space Sometimes, an experimenter wishes

to investigate some particular ranges for the inputs, even if certain constraints

are known to exist within that design space. Given that these constraints typi-

cally reduce the symmetry of the design space, can the DoE be built within an

asymmetrical envelope, without degrading its qualities?

Typically avoids most infeasible space The previous attribute indicates whether

known infeasible space can be accounted for in the design, whereas this attribute

refers to whether or not a particular design is likely to avoid unknown infeasible

space. Since infeasible space is usually located at the extremes of the design

space, a design is considered likely to avoid infeasible space if most of its points

are not located on these extremes.

Typically insensitive to failed runs Independent of the likelihood of failed cases,

this characteristic is dependent on the sensitivity of the results to missing data.

Results used to predict outputs at untried inputs Di�erent types of DoEs have

di�ering purposes. For some, the purpose might be to perform a screening test

to determine which factors have the greatest e�ects on the outputs. Or the goal

might be to determine how a known distribution of inputs propagates through

34

to the output distribution. Alternatively, if the main goal of a DoE is to gather

the data needed to create a surrogate model for predicting responses at untried

inputs, then it is said to possess this attribute.

There are several DoE methods available to select trials for gathering experimental

data. The following lists some of the most popular of these methods; a brief de-

scription of each follows. These descriptions are not intended to provide speci�cs on

how these designs are generated; they only serve to highlight relative strengths and

weaknesses of each in areas that are of particular interest to the problem presented

in this thesis.

Factorial Designs The �rst type of DoE listed in the table is a Factorial Design.

These have design points located on the corners of the design space for 2-

level factorials, and points located on the corners and mid-edges for 3-level

designs. Factorial designs can either represent all possible combinations of those

levels using a full-factorial design, or they can represent only a fraction of those

points using a fractional factorial design. Thus, these designs o�er some level

of control over the number of runs, because the experimenter may choose a

lower resolution design that neglects certain interaction terms, and therefore

has fewer runs. Typically, 2-level Factorial designs are used to screen terms to

identify which factors and their interactions have the greatest e�ects. Unlike

2-level designs, 3-level designs can be used to model quadratic functions, even

though this is certainly not the most e�cient way to model such a relationship.

Factorial designs are easy to generate, simple in concept, and form the basis

for several other types of designs. All of these characteristics make factorial

designs a good candidate for sequential sampling. In addition, factorial designs

can handle discrete variables in two ways. One can generate a factorial design

for all of the continuous variables, and then repeat that entire design for all

35

possible combinations of discrete variables and levels. Or, one can represent

each discrete variable with one or more "regular" variables. In other words,

two 2-level variables can be used to represent one 3 or 4-level variable. For the

3-level discrete variable case, the two representative variable settings might be

set to (+,+) to represent the �rst level, (+,-) or (-,+) would both represent the

second level, and (-,-) would represent the third level.

Central Composite Designs These designs take a Factorial Design and add axial

points in every dimension. Depending on the desired properties of the design,

these axial points can either be located on the "faces" of the design space, or

further out, to create rotatable or spherical designs. CCDs o�er many of the

same properties as Factorial Designs, and are far more e�cient for modeling

curvature (quadratic relationships) than 3-level Factorial Designs. However,

the only way for CCDs to model discrete variables is to generate a design for all

the continuous variables, and then repeat that entire design for every possible

combination of discrete variables and level. If there are several discrete variables

present, and/or those discrete variables have 4 or more levels, this can quickly

lead to a design with an unmanageable number of runs.

Box-Behnken Designs Instead of having points located on the corners, points are

located in the centers of the edges of the design space, thus forming a spherical

design. It is easy to generate, and highly e�cient in terms of the number of

required runs, except for designs involving discrete variables, which are handled

the same way as in CCDs.

Random Sampling Random sampling is one of the most primitive forms of exper-

imental designs, where any point within the bounds of the design space has the

same probability of being chosen as a trial point. Generally, for random de-

signs, more runs are better, because a randomly generated design with very few

36

points is likely to have highly correlated e�ect estimates. Thus, these designs

work best when the experimenter can a�ord to run a great deal of trial points.

Optimal Designs These are designs that are optimized to some particular criterion,

with the D-optimality criterion being the most popular choice. As a result, these

designs must be generated using computer programs, which take a speci�ed

model, and use that model to create a set of candidate points. Then, based on

the number of trials the experimenter wishes to run, the program selects that

number of points from the candidate list.

Latin Hypercube Designs Latin Hypercubes are space-�lling in nature, but they

possess some attributes that are uncharacteristic of other space �lling designs,

and hence were separated from this group for the sake of argument. A Latin

Hypercube ensures that for each input, all portions of its range is represented,

with as many di�erent partitions as there are runs for any given input. Unlike

other space-�lling designs, however, there is an element of randomness in the

selection of points, making the LHD simpler and cheaper to generate than other

space-�lling designs. At the same time, the drawback to this type of design is

that it is hard to augment the original design with new points, while maintaining

a moderately uniform scattering of points.

Space Filling Designs These types of designs also aim to distribute the points

evenly throughout the design space. Unlike Latin Hypercubes, these designs

try to optimize the spacing between the data points. While this ensures more

even spacing between any two points, there is a price to be paid in that these

designs are computationally expensive to generate.

In addition to the basic designs listed here, many have tried to exploit the desirable

properties of some designs while eliminating drawbacks by suggesting various hybrid

designs. Most commonly, these hybrid designs are built around CCDs [78, 11], as these

37

designs lend well to augmentation since, by de�nition, they are a hybrid of a factorial

design and axial points. Other proposed hybrid designs include sets of saturated

designs for second order response surfaces [115] as well as Latin Hypercubes used in

combination with fractional factorials [72].

2.3.2 Fitting a Model

There is a large body of research that focuses on �tting surrogate models to experi-

mental data, and the options for doing so are vast. Outside of the common statistical

linear models used in RSM, people have studied Kriging, Rational Bias Functions,

Neural Networks, Gaussian Processes and Multivariate Adaptive Regression Splines

(MARS). Many studies have been conducted, giving insight on the strengths and

weaknesses of each. As of yet, however, there is no consensus on which of these is

best. Still, a general conclusion seems evident; that Kriging o�ers more accuracy at

the cost of a di�cult setup, while polynomial regression trades some accuracy for ease

of use [126, 54, 68, 89, 79].

Several authors have emphasized design and analysis as applied speci�cally to

deterministic computer experiments [126, 119, 32]. They point out that deterministic

computer experiments are subject only to bias error, and not random error, so a

surrogate model should hit each of those points exactly and interpolate between

them. In other words, there shouldn't be any di�erence between predicted and actual

results for data points that were used to �t the actual model. A brief overview

and discussion is given here for a few of the most popular methods for deterministic

experiments. It is beyond the scope of this document to give thorough descriptions

of the theory behind each of these methods, or instructions for their implementation.

The discussion intends to only mention notable characteristics of each, while keeping

in mind their applicability to deterministic experiments.

Response Surface Methods (RSM) This term is often used interchangeably with

38

least squares regression, and polynomial regression. Regression techniques as-

sume that the error at each point follows a normal distribution, so the resulting

model is a polynomial equation that's smoothed across the data points. As a

result, some authors feel that the nature of computer experiments con�icts with

the methods of least squares regression, because these experiments are not sub-

ject to random error. Still, RSM continues to be one of the most commonly used

and well established modeling techniques, even for deterministic experiments.

Adaptive Response Surface Methods (ARSM) ARSM is similar to RSM, ex-

cept that it enables adaptation to the data. It does this by systematically

reducing the size of the design space by discarding portions of it that corre-

spond to objective function values larger than a given threshold value at each

modeling-optimization iteration [137]. However, one must note that pure opti-

mization is not always the goal. For instance, sometimes the goal is to generate

a global metamodel that can be used to replace the code for a speci�c disci-

pline or part and insert the metamodel of that code into the synthesis loop for

multidisciplinary design. For this such case, there might not be any prede�ned

design constraints because the variables might be considered to be intermediate

variables.

Neural Networks (NNs) Neural Networks try to mimic the way the human brain

functions by creating a simpli�ed version of a brain cell, called a neuron. Inputs

are fed to this neuron, which then takes the data and uses it to form a transfer

function. This transfer function is then either fed to other neurons or turned

into output. There can be any number of layers of neurons, and any number of

neurons in each of those layers; in general, a more complex problem will require

more neurons and more layers. NNs are �exible enough to �t many types of

functions [101], and given enough neurons, they can e�ciently approximate

39

any of these functions to any accuracy [70, 117]. This quality makes NNs

attractive for problems that exhibit erratic behavior, where, for example, a

little change occurs over some portion of the design space, and then there is

an abrupt change. As previously stated, there is a commonly held belief that

a good metamodel will yield predicted values that are identical to the observed

values for the experimental data points. NNs possess this capability, but one

drawback, however, is the possibility of over�tting the data. This occurs when

the NN provides a nearly perfect �t to the experimental data, but provides a

very poor prediction of new data points. Also, the functional form of a NN is

not particularly transparent, as it is a highly complex equation. Thus, it will

only provide a black-box predictor of the model, and nothing more. As a result,

NNs may be best suited for highly nonlinear or very large problems [128, 33],

or situations in which one wishes to protect knowledge of the inner workings of

the original model by substituting it with a black-box representation.

Gaussian Processes (GPs) Unlike RSM, where the function, F, is explicitly para-

metrized and the parameters are solved for using regression, GPs de�ne a prob-

abilistic model for the correlation between di�erent values of the function [10].

Also, in comparison to RSM, GPs require fewer initial assumptions for presup-

posing the response behavior [61]. GPs are built on Bayesian theorems, so they

postulate statistical information to enable a prior stochastic description of the

function-class modeled. GPs can be used to predict highly nonlinear surfaces,

and they can give predictions for both the predicted response, and the predicted

variance. Like NNs, GPs are "trained" using a sample set of data points, but

this training capability is somewhat complex, requiring several occurrences of

N3 matrix operations, where N is the number of data points. This makes the

GP relatively expensive create or retrain (if a bad initial assumption needs to

be corrected), especially if there are a lot of data points [62].

40

Kriging Kriging comes from the �eld of geostatistics [82], and postulates that re-

sponses can be modeled as a combination of a polynomial model, f(x), plus

departures, Z(x), where Z(x) is a realization of a stochastic process. The term,

f(x), is a known polynomial function similar to that of a response surface,

and in many cases it is simply taken to be a constant term. It provides a

global model of the design space whereas Z(x) dictates localized deviations,

so that the model interpolates the sampled points [128]. Several statisticians

have advocated this method for modeling responses of computer analysis codes

[14, 119, 80, 139, 138, 106, 89]. Their main argument in support of Kriging

is that deterministic computer analyses are subject only to bias error, and not

random error. They note that this behavior con�icts with the method of least

squares regression, which assumes that random error is normally distributed at

each point, so the resulting model is a polynomial equation that is smoothed

across data points. Thus, the authors conclude that for deterministic computer

analyses with no random error, the surrogate model should hit each of exper-

imental point exactly and interpolate between them [31, 1]. In other words,

there shouldn't be any di�erence between predicted and actual data for data

points that were used to �t the actual model. In addition, Kriging lends itself

nicely to sequential experimentation, in which experimental data is collected as

needed in an iterative fashion. This is a particularly attractive option for ex-

pensive experiments, because new samples can be directed to speci�c regions of

interest within design space. For instance, several authors have demonstrated

how to use an estimation of the prediction error as the basis for sequential

sampling [119, 32, 73]. This directs new samples to regions characterized by

large errors. Or, if optimization is the primary objective, new samples can be

directed regions where the optimum is suspected to lie. Directing new sample

points in this fashion guarantees that the maximum amount of information is

41

gained from every sample.

Despite having a logical case in support of Kriging for deterministic experi-

ments, there is a good deal of evidence that retracts from the fervor. First

and foremost, Kriging is more complex than a polynomial model, and due to

lacking support software for implementation, Kriging models are can be harder

to obtain [137, 128]. In addition, several authors have shown that in side by

side comparisons of Kriging and response surface models for aerospace applica-

tions, neither one consistently outperforms the other [53, 127, 68]. The same

conclusion was drawn when comparing the two methods for various mathemat-

ical equations [146]. Also, some hold skepticism toward the commonly repeated

conviction that trends rarely need to be modeled explicitly [41, 124, 125, 3, 111].

This conviction has been exercised in most of the papers written on this topic,

in which the polynomial portion of the Kriging model is usually chosen to be a

constant [13, 30]. Choosing a constant to represent the "known" term is akin

to saying that nothing is known about the model, so any assumptions about

the behavior of the model will be avoided altogether. This is a perfectly accept-

able assumption as long as enough resources are available to populate the design

space with enough points to provide adequate information to model the data us-

ing no prior knowledge or assumptions. The Kriging equation can be viewed as

an interplay between imported knowledge and gained knowledge. The imported

knowledge may come from assumptions, expertise, or historical data while the

gained knowledge comes from experimentation. The two types of knowledge

must compensate for one another; if one is absent, then more of the other is

needed. Thus, for large problems with high dimensionality, or for problems with

computationally expensive experiments, it is infeasible to populate the design

space with enough points to create a model on gained knowledge alone. For

these problems, the "known" term must carry more weight and contain more

42

information.

Quasi-Regression Quasi-regression is a frequentist simulation based tool for com-

puter experiments [6]. For problems in which it is possible to obtain a large

number of data points (10e5 to 10e7 samples), quasi-regression o�ers an e�-

cient way of learning about the behavior of the data. Koehler and Owen (1996)

show that as the number of samples, n, increases, the algebra required to simply

construct a model using Kriging or regression begins to take over the computa-

tional expense. Quasi-regression estimates, on the other hand, are more e�cient

than least squares estimates or Kriging, making them better suited to problems

having a large number of data with which to �t a function. It should be noted,

that least squares has been shown to be more accurate than quasi-regression

[108]. However, quasi-regression as been shown to be useful for certain applica-

tions. For instance, if one has some complex function for modeling some certain

behavior, that function might be extremely simple to evaluate. However, a cur-

sory look at the function might not enable one to garner an understanding of

which variables are important, and how some of those variables interact with

one another. In this case, a Monte Carlo simulation can be performed using the

original function, and the quasi-regression can be used to gain an understanding

about the function. Another suggested application for quasi-regression is for it

to be used in conjunction with machine-learning algorithms [67]. Algorithms

such as RBFs and NNs provide accurate surrogate models based on some rela-

tively small amount of training data, but the resulting approximation functions

are often complicated, and non-interpretable. In these cases, if one wishes to

have the advantages of NNs or RBFs (good approximation) without the disad-

vantages (non-transparency of the approximation function), then a Monte Carlo

could be performed using the NN or RBF surrogate, and then quasi regression

can be performed on the results of the Monte Carlo to learn more about the

43

relationships between the variables.

In conclusion, it is evident that there is not a clear best method for sampling or for

�tting data. All methods are associated with some trade-o�s; algorithms that give

more accurate �ts seem to lack the transparency of the simpler, less powerful methods;

those methods that require fewer assumptions seem to be prone to hardship if there

is not enough sample data available. Various studies reach di�ering conclusions on

which methods yield the most accurate �t, and to make matters worse, none of those

addressed how the initial assumptions used in the study might have a�ected the

conclusions. If they had, perhaps they might have found that the initial assumptions

had a greater bearing on the outcome than the model-�tting method used.

2.4 Current Techniques for Addressing the Com-

plex Design Problem

The previous sections outlined some of the most common, basic techniques for sam-

pling the design space and building a surrogate model. The best option depends partly

on the nature of the problem, with di�erent techniques having di�erent strengths and

weaknesses which may or may not lend well to the particular problem. However, not

all design problems are straightforward enough to allow a simple plug-and-play using

one of the standard techniques. Sometimes, for complex problems, new and innovative

solutions are needed in order to work around some of the unusual hurdles presented.

As previously discussed, the naval ship design problem represents a complex prob-

lem possessing such hurdles. Speci�cally, the three major hurdles often presented by

the naval ship design problem are the large scale of the problem, the combination of

both continuous and categorical design factors, and the presence of large quantities

of infeasible space. Individually, none of these three hurdles are speci�c to the ship

design problem. Similar hurdles have been encountered in many other applications,

and techniques for addressing all of these hurdles have been addressed at some point

44

in the literature. This following sections expand on the previous research presented

by exploring some of the more speci�c solutions that have been o�ered for addressing

these issues on an individual basis.

2.4.1 Techniques for Large Scale Problems

A large scale problem is de�ned here as one that possesses both high dimensionality

and multi-objective attributes. The design of a complex vehicle such as an aircraft

or naval vessel requires analysis across multiple disciplines, some of which might have

competing objectives. As a result, the designer usually has control over many input

variables, and wants to track how each e�ects the responses to determine what trade-

o�s need to be made. With more design variables coming into play, the dimensionality

of the design space grows, and more sample points are needed to explore the entire

region in all dimensions.

2.4.1.1 Non-partitioned Approaches

Non-partitioned approaches make no assumptions a priori about the relationships

between various inputs. As such, these approaches vary all of the input variables si-

multaneously with the hope that important variable interactions will become evident.

Practically speaking, this usually involves the assumption that certain interactions

(usually high-order factor interactions) are negligible. Still, even with this assump-

tion, large scale problems typically require a relatively large amount of data to �t a

model. There are two main types of non-partitioned approaches for experimentation.

The �rst type consists of a group of pre-built or single-stage designs, whereas the

second type falls into the category of sequentially-built designs.

Single-Stage Designs

Single-stage designs are those experimental designs that are built all at once, usually

before the �rst data point is calculated. For a single-stage design, a good deal of

45

information must be supplied, or assumed in order to select or build the design. For

instance, the type of experimental design chosen depends on what the experimenter

wishes to learn from the data. Is the goal to learn the relative variable impacts for

screening out insigni�cant variables, or is the goal to build a suitable surrogate model?

If the goal is to screen for signi�cant e�ects, then perhaps a factorial design will do.

If the goal is to build a surrogate model, then the designer must assume the model's

general structure. If a main e�ects linear model is assumed, again, a factorial design

might su�ce, but if a quadratic or higher order model is assumed, then a design

that varies the inputs over three or more levels will be needed. In any case, a large

problem requires a large amount of sample data, and there are always some realistic

constraints on the amount of data that can be collected. This constraint is another

tidbit of information that is supplied before the single-stage design is generated, as the

type of design depends, in part, on the number of trials that can be a�orded. When

time or resources are limited, the experimenter typically deals with such limitations

by imposing more assumptions about the structure of the model, as assumptions have

the same e�ect as bringing knowledge forward, even if the source of such knowledge

is questionable. Regardless, when the ultimate goal is to gain some knowledge, any

imported knowledge reduces the amount that needs to be acquired, thereby reducing

the amount of sample data needed.

The performance of various existing single-stage designs and model-�tting tech-

niques have been compared for large-scale problems. Simpson et al (2000) compared

and contrasted �ve experimental design types and four approximation model types

in terms of their capability to generate accurate approximations to two engineering

applications with typical engineering behaviors and a wide range of nonlinearity. One

of the applications is a small three variable problem that is characteristic of many

engineering analyses used in structural optimization. The other application is a large,

more complex problem having 14 variables and a highly nonlinear response. For the

46

DoE, the authors recommend using uniform designs for problems requiring a small

sample size, and Hammersley designs for problems that can a�ord larger sample sizes.

For the model type, the authors recommend both Kriging and Radial Basis Functions

[126].

Jin et al (2000) performed a similar experiment comparing four di�erent modeling

types for 14 di�erent problem types. The four modeling techniques investigated

were Polynomial Regression, Kriging, Multivariate Adaptive Regression Splines, and

Radial Basis Functions. The fourteen problem types spanned various levels of inputs

ranging from 2 to 16 variables, and possessed varying levels of nonlinearity. Like the

previous authors, these authors recommend RBFs. Their results show that for large

scale problems, speci�cally, both Kriging and RBF perform best, with polynomial

regression also having competitive performance for large problems having low levels

of nonlinearity [68].

Alternatively, Davis and Bigelow assert that one can improve the quality of the

surrogate model by taking advantage of phenomenology, the knowledge of the inner

workings and theory behind the original model. In other words, any physical rea-

soning that can be inferred regarding the inner workings of the model can be used

to suggest an analytical equation that forms the basis for the surrogate. Thus, this

knowledge might suggest certain composite variables (interactions), transformations,

or logistical operations to form the basis of the analytical equation. In their work,

Davis and Bigelow demonstrate use of phenomenological knowledge by extracting

information from the documentation provided with the original code. From this doc-

umentation, they were able to understand the logic employed in the code, as well as

important variable interactions. Using that information, they built their "storyline",

a composition of logic and meaningful relationships used to de�ne the structural form

of the metamodel. The actual coe�cients were then determined using a set of priorly

generated experimental data which was nothing more than a Monte Carlo sample

47

of the design space (with uniform distributions). They compare the results of this

technique with one in which no phenomenological knowledge is used; the metamodel

is simply �t to the same data using sheer brute force. Their results show that the

metamodel that utilized phenomenology �t the data far better than the metamodel

that was blindly �t (all of the quadratic combinations of variables were considered

and then a stepwise linear regression is used to narrow down to the most important

variables). There are some obvious advantages to using phenomenological knowledge

to create a surrogate model, but what if we don't have access to such knowledge a pri-

ori? Davis and Bigelow do not o�er up suggestions for uncovering such information,

they only discuss how one might use the information once they have it.

Sequentially-built Designs

Sequential experimentation implies that the sampling process can be stopped and

restarted, possibly in an iterative fashion, and that all of the desirable design char-

acteristics will be maintained at each stopping point. As opposed to picking all of

the trial points at the outset of the experiment, sequential experimentation allows for

�exibility in the number of trials, and the points chosen. To o�er this kind of �ex-

ibility, sequential designs must possess the inherent quality that all desirable design

characteristics (such as orthogonality, rotatability, etc) must be maintained at every

possible stopping point. This ensures that the design will be a good one, no matter

when the experimentation is terminated.

There are two basic classes of sequential design: those without adaptation to the

data, and those with adaptation. Sequential sampling without adaptation might be

useful when the designer simply wishes to gather data until there is some su�cient

amount of information (for example, the level of prediction error hits some acceptable

threshold). Or, a designer might wish to continue gathering data until time runs out,

or resources have been extinguished. Either way, design without adaptation implies

48

that new trials are not directed or in�uenced by gained knowledge; instead, all trials

are pre-determined, and the only question is how many of those trials will actually

be run.

In sequential modeling with adaptation, the aim is to make the greatest use of

available knowledge by sequentially gathering information and using it to guide the

experimental process. This is particularly useful for large problems in which little is

known about the e�ects of the factors on the responses. In such cases, unguided exper-

imentation can waste a great deal of time and e�ort when a much smaller amount of

e�ort could have yielded that same results if sequential experimentation with adapta-

tion were used [92]. Sequences of two-level fractional factorial designs were �st studied

by Davies and Hay (1950), who pointed out that it is possible to modify the design

after one or more experiments have been carried out [38]. Based on the knowledge

acquired from previous runs, the experiments can adapt so that data points are taken

from the most meaningful regions of the design space, whether it is those regions

where the surrogate model exhibits the most error, or those where the optimum is

thought to reside. In turn, the experimental process can be made more e�cient, so

that more valuable information is gained in fewer runs, and/or the experimentation

can be terminated once su�cient information is had. These goals are typically ac-

complished by reducing the design space in some fashion, either by screening out

unimportant design variables, or reducing the ranges of the design variables [89]. Re-

sponse Surface Methodology (RSM) typically relies on a screening test to identify

variables that have little meaningful impact on the output [101]. Adaptive Response

Surface Methods (ARSM) work in much the same fashion, except that they were

originally designed with optimization in mind. ARSM works by gradually reducing

the design space, keeping the already-run trials that reside in that region, and adding

and running new trials to increase �delity in that region. Several authors have recom-

mended other various sequential metamodeling approaches using either trust regions

49

[5, 4, 114], move limits [134, 144, 18], con�dence bands [20], or Mean Squared Error

as a means for multi-stage Kriging [106, 118, 91]. All but the Kriging basically work

by iteratively decreasing and re�ning the design space. Thus, they are geared toward

situations where optimization is the primary goal, but there are drawbacks to these

methods when the goal of surrogate modeling is prediction.

Sequential sampling techniques that rely on Kriging methods have the advantage

that they maintain the full extent of the initial design space. The most frequently

referenced technique for sequential sampling via Kriging is that by Sacks et al (1989).

They use a sequential design algorithm to adapt the DoE to the information gathered

about the regression model. Their treatment of sequential design starts by dividing

the experimental region into a number of sub-regions or boxes. The Integrated Mean

Square Error (IMSE) is used as the main design criterion. New points are added to

the design by �rst �nding the box that gives the largest contribution to the IMSE,

and then �nding the point in that box that most reduces the contribution in that

box. They state that their reason for dividing the experimental region in this way

is because, otherwise, there is a tendency for design sites to pile up. Despite the

many advantages associated with sequential Kriging techniques, they have one major

disadvantage in that they rely on the IMSE of a single response to direct the selec-

tion of new points. Since large-scale problems typically involve multiple, competing

objectives, these problems usually involve multiple responses that must be tracked.

Another Kriging-based sequential metamodeling technique was proposed by Lin et

al. They use Kriging and MARS metamodels to sequentially identify data points along

a design timeline. They refer to this method as a Sequential Exploratory Experimental

Design (SEED) [89]. However, they conclude that Kriging is not suitable in cases with

unevenly located data points that often come from sequential experimental designs.

Martin and Simpson (2002) propose a solution that avoids the shortcoming of

Kriging in multi-response models, and they demonstrate their thesis with an example

50

implementation of an undersea vehicle. Like most complex vehicles, their example

represents one with multiple, competing objectives, and therefore does not lend itself

to the creation of a single objective function for de�ning an optimal design. They

proposed a sequential technique for updating a Kriging metamodel by determining

the point of the metamodels design space with the maximum mean squared error and

updating the metamodel at that point. Their intention was to permit an investigation

of the entire design space without concern for �nding an optimal value. Thus, the ideal

approach is one that generates a thorough set of feasible designs so that the trade-

o�s in the system design space can be visualized and understood [130]. Martin and

Simpson (2002) automate the creation of a DoE, and the most appropriate surrogate

model by integrating the building of the DoE with the �tting of the metamodel

using six basic iterative steps: 1) automatically design experiments, 2) evaluate those

experiments, 3) �t a metamodel, 4) test the �t, 5) decide if and where to perform the

next experiment, and 6) update the existing model. At each stage, they �t a rigging

metamodel to the data, and use three di�erent cross-validation tests to assess the

quality of the current metamodel. They argue that the more popular way of assessing

model accuracy, using Root Mean Square Error (RMSE), requires the sampling of a

large number of points that were not used to create the model, making this method

cost-prohibitive for computationally intensive models. This can be avoided through

cross-validation approaches, such as the leave-k-out strategy in which k points are

left out of the �tted metamodel and the error calculation in based on those omitted

points.

They use a Latin Hypercube to generate their preliminary DoE, and use Kriging to

�t a metamodel. The authors conclude that the process of calculating the maximum

MSE and MLE of the Kriging metamodel parameters is too burdensome for their

5-dimensional problem. As more points were added, this computation time increased

substantially, with a typical iteration time starting out at 20 minutes, and approaching

51

2 hours per iteration near the end. It might be assumed, then that this problem

would be further compounded by problems with more variables. Thus, while it is an

attractive solution for complex, multi-objective problems, it might not be suitable for

highly dimensional problems. In addition, the authors note that one of the e�ects

of using maximum MSE to select points is that it tends to select corner points �rst.

This can be somewhat of an issue for problems that contain infeasible space, which

is most commonly found near the extremes or corners of the design space.

In addition to these approaches, several authors have proposed some sort of com-

bination of the popular DoEs in order to achieve some �nal DoE. These might not all

be necessarily classi�ed as sequential designs, though they are typically employed in a

sequential fashion. These designs typically combine two or more popular designs, to

make a composite design that exhibits improved capability or performance over any

of the stand-alone designs. For instance, RSM oftentimes relies on a fractional fac-

torial as an initial screening design. This design can be augmented with axial points

to form a CCD. Further, CCDs, which have many desirable properties, but lack in-

terior sampling, have been used extensively as a building block for even composite

designs. Several authors have proposed combining a basic CCD with another design

that samples the interior of the designs space to make a �nal design that retains the

bene�cial properties of a CCD, but that also has a better distribution of data points

[11, 78].

Other authors [69] have compared sequential approaches with a one-stage ap-

proach for both Kriging and RBF. One paper compares the two approaches for six

test examples which included various mathematical functions and engineering prob-

lems. The authors found that the general performance of sequential sampling ap-

proaches is comparable to that of one-stage approaches, and that neither has a clear,

distinct advantage over the other. Further, they hypothesize that this might be due

to the fact that in sequential sampling approaches, the information obtained from the

52

early-created metamodels might be misleading. Speci�cally, for irregular problems,

it is di�cult for Kriging methods to catch the correct correlation parameters, using

only a small sample size. This, in turn, leads to large RMSE deviations.

2.4.1.2 Partitioned Approaches

Experimenters typically employ some sort of knowledge, intuition, or assumptions to

keep the number of required observations manageable. No matter which is used, the

underlying technique is always the same. Certain terms in the model are discarded

so that the experimenter is not required to gather observations regarding terms that

are presumed to be inconsequential to the model. The most popular of these is the

assumption that the relationships can be adequately modeled with either a quadratic

or cubic polynomial. This assumption essentially 'throws out' all third-order and

higher terms for a quadratic, and fourth-order and higher terms for a cubic. Parti-

tioned approaches o�er an alternative means for reducing the number of terms in the

model. Instead of discarding all terms of a certain order and higher, they discard all

interactions between variables that are deemed to be unrelated.

Partitioned approaches often take advantage of available knowledge that typically

comes in the form of engineering intuition. This knowledge is used to separate the

design variables into groupings, where the variables in a certain grouping are suspected

of being related, and individual variables in separate groupings are assumed to have no

direct e�ect on one another. This allows the experimenter to partition the sampling

process by varying only one subgroup of input variables at a time, while keeping

all others constant. Thus, by discarding certain interaction terms from the model,

the experimenter is able to substantially decrease the total number of observations

required. In addition, this type of approach o�ers the distinct advantage of allowing

di�ering levels of resolution between subgroups. For instance, one subgroup may

exhibit cubic behavior, whereas a quadratic representation is su�cient for another. In

53

these cases, the sampling scheme can be tailored to the individual levels of complexity

of each subgroup.

Zentner (2006) created a partitioned approach that takes in some preliminary

data, and utilizes graph theory to determine the best groupings for the independent

variables. Since the most e�ciency is given by variable groupings that are approxi-

mately equal in size, this technique partitions the variables such that the number of

interacting variables that are placed in separate groups is minimized while attempting

to keep the group sizes approximately the same. This technique is extremely bene-

�cial for those large problems in which it is desired to keep all of the independent

variables in the analysis while minimizing the number of trials needed to create a

surrogate model.

2.4.2 Techniques for Problems with Mixed Categorical and Continuous
Variables

Sometimes, problems contain both quantitative and qualitative input variables. Quan-

titative variables are those that have a well-de�ned scale of measurement, and can

therefore be modeled using continuous variables. Examples of quantitative variables

include speed, distance, length, etc. Qualitative variables, on the other hand, are

those that can only be though of in the categorical sense. Further, these can be bro-

ken down into two categories, nominal and ordinal. Nominal variables are those that

have no natural order or scale of measurement, such as material type, engine alterna-

tive, or propeller type. Though these variable might contain some qualities that can

be thought of in terms of scale (like material strength, material weight, engine power,

etc), it is not inherently obvious which quality should be used to assign a natural

order to the alternatives. Ordinal variables, on the other hand, do have a natural

order, but nevertheless, they can not be considered as continuous variables. These

are variables like number of engines, number of deckhouse levels, number of people on

board, etc. Even though these variables have an obvious order, valid designs cannot

54

include half an engine or part of a person. Therefore, such cases change the dynamics

of the problem, because categorical values must be restricted to speci�c settings, and

each individual setting should be regarded as a separate entity, such that the behavior

of the model at one setting has no bearing on the behavior of the model at another.

This is typically accomplished by representing a single categorical input with a series

of variables. These are treated as on/o� switches, so that each variable represents

one categorical level, and the one that is 'on' designates which level is being modeled.

So in a sense, this is much like having a completely separate RSE for each possible

setting of every categorical value.

To understand the impact of modeling a problem this way, consider an example

problem with �ve continuous variables, and three 4-level categorical values. For the

categorical values alone, there are 43, or 64 possible combinations. If these combi-

nations are to be modeled in the disjointed fashion described above, then one would

generate an experimental design for the �ve continuous variables, and then, in order

to maintain the integrity of the metamodel for every possible setting of categorical

values, that experimental design would need to be repeated for all 64 possible cate-

gorical combinations. So, for instance, if one chose a simple Resolution III fractional

factorial design with 8 runs for the continuous variables, then that experimental de-

sign would need to be repeated 64 times for a total of 512 runs just to maintain

the Resolution III properties of the design. Thus, it becomes evident that for larger

problems (and/or problems requiring a higher resolution), this method of treating

continuous variables quickly becomes infeasible. Another drawback to this method is

that it does not allow for interactions involving categorical factors to be included in

the model.

55

2.4.2.1 Alternative Approaches for Handling Categorical Variables

Despite the fact that all of the statistical packages investigated handle categorical

variables in the disjoint manner described above, there are alternative methods avail-

able. Montgomery (2001) discusses how to use factorials to treat problems with

mixed-level inputs by using multiple factors to represent a single categorical variable.

For instance, a 3-level categorical input can be modeled in a factorial manner using

two 2-level factors. When those two factors are both set to their low level, they cor-

respond to the lowest �rst level of the categorical variable. When one of the factors

is set to its high value and the other variable set to its low value, this corresponds to

the next level setting of the categorical variable, etc. Thus, 3 or 4-level variables can

be represented by two factors, 4, 5, 6, 7, or 8-level variables can be represented by

three factors, and so on. Though this proposed technique is limited to only factorial

designs, it does allow for categorical variable experimentation in a fractional factorial

manner, rather than requiring every permutation of categorical factors and their lev-

els. Thus, in addition to requiring fewer runs, this technique is also compatible with

sequential experimentation.

Several have also addressed the notion of mixed designs containing both contin-

uous and discrete variables for problem in which optimization is the goal. Ford and

Bloebaum (1993) present a decomposition method (based on Concurrent Subspace

Optimization, which is applied to MDO problems) for the optimal design of mixed

discrete/continuous systems [47]. A followup paper [12] extends the capability of the

CSSO method to mixed-variable coupled systems based on the assumption of the

existence of derivatives of the system responses with respect to both continuous and

discrete design variables. Also, others have used arti�cial neural networks to address

response surface mapping for mixed discrete / continuous design variable problems

[123]. However, all of these references have dealt with this subject as it applies to

optimization, and not predictive capability, as is the primary goal here.

56

2.4.3 Techniques for Problems with Infeasible Design Space

There are two types of infeasible space that occur in computer models. The �rst

type is due to shortcomings in the original model. For instance, if some region of

the design space being explored falls outside the scope of the original model, then

the original can not o�er accurate predictions in that region. This can be thought

of as a model-imposed constraint; one that is de�ned by the bounds of applicability

encompassed by the original model. The second type of infeasible space occurs when

some actual physical constraint is violated, yielding a truly impossible design. In

addition, these two types of infeasible space can present themselves in various forms.

For example, an infeasible combination of inputs might cause the original model to

crash, or instead, it might converge, but give wildly unpredictable results that have

no physical meaning (this might occur if the code does not crash, but rather, oscillates

wildly until some maximum limit on the number of allowed iterations is reached). For

this reason, commonly used measures of merit like maximum error can be misleading.

There is no easy way to di�erentiate between large errors that result from violations of

the model-imposed constraints, and those that result from physics-based constraints.

In either case, such occurrences present an interesting hurdle that, as of yet, has

mostly been dealt with haphazardly, by labeling those points as "outliers" and just

discarding them with no consideration of their cause, or how those points a�ect the

results. Not only does this degrade the optimality of the DoE, but when failed cases

are treated in this way, the resulting surrogate model is left with no information in

those regions, and results wind up being extrapolated in those areas. So in essence,

infeasible regions are traditionally regarded as a lack of information, when in actuality

they represent a form of information. Thus, unconverged data points should not be

discarded, avoided, or treated as a nuisance, but instead should be treated as a source

of information that needs to be investigated just as much as the feasible design space.

Due to the obvious drawbacks of simply discarding failed cases, several innovative

57

alternatives have been traditionally employed. These alternatives always seem to

follow one of three themes. A general overview of each theme is given below.

2.4.3.1 Range-Reduction Methods

The most common approach to handling infeasible regions of the design space is to

reduce the ranges of the design variables, rerun the screening DoE, and repeat until

an acceptable percentage of the design space converges. One example range-reduction

method was presented by Geng and Nalim. In order to deal with excessive missing

data, they conducted a convergence experiment prior to conducting the screening

test. In this convergence experiment, they create an additional response, that they

call a convergence response, which is assigned a value of 1 for trials with convergent

solutions, a value of 0 for oscillating solutions and a value of -1 for non-convergent

solutions. Using the same design parameters that will be used for the screening

experiment, the authors run a small two-level fractional factorial. Using the resulting

data, they then gain information of how the design parameters and their interactions

a�ect convergence. They then make appropriate adjustments to the ranges of some

of the design variables. Depending on the number of non-convergent solutions, this

convergence experiment may be conducted several times, adjusting ranges each time

until the percentage of non-convergent solutions are satisfactorily reduced [49]. This

approach is innovative, and easy to employ, but from Figure 5, it is easy to see the

drawbacks to this solution. In particular, this approach can potentially eliminate a

great deal of the region of interest, and it is possible that the optimum design resides

within this excluded space. Thus, with this method, it may be impossible to locate

the best design.

2.4.3.2 Iterative Methods

Another, somewhat related solution has been proposed, in which the design space is

reduced as described in the previous section, but then exploration is continued even

58

Figure 5: Reduced Range Approach for Dealing with Infeasible Regions of the Design
Space

59

Figure 6: Iterative Approach for Dealing with Infeasible Space

after the best solution within the new reduced design space is located [42]. This

approach utilizes the best design within the reduced design space as the new starting

point, or baseline for a new set of design variable ranges. This allows more of the

feasible space to be explored, as can be seen in Figure 6, but it also has several

drawbacks. The main drawback is that this approach requires the experimenter to

run at least two separate higher-order DoEs, thereby requiring more runtime. Second,

this approach assumes that the location of the local optimum has some bearing on

the location of the global optimum, which is not always the case. In relation to that

point, this approach essentially works by slowly closing in on the optimum point, so

it might not be the best solution for problems where predictive-capability is the goal,

rather than optimization.

60

2.4.3.3 Constraint and Step Back Methods

A third class of proposed solutions to this dilemma o�er an alternative to reducing the

design variable ranges. These solutions aim to estimate the bounds of the infeasible

region in order to de�ne a constraint that can be used to essentially remove the

infeasible region from the design space. This can be easily accomplished using o�-the-

shelf statistical packages that allow you to custom design a DoE for a space having one

or more linear constraints. One example of this type of approach involves running a

screening test, identifying non-convergent points, and then running additional runs to

try an locate the boundary of the non-convergent region [48]. This method is depicted

in Figure 7. While this method typically maintains the full extent of the feasible

space, it too has its drawbacks. For one, it assumes that all of the non-convergent

corners will be found during the initial screening test. But usually, fractional factorials

or other small designs are used for screening, which means that many corners will

not be sampled and therefore not all infeasible corners will be found. Also, small

designs typically have several aliased e�ects, which means that if a case fails, it

might be hard to tell which factor or factor interaction is the culprit. Some of the

constraint techniques make no assumptions about which e�ect caused the failure, and

instead recommend replacing the failed case with n new runs, one in each dimensional

direction. In either case, it is easy to see that as the number of dimensions increases,

the number of runs needed to simply �nd the constraint goes up proportionately. As

a result, this class of solutions is inappropriate for large problems.

2.4.3.4 The Method of Sliding Levels

Another option for dealing with infeasible design space is to slide the level of one

factor with respect to another [143]. This method uses a scaling transformation,

such that one variable is scaled with respect to another variable. As can be seen in

Figure 8, scaling a factor in this way has the e�ect of shifting the design space into

61

Figure 7: Step-Back Methods for Dealing with Infeasible Space

62

Figure 8: Method of Sliding Levels

a parallelogram. Thus, if infeasible space exists at one or more corners of the design

space, this method can be used to avoid those regions. However, this method su�ers

from two drawbacks for large scale problems. The �rst is the fact that when there are

many design variables, it may be hard to know which variable should be transformed,

and with which factor it should be scaled. In addition, many problems only have one

infeasible corner, not two, and for these problems the method of sliding levels will

result in a signi�cant amount of feasible space being discarded from the sample space.

63

Chapter III

RESEARCH QUESTIONS AND HYPOTHESES

3.1 Removing Gaps Between the Needs and the

Currently Available Resources

The literature search clearly demonstrates that there is a plethora of tools and tech-

niques available for addressing problems with varying characteristics. All of these

tools and techniques have their own advantages and disadvantages for certain types

of problems. Yet, there isn't a clear, de�nitive set of guidelines for which technique to

employ when. Even when some guidelines do exist (such as the often stated guideline

that Neural Nets are better suited to problems exhibiting nonlinear behavior), it is

not always obvious how to tell whether the problem exhibits certain behavior a pri-

ori. As a result, most analyses start by assuming that the problem contains certain

characteristics. Then, the tools and techniques chosen for the analysis are based on

those assumptions. The problem, though, is that not all techniques are robust to

various design hurdles, such as the ones outlined in Chapter 1 of this thesis. Hence,

in this trial-and-error approach, we often �nd that one or more of the assumptions,

tools, techniques we chose are not suitable. When this happens, we are often forced

to start back at square one to rede�ne the problem and come up with a new plan for

the analyses. As a result, much of the e�ort expended up to that point will have been

wasted, as the data acquired is useless. A good example of this is the use certain

optimized Designs of Experiments (DoEs). For cases in which e�ciency is a high

priority, DoEs are often highly optimized, as to deliver as much information possible

using only a select few set of trials. Though e�cient, these designs are not robust

to missing data, so if there is a signi�cant amount of failed cases, due to either an

64

unknown constraint, or poorly de�ned design ranges, then the resulting design will

no longer have optimal properties. And, since there is no way to �ll in the missing

data and retain the optimal design properties, the only option is usually to rerun the

entire design with rede�ned variable ranges.

Clearly, there exists a need for a more robust method that doesn't involve having

to throw away data and go back to the drawing board every time we learn that one

of the initial assumptions was incorrect. Rather than banking on design assumptions

being correct and charging ahead with the analyses, we need a method where the �rst

objective is to learn enough about the problem to make assertions that are backed by

actual physics-based data. These assertions can then guide the design process so that

the tools and techniques chosen in the later design stages are guided by actual problem

characteristics, rather than assumptions. To accomplish this, the �rst step is to stop

evaluating existing methods as they have been routinely evaluated in the literature,

as competing alternatives that must be whittled down to a single method that meets

all challenges. Rather, the existing methods should be viewed as a toolbox of varying

options that can be pieced together as needed to serve a wide array of needs.

To address this need, the proposed method should start out using tools that are

general enough to learn certain basics about any problem. Rather than going after

speci�c, complex behavior at the start of the analysis, the initial goal should be to

learn just enough to ensure that the problem is set up correctly. After the size and

scope of the design space is well de�ned, the next step should be to gain just enough

information about the design to learn which variables have the most signi�cant e�ects

on the responses. After this information is known, further design e�orts can be focused

speci�cally on gathering the information from those regions where it is needed most.

Then, when the set of information is complete, the toolbox can be consulted to �nd

the method that best suits the problem. This requires that some set of guidelines

is outlined for choosing the most appropriate method given the characteristics of

65

the problem. Though several authors have noted some characteristics inherent to

di�erent methods, a clear, extensive guideline has not yet been presented. This thesis

not only presents such a guideline, but also presents the method for acquiring design

information in such a way that is robust to design hurdles, and does not rely on an

extensive list of assumptions.

3.2 Research Questions and Hypotheses

The literature search was performed with the intent of �nding potential solutions to

the two research questions presented in Chapter 1. This literature search identi�ed

some of the gaps in the current tools and techniques available for answering the ques-

tions in relation to the motivating problem. In doing so, a subset of research questions

presented themselves. The original, overarching research questions are repeated here

followed by the more pointed subset of related questions. These questions are then

followed by the hypotheses that extend from the lessons learned during the literature

search.

R.Q. 1 How do the assumptions, estimates and commitments made in

the early stages of the design process impact the �nal outcome

of the design?

R.Q. 1.1 In comparison to the modeling approach selected, how much do the initial

assumptions a�ect the ultimate success of the particular surrogate model?

Hypotheses:

H. 1.1.1 Arti�cial knowledge and acquired knowledge must compensate

for one another; when there is a shortage of one, then more

of the other is needed. Any method that does not rely on

presumptions will require more acquired knowledge to build

an adequate model and vice versa.

66

H. 1.1.2 No model-building scheme is necessarily superior to another.

The success of a surrogate model is predicated on the assump-

tions made at the outset, and good assumptions are more cru-

cial than picking the "right" method.

R.Q. 1.2 How does one e�ectively decide which tools to use when faced with a com-

plex problem, like ship design, that involves a number of characteristics

that act as obstacles for existing surrogate modeling techniques?

Hypotheses:

H. 1.2.1 De�cient assumptions are often the cause of inadequate re-

sults, rather than inappropriate model-�tting techniques.

H. 1.2.2 Sequential processes that pick new points to reduce the predic-

tion error for some assumed model are useless if that assumed

model is inadequate. A new technique is needed whereby the

goal is to sequentially build and de�ne the proper model struc-

ture rather than iteratively tweaking the coe�cients of an in-

accurate surrogate model.

R.Q. 2 Is there a way to maximize the amount, value, and reliability of

acquired knowledge so that better, more informed decisions and

commitments can be made earlier in the design process?

R.Q. 2.1 When executing an experiment, can new trials be selected for the purpose

of resolving speci�c ambiguities while maintaining a good experimental

design? If so, what is the best criterion or method for picking those new

points?

Hypothesis:

67

H. 2.1.1 It is not the orthogonality of the design that matters, but

that the design is orthogonal for the most important terms.

Sequential sampling can increase sampling e�ciency by main-

taining and restoring design orthogonality for the most im-

portant e�ects and clearing those e�ects of any aliasing with

other e�ects so that the most important terms are su�ciently

represented by the data.

R.Q. 2.2 Is it possible treat failed cases in such a way that does not degrade the

design space or the orthogonality of the data?

Hypotheses

H. 2.2.1 Instead of treating failed cases and outliers as a lack of knowl-

edge, they should be treated as a form of knowledge.

R.Q. 2.3 Can sequential sampling be combined with existing model �tting techniques

to eliminate the drawbacks typically associated with those techniques?

Hypothesis:

H. 2.3.1 Sequential sampling makes it possible to ensure that the proper

data becomes available as needed and to validate or correct

the assumptions. Sequential sampling can allow one to learn

more about the behavior of the problem, and therefore provide

some criteria for subsequently choosing the most appropriate

model �tting technique for the given problem.

3.3 Research Objectives

In addressing any new problem that crops up in system design, it is important to en-

sure that the solution adheres to the design goals. In this case, the overall goal is to

68

identify or create tools and techniques to overcome the obstacles associated with the

design of complex problems having multiple, competing objectives. Surrogate models

are a useful tool for bringing knowledge forward in the design process, but currently

available techniques must be improved to more robustly handle the complexities as-

sociated with problems like naval ship design. Hence, the overall objective can be

translated into a set of smaller objectives related to the formulation of an adequate

surrogate model for such complex problems. Thus, it is important to keep in mind the

basic goals and objectives of surrogate modeling in the general sense. In traditional

practice, experimenters often focus on the goodness of �t of a surrogate model. This

is one of the most common measures of merit, as it is obvious that a good surrogate

model should have minimum prediction error. However, in traditional practice, when

one evaluates a surrogate model's goodness of �t, they generally look at the model's

average performance: the distribution of prediction error, and/or the R2 value. These

metrics are usually employed as the primary measurements of a surrogate's quality,

and likewise are often used as the sole criteria for comparing the success of competing

techniques. In reality, the primary concern should not be minimizing the average

error alone. As in the design of any complex system, the creation of a surrogate

model is really about juggling multiple competing objectives, and �nding a solution

that satisfactorily meets all of those objectives simultaneously. Many authors have

suggested various criteria for assessing the goodness of a surrogate model, but the

following are felt to be one of the most comprehensive de�nitions of what makes a

surrogate model good. The �ve criteria listed below are adapted from Davis and

Bigelow (2002, 2003).

1. Goodness of Fit - Predictions made by the surrogate model should be rea-

sonably consistent with those made by the original model.

69

2. Identi�cation of Critical Components - The surrogate model should be ap-

propriately nonlinear where certain critical components must have input values

above or below a certain threshold in order to succeed.

3. Parsimony - The surrogate model should have a rich-enough selection of

meaningful independent variables to represent the issues being addressed by

the model; but few enough to allow for a thorough exploratory analysis.

4. Reasonable Depiction of Relative Importances - There is a di�erence be-

tween the signi�cance of a candidate variable, and the importance of a variable.

A good metamodel should distinctly di�erentiate between a variable that is

insigni�cant (and can be dropped from the regression) and one that is unim-

portant (having no bearing on the outcome). For example, an input variable

might be extremely important to the outcome of the design, but it just might

happen that the ranges over which that input has been varied do not have any

signi�cant bearing on the variability of the responses. Or, conversely, a rela-

tively unimportant variable might have been varied over a range that is too

large, making it appear as though it has more signi�cance on the outcome than

it really should. In either case, these results are the product of poorly chosen

ranges. A good surrogate model should provide some sort of indication when

this is the case.

5. A Good Storyline - The surrogate model should be physically meaningful and

interpretable, not just a math formula or black box.

The �rst of these criteria, is the one most often mentioned and most thoroughly

discussed in the existing literature. Obviously, a good metamodel will have little

error between its predicted values and the actual values. By itself however, average

�t is not a su�cient, stand-alone indicator of a surrogate's quality. A surrogate model

that is good on average can be inaccurate in the extreme corners of the design space

70

[40], and since the corners are sometimes where the most interesting behavior occurs,

it is advantageous to maintain accuracy here. This is where the second criterion

comes in as a necessary enabler of the �rst; one cannot have a good �t (one with

little prediction error) if the critical components are not appropriately modeled. In

other words, if interesting or abrupt behavior is present, it is imperative to accurately

model that particular behavior, especially since it might turn out to be the focus of the

study. An input might represent or a�ect a critical component of the system, yet have

seemingly little bearing on the response values. For instance, a particular input or

combination of inputs might cause a critical component to fail at a particular setting,

while having relatively little e�ect over the remaining range of values. If a surrogate

model only captures that broad behavior, it might appear as though the component

is unimportant, when, in reality, it is a crucial component of the system. In these

cases, it is imperative to accurately depict the behavior in the regions where these

components become fragile, and avoid surrogate models that simply extrapolate in

infeasible regions or imply substitutability (the impression that one can compensate

for some weak component by improving some other component if such a substitution

is inaccurate).

The last three criteria are often taken for granted, and their importance should not

be overlooked. Before the �nal metamodel is ever constructed, it is important to �rst

address the third and fourth criteria, which are interrelated. A parsimonious model

incorporates all of the meaningful input variables, while �xing those inputs that are

have little signi�cance on the exploratory analysis. This criterion is therefore synony-

mous with Occam's razor, which professes that simplest is best. This is especially true

for surrogate models, for which there is a danger in over�tting. Over�tting occurs

when too little data is used to �t too many unknowns, resulting in a good �t to the

available data, but a poor representation of new data. Therefore, one of the goals of

surrogate modeling is to whittle down the number of inputs while maintaining a rich

71

enough set of inputs to adequately represent the issues being addressed. The fourth

criterion is closely related to parsimony, but few make the important distinction be-

tween parsimony and a reasonable depiction of relative importances. The di�erence

is that a parsimonious model retains only those inputs that have a signi�cant impact

on the results, whereas a reasonable depiction of relative importance implies that the

model makes the distinction between inputs that have little e�ect on the model, and

inputs that are unimportant. The experimental design (the range of design space in-

vestigated) and the structure of the surrogate model determine which input variables

are deemed insigni�cant. These results can be misleading when used for decision-

making or resource allocation, because an input that is insigni�cant to the variability

in the responses is not necessarily unimportant to the success of the system.

The �nal criterion is that one should be able justify why the model behaves the

way it does. This is a somewhat controversial criterion, as many authors consider the

state-of-the-art to be methods such as Neural Networks or Gaussian processes, which

typically adhere well to the other criterion, but result in equations with little or no

transparency. In turn, the results are treated as a "black box" that provides no real

understanding of how or why the model behaves the way it does. One of the reasons

models are simpli�ed in the �rst place is to identify the most important terms and

give an accurate representation of their behavior. So, as an auxiliary to that goal, it

seems natural that the resulting surrogate should provide a meaningful, interpretable,

and transparent depiction of the model. This allows for decisions to be backed by

reasoning rather than sheer, blind faith in the surrogate model.

These �ve criteria all refer to qualities that the completed surrogate model should

possess, and therefore will be viewed as the standard with which current techniques

will be evaluated, and newly created techniques will be measured. However, one

should not forget that the primary goal of a surrogate model is to function as a

cheaper, more e�cient, suitably accurate stand-in for the original model. That being

72

said, it is important to remember that the journey is equally as important as the

destination. No matter what �tting technique is used, good prediction relies on an

appropriate sampling scheme [84]. In other words, the act of acquiring experimental

data and �tting the surrogate model should be a suitably e�cient process, such that

the bene�ts of using the metamodel are not canceled out by the act of creating it.

Therefore, it is this author's assertion that a good surrogate model is also one that

makes maximum use of all knowledge available at every stage in the process.

There are a multitude of sampling schemes and model-�tting techniques available.

The strengths and weaknesses of each technique depend on the nature of the problem,

the level of implementation di�culty, and the resources available (computational

capability, simulation tools, time available, prior knowledge, etc.). Many authors have

o�ered side-by-side comparisons of several techniques with the intent of identifying

which technique yields the best surrogate model [128, 49, 54, 89, 96, 33, 146, 11].

Of course, the �nal recommendations vary, and the authors usually refer back to the

speci�c characteristics of the problem for insight into why one technique fared better

than another. As previously mentioned, however, the success of a method depends

on more than just the nature of the problem; it also depends on what assumptions

were made going into the analysis. One very important aspect that most authors fail

to explore is how these initial assumptions may have a�ected the outcome.

All sampling and model-�tting techniques require some assumptions to be made

at the outset. Hunter and Naylor (1970) point out that every design provides aliased

estimates. For instance, if a 2-level full factorial design is used, then any quadratic

and cubic e�ects will bias the estimates of the mean and main e�ects. In using RSM

to �t the model, it is usually assumed that a second-order model can su�ciently

represent the original model. Even in Kriging, if no prior information is assumed, the

success of the �t is still predicated on the assumption that there will be enough data

points to adequately �t a model. So regardless of the design used, any phenomenon

73

that is omitted from the �tted model will confound certain estimated parameters

in the model [65]. There is always some trade-o� to be made between the ease of

making assumptions early on, and the di�culty associated with gathering enough

data to rectify the unknowns. In general, the more assumptions that are made, and

the bigger those assumptions, the more room is left for errors in those assumptions.

Thus, at each stage in the design process, the ultimate goal should be to achieve

the best "bang for your buck"; to extract the maximum amount of knowledge from

any information that is available so that assumptions can be minimized as much as

possible. This minimizes the need to correct for wrong assumptions later on in the

process when changes or corrections can be costly.

74

Chapter IV

ASSUMPTIONS IN THE DESIGN PROCESS

The �rst research question presented in this thesis asked how assumptions made in

the early stages of the design process can a�ect the outcome of the design. In order

to address this question (and its corresponding subquestions), it is �rst necessary to

explore the types of assumptions that exist. In general, assumptions are always made

for one reason: to simplify the problem in order to bring it to a manageable size.

Related to this goal, however, are two di�erent types of assumptions that routinely

show up in the early design phases. The �rst type includes those assumptions that

aim to reduce the scope of the problem, usually by neglecting certain alternatives

in order to pare down the list of concepts that need to be investigated. The other

kind of assumption is related to the creation of the surrogate model: what terms are

included, interactions, to what order, etc.

4.1 Assumptions that Reduce the Scope of the

Problem

Assumptions that reduce the scope of the problem typically do so by eliminating

some designs or classes of designs from the investigation. There are many ways to do

this; sometimes the requirements alone will su�ciently limit the scope of the problem.

However, with the advent of capability-based design, requirements are becoming more

open-ended, leading to a greater number of potential solutions. When this happens,

an Analysis of Alternatives (AoA) is needed to reduce the number of possible design

options. Usually, a Morphological Matrix of alternatives is created that outlines

every possible alternative for every system or subsystem that makes up the design.

75

Traditionally, a qualitative analysis is used to select a few concepts from that list

that will be carried through the later phases of the design for further analyses. There

is a commonly held belief that qualitative analyses are the only practical means

of eliminating alternatives, because the possibilities are far too extensive to allow

for quantitative analyses. But, the problem with qualitative analyses is that they

rely heavily on assumptions and biases. As a result, alternatives may be eliminated

prematurely.

However, advances in surrogate modeling techniques can speed up quantitative

analysis to the point where it is feasible even in the earliest design stages. Rather than

eliminating alternatives using intuition alone, alternatives should only be eliminated

if they clearly violate a design requirement, or are shown to be inferior through

quantitative means. In doing so, an Analysis of Alternatives can be made completely

independent of assumptions and biases that can undermine the �nal decision.

The notional example given in Table 2 and 3 shows the di�erence between a

traditional, qualitative AoA and a quantitative AoA. Traditional qualitative AoA

selects alternatives based on assumptions. Quantitative AoA, on the other hand,

eliminates alternatives only as concrete evidence supports the decision to do so. As

demonstrated in Table 3, the decision to eliminate an alternative might be reached

if that alternative violates some design requirement, or if the Technology Readiness

Level (TRL) will prohibit the design from making the objective completion date.

Additional alternatives can be ruled out via quantitative TOPSIS. Then, from all the

remaining alternatives, additional options may be eliminated if they are incompatible

with other remaining options.

Through the use of quantitative analyses, it is possible to make early design de-

cisions that are backed by complete information rather than assumptions or static

data that only provide partial information. In order for quantitative analyses to be

feasible in early stage design, there must be some way to provide fast, cheap, yet

76

Table 2: Traditional Qualitative Analysis of Alternatives

Table 3: Quantitative Analysis of Alternatives

77

reliable physics-based analyses. Usually, physics-based analyses are too cumbersome

and expensive for use in comparing alternatives. Surrogate models act as an enabler

for this activity, but even surrogate models can be too cumbersome to use in the

initial concept selection phase of the design process. As a result, qualitative methods

are still traditionally used for a �rst pass at whittling down potential concepts. By

making surrogates easier to create, they can be exploited in this stage of the design

process in order to provide reliable, quantitative data for decision-making.

The SPACE approach developed in this thesis does not speci�cally address the

activities associated with concept selection. However, it can be viewed as a tool that

enables quantitative-based concept selection by providing more reliable and e�cient

surrogate models.

4.2 Assumptions Involved in Creating a Surro-

gate Model

Any problem can be studied to in�nite detail, but for most cases, the general behav-

ior of the system can be adequately captured using a highly simpli�ed representation

of reality. The assumptions that we make for the sake of simplifying this represen-

tation are modeling assumptions. These are the assumptions that certain physical

phenomena are inconsequential to the behavior of the system, and those variables

that describe those phenomena can be set to some �xed value or neglected from the

model.

We can refer to the example of the pendulum to demonstrate this concept. In a

real-world system, there is a great deal of complex behavior inherent to the pendulum.

There are �uctuating de�ections and material stress occurring in the cord. The motion

is a�ected by the distribution of mass of the total system. There are frictional forces

in the top connector that marks the axis of rotation. Drag is acting on the bob,

cord, and the connector between the two. The rotation of the earth also a�ects the

78

motion, as the pendulum's plane of motion will not rotate with the earth unless

it is constrained to do so. Some of these physical phenomena require very complex,

detailed analyses that would be inappropriate if someone just wanted a general idea of

what the pendulum's motion would look like. For this reason, many Physics textbooks

rely on a very generous list of assumptions to derive the equation of motion of a

pendulum. Some of those assumptions are:

• The bob is a point mass.

• The cord is rigid, inextensible, and massless.

• The connectors are massless and sizeless.

• The motion is constrained to a plane.

• No friction exists at the connections.

• The motion occurs in a vacuum.

• No internal friction exists in the system.

• The exact value of gravity is known and �xed.

When all of these assumptions are applied to the system, the motion may be described

with a very simple model. The period of the oscillations is given by:

T = 2π
√

L/g

The equation of motion is:

θ̈ +
g

L
sinθ

By looking at these equations, it becomes evident that the assumptions have the

e�ect of greatly simplifying the models. With these assumptions, there is no need for

79

a costly, time consuming Computational Fluid Dynamics (CFD) analysis to compute

drag, or a material stress analysis. This not only makes the model much more e�cient,

but also more transparent, and easily understood. This can be highly advantageous,

especially in the initial design phases where the goal is to learn as much as possible

about the behavior of the system. However, as we will see in the following sections,

there can be some drawbacks due to oversimplifying the problem. Not all assumptions

are suitable for all cases, and determining which are appropriate for a given problem

presents a challenge that is often overlooked when modeling a system.

80

Chapter V

A SYSTEMATIC PROCESS FOR ADAPTIVE

CONCEPT EXPLORATION

The act of creating a surrogate model includes the process of designing experiments,

collecting information, �nding and �tting an appropriate approximation function, and

validating the accuracy of that approximation [88]. The literature search showed that

there are many ways to accomplish each of these steps. Yet, all of these methods still

adhere to one fundamental truth: the only way to reduce the amount of data that

must be collected is to infuse information from some other source, either in the form

of prior knowledge about system, or assumptions about the nature of the system. The

process of designing experiments presents a combinatorial challenge; as the number

of variables in the problem increases, the number of potential e�ects that must be

tracked increases exponentially. If no prior knowledge about the system is available,

then the Design of Experiments must include at least one trial for each possible e�ect

plus one additional trial to estimate the intercept. This is true regardless of the

method used; there is no magic bullet that enables one to extract more predictive

capability from fewer runs. The only real di�erence between various methods is that

they utilize di�erent underlying assumptions. This is why one method might require

fewer data points than another; the information that would've been supplied by the

data points was already supplied in the form of an assumptions. For problems with

many input variables, one common assumption used to keep the e�ort manageable is

the assumption that certain higher order e�ects can be neglected, thereby eliminating

a large number of higher-order terms that need to be estimated. Commonly, it is

81

Figure 9: Total Number of Terms in a Cubic Model for a Given Number of Variables

assumed that a quadratic or cubic equation is su�cient for �tting a surrogate model.

However, caution must be exercised in making such assumptions, as third and higher-

order e�ects are not all that uncommon. Still, even when such assumptions are made,

the total number of possible e�ects in a cubic model grows quickly as the number of

design variables increases. Figure 9 shows the total number of possible terms that

exist in a cubic model for various numbers of design variables. Thus, if no additional

information is supplied (other than the assumption that a cubic model is su�cient),

the number data points needed equals the total number of possible terms in the model.

If the original model is expensive or time-intensive, then it may be impossible to run

enough cases to estimate all those e�ects.

The main reason that so many data points are needed for large problems is be-

cause of uncertainty regarding the functional form of the relationship between the

82

inputs and the outputs. Figure 9 shows the number of data points that would be

required to identify the terms in that relationship, given the simplifying assumption

that high-order e�ects are negligible. Now, if we actually want our surrogate to have

accurate predictive capabilities, we need to know more than simply which terms have

signi�cant e�ects. In order to �t be able to �t a good surrogate model to the data,

the data should be spread evenly throughout (��ll�) the experimental region [121].

For this reason, the class of Space-Filling designs has gained popularity for computer

experiments. However, the number of design variables dictates the number of dimen-

sions within the experimental region. As the number of dimensions increases, the

number of points required to ��ll� all those dimensions also increases. This creates

an additional challenge for problems having infeasible space, because we still want

enough corner-points (data points located at the extremes of the design space) to be

able to detect the infeasible space, and incorporate it into our surrogate. Thus, some

space-�lling designs, such as Latin Hypercubes, are a poor choice for problems that

exhibit infeasible space. To further complicate the issue, discrete variables have the

e�ect of adding to the problem's dimensionality. For example, if one of the design

variables has three discrete settings, that one variable e�ectively requires the same

amount of data as two continuous variables. The reason for this is because informa-

tion can not necessarily be inferred about the e�ect of one discrete setting from the

e�ect of another discrete setting.

So, for problems having a large number of design variables, we are faced with

the challenge of how to acquire enough information to identify the signi�cant e�ects,

provide information about all regions of the design space, and identify constraints.

When time and resources are limited, it may not be possible to generate enough

data to estimate all these using conventional methods. To address this challenge, the

Systematic Process for Adaptive Concept Exploration (SPACE) was created.

This chapter gives a thorough presentation of the SPACE algorithm. It discusses

83

how the algorithm was constructed and provides the rationale for why certain meth-

ods were chosen for the components of the algorithm. As stated in Section 1.2.4.3,

this chapter will rely on the example of a pendulum swinging in a �xed plane to

demonstrate certain concepts, provide examples, and show preliminary results.

5.1 Selection of a Design of Experiments for Sys-

tematic Experimentation

The main challenge presented by experimental design is deciding what pattern of

design points will best reveal the behavior of the response and how it is a�ected by

the factors. Ironically, the question of where to place points is a circular one: if we

knew the response function, we could easily decide the placement of the design points.

Yet, the response function is the very object of the investigation! [120]

The main contribution of this thesis is the formulation of an algorithm for adap-

tive design space exploration. The placement of design points iteratively adapts as

information about the response function is uncovered. Traditionally, the placement

of design points is driven by an assumed response function. However, the goal here

was to create a method that relies on quantitative information rather than qualita-

tive assumptions to increase e�ciency. This goal implies that the algorithm must be

robust to many di�erent types of problems, so that no assumptions about the nature

of the problem need to be supplied for the initial problem setup. This presents a

challenge in constructing such an algorithm, as the tools that make up the algorithm

must all be suitable for a wide array of problems. Normally, one uses either known or

assumed information about the behavior of the problem to pick the tools that best

suit that type of problem. To create a method that does not rely on assumptions or

prior knowledge, however, requires that the chosen tools are suitable for all types of

problems.

The tools chosen for the algorithm must not only be robust to di�erent types

84

of problems, they must also enable adaptive experimentation. In other words, the

experiments must be able to be run sequentially, with some analysis occurring between

each set of experiments, the results of which will be used to determine the next set

of experiments. Thus, the experimental designs chosen must be easily buildable,

and have properties that are easy to control. In addition, it is desired to create

the algorithm in such a way that it can easily be automated. There are two main

reasons for wanting to do so: 1) an automated process is more robust to user bias

since it reduces user interaction, and 2) a process that is easier to use is more likely

to be implemented in situations where time is limited, and the user cannot a�ord

a shallow learning curve associated with learning new methods. Thus, in order to

create a sampling approach that is objective, adaptable, automatable, e�cient, and

robust to the stated design hurdles, a frequentist approach was chosen over a Bayesian

approach.

Factorial designs possess many of the properties desired for such a robust algo-

rithm. They are well suited to sequential experimentation, they can be built almost

instantaneously, and they can handle both continuous and discrete variables. Despite

this, factorial designs aren't typically used for deterministic experiments, except in

screening for signi�cant variables. Even when they are used in the screening process,

however, the data from the factorial designs must be thrown out after the list of vari-

ables is modi�ed. Then, a new design is created (usually some sort of optimized, or

space-�lling design) to collect new data for the purpose of �tting a surrogate model.

The problem with this traditional approach is that the factorial designs used for

screening, and the optimized designs used for sampling the design space are incom-

patible with one another. Thus, they can not be added to one another without having

one degrade the balanced properties of the other.

In situations where resources are limited, it seems wasteful to throw out old data.

It makes much more sense to �nd some way to make the screening data compatible

85

with the data used for sampling the design space so that all of the data acquired can be

used to �t a surrogate model. If factorial designs are used for both the screening and

sampling phases, then they can easily be designed to allow for compatibility between

the two phases so that the designs can be added together to take full advantage of all

acquired data. Thus, factorials seem to be the logical choice for creating an algorithm

for robust, adaptive exploration. However, one drawback to the use of factorials is

that they sample only the extremes of the designs space. Thus, they are susceptible to

failed cases, and do not provide a su�cient representation of the interior of the design

space for model �tting. So, the challenge is how to work around these limitations to

take advantage of the buildable properties of factorial designs.

To accomplish this goal, a three-part algorithm was built. The �rst part of the

algorithm identi�es the bounds of the design space by �nding the acceptable limits of

the design variable ranges and also locating the constraints on the design space. This

part of the algorithm utilizes an existing design originally created by Cotter (1979).

This design was not created for the speci�c purpose of �nding bounds and constraints

on the design space. However, its formulation lends well to this unconventional ap-

plication. After the design bounds and constraints are located, Cotter's design can

be used for its intended purpose - to screen for signi�cant e�ects. The second part

of the algorithm isolates the signi�cant e�ects in order to determine exactly which

terms should be included in the surrogate model. This is accomplished by �rst using

the results of the screening design to determine which variables have signi�cant main

e�ects and which have signi�cant higher order e�ects. Then, a Fractional Factor-

ial design is created - its design is speci�cally geared toward resolving which of the

higher order e�ects are, in fact, signi�cant. It is this activity that determines exactly

which terms should be included in the surrogate model. With the structure of the

surrogate model in hand, the next step is to acquire the data needed to calculate the

coe�cients of the surrogate model. Thus, the third step of the algorithm is to project

86

power into the appropriate regions of the design space by locating design points so

that they maximize meaningful information while minimizing the number of design

points required. The following sections discuss these three steps in greater detail.

5.2 Finding the Root Cause of Infeasible Space

Earlier in this thesis, infeasible space was identi�ed as one of the hurdles that com-

monly plagues large, complex design problems, including the motivating problem.

When infeasible space exists within the region of interest, then a portion of the ex-

perimental trials will fail, and the resulting DoE will be an incomplete set. Failed cases

often degrade the balance of a DoE, not to mention the fact that they use up valu-

able runtime without providing any useful information. For this reason, failed cases

should be avoided as much as possible during experimentation. There are existing

DoEs that do generally avoid infeasible space (Box-Behnken and Latin Hypercubes

are two examples), but while these designs might minimize the number of failed cases,

they run the risk of not identifying that infeasible space exists. Even though we want

to avoid running failed cases, it is still necessary to identify infeasible space so that

it can be adequately represented in the surrogate model. Otherwise, the resulting

surrogate model may simply extrapolate into those feasible regions, giving spurious

results.

Traditional DoEs are designed to run all at once, so they make no e�ort to avoid

infeasible space even after there is enough information to indicate that a certain region

of the space is infeasible. What's worse is that the experimenter might �nd that the

resulting incomplete DoE is no longer balanced, and needs to be rerun in its entirety

with new variable ranges or a prespeci�ed constraint. Even if the failed cases do

not negatively e�ect the properties of the DoE, there still exists the danger that the

constraint will not be quanti�ed.

Clearly, if e�ciency and accuracy are desired, then the �rst goal of a sequential

87

design space exploration should be to locate any constraints on the space. In doing

so, future failed cases can be avoided, and the resulting surrogate model can be

formulated to contain the same constraints in order to provide a better representation

of the original model. For this reason, the SPACE algorithm's aims to �rst locate

infeasible space, even before screening for signi�cant e�ects.

Section 2.4.3 explored some common techniques for locating design constraints.

However, none of those existing techniques was found to be suitable for the motivat-

ing problem. For large problems with signi�cant amounts of infeasible space, those

techniques resulted in either an overly reduced design space, or required far too many

additional trials to locate the constraint. Thus, a need exists for a way to correctly

locate constraints with far fewer trials when the problem contains many dimensions.

The problem with the techniques presented in Chapter 2 lies in the fact that they

do not provide a way to identify the dimensions in which the constraint is located.

For problems with many dimensions, the experimenter is forced to take sample points

along all of the dimensions to locate the constraint. If the problem has ten or more

dimensions, then �nding the constraint alone could eat up a large portion of the run

allotment. If, however, we are able to determine that the constraint lies in only 2 or

3 dimensions, then we can more easily locate the constraint using far fewer trials.

The DoE chosen for this portion of the algorithm was created by Cotter (1979),

and is called a Systematic Fractional Replicate Design (SFRD). It contains 2n + 2

runs: one run with all variables set at their lowest setting followed by n runs with

each successive variable set at its highest setting while all the other variables �xed at

the lowest setting, then another n runs with each successive variable set at its lowest

setting with all the other variables �xed at the highest setting followed by one run

with all variables set at their highest settings. Table 4 shows how the Systematic

Fractional Replicate Design is constructed for four variables.

88

Table 4: Systematic Fractional Replicate Design for Four Variables

The SFRD is run all at once. Responses are recorded for these runs, as this infor-

mation will be used in a later step for screening. Here, however, the main �response�

of interest is a failure indicator. Those cases that converge successfully are assigned

a value of one for this indicator. Those that fail are assigned a value of zero.

Failed cases occur because the setting of one or more variables results in an in-

feasible design. Usually, infeasible space is caused by some �bad� combination of

variables. However, it is also possible that the range of one of the variables was too

large, having a maximum or minimum value that extends beyond the feasible space.

Thus, the �rst step of the SPACE algorithm is to determine if any one variable is

responsible for the failure. This is easy to do using SFRD, because exactly half of the

cases will fail, and it will be obvious which factor (and which setting of that factor)

is the cause. After that variable is identi�ed, the algorithm iteratively backs o� of

that value while holding all other variables at their baseline setting, until a valid run

is obtained. Then, the range on that variable is reset to the new, valid value.

89

In most cases, designers select variable ranges so that they represent feasible de-

signs, and minimize the number of failed cases. So, what's the point of automating

the process of identifying feasible ranges? The answer to this question lies in the

fact that the designer may not know exactly which variables are causing the fail-

ures, so they might blindly reduce a variable's range. However, there is the risk of

overly limiting variable ranges. Doing so can make an otherwise important variable

seem insigni�cant to the �tted model, thus leading to a serious model misspeci�cation

[99]. The proposed method allows more freedom in the initial assignment of variable

ranges, as the algorithm will �nd a much more precise location of the constraints in

order to avoid unnecessarily limiting the design space.

The SFRD design was created solely for screening purposes, and the rationale

behind its formulation for that purpose is discussed in the next section. However,

Cotter's design has properties that make it suitable for identifying the dimensions

of a constraint, and it is exploited for this unconventional purpose in the SPACE

algorithm. In Cotter's design, every possible combination of any two or three factors

is represented at least once. In most cases, infeasible space exists at the extremes of

the design space, and can be attributed to a speci�c combination of three or fewer

variables. When this is the case, Cotter's design will produce at least one failed case

if infeasible space exists.

If the constraint lies in only two dimensions, it will be possible to identify those

dimensions solely by looking at which cases failed. Table 5 gives two examples of

how a constraint in two dimensions can be readily identi�ed by determining which

cases fail. In Table 5 (a), there are two failed cases: the third run of the �rst set of

n cases, and the second run of the second set of failed cases. This indicates that a

failure occurs when the third variable, C is set to its maximum value, while the second

variable, B is set to its minimum value. In Table 5 (b), there are three failed cases:

the run in which all variables are set to their maximum, along with the second and

90

Table 5: Identifying 2-D Constraints Using the Systematic Fractional Replicate
Design

third runs of the second set of n runs. The fact that the 'all max' run failed indicates

that the failure occurs when two variables are both at their positive value. The fact

that the �rst and fourth runs of the second set did not fail indicates that when the

�rst and second variables, A and B, are both set to their maximum, a failure occurs.

Clearly, it is very easy to identify a constraint using this design if only one con-

straint exists in two dimensions. If, however, there are multiple constraints, or a

failure is caused by three variable settings, some clari�cation will be needed. For

example, say the design given in Table 4 is executed, and only the second case fails.

We know immediately that the constraint is not two dimensional, because a two

dimensional constraint would have caused failures in more than one case. This is

because each possible combination of two factors occurs at least twice in the design.

So, assuming now that the constraint is three dimensional, we have four possibilities.

The constraint could either be caused when (A = 1, B = -1, C = -1), or (A = 1, B

= -1, D = -1), or (A = 1, C = -1, D = -1), or when (B = -1, C = -1, D = -1). This

last combination can quickly be ruled out as the culprit, since it would've also caused

the �rst case to fail. So, we are left with three possible culprits. The true cause of

the failure can easily be determined by running three more cases, each testing one

potential culprit combination, with the remaining variable set to its baseline value of

91

zero. The case that fails will determine which three variable settings cause the failure.

The same type of procedure is used if several constraints exist, and it is immediately

obvious which failed cases are due to which constraints. In this case, a list of all

possible 'culprits' is mapped out, and each one is tested until the true cause of the

failure is found.

Once we know which combinations of variables cause failures, we can set about

�nding the actual location of the constraint. The method used to locate the constraint

is similar to the one proposed by Frits (2002), which now becomes feasible for large

problems since we have managed to narrow down the dimensions of the constraint.

To locate the constraint, we start at the corner where the failure occurs, and step

back from that corner by ten percent in one of the dimensions. If the new case fails,

we will step back another ten percent; if it converges, we will step forward (back

toward the corner) by �ve percent. We keep stepping back and forth in this manner

until we locate the constraint within 2.5% of the total range. This process repeats in

each dimension in which the constraint lies in order to �nd the two or three points

(depending on the number of dimensions) that can be used to de�ne the constraint

line (or plane). For a visual representation of this method, refer back to Figure 7.

The constraints found using this method are then applied throughout the remain-

der of the process to ensure that no additional infeasible cases are executed, and that

the total design remains balanced at all times, despite these constraints. To accom-

plish this, all would-be failed cases must be replaced with an equivalent acceptable

case before the cases are executed. In order to restore balance to the Systematic

Fractional Replicate Design before moving on to the next step, those cases that failed

must �rst be replaced with equivalent substitutes. Substitute runs are found by tak-

ing the point along the constraint that falls on the diagonal line connecting the center

of the design space to the failed corner.

For large, complex problems, this method for dealing with infeasible space has

92

several advantages over those methods presented in Chapter 2. For one, it is far

more e�cient than trying to blindly locate a constraint when the actual dimensions

of the constraint are not known. Second, it relies on a screening DoE to locate the

dimensions of the constraint. Thus, those same cases can later be used for screening

purposes, thereby providing two types of information from one set of runs. Finally,

the method reduces the amount of lost feasible space caused by chopping o� more

of the design space than is necessary to eliminate the infeasible space. Variable

ranges are often set so that they minimize the number of failed cases. However,

limiting variable ranges in this way can make an otherwise important variable seem

insigni�cant to the �tted model, thus leading to a serious model misspeci�cation

[99]. The proposed method allows more freedom in the initial assignment of variable

ranges, as the algorithm will �nd a much more precise location of the constraints in

order to avoid unnecessarily limiting the design space.

5.3 Determining which Auxiliary Analyses are

Necessary

In modeling and simulation, there are often a large number of analyses that could be

executed. Some of these analyses are of a higher �delity than others, and therefore

usually more expensive and time intensive to run. It is not always obvious when a

high-�delity analysis is warranted, and when a more simple estimate will su�ce. The

decision is partly dependent on the desired accuracy of the estimate, and the impact

of the analysis on the particular response being tracked. For example, if we just want

to describe the general motion of a pendulum, it might not be necessary to perform a

detailed, high �delity CFD analysis to estimate the e�ect of drag. However, if we are

trying to design a �ne-tuned device for accurate timekeeping, a CFD analysis may be

warranted. Still, even if this is the goal, it might be the case that none of the designs

being investigated are sensitive to the e�ects of drag. This doesn't necessarily mean

93

that we don't need to estimate the e�ect of drag. Rather, it may just mean that it

is su�cient to estimate the drag for one case, and then assume the same value for all

other cases if there the drag does not vary signi�cantly from one design to the next.

It is important to determine when high �delity analyses are warranted, and when

they are unnecessary. If limited resources are available, then it is important to expend

those resources on analyses that will provide the most useful information, and not

waste resources on unnecessary analyses. The SPACE algorithm helps to increase

the e�ciency of the design space exploration, by evaluating the signi�cance of auxil-

iary, high-�delity analyses early in the process. If any of these analyses do not have

signi�cant contributions to the variability of the responses being tracked, then those

analyses are eliminated from the modeling and simulation of future trial points. By

eliminating some of the unnecessary analyses, the simulation, is sped up, potentially

enabling more data points to be acquired for model-�tting.

The SPACE algorithm evaluates the importance of the auxiliary analyses as fol-

lows. During the execution of the SFRD, all possible auxiliary analyses are executed

for every run. Auxiliary analyses can a�ect the results in many ways, but for this ex-

ample the analyses used some of the input variable settings to calculate deltas on the

responses given by the main simulation. Referring again to the pendulum example,

the main simulation would be the �textbook equations� used to estimate the period

of oscillation, T, and the equation of motion. An example auxiliary analysis would

be a CFD simulation, that calculates a delta, or an adjustment to the response given

by the main simulation in order to bring that value closer to reality. These deltas on

the responses are compared for each of the runs in the SFRD. The SFRD su�ciently

represents various extremes of the design space, so if the deltas on the responses vary

signi�cantly from one extreme to another, the SFRD will be able to detect those

variations. If all of the deltas given by one of the auxiliary analyses are large, it does

not necessarily mean that analysis is important. An auxiliary analysis is only deemed

94

important if those deltas vary signi�cantly from one design to the next. Otherwise,

there is no signi�cant impact on the variability of the response. If the deltas on the

response are not appreciably di�erent from one design to the next, then it is su�cient

to simply take an average of all those deltas on the responses, and apply that �xed

delta to all future cases. This eliminates the need to run the corresponding analysis

for future cases. If, on the other hand, the deltas from one analysis vary signi�cantly

from one design to the next, it will be necessary to continue executing that analysis

for future runs.

5.3.1 Demonstration of the Impact of Design Variable Ranges on the on
the Signi�cance of Auxiliary Analyses

To give an demonstration of how auxiliary analyses can a�ect the simulation, we

refer back to the nature of the example problem. Recall that the pendulum problem

can be modeled using an overly simpli�ed 'textbook equation' that relies on many

assumptions as outlined in Section 4.2. Or, on the opposite end of the spectrum, it

can be modeled to in�nite detail by making no assumptions or simpli�cations and

performing physics based analysis to calculate complex behavior such as the e�ect of

air drag, frictional forces, material stress, etc. Which end of the spectrum we need to

be on depends mainly on the level of accuracy desired by the model: how well should

the model predict reality. Here, we're referring to the validation of our model, where

that model can be either our original computer-based analysis or the surrogate model

that represents that analysis. Depending on the desired accuracy of the metamodel,

we may want to model some of the system's more complex behavior, but how do

we know which complex behavior we should invest resources in modeling and which

behavior can be neglected or assumed? The answer depends on the variable ranges

that de�ne the design space for the problem. Some analyses are more pertinent in

some regions of the design space than others. To demonstrate this concept, we �rst

take the pendulum problem and vary all of the factors over fairly small ranges. The

95

variables used for the particular problem include the mass of the bob, m, the length

of the cord, L, the radius of the bob, r, the diameter of the cord, dcord, the mass

of the cord, mcord, the coe�cient of friction at the axis of rotation, b, the mass and

diameter and thickness of the upper connection ring, muc, duc, and thickuc, the mass

and diameter of the lower connection disk, mlc and dlc, and the value of gravity, g

(since this is dependent on the location of the pendulum with respect to the equator.

Given the su�ciently small ranges on all these variables, if we calculate the period of

the motion, T, we will �nd that the total variability of T over these ranges is between

1.71 and 5.58 seconds. Figure 10 shows the contribution that various analyses have

on this variability. Here, we can see that the 'textbook' representation of T that was

given in section 4.1.2 seems to capture most of the variability of the response. In fact,

the 'textbook' representation of T accounts for approximately 97% of the variability

on T over the given design variable ranges. The other, more complex analyses account

for the remaining 3% of variability on the response. The analysis that models the

impacts of a physical string accounts for such e�ects as how the weight and size of the

string a�ects the distribution of mass of the system, plus material properties of the

string that cause stretching (e�ective increase in L), and double pendulum e�ects.

When these e�ects are accounted for, they have the e�ect of lowering the 'textbook'

estimate of T. This is likely due to the fact that the center of mass of the string is

located at L/2, thereby decreasing the e�ective L of the system as a whole. The other

three analyses all increase the 'textbook' estimate of T. The �rst of these determines

the impact of having a physical bob, as opposed to a point mass as assumed by the

'textbook' representation. Since the actual mass is distributed, the moment of inertia

of the system increases, thereby increasing the period of the motion. Similarly, the

analysis that takes into account the presence of physical connectors, also accounts for

the fact that the system has two additional bodies of that contribute to the overall

distribution of mass, further increasing the moment of inertia. Finally, the drag

96

Figure 10: Variability in the Period of the Pendulum Given Small Variable Ranges

analysis determines how much the air will slow the motion, also contributing to an

increase in the period.

For this particular example, these four auxiliary analyses are not all that compu-

tationally intensive. Still, one can easily see how, if resources were a consideration,

someone might elect to omit these auxiliary analyses since the 'textbook' represen-

tation can su�ciently account for the majority of the variability of the response. In

this case, all of the assumptions that go along with the 'textbook' representation are

deemed to be acceptable for the given parameters of the problem.

However, if those problem parameters change, then these assumptions may no

longer be valid. Take the example where the same setup is used, but now, the radius

of the bob and mass of the cord are allowed to vary over a greater range. 1The results

of the new analysis are given in Figure 11. Here, we can see that the increase in ranges

on mcord and r have a considerable impact on the variability of the response, with

the new total variability of T being almost double what is was before. In addition,

only half of that total variability is accounted for by the 'textbook' representation.

The other half of that variability is accounted for by the auxiliary analyses. For

this new set of design variable ranges, it is clear that the assumptions associated

1Note that these new maximum values are still well within the ranges of a physically realizable
pendulum, with maximum range and length values close to that of the Foucault pendulum in the
Smithsonian.

97

Figure 11: Variability in the Period of the Pendulum for Increased Ranges on L and
r

with the textbook representation are no longer valid. At least some of the auxiliary

analyses are necessary In order to create a good, representative analysis for the new

problem. Looking at the Figure, it is evident that the drag has a substantial impact

on the variability of the response. Likewise, the e�ect of the physical string now has

a more signi�cant impact than before, whereas the impact due to the physical bob,

and physical connectors have not changes appreciably. We can make sense of these

results by pointing out that with a larger bob radius, the density of the bob decreases,

and the corresponding ratio of the density of the bob to the density of the air being

displaced has gotten smaller, causing drag to have a bigger e�ect on the results. In

addition, by allowing the cord to be heavier, the e�ective length between the axis of

rotation and center of mass is reduced, causing the period to decrease.

For this new case, it is evident that the e�ect of drag, and the e�ect of a physical

string can not be neglected. Thus, the textbook assumptions that motion occurs in

a vacuum and that the cord is massless and inextensible are not appropriate assump-

tions in this case. However, the assumptions that the connections are massless, and

that the bob is a point mass can are still valid. So, given the problem characteristics

for this situation, it would be advised to run the drag and cord analyses and to neglect

the other two analyses in order to increase the e�ciency of the analysis.

98

This quick exercise demonstrates an important concept in modeling and simula-

tion. Oftentimes, one of the major overlooked problems is determining which analyses

are needed in order to model the design space. This is especially a concern for very

large, complex systems such as ship design. For complex systems, the number of aux-

iliary analyses that are available may be numerous. However, the designer may not

be able to a�ord to run all of them. Determining which analyses are most pertinent

can be a challenge. Even if we know how much �delity we want in a model, it can be

hard to predict how the �delity of the individual analyses �lter down to the �delity

of the entire simulation.

The SPACE method determines which of these analyses are necessary in exactly

this way. The importance of the auxiliary analyses are judged by the impacts those

analyses have on the responses being tracked. If any of the impacts are found to be

negligible then those analyses are dropped after the screening portion of the algorithm.

This decision may be made dependent on the relative importances of the responses.

For instance, we want to carry all those analyses that are signi�cant to any of the

responses. However, certain responses may be more important to the problem than

others. When this is the case, we can simply weight the responses using Overall

Evaluation Criteria (OEC) in order to determine the signi�cance of each auxiliary

analyses relative to the problem rather than the individual responses.

5.4 Isolating Signi�cant Factors

After constraints on the design space are located, and the important auxiliary analyses

identi�ed, the next step of the process is to determine which e�ects are signi�cant

and thus should be included in the surrogate model. Thus, the goal of this step

is to correctly specify the surrogate's structure. Correct model speci�cation implies

that all of the relevant design factors, covariates, or predictor variables are included

in the surrogate model, and that all of those terms are expressed in an appropriate

99

functional form [92].

In traditional statistical methods, the functional form of the surrogate model equa-

tion is usually assumed. Then, design points are selected to �t coe�cients to that

equation. However, as was shown earlier, even if we assume a functional form that

does not include high-order e�ects, we could still potentially have a very long list of

potential terms in the equation, requiring a large number of runs to estimate those

e�ects. However, there is one key fact that can be used to minimize the number

of runs needed: it takes fewer runs to rule out insigni�cant terms than it does to

estimate those terms. So, rather than estimating all possible e�ects in the surrogate,

it is possible to execute a few runs to rule out a large number of those e�ects so

that the number of e�ects that need to be estimated is drastically reduced. Tradi-

tionally, this is accomplished using a Screening Design, which is a small DoE that is

executed for the sole purpose of performing a sensitivity analysis on all the design

variables. Typical screening designs are either one-at-a-time (OAT) designs, in which

the impact of changing the value of a factor is evaluated in turn [34, 36], or they

are Fractional Factorial Designs, in which all factors are perturbed simultaneously

[120]. Both methods essentially make use of the E�ect Heredity Principle de�ned by

Hamada and Wu (1992), although Fractional Factorial designs allow one to estimate

main e�ects plus some additional higher order e�ects. For this reason, Fractional

Factorials seem to be the preferred of the two methods.

A Fractional Factorial design used for screening enables one to drastically reduce

the number of e�ects that need to be estimated with a relatively small set of runs.

However, there are some drawbacks to this approach. For one, the results of this

kind of screening design are usually used to eliminate some of the design variables

that are deemed to be insigni�cant. This then gives a new design space with fewer

dimensions, and therefore fewer terms that need to be estimated. The fact that

the nature of the design space changed means that the results from the Fractional

100

Factorial design can not be reused when trying to �t a surrogate model. For this,

all new data points will be needed that are balanced in the new dimensions of the

design space. If the screening data is added to the model-�tting data, it might reduce

the orthogonality of that design, or introduce some extraneous variation that will not

be properly measured. If the the number of runs that can be a�orded is small, then

there may not be enough runs left over after the screening design to su�ciently �t

the surrogate model. Therefore, it would be advantageous to �nd some way to enable

the screening runs to be compatible with the model-�tting runs, so that both can be

used to �t the model.

The second drawback to using Fractional Factorial designs for screening purposes

is that many e�ects are aliased together in these designs. This results in some am-

biguity when determining the impacts of the e�ects, since it is impossible to know

for certain which aliased e�ect is really responsible for the impact. Usually, it is as-

sumed that of all the e�ects that are aliased, the one with the lowest order is the one

responsible for the measured impact. For example, if the e�ect of factor B is aliased

with the CD interaction, and their combined impact is signi�cant, it will be assumed

that factor B is the signi�cant factor. Later, we will see how such assumptions can

be misleading.

The �screening� step of the SPACE algorithm di�ers greatly from this traditional

approach. Rather than trying to screen out insigni�cant variables, it aims to identify

the signi�cant terms in the model. Thus, no design variables will be eliminated in

this step, rather the number of e�ects that will need to be estimated will be reduced.

As such, the data used in this step can be used later on to �t the model, since the

overall dimensionality of the problem is not being changed.

To begin determining which e�ects are signi�cant, the results of the Systematic

Fractional Replicate Design from the previous step are utilized. By this point, this

design is complete with no failed cases, because all of the failed cases were replaced

101

with representative feasible points. So, the SFRD can now be used for its intended

purpose - to screen for signi�cant e�ects.

The general setup of the SFRD was outlined in the previous setup. The design is

computationally e�cient, typically having fewer runs than a Resolution IV Fractional

Factorial (RIV FF) design. The big di�erence, and the reason this design was selected

over a RIV FF, is that Cotter's design does not require any prior assumptions about

the interactions between variables. Fractional Factorial designs estimate e�ects that

are aliased with other e�ects. In the case of the a Resolution IV design, some of the

two-factor interactions will be aliased with other interactions, so when estimating their

impact on a response, there is no way to be certain which interaction is responsible

for the measured impact. To �nd out for certain, more cases will be needed to clear

up the aliases. The SFRD, however, allows for the separate estimation of all of the

even and odd-order e�ects involving one factor. No additional runs will be required

to clear up any of the e�ect estimates.

In order to quantify the relative impacts of the terms, the contrasts are calculated.

The contrast of a factor is generally de�ned as the change in the response produced

by a change in that factor. The factor being investigated does not necessarily have to

be a main e�ect; it can be an interaction or even a group of factors that are aliased.

In the case of Cotter's formulation, a single contrast is used to �nd the combined

e�ect of all of the even-order interactions involving one independent variable, and

another contrast is used to �nd all of the even order e�ects of the variable. Even-

order e�ects are all those interaction terms that involve an even number of variables,

while odd-order e�ects include main e�ects, and any interactions involving an odd

number of terms. For example, if there are four independent variables, A, B, C and

D, then Co(A) measures the combined e�ect of A + ABC + ABD + ACD, while

Ce(A) measures AB + AC + AD + ABCD.

If a set of experiments contains noise, as in classic physical experiments, the

102

contrasts of the variables are only estimates of the magnitude of the factor's total

e�ects. Additionally, the more sparse the set of experimental data is, the less reliable

these estimates are. So, in these cases, other statistical measures are needed to assess

whether there is enough information to con�rm the interpretation given by the main

e�ect/contrast calculations. Essentially, the contrast gives an estimate of a variable's

signi�cance. Then, based on that estimate, the p-value is calculated to help determine

whether or not one can conclude that the variable is statistically signi�cant, given the

amount of experimental data available.

For deterministic experiments, the contrasts are no longer merely estimates of

the factor e�ects, but rather, they give a de�nitive measure of their magnitude. For

this reason, contrasts provide a basis for selecting important factors [63]. The only

exception to this rule is if there is not enough information to quantify a certain e�ect

due to aliasing between e�ects. In that case, only some of the e�ects will be able to

be quanti�ed from their contrasts, unless more experimental data is acquired. Using

Cotter's formulation, the contrasts being calculated are not aliased with other e�ects.

Given that the experiments are deterministic, and the e�ects being estimated are not

aliased, it is this author's conclusion that contrast calculations are su�cient measures

of an e�ect's signi�cance.

The SFRD was designed to determine which variables appear in the signi�cant

e�ects. Aliasing only occurs between terms having a common variable, so it's easy

to identify which design variables are signi�cant without having to run additional

cases to verify the �ndings. To calculate the contrast of these e�ects, the following

equations are used:

Co(j) =
1

4
{(y2n+1 − yn+j) + (yj − y0)}

Ce(j) =
1

4
{(y2n+1 − yn+j)− (yj − y0)}

103

Here, y0 is the �rst run of the SFRD design, where all variables are set to their

minimum value, and y2n+1is the last run where all variables are set to their maximum

value. Co(j) gives the combined e�ect of the main e�ect of factor j and all of its odd

order interactions (3-factor interactions, 5-factor interactions, etc). Ce(j) gives the

combined e�ect of all even order interaction involving j (2-factor interactions, 4-factor

interactions, etc). Even though it is not possible from this step to identify the exact

terms that are signi�cant, this formulation gives some very powerful information that

can be used to make inferences about the structure of the surrogate model. For

example, if we �nd for some factor, j, that both Co(j) and Ce(j) are large, then

we can infer that factor j is signi�cant to the model, and that a surrogate model

should capture both the main e�ect of j and some of its interactions with other

variables. Alternatively, if we �nd that Co(j) is large, but Ce(j)is small, we can

infer that the main e�ect of j is signi�cant, but that j does not have any signi�cant

interactions with any of the other variables. We can make this inference using the

strong heredity principle, which states an interaction is only likely to be signi�cant

if both its parents are signi�cant [28, 95, 143]. Thus, it is assumed that if an e�ect

does not have any signi�cant 2-factor-interactions (2FIs), then it is unlikely to have

any signi�cant 3-factor-interactions (3FIs), because a signi�cant 3FI would require at

least one signi�cant main-e�ect parent, and a signi�cant 2FI parent.

By calculating the contrasts as described, and making inferences from those re-

sults, we are able to infer which variables have signi�cant main e�ects, and which

have both signi�cant main e�ects and signi�cant interaction terms. This conclusion

itself can then be used to make further inferences about the model. Speci�cally, we

can use this information to narrow down the list of potentially signi�cant interaction

terms. To understand how this is done, consider the following example. Say, we run

the SFRD given in Figure 4. We perform the contrast calculations and determine

that Co(B), Co(C), Co(D), Ce(B), Ce(C) and Ce(D) are all large while Co(A) and

104

Ce(A) are very small. As discussed above, we can infer from these results that fac-

tors B, C, and D all have signi�cant main e�ects and signi�cant interactions. Now,

even though Ce(B), Ce(C), and Ce(D) calculate the contrasts of all of the even-order

interactions, we can make the further inference that all interactions involving A are

insigni�cant. This leaves only BC, BD, CD, and BCD as the e�ects that are poten-

tially signi�cant. In most cases, this kind of inferencing can be used to identify many

insigni�cant terms, and eliminate those from the list of e�ects that need to be esti-

mated by running additional runs. Though it is not always possible to eliminate all

of the insigni�cant terms in this step, it is almost always possible to eliminate enough

terms to get the number of potentially signi�cant e�ects down to a more manageable

number.

Cotter (1979) acknowledges that there is a small risk that the contrasts of the

e�ects might have opposite signs and similar values, causing the e�ects to cancel

each other out in the formulation given. If this were to happen, it's possible that a

signi�cant e�ect might go undetected. However, this risk is present in any screening

design in which e�ects are aliased with one another, and it is felt to be a relatively

small risk.

With a new, much smaller list of potentially signi�cant terms, we can easily resolve

the few remaining uncertainties using a relatively small set of additional runs. To

accomplish this, a fractional factorial design is built, in which all of the potentially

signi�cant e�ects are aliased with e�ects that are known to be insigni�cant. If any of

the points in the fractional factorial lies in the infeasible space, it is replaced with the

suitable replacement value determined in the �rst step. So, for the previous example,

we need to determine which e�ects out of BC, BD, CD, and BCD are truly signi�cant.

So, we create a fractional factorial design by aliasing each of these terms with terms

that are known to be insigni�cant. In this case, all terms involving A (including its

main e�ect) are known to be insigni�cant, so we can alias BC with AD, which will

105

result in BD being aliased with AC, CD being aliased with AB, and BCD being aliased

with A. Thus, since none of the potentially signi�cant terms are aliased with other

potentially signi�cant terms, we will be able to tell from this design which variables

are truly signi�cant with certainty. To do this, we again calculate the contrasts of

each of the terms, except this time, we use the standard linear contrast equation to

determine the e�ects of the individual terms. Here, j can be any term, including an

interaction term.

Cj =

∑
yj+

n
+

∑
yj−

n

Using these contrasts, it is possible to determine which of the terms remaining on

the list of �potentially signi�cant� terms can be eliminated to give a de�nitive list of

the signi�cant terms in the model. Note that separate contrasts will be obtained for

each response, so a variable that is signi�cant to one response may be insigni�cant to

another. It is important to track which terms are signi�cant to which responses, so

that later on, each of the responses can be �t with a parsimonious surrogate.

The division between what constitutes a signi�cant term versus an insigni�cant

one is widely debated, and there are several techniques available for determining where

to draw the line between the two groups [55, 74, 87]. The SPACE algorithm, however,

uses an entirely di�erent approach. Here, the division between what is considered to

be signi�cant, and what is not depends on two factors: 1) the remaining resources

available for estimating those e�ects, and 2) the cumulative e�ect of a term on all

the responses. In other words, if most of the allotted resources have been exhausted

up to this point, and we can only a�ord to run a few more runs, we may only want

to �carry� the one or two terms that are most signi�cant to the largest number of

responses. This is possible, because the data points that have been acquired up to

this point are su�ciently orthogonal in the signi�cant terms, so at this point it is

at least possible to estimate all the signi�cant e�ects in the model. If, however, we

106

are not overly limited in our capacity to acquire more data points, we can feed more

variables into the next step of the process, so long as there are few enough variables

to achieve a parsimonious model.

5.5 Power Projection using Iterative Space Fill-

ing Designs

After the most signi�cant e�ects have been identi�ed, and the structure of the model

is essentially known, the next step is to acquire the additional data needed to ensure

that the complete data set will yield enough information to adequately �t that model.

As stated before, it is not enough to simply have one data point to estimate each e�ect;

this is su�cient for sensitivity analyses, but not for �tting accurate metamodels. For

�tting a good surrogate that is intended to be used for predictive purposes, it is desired

to ��ll� the space with enough data points to represent all of the design regions. In

the real world, it can be nearly impossible to acquire enough data points to �ll all

of the design space for large problems having many input variables. However, armed

with the knowledge about which factors are signi�cant, there is no need to �ll all of

the dimensions of the space. Instead, we only need to place new design trials such

that they will allow for adequate estimation of the signi�cant e�ects.

This idea is a slight variation on one de�ned by Montgomery (2001), called the

Projection Principle. The original concept behind this principle is that a fractional

factorial design of resolution R actually contains a complete full factorial design in

any subset of (R-1) factors. Thus, if the experimenter knows that only (R-1) e�ects

are important, a resolution R fractional factorial can be used to project a full fac-

torial into those (R-1) signi�cant factors. Essentially, this means that if there is a

priori knowledge about which e�ects are signi�cant, the design of experiments can be

arranged to fully estimate those e�ects with fewer runs. This projection technique

was actually used in the previous step of the SPACE algorithm. There, a fractional

107

factorial design was built, which actually provided a full factorial design in those ef-

fects that were suspected of being signi�cant. Because of this, all of the potentially

signi�cant e�ects were clear of any aliasing with other potentially signi�cant e�ects,

allowing the true impacts of those e�ects to be calculated.

The Projection Principle refers to a characteristic inherent to fractional factor-

ial designs. However, we can put a di�erent spin on this basic concept to make it

applicable to other designs as well. The original Projection Principle is based on

the idea that a fractional factorial design of experiments can easily be customized to

estimate speci�c e�ects. The same idea can be applied to other experiments designs

as well, although most other designs for �tting surrogate models aren't conducive

to being customized. The reason for this has to do with the way most space-�lling

designs are built (recall that space-�lling designs are accepted to be better suited for

model-�tting). Most of these designs are optimized to some criterion. D-optimal de-

signs, for example, minimize the volume of the joint con�dence region on the vector

of regression coe�cients [63]. Latin-Hypercubes, which contain no repeated levels

of any variables, are often optimized to provide maximum space �lling properties,

and distance-based designs are often optimized such that the distances between any

point and its closest neighbor is approximately constant for all points. All of these

optimization criteria are independent of the type of model being �t; that is, they do

not take into account which e�ects are most signi�cant.

As demonstrated earlier, it takes a very large number of points to estimate all the

possible e�ects in a cubic model. Since these optimized designs do not discriminate

based on which e�ects are most signi�cant, it can require a very large number of

design points to provide enough data to �t a model to all those e�ects. One could

argue that if it is already known which e�ects are signi�cant, that fewer design points

are required to estimate those e�ects. While this is true, optimized space �lling

designs do not guarantee that the points will be arranged in such a way that all those

108

signi�cant e�ects will be estimable. For reduced-run designs, it is likely that there will

be a complex aliasing structure between signi�cant variables. This aliasing structure

is not easily controllable because it is a byproduct of the optimization criteria used.

Furthermore, if the number of runs is limited, it is quite possible that the resulting

design may not ��ll� the space at all. Figure 6 gives an example where this is the case.

Here, a distance-based space �lling design was created for �ve variables using Design

Expert. If only 25 runs can be a�orded, then the only way to space the points evenly

across the design space is to place them at the corners. Thus, the resulting �space

�lling� design winds up with only one interior point, and all the rest located on the

corners or edges of the design space. In addition, some of the potentially signi�cant

cubic e�ects are aliased with main e�ects, so it will be hard to estimate the true

impact of these e�ects.

A Latin-Hypercube, on the other hand, would provide sample points on the inte-

rior of the design space. However, just because points are located in the interior of

the space does not necessarily imply that they are adequately �space-�lling�. If only a

few design points can be a�orded, the resulting Latin-Hypercube design may be too

sparse to adequately represent the signi�cant e�ects.

Thus, it does not appear that there are any existing designs that provide space-

�lling characteristics, while enabling a stronger design to be projected into the most

signi�cant factors. For this reason, traditional space �lling designs were ruled out for

this portion of the SPACE algorithm. Instead, a new type of space-�lling design was

created. This new design allows sampling power to be projected into the subset of

signi�cant terms in the model. To accomplish this, the design takes advantage of the

notion that it is not necessary to �ll the design space in all dimensions simultane-

ously. Instead, the design space can be partitioned into a set of smaller-dimensioned

problems so that fewer runs will be needed to �ll the space. To demonstrate this idea,

109

Table 6: 25-Run Distance-Based Design for Five Factors

110

consider the previous �ve-factor example. Say it was previously determined that in-

teractions exist between factors A, B, and C, and that interactions also exist between

D, and E, but that there are no interactions across the two groups (ie, no AD or

AE interactions). We can then partition the 5-dimension problem into two separate

problems: one 3-dimensional problem, and one 2-dimensional problem. Since there

are no interactions between the two groups, it is not necessary to provide space �ll-

ing data points in all possible dimensions, because there is no need to estimate AD,

AE, BD, BE, ... , or ABCDE. By partitioning the design space, the sampling power

can be focused on those dimensions that have signi�cant e�ects. Figure 12 shows

how the 25 runs would be arranged for this example (note that the center point is

the same point in both designs). Here, there are a total of 12 points located on the

corners of the design space, and 13 points located in the interior. The points in the

3-dimensional space can su�ciently estimate A, B, C, and all of their higher-order

e�ects. Respectively, the points in the 2-dimensional space can be used to estimate

D, E, and their higher order e�ects. Together, these two designs provide much more

information about the signi�cant model e�ects than the distance-based design given

by Table 6. For one, the signi�cant e�ects are not aliased with each other or with

other insigni�cant e�ects. Secondly, these designs provide a much more represen-

tative sampling of the interior of the design space in those signi�cant dimensions,

providing 13 interior design points as opposed to the one interior point given in the

distance-based design.

The SPACE algorithm partitions the design space in this same fashion in order

to project power into the signi�cant dimensions of the design space. Up to this

point, the intent of all the previous steps of the algorithm was to learn something

about the nature of the model. Design space constraints were located, the impacts

of the auxiliary analyses were determined, and the signi�cant e�ects were identi�ed.

However, the ultimate goal is to �t a surrogate model that can be used to predict the

111

Figure 12: Power Projection into Partitioned Design Space

responses at untried input combinations. The structure of the surrogate equations

were already obtained in the previous step using the results from the Cotter screening

design, so the next step is to estimate the coe�cients of that equation. We already

have enough data to estimate the linear model terms. Now, we need to place space-

�lling points in the signi�cant dimensions in order to estimate the higher order terms

of the model, and provide the best possible �t to the equation.

To accomplish this, all of the signi�cant terms that were identi�ed in the previous

step are gathered. There is no need to create a separate space-�lling design for each

signi�cant term, because multiple terms can be estimated with each design. For

instance, in the example given in Figure 12, the 3-dimensional design can be used

to �t all terms involving any combination of A, B, and/or C, including nonlinear

terms. So, it is only necessary to partition the dimensions when there are no existing

relationships occurring between dimensions for any of the responses, as is the case

for the previous example where there are no relationships between the �rst three

factors and the two remaining factors. Thus, the design space is partitioned such

112

Figure 13: Existing Design Points in Two Signi�cant Dimensions

that every signi�cant e�ect can be estimated e�ciently. Using the previous example,

say that it is known that terms AB, AC, and BC are all signi�cant but that the three

factor interaction, ABC, is insigni�cant. In this case, these terms can all be estimated

more e�ciently as shown in Figure 12, than if the space was partitioned into three

2-dimensional planes represented by AB, AC, and BC.

After the space is partitioned, space-�lling points are added in an iterative fashion.

As stated before, the design points that have been obtained up to this point provide

an orthogonal, full factorial design in each of the signi�cant dimensions of the design

space. With the addition of a center point, the existing design points in any signi�cant

2-dimensional slice will form the design given in Figure 13. Likewise, a full factorial

is given in any signi�cant space of a higher dimension, but for visualization purposes,

a 2 dimensional case is given here.

Given this existing design, the �rst iteration of the Power Projected Space Filling

113

Design will add eight new design points, four at the midpoints of the edges and four

at the corners of an interior full factorial that spans half the full range. This is shown

in Figure 14, where the points labeled, I, are the initial existing points that were

generated during the last step. The yellow points represent the �rst iteration points.

Notice that this design follows the traditional distance-based space �lling concept

where the distance between any point and its nearest neighbor(s) is the same for

every point. This type of experimental design will be created for every partitioned

subset of signi�cant factors, so that there exists one of these designs for every subset

of signi�cant factors. Depending on how many factors are in each subset, each of these

experimental designs may have a di�erent number of dimensions, as in the example

given in Figure 12. In the case of a 3-dimensional subset, sixteen new design points

would be added to the initial set.

Each of these space-�lling designs is run separately, and only the �rst iteration

points (in yellow) need to be run to complete the experimental design. When one

of the space �lling designs is being run, all of the other factors not involved in that

designs are held constant at their nominal value. Since there are no interactions

between the factors being varied, and those being held �xed, it really doesn't matter

what values are chosen for the �xed factors. However, setting them to their nominal

values helps keep the overall experimental design balanced. So, for the example given

in Figure 12, as the design in subset, ABC, is being executed, factors D and E would

be �xed at their midpoint values, and as the design in subset DE is being executed,

factors A, B, and C would be held �xed at their midpoint values.

After the �rst iteration of space �lling points are run for all of the subsets of

signi�cant factors, the next step is to determine if more trials can be a�orded, or

conversely, if more trials are needed. There are two possible scenarios when creating

a surrogate model. The �rst scenario involves the case where there is some limit on

the number of trials that can be run due to time or cost constraints. In this case,

114

Figure 14: First Iteration of Power Projected Space Filling Design

the gathering of experimental data might stop here if another iteration of runs would

exceed the total run allotment. The other scenario involves the case where there is no

hard limit on the experimental capabilities, but instead, the goal might be to obtain

a surrogate that possesses a speci�c accuracy. For this scenario, iterations would

continue, �lling the signi�cant dimensions with more and more space-�lling points,

until the desired predictive capability can be achieved. In either case, space �lling

runs can be iteratively added until the applicable criterion is met.

Further iterations of space �lling runs are added as shown in Figure 15, with the

second iteration shown in Figure (a) and the third in Figure (b). Each iteration of

new runs adds a �xed amount of points, dependent on the number of dimensions of

the space, such that equal spacing between all points is maintained at each iteration.

If there are discrete variables present, then the designs are generated in only those

dimensions that contain continuous variables. The design containing the subset of

115

Figure 15: Second and Third Iterations of the Power Projected Space Filling Design

factors that have signi�cant interactions with the discrete variable(s) is repeated for

every possible level of the discrete variable(s). Also, if there is infeasible space present,

the previously determine constraint is used to determine whether or not every point

falls inside or outside the feasible space. If a point falls in the infeasible region, that

point is merely deleted from the set of runs so that no resources will be wasted by

running a failed case.

At each iteration, the Power Projected Space Filling Design contains layers of de-

sign points. If L is the number of layers in the space �lling design, and the centerpoint

is not counted as one of those layers, and i is the iteration, then L is a function of i

as follows:

L = 2i

The layers are evenly spaced from one another. If the range on each variable is

normalized to a high of '1' and a low of '-1', then the distance between any two

layers, measured axially is given by:

116

dL =
1

L

Each of those layers contains points located at the corners, essentially forming a

layered full factorial design. At each iteration, half of the layers will be new layers,

and the other half will already contain corner points from the previous iteration. This

can be visualized by referring back to Figure 15. New corner points will only need to

be added to the new layers. To create the new corner points, a generic full factorial

design is created with ranges '-1' to '1', and denoted by X. To �nd the location of the

new interior corner points, this normalized matrix, X, must be converted to one with

new ranges that represent the corner points on the new layer, Xl. If l is the layer on

which we are trying to de�ne corner points, with the �rst layer being the innermost

layer, then Xl is given by:

Xl =

(
X

L

)
l

Each layer also contains edgepoints, some of which will be existing points from pre-

vious iterations. Edgepoints are considered to be all those points that do not lie on

the corners of the layers. On any one edge of a previously existing layer, the number

of edgepoints, El will be:

El = l − 1

The distance between any two points (corner or edgepoints) along any axial edge is

given by:

dP =
2

l

To determine whether a layer is a new or existing layer, the following relationship

holds:

117

l mod(2) =

 1 → new

0 → existing

If the layer is a new one, then all of the corner points and edgepoints will need to

be de�ned for that layer. If the layer is existing from a previous iteration, then only

every other edgepoint will need to be added.

Formulated in this way, this iterative space-�lling design can be built almost

instantaneously; it does not require an optimizer to place the points. This provides

a distinct advantage over optimized space-�lling designs which can take a great deal

of computational resources to generate. The one drawback to this iterative design,

however, is that each iteration requires far more points to be added than the last.

This is a consequence of enabling the design to be built sequentially. In order to keep

the distance between neighboring points equal, a greater number of points will need

to be added at each iteration. However, we can see from the previous series of �gures,

that in small dimensions, it does not take all that many points to provide good space

�lling coverage. By only the second iteration there are already nine di�erent levels

represented in any one dimension. This density should give su�cient predictive power

for most higher-order surrogate models.

5.6 Automating the Process

For this thesis, the entire SPACE method was automated in MATLAB. MATLAB

was chosen because of the readily available capabilities provided by the statistics tool-

box. Because it already contains tools for creating fractional factorial, and analyzing

response surface, MATLAB provided an e�cient platform to code the algorithm.

The SPACE algorithm does not necessarily need to be automated to work properly.

The rationale for automating the process was based on two beliefs. First, it is felt

that the popularity of all-at-once sampling methods is due mostly to their simplicity.

118

Human-in-the-loop methods never seem to gain the popularity of simpler methods,

even though they may be better. The same goes for methods that require a di�cult

setup process; if the setup requires too much e�ort, then it seems that a method is not

likely to catch on in popularity. Also, one of the objectives of this thesis was to create

a method that is insensitive to designer prejudices, biases, or assumptions. To make

the method robust to such in�uences, it was felt that the process should be guided

solely by hard, quantitative data, and not rely on the user's interpretations of results

at any point in the process. When automated, the SPACE method provides the means

to maximize the utility and e�ciency with which information is gained, while at the

same time providing a potential decrease in the amount of e�ort associated with the

setup and initialization. This is because of the fact that for traditional approaches,

we often �nd that we need to start over and rede�ne the problem after we �nd out

that infeasible space exists, or that the ranges that have been selected are inadequate.

The SPACE method does this automatically, and furthermore, it does so as soon as

there is enough information to suggest that the bounds of the problem need to be

rede�ned. On the other hand, some traditional methods might require a full iteration

of runs before there is enough information available to determine that the bounds of

the problem need to be adjusted. Furthermore, traditional methods run the risk that

they might never properly identify the true bounds and constraints on the design

space. For example, if a small, resolution three fractional factorial is run for the

screening phase, and then a sparse latin hypercube is run to collect the training data

set, it is likely that signi�cant portions of the design space will be left unexplored, and

thus, some regions of infeasible space may never be found. Even after the training data

has been collected, the task of �tting an accurate surrogate can itself be a laborious

process. For a simple linear equation with up to two-factor interactions, the number

of possible models is 22p
. So, in an experiment with ten factors, there are 21024 possible

models under this linear model assumption [136]. Then, if we broaden the possible

119

models by including nonlinear models, then the number of possible models grows

even further. With this very large number of possible models, it is no small task

to investigate which one may be best. The SPACE method, however, identi�es the

signi�cant main e�ects and interaction terms automatically. Then, using those terms

the only thing left to do is to determine to what order those terms need to be raised

(cubic, quartic, etc). This substantially reduces the dimensionality of the problem

of �nding an appropriate surrogate. So, aside from simply providing more accurate

results, one of the primary goals of the SPACE method is to maximize the e�ciency

of the process as a whole: the initialization, data gathering, and model �tting are all

economized to provide maximum accuracy with minimum e�ort.

As a proof of concept, the problem was automated using the pendulum example.

Those results are given in the following section, along with some interpretation of the

meaning of those results.

120

Chapter VI

FITTING A MODEL USING

SPACE-GENERATED DATA

By now, all of the data needed to �t a surrogate model has been collected. Through

sequential experimentation, we were able to streamline the process so that the data

collected at any step of the process was intended to be as meaningful as possible;

providing speci�c information that would be used to determine the next set of runs.

Unnecessary analyses were discontinued in order to save valuable resources, the correct

model structure was identi�ed for every individual response, and data was collected

speci�cally to best �t that model. Now, that data can be used to �t the surrogate

model.

6.1 Selecting an Appropriate Model-Fitting Tech-

nique

It was previously stated that this thesis focuses mainly on the creation of a new

sampling process. This thesis does not intend to give a thorough survey of model-

�tting techniques, however, it is worthwhile to o�er an overview of how the SPACE

method �ts into the overall process of surrogate model creation. As in any method

available, the SPACE process is only one option for tackling a problem; it will not be

suited to every design problem, but it provides a good starting point for design space

sampling that is not reliant on qualitative assumptions.

There are many other techniques for sampling the design space and there are just

as many available for �tting a surrogate to that data. Chapter 3 pointed out that

several publications have o�ered side-by-side comparisons of many of these methods

121

Figure 16: Flowchart for Selecting Appropriate Tools and Techniques for Creating
a Surrogate Model

122

with the intent of determining which method gives the best results. For many such

comparisons it is often unclear how assumptions may have a�ected the results, or

how the results should be interpreted for other problems. Despite all of the tools and

techniques available, there are no clear guidelines for creating surrogate models that

are applicable to many di�erent types of problems that might contain a unique array

of challenges to traditional methods. Based on the results of the literature search

in Chapter 2, a �owchart was created to aid in the selection tools and techniques

that might be best suited to the nature of the speci�c problem. In Figure 16, the

upper boxed half of the �owchart represents those processes that are contained in

the SPACE method. Here it is presented in a more generic fashion, since the same

tasks can be accomplished with other tools as well. The rationale for the speci�c

tools used in this thesis was provided in each section, but there is no reason to rule

out other potential alternatives for this generic �owchart. The general process of

the boxed half is essentially the same as the SPACE method; �rst constraints are

located, then the intent is to identify the signi�cant terms of the model. Admittedly,

it is not always possible to separate signi�cant terms from insigni�cant ones. Such a

case might occur when design variables are homogeneous in nature. For example, if

there are ten variables used to describe a beam, �ve of which describe the thickness

at certain locations on the beam, and �ve of which describe loads at those points,

then all ten variables may be equally important as the others. In this case it might

not be possible to classify any of the variables as insigni�cant, and it may take too

many runs to hash out which higher-order terms are insigni�cant. This is one possible

situation where the SPACE method might not be the best choice for sampling the

design space. In this situation, the Lumped Parameter Method (LPM) [148] provides

a good alternative. In a way, this method projects power in a similar fashion to

the SPACE method, however, since it partitions the design variables into subsets of

signi�cant factors so that no sampling power is wasted on estimating insigni�cant

123

interaction terms. The di�erence between the two methods, however, is that LPM

gives equal consideration to all factors in the model, whereas the SPACE method

focuses more sampling/estimation power on speci�c model terms.

On the whole, the intent of the SPACE method is to provide a set of data that is

as meaningful as possible. So, sample points are concentrated in regions of the design

space where there is the most 'going on'. For this reason, the resulting sample can

really be used in conjunction with any model-�tting technique since it provides infor-

mation where information is needed. The selection of which model-�tting technique

to use should be dependent on the characteristics exhibited by the model. Does it

exhibit nonlinear behavior? Are there multiple responses? Does a standard polyno-

mial provide a good �t? All these help determine which method might provide the

best �t. Regardless of which method is chosen, it is important that any constraints

that were found in the �rst step are su�ciently being represented by the surrogate

model. A good surrogate should not extrapolate into infeasible regions of the design

space to give predictions there.

6.2 Dealing with Outliers

Oftentimes, when a surrogate model is �t to the sample data, that surrogate might

not '�t' a few of the sample points very well. These points are often called outliers.

An outlier is de�ned as an extreme observation that is not typical of the rest of

the data. Their residuals are more than three or four standard deviations from the

mean [99]. Often, they are simply treated as infeasible space � the result is assumed

to be erroneous for whatever reason, and it is discarded in much the same way an

infeasible point is discarded. While it is certainly possible that an outlier is indeed

a faulty value caused by a calculation error in the original model, it is also often

the case that an outlier is an unusual but perfectly plausible observation[99]. In this

case, simply deleting the outlier in order to improve the �t of the equation can be

124

dangerous. For one, doing so can give the investigator a false sense of precision in

the metamodel's predictive capability. In addition, outliers often re�ect interesting

behavior that might be of interest to the designer. For this reason, the traditional

practice of deleting outliers should be avoided whenever possible.

To demonstrate this point, a simple example is given using the pendulum problem.

Given a set of sample data, a surrogate model is �t using a third order polynomial

equation in conjunction with stepwise regression. The resulting actual by predicted

plot, and R2 value are shown in Figure 17 (a). In this plot, there are three clear

outliers. According to traditional practice, since there are only a few outliers, we

can just exclude those outliers and re�t the surrogate model. Doing so (again with

a cubic polynomial and stepwise regression) results in the new actual by predicted

and R2 given in Figure 17 (b). Here, we can see that by excluding the outliers, we

were able to obtain a much better �t to the sample data, with a new R2 value of

0.98 as opposed to the original 0.53. So, with a good �t to the training data, the

next step is to run some random points to validate the model. We do this, and again

plot the actual by predicted using the same surrogate model used previously, shown

in Figure 17 (c). Here, the original training points are still in black, and the new

random validation points are in blue. The plot needed to be rescaled in order to see

all of the validation points. Clearly, the surrogate model does not provide a good �t

to new design points, even though it provided a very good �t to the training data

with the outliers excluded.

From this example, it is clear that the 'outliers' do, in fact, provide some mean-

ingful information but that information was not being adequately represented by the

original surrogate model that was used to �t the data. To address this theory, we try

�tting a new model to the original data. Using the same training data as before, the

SPACE method was used to determine a proper structure for the surrogate model.

Using this surrogate, the original data was again �t, this time giving the results shown

125

Figure 17: Demonstration of Traditional Treatment of Outliers

Figure 18: Removing Outliers Using a Properly Fit Model

in Figure 18 (a). Here, we can see that with the new, properly structured surrogate in

place of the one generated using stepwise regression, that the three points that were

previously classi�ed as outliers are now su�ciently represented. The R2 value for this

�t is 0.98, the same as that obtained in the previous �gure by excluding the outliers.

The new �t, however �ts those three points equally as well as it �ts the other training

data. Now, when the actual by predicted values are calculated for the same random

validation points used previously, we can see that the new model not only �ts the

training data, but also provides a su�cient representation of new data points.

These results demonstrate that outliers can be an indication that there is a prob-

lem with some assumptions that were used to create the surrogate model. Here,

126

stepwise regression on a cubic model could not su�cient to identify a meaningful

surrogate model with good predictive capabilities. The SPACE method was able to

identify the true form of the model through purposeful sampling that iteratively re-

solved ambiguities in the model. Even though though the sample data generated from

the SPACE method was not used as the training data in this case, it is clear that by

identifying the true functional form of the model, we are able to �t a surrogate that

has far better prediction capabilities.

6.3 Verifying the Surrogate Model

This section addresses the problem of verifying whether or not the surrogate model

provides a suitable stand-in for the original model. It does not address the problem of

validating that the original model adequately represents physical reality. That topic

is beyond the scope of this thesis, and for this reason it is assumed here that the

original computer model accurately models the physics of the problem, so that the

primary concern here is ensuring that the surrogate then accurately represents the

original model.

Various statistical measures are used to verify surrogate models, and the applica-

bility of those measures to particular problems is often debated. Regardless of the

actual measures used, however, it is true that no matter how well the surrogate model

predicts the training data, there is no guarantee that it will �t new data points as

well. There seems to be two common techniques for assessing how accurately the sur-

rogate model can predict new, previously untried points. The most preferred method

is to generate a set of additional veri�cation points using randomly generated factor

settings. Using those random veri�cation points, one can calculate the percent error

between what the surrogate model predicts, and the actual values given by the original

model. This method is desirable from the standpoint that the validation points are

random, and thus completely unrelated to the original training data. As such, they

127

provide a good representation of the design space, giving estimates of the prediction

error over various regions of the space. However, a major drawback to this approach

is the fact that additional samples are needed. In some cases, limited resources may

prevent one from obtaining additional data points to be used for the sole purpose of

model veri�cation. In addition, this process su�ers from the same problem as tradi-

tional screening designs in that the data obtained can not be reused to provide for a

better model �t. So, after the surrogate is veri�ed, the data is essentially useless for

any other purpose. It is not advised to add the veri�cation data to the training set

after the surrogate has been veri�ed for two reasons. The �rst reason is because the

training set is likely to be a design of experiments that is either optimized to some

criteria or is orthogonal in some speci�c dimensions. Adding randomly-generated

data points to this set may degrade the orthogonality or optimum properties of the

original training set. The second reason, which is related to the �rst, is that the

veri�cation data (error measurements) are based on the surrogate model �t using

the original data. Even though we can assume that the addition of more data will

only increase the accuracy of the model, it is possible that the new data set will be

unbalanced, and therefore provide a surrogate model with poorer accuracy than the

original. Thus, the only way to guarantee the accuracy of the surrogate is to leave

the validation points out of the training set.

When it is not possible to run separate validation points because of time con-

straints, some suggest a leave-one out cross validation approach [97]. In this approach,

one sample point is removed at a time and the surrogate model is re�t without this

point. This is done for all the points in the design, each time calculating the di�er-

ence between the value predicted by the model built without using that point and the

actual value of the sample point. Though this method does not require an additional

sample to be taken speci�cally for veri�cation purposes, some have shown that it does

not provide a good measure of model accuracy [88, 126].

128

The SPACE method provides another advantage over these traditional methods

when it comes to model veri�cation. Recall that two of the strong points of the

Power Projected Space Filling Design are that it 1) reduces the dimensionality of the

problem in order to achieve a higher density in the signi�cant dimensions, and 2) that

it is capable of being built sequentially. Earlier, it was mentioned that this second

characteristic enables the designer to assess whether or not resources are available to

run more cases, or conversely, to determine whether or not more runs are needed to

improve the accuracy of the surrogate. The advantage provided by this method for

model veri�cation is related to this last point. Because of the iterative nature of the

Power Projected Space Filling Design, the newest iteration can be used to verify a

surrogate model �t using all of the previous data at any given time. Then, after the

data from the new iteration has been used to verify the model, it can be added to

the training data set, and the model can be re�t. As opposed to randomly-generated

veri�cation samples, the 'next iteration' data created using the Power Projected Space

Filling Design is known to be complimentary to the existing training data set. Thus,

we can infer that if it is used to verify the model, and then it is added to the training

data, that the resulting surrogate model �t using the entire data set will provide a

better �t than the previously validated model. Even though there is no way to be

certain this is true, the complimentary nature of the iterative data sets indicates that

this is the likely case. Furthermore, if resources prevent the sampling of additional

data points to verify the model, this method is likely to be the most reliable method

for verifying the surrogate model without requiring additional sample points. One

drawback to this method, however, is the fact that the iterative Power Projected Space

Filling Designs represent reduced-dimensionality space. Thus, if there were some

signi�cant interactions that were missed along the way, those interactions won't be

detected using sample data from one of the iterations of this design. However, under

the assumption that the SPACE method adequately detects the correct structure of

129

the model, the 'next iteration' data from the Power Projected Space Filling Design

can be used to give a reliable error estimation.

130

Chapter VII

DEMONSTRATION OF THE SPACE APPROACH

This chapter presents the results of the example problem: creating a surrogate model

to represent the motion of a pendulum. The intent of this Chapter is not solely to

give results and �t statistics for this problem. Rather, the goal here is to provide

interesting observations about the process itself: what interpretations can be made

from the results, and how these interpretations a�ect the overall understanding of the

problem and our ability to accurately model the system. Note that the entire process,

with the exception of the demonstration given in the next section, was executed in

an automated fashion. Thus, any description of actions that were taken or inferences

that were made represent the inner workings of the algorithm and not decisions made

by an actual human.

For this demonstration, a constraint was placed on the maximum number of sam-

ple points allowed. This number was set at 350. This was done to simulate a the

common situation where the number of runs is limited by time constraints or cost

considerations. Thus, it is important to keep in mind that the goal of this exercise

is not to achieve the best possible �t on a surrogate model. Rather the goal is to

determine whether or not the SPACE method is su�ciently robust to a set of design

hurdles that include limited sampling capability, the presence of infeasible space, and

multiple responses.

The pendulum problem was speci�cally selected to demonstrate this process for

several reasons. For one, the pendulum is a system that most people are very familiar

with. The behavior of the system and all of the variables involved are universally

understood. More importantly, the pendulum represents a good surrogate of the

131

Table 7: Input Ranges for the Pendulum Example

real world problem; it exhibits many similar characteristics and challenges. One of

these is that the pendulum is a system that can be represented with either a highly

simpli�ed equation, or on the other end of the spectrum, it can be modeled with highly

complex equations representing the true physics of the system in detail. In real-world

design problems, one of the challenges is determining the level of complexity needed

to create a model that is suited to the situation. If too complex, the model may be to

expensive for early decision-making activities. On the other hand, an overly simpli�ed

model may give unreliable results. To help demonstrate some of these concepts, the

pendulum problem was developed to mirror some of these same characteristics. A

simpli�ed model was created that provides a low-�delity representation of the system.

In addition to that low-�delity model, four other higher-�delity analyses were created

that could be used to augment the simpli�ed model to give more precise results. The

model also possesses the same types of physical constraints that would occur in other

design problems. Using this model of the pendulum, this example is used in this

Chapter to demonstrate the type of information that is gathered at every step of

the process, and how that information is used in the following steps. In doing so,

the pendulum problem provides the means for testing the theories developed in this

thesis.

7.1 Locating Infeasible Space

For the pendulum problem, there are a total of 14 variables as depicted in Figure

19. The corresponding ranges for each of those inputs is given in Table 7. Since

the Cotter screening design requires 2n+2 runs, this equates to a total of 30 runs

132

Figure 19: Depiction of the Pendulum and Its Associated Variables

133

necessary for the screening portion of the algorithm. During the �rst attempt at

running this design, 14 of these runs failed. The failed runs were runs 8, 16, 17,

18, and 21-30. From this set of failed cases, it was immediately evident that the

combination of the high values of the fourth and �fth factors was at least one of the

sources of the failures. This was determined based on the fact that in the second half

of the runs (where all the variables are set to their maximum values, and switched to

their minimum values in turn), all cases failed except for the two where either factor

four or �ve was switched to its low value. The fourth and �fth factors are theta, the

initial angle of the pendulum, and omega, the initial angular velocity imparted on the

system at time equals zero. As it turns out, if both are set to their maximum values,

then the pendulum will rotate more than 360 degrees on its �rst swing, causing the

pendulum to go over the top, tracing out a complete circle rather than oscillating.

For this simulation, this is infeasible behavior, since we are tracking the period of the

oscillation, and not the time to trace out a full circle. As a result, these cases failed.

Now, there is at least one additional factor or factors that must be causing the one

additional failure on the eighth run. In this run, all factors are set to their minimum

setting, except for the seventh factor, which is set at its maximum setting. So, it can

be inferred that the seventh factor as at least partly to blame for this failure. It can

also be inferred that the other culprit must be the low setting of either factor 2, 3, 6,

8, 10, 11, 12, 13, or 14. The algorithm is able to determine this simply by comparing

which cases failed or ran. To determine which is the true cause of the failure, the

algorithm starts out running successive combinations of the maximum setting of the

seventh value in conjunction with the minimum setting of the other potential culprit

with all other factors set to their baseline value. When one of these cases fails, the

true cause of the failure can be identi�ed. In this case, it just so happens that the

combination of the minimum value of the second factor and the maximum value of the

seventh is the cause of the failure. This is determined in three runs. Here, the second

134

factor is the mass of the bob, and the seventh is the radius of the bob. When the

mass of the bob is too low, and the radius is too high, the resulting bob is somewhat

similar to a beach ball in size and mass. When this occurs the original code cannot

handle the complexity of the drag calculations and so the case fails. This kind of

failure is quite common in situations where it is desired to explore a very broad range

of the design space. In such situations, the extremes of the design space represent

designs that push physical limits.

Now, the next step is to �nd suitable replacement points for the two corners that

fail. Since we know which dimensions the constraint lies in, the task of locating the

constraint is far easier than if we had to locate the constraint in the full fourteen

dimensions. To locate the constraint, the algorithm begins by sampling points along

the diagonal from the center of the space to the failed point. Starting at the corner

point, one step is taken away from the failed point. Thus, for normalized variable

ranges, the (1,1) combination of the fourth and �fth factors fails. The size of the step

is ten percent of the total range of the variables. So, a new point is taken at (0.8,

0.8). In the case of the theta, omega combination, this new point did not fail, so

another trial point was taken along this diagonal, but this time, the step was taken

back toward the corner point. This new step, however, was half the distance of the

last, so the new trial was at (0.9, 0.9). This point also ran, so another step was taken

in the direction toward the failure at (0.95, 0.95), and this new step failed. So, the last

successful run from the second step at (0.9, 0.9) was taken to be the new replacement

point for the combination of the maximum values of factors four and �ve. This same

process was repeated for the combination of the second and seventh factors, except

for these, the third step was also successful, so the new replacement point for this

factor combination was taken to be (-0.95, 0.95).

In addition to determining replacement points for the failed cases, it is also de-

sirable to locate the actual constraint. Finding the constraint serves two purposes.

135

Table 8: Replacement Points and Constraint Locations for the Two Infeasible Com-
binations

First, it gives us a bound on the space so that later in the process, when we are run-

ning space �lling design points, we can determine whether or not any of the points

fall outside of the feasible bounds so that we can skip those points and conserve re-

sources. Second, this information can be used later for prediction purposes, to de�ne

the bounds on which the surrogate is applicable. This is important to ensure that we

do not allow the surrogate model to extrapolate into these infeasible regions to give

erroneous predictions.

To �nd the location of the constraint, we again use this iterative step process, but

this time, we step in the axial direction of each of the 'culprit variables' to �nd where

the constraint begins in each dimension. For the constraint on theta and omega, it

took 3 runs to locate the constraint in the theta dimension and 7 runs to locate the

constraint in the omega dimension. For the constraint on the mass and the radius,

it took 6 runs to locate the constraint in the mass dimension, and 2 to locate the

constraint in the radius dimension. So, now we have three points along each constraint

line that can be used to give a pretty good de�nition of the constraint. Figure 20 gives

a graphical depiction of the series of steps that were taken to �nd the replacement

point in the diagonal direction, along with the two points that de�ne the constraint

in the axial dimensions. Table 8 gives the values of the replacement points, along

with the axial locations of each constraint for both of the infeasible combinations.

To obtain a complete screening design, all of the failed cases were replaced with

new runs where the factors that caused the failures were set to their replacement

136

Figure 20: Graphical Depiction of the Series of Points Tried in the Step-Back Process
for the θ − ω Plane

values. Thus, a total of 14 runs were required to complete the Cotter design. So,

at this point, 30 original screening runs were attempted. One of the causes of the

failures was immediately identi�able, and it took three additional runs to identify the

cause of the other failure. Then, it took three runs to identify replacement points

for each of the corners, and a total of 18 points to locate the edges of the constrains.

Finally, 14 replacement runs were needed to complete the design, giving a total of 71

runs up to this point.

7.2 Screening

With a complete screening design in hand, the �rst step is to determine the impacts

of the auxiliary analyses. Up to this point, all four auxiliary analyses have been run

for every sample point. The impacts of each of these analyses have been recorded

in the form of deltas on the responses. There are a total of three responses: the

period of the pendulum, T, the time to equilibrium (the amount of time it takes for

137

the pendulum to come to complete rest), teq, and the total number of oscillations

that occur before the pendulum reaches equilibrium. For each of these, a low-�delity

estimate is obtained from the basic textbook analysis. Then, each of the auxiliary

analyses calculate corrections to that estimate in the form of deltas. So:

Tactual = Ttextbook + ∆Tdrag + ∆Tcord + ∆Tbob + ∆Tconnectors

timeactual = timetextbook + ∆timedrag + ∆timecord + ∆timebob + ∆timeconnectors

oscillationsactual = oscillationstextbook + ∆oscillationsdrag + ∆oscillationscord

+∆oscillationsbob + ∆oscillationsconnectors

When the maximum deltas on all these responses are tallied, it is determined

that the air drag analysis and physical cord analysis have signi�cant impacts on the

response values, whereas the physical bob, and physical connectors analyses have a

comparatively insigni�cant e�ect on the variability of the response (less than two

percent total). So, to conserve computational resources, these two analyses are not

executed for any of the remaining design points. Instead, their e�ects on the responses

are averaged, and those e�ects are applied to future runs in the form of �xed deltas.

After the most signi�cant analyses are identi�ed, the next step is to identify the

most signi�cant terms. The contrast calculations formulated by Cotter (1979) are

performed as described in section 4.2.3. However, since there are three responses,

the total e�ects of the factors are determined by multiplying these contrasts by the

importance weightings of those individual response and normalizing the values so that

a cumulative e�ect of a response is obtained across all variables. For this example, the

138

period was weighted to be the most important response with an assigned weighting

of 1. The time to equilibrium, and the number of oscillations were both assigned a

slightly smaller weighting of 0.75. Using these weightings, it was determined that m,

L, θ, ω, b, r, and mcord all have both signi�cant even order e�ects and signi�cant odd

order e�ects. All of the other remaining factors, and all interactions involving those

factors are insigni�cant.

7.2.1 Identifying the Functional Form of the Surrogate Model

At this point in the algorithm, we know which factors and interactions are insigni�-

cant, but we still need to resolve some e�ects to determine exactly which terms are

signi�cant. As given in the previous section, there are seven factors that have sig-

ni�cant main e�ects and interaction. However, we don't know which interactions

among those variables are signi�cant and which are insigni�cant. The only sure way

to �nd out is to run a full factorial design in those factors. This is done by creating a

fractional factorial design in which some of these potentially signi�cant interactions

are aliased with the main e�ects and interactions that have been determined to be

insigni�cant. Thus, the insigni�cant terms are not being dropped, but rather, they

are being aliased with other potentially signi�cant e�ects so that those e�ects can be

resolved. So, the seven insigni�cant main e�ects are all aliased with high order in-

teractions of the potentially signi�cant e�ects to create a 128-run two-level fractional

factorial design that is actually a full factorial in the signi�cant e�ects.

Before running this fractional factorial design, however, any cases that contain

infeasible combinations of m and r or θ and ω are replaced with the suitable replace-

ments that were found in the �rst step of this process. When the design is complete,

the contrasts are calculated for the main e�ects and all possible interactions (up to

sixth order) between the signi�cant variables. These contrasts are calculated in the

traditional sense (not using the Cotter formulation), and again, these contrast are

139

normalized and weighted using the assigned importances of the responses to deter-

mine a cumulative contrast for an e�ect across all responses. Out of all of these

e�ects, the most signi�cant are found to be: the main e�ects of m, L, θ, ω, b, and

r, along with the interactions between m and L, m and r, L and b, L and r, θ and

ω, and the third order interaction between m, L, and r. Notice that although it was

previously found to be signi�cant, mcord is not included in this list. This does not

mean that the previous �ndings were wrong. Rather, this can be explained by the

fact that the cuto� between what is signi�cant and what is insigni�cant is based on

the remaining run allowance. Many authors have debated how to specify this cuto�,

but in this case, the decision is dictated by our ability to sample more space. Given

that 199 runs have already been executed, and the we can only 'a�ord' 350, we know

that we can only run 151 more runs. This number gives us an idea of about how

many terms we can 'carry' for future analyses. With this in mind, the terms are

ordered according to their importance, and from that list we select as many of the

terms as we can from the top of the list. In this case, the interactions between m,

L, and r, and between θ and ω were found to be more signi�cant than mcord, so no

further sampling will be taken in the mcord dimension. This does not mean that mcord

and its interactions will not be included in the �nal model structure. It only means

that no further sampling will take place in these dimensions. Recall that from the

factorial design, we now have the ability to estimate mcord and all of its interactions

with the other signi�cant variables. However, the impacts of these terms are not

big enough to require extremely precise estimates. Thus, the data provided by the

factorial design should be su�cient for estimating these terms to a su�cient level of

�delity. The terms that are being carried on to the power projection phase represent

the most signi�cant terms in the model, and because of this, we will want to dedicate

more sample data to the estimation of these terms in order to improve the precision

of the overall model.

140

Figure 21: Three Subsets of Parameter Space in Which Power is Projected

At this point, there still isn't enough information to �t an accurate surrogate

model, especially since we have not yet sampled the interior of the design space.

However, there exists a su�cient amount of data to identify the functional form of the

surrogate model. In this step, we sorted the terms in order of their signi�cance. Using

that list, we can create a parsimonious surrogate model that includes the signi�cant

terms. This list of terms in the surrogate includes more than just those terms that will

be carried to the next section; it also includes such terms as mcord and the interaction

between L and mcord.

7.3 Power Projection

In the previous step, we determined a set of twelve terms to be worthy of further

sampling given the remaining run allowance. Altogether, those twelve terms com-

prise only six e�ects, and based on the interactions between those e�ects, the design

space can be partitioned into three subsets of smaller-dimensioned problems. The

�rst subset is the two dimensional space given by L and b. The second is the two

dimensional space given by θand ω, and the third is the three dimensional space given

by m, L, and r. The �rst iteration of the power projected space �lling runs requires

141

eight runs for each of the two dimensional subsets, and 20 runs for the three dimen-

sional subset. Figure 21 shows these three subsets of the design space, with existing

sample points in light blue and the �rst iteration space �lling points in yellow. This

gives a total of 36 runs, which, added to the previous 199 runs gives 235 total runs.

Since we can a�ord to run more, we will add a second iteration of space �lling runs.

However, recall that the second iteration design requires more runs than the �rst; we

would need 28 more runs in each of the two dimensional subsets, and 76 more runs

in the three dimensional subset. This would give a total of 367 runs, but we can

not exceed 350. Rather than ending the sampling process here, however, we can still

sample the space in the one or two most signi�cant subset of factors. In this case,

the interactions between m, L, and r, and the interaction between L and b were more

signi�cant than the interaction between θ and ω. So, we will go on with a second

iteration in the two most signi�cant subsets. This will gives us improved predictive

capability in those dimensions. Thus, the second iteration of power projected space

�lling runs requires 28 runs in the L-b space, and 76 in the m-L-r space. This gives

a total of 339 sample design points. Adding one center point to complete the design

gives a total of 340 runs.

7.4 Model Fitting and Veri�cation of Model Ac-

curacy

To create the surrogate model, those terms that were identi�ed as the most signi�cant

using the fractional factorial were included in the model structure. Additionally, all

of the main e�ects were included since we have some information that can be used

to �t those e�ects from the original screening design, and, since only very high order

interactions were aliased with these terms in the fractional factorial design, we should

be able to accurately �t these main e�ects using the data available. So, we know

which main e�ects and interactions to include in the model, the only thing we don't

142

Figure 22: R2 Plots for Period, Time to Equilibrium, and Number of Oscillations

know at this point is what order polynomial is needed for these terms. So, we begin

by �tting a surrogate model that forms a quartic polynomial for all of the signi�cant

main e�ects and interaction terms. Then, we run a stepwise regression on that model

to get rid of all of the unnecessary polynomial terms. The results of �tting the model

in thus way are given in Figure 22. This �gure shows the resulting R2 plots for the

three responses: period, T, time to equilibrium, teq, and the number of oscillations.

In these plots, the black points represent the model-�tting points or the training

data generated by the SPACE algorithm. 1The blue points represent the random

veri�cation points. Admittedly, for the example scenario in which the number of runs

cannot exceed 350, it would not be possible to run a thousand additional points to

verify the surrogate model. However, for the sake of assessing the performance of the

SPACE method, additional points are used here.

The R2plots show that the surrogate �ts the training data very well, with all of

the R2 values greater than 0.99. Additionally, the surrogate appears to provide a

1Note that the number of observations is not 340 (the total number of runs executed) for any
of these plots. This is because the set does not include those runs that failed. Additionally, for teq
and oscillations, some of the observations were given as in�nity because the pendulum did not reach
equilibrium before the simulation code reached its maximum number of iterations. Since JMP can
not model in�nite values, these observations were eliminated for these responses.

143

good �t to the veri�cation data as well. To assess the true accuracy of the surrogate,

we calculate the percent error between the actual and predicted values for each of

the thousand validation points. The resulting error distributions are given in Figure

23. In assessing these error distributions, it is interesting to note that, in the SPACE

algorithm, when the importances of these responses were ranked, teq was assigned

the lowest importance, and T was assigned the highest importance. This could be

one reason why teq has the biggest variability in the prediction error. It is unknown

exactly why the error distribution for oscillations is not a normal distribution. One

possibility is that those points that were valued at in�nity do not have corresponding

error values. Thus, this absence might have shifted the error distribution to one side.

Though the error distributions aren't bad, per se, it is desirable to have a smaller

standard deviation on the error than some of those given here. However, it is impor-

tant to remember that the goal was not to �t the most accurate metamodel possible,

but rather to do the best we could given the limited amount of resources. The fol-

lowing section explores how well these results stack up to those given by a more

traditional approach given the same design constraints.

7.5 Comparing the Results to Other Techniques

Before discussing the implementation of the �traditional� approach, some interesting

results are presented. In the previous section the SPACE algorithm was used to

both generate the sample points, and to identify the basic model structure of the

surrogate. Though a stepwise regression was used to eliminate unnecessary higher-

order polynomial terms, the SPACE method identi�ed all the basic components of

the surrogate structure. At this point, however, it is not known whether the primary

bene�t of the SPACE method is that it identi�es the best set of training data for

design space sampling, or that it identi�es the proper structure of the surrogate

model. If the power of the method lies solely in the fact that it generates a good

144

Figure 23: Error Distributions on the Responses

145

Figure 24: R2 Plot Generated Using Stepwise Regression Instead of SPACE-
Generated Model

training set, then it should be possible to obtain a good surrogate model no matter

what method is used to pick the model structure. To see if this is the case, the same

SPACE-generated training data was used to �t another surrogate, but this time,

the information regarding the model structure was ignored, and instead, a mixed

stepwise regression was employed in conjunction with a cubic model. The resulting

R2 plot for teq is given in Figure 24. This plot shows some very interesting behavior.

The resulting surrogate model �ts the SPACE-generated training set extremely well,

actually giving an R2 value of 1. However, this alternate model does not �t the

veri�cation data nearly as well as the SPACE-generated surrogate. In fact, it appears

as though a trend is emerging in the veri�cation points, which might lead one to

conclude that the stepwise regression has incorrectly identi�ed an insigni�cant term

as being signi�cant.

Now, to compare the SPACE results to those given by a competing method, the

�traditional approach� is employed. Here the term �traditional� refers to any approach

that �rst runs a screening test, and then runs an all-at-once design of experiments to

146

create the training set. For deterministic computer experiments in which the objective

is to create an accurate surrogate model, the most popular approach is to �rst run

a small fractional factorial design to screen for signi�cant e�ects. Then, insigni�cant

main e�ects are eliminated, and a space-�lling design is created using the remaining

factors.

For the screening design, a 32-run resolution IV fractional factorial was created.

Using the results from this design, pareto plots were created for each of the responses

that show how the main e�ects impact the variability on the responses. Using these

charts, it appears that in order to account for at least 80% of the variation on each

of the responses, we need to include at least r, L, m, b, dcord, mcord, mlc, g, and θ in

the model.

Next, we make a space-�lling design using these nine variables. The type of

space-�lling speci�c design used here is a distance-based design, where the design

is optimized such that the distance between any point and its nearest neighbor is

approximately constant for all sample points. Since we've already run 32 points in

the screening design, and we're limited to a total of 350 samples, we will create a

300-run space �lling design.

When this space �lling design was run, approximately 12% of those cases failed.

Using the remaining sample, the surrogate model is created using a cubic model in

conjunction with a mixed stepwise regression. The resulting R2 values given by the

model are given in Figure 26, and the error distributions are given in Figure 27.

These error distributions have a greater standard deviation and much larger values

for maximum and minimum errors. These results indicate that for the given problem

and its associated constraints, 350 runs do not provide enough data to adequately �t a

model if minimal intelligence goes into the selection of those runs and a corresponding

surrogate.

Going back to the question posed earlier in this section: does the power of the

147

Figure 25: Pareto Plots for Period, Time to Equilibrium, and Number of Oscillations

148

Figure 26: R2 Plots Generated Using the Traditional Approach

Figure 27: Resulting Error Distributions from the Traditional Approach

149

SPACE approach lie in the selection of a good data set, or the identi�cation of the

proper model structure? At the beginning of this section, it was determined that the

SPACE-generated training set could not stand on its own. If the SPACE-generated

model structure was not provided in conjunction with the data set, then the resultant

surrogate model would not be as good. Now that we have a data set generated using

the traditional approach, we can test whether the opposite is true: given the SPACE

generated structure of the model, does it matter what training data is used to �t

that model? To answer this question, the 300 all-at-once space �lling runs were used

in conjunction with the same functional form of the surrogate �t using the SPACE

approach. One of the resulting R2 plots for this surrogate model is given in Figure

28. It is evident that this combination does not provide a good �t. Clearly, these

results, in conjunction with those given at the beginning of this section, show that we

need both a good model structure and good training data in order to �t an accurate

surrogate model when there are strict limits on the number of sample points that

can be a�orded. When such limits are present, we may not be able to collect enough

information to let the data 'speak for itself', so we need to supply some additional

information about the model with regard to its functional form. At the same time, if

we can only a�ord a sparse amount of data, it is imperative that those data points be

arranged in such a fashion as to give the maximum amount of valuable information

about the space. The SPACE method appears to su�ciently perform both of these

tasks: giving both a productive data set, and reliable information about the model

structure.

There exists a plethora of other assumptions that could have been used to re�ect

the traditional approach. For instance, we might have tried �tting a quartic model

instead of a cubic. However, the cubic model was selected because it is one of the

more commonly used models. Additionally, this example demonstrates the basic

problem inherent to all-at-once designs of experiments. If the approach used is not

150

Figure 28: R2 Plot for Period Generated Using Traditional Space Filling Runs with
the SPACE-Generated Model

an adaptive one, and the resulting surrogate model turns out to be insu�cient, then

the only recourse is to rede�ne the parameters of the problem and gather additional

data. This might be acceptable for detailed design or design optimization, but for

initial design space exploration of alternatives, it can be cost prohibitive to perform

several iterations for each alternative.

7.6 Alternative Approaches Attempted

7.6.1 Fold-Over Designs

Before settling on speci�c makeup of the SPACE method, another approach was

attempted, which utilized the fold over technique for fractional factorials. Due to

the popularity of the fold over method, a brief description of this attempt is given

here, along with some thoughts on why it was not chosen as a suitable solution to

the problem.

The fold over technique exploits the buildable properties of fractional factorial

designs. Using a fractional factorial, it is possible to isolate e�ects of potential interest

151

by adding a new fractional factorial in which the signs are reversed on only those

e�ects [63]. Thus, the initial fractional factorial design can be used to determine

which e�ects might be important, and then, fold over designs can be used to resolve

those e�ects, breaking alias links between the potentially important terms.

The �rst attempt at a sequentially-built DoE used this approach. Some results

and interpretation of those results are provided here. The intended approach that

was to be used was one that started with a small fractional factorial design. Then,

that design would be iteratively folded on in an e�ort to clear signi�cant e�ects of

their aliases with other signi�cant e�ects as data became available to indicate that

certain e�ects might be signi�cant. After all of the signi�cant terms are identi�ed,

the next step would be to add some runs to the interior of the design space. Using

the information about which e�ects were signi�cant, the plan was to create an inner

fractional factorial design that was orthogonal in the most signi�cant e�ects, and add

this new design to the previous runs. In other words, if the normalized ranges on the

variables were -1 and 1, then an orthogonal fractional factorial design would be created

for -0.5 to 0.5 to sample the interior space. Theoretically, these fractional factorials

could be layered until the desired space-�lling properties were achieved. These layered

fractional factorial designs could be made complimentary to one another, rotating

each successive design so that it was orthogonal to the previous design. The concept

is shown in Figure 29, which displays two layered factorial designs with an additional

center point.

To begin, a 16-run resolution III fractional factorial design was run. The resulting

analysis of variance is shown in Figure 30 in the form of a pareto plot. This analysis

only gives the results for one of the responses, T. Here, only the main e�ects are

displayed since the two-factor interactions are aliased with one another. From these

results, it is evident that there is a distinct division between the �heavy hitters� and

the rest of the variables. However, all of these main e�ects are aliased with other

152

Figure 29: Layered Factorial Designs with a Centerpoint

153

Figure 30: Pareto Plot from First-Iteration Fractional Factorial

interaction terms. So, the only way to be sure that it is these main e�ects that

are signi�cant and not their aliased terms is to clear these terms of their aliasing

structure.

Since the length of the cord, L was had the biggest e�ect on the response, the

original design was folded on L. Any time a resolution III design is folded on one factor,

the main e�ect of that factor, and all two factor interactions involving that factor will

become isolated from any aliases in the combined design [98]. The resulting pareto

plot for this combined, 32-run design is given in Figure 31. Note that this pareto plot

now includes all of the two factor interactions involving L since we now have enough

information to estimate those e�ects.

These pareto plots can not de�nitively show which variables are signi�cant, be-

cause there's no guarantee that a variable that appears to be signi�cant is not simply

aliased with another signi�cant interaction. However, these plots can be used to de�n-

itively determine which terms are insigni�cant. This is very useful information when

154

Figure 31: Pareto Plot from Second-Iteration Fold Over Design

155

we are trying to resolve the importance of e�ects, because we are able to immediately

eliminate those terms from the list of e�ects that need to be resolved.

In Figure 31, two of the two-factor interactions involving L have emerged as signif-

icant. Since these interactions and the main e�ect of L are isolated of any aliases with

other main e�ects or two-factor interactions, we can be con�dent that these terms

are truly signi�cant terms. Also, it is interesting to note that hlc and thickuc have

dropped from the list of heavy hitters. This is because, in the �rst design, hlc was

actually aliased with L*r, which we now know is the true signi�cant term. On the

other hand, thickuc was not previously aliased with any of the two-factor interactions

involving L, so it is a little more complicated to �nd out which signi�cant e�ect it

was previously aliased with, making it appear as though it were signi�cant.

Given the previous results, the next heavy hitter that needed to be resolved was

the radius of the bob, r. Ideally, to resolve this e�ect, we'd want to fold on the entire,

combined design up to this point. However, this is impractical for this problem

because this would cause the total number of runs to double every time an e�ect is

resolved. Thus, the DoE would grow too large vary quickly. Instead, it is decided to

simple fold on the original, 16-run design. Even though the combined design from

this iteration and the �rst design will result in L and its two factor interactions being

aliased with other e�ects, those e�ects have already been resolved and are to be

included in the surrogate model. So, folding the original design on r gives a combined

design in which the main e�ect of r and all two factor interactions involving r can be

estimated free from any aliases. The resulting pareto plot is shown in Figure 32. The

results here show the r*m and r*L and r*mcord are all signi�cant in addition to r, L,

and L*r, and L*m.

The next logical step is to dealias the main e�ect of m and all of its two factor

interactions from other terms. Again, we fold on the original 16-run design, this

time using m. The results are given in Figure 33. In this chart, thickuc has popped

156

Figure 32: Pareto Plot from Third-Iteration Fold Over Design

157

Figure 33: Pareto Plot from Fourth-Iteration Fold Over Design

back up as an apparently signi�cant factor, but recall that we learned earlier that it is

actually insigni�cant. We can use this information to try to determine what this term

is aliased with that is signi�cant. At this point, thickuc is aliased with six di�erent

three factor interactions. Since we know that thickuc is not signi�cant, one of those

three factor interactions must be signi�cant. Using the e�ect heredity principle [143],

we can eliminate �ve of those interactions, leaving the interactions between m, L, and

r, as the probably signi�cant term. Given our previous �ndings, this result makes

intuitive sense.

To obtain further predictive capability, we might fold one more time using mcord.

These results are given in Figure 34. Here, mcord and its interactions are not too

158

Figure 34: Pareto Plot from Fifth Iteration Fold Over Design

terribly important, however, keeping them in the model may allow for more precise

predictions.

At this point, we have run a total of 80 runs. Not too bad considering we now

know which terms are signi�cant and which terms are insigni�cant. However, the

problem with this method becomes apparent when we try to use this data to �t a

model. As it turns out, these 80 runs do not provide a good combined design that is

orthogonal in the e�ects we've found to be signi�cant. To demonstrate this concept,

a �nal pareto plot was generated for the complete set of runs, given in Figure 35.

Here, the interaction between omega, the the coe�cient of friction appear to have the

most signi�cant impact on the variability of the response, T. We know from before,

159

that this is not the true case. As it turns out, however, the alias structure of the

combined design is such that the true signi�cance of the terms can be be isolated.

To avoid this problem, we could have folded on the complete design at every

iteration, rather than folding only the original, 16-run design. Doing this would've

required 256 runs. However, given our previously stated limit of 350 runs total, this

does not leave room for many additional runs to provide space-�lling data. Another

drawback to this approach is that it's really only feasible to use this technique for

one response at a time. Investigating all three responses would require more fold-

overs, and therefore more runs. In addition, the concept of the layered fractional

factorials has a drawback associated with it in that the resulting design may not

provide su�cient space-�lling properties. Figure 36 demonstrates why this is the

case. In this �gure, we can see that if we layer fractional factorial designs in this way,

the resultant design will consist of points clustered on the diagonals of the design

space. For these reasons, the initial experimentation indicated that this attempted

approach is not a viable option for problems with multiple responses, and a large

number of independent variables.

7.6.2 Optimized Designs for Power Projection

The iterative space �lling design is one component of the SPACE approach that

represents an entirely new contribution to the �eld of experimental designs. However,

it is possible that other existing experimental designs might be used in place of the

iterative space �lling design to accomplish the task of providing projecting sampling

power into signi�cant regions of the design space. One potential approach is to use

the �rst steps of the SPACE approach to identify the structure of the surrogate model,

and then to subsequently create a design of experiments that is optimized for that

model. Two di�erent approaches that fall into this category were attempted. In

both attempts, the initial steps of the SPACE approach were used to determine the

160

Figure 35: Final Pareto Plot for Complete Data Set
161

Figure 36: Multiple Layers of Factorial Designs with a Centerpoint

162

structure of the surrogate model. Then, two alternatives to the iterative space �lling

design were used. The �rst alternative employed an optimized, all-at-once space

�lling design. This design was optimized to the model structure that was found to

be appropriate for the problem. Since the SPACE approach required 199 runs to

identify the functional form of the model, a 150-run optimized space �lling design

was created in order to avoid exceeding the 350-run limit imposed for the purpose of

comparing methods. Then, the surrogate model that was identi�ed in the previous

steps is used to �t the model in the same fashion that was used in the standard SPACE

approach. The results are given in Figure 37. The training data is represented by

the black points, and the validation points are in blue in order to visualize how well

the surrogate model represents new design points as opposed to those used to �t the

model. Even though it was initially predicted that this approach would be competitive

with the iterated space �lling design, the results show that the resulting surrogate

model �ts the training data well, but provides poor predictive capabilities for new

points. It is hypothesized that the reason for the poor �t is that the optimized space

�lling design contains mostly edge and corner points rather than points that actually

provide space �lling properties. The reasons for this, as discussed earlier, are due to

the fact that the total number of data points is fairly small given the dimensionality

of the problem. As a result, it becomes hard to provide good space-�lling properties

with so few points. It is hypothesized that the reason this approach did not fare

well is due to the fact that, overall, the resulting design of experiments does not

provide as many space �lling design points as the SPACE approach with the iterative

space �lling design. The iterative space �lling design picks mainly interior design

points (since it skips over all those points that were previously run). As a result, it is

hypothesized that the iterative space �lling design therefore yields a surrogate that

provides better approximations in the interior of the design space.

In an attempt to overcome these drawbacks, another alternative approach was

163

Figure 37: Fit Results Using Optimized Design in Place of Iterative Space Filling
Design

Figure 38: Fit Results Using an Existing Augment Tool

attempted. In this approach, all 199 data points that were used to uncover the

structure of the model were entered into Design Expert, a statistical modeling tool.

Design Expert's augment design tool was used to augment that existing design with

150 points that are optimized to the found functional form of the surrogate model. To

do this, Design Expert uses a coordinate exchange algorithm to pick the new points.

The results from this approach give an improvement over the previous attempt, as can

be seen in Figure 38. However, the surrogate still provides relatively poor predictions

for new design points.

One possible conclusion from the results is that the iterative space �lling design

allows for more directed projection of sampling power, allowing one to obtain more a

more thorough space �lling sampling of the design space for the purpose of estimating

speci�c terms. However, it may be more important to note that the iterative space

164

�lling design bypasses one of the big drawbacks to optimized designs. That is, it takes

a good deal of time to simply create optimized designs. For both of the examples

used in this section, it took nearly two days to generate the additional optimized

design points. In contrast, the iterative space �lling design can be generated almost

instantaneously since it does not require an optimizer. For some design problems,

two days may be inconsequential, but if the goal is to quickly estimate the behavior

of a large number of alternatives, two extra days for each alternative might quickly

add up.

165

Chapter VIII

ENGINEERING APPLICATION: THE DESIGN

OF THE NAVY'S LITTORAL COMBAT SHIP

8.1 Background of the Littoral Combat Ship

My work on surface ship projects began with an innovation call that took place at

the Naval Surface Warfare Center (Carderock Division) during the Summer of 2003.

Funded by the O�ce of Naval Research (ONR), the innovation cell within the Center

for Innovations in Ship Design (CISD) demonstrated the application and adaptation

of design space exploration for naval conceptual design applications. These methods

were applied to the Navy's ongoing Littoral Combat Ship (LCS) indicative design

project. The LCS was chosen as the focus of the study because it embodies the

current ongoing shift in the naval operational paradigm and necessitates an equally

radical shift in total ship design methodology. Naval power is shifting its focus from

the blue-water, war-at-sea focus and the littoral emphasis to a broadened strategy in

which naval forces are fully integrated into global joint operations against regional

and transnational dangers. This shift in focus calls for non-traditional solutions that

fall outside the traditional historical evolutionary databases. With shrinking budgets,

there is a growing need to evaluate the goodness of a warship design using criteria

other than the traditional size, speed, range, and payload capabilities. In addition,

the recent shift in the acquisition of ships for the US Navy to the commercial sec-

tor has led to a proliferation of designs from industry. The US Navy has shifted its

emphasis from designing ships to developing broad ship concepts and �eet architec-

tures. These ship concepts and �eet architectures drive new design requirements and

166

Figure 39: The Littoral Combat Ship

technologies to meet future military operations. Current methodologies for evalu-

ating and determining ship requirements, characteristics, cost and technologies are

inadequate to meet the challenges from the shifts in operational and acquisition focus

because historical data is no longer su�cient for extrapolating to these non-traditional

solutions.

The Littoral Combat Ship (LCS) is a lightweight, high performance and low cost

expeditionary warship of a new operational paradigm. Instead of relying on naval

aviation assets, long-range missiles and radars for operations, the LCS will use a host

of unmanned o�-ship systems to combat the full spectrum of conventional and asym-

metric airborne, underwater, and surface threats in the hostile littoral. This design

thus departs from the traditional platform centric and multi-mission approach and

strives instead toward a modular and mission speci�c model. The ship is no longer

an independent platform for sustained operations, but a node in an all-pervasive and

ever persistent network of combatants that spans the entire battle-space. In order to

allow for operation in the littorals, the LCS will require shallow draft, high-speed op-

erability, and the ability to support a variety of military payloads. To ensure mission

167

�exibility, this vessel will be designed to accommodate mission-speci�c equipment in

a containerized form, providing for rapid changes in capability.

Critical to the design space exploration process was integrating the Navy's siz-

ing and synthesis tool, the Advanced Surface Ship Evaluation Tool (ASSET) with

surrogate modeling methodologies. ASSET is a navy surface ship design program

that predicts a ships physical and performance characteristics based on mission re-

quirements. It includes a family of interactive ship design synthesis programs with

a common user interface and is easily integrated with Microsoft O�ce applications.

The innovation cell developed the graduated mine counter measure (MCM) LCS pay-

load for ASSET through both a synthesis of various proposed LCS mission system

con�gurations and original investigations into the total ship impacts of LCS mission

speci�c systems. Then, a Visual Basic based DOE executor was built and interfaced

with ASSET to generate the LCS data.

This data was analyzed using JMP, a software package that visually represents

selected design variables. JMP is a statistical software tool used to �t response

surface equations to the data and to give graphical depictions of the design space in

order to visualize constraints, and important trends. The result of the innovation cell

was the demonstration of how to link and utilize these tools and methodologies so

that more knowledge about the design space could be brought forward for decision-

making. In addition, the resulting RSEs were utilized in conjunction with a Monte

Carlo simulation to perform a probabilistic analysis.

Two follow-up studies ensued after the completion of the innovation cell. The �rst

of these was simply a continuation of the work done during the summer innovation cell.

Since the innovation cell demonstrated the applicability of design space explorations

of naval applications, the next logical step was to demonstrate how technologies could

be applied to the system. This study used a basic application of TIES methodologies

developed by Kirby (2001).

168

The other was a study intended to address certain problems that arose during the

initial design space exploration that was performed for the LCS. Speci�cally, these

problems arose as a result of the existence of a large amount of infeasible design space

which compromises the accuracy and integrity of the response surface model. That

initial investigation followed the traditional approach to Response Surface Methodol-

ogy (RSM).

When this approach was applied to the LCS, a problem was encountered with the

selection of design variables and their ranges. In particular, the sizing and synthesis

code, ASSET, could not �nd a solution in several regions of the design space. Nor-

mally it is su�cient to deal with this problem by either scaling back the ranges of

the input variables, or by simply excluding the failed cases. But neither of these were

viable options because the number of failed cases were too many to exclude, and the

ranges had to be scaled back too far to signi�cantly reduce the number of failed cases,

therefore overly limiting the amount of design space. Also, it was not possible to try

to determine the location of the constraint using the technique described in section

2.4.3.3. As discussed in that section, this solution is prohibitive if you have a large

number of inputs and do not have a good idea which of those inputs are causing the

failures.

8.2 Performance of Traditional Method Applied

to the LCS Problem

The �rst attempt at dealing with the challenges of this problem using the �traditional

approach� are outlined in this section. The design problem involves twelve continuous

variables and four discrete variables: one 4-level variable, two 2-level variables, and

one 3-level variable. These variables are given in Table 9. Combinatorially, there

are 48 di�erent possible combination of discrete settings alone. Thus, these discrete

variable greatly increase the e�ective dimensionality of the problem. In addition,

169

Table 9: Input Variables for the Design of the LCS

eight responses are tracked.

The �rst step is to run a screening design. For this, a resolution IV fractional

factorial is created for 18 variables. Even though there are only a total of 16 design

variables, we need two variables each to represent the 3 and 4-level discrete variables.

This is done using the method outlined in Montgomery (2001). Thus, the resulting

screening design is 64 runs.

The �rst attempt at running this screening design resulted in 32 failed cases, half

of the total runs. With a quick glance at those failed cases, it was evident that one

of the variables was responsible for the failures. All cases in which the ship's Length

Between Perpendiculars was set to its minimum value failed. As a result, we knew

the range on this variable needed to be rescaled. However, the primary objectives of

the LCS are to be small and fast, thus, we are most interested in those runs where the

LBP is low. For this reason, it is important that we do not overly reduce the range on

this variable, since doing so will likely cut o� the design space we're most interested

in. So, to �nd a new minimum value for LBP, we �hand-tried� a few settings of

170

Table 10: ASSET Responses

LBP in conjunction with some other settings to try to �nd the minimum LBP value

that would give a converged design. After a few test points, a value was found that

would work for some factor combinations. The value was then assigned to be the new

minimum value for LBP, and the 32 cases were rerun using this new setting. With

this attempt, 17 of these new runs failed. However, at this point, there was enough

information to at least estimate the e�ect of LBP on the design, so we went ahead and

performed the analysis of variance using the available screening data. This analysis

gave the pareto charts shown in Figures 40 and 41 for the responses given in Table

13.

From these charts, we can see that there are really only three variables that do not

contribute signi�cantly to any of the responses. This is a direct consequence of the

fact that there are so many responses. As the complexity of the problem increases in

size and scope, there will be more responses that need to be tracked. As the number of

responses increases, then by default, the number of inputs that a�ect those responses

also increase. For problems containing many responses, traditional screening methods

often fail to identify many variables as being insigni�cant. Thus, for these problems,

it becomes a challenge to simplify the problem to a level that becomes manageable

for early-stage design decisions.

171

Figure 40: Pareto Charts for the First 4 LCS Responses

172

Figure 41: Pareto Charts for the Last 4 LCS Responses

173

In this example, the only inputs that can be eliminated using standard screening

approaches are stores period, shock, and aviation weight. Though we can safely

neglect these variables in the next step, doing so does not signi�cantly decrease the

dimensionality of the problem. Using the remaining variables, a 500-run space �lling

design is created. When this design was run, approximately 17% of the cases failed.

While this number is not too terribly large, it's certainly large enough to a�ect the

optimal properties of the design. Also, note that over total run expenditure that

includes screening runs and hand-tried cases, approximately 31% of the attempted

runs failed. As a result, nearly a third of our computational e�ort was essentially

wasted on failed cases.

Using the set of successful sample cases from the space-�lling design, a cubic model

was �t, and a stepwise regression was performed for each response. The surrogate �t

using this procedure gives the results shown in Figures 42 and 43.

The corresponding error distributions that go along with these surrogate models

are given in Figures 44 and 49. These error distributions were generated by calculating

the percent error between the actual values given by ASSET, the original simulation

model, and the predicted values given by the surrogate for 500 randomly generated

points.

Altogether, these results aren't all that bad; most of the responses have a standard

deviation of less than 3%. However, the percent error is not the only measure of a good

model. In Section 3.3, some objectives where outlined that described characteristics

that the resulting surrogate model should possess. One of these objectives was that

the surrogate model should be able to properly identify critical components of the

model. In this case, the existence of infeasible space should be considered as one of

those critical components. However, even though this method was able to generate a

su�cient surrogate model of the system, the design constraints have not been de�ned

as part of this model. As a result, the surrogate model is missing one of the critical

174

Figure 42: R2 Plots for First 4 Responses Generated Using Traditional Methods

175

Figure 43: R2 Plots for Last 4 Responses Generated Using Traditional Methods

176

Figure 44: Error Distributions for the First 4 Responses

177

Figure 45: Error Distributions for the Last 4 Responses

178

components necessary for accurate prediction.

8.3 Exploration of the Design using the System-

atic Process for Determining Appropriate Mod-

eling Assumptions

This section outlines the implementation of the SPACE approach for the LCS prob-

lem. Here the method starts out assuming we have no prior knowledge from the

previous analysis. First, 34 runs are executed that comprise the screening design.

Half of these runs fail, and it is immediately evident that the low value of LBP is

the cause of the failures. The SPACE method then �nds a new value for the low

setting of LBP by iteratively backing o� of the low value of LBP. For these tests,

the baseline values of the other variables are used. After a new suitable minimum

value is found, the failed screening runs are replaced with new runs that use the new

minimum setting. After these failed cases are rerun, there is still one failed case re-

maining. Because there is only one failed case, it is evident that some combination

of three factors must be causing the failure. If only two factors caused the failure,

then there would be at least two failed cases in the screening design. Based on the

failed run, there are a lot of three factor combinations that are possibly causing the

failure. These combinations are tested, one by one, until the true cause of the failure

is found. The cause of the failure is found to be the combination where the LBP is

set to its minimum value, the aviation area is set to a maximum, and the endurance

speed is set to a minimum. Determining whether or not this constraint makes sense is

a good exercise for the naval architect; if it does not, then this could indicate that the

failure is due to a bug in the model rather than a true physical constraint. In either

case, the SPACE approach makes it easier to determine which type of constraint is

at play; by identifying which e�ects cause the failure, we can assess whether or not

the results make physical sense.

179

After a new replacement point is found for the failed case, the screening design

is complete. Using the contrast formulated by Cotter (1979), it is found that 7

of the 16 factors have potentially signi�cant interactions amongst each other. To

resolve these e�ects, a 128-run fractional factorial is created in which none of the

potentially signi�cant terms are aliased with each other, but they are aliased with

other terms that have been determined to be insigni�cant. From that design, several

terms are found to be most signi�cant, all of which involve some combination of LBP,

endurance, aviation area, and hull material. Presumably, this can be explained by

the fact that together, aviation area and LBP a�ect the overall size of the ship, and

the hull material a�ects the weight of the ship, and size and weight have a signi�cant

e�ects on the ship's endurance. Given these results, a Power Projected Space Filling

Design is created in this 4 dimensional space. Only one iteration of the space �lling

design is executed, requiring 240 runs. Also, one centerpoint is run for every possible

combination of the signi�cant discrete variables, giving 24 center points. The total

run expenditure for this process is 502 runs, with 426 of those forming the �nal model.

Thus, the SPACE analysis resulted in 15% of the total cases failing, as opposed to the

31% that failed using the traditional method. This results in a signi�cant reduction

in wasted resources.

The �t results of the SPACE-generated surrogate are provided in Figures 46, 47,

48, and 49.

We can see from these results that for approximately the same e�ort as that used

in the traditional approach, we've achieved a noticeable improvement on the predic-

tion accuracy of the surrogate model using the SPACE approach. The most notable

improvement is that the maximum and minimum errors on the distributions have

been greatly reduced, indicating that the surrogate model provides good predictions

across the entire design space, whereas the traditional approach provides a good rep-

resentation of the general design space, but poor regional predictive capabilities. Also,

180

Figure 46: R2 Plots for First 4 Responses Generated Using the SPACE Approach

181

Figure 47: R2 Plots for Last 4 Responses Generated Using the SPACE Approach

182

Figure 48: Error Distributions for First 4 Responses Using the SPACE Approach

183

Figure 49: Error Distributions for Last 4 Responses Using the SPACE Approach

184

because we know the actual locations of the feasibility constraints, we can adequately

model all of the critical components.

185

Chapter IX

CLOSURE

9.1 Revisiting the Research Questions and Hy-

potheses

In this Chapter, the research questions and hypotheses are revisited for the purpose

of assessing the validity of these hypotheses. The �rst, top level research question

asked:

R.Q. 1 How do the assumptions, estimates and commitments made

in the early stages of the design process impact the �nal outcome of the

design?

Hypotheses 1.1.1, which indirectly stemmed from the above research question, was

addressed in section 7.5, where it was shown that information about the structure of

the surrogate model must compensate for a lack of a large amount of data. Even a

good data set can not stand on its own without information about the model structure

if there is not enough data to detect those e�ects. In order to create a surrogate model,

some knowledge about the behavior within the design space is needed. For the design

of large, complex systems, it is impractical to obtain enough knowledge from acquired

data alone. As a result, some arti�cial knowledge must be imported or supplied to

bolster the utility of the acquired knowledge. This arti�cial knowledge comes in the

form of assumptions, and usually, these assumptions presume the structure of the

model. There are methods available that do not presuppose a model structure, and

this quality is usually advocated as an advantage over other methods. However, these

methods are still predicated on the assumption that there is enough data available

to let that data "speak for itself". Section 7.5 demonstrated that this is not always

186

possible. In any case, arti�cial knowledge and acquired knowledge must compensate

for one another; when there is a shortage of one, then more of the other is needed.

Any method that does not rely on presumptions will require more acquired knowledge

to build an adequate model and vice versa.

Hypothesis 1.1.2 and 1.2.1 were also veri�ed in sections 7.4 and 7.5, where both

the SPACE approach and the traditional approach used RSM to �t surrogate models.

However, the SPACE approach seeded the RSM with correct information about the

model structure and the traditional approach did not. As a result, the two methods

gave vastly di�erent accuracy, indicating that RSM is not necessarily a bad approach.

Rather, it is the assumptions that are fed into the approach that determine the

accuracy of the results. No model-building scheme is necessarily superior to another.

The success of a surrogate model is predicated on the assumptions made at the outset,

and good assumptions are more crucial than picking the "right" method. The SPACE

approach provides the means to guide the selection of appropriate assumptions so that

future trials can be directed by information that has been uncovered, rather than blind

assumptions. This reduces the risk of completing a set of experiments that does not

uncover important behavior that was assumed not to exist.

There exists a wide array of tools and techniques available for creating surrogate

models. Similarly, there's no shortage of publications that draw conclusions about

which is best for various examples. Those conclusions often lead to the rejection of

traditional RSM on the premise that standard experimental designs or polynomial

surrogate models are somehow inappropriate for deterministic experiments. However,

all these conclusions overlook the fact that de�cient assumptions are often the cause

of inadequate results, rather than inappropriate model-�tting techniques. Thus, fo-

cus should be shifted away from picking the "best" method, and instead directed at

picking the right assumptions. Used in conjunction with the SPACE approach, RSM

187

appears to support this goal; it o�ers enough transparency to gain a better under-

standing of the problem so that tools, techniques and assumptions can be iteratively

re�ned.

Hypotheses 1.2.2 was con�rmed in section 7.5 where it was demonstrated that

identifying the proper structure of the surrogate model was imperative for achieving

good results.

The second, top level research question asked:

R.Q. 2 Is there a way to maximize the amount, value, and reliability of

acquired knowledge so that better, more informed decisions and commit-

ments can be made earlier in the design process?

In relation to this question, Hypothesis 2.1.1 was addressed in section 7.4, where

the SPACE approach was used to verify that as long as the sample set is kept or-

thogonal in the most signi�cant terms, it does not matter what the overall properties

of the design are. It is most important to have the ability to accurately measure the

signi�cant e�ects; all other e�ects are secondary, and even if some of those are main

e�ects, it is acceptable to have an unbalanced design for the secondary e�ects. So,

an experimental design for which the terms included in the model are not correlated

is not automatically guaranteed to be a good experimental design unless the terms

included in the model are suitable predictor variables. Sequential sampling can in-

crease sampling e�ciency by maintaining and restoring design orthogonality for the

most important e�ects and clearing those e�ects of any aliasing with other e�ects so

that the most important terms are su�ciently represented by the data.

Hypotheses 2.2.1 was validated in Section 6.2 where it was demonstrated that

outliers should not immediately be discarded. Instead, they can be used to provide

valuable information about the models behavior. Thus, we can use information about

outliers to improve the overall model �t more so than if we simply exclude those

outliers.

188

Hypothesis 2.3.1 was con�rmed in section 7.4 where it was demonstrated how one

can use a sequential approach like the SPACE method to identify signi�cant terms in

order to signi�cantly improve the �t a a polynomial model. Polynomial equations are

highly interpretable and understandable, and they are �exible enough to accurately

model discontinuous and deterministic behavior if the proper data is available to do

so and the assumptions are correct. Sequential sampling makes it possible to ensure

that the proper data becomes available and to validate or correct the assumptions.

9.2 Conclusions

In Chapter 1 of these thesis, some speci�c needs were identi�ed from within the Navy

that must be met in order to meet future naval challenges. Two of these needs were: 1)

the ability to base design decisions on quantitative predictions, and 2) new analysis

tools that can analyze performance accurately, cheaply, and quickly. In addition,

three goals were identi�ed that were felt to be necessary for meeting these needs.

These included speeding up the sampling process, considering the entire range of

candidate space, and creating a more meaningful surrogate model. Due to the nature

of the ship design problem, in conjunction with combinatorial problem presented by

capability-based design, several challenges had to be met in order to meet these goals.

Stemming from the dimensionality and scope of the problem, these challenges include

extensive infeasible design space, a large number of design variables with large ranges

on those variables, as well as the existence of some discrete variables.

The SPACE approach developed in this thesis addresses each of these challenges

by adapting the sampling process to the problem as information becomes available.

In doing so, we are able to meet the goal of speeding up the sampling process, main-

taining the full candidate space, and creating a more meaningful model. Most im-

portantly, the approach eliminates the need to completely rede�ne the problem and

start back at square one every time a challenge is encountered. In more traditional

189

approaches, all of the modeling assumptions are speci�ed at the outset of the ex-

periment. As a result, if it is found that one or more of those assumptions are

inadequate, then the designer is forces to scrap all of the information collected up to

that point and begin collecting new information that is better geared toward the new

assumptions. By comparison, the SPACE approach provides the means to streamline

the process of creating reliable surrogate models by providing an adaptive approach

that continuously updates assumptions rather than completely starting over every

time a hurdle is encountered. Thus, the SPACE approach required far less human

interaction, because the adaptive process can be automated rather than relying on

a human-in-the-loop to iteratively tweak the assumptions. Because fewer iterations

are needed, the approach winds up requiring less computational data to create an

accurate surrogate model, partly because less data is wasted. These surrogates can

be used to give faster, cheaper, and more accurate quantitative assessments of alter-

native concepts. In doing so, this method allows for more alternative concepts to be

evaluated so that design decisions can be based on quantitative predictions rather

than qualitative assumptions that can unfairly bias the results. As a result, it is

felt that the SPACE method provides an important contribution toward meeting the

stated naval needs.

There are numerous situations in which the SPACE approach would be advanta-

geous. The surrogates created using this approach are best suited to early-stage design

decisions. As such, SPACE is best suited to situations in which the designer would

like to investigate where capability gaps exist, and which family of concepts are best

suited to meeting those capabilities. For example, the designer might be confronted

with a situation in which it is not clear whether one concept can adequately address

all of the capability needs. Using the SPACE approach, the designer can quickly and

e�ciently model that concept, obtaining parametric relationships that can be used to

determine whether that concept meets those needs for every operational situation. If

190

not, then the designer can again use the SPACE approach to model additional con-

cepts that can be used to �ll the capability gap present in the original concept. Thus,

the designer can quickly and e�ciently model several concepts, and pick a subset of

those concepts that work together to �ll all of the capability gaps of the system as a

whole.

One of the ways in which SPACE can play a part in decision making is by pro-

viding the information needed to perform a full quantitative analyses of alternatives.

Referring back to Table 3, it is envisioned that SPACE can be used to obtain the kind

of quantitative information that could be used to seed an informed AoA. Speci�cally,

SPACE could be used to provide information regarding incompatibilities between al-

ternatives, as well as quantitative information that can be used to perform a TOPSIS

analyses or determine whether the concept can meet the stated requirements. In do-

ing so, the approach provides the means to more easily determine whether the needs

can be met using the available alternatives.

9.3 Recommendations for Future Work

In this thesis, the SPACE approach relied solely on Response Surface Methodology

(RSM) to create a surrogate model using a polynomial equation. It may be possible to

further improve the performance of the resulting surrogate model by using a Kriging

approach in which a second component is added to the polynomial model in order

to represent deviations from the polynomial model. If this approach is used, the

resulting polynomial model structure identi�ed by the SPACE method may be used

as the global term in the Kriging equation, and then a localized term can be added to

represent the deviations from the SPACE-generated polynomial equation. This will

allow for predicted values to more closely match actual values at those points that

comprised the training data.

191

Appendix A

DATA FROM THE ASSET EXAMPLE

The inputs (and corresponding ranges) and responses used for this example were

given in Chapter 9.

A.1 Locating Infeasible Space

The �rst set of experiments run for the ASSET example was a 34-run Cotter design

given in Table 11. Half of those runs failed, indicating that the low value of LBP

was to blame for the failure. LBP was scaled back using the step-back approach,

which was used to determine a new suitable minimum value for LBP. The normalized

value of this new minimum was found to be -0.05. The failed cases were rerun, this

time with the new minimum value for LBP. This time, all of the new runs converged

except for run 9. When there is only one failed case, this signi�es that the cause of the

failure is some combination of at least 3 factors, one of which must be the switched

factor represented by that case. In this example, run 9 represents the switched value

of Aviation Area, so this factor along with two other factors must be the cause of the

failure. Subsequent sampling indicates that the cause of the failure is the minimum

value of LBP, and the minimum value of endurance speed. Using the step-back

approach in these three dimensions, a feasible replacement point is found to be (-0.8,

-0.8, 0.8) where (LBP, End Spd, Av Area). Additionally, the three axial points that

de�ne the constraint are found to be (-1, 1, 0.8), (-1, 1, 1), and (-0.5, -1, 1). Using the

new suitable replacements for the failed combinations, the new, complete screening

design is given in Table 12.

The corresponding response values for the completed Cotter design are given in

192

Table 11: 34-Run Cotter Design for ASSET

Table 12: 34-Run Cotter Design with Acceptable Replacements for Failed Cases.

193

Table 13: ASSET Responses from the Cotter Design

Table 13.

A.2 Identifying Insigni�cant E�ects

Using these response values, the even and odd order contrasts were calculated for

each of the inputs as described in Section 7.2. Those contrasts are given in Table 14.

For the ASSET example, the responses are all weighted equally, so the contrasts

are simply summed and normalized to determine the total impact of an input. It

is inferred that all of the variables that have signi�cant even-order contrasts have

signi�cant interactions amongst themselves. Under this inference, every input that

194

Table 14: Cotter Contrasts for ASSET Example

Table 15: ASSET Inputs with Signi�cant Interaction Values

is determined to have a signi�cant even-order contrast is to be carried on to the

next step of the SPACE approach. To determine which inputs were signi�cant, a

cuto� of 0.05 was used. This cuto� is somewhat arbitrary, though in this case, it

was primarily chosen by testing various inputs until the number of variables with

signi�cant interactions was su�ciently small enough to allow for a more in-depth

investigation. The results from this step are given in Table 15.

A.3 Identifying the Structure of the Model

A full factorial was created for the seven variables that were identi�ed as having

potentially signi�cant interaction terms in the previous step. This design consists of

128 trials. This design was run (with all other variables set to their baseline values).

In the factorial design, all of the points that represent infeasible combinations were

replaced with the suitable replacements identi�ed in the �rst step. Using the results

from this step, the contrasts were calculated for all possible interactions among the

7 variables. This time, the contrasts were calculated in the conventional manner,

rather than using the Cotter formulation. These contrasts were summed across all

the responses so that those that are most signi�cant to the problem as a whole

could be selected for the power projection phase. Table 16 gives the values of these

195

contrasts. In order to be able to better visualize the interactions being represented

by the contrasts, the inputs have been renamed using letters of the alphabet, with

a corresponding to LBP, b corresponding to Endurance Speed, etc. Again, a cuto�

between what is considered signi�cant and what is insigni�cant was determined merely

by the resources remaining for additional testing. At this point, a total of 238 trials

have run; 30 for the initial screening, an additional 80 for locating constraints, and

replacing the failed cases, and 128 runs for the factorial design. With a cuto� of

500 runs, this means that approximately half of the run allotment has been used up

at this point. Using a cuto� or 0.15, a total of 7 e�ects were found to be the most

signi�cant, as denoted in the Table. All of these e�ects contained some combination

of factors a, c, h, and p. These correspond with LBP, Endurance, Aviation Area, and

Material, respectively.

A.4 Projecting Power Into the Signi�cant Sub-

sets of Design Variables

Since all of the most signi�cant interaction terms involved some combination of LBP,

Endurance, Aviation Area, and Material, those four dimensions formed the only subset

of design space to be explored in the power projection step of the design process. This

4-dimensional space was explored using two iterations of the iterative space-�lling

design, requiring a total of 240 additional runs, bringing the total number of runs to

478. At this point, all of the converged cases were used to form the �nal design of

experiments that would be used to �t the model. The polynomial equations used to

�t each of the responses were created by referring back to the contrasts that were

calculated for each response after the factorial design was executed.

196

Table 16: Contrasts for Interaction Terms for ASSET Example

197

Appendix B

SOURCE CODES AND INSTRUCTIONS FOR

APPLYING THESE TOOLS TO OTHER

PROBLEMS

B.1 Primary Algorithm: AutomateProcess.m

This code contains the algorithm that essentially automates the entire process.

% This code automates the entire process

clear all

global CodeName runs inputmatrix outputmatrix convergencematrix Normalized_runs...

Screening Highs Lows weightings Maxruns ReplacedRuns OriginalRuns NewRuns Y n R...

NumBadCombos NumBadThrees BadCombosVector BadThreesVector

UserInputs

% *** Stage 1 - Finding and Treating Infeasible Space ***

% if DiscreteVars > 0;

% for I = 1:DiscreteVars

% NumDiscreteLvls = ['size(DiscreteLvls', int2str(I),',2);'];

% n = n + ceil(NumDiscreteLvls/2);

% else

% end

CotterScreening % creates the normalized screening design

198

n = TotalVars;

Convert % converts screening to actual values

for i = (ContVars+1):TotalVars

Screening(:,i) = inputmatrix(:,i);

end

eval(CodeName); % runs the screening design

n = ContVars;

%The following keep a log of the total input and output matrices so that

%all of the data may be trasnferred to a visualization tool (such as JMP)

%at the end

TotalInputMatrix = [Normalized_runs]

TotalOutputMatrix = [outputmatrix]

responses = R;

[TotalInputTrials,TotalInputVars] = size(TotalInputMatrix);

ScreeningConvergence = convergencematrix

Y = outputmatrix;

if NumAddtlAnalyses > 0

AA = AddtlAnalyses;

else

end

%First determine whether any of the main effect settings causes a failure

MainEffectPlusConverg = [];

MainEffectMinusConverg = [];

for I = 1:TotalVars

J = 1;

199

MainEffectPlus = [];

MainEffectMinus = [];

for j = 1:runs

if Screening(j,I) == 1

MainEffectPlus = [MainEffectPlus, convergencematrix(j)];

else

MainEffectMinus = [MainEffectMinus, convergencematrix(j)];

end

end

if max(MainEffectPlus) == 0;

MainEffectPlusConverg = [MainEffectPlusConverg, 0];

fprintf('The high level of the %gth variable is infeasible.\n',I)

else

MainEffectPlusConverg = [MainEffectPlusConverg, 1];

end

if max(MainEffectMinus) == 0;

MainEffectMinusConverg = [MainEffectMinusConverg, 0];

fprintf('The low level of the %gth variable is infeasible.\n',I)

else

MainEffectMinusConverg = [MainEffectMinusConverg, 1];

end

end

MainEffectPlusConverg;

MainEffectMinusConverg;

%If there is a main effect responsible for the failures, find the location

%of this constraint and then reset the ranges on that variable

200

for I = 1:n

if MainEffectPlusConverg(I) == 0

FeasibilityTester = zeros(1,n);

if DiscreteVars > 0

for J = n+1:TotalVars

NumDiscreteLvls = ['size(DiscreteLvls', int2str(J-n),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

DiscreteBase = ['DiscreteLvls',int2str(J-n),'(ceil(NumDiscreteLvls/2))'];

DiscreteBase = eval(DiscreteBase);

FeasibilityTester(:,J) = DiscreteBase;

end

else

end

FeasibilityTester(I) = 0.8;

Normalized_runs = FeasibilityTester;

Convert

runs = 1;

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

while convergencematrix == 0;

FeasibilityTester(I) = FeasibilityTester(I) - 0.2;

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

end

201

FeasibilityTester(I) = FeasibilityTester(I) + 0.1;

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 0

FeasibilityTester(I) = FeasibilityTester(I) - 0.05;

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 1

Highs(I) = FeasibilityTester(I);

fprintf('The (normalized) location of the constraint on the %gth variable is %4.2f.\n',I,Highs(I))

else

Highs(I) = FeasibilityTester(I) + 0.05;

fprintf('The (normalized) location of the constraint on the %gth variable is %4.2f.\n',I,Highs(I))

end

else

FeasibilityTester(I) = FeasibilityTester(I) + 0.05;

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

202

if convergencematrix == 1

Highs(I) = FeasibilityTester(I);

fprintf('The (normalized) location of the constraint on the %gth variable is %4.2f.\n',I,Highs(I))

else

Highs(I) = FeasibilityTester(I) - 0.05;

fprintf('The (normalized) location of the constraint on the %gth variable is %4.2f.\n',I,Highs(I))

end

end

else

end

end

for I = 1:n

if MainEffectMinusConverg(I) == 0

FeasibilityTester = zeros(1,n);

FeasibilityTester(I) = -0.8;

if DiscreteVars > 0

for J = n+1:TotalVars

NumDiscreteLvls = ['size(DiscreteLvls', int2str(J-n),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

DiscreteBase = ['DiscreteLvls',int2str(J-n),'(ceil(NumDiscreteLvls/2))'];

DiscreteBase = eval(DiscreteBase);

FeasibilityTester(:,J) = DiscreteBase;

end

else

end

Normalized_runs = FeasibilityTester;

runs = 1;

203

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

while convergencematrix == 0;

FeasibilityTester(I) = FeasibilityTester(I) + 0.2;

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

end

FeasibilityTester(I) = FeasibilityTester(I) - 0.1;

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 0

FeasibilityTester(I) = FeasibilityTester(I) + 0.05;

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 1

Lows(I) = FeasibilityTester(I);

fprintf('The (normalized) location of the constraint on the %gth variable is %4.2f.\n',I,Highs(I))

204

else

Lows(I) = FeasibilityTester(I) - 0.05;

fprintf('The (normalized) location of the constraint on the %gth variable is %4.2f.\n',I,Highs(I))

end

else

FeasibilityTester(I) = FeasibilityTester(I) - 0.05;

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 1

Lows(I) = FeasibilityTester(I);

fprintf('The (normalized) location of the constraint on the %gth variable is %4.2f.\n',I,Highs(I))

else

Lows(I) = FeasibilityTester(I) + 0.05;

fprintf('The (normalized) location of the constraint on the %gth variable is %4.2f.\n',I,Highs(I))

end

end

else

end

end

%If any of the discrete variable levels are infeasible, delete that level

if DiscreteVars > 0

for I = (n+1):TotalVars

if MainEffectPlusConverg(I) == 0

F = I - n;

205

NumDiscreteLvls = ['size(DiscreteLvls', int2str(F),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

NewDiscrete = ['DiscreteLvls', int2str(F),'(1,NumDiscreteLvls) = []'];

eval(NewDiscrete)

NewHighLvl = ['Highs(I) = DiscreteLvls', inst2str(F), '(1,(NumDiscreteLvls-1))'];

eval(NewHighLvl)

else

end

if MainEffectMinusConverg(I) == 0

F = I - n;

NewDiscrete = ['DiscreteLvls', int2str(F),'(1,1) = []'];

eval(NewDiscrete)

NewLowLvl = ['Lows(I) = DiscreteLvls', inst2str(F), '(1,1)'];

eval(NewLowLvl)

else

end

end

else

end

%If any of the ranges have been reset, the all of the screening points must

%be rerun

if min(MainEffectPlusConverg) == 0 | min(MainEffectMinusConverg) == 0

CotterScreening

[runs,f] = size(Normalized_runs);

n = TotalVars;

Convert

206

eval(CodeName)

TotalInputMatrix = [Normalized_runs]

TotalOutputMatrix = [outputmatrix]

TotalInputTrials = TotalInputTrials + runs

ScreeningConvergence = convergencematrix

n = ContVars;

else

end

% %Next, determine whether any of the 2Fis causes a failure

BadCombosVector = [];

[runs,J] = size(Screening);

CurrentNumBadCombos = size(BadCombosVector,1);

for I = 1:TotalVars

for i2 = I+1:TotalVars

TwoFIPlusPlus = [];

TwoFIPlusMinus = [];

TwoFIMinusPlus = [];

TwoFIMinusMinus = [];

for j = 1:runs

if Screening(j,I) == 1 & Screening(j,i2) == 1

TwoFIPlusPlus = [TwoFIPlusPlus, convergencematrix(j)];

elseif Screening(j,I) == 1 & Screening(j,i2) == -1

TwpFIPlusMinus = [TwoFIPlusMinus, convergencematrix(j)];

elseif Screening(j,I) == -1 & Screening(j,i2) == 1

TwoFIMinusPlus = [TwoFIMinusPlus, convergencematrix(j)];

207

elseif Screening(j,I) == -1 & Screening(j,i2) == -1

TwoFIMinusMinus = [TwoFIMinusMinus, convergencematrix(j)];

else

end

end

if max(TwoFIPlusPlus) == 0;

BadCombosVector = [BadCombosVector; [I, i2]];

elseif max(TwoFIPlusMinus) == 0;

BadCombosVector = [BadCombosVector; [I, -i2]];

elseif max(TwoFIMinusPlus) == 0;

BadCombosVector = [BadCombosVector; [-I, i2]];

elseif max(TwoFIMinusMinus) == 0;

BadCombosVector = [BadCombosVector; [-I, -i2]];

else

end

end

end

[NumBadTwos,j] = size(BadCombosVector);

W = 1;

for V = 1:NumBadTwos

p = BadCombosVector(W,1);

q = BadCombosVector(W,2);

FeasibilityTester = zeros(1,n);

if DiscreteVars > 0

for I = n+1:TotalVars

NumDiscreteLvls = ['size(DiscreteLvls', int2str(I-n),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

208

DiscreteBase = ['DiscreteLvls',int2str(I-n),'(ceil(NumDiscreteLvls/2))'];

DiscreteBase = eval(DiscreteBase);

FeasibilityTester(:,I) = DiscreteBase;

end

else

end

if abs(p) <= n

FeasibilityTester(abs(p)) = p/abs(p);

else

if p < 0

FeasibilityTester(abs(p)) = Lows(abs(p));

else

FeasibilityTester(abs(p)) = Highs(abs(p));

end

end

if abs(q) <= n

FeasibilityTester(abs(q)) = q/abs(q);

else

if q < 0

FeasibilityTester(abs(q)) = Lows(abs(q));

else

FeasibilityTester(abs(q)) = Highs(abs(q));

end

end

Normalized_runs = FeasibilityTester;

runs = 1;

209

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 1

BadCombosVector(W,:)=[]

else

W = W + 1;

end

end

%Now, find the location of the constraint in the 2 dimensions

fprintf('The following combinations of variables cause failures due to infeasibility.\n (Negative numbers mean the failure occurs at the low level of the variable, and vice versa)\n')

BadCombosVector

[NumBadCombos,j] = size(BadCombosVector);

Combo1 = [];

Combo2 = [];

Combo = [];

if NumBadCombos >=1

for I = 1:NumBadCombos

p = BadCombosVector(I,1);

q = BadCombosVector(I,2);

if abs(p) > n & abs(q) > n

E = abs(p)-n;

F = abs(q)-n;

if p > 0

NumDiscreteLvls = ['size(DiscreteLvls', int2str(E),',2);'];

210

NumDiscreteLvls=eval(NumDiscreteLvls);

HighDiscreteVar = ['DiscreteLvls', int2str(E),'(NumDiscreteLvls-1)'];

DiscreteValue = eval(HighDiscreteVar);

DiscreteCombo1 = ((DiscreteValue - Lows(abs(p)))/(Highs(abs(p))-Lows(abs(p))))*2-1;

else

HighDiscreteVar = ['DiscreteLvls', int2str(E),'(2)'];

DiscreteValue = eval(HighDiscreteVar);

DiscreteCombo1 = ((DiscreteValue - Lows(abs(p)))/(Highs(abs(p))-Lows(abs(p))))*2-1;

end

if q > 0

NumDiscreteLvls = ['size(DiscreteLvls', int2str(F),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

HighDiscreteVar = ['DiscreteLvls', int2str(F),'(NumDiscreteLvls-1)'];

DiscreteValue = eval(HighDiscreteVar);

DiscreteCombo2 = ((DiscreteValue - Lows(abs(q)))/(Highs(abs(q))-Lows(abs(q))))*2-1;

else

HighDiscreteVar = ['DiscreteLvls', int2str(F),'(2)'];

DiscreteValue = eval(HighDiscreteVar);

DiscreteCombo2 = ((DiscreteValue - Lows(abs(q)))/(Highs(abs(q))-Lows(abs(q))))*2-1;

end

Combo = [Combo; [DiscreteCombo1 DiscreteCombo2]];

else

FeasibilityTester = zeros(1,n);

if DiscreteVars > 0

211

for I = n+1:TotalVars

NumDiscreteLvls = ['size(DiscreteLvls', int2str(I-n),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

DiscreteBase = ['DiscreteLvls',int2str(I-n),'(ceil(NumDiscreteLvls/2))'];

DiscreteBase = eval(DiscreteBase);

FeasibilityTester(:,I) = DiscreteBase;

end

else

end

if abs(p) <= n

FeasibilityTester(abs(p)) = p/abs(p)*0.8;

else

if p < 0

FeasibilityTester(abs(p)) = Lows(abs(p));

else

FeasibilityTester(abs(p)) = Highs(abs(p));

end

end

if abs(q) <=n

FeasibilityTester(abs(q)) = q/abs(q)*0.8;

else

if q < 0

FeasibilityTester(abs(q)) = Lows(abs(q));

else

FeasibilityTester(abs(q)) = Highs(abs(q));

end

end

212

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

while convergencematrix == 0;

if abs(p) <= n

FeasibilityTester(abs(p)) = FeasibilityTester(abs(p)) - 0.2*p/abs(p);

else

end

if abs(q) <= n

FeasibilityTester(abs(q)) = FeasibilityTester(abs(q)) - 0.2*q/abs(q);

else

end

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

end

if abs(p) <=n

FeasibilityTester(abs(p)) = FeasibilityTester(abs(p)) + 0.1*p/(abs(p));

else

end

if abs(q) <=n

FeasibilityTester(abs(q)) = FeasibilityTester(abs(q)) + 0.1*q/(abs(q));

else

213

end

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 0

if abs(p) <=n

FeasibilityTester(abs(p)) = FeasibilityTester(abs(p)) - 0.05*p/(abs(p));

else

end

if abs(q)<=n

FeasibilityTester(abs(q)) = FeasibilityTester(abs(q)) - 0.05*q/(abs(q));

else

end

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 1

Combo = [Combo; [FeasibilityTester(abs(p)), FeasibilityTester(abs(q))]];

else

if abs(p) <=n & abs(q)<=n

Combo = [Combo; [FeasibilityTester(abs(p)) - 0.05*p/(abs(p)), FeasibilityTester(abs(q)) - 0.05*q/(abs(q))]];

elseif abs(p)>n & abs(q)<=n

214

DiscreteValue = FeasibilityTester(abs(p));

DiscreteCombo1 = ((DiscreteValue - Lows(abs(p)))/(Highs(abs(p))-Lows(abs(p))))*2-1;

Combo = [Combo; [DiscreteCombo1, FeasibilityTester(abs(q)) - 0.05*q/(abs(q))]];

elseif abs(p)<=n & abs(q)>n

DiscreteValue = FeasibilityTester(abs(q));

DiscreteCombo2 = ((DiscreteValue - Lows(abs(q)))/(Highs(abs(q))-Lows(abs(q))))*2-1;

Combo = [Combo; [FeasibilityTester(abs(p)) - 0.05*p/(abs(p)), DiscreteCombo2]];

else

end

end

else

if abs(p) <=n

FeasibilityTester(abs(p)) = FeasibilityTester(abs(p)) + 0.05*p/(abs(p));

else

end

if abs(q) <=n

FeasibilityTester(abs(q)) = FeasibilityTester(abs(q)) + 0.05*q/(abs(q));

else

end

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 1

Combo = [Combo; [FeasibilityTester(abs(p)), FeasibilityTester(abs(q))]];

215

else

if abs(p) <=n & abs(q)<=n

Combo = [Combo; [FeasibilityTester(abs(p)) - 0.05*p/(abs(p)), FeasibilityTester(abs(q)) - 0.05*q/(abs(q))]];

elseif abs(p)>n & abs(q)<=n

DiscreteValue = FeasibilityTester(abs(p));

DiscreteCombo1 = ((DiscreteValue - Lows(abs(p)))/(Highs(abs(p))-Lows(abs(p))))*2-1;

Combo = [Combo; [DiscreteCombo1, FeasibilityTester(abs(q)) - 0.05*q/(abs(q))]];

elseif abs(p)<=n & abs(q)>n

DiscreteValue = FeasibilityTester(abs(q));

DiscreteCombo2 = ((DiscreteValue - Lows(abs(q)))/(Highs(abs(q))-Lows(abs(q))))*2-1;

Combo = [Combo; [FeasibilityTester(abs(p)) - 0.05*p/(abs(p)), DiscreteCombo2]];

else

end

end

end

end

FeasibilityTester = zeros(1,n);

if DiscreteVars > 0

for I = n+1:TotalVars

NumDiscreteLvls = ['size(DiscreteLvls', int2str(I-n),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

DiscreteBase = ['DiscreteLvls',int2str(I-n),'(ceil(NumDiscreteLvls/2))'];

DiscreteBase = eval(DiscreteBase);

FeasibilityTester(:,I) = DiscreteBase;

end

else

216

end

if abs(q) > n

F = abs(q)-n;

if q > 0

NumDiscreteLvls = ['size(DiscreteLvls', int2str(F),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

HighDiscreteVar = ['DiscreteLvls', int2str(F),'(NumDiscreteLvls-1)'];

DiscreteValue = eval(HighDiscreteVar);

DiscreteCombo1 = ((DiscreteValue - Lows(abs(q)))/(Highs(abs(q))-Lows(abs(q))))*2-1;

else

LowDiscreteVar = ['DiscreteLvls', int2str(F),'(2)'];

DiscreteValue = eval(LowDiscreteVar);

DiscreteCombo1 = ((DiscreteValue - Lows(abs(q)))/(Highs(abs(q))-Lows(abs(q))))*2-1;

end

if abs(p) > n

if p > 0

DiscreteCombo2 = 1;

else

DiscreteCombo2 = -1;

end

else

DiscreteCombo2 = p/abs(p);

end

Combo1 = [Combo1; [DiscreteCombo2, DiscreteCombo1]];

else

FeasibilityTester(abs(p)) = p/abs(p);

217

FeasibilityTester(abs(q)) = q/abs(q)*0.8;

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

while convergencematrix == 0;

FeasibilityTester(abs(q)) = FeasibilityTester(abs(q)) - 0.2*q/abs(q);

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

end

FeasibilityTester(abs(q)) = FeasibilityTester(abs(q)) + 0.1*q/(abs(q));

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 0

FeasibilityTester(abs(q)) = FeasibilityTester(abs(q)) - 0.05*q/(abs(q));

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

218

if convergencematrix == 1

Combo1 = [Combo1; [FeasibilityTester(abs(p)), FeasibilityTester(abs(q))]];

else

Combo1 = [Combo1; [FeasibilityTester(abs(p)), FeasibilityTester(abs(q))...

- 0.05*q/(abs(q))]];

end

else

FeasibilityTester(abs(q)) = FeasibilityTester(abs(q)) + 0.05*q/(abs(q));

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 1

Combo1 = [Combo1; [FeasibilityTester(abs(p)), FeasibilityTester(abs(q))]];

else

Combo1 = [Combo1; [FeasibilityTester(abs(p)), FeasibilityTester(abs(q))...

- 0.05*q/(abs(q))]];

end

end

end

FeasibilityTester = zeros(1,n);

if DiscreteVars > 0

for I = n+1:TotalVars

NumDiscreteLvls = ['size(DiscreteLvls', int2str(I-n),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

DiscreteBase = ['DiscreteLvls',int2str(I-n),'(ceil(NumDiscreteLvls/2))'];

219

DiscreteBase = eval(DiscreteBase);

FeasibilityTester(:,I) = DiscreteBase;

end

else

end

if abs(p) > n

F = abs(p)-n;

if p > 0

NumDiscreteLvls = ['size(DiscreteLvls', int2str(F),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

HighDiscreteVar = ['DiscreteLvls', int2str(F),'(NumDiscreteLvls-1)'];

DiscreteValue = eval(HighDiscreteVar);

DiscreteCombo2 = ((DiscreteValue - Lows(abs(p)))/(Highs(abs(p))-Lows(abs(p))))*2-1;

else

LowDiscreteVar = ['DiscreteLvls', int2str(F),'(2)'];

DiscreteValue = eval(LowDiscreteVar);

DiscreteCombo2 = ((DiscreteValue - Lows(abs(p)))/(Highs(abs(p))-Lows(abs(p))))*2-1;

end

if abs(q) > n

if q > 0

DiscreteCombo1 = 1;

else

DiscreteCombo1 = -1;

end

else

DiscreteCombo1 = q/abs(q);

end

220

Combo1 = [Combo1; [DiscreteCombo2, DiscreteCombo1]];

else

FeasibilityTester(abs(p)) = p/abs(p)*0.8;

FeasibilityTester(abs(q)) = q/abs(q);

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

while convergencematrix == 0;

FeasibilityTester(abs(p)) = FeasibilityTester(abs(p)) - 0.2*p/abs(p);

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

end

FeasibilityTester(abs(p)) = FeasibilityTester(abs(p)) + 0.1*p/(abs(p));

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 0

FeasibilityTester(abs(p)) = FeasibilityTester(abs(p)) - 0.05*p/(abs(p));

Normalized_runs = FeasibilityTester;

runs = 1;

221

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 1

Combo2 = [Combo2; [FeasibilityTester(abs(p)), FeasibilityTester(abs(q))]];

else

Combo2 = [Combo2; [FeasibilityTester(abs(p)) - 0.05*p/(abs(p)),...

FeasibilityTester(abs(q))]];

end

else

FeasibilityTester(abs(p)) = FeasibilityTester(abs(p)) + 0.05*p/(abs(p));

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 1

Combo2 = [Combo2; [FeasibilityTester(abs(p)), FeasibilityTester(abs(q))]];

else

Combo2 = [Combo2; [FeasibilityTester(abs(p)) - 0.05*p/(abs(p)),...

FeasibilityTester(abs(q))]];

end

end

end

end

end

fprintf('The following are those points that lie on the constraint corners, and will be used to replace the infeasible corner points\n')

222

Combo

if NumBadCombos > 0;

Normalized_runs = Screening

[runs,f] = size(Screening);

convergencematrix = ScreeningConvergence;

ReplaceInfeasiblePoints3

Normalized_runs = NewRuns;

fprintf('The following are those additional runs needed to complete the screening design\n')

NewRuns

[runs,f] = size(NewRuns);

TotalInputTrials = TotalInputTrials + runs;

n = TotalVars;

Convert

eval(CodeName)

inputmatrix

outputmatrix

[Replacements,f] = size(ReplacedRuns);

Convergence_Matrix = OriginalConvergence;

n = ContVars;

j = 1;

for I = 1:Replacements

TotalInputMatrix(ReplacedRuns(I,1),:) = NewRuns(I,:);

TotalOutputMatrix(ReplacedRuns(I,1),:) = outputmatrix(I,:);

Convergence_Matrix(ReplacedRuns(I,1),:) = convergencematrix(I,:);

end

convergencematrix = Convergence_Matrix;

223

outputmatrix = TotalOutputMatrix

TotalInputMatrix

TotalOutputMatrix

ScreeningConvergence = convergencematrix

else

end

%Next, determine whether any of the 3Fis causes a failure

BadThreesVector = [];

[runs,I] = size(Screening);

Num3FICulprits = 0;

for P = 1:runs

if ScreeningConvergence(P) == 0

Num3FICulprits = Num3FICulprits + 1;

else

end

end

for i = 1:n

for i2 = i+1:n

for i3 = i2+1:n

ThreeFIPlusPlusPlus = [];

ThreeFIPlusPlusMinus = [];

ThreeFIPlusMinusPlus = [];

ThreeFIMinusPlusPlus = [];

224

ThreeFIPlusMinusMinus = [];

ThreeFIMinusPlusMinus = [];

ThreeFIMinusMinusPlus = [];

ThreeFIMinusMinusMinus = [];

for j = 1:runs

if Screening(j,i) == 1 & Screening(j,i2) == 1 & Screening(j,i3) == 1

ThreeFIPlusPlusPlus = [ThreeFIPlusPlusPlus, convergencematrix(j)];

elseif Screening(j,i) == 1 & Screening(j,i2) == 1 & Screening(j,i3) == -1

ThreeFIPlusPlusMinus = [ThreeFIPlusPlusMinus, convergencematrix(j)];

elseif Screening(j,i) == 1 & Screening(j,i2) == -1 & Screening(j,i3) == 1

ThreeFIPlusMinusPlus = [ThreeFIPlusMinusPlus, convergencematrix(j)];

elseif Screening(j,i) == -1 & Screening(j,i2) == 1 & Screening(j,i3) == 1

ThreeFIMinusPlusPlus = [ThreeFIMinusPlusPlus, convergencematrix(j)];

elseif Screening(j,i) == 1 & Screening(j,i2) == -1 & Screening(j,i3) == -1

ThreeFIPlusMinusMinus = [ThreeFIPlusMinusMinus, convergencematrix(j)];

elseif Screening(j,i) == -1 & Screening(j,i2) == 1 & Screening(j,i3) == -1

ThreeFIMinusPlusMinus = [ThreeFIMinusPlusMinus, convergencematrix(j)];

elseif Screening(j,i) == -1 & Screening(j,i2) == -1 & Screening(j,i3) == 1

ThreeFIMinusMinusPlus = [ThreeFIMinusMinusPlus, convergencematrix(j)];

elseif Screening(j,i) == -1 & Screening(j,i2) == -1 & Screening(j,i3) == -1

ThreeFIMinusMinusMinus = [ThreeFIMinusMinusMinus, convergencematrix(j)];

else

end

end

if max(ThreeFIPlusPlusPlus) == 0;

BadThreesVector = [BadThreesVector; [i, i2, i3]];

elseif max(ThreeFIPlusPlusMinus) == 0;

225

BadThreesVector = [BadThreesVector; [i, i2, -i3]];

elseif max(ThreeFIPlusMinusPlus) == 0;

BadThreesVector = [BadThreesVector; [i, -i2, i3]];

elseif max(ThreeFIMinusPlusPlus) == 0;

BadThreesVector = [BadThreesVector; [-i, i2, i3]];

elseif max(ThreeFIPlusMinusMinus) == 0;

BadThreesVector = [BadThreesVector; [i, -i2, -i3]];

elseif max(ThreeFIMinusPlusMinus) == 0;

BadThreesVector = [BadThreesVector; [-i, i2, -i3]];

elseif max(ThreeFIMinusMinusPlus) == 0;

BadThreesVector = [BadThreesVector; [-i, -i2, i3]];

elseif max(ThreeFIMinusMinusMinus) == 0;

BadThreesVector = [BadThreesVector; [-i, -i2, -i3]];

else

end

end

end

end

%Now, find the location of the constraint in the 3 dimensions

ThreeCombo1 = [];

ThreeCombo2 = [];

ThreeCombo3 = [];

ThreeCombo = [];

[NumBadThrees,j] = size(BadThreesVector);

W = 1;

226

%The following ensures that none of the bad 3FIs are actually due to a bad

%2FI

for V = 1:NumBadThrees

C = 1;

for U = 1:NumBadCombos

if BadThreesVector(W,1) == BadCombosVector(U,1) &...

BadThreesVector(W,2) == BadCombosVector(U,2)

BadThreesVector(W,:) = []

C = 0;

elseif BadThreesVector(W,1) == BadCombosVector(U,1) &...

BadThreesVector(W,3) == BadCombosVector(U,2)

BadThreesVector(W,:) = []

C = 0;

elseif BadThreesVector(W,2) == BadCombosVector(U,1) &...

BadThreesVector(W,3) == BadCombosVector(U,2)

BadThreesVector(W,:) = []

C = 0;

else

end

end

if C == 1

W = W + 1;

else

end

end

%Because the 3FIs are aliased, the following code hashes out which is

227

%really the cause of the infeasible space

[NumBadThrees,j] = size(BadThreesVector);

W = 1;

for V = 1:NumBadThrees

if W <= Num3FICulprits

p = BadThreesVector(W,1);

q = BadThreesVector(W,2);

rr = BadThreesVector(W,3);

%if p == 5 & q == -10 & rr == -11

% BadThreesVector(W,:) = []

%else

FeasibilityTester = zeros(1,n);

if DiscreteVars > 0

for I = n+1:TotalVars

NumDiscreteLvls = ['size(DiscreteLvls', int2str(I-n),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

DiscreteBase = ['DiscreteLvls',int2str(I-n),...

'(ceil(NumDiscreteLvls/2))'];

DiscreteBase = eval(DiscreteBase);

FeasibilityTester(:,I) = DiscreteBase;

end

else

end

if abs(p) <= n

FeasibilityTester(abs(p)) = p/abs(p);

else

if p < 0

228

FeasibilityTester(abs(p)) = Lows(abs(p));

else

FeasibilityTester(abs(p)) = Highs(abs(p));

end

end

if abs(q) <= n

FeasibilityTester(abs(q)) = q/abs(q);

else

if q < 0

FeasibilityTester(abs(q)) = Lows(abs(q));

else

FeasibilityTester(abs(q)) = Highs(abs(q));

end

end

if abs(rr) <= n

FeasibilityTester(abs(rr)) = rr/abs(rr);

else

if rr < 0

FeasibilityTester(abs(rr)) = Lows(abs(rr));

else

FeasibilityTester(abs(rr)) = Highs(abs(rr));

end

end

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

229

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 1

BadThreesVector(W,:)=[]

else

W = W + 1;

end

%end

else

BadThreesVector(W,:) = []

end

end

fprintf('The following combinations of variables cause failures due to infeasibility.\n (Negative numbers mean the failure occurs at the low level of the variable, and vice versa)\n')

BadThreesVector

[NumBadThrees,j] = size(BadThreesVector);

if NumBadThrees >=1

for I = 1:NumBadThrees

p = BadThreesVector(I,1);

q = BadThreesVector(I,2);

rr = BadThreesVector(I,3);

FeasibilityTester = zeros(1,n);

if DiscreteVars > 0

for I = n+1:TotalVars

NumDiscreteLvls = ['size(DiscreteLvls', int2str(I-n),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

DiscreteBase = ['DiscreteLvls',int2str(I-n),'(ceil(NumDiscreteLvls/2))'];

230

DiscreteBase = eval(DiscreteBase);

FeasibilityTester(:,I) = DiscreteBase;

end

else

end

FeasibilityTester(abs(p)) = p/abs(p)*0.8;

FeasibilityTester(abs(q)) = q/abs(q)*0.8;

FeasibilityTester(abs(rr)) = rr/abs(rr)*0.8;

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

while convergencematrix == 0;

FeasibilityTester(abs(p)) = FeasibilityTester(abs(p)) - 0.2*p/abs(p);

FeasibilityTester(abs(q)) = FeasibilityTester(abs(q)) - 0.2*q/abs(q);

FeasibilityTester(abs(rr)) = FeasibilityTester(abs(rr)) - 0.2*rr/abs(rr);

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

end

FeasibilityTester(abs(p)) = FeasibilityTester(abs(p)) + 0.1*p/abs(p)

FeasibilityTester(abs(q)) = FeasibilityTester(abs(q)) + 0.1*q/abs(q)

FeasibilityTester(abs(rr)) = FeasibilityTester(abs(rr)) + 0.1*rr/(abs(rr));

Normalized_runs = FeasibilityTester;

231

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 0

FeasibilityTester(abs(p)) = FeasibilityTester(abs(p)) - 0.05*p/(abs(p));

FeasibilityTester(abs(q)) = FeasibilityTester(abs(q)) - 0.05*q/(abs(q));

FeasibilityTester(abs(rr)) = FeasibilityTester(abs(rr)) - 0.05*rr/(abs(rr));

Normalized_runs = FeasibilityTester;

runs = 1;

eval(CodeName);

if convergencematrix == 1

ThreeCombo = [ThreeCombo; [FeasibilityTester(abs(p)),...

FeasibilityTester(abs(q)), FeasibilityTester(abs(rr))]];

else

ThreeCombo = [ThreeCombo; [FeasibilityTester(abs(p)) - 0.05*p/(abs(p)),...

FeasibilityTester(abs(q)) - 0.05*rr/(abs(q)), FeasibilityTester(abs(q)) ...

- 0.05*rr/(abs(rr))]];

end

else

FeasibilityTester(abs(p)) = FeasibilityTester(abs(p)) + 0.05*p/(abs(p));

FeasibilityTester(abs(q)) = FeasibilityTester(abs(q)) + 0.05*q/(abs(q));

FeasibilityTester(abs(rr)) = FeasibilityTester(abs(rr)) + 0.05*rr/(abs(rr));

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

232

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 1

ThreeCombo = [ThreeCombo; [FeasibilityTester(abs(p)),...

FeasibilityTester(abs(q)), FeasibilityTester(abs(rr))]];

else

ThreeCombo = [ThreeCombo; [FeasibilityTester(abs(p))- 0.05*p/(abs(p)),...

FeasibilityTester(abs(q))- 0.05*q/(abs(q)), FeasibilityTester(abs(rr)) ...

- 0.05*rr/(abs(rr))]];

end

end

FeasibilityTester = zeros(1,n);

if DiscreteVars > 0

for I = n+1:TotalVars

NumDiscreteLvls = ['size(DiscreteLvls', int2str(I-n),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

DiscreteBase = ['DiscreteLvls',int2str(I-n),'(ceil(NumDiscreteLvls/2))'];

DiscreteBase = eval(DiscreteBase);

FeasibilityTester(:,I) = DiscreteBase;

end

else

end

FeasibilityTester(abs(p)) = p/abs(p);

FeasibilityTester(abs(q)) = q/abs(q);

FeasibilityTester(abs(rr)) = rr/abs(rr)*0.8;

Normalized_runs = FeasibilityTester;

runs = 1;

233

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

while convergencematrix == 0;

FeasibilityTester(abs(rr)) = FeasibilityTester(abs(rr)) - 0.2*rr/abs(rr);

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

end

FeasibilityTester(abs(rr)) = FeasibilityTester(abs(rr)) + 0.1*rr/(abs(rr));

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 0

FeasibilityTester(abs(rr)) = FeasibilityTester(abs(rr)) - 0.05*rr/(abs(rr));

Normalized_runs = FeasibilityTester;

runs = 1;

eval(CodeName);

if convergencematrix == 1

ThreeCombo1 = [ThreeCombo1; [FeasibilityTester(abs(p)), ...

FeasibilityTester(abs(q)), FeasibilityTester(abs(rr))]];

else

234

ThreeCombo1 = [ThreeCombo1; [FeasibilityTester(abs(p)),...

FeasibilityTester(abs(q)), FeasibilityTester(abs(rr)) ...

- 0.05*rr/(abs(rr))]];

end

else

FeasibilityTester(abs(rr)) = FeasibilityTester(abs(rr)) ...

+ 0.05*rr/(abs(rr));

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 1

ThreeCombo1 = [ThreeCombo1; [FeasibilityTester(abs(p)), ...

FeasibilityTester(abs(q)), FeasibilityTester(abs(rr))]];

else

ThreeCombo1 = [ThreeCombo1; [FeasibilityTester(abs(p)),...

FeasibilityTester(abs(q)), FeasibilityTester(abs(rr))...

- 0.05*rr/(abs(rr))]];

end

end

FeasibilityTester = zeros(1,n);

if DiscreteVars > 0

for I = n+1:TotalVars

NumDiscreteLvls = ['size(DiscreteLvls', int2str(I-n),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

DiscreteBase = ['DiscreteLvls',int2str(I-n),'(ceil(NumDiscreteLvls/2))'];

235

DiscreteBase = eval(DiscreteBase);

FeasibilityTester(:,I) = DiscreteBase;

end

else

end

FeasibilityTester(abs(p)) = p/abs(p);

FeasibilityTester(abs(q)) = q/abs(q)*0.8;

FeasibilityTester(abs(rr)) = rr/abs(rr);

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

while convergencematrix == 0;

FeasibilityTester(abs(q)) = FeasibilityTester(abs(q)) - 0.2*q/abs(q);

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

end

FeasibilityTester(abs(q)) = FeasibilityTester(abs(q)) + 0.1*q/(abs(q));

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

236

if convergencematrix == 0

FeasibilityTester(abs(q)) = FeasibilityTester(abs(q)) - 0.05*q/(abs(q));

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 1

ThreeCombo2 = [ThreeCombo2; [FeasibilityTester(abs(p)), ...

FeasibilityTester(abs(q)), FeasibilityTester(abs(rr))]];

else

ThreeCombo2 = [ThreeCombo2; [FeasibilityTester(abs(p)), ...

FeasibilityTester(abs(q)) - 0.05*q/(abs(q)), ...

FeasibilityTester(abs(rr))]];

end

else

FeasibilityTester(abs(q)) = FeasibilityTester(abs(q)) + 0.05*q/(abs(q));

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 1

ThreeCombo2 = [ThreeCombo2; [FeasibilityTester(abs(p)), ...

FeasibilityTester(abs(q)), FeasibilityTester(abs(rr))]];

else

ThreeCombo2 = [ThreeCombo2; [FeasibilityTester(abs(p)), ...

237

FeasibilityTester(abs(q)) - 0.05*q/(abs(q)),...

FeasibilityTester(abs(rr))]];

end

end

FeasibilityTester = zeros(1,n);

if DiscreteVars > 0

for I = n+1:TotalVars

NumDiscreteLvls = ['size(DiscreteLvls', int2str(I-n),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

DiscreteBase = ['DiscreteLvls',int2str(I-n),'(ceil(NumDiscreteLvls/2))'];

DiscreteBase = eval(DiscreteBase);

FeasibilityTester(:,I) = DiscreteBase;

end

else

end

FeasibilityTester(abs(p)) = p/abs(p)*0.8;

FeasibilityTester(abs(q)) = q/abs(q);

FeasibilityTester(abs(rr)) = rr/abs(rr);

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

while convergencematrix == 0;

FeasibilityTester(abs(p)) = FeasibilityTester(abs(p)) - 0.2*p/(abs(p));

Normalized_runs = FeasibilityTester;

runs = 1;

238

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

end

FeasibilityTester(abs(p)) = FeasibilityTester(abs(p)) + 0.1*p/(abs(p));

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 0

FeasibilityTester(abs(p)) = FeasibilityTester(abs(p)) - 0.05*p/(abs(p));

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 1

ThreeCombo3 = [ThreeCombo3; [FeasibilityTester(abs(p)), ...

FeasibilityTester(abs(q)), FeasibilityTester(abs(rr))]];

else

ThreeCombo3 = [ThreeCombo3; [FeasibilityTester(abs(p)) - ...

0.05*p/(abs(p)), FeasibilityTester(abs(q)),...

FeasibilityTester(abs(rr))]];

end

else

FeasibilityTester(abs(p)) = FeasibilityTester(abs(p)) + 0.05*p/(abs(p));

239

Normalized_runs = FeasibilityTester;

runs = 1;

Convert

eval(CodeName);

TotalInputTrials = TotalInputTrials + 1;

if convergencematrix == 1

ThreeCombo3 = [ThreeCombo3; [FeasibilityTester(abs(p)),...

FeasibilityTester(abs(q)), FeasibilityTester(abs(rr))]];

else

ThreeCombo3 = [ThreeCombo3; [FeasibilityTester(abs(p)) - ...

0.05*p/(abs(p)), FeasibilityTester(abs(q)), ...

FeasibilityTester(abs(rr))]];

end

end

end

end

fprintf('The following are those points that lie on the constraint corners, and will be used to replace the infeasible corner points\n')

ThreeCombo1

ThreeCombo2

ThreeCombo3

if NumBadThrees > 0;

Normalized_runs = Screening;

convergencematrix = ScreeningConvergence;

[runs, f] = size(Normalized_runs);

ReplaceInfeasiblePoints3

Normalized_runs = NewRuns;

240

fprintf('The following are those additional runs needed to complete the screening design\n')

NewRuns

[runs,f] = size(NewRuns);

TotalInputTrials = TotalInputTrials + runs;

n = TotalVars;

Convert

eval(CodeName)

[Replacements,f] = size(ReplacedRuns);

Convergence_Matrix = OriginalConvergence;

n = ContVars;

for D = 1:Replacements

ScreeningConvergence(ReplacedRuns(D,1)) = 1;

end

j = 1;

TotalScreeningInput = Screening;

TotalScreeningOutput = Y;

for I = 1:Replacements

TotalScreeningInput(ReplacedRuns(I,1),:) = NewRuns(I,:);

TotalScreeningOutput(ReplacedRuns(I,1),:) = outputmatrix(I,:);

Convergence_Matrix(ReplacedRuns(I,1),:) = convergencematrix(I,:);

end

convergencematrix = Convergence_Matrix;

outputmatrix = TotalScreeningOutput

TotalInputMatrix = TotalScreeningInput;

TotalOutputMatrix = TotalScreeningOutput;

Y = TotalOutputMatrix;

else

241

end

% ***Stage 2 - Screening for Most Important Analyses

%The following determines which of the auxiliary analyses used in the

%simulation are the most important. Those that are not significant to the

%problem will not be run in future trials in order to save on resources

if NumAddtlAnalyses > 0

MaxAnalysisImpact = max(abs(AddtlAnalyses))

j = 1;

I = 1;

while I <= NumAddtlAnalyses

if MaxAnalysisImpact(I) < 0.01

AdditionalAnalyses(j,:) = [];

NumAddtlAnalyses = NumAddtlAnalyses - 1;

I = I + 1;

else

j = j + 1;

I = I + 1;

end

end

else

end

% *** Stage 3 - Screening for Important Effects ***

% Calculate the contrasts for estimating effects from Cotter's formulation

for I = 1:responses

242

for j = 1:TotalVars

Co(I,j) = (1/4)*((Y(2*TotalVars+2,I)-Y(TotalVars+j+1,I))+(Y(j+1,I)-Y(1,I)));

Ce(I,j) = (1/4)*((Y(2*TotalVars+2,I)-Y(TotalVars+j+1,I))-(Y(j+1,I)-Y(1,I)));

end

end

%Normalize the constrasts based on response weightings

% for j = 1:n

% Co_weighted(:,j) = abs(Co(:,j)).*weightings';

% Ce_weighted(:,j) = abs(Ce(:,j)).*weightings';

% end

Co_sum = sum(abs(Co)');

Ce_sum = sum(abs(Ce)');

for j = 1:TotalVars

for I = 1:responses

Co_PercentContribution(I,j) = abs(Co(I,j))*weightings(I)/Co_sum(I);

Ce_PercentContribution(I,j) = abs(Ce(I,j))*weightings(I)/Ce_sum(I);

end

end

Max_Co_Contribution = max(Co_PercentContribution);

Max_Ce_Contribution = max(Ce_PercentContribution);

q = 1;

PercentContribution = 0.01;

while q > 0; %This statement adjusts how many variables are kept if the number of Maxruns is exceeded in this step

for I = 1:TotalVars

if Max_Co_Contribution(I) >= PercentContribution

243

SigOddEffects(I) = 1;

else

SigOddEffects(I) = 0;

end

if Max_Ce_Contribution(I) >= PercentContribution

SigEvenEffects(I) = 1;

else

SigEvenEffects(I) = 0;

end

end

fprintf('The following are the effects that were found to have significant odd or even order effects using Cotter''s screening design\n')

fprintf('(A 1 indicates that the corresponding variable has significant even or odd order effects)\n')

SigOddEffects

SigEvenEffects

%Calculate the total number of potentially significant interaction effects

%(all of the Significant Even effects are assumed to have potentially

% significant high order interactions amongst themselves)

%Number of main effects that have sig interaction terms

NumSigEffects = sum(SigEvenEffects);

%Used to build frac factorial

Variables = ['abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890!@#$%^&*()`-=~_+[];,./\{}|:"<>?'];

%Assign the appropriate letters to the terms with significant interactions

j = 1;

l = 1;

%Add the normalized contrasts to determine which terms will be used to

244

%create the generators for the Fractional Factorial design

NumInsigEffects = n-NumSigEffects %Number of Insig Main Effects

%Identify the names of the significant terms (both odd & even effects)

j = 1;

l = 1;

clear SigVector InsigVector

for I = 1:n

if SigEvenEffects(I) == 1 | SigOddEffects(I) == 1

SigVector(j) = Variables(I);

k(I) = 1;

j = j+1;

else

InsigVector(l) = Variables(I);

k(I) = 0;

l = l+1;

end

end

SigVector

InsigVector

[q,TotalNumSigEffects] = size(SigVector);

%Create a complete list of possible generators

generators = [SigVector];

I = TotalNumSigEffects -1;

245

while I > 1

generators = char(generators, nchoosek(SigVector,I));

I = I - 1;

end

generators

%Assign the generators to the insignificant variables

%If we dont have enough terms to create enough generators for the insig

%terms just alias the insig main effects with other insig main effects

NumSigIntx = size(generators,1);

M = 1;

for I = 1:n

if I <= NumSigIntx + TotalNumSigEffects

if k(I) > 0

if I == 1

FracFactBuilder = Variables(I);

else

FracFactBuilder = char(FracFactBuilder,Variables(I));

end

else

if I == 1

FracFactBuilder = generators(M,:);

M = M+1;

else

FracFactBuilder = char(FracFactBuilder,generators(M,:));

M = M+1;

end

end

246

else

FracFactBuilder = char(FracFactBuilder, InsigVector(I-NumSigIntx));

end

end

FracFactBuilder

%Create the fractional factorial command

FracFactCommand = FracFactBuilder(1,:);

for I = 2:n

FracFactCommand = [FracFactCommand ' ' FracFactBuilder(I,:)];

end

%Create the fractional factorial for estimating significance of effects

FracFactCommand;

Normalized_runs = fracfact(FracFactCommand);

[runs,n] = size(Normalized_runs);

CompleteDesign = [];

if DiscreteVars > 0

for I = n+1:TotalVars

DiscreteVarColumn = [];

if SigEvenEffects(I) == 1

NumDiscreteLvls = ['size(DiscreteLvls', int2str(I-n),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

DiscreteIndicator = ['DiscreteLvls',int2str(I-n)];

DiscreteIndicator = eval(DiscreteIndicator);

for J = 1:NumDiscreteLvls

for KL = 1:runs

CompleteDesign = [CompleteDesign; Normalized_runs(KL,:) DiscreteIndicator(J)];

end

247

end

Normalized_runs = CompleteDesign;

runs = size(Normalized_runs,1);

else

NumDiscreteLvls = ['size(DiscreteLvls', int2str(I-n),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

DiscreteBase = ['DiscreteLvls',int2str(I-n),'(ceil(NumDiscreteLvls/2))'];

DiscreteBase = eval(DiscreteBase);

Normalized_runs(:,I) = DiscreteBase;

runs = size(Normalized_runs,1);

end

end

else

end

[runs,B] = size(Normalized_runs);

ReplaceInfeasiblePoints3

[runs,B] = size(Normalized_runs); %Find the number of new runs

if runs > 0.5*Maxruns

PercentContribution = PercentContribution + 0.01;

else

q = 0;

end

248

end

Convert

eval(CodeName); %Run the fractional factorial

TotalInputMatrix = [TotalInputMatrix; Normalized_runs];

TotalOutputMatrix = [TotalOutputMatrix; outputmatrix];

Y = outputmatrix;

TotalInputTrials = TotalInputTrials + runs;

%Calculate the contrasts of all the significant main effects

l = 1;

h = 1;

M = 1;

for I = 1:n

if k(I) > 0

for j = 1:responses

Contrast(M,j) = sum(Normalized_runs(:,I).*outputmatrix(:,j))/runs;

end

M = M+1;

end

end

Contrast;

for j = 1:M-1

Effect(j,:) = char(SigVector(j));

end

q = M;

for I = 1:n

if k(I) > 0

for p = I+1:n

249

if k(p) > 0

for j = 1: responses

Contrast(q,j) = sum(Normalized_runs(:,I).*Normalized_runs(:,p).*...

outputmatrix(:,j))/runs;

end

q = q+1;

Interaction = [Variables(I), Variables(p)];

Effect = char(Effect, Interaction);

end

end

end

end

Contrast;

l = 1;

h = 1;

rr = q;

for I = 1:n

if k(I) > 0

for p = I+1:n

if k(p) > 0

for s = p+1:n

if k(s) > 0

for j = 1:responses

Contrast(rr,j) = sum(Normalized_runs(:,I).*Normalized_runs(:,p).*...

Normalized_runs(:,s).*outputmatrix(:,j))/runs;

end

250

rr = rr+1;

Interaction = [Variables(I), Variables(p), Variables(s)];

Effect = char(Effect, Interaction);

end

end

end

end

end

end

Contrast;

l = 1;

h = 1;

t = rr;

for I = 1:n

if k(I) > 0

for p = I+1:n

if k(p) > 0

for s = p+1:n

if k(s) > 0

for u = s+1:n

if k(u) > 0

for j = 1:responses

Contrast(t,j) = sum(Normalized_runs(:,I).*Normalized_runs(:,p).*...

Normalized_runs(:,s).*Normalized_runs(:,u).*outputmatrix(:,j))/runs;

end

t = t+1;

251

Interaction = [Variables(I), Variables(p), Variables(s), Variables(u)];

Effect = char(Effect, Interaction);

end

end

end

end

end

end

end

end

Contrast;

v = t;

for I = 1:n

if k(I) > 0

for p = I+1:n

if k(p) > 0

for s = p+1:n

if k(s) > 0

for u = s+1:n

if k(u) > 0

for w = u+1:n

if k(w)>0

for j = 1:responses

Contrast(v,j) = sum(Normalized_runs(:,I).*Normalized_runs(:,p).*...

Normalized_runs(:,s).*Normalized_runs(:,u).*outputmatrix(:,j))/runs;

end

252

v = v+1;

Interaction = [Variables(I), Variables(p), Variables(s), Variables(u),...

Variables(w)];

Effect = char(Effect, Interaction);

end

end

end

end

end

end

end

end

end

end

Contrast;

%Normalize the constrasts based on response weightings

highest = max(abs(Contrast));

Contrast_sum = sum(abs(Contrast));

[y,z] = size(Contrast);

for I = 1:responses

SigEffectsResponse = ['SigEffectsResponse', int2str(I), '=[];'];

eval(SigEffectsResponse);

for j = 1:y

Contrast_percentage(j,I) = abs(Contrast(j,I))*weightings(I)/Contrast_sum(I);

%This piece of code keeps track of which effects are significant in which

%responses, so we know what terms to include in each of the individually

253

%fit models.

if Contrast_percentage(j,I)/weightings(I) >=0.02

SigEffectsResponse = ['SigEffectsResponse', int2str(I), '=[SigEffectsResponse', int2str(I), ';Effect(I,:)];'];

eval(SigEffectsResponse);

else

end

end

end

Effect;

Contrast_total = sum(Contrast_percentage');

%Normalize the total contrast to itself

SigEffects = [];

for I = 1:y

if Contrast_total(I) >= 0.05

SigEffects = [SigEffects; Effect(I,:)];

else

end

end

fprintf('The following are all those effects that have been found to be significant using the results from the Fractional Factorial runs.\n')

SigEffects

fprintf('The following are all those effects that have been found to be significant to the individual responses.\n')

for I = 1:responses

SigEffectsResponse = ['SigEffectsResponse', int2str(I)];

254

eval(SigEffectsResponse);

end

%******Stage 4 - Power Projection*******************

% The following code hashes out the similarities between the various

% significant effects for the purpose of determining which dimensions

% require a space-filling design. Rather than build a space filling design

% in all of the dimensions given by the SigEffects, this code picks the

% fewest set of dimensions that is representative of all the rest. For

% Example, if the BC, CG, and BCG interactions are all found to be

% significant, it only makes sense to build one SF in BCG, which will take

% care of the other effects simultaneously.

[s,M] = size(SigVector);

[p,q] = size(SigEffects);

for I = 1:p

for j = 1:M

for t = 1:q

if SigEffects(I,t) == SigVector(j)

Sensitivity(j,I) = 1;

else

end

end

end

end

%'Sensitivity' is a matrix of ones and zeros denoting which of the Sig

%Variables are contained within each of the SigEffects

Sensitivity;

255

[p,q] = size(Sensitivity);

w = 2;

for I = 1:p

for j = 1:q

if Sensitivity(I,j) == 0

Sensitivity2(I,j) = w;

w = w + 1;

else

Sensitivity2(I,j) = 1;

end

end

end

Sensitivity2

I = q;

while I > 0

for j = 1:I

Similarity = Sensitivity(:,I) == Sensitivity2(:,j);

if Similarity == Sensitivity(:,j)

Contains(j,I) = 1;

else

end

end

I = I - 1;

end

%'Contains' denotes whether the effects of one factor are contained within

%the effects of another

256

Contains;

%Starting from the last row (which contains the biggest effect that needs

%to be modeled in the space filling design, go backwards and add effects

%until you have a set that is representative of the entire set

zero_rows = [];

one_rows = [];

for I = 1:q

if Contains(I,q) == 0

zero_rows = [zero_rows, I];

else

one_rows = [one_rows, I];

end

end

zero_rows

I = q

cumulative_effect = Contains(:,q);

Included_Effects = [q];

while I > 0

I = I - 1

sum_of_ones = zeros(1,q);

for j = 1:I

[rr,num_zeroes] = size(zero_rows);

for M = 1:num_zeroes

if Contains(zero_rows(M),j) > 0

sum_of_ones(j) = sum_of_ones(j) + 1

else

257

end

end

end

% [F, IX] = sort(sum_of_ones);

% if F(q) > 0

if sum_of_ones(I) > 0

% NextInclusiveEffect = IX(q);

NextInclusiveEffect = I;

Included_Effects = [Included_Effects, NextInclusiveEffect];

cumulative_effect = cumulative_effect+Contains(:,NextInclusiveEffect);

else

end

zero_rows = [];

for D = 1:q

if cumulative_effect(D) == 0

zero_rows = [zero_rows, D];

else

end

end

if min(cumulative_effect) == 1;

I = 0

else

end

end

Included_Effects;

[p,NumSFDesigns] = size(Included_Effects);

EffectsforSF = [];

258

InteractionSize_condensed = [];

j = 1;

%The following creates an array of the number and the dimensions of SF

%designs needed.

for w = 1:NumSFDesigns

EffectsforSF= [EffectsforSF;SigEffects(Included_Effects(w),:)]

[p,InteractionSize(w)] = size(deblank(EffectsforSF(w,:)))

h = 0;

for I = 1:w-1

if InteractionSize(I) == InteractionSize(w);

h = 1;

else

end

end

if h == 0;

InteractionSize_condensed(j) = InteractionSize(w);

j = j+1;

else

end

end

fprintf('The following are those effects in which a Space Filling Design will be created in those dimensions.\n')

EffectsforSF

InteractionSize; %Total Number of SF designs needed

InteractionSize_condensed; %Condensed Number (so you don't have to create the same design twice)

%The following creates the actual SF designs for each of the sig effects

SFDesign = [];

PassCount_total = [];

259

[o,j] = size(EffectsforSF);

for a = 1:o

nSig = InteractionSize(a);

IterativeSpaceFilling;

[b,c] = size(SF);

NormalizedSFDesign = zeros(b,n);

for s = 1:c

for t = 1:n

if EffectsforSF(a,s) == Variables(t)

NormalizedSFDesign(:,t) = SF(:,s);

else

end

end

end

NormalizedDesign = ['NormalizedDesign',int2str(a),...

'=NormalizedSFDesign;'];

eval(NormalizedDesign); %Creates normalized SF DoEs

%Specify the number of runs using the Passcount ind

Normalized_runs = NormalizedSFDesign;

if DiscreteVars > 0

for I = n+1:TotalVars

NumDiscreteLvls = ['size(DiscreteLvls', int2str(I-n),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

DiscreteBase = ['DiscreteLvls',int2str(I-n),...

'(ceil(NumDiscreteLvls/2))'];

DiscreteBase = eval(DiscreteBase);

Normalized_runs(:,I) = DiscreteBase;

260

end

else

end

runs = b;

Convert

SFDesign = ['SFDesign', int2str(a), '=inputmatrix;'];

eval(SFDesign); %Creates actual SF DoEs

PassCount_total = ['PassCount_total', int2str(a), '=PassCount;'];

eval(PassCount_total);

end

%The following determines how many runs are in each iteration of the SF

for d = 1:o

for e = 1:4

[f,g] = size(eval(['PassCount_total', int2str(d)]));

RunsPerIter = 0;

for h = 1:f

if eval(['PassCount_total', int2str(d),'(h)']) == e

RunsPerIter = RunsPerIter + 1;

else

end

end

NumRunsPerIter = ['SF', int2str(d), 'Iter', int2str(e), 'Runs', '=RunsPerIter'];

eval(NumRunsPerIter)

end

end

%The following runs a single centerpoint. If there are discrete variables,

%then there will be a centerpoint for every possible comb of discrete vars

261

centerpoint = zeros(1,n);

runs = 1;

DiscreteVector = [];

if DiscreteVars > 0

for I = 1:DiscreteVars

NumDiscreteLvls = ['size(DiscreteLvls', int2str(I),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

DiscreteVector = [DiscreteVector NumDiscreteLvls];

end

DiscreteCombs = fullfact([DiscreteVector]);

[I1,J1] = size(DiscreteCombs);

DiscreteCombsActual = [];

for J = 1:J1

for I = 1:I1

DiscreteLvlInd = ['DiscreteCombsActual(I,J) = DiscreteLvls', int2str(J),...

'(DiscreteCombs(I,J))';]

eval(DiscreteLvlInd);

end

end

runs = size(DiscreteCombsActual,1);

for I = 1:runs

CompleteCP(I,:) = [centerpoint DiscreteCombsActual(I,:)];

end

centerpoint = CompleteCP;

else

end

262

Normalized_runs = centerpoint;

Convert

clear outputmatrix

eval(CodeName);

TotalInputMatrix = [TotalInputMatrix; Normalized_runs];

TotalOutputMatrix = [TotalOutputMatrix; outputmatrix];

TotalInputTrials = TotalInputTrials + runs;

%The following determines whether Maxruns runs has been exceeded, and if

%not, runs the trials associated with the next SF iteration.

TotalCount = TotalInputTrials;

NewSFPoints = [];

for e = 1:4

Normalized_runs = [];

for d = 1:o

TotalCount = TotalCount + eval(['SF', int2str(d), 'Iter', int2str(e), 'Runs']);

end

inputmatrix = [];

if TotalCount <= Maxruns

for d = 1:o

[f,g] = size(eval(['PassCount_total', int2str(d)]));

for h = 1:f

if eval(['PassCount_total', int2str(d),'(h)']) == e

NewSFPoints = [NewSFPoints; eval(['NormalizedDesign', int2str(d), '(h,:)'])];

else

end

end

end

263

[SFruns,n] = size(NewSFPoints);

%The following determines whether each point is in the infeasible

%space and skips that point if it is

for I = 1:SFruns

Acceptable = 1;

for j = 1:NumBadCombos

Slope = (Combo1(j,2) - Combo2(j,2))/(Combo1(j,1) - Combo2(j,1));

Intercept = Combo1(j,2)-Slope*Combo1(j,1);

Line = NewSFPoints(I,abs(BadCombosVector(j,2)))-...

Slope*NewSFPoints(I,abs(BadCombosVector(j,1)))-Intercept;

Corner = BadCombosVector(j,2)/abs(BadCombosVector(j,2))-Slope*...

(BadCombosVector(j,1)/abs(BadCombosVector(j,1)))-Intercept;

if sign(Line) == sign(Corner)

Acceptable = 0;

else

end

end

for j = 1:NumBadThrees

CurrentX = NewSFPoints(I,abs(BadThreesVector(j,1)));

CurrentY = NewSFPoints(I,abs(BadThreesVector(j,2)));

CurrentZ = NewSFPoints(I,abs(BadThreesVector(j,3)));

Plane = [(CurrentX-ThreeCombo1(j,1)), (CurrentY-ThreeCombo1(j,2)), ...

(CurrentZ-ThreeCombo1(j,3));

(ThreeCombo2(j,1)-ThreeCombo1(j,1)), (ThreeCombo2(j,2)-ThreeCombo1(j,2)),...

(ThreeCombo2(j,3)-ThreeCombo1(j,3));

(ThreeCombo3(j,1)-ThreeCombo1(j,1)), (ThreeCombo3(j,2)-ThreeCombo1(j,2)),...

(ThreeCombo3(j,3)-ThreeCombo1(j,3))]

264

Corner = [(BadThreesVector(j,1)/abs(BadThreesVector(j,1))-ThreeCombo1(j,1)),...

(BadThreesVector(j,2)/abs(BadThreesVector(j,2))-ThreeCombo1(j,2)),...

(BadThreesVector(j,3)/abs(BadThreesVector(j,3))-ThreeCombo1(j,3));

(ThreeCombo2(j,1)-ThreeCombo1(j,1)), (ThreeCombo2(j,2)-ThreeCombo1(j,2)),...

(ThreeCombo2(j,3)-ThreeCombo1(j,3));

(ThreeCombo3(j,1)-ThreeCombo1(j,1)), (ThreeCombo3(j,2)-ThreeCombo1(j,2)),...

(ThreeCombo3(j,3)-ThreeCombo1(j,3))]

if sign(det(Plane)) == sign(det(Corner))

Acceptable = 0

else

end

end

if Acceptable == 1

Normalized_runs = [Normalized_runs; NewSFPoints(I,:)];

else

end

end

Normalized_runs

[runs,f] = size(Normalized_runs);

if DiscreteVars > 0

for I = n+1:TotalVars

NumDiscreteLvls = ['size(DiscreteLvls', int2str(I-n),',2);'];

NumDiscreteLvls=eval(NumDiscreteLvls);

DiscreteBase = ['DiscreteLvls',int2str(I-n),'(ceil(NumDiscreteLvls/2))'];

DiscreteBase = eval(DiscreteBase);

Normalized_runs(:,I) = DiscreteBase;

265

end

else

end

[runs,f] = size(Normalized_runs);

Convert

eval(CodeName);

TotalInputMatrix = [TotalInputMatrix; Normalized_runs]

TotalOutputMatrix = [TotalOutputMatrix; outputmatrix]

TotalInputTrials = TotalInputTrials + runs;

else

end

end

TotalInputMatrix;

TotalOutputMatrix;

%The following creates an X matrix that includes all the terms that have

%been deemed significant thus far. It will include all n main effects,

%squared and cubic effects for those terms in SigVector, all the terms in SigEffects,

%plus higher order poly terms for all the terms in SigEffects.

%First, add all those terms contained within "Effect" that are not

%contained within SigEffects (even though there were deemed insignificant,

%we have enough data to estimate them, so we might as well include them)

[SizeSigEffects, b] = size(SigEffects);

[SizeEffect, b] = size(Effect);

AddedTermsIndex = 1;

for c = 1:SizeEffect

266

e = 0;

[f,g] = size(deblank(Effect(c,:)));

for d = 1:SizeSigEffects

if Effect(c,:) == SigEffects(d,:) | g == 1

e = 1;

else

end

end

if e == 0

if AddedTermsIndex == 1;

AddedTerms = Effect(c,:);

else

AddedTerms = char(AddedTerms, Effect(c,:));

end

AddedTermsIndex = AddedTermsIndex + 1;

else

end

end

%Create an array of the squared and cubic SigVector terms

[a,b] = size(SigVector);

for c = 1:b

AddedTerms = char(AddedTerms, [SigVector(c) SigVector(c)]);

end

for c = 1:b

AddedTerms = char(AddedTerms, [SigVector(c) SigVector(c) SigVector(c)]);

end

267

[e,f] = size(SigEffects);

PolyInterTerms = [];

for c = 1:e

[d,TermSize] = size(deblank(SigEffects(c,:)));

if TermSize > 1

%Add to this array all the terms in SigEffects that aren't main effects

AddedTerms = char(AddedTerms, SigEffects(c,:));

%Add higher order poly terms

for g = 1:b

for h = 1:TermSize

if SigEffects(c,h) == SigVector(g)

AddedTerms = char(AddedTerms, [SigVector(g) SigEffects(c,:)]);

AddedTerms = char(AddedTerms, [SigVector(g) SigVector(g) SigEffects(c,:)]);

AddedTerms = char(AddedTerms, [SigVector(g) SigVector(g) SigVector(g)...

SigEffects(c,:)]);

AddedTerms = char(AddedTerms, [SigVector(g) SigVector(g) SigVector(g)...

SigVector(g) SigEffects(c,:)]);

AddedTerms = char(AddedTerms, [deblank(SigEffects(c,:)) deblank(SigEffects(c,:))]);

else

end

end

end

else

end

end

AddedTerms;

%Add all of the terms in the AddedTerms vector to the X matrix

268

X = [TotalInputMatrix];

[NumNewRows,d] = size(AddedTerms);

for a = 1:NumNewRows

[d,TermSize] = size(AddedTerms(a,:));

for b = 1:TermSize

for c = 1:n

if Variables(c) == AddedTerms(a,b)

if b == 1

NewColumn = TotalInputMatrix(:,c);

else

NewColumn = NewColumn.*TotalInputMatrix(:,c);

end

end

end

end

X = [X, NewColumn];

end

[trials, d] = size(TotalInputMatrix);

X = [ones(trials, 1), X];

for responseNum = 1:R

[Betas,bint,rr,rint,stats] = regress(TotalOutputMatrix(:,responseNum),X);

ResultsB = ['Betas', int2str(responseNum), '=Betas'];

eval(ResultsB);

ResultsStats = ['stats', int2str(responseNum), '=stats'];

eval(ResultsStats);

end

%Create a vector of all of the effects. This can be used to paste the

269

%terms into JMP when fitting the model there so that you know you have

%included all of the proper terms. Note that this will ony work if you

%canme your inputs a,b,c,d, etc in JMP, and you have less than 26 variables

%total. Otherwise, you will have to input all these by hand.

AllSigEffects = Variables(1);

for I = 2:n

AllSigEffects = [AllSigEffects; Variables(I)];

end

AllSigEffects = char(AllSigEffects, AddedTerms)

TotalInputMatrix

Normalized_runs = TotalInputMatrix;

runs = size(Normalized_runs, 1);

Convert;

inputmatrix

sym(TotalOutputMatrix, 'd')

B.2 Auxiliary Algorithms

B.2.1 UserInputs.m

This code functions as the platform in which the user speci�es all of the parameters

applicable to the particular problem at hand.

%This is where the user specifies information about the system

global Highs Lows weightings Maxruns n R CodeName

CodeName = ['runpendulum']; %The name of the code to be run

ContVars = 13; %Number of continuous variables

R = 3; %Number of responses

270

DiscreteVars = 1; %Number of discrete variables

TotalVars = ContVars + DiscreteVars; %Total Number of variables

%If there are discrete variables present, enter their levels in the vectors

%below

DiscreteLvls1 = [0 0.05 0.1];

DiscreteLvls2 = [];

DiscreteLvls3 = [];

%The following 2 parameters define the ranges on all the variables

%Place discrete variables last

Highs = [9.832 5.000 7.500 2.800 0.500 0.500 0.350 1.000 0.050 0.250 0.100

0.060 0.250 0.100];

Lows = [9.780 0.045 0.750 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000];

weightings = [1 0.75 0.75]; %Relative importances of the responses

%(this paramater helps to ensure that the most important responses will

%have the most accuracy in their predictions)

%The following specifies the stopping criteria for the runs. Two

%parameters must be specified. The first is an absolute maximum number of

%runs that can be afforded. The second denotes the desired accuracy. The

%process will stop if either one of these two criteria are met.

Maxruns = 450; %The maximum number of experiments that can be run

MaxErrorStdDev = 4; %Maximum standard deviation on the percent error

AdditionalAnalyses = char('MassDistribution', 'PhysicalConnections', 'DoublePendulum', 'AirDrag', 'MaterialProperties');

NumAddtlAnalyses = size(AdditionalAnalyses,1);

271

B.2.2 Convert.m

This code takes all of the normalized input values created in AutomateProcess.m and

converts them to actual values suitable for running the original model.

%This code converts the normalized DoE to the actual values

global inputmatrix outputmatrix Normalized_runs runs n Highs Lows

clear convergencematrix

Actual_values = [];

Normalized_runs;

for i = 1:runs

for j = 1:n

Actual_values(i,j) = ((Normalized_runs(i,j)+1)/2)*(Highs(j)-Lows(j))+Lows(j);

end

end

inputmatrix = Normalized_runs;

for i = 1:n

inputmatrix(:,i) = Actual_values(:,i);

end

B.2.3 CotterScreening.m

This algorithm creates the screening design developed by Cotter.

% This code creates the Systematic Fractional Replicate Design

% developed by S.C. Cotter for screening significant effects

global inputmatrix outputmatrix Normalized_runs

272

T0 = ones(1,TotalVars)*(-1); % Creates "treatment 0"

%T1 = [];

for i = 1:TotalVars % Creates treatments 1 through TotalVars

T1(i,:) = T0;

T1(i,i) = 1;

end

T3 = ones(1,TotalVars); % Creates treatment 2n+1

for j = 1:TotalVars % Creates treatments TotalVars+1 through 2n

T2(j,:) = T3;

T2(j,j) = -1;

end

Screening = [T0;T1;T2;T3];

[runs,TotalVars] = size(Screening);

Normalized_runs=Screening;

B.2.4 IterativeSpaceFilling.m

This algorithm is called to create the Space Filling Designs used to project power in

the signi�cant dimensions.

B.2.5 pendulum.m

This code functions as the �original model� for the test case.

global g m b L L_cord theta0 thetap0 b_friction r m_cord d_cord m_uc ir_uc...

thick_uc m_lc h_lc T endtime oscillations dT_array

failure = 1; %initialize convergence indicator

% g = 9.807; % acceleration of gravity (m/s^2)

% m = 1; % mass of bob (kg)

% b_friction = 0.00; % damping coefficient (kg/s) (good range: 0-0.5)

% L_cord = 2.93; % Length of the cord (m)

273

% d_cord = 0; % Diameter of the cord (m)

% m_cord = 0.0; % mass of the cord (kg)

% r = 0; % radius of bob (m)

% ir_uc = 0; % Inner radius of the upper connection (ring)

% thick_uc = 0; % Thickness of the upper connection (ring)

% m_uc = 0; % Mass of the upper connection (ring)

% h_lc = 0; % Height of lower connection (small cap)

% m_lc = 0; % Mass of lower connection (kg)

% theta0 = 0.5; % Initial angle

% thetap0 = 0; % Initial angular velocity

dT_bob = 0;

dT_uc = 0;

dT_lc = 0;

dT_dp = 0;

dT_cord = 0;

dT_buoy = 0;

dT_airKE = 0;

dT_stretch = 0;

b_drag = 0;

MD_PercentChange = 0;

PC_PercentChange = 0;

DP_PercentChange = 0;

AD_PercentChange = 0;

MP_PercentChange = 0;

L = L_cord+ir_uc+thick_uc+h_lc; % Tot distance between axis and center of mass

274

dr = 0; % Assume that pin goes through center of uc

dc = (1/2)*h_lc + r; % Distance between CM of lc and CM of bob

% Finds the moment of inertia for the system

I_bob = m*(L^2)*(1+(2/5)*(r/L)^2);

I_uc = m_uc*(dr^2+(1/4)*(ir_uc^2+(ir_uc+thick_uc)^2));

I_cord = (m + (1/3)*m_cord)*L_cord^2;

% Finds the period corrections for the system

To = 2*pi*(L/g)^(1/2); % Idealized Period

omega0 = 2*pi/To;

%Runs the additional analyses to find the deltas on T caused by other

%considerations not included in the basic equation

for i = 1:NumAddtlAnalyses

eval(AdditionalAnalyses(i,:))

end

% Total correction to the period

dT_array = [dT_bob dT_uc dT_lc dT_dp dT_cord dT_buoy dT_airKE dT_stretch];

dT_analyses = [MD_PercentChange PC_PercentChange DP_PercentChange AD_PercentChange MP_PercentChange];

dT = dT_bob + dT_uc + dT_lc + dT_dp + dT_cord + dT_buoy + dT_airKE + dT_stretch;

T = To + dT; % "Actual" calculated period

if m < 0.25*r

%if (T > 12 & L > 5)

failure = 0;

else

275

end

b = b_drag + b_friction; % Total damping coefficient

%b = 2*omega0 % Condition for critical damping

% Uses Runge_Kutta 4,5 ODE solver to solve for Theta and dTheta/dt over specified time int

z0=[theta0;thetap0];

[t,z]=ode45('de_rhs',[0,10000],z0);

theta1=z(:,1); thetap1=z(:,2);

ans = [t,z]; % 3-column array [time, Omega, dOmega/dT]

% Plots angle versus time

% figure(1); clf

% plot(t,theta1,'k'); hold on

% figure(2); clf

% short_t = t(1:500);

% short_theta1 = theta1(1:500);

% plot(short_t,short_theta1, 'k'); hold on

% Find the time when the pendulum reaches equilibrium

i = 1;

endtime = 0;

%for i=1:10000

while endtime == 0;

if z(i,1)<1e-4 & z(i,1)>-1e-4 & z(i+2,1)<1e-4 & z(i+2,1)>-1e-4 &...

z(i+3,1)<1e-4 & z(i+3)>-1e-4 & t(i,:)>To

endtime = t(i,:);

elseif i >= 9997

endtime = 10000;

276

else

i = i + 1;

end

end

if (theta0+thetap0) > pi

failure = 0;

else

end

endtime;

oscillations = floor(endtime/T);

actualtime = oscillations*T;

RK45ans = [endtime, oscillations, actualtime];

% % Uses Runge_Kutta 2,3 ODE solver to solve for Theta and dTheta/dt over

%specified time int

% z0=[theta0;thetap0];

% [t,z]=ode23('de_rhs',[0,10000],z0);

% theta1=z(:,1); thetap1=z(:,2);

% ans = [t,z]; % 3-column array [time, Omega, dOmega/dT]

% % Plots angle versus time

% % figure(2); clf

% % plot(t,theta1,'k'); hold on

%

% % Find the time when the pendulum reaches equilibrium

% for i=1:10000

% if (z(i+1,1)-z(i,1)) < 1e-6

% endtime = t(i,:);

277

% else

% endtime = inf;

% end

% end

% endtime;

% oscillations = floor(endtime/To);

% actualtime = oscillations*T;

% RK23ans = [endtime, oscillations, actualtime] ;

% % Uses a modified Rosenbrock ODE solver to solve for Theta and dTheta/dt over specified time int

% z0=[theta0;thetap0];

% [t,z]=ode23s('de_rhs',[0,10000],z0);

% theta1=z(:,1); thetap1=z(:,2);

% ans = [t,z]; % 3-column array [time, Omega, dOmega/dT]

% % Plots angle versus time

% % figure(3); clf

% % plot(t,theta1,'k'); hold on

%

%

% % Find the time when the pendulum reaches equilibrium

% for i=1:10000

% if (z(i+1,1)-z(i,1)) < 1e-6

% endtime = t(i,:);

% else

% endtime = inf;

% end

% end

278

% endtime;

% oscillations = floor(endtime/To);

% actualtime = oscillations*T;

% R2ans = [endtime, oscillations, actualtime];

% figure(2); clf

% dirfield(-2,2, -5.5,5.5); hold on

% plot(theta1,thetap1,'k')

% axis equal;axis([-2,2,-5.5,5.5])

B.2.6 runpendulum.m

This code acts as the interface between the algorithm, and the original model, pen-

dulum.m

global runs inputmatrix outputmatrix convergencematrix g m b L L_cord theta0...

thetap0 b_friction r m_cord d_cord m_uc ir_uc thick_uc m_lc h_lc T endtime...

oscillations dT_array

%clear outputmatrix convergencematrix

%inputmatrix = [

%]; %Uncomment if you want to manually paste your own DoE

AdditionalAnalyses = char('MassDistribution', 'PhysicalConnections', 'DoublePendulum',...

'AirDrag', 'MaterialProperties')

NumAddtlAnalyses = size(AdditionalAnalyses,1);

%for trial = 1:160

for trial= 1:runs

g = inputmatrix(trial,1);

m = inputmatrix(trial,2); % acceleration of gravity (m/s^2)

279

L_cord = inputmatrix(trial,3); % mass of bob (kg)

theta0 = inputmatrix(trial,4); % damping coefficient (kg/s)

thetap0 = inputmatrix(trial,5); % Length of the cord (m)

b_friction = inputmatrix(trial,6); % Diameter of the cord (m)

r =inputmatrix(trial,7); % mass of the cord (kg)

m_cord = inputmatrix(trial,8); % radius of bob (m)

d_cord = inputmatrix(trial,9); % Outer radius of the upper connection

m_uc = inputmatrix(trial,10); % Inner radius od the upper connection

ir_uc = inputmatrix(trial,11); % Mass of the upper connection

thick_uc = inputmatrix(trial,12); % Height of lower connection

m_lc = inputmatrix(trial,13); % Mass of lower connection (kg)

h_lc = inputmatrix(trial,14); % Initial angle (rad)

pendulum

outputmatrix(trial,:) = [T, endtime, oscillations];

convergencematrix(trial,:) = failure;

AddtlAnalyses(trial,:) = dT_analyses;

end

digits(8);

sym(outputmatrix, 'd');

B.2.7 Auxiliary Analyses

There were �ve total auxiliary analyses for the pendulum problem. The �rst calculates

the e�ect of air drag on the motion.

% Correction due to the buoyancy of the bob in the air

% (The apparant weight of the bob is decreased by the air displaced)

280

% The assumed conditions are: pressure = 100.44kPa, T = 25.5

density = 1.171; %kg/m^3

m_air = density*(4/3)*pi*r^3;

viscosity = 1.853e-5; % Pa*s

dT_buoy = To*(1/2)*(m_air/m);

% Correction due to stirring of surrounding air

% Some air is dragged along with the pendulum, becomming part of the system

Ma = sqrt(2)*2*r/(L*theta0);

Ca = 2.1-(0.132*Ma^2)/(1+0.12*Ma^2);

Ch = 0.48+(0.52*Ma^3)/((1+Ma)^3);

delta = sqrt(2*viscosity/(omega0*density));

Kma = (0.5*Ca+(9/4)*Ch*(delta/(r+1e-12)))*m_air;

dT_airKE = To*(1/2)*(Kma/m);

% Damping due to air drag

%b_drag = 0;

b_drag = 3*pi*(2*r)*viscosity/m;

dT_AD = dT_buoy+dT_airKE;

AD_PercentChange = dT_AD/To;

The next code calculates the e�ect of double pendulum motion on the outputs.

% Double Pendulum Corrections

L_1 = dr + ir_uc + thick_uc+1e-12;

L_2 = L_1 + L_cord+1e-12;

dT_dp = -To*((1/2)*((m_uc/m)^2)*(dr^2/(L_1*L_2)));

dT_DP = dT_dp;

DP_PercentChange = dT_DP/To;

281

The following models the e�ect of distributed mass on the motion.

% Correction due to actual spherical bob

dT_bob = To*(1/5)*(r/L)^2;

% Correction due to the wire having mass

L_eff = (m*L_cord+(1/2)*m_cord*L_cord)/(m+m_cord);

dT_cord = 2*pi*(L_eff/g)^(1/2)-To;

%Total delta caused by this analysis

dT_MD = dT_bob + dT_cord;

MD_PercentChange = dT_MD/To;

The following accounts for the impact of material strength on the motion of the

pendulum (in particular, the e�ect of the cord stretching due to the added mass on

the end).

E = 2e11; % Young's modulus of elasticity of steel

S = pi*(d_cord/2)^2; % Cross sectional area of cord

if S == 0

dT_stretch = 0;

fail = 1;

else

dT_stretch = To*(11/16)*(m*g/(E*S))*theta0^2;

dL_cord = m*g*L_cord/(E*S);

percent_change_in_L = dL_cord/dT_stretch*100;

if percent_change_in_L < 25

fail = 0;

else

fail = 1;

end

282

end

dT_MP = dT_stretch;

MP_PercentChange = dT_MP/To;

The following models the impact of the existence of real, physical connectors.

% Correction due to presence of a ring as the upper connection

dT_uc = -To*((1/2)*(m_uc/m)*(dr/L)+(1/2)*(I_uc/(m*L^2)));

% Correction due to presence of a cap as the lower connection

dT_lc = -To*((1/2)*(m_lc/m)*(dc/L));

dT_PC = dT_uc + dT_lc;

PC_PercentChange = dT_PC/To;

B.3 Instructions for Utilizing These Tools for

the Design Space Exploration of a New Prob-

lem

In order to automate this process for utilization in a new problem, the following are

required:

• An m-�le must be created that takes in a matrix called 'inputmatrix' and runs

the trials contained within that matrix. This m-�le must also collect another

matrix, called 'outputmatrix' from the original code that contains all of the

response values for all of the trials contained in the 'inputmatrix'. In addition,

the m-�le must also collect a 'convergencematrix' that speci�es whether or not

each trial failed. If a trial ran successfully, that trial should be assigned a '1'

in the convergence matrix. If a trial fails, a '0' should be assigned to the 'con-

vergencematrix' for that trial. Essentially, this m-�le is responsible for allowing

the algorithm to transfer all of the inputs to the model to be run, and then col-

lect all of the outputs and convergence information which will then be passed

283

back to the algorithm. In the pendulum example, the m-�le, runpendulum.m,

performs these functions.

• All of the parameters contained within the UserInputs.m �le must edited to

re�ect the settings that apply to the new application. These parameters include

items such as the ranges on the input variables, the maximum number of trials

permitted, etc.

• After the algorithm has �nished running, the information may be transferred

to another statistical analysis tool that enables better visualization of the data.

There are two options for accomplishing this task. The �rst it to take the

coe�cients (and their respective terms), and transfer these to the statistical

analysis tool as complete equations. The other option is to cut and paste the

input and output matrices into the statistical tool, and then to re�t that data

there. If this option is chosen, however, it is important to be sure that all of

the e�ects that were included in the metamodel by the algorithm are included

when the data is re�t in the analysis tool. Otherwise, the results displayed in

the statistics tool will be inferior to that given by the algorithm. To see the

list of e�ects that the algorithm included in the metamodel, refer to the output

called �AllSigE�ects�.

284

REFERENCES

[1] �Nist/sematech e-handbook of statistical methods.�
http://www.itl.nist.gov/div898/handbook/, November 2005.

[2] Addelman, �Sequences of two-level fractional factorial plans,� Technometrics
19, vol. 11, pp. 477�501, 1969.

[3] Akima, H., �Comments on "optimal contour mapping using universal kriging"
by r.a. olea,� Journal of Geophysical Research, vol. 80, pp. 832�834, 1975.

[4] Alexandrov, N., �On managing the use of surrogates in general non-
linear optimization and mdo,� vol. 2, (St. Louis, MO), pp. 720�729, 7th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, September 2-4 1998.

[5] Alexandrov, N.M., Dennis, J.E. Jr., Lewis, R.M., and Torczon, V.,
�A trust region framework for managing the use of approximation models in
optimization,� Structural Optimization, vol. 15, no. 1, pp. 16�23, 1998.

[6] An, J. and Owen, A., �Quasi-regression,� 1999.

[7] Anderson, M. andWhitcomb, P., DOE Simpli�ed. Productivuty, Inc, 2000.

[8] Andrews, D., �Sequentially designed experiments for screening out bad models
with f tests,� Biometrika, vol. 58, p. 427, 1971.

[9] Andrews, D., �A comprehensive methodology for the design of ships (and
other complex systems),� Mathematical, Physical and Engineering Sciences,
vol. 454, pp. 187�211, January 1998.

[10] Bailer-Jones, C., �A summary of gaussian processes,� tech. rep., Canvedish
Laboratory, University of Cambridge, Cambridge, England, UK.

[11] Barros, P.A. Jr., Kirby, M.R., and Mavris, D.N., �Impact of sampling
technique selection on the creation of response surface models,� No. 2004-01-
3134, 2004.

[12] Bloebaum, C. and Chi, H., �A concurrent decomposition approach for mixed
discrete/continuous variables,� AIAA/ASME/ASCE/AHS/ASC 35th Struc-
tures, Structural Dynamics and Materials Conference, April 1994.

[13] Booker, A., �Design and analysis of computer experiments,� Tech. Rep.
AIAA-98-4757, American Institute of Aeronautics and Astronautics, 1998.

285

[14] Booker, A.J., Conn, A.R., Dennis, J.E.,, Frank, J.E., Frank, P.D.,
Trosset, M., and Torczon, V., �Multi-level design optimization,� boe-
ing/ibm/rice collaborative project. �nal report, The Boeing Company, Seattle,
WA, 1995.

[15] Borer, N., Decision Making Strategies for Probabilistic Aerospace Systems
Design. PhD thesis, School of Aerospace Engineering, Georgia Institute of
Technology, 2006.

[16] Borer, N. and Mavris, D., �Multiple criteria decision making for large scale
systems design,� tech. rep., Georgia Institute of Technology, Atlanta, GA, 2005.

[17] Box, G. and Hunter, J., �The 2(k−p) fractional factorial designs,� Technomet-
rics, vol. 3, pp. 311�351, 1961.

[18] Box, G. and Wilson, K., �On the experimental attainment of optimum con-
ditions,� J. R. Statist. Soc., vol. B 13, pp. 1�45, 1951.

[19] Box, G.E.P., Hunter, W.G., and Hunter, J.S., Statistics for Experiments.
Wiley, 1978.

[20] Branscome, C. and Mavris, D., �A regression con�dence band approach to
global optimization,� tech. rep., Georgia Institute of Technology.

[21] Brown, D. and Andrews, D., �The design of cheap warships,� Journal of
Naval Science, vol. 7, pp. 81�95, June 1980.

[22] Brown, D. and Tupper, E., �The naval architecture of surface warships,�
TRINA, 1989.

[23] CAPT Doerry, N., T. D. o. F. C. and Design, S. S., �Challenges of early
stage ship design.� Presentation, January 2006.

[24] Carey, G., �Multivariate analysis of variance (manova): An introduction,�
1998.

[25] Carl, H., Laws and Models: Science, Engineering and Technology. Boca Ra-
ton: CRC Press, LLC, 2000.

[26] Castelloe, J. and O'Brian, R., �Power and sample size determination for
linear models,� Statistics, Data Analysis, and Data Mining, no. 240-26.

[27] Chariman of the Joint Chiefs of Sta� Instruction, Joint Capability Integration
Development System, cjcsi 3170.01e ed., May 2005.

[28] Chipman, H., �Bayesian variable selection with related predictors,� Canadian
Journal of Statistics, vol. 24, pp. 17�36, 1996.

[29] Cotter, S., �A screening design for factorial experiments with interactions,�
Biometrika, vol. 66, pp. 317�320, August 1979.

286

[30] Crary, S.B., Woodcock, D.M., and Hieke, A., �Designing e�cient com-
puter experiments for metamodel generation,� Tech. Rep. ISBN 0-9708275-0-4,
Modeling and Simulation of Microsystems, 2001.

[31] Cressie, N., Statistics for Spatial Data. New York: John Wiley & Sons, 1993.

[32] Currin, C., Mitchell, T., Morris, M., and Ylvisaker, D., �Bayesian
prediction of deterministic functions with applications to the design and analy-
sis of computer experiments,� Journal of the Americal Statistical Association,
vol. 86, no. 416, 1991.

[33] Daberkow, D. and Mavris, D., �New approaches to conceptual and pre-
liminary aircraft design,� Presented at the 3rd World Aviation Congress and
Exposition, September 28-30 1998.

[34] Daniel, C., �On varying one factor at a time,� Biometrics, vol. 14, pp. 430�431,
1958.

[35] Daniel, C., �Sequences of fractional replicates in the 2(p−q) series,� Journal of
the American Statistical Assosiation, vol. 57, pp. 403�429, 1962.

[36] Daniel, C., �One-at-a-time plans,� Journal of the American Statistical Asso-
ciation, vol. 68, pp. 353�360, 1973.

[37] Daniel, C., Applications of Statistics to Industrial Experimentation. New
York: Wiley, 1976.

[38] Davies, O. and Hay, W., �The construction and uses of fractional factorial
designs in industrial research,� Biometrics, vol. 6, pp. 233�249, 1950.

[39] Davis, P. and Bigelow, J., �Motivated metamodels,� tech. rep., RAND,
SAnta Monica, CA.

[40] Davis, P. and Bigelow, J., �Motivated metamodels: Sythesis of cause-
e�ect reasoning and statistical metamodeling,� tech. rep., RAND's Project AIR
FORCE, 2003.

[41] Deutsch, C. and Journel, A., GSLIB: Geostatisical Software Library and
User's Guide. New York: Oxford University Press, 1992.

[42] Dieter, G., Engineering Design. McGraw Hill, 2000.

[43] Easterling, R., �Comments on "design and analysis of computer experi-
ments" by sacks, schiller, mitchell, and wynn,� Statistical Science, vol. 4, no. 4,
pp. 425�427, 1989.

[44] Echols, R. e. a., �Sea swat, a littoral combat ship for sea base defense,� tech.
rep., Naval Postgraduate School, December 2003.

287

[45] Ender, T., A Top-Down, Hierarchical, System-ofSystems Approach to the De-
sign of an Air Defense Weapon. PhD thesis, School of Aerospace Engineering,
Georgia Institute of Technology, 2006.

[46] Engler, W. O., Biltgen, P. T., and Mavris, D. N., �Concept selection
using an interactive recon�gurable matrix of alternatives (irma),� tech. rep.,
January 2007.

[47] Ford, J. and Bloebaum, C., �Decomposition method for concurrent design
of mixed discrete/continuous systems,� Proceedings of the ASME Design Au-
tomation Conference, September 1993.

[48] Frits, A. and Mavris, D., �A screening method for customizing designs
around non-convergent regions of design spaces,� (Atlanta, GA), Presented at
the 2002 Multidisciplinary Analysis and Optimization Conference, 2002.

[49] Geng, T. and Nalim, M., �Statistical design of experiments for wave ejector
performance improvement,� (Reno, Nevada), 42nd AIAA Aerospace Sciences
Meeting and Exhibit, January 2004.

[50] Gilmer, T. and Johnson, B., Introduction to Naval Architecture. Naval
Institute Press, 1982.

[51] Gilmour, S. andMead, R., �Stopping rules for sequences of factorial designs,�
Applied Statistics, vol. 44, pp. 343�355, 1995.

[52] Gilmour, S. and Mead, R., �Fixing a factor in the sequential design of two-
level factorial experiments,� Journal of Applied Statistics, vol. 23, pp. 21�29,
1996.

[53] Giunta, A., Aircraft Multidisciplinary Design Optimization Using Design of
Experiments Theory and Response Surface Modeling. PhD thesis, Department
of Aerospace and Ocean Engineering, Virginia Polytechnic and State University,
Blacksburg, VA, 1997.

[54] Giunta, A.A., Wojtkiewicz, S.F. Jr., and Eldred. M.S., �Overview
of modern design of experiments methods for computational simulations,�
No. AIAA-2003-0649, (Reno, Nevada), Proceedings of the 41st AIAA Aerospace
Sciences Meeting and Exhibiy, January 6-9 2003.

[55] Hamada, M. and Balakrishnan, N., �Analyzing unreplicated factorial ex-
periments,� Statistica Sinica, vol. 8, pp. 1�41, 1998.

[56] Hamada, M. and Wu, C., �Analysis of designed experiments with complex
aliasing,� Journal of Quality Technology, vol. 24, pp. 120�137, 1992.

[57] Hartley, H., �Smallest composite designs for quadratic response surfaces,�
Biometrics, vol. 15, pp. 611�624, December 1959.

288

[58] Harvey-Evans, J., �Basic design concepts,� US Naval Engineers, vol. 71,
pp. 671�678, 1959.

[59] Hazelrigg, G., �Introduction to laws and models by carl, h.w..� CRC Press,
LLC, 2000.

[60] Hirokawa, N. and Fujita, K., �The potential role of cache mechanism for
complicated designs optimization,� (Busan, Korea), The Second China-Japan-
Korea Symposium on Optimization of Structural and Mechanical Systems,
Novemeber 4-8 2002.

[61] Hollingsworth, P. and Mavris, D., �Gaussian process meta-modeling:
Comparison of gaussian process training methods,� tech. rep., School of
Aerospace Engineering, Georgia Institute of Technology, 2002.

[62] Hollingsworth, P. and Mavris, D., �A technique for use of gaussian
processes in advanced meta-modeling,� Tech. Rep. 2003-01-3051, Aerospace Sys-
tems Design Laboratory, Georgia Institute of Technology, SAE International,
2003.

[63] Houston, D., Ferreira, S., and Montgomery, D.C., �Using unrepli-
cated 2(k− p) designs for characterizing moderately dimensioned deterministic
computer models,� Quality and Reliability Engineering International, vol. 21,
pp. 809�824, 2005.

[64] Hunter, J., �Statistical design applied to product design,� Journal of Quality
Technology, vol. 17, pp. 210�221, October 1985.

[65] Hunter, J. and Naylor, T., �Experimental designs for computer simulation
experiments,� Management Science, vol. 16, pp. 422�434, March 1970.

[66] Inman, R. and Conover, W., �Small sensitivity analysis techniques for com-
puter models with an application to risk assessment,� Communication Statistics-
Theory and Methods, no. 17, pp. 1749�1842, 1980.

[67] Jiang, T. andOwen, A., �Quasi-regression for visualization and interpretation
of black box functions,� tech. rep., Stanford University, Statistics Department,
2002.

[68] Jin, R., Chen, W., and Simpson, T.W., �Comparitive studies of metamod-
eling techniques under multiple modeling criteria,� (Long Beach, CA), 8th
AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, 2000.

[69] Jin, R., Chen, W., and Sudjianto, A., �On sequential sampling for global
metamodeling in engineering design,� (Montreal, Canada), ASME 2002 Design
Engineering Technical Conferences and Computers and Information in Engi-
neering Conference, September 29-October 2 2002.

289

[70] JMP, a Business Unit of SAS Institute, I., �Jmp version 5.1 user's guide.�
Cary, NC, 2003.

[71] John, P., �Augmenting 2(n−1) designs,� Technometrics, vol. 8, pp. 469�480,
1966.

[72] Johnson, C., �Introduction to neural networks in jmp, version 2.0,� 2004.

[73] Jones, D.R., Schonlau, M., and Welch, W.J., �E�cient global optimiza-
tion of expensive black-box funtions,� Journal of Global Optimization, vol. 4,
no. 13, pp. 455�492, 1998.

[74] Juran, J., Juran on Quality by Design. The Free Press, 1992.

[75] Kirby, M., A Methodology for Technology Identi�cation, Evaluation, and Se-
lection in Conceptual and Preliminary Aircraft Design. PhD thesis, School of
Aerospace Engineering, Georgia Institute of Technology, 2001.

[76] Kirby, M. and Mavris, D., �An approach for the intelligent selection of fu-
ture technology portfolios,� Tech. Rep. AIAIA 2002-0515, School of Aerospace
Engieering, Georgia Institute of Technology, 40th AIAA Aerospace Sciences
Meeting and Exhibit, January 2002.

[77] Klir, G., Advances in Fuzzt Theory and Technology, vol. III, ch. From Classical
Sets to Fuzzy Sets: A Grand Paradigm Shift, pp. 5�28. 1995.

[78] Koch, P., Hierarchical Modeling and Robust Synthesis for the Preliminary
Design of Large Scale Complex Systems. PhD thesis, Georgia Institute of Tech-
nology, 1997.

[79] Koch, P.N., Simpson, T.W., Allen, J.K., and Mistree, F., �Statistical
approximations for multidisciplinary design optimization: The problem of size,�
Journal of Aircraft, vol. 36, no. 1, pp. 275�286, 1999.

[80] Koehler, J.R., O. A., Handbook of Statistics. New York: Elsevier Science,
1996.

[81] Koleser, J., Response Surface Methodology - Center for Innovation in Ship
Design. Naval Surface Warfare Center, Carderock, 2005.

[82] Krige, D., �A statistical approach to some mine valuation and allied problems
on the witwatersrand,� Master's thesis, University of Witwatersrand, 1951.

[83] Kuhn, T., The Structure of Scienti�c Revolutions. Chicago: University of
Chicago Press, 1962.

[84] Laslett, G., �Kriging and splines: An empirical comparison of their predictive
performance in some applications,� Journal of the American Statistical Associ-
ation, vol. 89, no. 426, 1994.

290

[85] Lavis, D. and Forstell, B., Choosing A�ordable Requirements and Technol-
ogy Options for Future Surface Ships.

[86] Lehman, J., Sequential Design of Computer Experiments for Robust Parameter
Design. PhD thesis, Ohio State University, 2002.

[87] Lenth, R., �Quick and easy analysis of unreplicated factorials,� Technometrics,
vol. 31, pp. 469�473, 1989.

[88] Lin, Y., An E�cient Robust Concept Exploration Method and Sequential Ex-
ploratory Experimental Design. PhD thesis, Georgia Institute of Technology.

[89] Lin, Y.,Mistree, F., Allen, J.K., Tsui, K.L., andChen, V.C.P., �Sequen-
tial metamodeling in engineering design,� 10th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Auguest 2004.

[90] Mandel, P. and Chryssostomidis, C., �A design methology for ships and
other complex systems,� Phil. Trans R. Soc. Lond., vol. A 273, pp. 85�98.

[91] Martin, J. and T.W., S., �Use of addaptive metamodeling for design opti-
mization,� (Atlanta, GA), 9th AIAA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, 4-6 September 2002.

[92] Mason, R.L., Gunst, R.F., and Hess, J.L., Statistical Design and Analysis
of Experiments. Wiley, 1989.

[93] Mavris, D.N., Baker, A.P., and Schrage, D.P., �Ippd through robust
design simulation for and a�ordable short haul civil tiltrotor,� (Virginia Beach,
VA), Presented at the American Helicopter Society 53rd Annual Forum, 1997.

[94] Mavris, D.N., DeLaurentis, D.A., Bante, O., and Hale, M.A., �A sto-
chastic approach to multi-disciplinary aircraft analysis and design,� No. AIAA
98-0912, (Reno, NV), Presented at the 36th Aerospace Sciences Meeting and
Exhibit, January 1998.

[95] McCullagh, P. and Nelder, J., Generalized Linear Models. Chapman and
Hall, 2nd ed. ed., 1989.

[96] McKay, M.D., Bechman, R.J., and Conover, W.J., �A comparison of
three methods for selecting values of input variables in the analysis of output
from a computer code,� Technometrics, vol. 21, pp. 239�245, May 1979.

[97] Mitchell, T. and Morris, M., �Bayesian design and analysis of computer
experiments: Two examples,� Statistica Sinica, vol. 2, pp. 359�379, 1992.

[98] Montgomery, D., Design and Analysis of Experiments. New York, NY, Wi-
ley, �fth ed., 2001.

[99] Montgomery, D. and Peck, E., Introduction to Linear Regression Analysis.
John Wiley & Sons, second edition ed., 1992.

291

[100] Myers, R., Classical and Modern Regression with Applications. PWS-Kent
Publishing Company, 2nd edition ed., 1990.

[101] Myers, R. and Montgomery, D., Response Surface Methodology. Wiley-
Interscience, 2nd ed., 2002.

[102] Naval Surface Warfare Center Carderock Division, Washington, D.C., Advanced
Surface Ship Evaluation Tool (ASSET) User's Guide and Tutorial, 2002.

[103] Nelson, R. and Olsson, M., �The pendulum - rich physics from a simple
system,� American Journal of Physics, vol. 2, no. 54, pp. 112�121, 1986.

[104] of Systems Engieering, I. C., Systems Engieering Handbook: A Guide for
System Life Cycle Processes and Activities. 3rd ed., June 2006.

[105] on Simulation-Based Engineering Science, N. S. F. B. R. P., �Simu-
lation - based engineering science: Revolutionizing engieering science through
simulation,� tech. rep., February 2006.

[106] Osio, I. and Amon, C., �An engineering design methodology with multistage
bayesian surrogate and optimal sampling,� Research in Engineering Design,
vol. 8, no. 4, pp. 189�206, 1996.

[107] Owen, A., �Orthogonal arrays for computer experiments, integration, and vi-
sualization,� Statistica Sinica, no. 2, pp. 439�452, 1992.

[108] Owen, A., �Assessing linearity in high dimensions,� Annals of Statistics,
vol. 28, pp. 1�19, 2000.

[109] Pajak, T. and Addelman, S., �Minimum full sequences of 2(n−m) resolution
iii plans,� Journal of the Royal Statistical Society, vol. Series B, 37, pp. 88�95,
1975.

[110] Park, J., �Optimal latin-hypercube designs for computer experiments,� Jour-
nal of Statistical Planning Inference, vol. 39, pp. 95�111, 1994.

[111] Philip, J., �Issues in �ow and transport in heterogeneous porous media,� Trans-
port in Porous Media, vol. 1, pp. 319�338, 1986.

[112] Raymer, D., Aircraft Design: A Conceptual Approach. American Institute of
Aeronautics and Astronautics, Inc, 3rd edition ed., 1999.

[113] Rittel, H. and Webber, M., �Dilemmas in the general theory of planning
policy sciences,� Policy Sciences, vol. 4, 1973.

[114] Rodriguez, J.F., Renaud, J.E., and Watson, L.T., �Trust region aug-
mented lagrangian methods �r sequential response surface approximation and
optimization,� No. DTEC97/DAC-3773, (Sacremento, CA), Advances in Design
Automation, September 14-17 1997.

292

[115] Roquemore, K., �Hybrid designs for quadratic response surfaces,� Techno-
metrics, vol. 18, pp. 419�423, 1976.

[116] Rudko, D. D., �Logistical analysis of the littoral combat ship,� Master's thesis,
Naval Postgraduate School, Monterey, CA, March 2003.

[117] Rumelhart, D.E.,Widrow, B., and Lehr, M.A., �The basic ideas in neural
networks,� Communications of the ACM, vol. 37, no. 3, pp. 87�92, 1994.

[118] Sacks, J., Schiller, S.B., and Welch, W.J., �Design for computer experi-
ments,� Technometrics, vol. 31(1), pp. 41�47, 1989.

[119] Sacks, J., Welch, W.J., Mitchell, T.J., and Wynn, H.P., �Design and
analysis of computer experiments,� Statistical Science, vol. 4, no. 4, pp. 409�435,
1989.

[120] Saltelli, A., Chan, K., and Scott, E.M., Sensitivity Analysis. Wiley Series
in Probability and Statistics, John Wiley and Sons, 2000.

[121] Santner, T.J., Williams, B.J., and Notz, W.I., The Design and Analysis
of Computer Experiments. Springer Series in Statistics, 2003.

[122] Scharl, J. and Mavris, D., �Building parametric and probabilistic dynamic
vehicle models using neural networks,� Presented at the AIAA Modeling and
Simulation Conference and Exhibit, August 6-9 2001.

[123] Sellar, R.S., Batill, S.M., and Renaud J.E., �Optimization of
mixed discrete / continuous design variable systems using neural networks,�
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, September 7-9 1994.

[124] Sibson, R., Interpreting Multivariate Data, ch. A Brief Description of Natural
Neighbour Interpolation, pp. 21�36. John Wiley, 1981.

[125] Sichel, H., �Comment on "two-dimensional weighted moving average trend
surfaces for ore valuation" by d.g. krige,� (Johannesburg: South African In-
stitute of Mining and Metallurgy), pp. 59�63, Symposium on Mathematical
Statistics and Computer Applications in Ore Valuation, 1966.

[126] Simpson, T.W., Lin, D.K.J., and Chen, W., �Sampling strategies for com-
puter experimetns: Design and analysis.� Submitted to the International Jour-
nal of Reliability and Applications, December 2000.

[127] Simpson, T.W., Peplinski, J., Koch, P.N., and Allen, J.K., �On the use
of statistics in design and the implications for deterministic computer exper-
iments in design theory and methodology,� No. DETC97/DTM-3881, (Sacra-
mento, CA), ASME, September 14-17 1997.

293

[128] Simpson, T.W., Peplinski, P.N., Koch, P.N., and Allen, J.K., �Meta-
models for computer-based engineering design: Survey and recommendations,�
Engineering with Computers, vol. 17, pp. 129�150, 2001.

[129] Snaith, G. and Parker, M., �Ship design with computer aids,� NE Coast
Institute of Engineers and Shipbuilders, pp. 151�172, March 1972.

[130] Stump, G.M., Yukish, M., Simpson, T.W., and Bennet, L., �Multidi-
mensional visualization and its application to a design by shopping paradigm,�
No. AIAA-2002-5622, (Atlanta, GA), 9th AIAA/ISSMO Symposium on Multi-
disciplinary Analysis and Optimization, September 4-6 2002.

[131] Taguchi, G., System of Experimental Design, vol. 2. New York, UNIPUB,
1987.

[132] Taguchi, G., Yokoyama, Y., and Wu, Y., Taguchi Methods: Design of
Experiments. Allen Park, Michigan: American Supplier Institute, 1993.

[133] Tang, B., �Orthogonal array-based latin hypercubes,� journal of American
Statistical Association, vol. 88, no. 424, pp. 1392�1397, 1993.

[134] Torporov, V., Van Keulen, F.,Markine, V., and De Doer, H., �Re�ne-
ments in the multi-point approximation method to reduce the e�ects of noisy
structural responses,� vol. 2, (Bellevue, WA), 6th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinay Analysis and Optimization, September 406
1996.

[135] Tupper, E., Introduction to Naval Architecture. Butterworth-Heinemann,
1996.

[136] V. Roshan, J., �A bayesian approach to the design and analysis of fractionated
experiments,� Technometrics, vol. 48, no. 2, 2006.

[137] Wang, G., �Adaptive response surface method usign inherited latin hyper-
cube design points,� Transactions of the ASME Journal of Mechanical Design,
vol. 125, pp. 210�220, 2003.

[138] Welch, W.J., Buck, R.J., Sacks, J., Wynn, H.P., Mitchell, T.J., and
Morris, M.D., �Screening, predicting, and computer experiments,� Techno-
metrics, vol. 34, pp. 15�25, 1992.

[139] Welch, W.J., Yu, T.K., Kang, S.M., and Sacks, J., �Computer experi-
ments for quality control by parameter design,� Journal of Quality Technology,
vol. 22(1), pp. 15�22, 1990.

[140] Whitcomb, C., �Naval ship design philosophy implementation,� Naval Engi-
neers Journal, vol. 110, pp. 49�63, January 1998.

294

[141] Whitcomb, C. and Szatkowski, J., �Concept level naval surface combatant
design in the axiomatic approach to design framework,� (Cambridge, MA), First
International Conference on Axiomatic Design, June 21-23 2000.

[142] Wikipedia. http://en.wikipedia.org/wiki, August 2006.

[143] Wu, C. and Hamada, M., Experiments: Planning, Analysis, and Parameter
Design Optimization. John Wiley and Sons, 2000.

[144] Wujek, B. and Renaud, J., �New adaptive move-limit managment strategy
for approximate optimization,� AIAA Journal, vol. 36, no. 10, pp. 1911�1934,
1998.

[145] Xu, J., �Building the sea base for future expeditionary war.� Washington In-
ternships for Students of Engineering, August 2004.

[146] Yackowitz, S. and Szidarovsky, F., �A comparison of kriging with nonpara-
metric regression models,� Journal of Multivariate Analysis, vol. 16, pp. 21�53,
1985.

[147] Ye, K.Q., Li, W., and Sudianto, A., �Algorithmic construction of optimal
symmetric latin hypercube designs,� Journal of Statistical Planning and Infer-
ence, vol. 90, pp. 145�159, 2000.

[148] Zentner, J., A Design Space Exploration Process for Large Scale, Multi-
Objective Computer Simulations. Phd dissertation, Georgia Institute of Tech-
nology, 2006.

295

